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VALUING TARGET REDEMPTION NOTES BY A STRATIFIED

LONGSTAFF SCHWARTZ ALGORITHM

FRED ESPEN BENTH AND PÅL NICOLAI HENRIKSEN

Abstract. A great challenge using the traditional regression based Bermuda option val-
uation based on Longstaff and Schwartz (LS) (see Longstaff and Schwartz [10]) is the
stability of solutions for different basis functions. In this paper we develop an alternative
method in the spirit of LS which is less challenging with respect to proper choice of ba-
sis functions. The method also makes it possible to quantify the probability of exercise
at future nodes in a Bermuda option when moving backward in time. We will apply
the method to valuation of target redemption notes with early exercise features under
stochastic interest rates based on a LIBOR market model.

1. Introduction

A Target Redemption Note (TARN), in the sense of Brigo and Mercurio [5], is a note
where the sum of all coupons must equal an agreed amount within the note’s maturity. The
size of the coupons are typically driven by an underlying process (an exchange rate, say)
and the structure of the coupons may be arbitrary but is typically given by a derivative
structure, e.g. a call option. The coupons are stochastic and sometimes equal to zero,
but in the end the sum of coupons equals the agreed amount. This means that the actual
maturity of the note may be much shorter than the nominal maturity. In this paper we
will generalize the TARN such that it also includes an early exercise feature. Specifically,
this means that if the buyer of the note finds receiving the remaining target amount as
beneficial at some time point she may exercise and receive this amount. We will only let
the early exercise feature be possible at certain discrete time points, implying that we are
in a Bermuda option setting.

We will use a mean reverting Ornstein Uhlenbeck process as a model for the underlying
process and a LIBOR market model for the stochastic interest rates. In general, Bermuda
options in low dimensional settings may be evaluated by solving moving boundary partial
differential equations. Our setting is not low dimensional and we will resort to simula-
tions and regression based methods to value the Bermudan option. There are, however,
several ways of valuing Bermuda options numerically, and we refer to Glasserman [8] for
an extensive presentation of these. In general, regression based methods underestimate
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American or Bermudan option prices because they suboptimally estimate stopping times.
Several authors, see e.g. Broadie and Cao [6], Andersen and Broadie [2] or Kolodko and
Schoenmakers [9], have worked with upper and lower bound algorithms to analyse the gap
between the upper and lower estimates. Other authors, see e.g. Bender, Kolodko and
Schoenmakers [4], study the impact of applying different stopping rules in a early exercise
option setting. In this paper use a stratification idea to propose an improvement on the
regression estimates in the LS algorithm for valuing Bermuda options.

The regression based Bermuda option valuation developed by Longstaff and Schwartz [10]
is very popular due to its intuitive build-up and easy implementation. However, one major
drawback of the method is that one needs to make a choice of basis function for the
regression. Making the right choice is far from trivial, and often solutions are very sensitive
to the selected basis functions used. A lot of studies have been done in this area, see e.g.
Beveridge and Joshi [7], Piterbarg [12] or Bauer, Bergmann and Reuss [3], where different
methods have been suggested to determine the regression basis. In this paper we will point
out beneficial aspects of the stratified LS method regarding this issue. We will also see
in numerical examples that the new method seems to be more robust to different choices
of basis functions. The stratified LS method is based on the traditional LS where the
continuation value of the Bermuda option is approximated by regression. But instead of
approximating the continuation value by one regression, the continuation value is split into
different maturities conditioned on the early exercise on these maturities. Probabilities of
exercise at different maturities is estimated through logistic regression, and continuation
value at each maturity is approximated by its own regression. When regressing on one
specific maturity the response data will be much less noisy. Thus, these regressions are
easier to control and therefore lead to less sensitivity and higher accuracy. Another feature
of our stratification approach is that the stochastic discount rate quit conveniently can be
moved outside a conditional expectation operator giving the continuation value.

The main drawback of the new alternative method is that it is harder to implement
than the traditional LS as one needs to have under control all the different regressions.
The numerical calculations are also slightly more time consuming. But, as we will see in a
numerical example, the new method is easier, more robust, more stable and more accurate.
The choice of basis functions is much less sensitive to different settings and setups.

Our numerical example is motivated by new life insurance legislation as of 1 January 2008
in Norway. This legislation makes a clear separation between client assets and company
assets in an insurance company. In many ways, this is good, but it is less good with
regards to surplus allocation. If e.g. the return on client assets is negative, this will hit the
company equity. This was the case for many insurance companies in 2008. However, if the
return on client assets is extremely good, as might be the case in 2009, it would be natural
to be able to rebuild company equity by allocating parts of the return to this purpose.
This is not possible. But, the financial product we introduce in our numerical example
could be of help to take back some control of risk management in insurance company.

This paper is organized as follows: in Section 2 we will discuss the underlying of the
TARN, while in Section 3 we present the LIBOR Market Model used for discounting the
coupons of the note. We continue in Section 4 with introducing the TARN contract in a
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general setting, and present in Section 5 our Stratified LS method. In Section 6 we will
see how the TARN is valued based on the LS methods and in Section 7 we will look at
numerical examples for different bond life times and different volatilities of the underlying.
Finally, in Section 8, we conclude and comment on possible further work.

2. The underlying process

The underlying process of the TARN may be just about anything; a foreign exchange
rate, an interest rate, energy spot rates, asset values, etc.. In the example we use for
illustration in Section 7, the underlying will be net periodic gains or losses from statement
of account of the fiscal year of an insurance company.

Since our methods are based on simulation, any Markovian stochastic process will work.
In many situations, e.g. for rates or profit and loss in financial statements of account, a
mean reverting process is natural. Thus, in this paper we will apply an Ornstein-Uhlenbeck
process X(t) for the underlying given by:

(2.1) dX(t) = λ(µ − X(t)) dt + σ dW (t).

Here λ is the mean reversion rate, µ is the mean level and σ is the volatility of the
underlying. We suppose that the Brownian motion W is defined on a filtered complete
probability space (Ω,F ,Ft, P ). By applying Ito’s formula to (2.1), it is easily seen that
X(t) is normally distributed with mean and variance given by:

E(X(t)) = X(0) · e−λt + µ(1 − e−λt),

Var(X(t)) =
σ2

2λ
(1 − e−2λt).

This means that we can write the stochastic process X(ti) as:

(2.2) X(ti) = X(ti−1) · e
−λ∆t + µ(1 − e−λ∆t) + σ

√

1

2λ
(1 − e−2λ∆t)ǫ,

where ǫ ∼ N(0, 1) and ∆t = ti − ti−1. This makes simulation of X(ti) for any time ti,
ti = t1, t2, · · · , easy.

In this paper, coupons of the TARN will be given as a function of the underlying,
f(X(ti)), at the different nodes on coupon dates t1, · · · , tM . Typically, f(·) is the payoff
function from some derivate, e.g. an option. Here tM is the final coupon date of the TARN,
and the remaining amount must be paid at this date if the target has not been met earlier.

We will denote the first time ti where
∑i−1

j=1 f(X(tj)) < N and
∑i

j=1 f(X(tj)) ≥ N
as the knock out time tKO. There are closed form expressions for first hitting times of
Ornstein Uhlenbeck processes, see e.g. Alili, Patie and Pedersen [1]. However, since the
knock out time will interfere with possible early exercise times in the Bermuda option, we
will not apply such methods here. We will come back to this in Section 4.

In many situations, there will be dependency between interest rates and the underlying
X(t). One option is that this dependency is introduced by correlating ǫ with corresponding
variables in the interest rate model. In this paper, we will not explicitly introduce such
dependencies.
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3. The LIBOR market model (LMM)

In this section we will briefly illustrate the LIBOR market model and motivate the
application of this in the TARN setting. For a general introduction to the LMM, or the
lognormal forward LIBOR model as it also is known as, see e.g. Brigo and Mercurio [5].

Let the contract value at time t of a zero-coupon bond with maturity at time T be
denoted by P (t, T ). Further, let the times T0, T1, · · · , TM represent expiry-maturity pairs
of LIBOR rates. We will let the coupon dates of TARN, t1, · · · , tM , be a subset of the
expiry-maturity dates. The LIBOR rate at time t with expiry Ti−1 and maturity Ti,
F (t, Ti−1, Ti), is defined as

(3.1) F (t, Ti−1, Ti)P (t, Ti) :=
1

τi

(P (t, Ti−1) − P (t, Ti)),

where τi = Ti − Ti−1 is the time interval from expiry to maturity. One usually says that
the rate is ”alive” until time Ti−1, at which it equals the LIBOR spot rate F (t, t, Ti) =
L(t, Ti) := −(P (t, Ti) − 1)/((Ti − t)P (t, Ti)) for t ∈ [Ti−1, Ti]. In shorthand notation we
will write the LIBOR rate as Fi(t) = F (t, Ti−1, Ti).

Notice in Equation (3.1), that Fi(t)P (t, Ti) is the price of the tradable asset P (t, Ti−1)−
P (t, Ti) with notional 1/τi. Let Qi be the probability measure associated with the nu-
meraire P (t, Ti). Thus, from the change of numeraire theory, under the measure Qi we
know that the price divided by the numeraire is a martingale. But the price divided by
the numeraire is simply Fi(t). Hence, Fi(t) is a martingale under Qi. Letting Fi(t) be
modelled by a diffusion process, the dynamics of Fi(t) under Qi must be driftless. Thus,

(3.2) dFi(t) = σi(t)Fi(t) dZ i
i(t),

for t ≤ Ti−1. Here, σi(t) represents the volatility of the LIBOR rate with expiry maturity
pair (Ti−1, Ti) at time t, and Z i

i represents the ith element of the M dimensional Brownian
motion vector Z i(t) under Qi. The correlation matrix between the M elements in the
Brownian motion vector will in the following be denoted ρ.

We are now modelling Fi(t) as a lognormal process under the forward measure Qi.
However, we will need to model Fk(t) under the measure Qi for k, k + 1, · · · , M and k
such that t ≤ Tk−1. To obtain these LIBOR rates, we need the results from the following
Proposition (Proposition 6.3.1. in Brigo and Mercurio [5]).

Proposition 3.1. Under the lognormal assumption, we obtain that the dynamics of Fk(t)
under the forward-adjusted measure Qi in the three cases i < k, i = k and i > k are,

respectively,

dFk(t) = σk(t)Fk(t)

k
∑

j=i+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt(3.3)

+ σk(t)Fk(t) dZ i
k(t) , i < k, t ≤ Ti ,

dFk(t) = σk(t)Fk(t) dZ i
k(t), i = k , t ≤ Tk−1 ,(3.4)
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t ∈ (0, T0] (T0, T1] (T1, T2] · · · (TM−1, TM ]
F1(t) σ1,1 - - · · · -
F2(t) σ2,1 σ2,2 - · · · -

...
...

...
...

...
...

FM(t) σM,1 σM,2 σM,3 · · · σM,M

Table 1. Piecewise constant volatility for different expiry maturity pairs at
different times t.

dFk(t) = −σk(t)Fk(t)
i

∑

j=k+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)
dt(3.5)

+ σk(t)Fk(t) dZ i
k(t) , i > k, t ≤ Tk−1 ,

where Z i is a M dimensional Brownian motion under Qi. All of the equations above admit

a unique strong solution if the volatilities σ are bounded.

Proof. See Brigo and Mercurio [5]. �

Using Proposition 3.1, it is easy to model lognormal forward LIBOR rates under any
forward measure Qi.

One great challenge using LMM, is the calibration of the coefficients ρ and σ to market
data. We will not go into detail on this subject here, but refer the reader to Brigo and
Mercurio [5] for details. However, we do have to assume certain parametric forms on ρ and
σ which will be applied later in the paper. The following parametric form of ρ was first
introduced in Schoenmaker and Coffey [13],

ρi,j = exp
(

−
|i − j|

M − 1

(

− ln ρ∞(3.6)

+ η
i2 + j2 + ij − 3Mi − 3Mj + 3i + 3j + 2M2 − M − 4

(M − 2)(M − 3)

)

)

.

Important advantages with this form is that it by construction gives a positive semidefinite
correlation matrix and correlations decrease as distance between rates increase.

Further, we will use piecewise constant σ as displayed in Table 1 motivated by Morini
and Brigo [11].

In Section 5 we will argue for using zero coupon bond prices as discount factors in option
valuation. These zero coupon bond prices will be derived from the LIBOR rates. In this
section we have presented a model for LIBOR rates for different expiries and maturities
under a given forward measure Qi. However, each of these rates only apply in the expiry
maturity period, e.g. (Ti−1, Ti). Often we will need to discount over longer periods and
also discount to other times than the present. Applying simple algebra to Equation (3.1),
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we see that discounting at time t from arbitrary Tk to Ti, Tk > Ti, may be expressed as:

P (t, Tk)

P (t, Ti)
=

k
∏

j=i+1

1

1 + τjFj(t)

Since in our setting the coupon dates of the TARN is a subset of the expiry maturity dates,
we introduce the discount factors

(3.7) D(t, Tk) =
k

∏

j=i+1

1

1 + τjFj(t)

for the discrete time points t ∈ {T−1 = 0, · · · , Tk−1}. Notice that at all time points t = Ti

the LIBOR rates Fj(t), j > i are Ft adapted processes. This also means that the discount
rates (3.7) are Ft adapted processes for all expiry maturity times.

Simulation of the LMM rates is easily done by a Milstein scheme as described in Brigo
and Mercurio [5].

4. Target Redemption note with early exercise feature

The structured bond we will consider is called a Target Redemption note (TARN). We
will let it have a notional of N on a n year life time. The name Target Redemption origins
in the fact that the note expires as soon as the sum of coupons equals the notional N . If
this has not happened at time n, the remaining amount will be paid in the final coupon.
The coupon at time ti, ti ∈ {t0 = 0, · · · , tM = n}, is arbitrary in the sense that it depends
on some underlying process X(ti) and the stochastic interest rates. In this paper, we will
add two features to the TARN; (i) the coupons will be general in the sense that they consist
of one TARN part, one constant part and one interest rate related part, (ii) the bond has
an early exercise feature in the sense that if it is beneficiary for the buyer to terminate the
bond at any coupon time ti, i = 1, · · · , M , by receiving the remaining TARN amount she
may require this. This time will be denoted as the early exercise time, tEE . The last part
means that our TARN must be valued as a Bermuda option.

Coupons, Ci, are paid at every coupon date ti, i = 1, · · · , M . In practise, this usually
means every month, quarter or year. In mathematical terms, the coupons will be given by:

(4.1) C(i) = C
(i)
Constant + C

(i)
Interest Rate + C

(i)
TARN i = 1, · · · , min(KO, EE, M).

C
(i)
Constant denote the constant coupons and C

(i)
Interest Rate are coupons dependent on the in-

terest rate given by the LMM. The C
(i)
TARN’s are the TARN coupons which are depen-

dent on the underlying X(ti) and a TARN coupon payoff function f(·). One possibility
of TARN coupon payoff function is a call option type of payoff. That is f(X(ti)) =
α max(X(ti) − K, 0). This is what we will use in our numerical example in Section 7 and
it may be interpreted as the α fraction of surplus exceeding K in the statement of account
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of the insurance company. This means that C
(i)
TARN is given by:

C
(i)
TARN =







f(X(ti)) ti = t1, · · · , min(tKO, tEE, tM)

N −
i

∑

j=1

f(X(tj)) ti = min(tKO, tEE, tM)

Multiplying the discount rates (3.7) with the coupons, the value of the TARN with early
exercise feature may be expressed as:

(4.2) π0 = sup
τ∈{1,··· ,M}

EQ
(

τ
∑

i=1

D(0, ti)C
(i)

)

.

The Q in this expression represents a risk neutral probability measure. We have seen that
the zero coupon bond prices given by the LMM easily may be given a martingale structure
through Proposition 3.1. Thus the discount rate may be regarded as risk neutral, e.g.,
defined under Q. On the other hand, if the underlying X(t) is a tradable asset, the
dynamics (2.1) must be changed under Q to incorporate the possibility to hedge in X(t).
The change of dynamics of X(t) would be based on a Girsanov transform such that the
discounted price is a Q-martingale. In our numerical example in Section 7 the underlying
is supposed to be not tradable, and from an arbitrage viewpoint there exists many pricing
measures for this process. To simplify the exposition, we will not introduce any particular
risk premium in the dynamics for X but suppose that it is already modelled under a risk
neutral measure. From now on we write E(·) = EQ(·) without any further reference to the
pricing measure Q which would incorporate the measure under which the LMM model is
stated and the pricing measure of X.

A TARN with early exercise feature as described above is sometimes called a cancelable
TARN. An alternative to this is a callable TARN, where one enters a contract, at time

t = 0, where one party pays an amount N −
i

∑

j=1

f(X(tj)) at an arbitrary time ti to another

party to obtain future coupons C(j) for j = i + 1, · · · , min(KO, EE, M). The connection
between the cancelable and callable TARN can be seen through a non-cancelable/non-
callable bond. Notice that the cash flow of a non-cancelable product, Equation (4.3), a
cancelable product, Equation (4.4), and a callable product, Equation (4.5), respectively
may be written as:

C(1) + C(2) + · · ·+ C(i) + · · · + C(M∧KO),(4.3)

C(1) + C(2) + · · ·+ C(i) + N −

i
∑

j=1

f(X(tj)),(4.4)

− (N −

i
∑

j=1

f(X(tj))) + C(i+1) + · · ·+ C(M∧KO),(4.5)

if we assume exercise of both the cancelable and the callable product at time ti. Since the
stochastic discount rate applied to the three products are the same, there should also be a
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connection between the prices of these three products. The cash flows above indicate that
this connection should be given by

πCallable
0 = πNon-Cancelable

0 − πCancelable
0 .

However, this is only true if the time of canceling and the time of calling is the same. It is
not a priori known that the exercise strategies correspond to each other for the cancelable
and the callable product.

The connection between the cancelable, callable and the non-cancelable, and the hedge-
ability in the underlying and the market consistent interest rate, illustrate the importance
of understanding the early exercise structure of the TARN from a risk management per-
spective - both for the issuer and the buyer of the note. We will have a strong focus on
the early exercise structure in the rest of this paper.

5. Bermudan option valuation

Before we move on to present the pricing algorithms applied to value Bermuda option,
we will briefly discuss the LMM probability measure used in the valuation. The aim of this
discussion is that we choose the simplest method with regards to implementation of the
pricing algorithms, i.e. we want to use the same forward measure throughout the whole
calculation.

We will use QtM , the notional maturity forward measure as described in Section 3, as
pricing measure when evaluating the Bermudan option. The lognormal forward LIBOR
rate is by construction a martingale under the QtM measure. It is well known that since
Ci is a Fti measurable function, the following equality holds:

E(D(0, ti)Ci) = E
(D(0, tn)Ci

P (ti, tn)

)

.

Hence, we may write (4.2) as:

π0 = sup
τ∈{t1,··· ,tM}

τ
∑

i=1

E
(D(0, tn)Ci

P (ti, tn)

)

= sup
τ∈{t1,··· ,tM}

τ
∑

i=1

P (0, tM)EQtM

( Ci

P (ti, tn)

)

,(5.1)

where we in the last equality change the numeraire to the forward measure QtM . This means
that all forward rates, and therefore all discount rates through (3.7) and zero coupon prices,
are modelled under the same measure QtM in our valuation. This simplifies implementation.

We will value the TARN using two different algorithms; the traditional Longstaff and
Schwartz (LS) algorithm [10] and the stratified LS. Both algorithms are based on regression
to estimate continuation value of the option. Before we describe the algorithms, we will
see what we mean by continuation value.

In Bermuda option valuation we need to calculate for each market scenario the stopping
times, that is, the optimal times to terminate the note. At each coupon date, ti, one
strikes if the value of immediate exercise is greater than the value of continuing. This
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rationale simply says that the buyer prefers to receive more than less, in the sense that
it is of greater value to get paid now than to receive future coupons and wait with the
final payback. To find the first early exercise time, one needs to move backwards from
terminal time, min(tKO, tM), to the initial time t0 = 0. In mathematical terms, at time ti,
we compare the current payment if exercising

Ci|tEE = ti

with the value of continuing,

(5.2) Ci + P (ti, tM)EQtM

(

min(EE,KO,M)
∑

j=i+1

Cj

P (tj, tn)
|Fti

)

,

where tEE in (5.2) is the first stopping time later than ti, i.e. ti < tEE. Since we only
have market information up to time ti, i.e. Fti , at time ti we need to approximate the
expectation in (5.2). The two algorithms are different ways of doing this.

In the algorithms, we start by simulating m paths of the underlying X and the LMM
interest rates. Each of these paths are simulated up to the minimum of the bond life time
tM and the time of hitting the target tKO. Make a m × M cash flow matrix. Into the last
column, write the cashflow, CM , for the realisations of the accumulated underlying that do
not exceed the target before the bond life time. If all realisations exceeds the target earlier,
move to column M − 1 and repeat the procedure with corresponding coupons. Consider
now column j = M − 1, · · · , 1. For case j, fill in column j in the cash flow matrix the
payments if we exercise the note for all scenarios which are alive up to at least time tj .
For those scenarios with cash flow occurring also later than tj , we compare the value of
exercising and approximate of the value of continuing (5.2). If the former is larger than
the latter we exercise, else we continue. In case of exercise, we let all entries in columns
j +1, · · · , M be set to zero, since the note is terminated. Continue this recursion until the
first possible exercise time. This leaves us with a cash flow matrix from which we can read
off early exercise time tEE for each of the m simulations.

For the traditional LS we approximate the expectation (5.2) as follows. At time ti,
for those scenarios with cash flow occurring also after time ti we calculate the current
and future discounted coupon payment stream up to time min(tKO, tEE, tM). This gives
us a sequence of numbers, y, for a subsample of scenarios. We regress this y against a
basis of orthogonal function of the stochastic processes composing the entiry of market
information at time ti, Fti. Since both the underlying process X(t) and the LMM forward
rates Fj(t) are Markovian, we only need a basis of orthogonal functions of X(ti) and Fj(ti),
j = i + 1, · · · , min(KO, EE, M). In our numerical examples in Section 7 we will let this
basis be of polynomial form, e.g.

{1, X(ti), X(ti)
2, Ξ(ti), Ξ(ti)

2, D(ti, ti+1), D(ti, ti+1)
2,

X(ti)D(ti, ti+1), Ξ(ti)D(ti, ti+1), X(ti)Ξ(ti), X(ti)Ξ(ti)D(ti, ti+1)},

where Ξ(ti) =
∑i

j=1 C
(j)
TARN. Many other basises are possible, and as mentioned earlier a lot

of studies have been dedicated to finding the optimal basis. Since a regression needs to be
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performed for each time step, there is also a possibility to make the basis time dependent.
Having regressed y against the basis of function, we may plug the underlying and the LMM
rates back into the regression to predict values for the expectation (5.2) for each simulated
path. This prediction is then used to determine if we exercise at time ti or not for each
simulated path. Repeat this procedure for all times tM−1, · · · , t1 to find the structure of
early exercise at time t0 = 0. If early exercise only is possible from time tj, we only repeat
the procedure for all times tM−1, · · · , tj .

From the algorithm above, we see that one single regression needs to take into account
a lot of information. Through the basis of orthogonal function we need to be able to
describe future early exercise, future hitting of the target, the stochastics in future interest
rates, the stochastics in future underlying, the non-linearity of the coupons, the potential
remaining target that needs to be paid at exercise and potential covariations between all
these factors. Of course, this makes the choice of basis functions very important and highly
complex. The stratified LS which we will present now is an alternative to this.

Looking at the expectation (5.2), we see that this may be written as

EQtM

(

min(EE,KO,M)
∑

j=i+1

Cj

P (tj, tn)
|Fti

)

=

M
∑

k=i+1

EQtM

(

k
∑

j=i+1

Cj

P (tj, tn)
|Fti ∩ {min(tEE, tKO, tM) = tk}

)

× Pr(min(tEE, tKO, tM) = tk) .(5.3)

At time ti, we use our simulations to estimate all the conditional expectations given that
min(tEE, tKO, tM) = tk for each k = i + 1, · · · , M . I.e. for all k, from the m simula-
tions register those that have min(tEE, tKO, tM) = tk. Use the sample paths from these
simulations to estimate the conditional expectations given that min(tEE, tKO, tM) = tk by
regression. This way one will only have data with one given maturity in the regression,
which means that the data will be less noisy. The regression for each k is based on an
orthogonal function basis just like in the traditional LS case. But since the data is much
less noisy, the process of choosing the basis turns out to be much easier. In our numerical
examples in Section 7 we will see that the simple function basis choice

{1, X(ti), Ξ(ti), D(ti, ti+1)} ,

works well.
Notice that using LMM rates for discounting, the discount rate D(ti, tj) is known for

all future times tj = ti+1, · · · , tM . I.e., the discount rates are Fti-adaptable. However, for
the traditional LS we do not know the maturity of the note at time ti. Hence, we can not
exploit the Fti-adaptiveness. But, in the stratified LS we condition on the maturity, i.e.,
we condition on min(tEE, tK , tM) = tk. This way we may use the Fti-adaptiveness and
write

E[D(ti, tj)Cj|Fti ∩ {min(tEE, tKO, tM)] = tk}]
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= D(ti, tj)E[Cj|Fti ∩ {min(tEE, tKO, tM) = tk}],

for all j ≤ k. This further reduces the noise in the data of our regression to estimate the
expectation, leading to more accurate and robust results.

To estimate the probabilities Pr(min(tEE, tKO, tM) = tk) at time ti we will again use
regression. In this paper we use multivariate logistic regression with a logit link. That is,
at time ti register where each simulated path terminates in the set (ti+1, · · · , tM). Give the
terminal time an index 1 and all other times index 0. As for the conditional expectations,
we use an orthogonal function basis as explanatory variables. In our numerical examples
in Section 7, we use

{1, X(ti), Ξ(ti), D(ti, ti+1)}

which seems to give reasonable results in most cases.
We may ask what happens if we have very few simulations that terminate at time tk? If

very few or no simulations give min(tEE, tKO, tM) = tk, this is reflected in the probability
Pr(min(tEE, tKO, tM) = tk). Hence these amounts will not contribute in any significant
way to the total.

The probabilities Pr(min(tEE, tKO, tM) = tk) in itself raise an interesting discussion. In
the traditional LS, these probabilities are not explicitly given. But knowing the probability
distribution for future early exercise or knock out as a function of different underlying and
stochastic interest rates at present time is very interesting both for the issuer and the buyer
of the note. This information may be applied both in hedging and risk management. The
probabilities also make the stratified LS method attractive in situations where the exercise
probabilities are known. This is the case in life insurance, say, where the probability of
future payoffs depend on conditional mortality rates at times tk ≥ ti. We will not go
further into details about this here.

In the stratified LS we use alot more regressions, both normal and logistic, than the
single regression in the traditional LS. The computational time is a bit longer than for the
traditional LS, but we will see in our numerical examples in Section 7 that the robustness
of the stratified LS more than makes up for the extra computational time.

6. Valuation of the TARN

In the previous sections we have described methods to find the early exercise time tEE

structures from Monte Carlo simulations using traditional and stratified LS. In this Section
we will look at how we can use this to value the Target Redemption note.

At time t = 0, the value of the TARN is given by

V SB = E
(

M
∑

i=1

D(0, ti)
(

Ci × 1(ti ≤ min(tEE , tKO, tM))
)

)

where D(0, t) is the discount rate.The value can than be expressed as

(6.1) V SB =
M

∑

i=1

P (0, tM)EQtM

(Ci × 1(ti ≤ min(tEE, tKO, tM))

P (ti, tM)
|Fti

)

.
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Here P (0, ·) comes from the initial values of the LIBOR market model and P (ti, tM) is
Fti-adaptable. The expectation EQtM (·) is estimated as the mean of the simulations.

To simplify notation, let t
(j)
K = min(t

(j)
EE, t

(j)
KO, tM) for each simulation j = 1, · · · , m.

Hence, we end up with the estimated value of the structured bond at time t = 0 as given
by

(6.2) V̂ SB =
1

m

m
∑

j=1

M
∑

i=1

P (0, tM)

P (j)(ti, tM)
· C

(j)
i · 1(ti ≤ t

(j)
K ).

7. Numerical example

One possible situation for the structured bond as described earlier is if a company, e.g. an
insurance company, wants to issue a bond where the coupons are dependent on the yearly
profit and loss of the company, and the buyer of the bond has the option of early exercise,
i.e. getting paid the remaining amount of the target. Why would this be interesting? In
Norway we have seen new legislation for life insurance companies where the company has
no way of disposing any surplus generated from insurance assets or insurance risk. All
surplus from insurance assets and insurance risk have to be allocated back to the clients of
the company. However, a deficit would have to be covered by the insurance company equity
as long as buffer funds are not adequate. I.e. the insurance company has no upside but a
huge downside of actively managing the asset portfolio. This is a severe reduction of risk
management tools of the company, and thus the structured bond could be one instrument
to regain some control of the surplus. The bond is also a nice tool to build up the company
equity. In 2008, a lot of pension funds and insurance companies experienced a reduction in
equity due to bad results. So issuing the bond could help rebuild equity. The early exercise
feature of the buyer is incorporated in the bond to make it more attractive on the market.

In our numerical example we will let the underlying have the following parameters:

λ = 1, µ = 10, X(0) = 0

In addition we will display numerical results for both σ = 10 and σ = 50.
The LMM in our examples have parameters for the correlation (3.6) given by ρ∞ =

0.24545 and η = 1.04617 based on Schoenmaker and Coffey [13]. Further we let the
correlation matrix corresponding to Table 1 be given by

σ =































0.2685 0 0 0 0 0 0 0 0 0
0.2280 0.2340 0 0 0 0 0 0 0 0
0.1950 0.1950 0.2490 0 0 0 0 0 0 0
0.1785 0.1965 0.1830 0.2505 0 0 0 0 0 0
0.1680 0.1725 0.1800 0.1890 0.2460 0 0 0 0 0
0.1680 0.1725 0.1500 0.1695 0.1890 0.2565 0 0 0 0
0.1695 0.1545 0.1785 0.1470 0.1800 0.1785 0.2445 0 0 0
0.1830 0.1860 0.1620 0.1230 0.1365 0.1815 0.1785 0.2400 0 0
0.2070 0.1395 0.1950 0.1935 0.1095 0.0705 0.1845 0.1695 0.2235 0
0.1815 0.1935 0.1590 0.1470 0.1380 0.1350 0.0345 0.2160 0.1770 0.2205































,
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1. order {1, X(ti), Ξ(ti), D(ti, ti+1)}
2. order {1, X(ti), X(ti)

2, Ξ(ti), Ξ(ti)
2, D(ti, ti+1), D(ti, ti+1)

2,
X(ti) · Ξ(ti), X(ti) · D(ti, ti+1), Ξ(ti) · D(ti, ti+1)}

3. order {1, X(ti), X(ti)
2, X(ti)

3, Ξ(ti), Ξ(ti)
2, Ξ(ti)

3,
D(ti, ti+1), D(ti, ti+1)

2, D(ti, ti+1)
3, X(ti) · Ξ(ti),

X(ti) · D(ti, ti+1), Ξ(ti) · D(ti, ti+1), X(ti) · D(ti, ti+1) · Ξ(ti)}

Table 2. Different sets of basis functions applied in the linear regression
both in the traditional and the stratified LS.

which is based on a calibration in Morini and Brigo [11]. We have increased their estimates
heuristically to mimic interest rate volatilities observed during the recent credit crunch.

Further to this, the structured bond is valued using m = 500, 000 simulations and a
notional amount of N = 100. We will also vary the life time of the bond and display
results for tM = 3 years and tM = 10 years. The coupons of the bond are given by:

C(i) = 0.01 · N + 0.6 · Fi(ti) · N + max(X(ti), 0) for all i ≥ 1.

We value the structured bond based on three different sets of basis functions both for
the traditional and the stratified LS; 1. order polynomials, 2. order polynomials and 3.
order polynomials as given in Table 2. In all cases we let the basis of the logistic regression
be given by:

{1, X(ti), Ξ(ti), D(ti, ti+1)}.

These basises could probably be further refined, but as we will see there is little or no use
for this in our numerical examples - especially for the stratified LS.

We find early exercise times from simulations based on the traditional LS and stratified
LS algorithms as described in Section 5. From these we estimate the value of the TARN
based on Equation (6.2). The bond values for four different scenarios with three different
sets of basis functions are displayed in Table 3. As we can see from the table, the biggest
differences in prices are in Scenario 2. This is the scenario which is most challenging
for the algorithms because it has a long life time of 10 years and high volatility of the
underlying. The high volatility is also reflected in the tKO structure, which can be seen
in Figure 1. Thus, there is lots of uncertainty that the regressions need to pick up. The
prices of the TARN are much larger for the stratified LS algorithm than for the traditional
LS algorithms. Thus, we can conclude that the stratified LS algorithm works better in the
most challenging case. This conclusion is strengthened when looking at Figure 2, where
we see that the early exercise structure seems to converge for the low order set of basis
functions for the stratified LS algorithm, but does not seem to have converged at all for the
traditional LS algorithm. Our experience has been that further increasing the uncertainty
of the underlying as well as the volatility of the LMM increase the difference in bond prices
and convergence of early exercise structure. The stratified LS seems to be more robust and
more accurate than the traditional LS in highly complex situations.

Also in Scenario 4, where the life time of the note is 3 years and the volatility of the
underlying is 50, the stratified LS seems to work better than the traditional LS. Also here,
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Scenario 1: tM = 10, σ = 10

Basis fun. order 1. order 2. order 3. order
Stratified LS 108.35 108.32 108.32
Traditional LS 108.38 108.48 108.52

Scenario 2: tM = 10, σ = 50

Basis fun. order 1. order 2. order 3. order
Stratified LS 105.07 105.58 105.77
Traditional LS 102.48 103.46 104.70

Scenario 3: tM = 3, σ = 10

Basis fun. order 1. order 2. order 3. order
Stratified LS 99.70 99.70 99.70
Traditional LS 99.76 99.77 99.78

Scenario 4: tM = 3, σ = 50

Basis fun. order 1. order 2. order 3. order
Stratified LS 100.69 100.72 100.72
Traditional LS 100.53 100.61 100.62

Table 3. Values of the TARN derived from the stratified LS and the tradi-
tional LS for two different life times of the note and two different volatilities
of the underlying. The linear regressions in the algorithms are based on 1.
order, 2. order and 3. order basis functions as described in Table 2.

1 2 3 4 5 6 7 8 9 10
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4

5
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7

8
x 10

4 t
KO

 before early exercise, high variance

Figure 1. The structure of tKO before early exercise has been taken into account.

we sow that the early exercise structure for the stratified LS method seemed to converge
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Figure 2. The early exercise structure for the stratified LS and the tradi-
tional LS in Scenario 2.

for 2. order basis functions, whilst the traditional LS converged slower. Notice that there
is less difference in the price in Scenario 4 than in Scenario 2. This is due to the decrease
in bond maturity which makes the valuation problem less sensitive.

In Scenario 1 and Scenario 3, the traditional LS works slightly better than the stratified
LS. The reason for this is found in Figure 3 and Figure 4. Here we see that the algorithms
have hardly changed the early exercise structure at all from the initial knock out, tKO,
structure. This also means that several of the nodes have close to zero probability of early
exercise. Our experience in general has been that the stratified LS algorithm performs
slightly worse than the traditional LS for such early exercise structures. The reason for
this is that the linear regression for nodes with very little early exercise probability is based
on very few data points. This makes prediction inaccurate. However, there is always a
question whether or not these cases are interesting. When almost all early exercise or
knock out happens either at the first few nodes or the last couple of nodes, the complexity
of the early exercise algorithm should be low to make transparency and analysis easier.
The stratified LS algorithm might be a too heavy tool in these situations.



16 BENTH AND HENRIKSEN

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 t
KO

 before early exercise, low variance

Figure 3. The structure of tKO before early exercise has been taken into account.

One further experience has been that including higher order polynomials, i.e. higher
order than 3, in both algorithms is a non-trivial exercise. The polynomials are easy to
implement in our computer program, but higher orders does not give us much more accu-
racy. We often run into problems with overfitting in our regressions. Also, the scale of the
data which is fed into the regression may differ alot for higher orders. This is a robustness
problem when changing the parameters of the underlying process or the LMM.

We have also experienced that both the price and the early exercise structure of the note
described here is highly sensitive to changes in coupon structures, notional amounts and
parameters of the underlying and the LMM. In e.g., Bauer, Bergmann and Reuss [3] one
develops an algorithms which automizes the choice of basis functions in the traditional LS
regression. Because of the sensitivity in prices and early exercise structures one would think
that such algorithms had to be executed for each set of model parameters. We have seen
that the stratified LS converges, in early exercise structure and bond prices, for low order
of basis functions. This makes the stratified LS algorithm more robust and algorithms for
choice of basis functions are less relevant.

8. Conclusions and further work

In this paper we have proposed a refinement of the traditional LS regression method for
pricing of derivatives with early exercise features. The new method, called stratified LS,
splits the estimated continuation value of the Bermuda option into a sum of conditional
expectations and probabilities of exercise at different future time nodes. The main advan-
tages of this split are that the data used in the regressions are less noisy and that the LMM
discount rate may be excluded in the regression. The probability of early exercise, as a
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Figure 4. The early exercise structure for the stratified LS and the tradi-
tional LS in Scenario 1.

function of the stochastic processes generating the entiry of market information, at future
time nodes may be useful in itself in e.g. risk management setting.

In numerical examples we have seen that the stratified LS converges faster than the tra-
ditional LS with respect to the polynomial order of the basis functions in the regressions.
This makes stratified LS alot more robust and choice of basis functions easy. The strat-
ified LS outperforms the traditional LS in scenarios where the underlying processes and
stochastic interest rates experience high uncertainty. Also, the outcomes of the algorithms
differ more as the life time of the note increases. These are the most challenging cases in
derivative pricing. We have also seen that accuracy of the stratified LS is more or less the
same as the traditional LS in less challenging scenarios.

We see a high potential for further work to this paper. For instance, by using the
forward measure QtM , we use all the parameters calibrated in the LIBOR market model
at each time step in the LS algorithm. If one accepts model and parameter calibration
uncertainty in the LMM model, this introduces more uncertainty in the early exercise times
than necessary. In future work we want to address such problems in the context of TARN
contracts.
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Further, the logistic regression of Pr(·) in (5.3) has not been analysed properly. In this
paper we have used a logit link and this gave reasonable results, but it should be analysed
whether or not this link gives the best fit.

Also, in the stratified LS and the traditional LS we use a linear combination of basis
functions in the regression estimation of the conditional expectation in Equation (5.3) and
Equation (5.2). However, we know from the payoff structure of the coupons , i.e. the call
option, that we are in a highly nonlinear situation. Thus, the residuals of the regression
are not symmetric. This indicates that another form of basis functions should be used in
the regressions. Other forms have not been analysed in this paper since the linear form
gave reasonable results, but this would be natural in a future study.
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