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Measures of Component Importance in Nonrepairable and
Repairable Multistate Strongly Coherent Systems

Bent Natvig

Abstract In Natvig and G̊asemyr (2009) dynamic and stationary measures
of importance of a component in a binary system were considered. To arrive at
explicit results the performance processes of the components were assumed to
be independent and the system to be coherent. Especially the Barlow-Proschan
and the Natvig measures were treated in detail and a series of new results and
approaches were given. For the case of components not undergoing repair it
was shown that both measures are sensible. Reasonable measures of component
importance for repairable systems represent a challenge. A basic idea here is
also to take a so-called dual term into account. For a binary coherent system,
according to the extended Barlow-Proschan measure a component is important
if there are high probabilities both that its failure is the cause of system failure
and that its repair is the cause of system repair. Even with this extension results
for the stationary Barlow-Proschan measure are not satisfactory. For a binary
coherent system, according to the extended Natvig measure a component is
important if both by failing it strongly reduces the expected system uptime and
by being repaired it strongly reduces the expected system downtime. With this
extension the results for the stationary Natvig measure seem very sensible. In
the present paper most of these results are generalized to multistate strongly
coherent systems. For such systems little has been published until now on
measures of component importance even in the nonrepairable case.
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1 Introduction

There seem to be two main reasons for coming up with a measure of importance
of system components. Reason 1: it permits the analyst to determine which
components merit the most additional research and development to improve
overall system reliability at minimum cost or effort. Reason 2: it may suggest
the most efficient way to diagnose system failure by generating a repair checklist
for an operator to follow. It should be noted that no measure of importance
can be expected to be universally best irrespective of usage purpose. In this
paper we will concentrate on what could be considered as allround measures of
component importance.
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In Natvig and G̊asemyr (2009) dynamic and stationary measures of impor-
tance of a component in a binary system were considered. To arrive at explicit
results the performance processes of the components were assumed to be inde-
pendent and the system to be coherent. Especially the Barlow-Proschan and the
Natvig measures were treated in detail and a series of new results and approaches
were given. For the case of components not undergoing repair it was shown that
both measures are sensible. Reasonable measures of component importance for
repairable systems represent a challenge. A basic idea here is also to take a so-
called dual term into account. For a binary coherent system, according to the
extended Barlow-Proschan measure a component is important if there are high
probabilities both that its failure is the cause of system failure and that its repair
is the cause of system repair. Even with this extension results for the stationary
Barlow-Proschan measure are not satisfactory. For a binary coherent system,
according to the extended Natvig measure a component is important if both by
failing it strongly reduces the expected system uptime and by being repaired it
strongly reduces the expected system downtime. With this extension the results
for the stationary Natvig measure seem very sensible. In Natvig et al. (2009)
a thorough numerical analysis of the Natvig measures for repairable systems is
reported along with an application to an offshore oil and gas production system.
The analysis is based on advanced simulation methods presented in Huseby et
al. (2009). In the present paper most results from Natvig and G̊asemyr (2009)
are generalized to multistate strongly coherent systems. For such systems little
has been published until now on measures of component importance even in the
nonrepairable case.

Let S = {0, 1, . . . ,M} be the set of states of the system; the M+1 states rep-
resenting successive levels of performance ranging from the perfect functioning
level M down to the complete failure level 0. Furthermore, let C = {1, . . . , n}
be the set of components and in general Si, i = 1, . . . , n the set of states of the
ith component. We claim {0,M} ⊆ Si ⊆ S. Hence, the states 0 and M are
chosen to represent the endpoints of a performance scale that might be used for
both the system and its components. Note that in most applications there is no
need for the same detailed description of the components as for the system.

Let xi, i = 1, . . . , n denote the state or performance level of the ith compo-
nent at a fixed point of time and x = (x1, . . . , xn). It is assumed that the state,
φ, of the system at the fixed point of time is a deterministic function of x; i.e.
φ = φ(x). Here x takes values in S1 × S2 × · · · × Sn and φ takes values in S.
The function φ is called the structure function of the system. We often denote
a multistate system by (C, φ). Let

(·i,x) = (x1, . . . , xi−1, ·, xi+1, . . . , xn).

Now choose j ∈ {1, . . . ,M} and let the states {0, . . . , j − 1} correspond to
the failure state and {j, . . . , M} to the functioning state if a binary approach
had been applied. Following this approach it seems natural, for any way of
distinguishing between the binary failure and functioning state, to claim each
component to be relevant. More precisely for any j ∈ {1, . . . ,M} and any
component i, there should exist a vector (·i,x) such that if the ith component
is in the binary failure state, the system itself is in the binary failure state and
correspondingly if the ith component is in the binary functioning state, the
system itself is in the binary functioning state. This motivates the following
definition of a multistate strongly coherent system, which for the case Si = S,
i = 1, . . . , n is introduced as a multistate coherent system of type 1 in (Natvig
1982).
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The following notation is needed

S0
i,j = Si ∩ {0, . . . , j − 1} and S1

i,j = Si ∩ {j, . . . , M}. (1)

Definition 1 Consider an MMS with structure function φ satisfying

(i) min
1≤i≤n

xi ≤ φ(x) ≤ max
1≤i≤n

xi,

where min
1≤i≤n

xi and max
1≤i≤n

xi are respectively the multistate series and parallel

structure functions. If in addition ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,M}, ∃(·i,x)
such that

(ii) φ(ki,x) ≥ j, φ(`i,x) < j, ∀k ∈ S1
i,j, ∀` ∈ S0

i,j, we have a multistate
strongly coherent system (MSCS).

We now consider the relation between the stochastic performance of the sys-
tem (C, φ) and the stochastic performances of the components. Introduce the
random state Xi(t) of the ith component at time t, i = 1, . . . , n and the cor-
responding random vector X(t) = (X1(t), . . . , Xn(t)). Now if φ is a multistate
structure function, φ(X(t)) is the corresponding random system state. Assume
also that the stochastic processes {Xi(t), t ∈ [0,∞}, i = 1, . . . , n, are mutually
independent. For the dynamic approach of the present paper this is a necessary
assumption in order to arrive at explicit results.

The paper is organized as follows. In Section 2 the Birnbaum, Barlow-
Proschan and Natvig measures of component importance in nonrepairable sys-
tems are considered. The Birnbaum and Barlow-Proschan measures of compo-
nent importance in repairable systems, the latter with its dual extension, are
treated in Section 3. The corresponding Natvig measure with its dual extension
is treated in Section 4. Finally, some concluding remarks are given in Section 5.

2 Measures of component importance in nonrepairable sys-
tems

In this section we restrict our attention to the case where the components, and
hence the system, cannot be repaired. In order to avoid a rather complex no-
tation we will in the following assume that Si = S, i = 1, . . . , n. Furthermore,
assume that Xi(t), i = 1, . . . , n for t ∈ [0,∞), are Markov processes in continu-
ous time and that at time t = 0 all components are in the perfect functioning
state M ; i.e. X(0) = M . Introduce the notation

P (Xi(t) ≥ j) = pj
i (t), j = 0, . . . ,M

P (Xi(t) = j) = rj
i (t), j = 0, . . . ,M

r(t) = (r1
1(t), . . . , r

M
1 (t), r1

2(t), . . . , r
M
n (t))

p
(k,`)
i (t, t + u) = P (Xi(t + u) = `|Xi(t) = k), 0 ≤ ` < k ≤ M

λ
(k,`)
i (t) = lim

h→0
p
(k,`)
i (t, t + h)/h, 0 ≤ ` < k ≤ M

P [φ(X(t)) ≥ j] = P [I(φ(X(t)) ≥ j) = 1] = pj
φ(r(t)),

where I(·) is the indicator function. pj
i (t) and pj

φ(r(t)) are respectively the
reliability to level j of the ith component and the system at time t.
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In order to make things not too complex we assume that

λ
(k,`)
i (t) = 0, 0 ≤ ` < k − 1 ≤ M − 1.

Hence, each component deteriorates by going through all states from the perfect
functioning state until the complete failure state. Let the ith component have
an absolutely continuous distribution F k

i (t) of time spent in state k, before
jumping downwards to state k − 1, with density fk

i (t) and F̄ k
i (t) = 1 − F k

i (t).
It is assumed that all these times spent in the various states are independent.
Finally, introduce the M -dimensional row vectors

ek = (1k,0), k = 1, . . . ,M e0 = 0.

2.1 The Birnbaum measure

We now have the following generalization of I
(i)
B (t), the Birnbaum (1969) mea-

sure of the importance of the ith component at time t

I
(i,k,j)
B (t) = P [The system is in a state at time t in which the functioning in

state k instead of state k − 1 of the ith component is critical for the system
being in states {j, . . . , M}] =
P [I(φ(ki,X(t)) ≥ j)− I(φ((k − 1)i,X(t)) ≥ j) = 1] =

pj
φ((ek)i, r(t))− pj

φ((ek−1)i, r(t)), i = 1, . . . , n, k = 1, . . . ,M, j = 1, . . . ,M.

(2)

This is the probability that the system is in the states {j, . . . , M} if the ith
component is in state k and is not if the ith component is in state k − 1.

Now by using an argument from Theorem 4.1 in El-Neweihi et al. (1978)
based on the fact that

∑M
k=0 rk

i (t) = 1, i = 1, . . . , n we have

pj
φ(r(t)) =

M∑
k=0

rk
i (t)pj

φ((ek)i, r(t))

=
M∑

k=1

rk
i (t)[pj

φ((ek)i, r(t))− pj
φ((e0)i, r(t))] + pj

φ((e0)i, r(t))

=
M∑

k=1

(pk
i (t)− pk+1

i (t))[pj
φ((ek)i, r(t))− pj

φ((e0)i, r(t))] + pj
φ((e0)i, r(t))

=
M∑

k=1

pk
i (t)[pj

φ((ek)i, r(t))− pj
φ((ek−1)i, r(t))] + pj

φ((e0)i, r(t)).

Thus for i = 1, . . . , n, k = 1, . . . ,M, j = 1, . . . ,M

∂pj
φ(r(t))

∂rk
i (t)

= pj
φ((ek)i, r(t))− pj

φ((e0)i, r(t)) (3)
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∂pj
φ(r(t))

∂pk
i (t)

= pj
φ((ek)i, r(t))− pj

φ((ek−1)i, r(t)) = I
(i,k,j)
B (t). (4)

Note that for the binary case, when M = 1, we have the well known result

I
(i,1,1)
B (t) = I

(i)
B (t) =

∂p1
φ(r(t))

∂r1
i (t)

=
∂p1

φ(r(t))
∂p1

i (t)
. (5)

Inspired by Griffith (1980) let for j ∈ {1, . . . ,M}

aj=utility attached to the system being in the states {j, . . . , M},

where aM ≥ aM−1 ≥ · · · ≥ a1. Furthermore, let

ac
j=utility attached to the system being in the states {0, . . . , j − 1},

where ac
M ≥ ac

M−1 ≥ · · · ≥ ac
1 = 0 and aj ≥ ac

j . Finally, let

0 ≤ aj − ac
j = cj =the loss of utility attached to the system leaving the states

{j, . . . , M}.

Assume
∑M

j=1 cj = 1. We now suggest the following generalized Birnbaum

measure, I
(i,j)
B (t) and generalized weighted Birnbaum measure, I

∗(i)
B (t), of the

importance of the ith component at time t

I
(i,j)
B (t) =

M∑
k=1

I
(i,k,j)
B (t)/

n∑
r=1

M∑
k=1

I
(r,k,j)
B (t) (6)

I
∗(i)
B (t) =

M∑
j=1

cjI
(i,j)
B (t). (7)

We obviously have

n∑
i=1

I
(i,j)
B (t) = 1, 0 ≤ I

(i,j)
B (t) ≤ 1

n∑
i=1

I
∗(i)
B (t) = 1, 0 ≤ I

∗(i)
B (t) ≤ 1. (8)

These Birnbaum measures reflect Reason 1. However, there are two main
objections to these measures. Firstly, they give the importance at fixed points
of time leaving for the analyst at the system development phase to determine
which points are important. Secondly, the measures do not depend on the per-
formance of the ith component, whether good or bad, although the ranking of
the importances of the components depends on the performances of all compo-
nents.

2.2 The Barlow-Proschan measure

These objections cannot be raised to the following generalization of I
(i)
B−P , the

time-independent Barlow and Proschan (1975) measure of the importance of
the ith component

I
(i,j)
B−P = P [The jump downwards of the ith component coincides with
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the system leaving the states {j, . . . , M}] =
∞∫
0

M∑
k=1

I
(i,k,j)
B (t)rk

i (t)λ(k,k−1)
i (t)dt =

∞∫
0

M∑
k=1

[pj
φ((ek)i, r(t))− pj

φ((ek−1)i, r(t))]rk
i (t)λ(k,k−1)

i (t)dt,

i = 1, . . . , n, j ∈ {1, . . . ,M}. (9)

Note that for the binary case we have

I
(i,1)
B−P = I

(i)
B−P . (10)

Since the system leaving the states {j, . . . , M} coincides with the jump down-
wards of exactly one component, we have

n∑
i=1

I
(i,j)
B−P = 1. (11)

We now suggest the following generalized weighted Barlow-Proschan mea-
sure, I

∗(i)
B−P , of the importance of the ith component

I
∗(i)
B−P =

M∑
j=1

cjI
(i,j)
B−P . (12)

We then have
n∑

i=1

I
∗(i)
B−P = 1, 0 ≤ I

∗(i)
B−P ≤ 1. (13)

Both the generalized and the generalized weighted Barlow-Proschan measure
of the importance of the ith component are weighted averages of the generalized
Birnbaum measure, I

(i,k,j)
B (t). According to these measures a component is more

important the more likely it is to be the direct cause of system deterioration,
indicating that it takes well care of both Reasons 1 and 2.

2.3 The Natvig measure

Intuitively it seems that components that by deteriorating, strongly reduce the
expected remaining system time in the better states, are very important. This
seems at least true during the system development phase. This is the motiva-
tion for the following generalization of I

(i)
N , the Natvig (1979) measure of the

importance of the ith component. In order to formalize this, we introduce for
i = 1, . . . , n, k ∈ {0, . . . ,M − 1}

Ti,k = the time of the jump of the ith component into state k.
T ′i,k = the fictive time of the jump of the ith component into state k

after a fictive minimal repair of the component at Ti,k; i.e. it is repaired
to have the same distribution of remaining time in state k + 1 as it had just
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before jumping downwards to state k.

As in Natvig (1982) a stochastic representation of this generalized measure is ob-
tained by considering the random variables for i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈
{1, . . . ,M}

Zi,k,j = Y 1
i,k,j − Y 0

i,k,j , (14)

where

Y 1
i,k,j = system time in the states {j, . . . , M} in the interval [Ti,k−1, T

′
i,k−1]

just after the jump downwards from state k to state k − 1 of the ith
component, which, however, immediately undergoes a fictive minimal repair.

Y 0
i,k,j = system time in the states {j, . . . , M} in the interval [Ti,k−1, T

′
i,k−1]

just after the jump downwards from state k to state k − 1 of the ith
component, assuming that the component stays in the latter state
throughout this interval.

Thus, Zi,k,j can be interpreted as the fictive increase in system time in the
states {j, . . . , M} in the interval [Ti,k−1, T

′
i,k−1] due to a minimal repair of the

ith component when jumping downwards from state k to state k − 1. Note
that since the minimal repair is fictive, we have chosen to calculate the effect of
this repair over the entire interval [Ti,k−1, T

′
i,k−1] even though this interval may

extend beyond the time of the next jump of the ith component. Note that the
fictive minimal repair periods; i.e. the intervals of the form [Ti,k−1, T

′
i,k−1], may

sometimes overlap. Thus, at a given point of time we may have contributions
from more than one fictive minimal repair. This was efficiently dealt with by the
simulation methods presented in Huseby et al. (2009) in the binary case. Taking
the expectation, we get for i = 1, . . . , n, j ∈ {1, . . . ,M} the following generalized
Natvig measure, I

(i,j)
N , and generalized weighted Natvig measure,I∗(i)N , of the

importance of the ith component

I
(i,j)
N =

M∑
k=1

EZi,k,j/

n∑
r=1

M∑
k=1

EZr,k,j (15)

I
∗(i)
N =

M∑
j=1

cjI
(i,j)
N , (16)

tacitly assuming EZi,k,j < ∞, i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}. We
obviously have

n∑
i=1

I
(i,j)
N = 1, 0 ≤ I

(i,j)
N ≤ 1 (17)

n∑
i=1

I
∗(i)
N = 1, 0 ≤ I

∗(i)
N ≤ 1. (18)

We will now prove the following theorem
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Theorem 1.

EZi,M,j =
∫ ∞

0

I
(i,M,j)
B (w)F̄M

i (w)(− ln F̄M
i (w))dw

EZi,k,j =
∫ ∞

0

∫ ∞

0

I
(i,k,j)
B (u + w)F̄ k

i (w)(− ln F̄ k
i (w))dw rk+1

i (u)λ(k+1,k)
i (u)du,

k ∈ {1, . . . ,M − 1}.

Proof:
From (14) we have

EZi,M,j = EY 1
i,M,j − EY 0

i,M,j

=
∫ ∞

0

∫ ∞

0

[
pj

φ

(
(0, (1− F̄M

i (z + v)/F̄M
i (z))M−1, (F̄M

i (z + v)/F̄M
i (z))M )i,

r(z + v)
)
− pj

φ

(
(0, 1M−1, 0M )i, r(z + v)

)]
dv fM

i (z)dz.

By pivot decomposition this reduces to∫ ∞

0

∫ ∞

0

F̄M
i (z + v)
F̄M

i (z)
I
(i,M,j)
B (z + v)dv fM

i (z)dz

=
∫ ∞

0

∫ ∞

0

F̄M
i (z + v)
F̄M

i (z)
I
(i,M,j)
B (z + v)fM

i (z)dz dv

=
∫ ∞

0

I
(i,M,j)
B (w)F̄M

i (w)
∫ w

0

fM
i (z)

F̄M
i (z)

dz dw

=
∫ ∞

0

I
(i,M,j)
B (w)F̄M

i (w)(− ln F̄M
i (w))dw.

For k ∈ {1, . . . ,M − 1} we similarly get

EZi,k,j = EY 1
i,k,j − EY 0

i,k,j

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

[
pj

φ

(
(0, (1− F̄ k

i (z + v)/F̄ k
i (z))k−1, (F̄ k

i (z + v)/F̄ k
i (z))k)i,

r(u + z + v)
)

− pj
φ

(
(0, 1k−1, 0k)i, r(u + z + v)

)]
dv fk

i (z)dz rk+1
i (u)λ(k+1,k)

i (u)du.

By pivot decomposition this reduces to∫ ∞

0

∫ ∞

0

∫ ∞

0

F̄ k
i (z + v)
F̄ k

i (z)
I
(i,k,j)
B (u + z + v)dv fk

i (z)dz rk+1
i (u)λ(k+1,k)

i (u)du

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

F̄ k
i (z + v)
F̄ k

i (z)
I
(i,k,j)
B (u + z + v)fk

i (z)dz dv rk+1
i (u)λ(k+1,k)

i (u)du

=
∫ ∞

0

∫ ∞

0

I
(i,k,j)
B (u + w)F̄ k

i (w)
∫ w

0

fk
i (z)

F̄ k
i (z)

dz dw rk+1
i (u)λ(k+1,k)

i (u)du

=
∫ ∞

0

∫ ∞

0

I
(i,k,j)
B (u + w)F̄ k

i (w)(− ln F̄ k
i (w))dw rk+1

i (u)λ(k+1,k)
i (u)du.
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Hence, as for the generalized and generalized weighted Barlow-Proschan
measure EZi,k,j for k ∈ {1, . . . ,M} is a weighted average of the generalized
Birnbaum measure, I

(i,k,j)
B (t). In a way the generalized weighted Natvig mea-

sure can be considered as a more complex cousin of the generalized weighted
Barlow-Proschan measure.

3 The Birnbaum and Barlow-Proschan measures of com-
ponent importance in repairable systems and the latter‘s
dual extension

In this and the subsequent section we consider the case where the components,
and hence the system, can be repaired. Again in order to make things not too
complex we assume that each component deteriorates by going through all states
from the perfect functioning state until the complete failure state before being
repaired to the perfect functioning state. Also at time t = 0 all components
are in the perfect functioning state M . Let still the ith component have an
absolutely continuous distribution F k

i (t) of time spent in the state k, before
jumping downwards to state k − 1, with density fk

i (t), F̄ k
i (t) = 1 − F k

i (t) and
mean µk

i . Furthermore, let the ith component have an absolutely continuous
repair time distribution Gi(t) with density gi(t), Ḡi(t) = 1−Gi(t) and mean µ0

i .
It is still assumed that all these times spent in the various states are independent.

Introduce the notation

P (Xi(t) = j) = aj
i (t), j = 0, . . . ,M

a(t) = (a1
1(t), . . . , a

M
1 (t), a1

2(t), . . . , a
M
n (t))

P [φ(X(t)) ≥ j] = P [I(φ(X(t)) ≥ j) = 1] = pj
φ(a(t)).

We denote aj
i (t) the availability of the ith component at level j at time t and

pj
φ(a(t)) the availability of the system to level j at time t. The corresponding

stationary availabilities for i = 1, . . . , n and j ∈ {0, . . . ,M} are given by

aj
i = lim

t→∞
aj

i (t) =
µj

i∑M
`=0 µ`

i

(19)

Introduce
a = (a1

1, . . . , a
M
1 , a1

2, . . . , a
M
n ).

3.1 The Birnbaum measure

Now the generalized Birnbaum measure in repairable systems is expressed as

I
(i,k,j)
B (t) = pj

φ((ek)i,a(t))− pj
φ((ek−1)i,a(t)),

i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}. (20)

Using (20) the generalized Birnbaum measure and the generalized weighted
Birnbaum measure are still given by (6) and (7) and the properties (8) still
hold. The corresponding stationary measures are given by

I
(i,k,j)
B = lim

t→∞
I
(i,k,j)
B (t) = pj

φ((ek)i,a)− pj
φ((ek−1)i,a) (21)
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I
(i,j)
B =

M∑
k=1

I
(i,k,j)
B /

n∑
r=1

M∑
k=1

I
(r,k,j)
B (22)

I
∗(i)
B =

M∑
j=1

cjI
(i,j)
B ,

i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}. (23)

We obviously have

n∑
i=1

I
(i,j)
B = 1, 0 ≤ I

(i,j)
B ≤ 1

n∑
i=1

I
∗(i)
B = 1, 0 ≤ I

∗(i)
B ≤ 1. (24)

3.2 The Barlow-Proschan measure

Let for i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}

N
(k)
i (t) = the number of jumps of the ith component from state k to state

k − 1 in [0, t].

Ñ
(k,j)
i (t) = the number of times the system leaves the states {j, . . . , M} in

[0, t] due to the jump of the ith component from state k to k − 1.

Finally, denote EN
(k)
i (t) by M

(k)
i (t). As in Barlow and Proschan (1975) we

have for i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}

EÑ
(k,j)
i (t) =

t∫
0

I
(i,k,j)
B (u)dM

(k)
i (u), (25)

where I
(i,k,j)
B (u) is given by (20). A generalized time dependent Barlow-

Proschan measure of the importance of the ith component in the time interval
[0, t] in repairable systems is given by

I
(i,j)
B−P (t) =

∑M
k=1 EÑ

(k,j)
i (t)∑n

r=1

∑M
k=1 EÑ

(k,j)
r (t)

. (26)

The generalized weighted Barlow-Proschan measure is given by

I
∗(i)
B−P (t) =

M∑
j=1

cjI
(i,j)
B−P (t), (27)

and we have the properties

n∑
i=1

I
(i,j)
B−P (t) = 1, 0 ≤ I

(i,j)
B−P (t) ≤ 1

n∑
i=1

I
∗(i)
B−P (t) = 1, 0 ≤ I

∗(i)
B−P (t) ≤ 1. (28)

10



As in Barlow and Proschan (1975) by a renewal theory argument we arrive
at the corresponding stationary measures

I
(i,j)
B−P = lim

t→∞
I
(i,j)
B−P (t) =

∑M
k=1 I

(i,k,j)
B /(

∑M
`=0 µ`

i)∑n
r=1

∑M
k=1 I

(r,k,j)
B /(

∑M
`=0 µ`

r)

I
∗(i)
B−P =

M∑
j=1

cjI
(i,j)
B−P . (29)

I
(i,j)
B−P is the stationary probability that the jump downwards of the ith com-

ponent is the cause of the system leaving the states {j, . . . , M}, given that the
system has left these states, j ∈ {1, . . . ,M}. I

∗(i)
B−P is the weighted average of

these probabilities.

Theorem 2. Let i = 1, . . . , n, j ∈ {1, . . . ,M}. For a multistate series system;
i.e. φ(x) = min

1≤i≤n
xi, we have

I
(i,j)
B−P =

1/
∑M

k=j µk
i∑n

r=1 1/
∑M

k=j µk
r

,

whereas for a multistate parallel system; i.e. φ(x) = max
1≤i≤n

xi, we have the dual

expression

I
(i,j)
B−P =

1/(
∑j−1

k=0 µk
i )∑n

r=1 1/(
∑j−1

k=0 µk
r )

.

Proof: From (29), (21) and (19) we get for the multistate series system

I
(i,j)
B−P =

I
(i,j,j)
B /(

∑M
`=0 µ`

i)∑n
r=1 I

(r,j,j)
B /(

∑M
`=0 µ`

r)
=

[
∏

m6=i

∑M
k=j µk

m/(
∑M

`=0 µ`
m)]/(

∑M
`=0 µ`

i)∑n
r=1[

∏
m6=r

∑M
k=j µk

m/(
∑M

`=0 µ`
m)]/(

∑M
`=0 µ`

r)
=

∏
m6=i

∑M
k=j µk

m∑n
r=1

∏
m6=r

∑M
k=j µk

m

=
1/

∑M
k=j µk

i∑n
r=1 1/

∑M
k=j µk

r

.

The proof for the multistate parallel system is completely analogous by noting
that now

I
(i,j,j)
B =

∏
m6=i

j−1∑
k=0

µk
m/(

M∑
`=0

µ`
m).

Hence, the stationary Barlow-Proschan measures given by (29) for a mul-
tistate series system do not depend on component mean times to repair. This
generalizes a result in the binary case shown in Natvig and G̊asemyr (2009) and
is disappointing and an objection to the Barlow-Proschan measure for repairable
systems. For a multistate parallel system the stationary Barlow-Proschan mea-
sures do depend both on component mean times to jumps downwards and to
mean times to repair. This is not true in the binary case, as shown already in
Natvig and G̊asemyr (2009), where the one and only measure just depends on
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the mean times to repair. Note that these differences from results for the binary
case are due to the asymmetric assumption that each component deteriorates
by going through all states from the perfect functioning state until the complete
failure state before being repaired to the perfect functioning state.

We have also arrived at the following theorem generalizing Theorem 4 in
Natvig and G̊asemyr (2009)

Theorem 3. Let the ith component be in series (parallel) with the rest of the
system; i.e. φ(x) = min(xi, φ(Mi,x)) (φ(x) = max(xi, φ(0i,x))). Let for j ∈
{1, . . . ,M} and for an arbitrary component k 6= i

∑M
`=j µ`

i ≤ µM
k (

∑j−1
`=0 µ`

i ≤
µ0

k). Then I
(i,j)
B−P ≥ I

(k,j)
B−P . Furthermore, for the numerator of the measure we

have respectively when the ith component is in series and parallel with the rest
of the system ∑M

r=1 I
(i,r,j)
B∑M

`=0 µ`
i

≥
∑M

r=1 I
(k,r,j)
B∑M

`=0 µ`
k

+
pj

φ((e0)k,a)∑M
`=j µ`

i∑M
r=1 I

(i,r,j)
B∑M

`=0 µ`
i

≥
∑M

r=1 I
(k,r,j)
B∑M

`=0 µ`
k

+
1− pj

φ((eM )k,a)∑j−1
`=0 µ`

i

.

Proof: When the ith component is in series with the rest of the system we
have by applying (21)∑M

r=1 I
(i,r,j)
B∑M

`=0 µ`
i

=
I
(i,j,j)
B∑M
`=0 µ`

i

=
pj

φ((ej)i,a)∑M
`=0 µ`

i

=
pj

φ(a)∑M
`=j µ`

i

=

∑M
r=0 pj

φ((er)k,a)µr
k

(
∑M

`=j µ`
i)(

∑M
`=0 µ`

k)

=

∑M
r=0[p

j
φ((er)k,a)− pj

φ((er−1)k,a)]
∑M

`=r µ`
k

(
∑M

`=j µ`
i)(

∑M
`=0 µ`

k)

=
∑M

r=1 I
(k,r,j)
B

∑M
`=r µ`

k

(
∑M

`=j µ`
i)(

∑M
`=0 µ`

k)
+

pj
φ((e0)k,a)∑M

`=j µ`
i

.

Applying the assumption
∑M

`=j µ`
i ≤ µM

k , the result follows. When the ith
component is in parallel with the rest of the system we have∑M

r=1 I
(i,r,j)
B∑M

`=0 µ`
i

=
I
(i,j,j)
B∑M
`=0 µ`

i

=
1− pj

φ((ej−1)i,a)∑M
`=0 µ`

i

=
1− pj

φ(a)∑j−1
`=0 µ`

i

=
1−

∑M
r=1 I

(k,r,j)
B (1−

∑r−1
`=0 µ`

k/(
∑M

`=0 µ`
k))− pj

φ((e0)k,a)∑j−1
`=0 µ`

i

=
∑M

r=1 I
(k,r,j)
B

∑r−1
`=0 µ`

k

(
∑j−1

`=0 µ`
i)(

∑M
`=0 µ`

k)
+

1− pj
φ((eM )k,a)∑j−1

`=0 µ`
i

.

Applying the assumption
∑j−1

`=0 µ`
i ≤ µ0

k, the result follows. It is still discom-
forting that the assumption in the first inequality does not depend on component
mean times to repair. The assumption in the second inequality does depend both
on component mean times to jumps downwards and to mean times to repair.

3.3 The dual extension of the Barlow-Proschan measure

As an attempt to improve the Barlow-Proschan measures (26), (27) and (29)
for repairable systems it is suggested to take a dual term into account based
on the probability that the repair of the ith component is the cause of system
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state improvement, given that a system state improvement has occurred. Let
for i = 1, . . . , n, j ∈ {1, . . . ,M}

Vi(t) = the number of jumps of the ith component from state 0 to state
M in [0, t].

Ṽ
(j)
i (t) = the number of times the system leaves the states {0, . . . , j − 1} in

[0, t] due to the jump of the ith component from state 0 to M .

Denote EVi(t) by Ri(t).
Note that

aM
i (t) = P [Vi(t)−N

(M)
i (t) = 0] = E[Vi(t)−N

(M)
i (t) + 1]

= Ri(t)−M
(M)
i (t) + 1

ak
i (t) = P [N (k+1)

i (t)−N
(k)
i (t) = 1] = E[N (k+1)

i (t)−N
(k)
i (t)]

= M
(k+1)
i (t)−M

(k)
i (t), k ∈ {1, . . . ,M − 1}

a0
i (t) = P [N (1)

i (t)− Vi(t) = 1] = E[N (1)
i (t)− Vi(t)] = M

(1)
i (t)−Ri(t).

Parallel to (25) we get for i = 1, . . . , n, j ∈ {1, . . . ,M}

EṼ
(j)
i (t) =

t∫
0

[pj
φ((eM )i,a(u))− pj

φ((e0)i,a(u))]dRi(u)

=

t∫
0

M∑
k=1

I
(i,k,j)
B (u)dRi(u). (30)

An extended version of (26) is arrived at by applying (25) and (30)

Ī
(i,j)
B−P (t) =

∑M
k=1 EÑ

(k,j)
i (t) + EṼ

j(t)
i∑n

r=1[
∑M

k=1 EÑ
(k,j)
r (t) + EṼ j

r (t)]

=

t∫
0

∑M
k=1 I

(i,k,j)
B (u)d(M (k)

i (u) + Ri(u))

n∑
r=1

t∫
0

∑M
k=1 I

(r,k,j)
B (u)d(M (k)

r (u) + Rr(u))
. (31)

However, since from renewal theory

lim
t→∞

M
(k)
i (t)
t

= lim
t→∞

Ri(t)
t

=
1∑M

`=0 µ`
i

,

it turns out that for the corresponding stationary measures we have

Ī
(i,j)
B−P = lim

t→∞
Ī
(i,j)
B−P (t) = I

(i,j)
B−P

Ī
∗(i)
B−P =

M∑
j=1

cj Ī
(i,j)
B−P = I

∗(i)
B−P . (32)

Hence, Theorems 2 and 3 are also valid for Ī
(i,j)
B−P which is disappointing

since under stationarity nothing is gained by introducing the extended measure
also taking the dual approach into account.
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4 The Natvig measure of component importance in re-
pairable systems and its dual extension

We start by introducing some basic random variables for i = 1, . . . , n,
k ∈ {0, . . . ,M},m = 1, 2, . . .

Ti,k,m = the time of the mth jump of the ith component into state k.
Di,m = the length of the mth repair time of the ith component.

We define Ti,M,0 = 0 and have for m = 1, 2, . . .

Ti,M,m = Ti,0,m + Di,m.

4.1 The Natvig measure

Parallel to the nonrepairable case we argue that components that by deteri-
orating, strongly reduce the expected system time in the better states, are
very important. In order to formalize this, we introduce for i = 1, . . . , n, k ∈
{0, . . . ,M − 1},m = 1, 2, . . .

T ′i,k,m = the fictive time of the mth jump of the ith component into state k

after a fictive minimal repair of the component at Ti,k,m; i.e. it is repaired
to have the same distribution of remaining time in state k + 1 as it had just
before jumping downwards to state k.

As for the Barlow-Proschan measure we consider a time interval [0, t] and define
for i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M},m = 1, 2, . . .

Y 1
i,k,j,m = system time in the states {j, . . . , M} in the interval

[min(Ti,k−1,m, t),min(T ′i,k−1,m, t)] just after the jump downwards from state

k to state k − 1 of the ith component, which, however, immediately undergoes
a fictive minimal repair.

Y 0
i,k,j,m = system time in the states {j, . . . , M} in the interval

[min(Ti,k−1,m, t),min(T ′i,k−1,m, t)] just after the jump downwards from state

k to state k − 1 of the ith component, assuming that the component stays in
the latter state throughout this interval.

In order to arrive at a stochastic representation similar to the nonrepairable
case, see (14), we introduce the following random variables

Zi,k,j,m = Y 1
i,k,j,m − Y 0

i,k,j,m. (33)

Thus, Zi,k,j,m can be interpreted as the fictive increase in system time in the
states {j, . . . , M} in the interval [min(Ti,k−1,m, t),min(T ′i,k−1,m, t)] due to a min-
imal repair of the ith component when jumping downwards from state k to state
k− 1. Note that since the minimal repair is fictive, we have chosen to calculate
the effect of this repair over the entire interval [min(Ti,k−1,m, t),min(T ′i,k−1,m, t)]
even though this interval may extend beyond the time of the next jump of the
ith component.
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In order to summarize the effects of all the fictive minimal repairs, we have
chosen to simply add up these contributions. Taking the expectation, we get
for i = 1, . . . , n, j ∈ {1, . . . ,M}

E
[ ∞∑

m=1

I(Ti,k,m ≤ t)Zi,k,j,m

]
d=EYi,k,j(t), k ∈ {1, . . . ,M − 1}

E
[ ∞∑

m=1

I(Ti,M,m−1 ≤ t)Zi,M,j,m

]
d=EYi,M,j(t). (34)

We then suggest the following generalized Natvig measure, I
(i,j)
N (t), and

generalized weighted Natvig measure,I∗(i)N (t), of the importance of the ith com-
ponent in the time interval [0, t] in repairable systems

I
(i,j)
N (t) =

M∑
k=1

EYi,k,j(t)/
n∑

r=1

M∑
k=1

EYr,k,j(t) (35)

I
∗(i)
N (t) =

M∑
j=1

cjI
(i,j)
N (t), (36)

tacitly assuming EYi,k,j(t) < ∞, i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M}.
We obviously have

n∑
i=1

I
(i,j)
N (t) = 1, 0 ≤ I

(i,j)
N (t) ≤ 1 (37)

n∑
i=1

I
∗(i)
N (t) = 1, 0 ≤ I

∗(i)
N (t) ≤ 1. (38)

We will now prove the following theorem

Theorem 4.

EYi,M,j(t) =
∫ t

0

I
(i,M,j)
B (w)F̄M

i (w)(− ln F̄M
i (w))dw+∫ t

0

∫ t

u

I
(i,M,j)
B (w)F̄M

i (w − u)(− ln F̄M
i (w − u))dw dRi(u)

EYi,k,j(t) =
∫ t

0

∫ t

u

I
(i,k,j)
B (w)F̄ k

i (w − u)(− ln F̄ k
i (w − u))dw dM

(k+1)
i (u),

k ∈ {1, . . . ,M − 1}.

To prove the theorem in a formal way we need the following lemma proved
in Natvig and G̊asemyr (2009).

Lemma 1 Let W1,W2, . . . be an increasing sequence of positive random vari-
ables. Assume that Wm −Wm−1 are independent with an absolutely continuous
distribution Hm(u) and density hm(u), m = 1, 2, . . ., where W0

d=0. Let ρ(u) be

the jump intensity for the process N(u) =
∞∑

m=1
I(Wm ≤ u), and let N = N(t).

For each m = 1, 2, . . . let Ym be a random variable which is independent of
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W1, . . . ,Wm−1 given Wm, and suppose that E(Ym|Wm = u) does not depend on

m. Finally, let Y =
N∑

m=1
Ym. Then

EY =
∫ t

0

E(Ym|Wm = u)ρ(u)du.

Proof of Theorem 4. We first apply Lemma 1 for m = 1, 2, . . . with

Wm = Ti,M,m, Ym = Zi,M,j,m+1, N = N(t) =
∞∑

m=1

I(Ti,M,m ≤ t) d=NM .

It will be shown that E(Zi,M,j,m+1|Ti,M,m = u) does not depend on m. Hence,
from (34), remembering that Ti,M,0 = 0

EYi,M,j(t) = EZi,M,j,1 + E
[ ∞∑

m=1

I(Ti,M,m ≤ t)Zi,M,j,m+1

]
= EZi,M,j,1

+
NM∑
m=1

EYm = EZi,M,j,1 + EY = E(Zi,M,j,1)|Ti,M,0 = 0)

+
∫ t

0

E(Zi,M,j,m+1|Ti,M,m = u)dRi(u).

Then we apply Lemma 1 for m = 1, 2, . . . and k ∈ {1, . . . ,M − 1} with

Wm = Ti,k,m, Ym = Zi,k,j,m, N = N(t) =
∞∑

m=1

I(Ti,k,m ≤ t) d=Nk.

Since also E(Zi,k,j,m|Ti,k,m = u) is shown not to depend on m, we get from (34)

EYi,k,j(t) = E
[ Nk∑

m=1

Zi,k,j,m

]
=

Nk∑
m=1

EYm = EY

=
∫ t

0

E(Zi,k,j,m|Ti,k,m = u)dM
(k+1)
i (u).

Let Xu be the uptime in [0, u] for a binary system with availability a(t).
From Theorem 3.6 of Aven and Jensen (1999) we have

EXu =
∫ u

0

a(t)dt.

Applying this, we get from (33) for i = 1, . . . , n, k ∈ {1, . . . ,M − 1} and m =
1, 2, . . .

E(Zi,k,j,m|Ti,k,m = u) = E(Y 1
i,k,j,m|Ti,k,m = u)− E(Y 0

i,k,j,m|Ti,k,m = u)

=
∫ t−u

0

∫ t−u−z

0

[
pj

φ

(
(0, (1− F̄ k

i (z + v)/F̄ k
i (z))k−1, (F̄ k

i (z + v)/F̄ k
i (z))k)i,

a(u + z + v)
)
− pj

φ((0, 1k−1, 0k)i,a(u + z + v))
]
dvfk

i (z)dz.

By pivot decomposition this reduces to∫ t−u

0

∫ t−u−z

0

F̄ k
i (z + v)
F̄ k

i (z)
I
(i,k,j)
B (u + z + v)dvfk

i (z)dz

16



=
∫ t−u

0

∫ t−u−v

0

F̄ k
i (z + v)
F̄ k

i (z)
I
(i,k,j)
B (u + z + v)fk

i (z)dz dv

=
∫ t

u

I
(i,k,j)
B (w)F̄ k

i (w − u)
∫ w−u

0

fk
i (z)

F̄ k
i (z)

dz dw

=
∫ t

u

I
(i,k,j)
B (w)F̄ k

i (w − u)(− ln F̄ k
i (w − u))dw.

Similarly, we get

E(Zi,M,j,m+1|Ti,M,m = u) =
∫ t

u

I
(i,M,j)
B (w)F̄M

i (w − u)(− ln F̄M
i (w − u))dw.

Inserting these expressions into the expressions for EYi,k,j(t) for k ∈ {1, . . . ,M}
completes the proof.

From Natvig (1985) it follows that for k ∈ {1, . . . ,M}

∫ ∞

0

F̄ k
i (t)(− ln F̄ k

i (t))dt (39)

= E(T ′i,k−1,m − Ti,k−1,m) d= µ
k(p)
i .

Accordingly, this integral equals the expected prolonged time in state k of the
ith component due to a minimal repair.

Now divide the expressions for EYi,k,j(t) in Theorem 4 by t and let t →
∞. Assuming that the first addend in EYi,M,j(t) vanishes, applying a renewal
theory argument as in Barlow and Proschan (1975) we arrive at the following
corresponding stationary measures

I
(i,j)
N = lim

t→∞
I
(i,j)
N (t) =

[
∑M

k=1 I
(i,k,j)
B /(

∑M
`=0 µ`

i)]µ
k(p)
i∑n

r=1[
∑M

k=1 I
(r,k,j)
B /(

∑M
`=0 µ`

r)]µ
k(p)
r

I
∗(i)
N =

M∑
j=1

cjI
(i,j)
N . (40)

Parallel to Theorem 2 we arrive at

Theorem 5. Let i = 1, . . . , n, j ∈ {1, . . . ,M}. For a multistate series system,
we have

I
(i,j)
N =

µ
j(p)
i /

∑M
k=j µk

i∑n
r=1 µ

j(p)
r /

∑M
k=j µk

r

,

whereas for a multistate parallel system, we have the dual expression

I
(i,j)
N =

µ
j(p)
i /

∑j−1
k=0 µk

i∑n
r=1 µ

j(p)
r /

∑j−1
k=0 µk

r

.

Hence, also the stationary Natvig measures given by (40) for a multistate
series system do not depend on component mean times to repair. This gen-
eralizes a result in the binary case shown in Natvig and G̊asemyr (2009) and
is disappointing. For a multistate parallel system the stationary Natvig mea-
sures do depend strongly both on the distributions of component times to jumps
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downwards and on mean times to repair. This is also true in the binary case,
as shown already in Natvig and G̊asemyr (2009).

4.2 The dual extension of the Natvig measure

As for the Barlow-Proschan measure we now also take a dual term into account
where components that by being repaired strongly reduce the expected system
time in the worse states, are considered very important. In order to formalize
this, we introduce for i = 1, . . . , n, m = 1, 2, . . .

T ′i,M,m = the fictive time of the mth jump of the ith component into state M

after a fictive minimal complete failure of the component at Ti,M,m; i.e. it is
failed to have the same distribution of remaining time in state 0 as it had just
before jumping upwards to state M .

Define for i = 1, . . . , n, k ∈ {1, . . . ,M}, j ∈ {1, . . . ,M},m = 1, 2, . . .

Y 1
i,0,j,m = system time in the states {0, . . . , j − 1} in the interval

[min(Ti,M,m, t),min(T ′i,M,m, t)] just after the jump upwards from state

0 to state M of the ith component, which, however, immediately undergoes
a fictive minimal complete failure.

Y 0
i,0,j,m = system time in the states {0, . . . , j − 1} in the interval

[min(Ti,M,m, t),min(T ′i,M,m, t)] just after the jump upwards from state

0 to state M of the ith component, assuming that the component stays in
the latter state throughout this interval.

Parallel to (33) we then introduce the following random variables

Zi,0,j,m = Y 1
i,0,j,m − Y 0

i,0,j,m. (41)

Thus, Zi,0,j,m can be interpreted as the fictive increase in system time in the
states {0, . . . , j−1} in the interval [min(Ti,M,m, t),min(T ′i,M,m, t)] due to a com-
plete minimal failure of the ith component when jumping upwards from state 0
to state M .

Now adding up the contributions from the repairs at Ti,M,m, m = 1, 2, . . .,
and taking the expectation, we get for i = 1, . . . , n, j ∈ {1, . . . ,M}

E
[ ∞∑

m=1

I(Ti,0,m ≤ t)Zi,0,j,m

]
d=EYi,0,j(t). (42)

Parallel to Theorem 4, using the argument leading to the last equality in
(30) we arrive at

Theorem 6.

EYi,0,j(t) =
∫ t

0

∫ t

u

M∑
k=1

I
(i,k,j)
B (w)Ḡi(w − u)(− ln Ḡi(w − u))dw dM1

i (u).
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We then suggest the following extended generalized Natvig measure, Ī
(i,j)
N (t),

and extended generalized weighted Natvig measure,Ī∗(i)N (t), of the importance
of the ith component in the time interval [0, t] in repairable systems

Ī
(i,j)
N (t) =

M∑
k=0

EYi,k,j(t)/
n∑

r=1

M∑
k=0

EYr,k,j(t) (43)

Ī
∗(i)
N (t) =

M∑
j=1

cjI
(i,j)
N (t), (44)

tacitly assuming EYi,k,j(t) < ∞, i = 1, . . . , n, k ∈ {0, . . . ,M}, j ∈ {1, . . . ,M}.
We obviously have

n∑
i=1

Ī
(i,j)
N (t) = 1, 0 ≤ Ī

(i,j)
N (t) ≤ 1 (45)

n∑
i=1

Ī
∗(i)
N (t) = 1, 0 ≤ Ī

∗(i)
N (t) ≤ 1. (46)

Completely parallel to (39) we have∫ ∞

0

Ḡi(t)(− ln Ḡi(t))dt = E(T ′i,M,j − Ti,M,j)
d= µ

0(p)
i . (47)

The corresponding stationary extended measures are now given by

Ī
(i,j)
N = lim

t→∞
I
(i,j)
N (t) =

[
∑M

k=1 I
(i,k,j)
B /(

∑M
`=0 µ`

i)](µ
k(p)
i + µ

0(p)
i )∑n

r=1[
∑M

k=1 I
(r,k,j)
B /(

∑M
`=0 µ`

r)](µ
k(p)
r + µ

0(p)
r )

Ī
∗(i)
N =

M∑
j=1

cjI
(i,j)
N . (48)

Parallel to Theorem 5 we arrive at

Theorem 7. Let i = 1, . . . , n, j ∈ {1, . . . ,M}. For a multistate series system,
we have

Ī
(i,j)
N =

(µj(p)
i + µ

0(p)
i )/

∑M
k=j µk

i∑n
r=1(µ

j(p)
r + µ

0(p)
r )/

∑M
k=j µk

r

,

whereas for a multistate parallel system, we have the dual expression

Ī
(i,j)
N =

(µj(p)
i + µ

0(p)
i )/

∑j−1
k=0 µk

i∑n
r=1(µ

j(p)
r + µ

0(p)
r )/

∑j−1
k=0 µk

r

.

Hence, the stationary extended Natvig measures both for a multistate series
and parallel system do depend on the distributions of component times to jumps
downwards and on the distributions of repair times. This generalizes a result in
the binary case shown in Natvig and G̊asemyr (2009).

Now consider the special case where the component times to jumps down-
wards and repair times are Weibull distributed; i.e.

F̄ k
i (t) = e−(λk

i t)αk
i , λk

i > 0, αk
i > 0
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Ḡi(t) = e−(λ0
i t)α0

i , λ0
i > 0, α0

i > 0 .

From (39) and (47) we get as shown in Natvig and G̊asemyr (2009) µ
k(p)
i =

µk
i /αk

i for k ∈ {0, . . . ,M} . Hence, (48) simplifies to

Ī
(i,j)
N =

[
∑M

k=1 I
(i,k,j)
B /(

∑M
`=0 µ`

i)](µ
k
i /αk

i + µ0
i /α0

i )∑n
r=1[

∑M
k=1 I

(r,k,j)
B /(

∑M
`=0 µ`

r)](µk
r/αk

r + µ0
r/α0

r)
. (49)

Now for k ∈ {1, . . . ,M} assume that the shape parameter αk
i is increasing

and λk
i changing in such a way that µk

i is constant. Hence, according to (19) the
availability ak

i is unchanged. Then Ī
(i,j)
N is decreasing in αk

i . This is natural since
a large αk

i > 1 corresponds to a strongly increasing failure rate and the effect of
a minimal repair is small. Hence, according to Ī

(i,j)
N the ith component is of less

importance. If on the other hand αk
i < 1 is small, we have a strongly decreasing

failure rate and the effect of a minimal repair is large. Hence, according to Ī
(i,j)
N

the ith component is of higher importance. A completely parallel argument is
valid for α0

i .
By specializing αk

i = α, i = 1, . . . , n, k ∈ {0, . . . ,M}, we get

Ī
(i,j)
N =

[
∑M

k=1 I
(i,k,j)
B /(

∑M
`=0 µ`

i)](µ
k
i + µ0

i )∑n
r=1[

∑M
k=1 I

(r,k,j)
B /(

∑M
`=0 µ`

r)](µk
r + µ0

r)
. (50)

The following result is now straightforward

Theorem 8. Assume component times to jumps downwards and repair times
are Weibull distributed with identical shape parameters. Let i = 1, . . . , n, j ∈
{1, . . . ,M}. For a multistate series system, we have

Ī
(i,j)
N =

(µj
i + µ0

i )/
∑M

k=j µk
i∑n

r=1(µ
j
r + µ0

r)/
∑M

k=j µk
r

,

whereas for a multistate parallel system, we have the dual expression

Ī
(i,j)
N =

(µj
i + µ0

i )/
∑j−1

k=0 µk
i∑n

r=1(µ
j
r + µ0

r)/
∑j−1

k=0 µk
r

.

According to this theorem, for a multistate series system the importance of
the ith component is increasing in µ0

i , decreasing in
∑M

k=j+1 µk
i and decreasing

in µj
i if µ0

i ≥
∑M

k=j+1 µk
i ; i.e. the poorer the more important. For a multistate

parallel system the importance of the ith component is increasing in µj
i , de-

creasing in
∑j−1

k=1 µk
i and decreasing in µ0

i if µj
i ≥

∑j−1
k=1 µk

i ; i.e. the better the
more important. This generalizes results shown in Natvig and G̊asemyr (2009)
and seems perfectly sensible.

Furthermore, generalizing Theorem 10 in Natvig and G̊asemyr (2009), we
have the following more satisfactory theorem than Theorem 3

Theorem 9. Assume component times to jumps downwards and repair times
are Weibull distributed with identical shape parameters. Let the ith component be
in series (parallel) with the rest of the system. Let for j ∈ {1, . . . ,M} and for an
arbitrary component k 6= i

∑M
`=j µ`

i/(µj
i + µ0

i ) ≤ µM
k /(µr

k + µ0
k) for r = 1, . . . ,M

(
∑j−1

`=0 µ`
i/(µj

i + µ0
i ) ≤ µ0

k/(µr
k + µ0

k) for r = 1, . . . ,M). Then Ī
(i,j)
N ≥ Ī

(k,j)
N .
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Furthermore, for the numerator of the measure we have for respectively when
the ith component is in series and parallel with the rest of the system∑M

r=1 I
(i,r,j)
B (µr

i + µ0
i )∑M

`=0 µ`
i

≥
∑M

r=1 I
(k,r,j)
B (µr

k + µ0
k)∑M

`=0 µ`
k

+
pj

φ((e0)k,a)(µj
i + µ0

i )∑M
`=j µ`

i∑M
r=1 I

(i,r,j)
B (µr

i + µ0
i )∑M

`=0 µ`
i

≥
∑M

r=1 I
(k,r,j)
B (µr

k + µ0
k)∑M

`=0 µ`
k

+
1− pj

φ((eM )k,a)(µj
i + µ0

i )∑j−1
`=0 µ`

i

.

The proof is parallel to the one of Theorem 3 and is left to the reader.

5 Concluding remarks

In this paper we have first presented new measures of component importance in
nonrepairable multistate systems. Reasonable measures of component impor-
tance for repairable systems represent a challenge. In this case Theorems 2 and
3 and its dual extension covering the stationary Barlow-Proschan measure are
not satisfactory.

Theorem 5 covering the stationary Natvig measure for multistate repairable
systems is not satisfactory since for a multistate series system the measure
does not depend on component mean times to repair. However, Theorem 7
covering its dual extension seems very sensible. For jumps downwards and repair
times being Weibull distributed the latter measure is given by (49), which has a
reasonable performance as a function of the shape parameters. When all shape
parameters are equal according to Theorems 8 and 9 again this measure seems
to be sensible.
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