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Abstract

Hyperbolic Lagrangian Coherent Structures (LCS) are time-dependent manifolds that or-
ganize tracer patterns in chaotic flow systems. In two-dimensional flow systems, LCSs take
the shape of one-dimensional curves which act as the locally most attracting or repelling
structures over a finite time interval. LCSs yield a description of the flow field itself by
defining transport barriers which attract or repel material, without allowing for propagation
through them.

Generally, Lagrangian descriptions are prone to large errors and uncertainty due to non-
linear and turbulent oceanic and atmospheric flow fields. Although extensive studies on LCSs
have previously been conducted, few studies investigate the implications of this inherent
uncertainty in chaotic flow fields on LCSs.

This study investigates the sensitivity of LCSs to uncertainty in the flow field of realistic
Oceanic General Circulation Models. Two flow systems are considered: 1) A simplified
controlled analytical double-gyre and 2) turbulent velocity data from the Barents-2.5 EPS
model, simulating realistic ocean conditions in the Barents Sea and off the coast of northern
Norway. The coastal region around the Lofoten-Vesterålen islands in northern Norway is
chosen as the study region due to its ecological importance. The Barents-2.5 EPS includes
24 realizations of the same scenario, each with either perturbed initial conditions or forcing
that can lead to large differences in the flow field. An ensemble of the double-gyre system
is also produced by perturbing the dependent variables.

I develop an LCS detection software utilizing the Finite-Time Lyapunov Exponent approach.
The software and resulting LCSs are verified by computing LCSs in both flow systems. I
then investigate whether these correspond to independently simulated particle trajectories
to study their effect on material transport. Then, LCSs are computed in all ensemble mem-
bers of the double-gyre ensemble and Barents-2.5 EPS. Following variations in the velocity
fields between ensemble members, LCSs vary between ensemble members. Robust LCSs
are LCSs predicted by the majority of ensemble members for a particular time. Averaging
over ensemble members smooths out the LCSs, but a few clearly distinguishable LCSs are
detected in the average, thus these are considered to be highly robust. These are most com-
monly formed in regions where the current is steered by geomorphological features, which
are constant between ensemble members. For the double-gyre system, these include the
system boundaries and the separation between the two gyres. For the Barents-2.5 EPS,
these features include coastlines and bathymetry.

LCSs are time-dependent and only valid for the time interval they are computed over. Flow
structures in the real ocean can form and dissipate quickly, thus LCSs can do so just as
quickly. Their persistence, i.e. existence over time, is therefore investigated to study whether
LCSs exist long enough to have an influence on nearby material transport. Persistence
can change depending on time-scales and has been studied over three time periods in the
Barents-2.5 EPS: i) daily, ii) monthly and iii) seasonal.

Daily variations in LCSs are investigated in the straits between islands in the domain. It is
known that strong periodic currents form in these straits due to tidal flow. LCSs are revealed
to form around these straits and swap east-west positions periodically. This periodicity is
shown to be connected to the tidal phase, thus a daily periodic persistence dominated by
tides is uncovered.

ii



Monthly persistence has been investigated for April 2022. I find that averaging over time
heavily smooths out the LCS field, more than when averaging over ensemble members. This
most likely happens because LCSs emerge, drift and decay. As a result, no distinguishable
individual curves representing LCSs are detected in the time average. Instead, large high-
value regions in the smoothed average reveals locations where LCSs frequently form over
the time period. Similarly to robustness, these locations are also primarily dominated by
geomorphology. It is also shown that there exists examples of robust features which are not
persistent.

To investigate seasonal variations, LCSs from April 2022 were compared to LCSs from
October 2022. LCSs are shown to regularly form at different locations in the domain in the
two seasons. In April, LCSs are frequently formed along the continental slope and northern
and southern tips of Lofoten-Vesterålen. In October, LCSs tend to form along the coastline,
whereas few LCSs form on top of the continental slope. This is most likely due to stronger
and less topographically-steered currents in October. Furthermore, the main current flows
closer to the coast in October, whereas there is an indication of more frequent small-scale
flow structures forming and breaking off from the main current in April. Annual variability
requires further investigation.
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1 Introduction

Oceanic and atmospheric flows transport various tracers, such as heat, salt, nutrients, plank-
ton, pollution, volcanic ash and aerosols. The range of dynamical motions can span from
centimeters to thousands of kilometers. As water and air moves, these tracers are trans-
ported through the Earth system, affecting the climate and ecosystem. Therefore, a good
theoretical understanding of the underlying dynamical processes governing fluid transport
is important for understanding the role of tracers in the ocean and atmosphere. In addition
to process studies, day-to-day forecasting is also dependent on this fluid motion. Thus an
improved understanding of dynamical processes will contribute to more accurate forecasts.

Narrowing our focus point to the ocean, there are two common methods used to predict
how material propagates through oceanic flow fields. The first method uses a concentration
field of a tracer, e.g. heat content, to serve as a "dye" which follows the ocean circulation.
The transport and spreading can be studied using an advection-diffusion model, where the
velocity field and tracer concentration is discretized on a grid. The time evolution of the
tracer concentration is tracked in fixed points in space by solving stochastic differential
equations, to e.g. study tracer concentrations in the vertical water column (Roy-Barman
and Jeandel, 2016; Nordam et al., 2019). This is the Eulerian method.

The second method is to compute Lagrangian particle trajectories. Material is represented
by massless and infinitesimal particles which are placed into a velocity field. Their trajec-
tories are computed by numerically solving ordinary differential equations. These simulate
particle propagation and future state based on the particles’ initial state, position and the
underlying velocity field (van Sebille et al., 2018). This is the Lagrangian method, which
described the properties of a specific fluid parcel as it moves and evolves with the flow.

Both the Eulerian and Lagrangian methods require velocity field data. This is commonly
obtained from an Oceanic General Circulation Models (OGCM), where the velocity field
itself is calculated using the Navier-Stokes equations. Observational-based velocities, such
as products of geostrophic currents from satellite altimetry, can be used as well (van Sebille
et al., 2018).

Lagrangian particle trajectory integrations have seen a wide use in forecasting drifting ma-
terial, such as pollution. Furthermore, multiple studies are conducted each year with the
intent of tracking natural tracers and particles in ocean water, e.g. larva, jellyfish, fish eggs,
icebergs, nutrients and many more (Paris et al., 2005; Dawson et al., 2005; Röhrs et al.,
2014; Marsh et al., 2015; Chenillat et al., 2015). Lagrangian analysis of oceanic flow fields is
therefore well studied, and is a powerful tool for analyzing ocean velocity data (van Sebille
et al., 2018).

However, the ocean and atmosphere are complex dynamical systems, governed by non-linear
equations of motion. Calculated velocity fields in OGCMs and Lagrangian trajectory fore-
casts are therefore highly sensitive to small variations in initial conditions. Small errors in
the underlying flow field or initial position of the material of interest can cause large errors
in the trajectories over time. An example of the effect uncertainties have on Lagrangian
trajectories are shown in Figure 1. If the material of interest is a person or pollutant, quick
and accurate transport predictions are imperative to save life or prevent further environ-
mental contamination, but uncertainties can have drastic implications on forecasts. In most
extreme cases, the combination of multiple uncertainties can lead to completely different
directions of propagation.
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Figure 1: Example of differences in Lagrangian particle trajectories due to a) uncertain release
point, b) uncertain velocity field and c) both uncertain release point and velocity field. Particles
have been integrated 48 hours forward in time from 2022.11.25 00:00. Velocity data provided
by MET Norways Barents-2.5 EPS model, where two ensemble members have been used for the
uncertain velocity field. These particles are infinitesimal and massless, so uncertainties in particle
properties are excluded. When release point is uncertain, the initial distance between particles is
≈ 7500 m, which corresponds to three grid cells in the model data.

In some cases, the particles initial position and timing of release is known, such as during
volcanic eruptions (e.g. the eruption of Eyjafjallajökull located in Iceland in 2010), or spill
from oil rigs (e.g. the Deepwater Horizon oil rig accident in the Gulf of Mexico in 2010
(US EPA, 2013)). As the release point is known, errors in initial position and timing can
be excluded. Then, only uncertainties in the velocity field and particle properties, such as
shape, buoyancy and size, need to be considered. On the contrary, sometimes the initial
position and time of material release is unknown. E.g. if a person or shipping containers
fall over board from a moving ship, the accidents exact time and location can be uncertain
if it is not immediately noticed by the ships crew. Another example is tracking pollution
transport, for which origin is unknown.

Uncertainties in the ocean flow fields arise from the fact that OGCMs are inherently limited
by a number of factors. Such factors can be grid spacing, unresolved dynamics, parametriza-
tions and computational limitations, although OGCMs are constantly being improved upon
(Fox-Kemper et al., 2019). In-situ measurements can provide high quality ocean data, but
it is realistically impossible to conduct these measurements on a large enough spatial and
temporal scale for it to be applicable in particle trajectory modelling. On the other hand,
satellite provide good spatial (although low resolution) and temporal coverage, but they
only measure the oceans surface layer due to opaqueness, and cloud coverage can disrupt
measurements. Additionally, satellites do not measure velocities directly, so velocities must
be inferred from altimetry (Davis et al., 2019), i.e. sea surface tilt, yielding large scale
geostrophic currents. Instead, observations provide validation and initial conditions for
OGCMs. Even then, observations can include uncertainty due to e.g. human errors during
in-situ measurements, missing or limited data, errors instrument calibration or too low in-
strument accuracy (Parker, 2016). These factors combined lead to uncertainties in oceanic
conditions outputted by OGCMs.
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A typical method for quantifying uncertainty in ocean flow field and errors in produced
forecasts due to their high sensitivity to initial conditions is to run multiple numerical
simulations for the same scenario. This is a so called Ensemble Prediction System (EPS),
where a group of ocean circulation models are used to account for ocean state uncertainty.
Each model in the EPS is referred to as an ensemble member. Ensemble members can
differ from each other by e.g. having perturbed initial conditions, different atmospheric
forcing, methods for resolving ocean dynamics or including different parameterizations. Data
from each ensemble member is non-identical, which affects the resulting forecasts for each
model (Peacock and Haller, 2013). Relying on results from any single ensemble member is
imprecise, as that member might be statistically unlikely (Idžanović et al., 2023). Therefore,
predictions are inherently probabilistic.

Even if the chaotic velocity field yields uncertainties in long particle trajectories, it is still
common to compute these when analyzing the Lagrangian transport problem. Particularly
if we are interested in forecasting where material will end up or where it came from, as well
as yielding information about possible propagation paths. However, Lagrangian methods
are not restricted to long particle integrations. In recent years a new Lagrangian method
has emerged. This method focuses on computing so-called Lagrangian Coherent Structures
(LCS). Instead of focusing on material transport over long times, LCSs yield a description
of the velocity field and its properties itself.

LCS thus provide a diagnostic tool for analyzing and understanding fluid transport in com-
plex dynamical systems. Proposed by Haller and Yuan (2000), the method aims to identify
special time-evolving manifolds in unsteady and chaotic flow fields, such as eddies or jets,
which shape trajectory patterns around them. Manifolds are geometric shapes in space and
take the form of e.g. a curve in one-dimensions (1D) and surfaces in two-dimensions (2D).
This study focuses on hyperbolic LCSs, where the special manifold tend to attract or repel
nearby fluid elements, thus shaping their trajectories. A central property of hyperbolic LCSs
with regards to real life application is that material will converge towards or diverge away
from the LCSs, but will never propagate through them. As such, hyperbolic LCSs effec-
tively act as transport barriers. (Haller and Yuan, 2000). See figure 2 for a visualization of
attracting or repelling hyperbolic LCSs. Henceforth, "LCSs" refer to hyperbolic LCSs.
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Figure 2: Schematic of attracting (red) and repelling (blue) hyperbolic LCSs. At t = 0 a circular
blob is placed on each type of flow field. The flow fields are assumed to be 2D and divergentless.
Over the time interval [0, 1], the fluid parcel will converge towards the attracting 1D manifold, and
diverge away from the repelling 1D manifold. As the fluid elements either converge towards or
diverge away from the LCSs, fluid parcel are unable to cross them.

Comprehensive studies on methods to detect LCSs have been conducted, e.g. (Joseph
and Legras, 2002; Shadden et al., 2005; Haller, 2011; Karrasch and Haller, 2013), and on
the methods sensitivity to factors such as model grid resolution and interpolation schemes
(Ghosh et al., 2021). Methods for detecting LCSs typically revolve around integrating a
grid of particles over a short time interval and quantifying the separation rate between
neighbouring particles. This grid covers the region of interest uniformly, and LCSs are
therefore independent of initial particle position (Peacock and Haller, 2013).

Because of the short integrations required, LCSs can be computed using only a small amount
of velocity field data. E.g. if only a few satellite snapshots of the velocity field are available,
it is possible to compute LCSs to obtain a description of the velocity field for these times. On
the other hand, a longer flow field history is necessary to compute long particle trajectories.

However, the LCS description of a velocity field obtained from a few satellite snapshots is
only valid for that particular time. LCSs are time-dependent and can only be considered
valid for the time interval they are computed over. There is no reason for an LCS computed
at one time to exists at a different time (Farazmand and Haller, 2012). As such, LCSs
only contain information about potential material accumulation regions in the flow field,
as well as transport barriers which shape fluid transport, at a specific time. Information
about previous or future states of the velocity field is not directly contained in an LCS.
Sometimes, we are only interested in the immediate most probable position of a tracer
element, thus its previous or future positions are irrelevant. The tracer elements immediate
most probable position can be obtained through LCSs. But if the trajectory is of interest,
a long Lagrangian particle integration have to be conducted. Studies of LCSs are studies of
flow processes which can affect long trajectories.

In terms of practical applications, LCSs have primarily been used to understand fluid trans-
port. Previous practical studies include Shadden and Taylor (2008) where LCSs are used to
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understand blood flow, Dawoodian et al. (2021) where the authors analyze paddling motion
of jellyfish, Lekien et al. (2005) that investigates the recirculation of harmful contamination
in the ocean released from coastal factories in Florida, and Dong et al. (2021) where the
authors investigate a transport barrier defined by LCSs and its effect on nutrient transport
near the Lofoten-Vesterålen islands off northern Norway. The studies conducted by Lekien
et al. (2005) and Dong et al. (2021) both use LCSs to investigate ocean processes that impact
the local ecosystem.

Although LCSs themselves are well studied and have been successful in describing flow
characteristics, one important aspect of the topic is yet to be touched upon, namely the
uncertainty in estimates of LCS. Knowing that the velocity field is uncertain and governed
by non-linear dynamics, and that LCSs are inherently dependent on the underlying velocity
field, it stands to reason that errors and uncertainties should emerge in LCSs as well. As
such, EPSs should be used to quantify LCS uncertainty.

There exist permanent geomorphological features which affect ocean flow, such as boundaries
in form of coastlines and bathymetry. Coastlines act as barriers for the currents, and flow
has to go along coastlines instead of through them. Large-scale bathymetry steers bottom
ocean currents. At higher latitudes, surface and deep waters tend to have similar densities,
so the water column is approximately barotropic. As such, large-scale surface currents at
high latitudes tend to flow in approximately the same direction as deep water currents,
thus surface currents are also steered by large-scale bathymetry (Gille et al., 2004). Such
permanent features give rise to more certain and permanent ocean flows which could be
reflected in LCSs.

Although velocity fields in an EPS are specifically tailored to vary between ensemble mem-
bers, the aforementioned geomorphological features impact all model simulations equally.
Some similarities in the flow field should therefore arise between ensemble members. Thus,
it stands to reason that some LCS features should exists over multiple ensemble members,
as well as over time. I use two concepts which will be discussed in this study: robustness
and persistence. Robust LCSs are structures which exists in multiple ensemble members at
a certain time, thus giving an indication of the certainty of LCSs at this time. On the other
hand, persistent LCSs are structures which exists over a longer time period. Subsequently,
identifying if there are any robust or persistent LCSs in turbulent ocean flow, as well as iden-
tifying the dynamical causes for these occurrences is key to understanding whether LCSs
can be utilized in forecasting.

In addition the geomorphological effects, there are some ocean flow features that are non-
chaotic, i.e. very regular. Tides are very deterministic, i.e. certain, flow processes that play
an important role on the ocean circulation. Tides are caused by the combined gravitational
effect of the Moon and Sun on ocean water, for which positions in respect to Earth are
known. Its periodicity is therefore highly deterministic and resulting flow features should be
highly robust across ensemble members. If the tidal effect is truly similar across ensemble
members, it should in turn result in robust LCSs, whereas the periodic nature should cause
a periodic persistence in LCSs.

To my knowledge, only a recent study conducted by Badza et al. (2023) attempts to inves-
tigate the effect of this inherent uncertainty of the flow field on LCS computations outside
of a very simple analytical velocity field. In addition to flow field uncertainty at a given
time, new short-lived flow features constantly develop and dissipate in real life ocean flow
(Chen and Han, 2019). Given the time-dependency of an LCS, this means that LCSs might
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appear and disappear just as quickly. This brings up two important questions: given the
velocity field uncertainty, how confident can we be in computed LCSs at a particular time?
And given their time-dependency, how persistent are LCSs in forming transport barriers in
ephemeral flows?

In this study, I will investigate LCS sensitivity to variations in velocity fields, and determine
their robustness at any given time using an EPS. First, an ensemble of controlled analytical
double-gyre systems with perturbed parameters will be used for testing implementations
and studying LCSs in a simple system. Secondly, the Barents-2.5 EPS model developed
by the Norwegian Meteorological Institute will be employed to study LCSs in turbulent
ocean flow fields. The model has a 2.5 km × 2.5 km horizontal resolution and a hourly
temporal resolution. An LCS must be found in multiple ensemble members to be considered
robust, whereas persistence over time will be investigated for individual Barents-2.5 ensemble
members.

A convergence or divergence of the flow will cause vertical velocities and mixing in the
model, thus enabling further vertical transport. This complicates calculations substantially.
For simplicity, massless and infinitesimal particles forced to be at the ocean surface will be
considered, ignoring the possibility of vertical motion. The LCSs will thus be computed at
the ocean surface level. Generally, material with higher buoyancy (or lower density) than
ocean water, such as plastic, will stay at the ocean surface, but heavier material can move
vertically.

The Lofoten-Vesterålen (LoVe) region has been selected for this study, depicted in Figure 3.
This region exhibits a higher nutrient concentration than other regions along the Norwegian
coast, resulting in a vast marine biodiversity. As such, this region is a central spot of interest
for the Norwegian fishing industry (Sundby et al., 2013). Local LCSs will theoretically
influence nutrient transport, given that they exist long enough for them to have an effect.
There exists a steep continental slope in the LoVe region, which has large implications of
surface currents (Sundby, 1984). Furthermore, the islands act as boundaries for the flow.
Both of these geomorphological features are present in the Barents-2.5 EPS, which could
yield robustness and persistence. Finding potential robust and persistent LCSs can broaden
the understanding of why nutrients tend to gather in this particular region.

Dong et al. (2021) identifies a persistent LCS acting as a transport barrier over the steep
continental slope in the LoVe region. This LCS emerged every April between the years 2010-
2019 and was present for 49 days on average. The authors used a geostrophic surface current
product with a 1/4◦×1/4◦ horizontal resolution (roughly translating to 25 km×25 km), and
a six hour temporal resolution. This was produced from satellite altimetry data. Therefore,
the interpolated geostrophic currents do no capture small-scale structures or short lived
ocean features. Even so, the longevity of the LCS Dong et al. (2021) identified is interesting.

Following Dong et al. (2021), I will focus on the month of April and attempt to identify
a similar persistent transport barrier as the authors did for the year 2022. Other possible
persistent features will also be considered. Furthermore, I will investigate whether the
detected LCSs are robust, given that I use a much more turbulent velocity field with a
finer spatial and temporal resolution than Dong et al. (2021), therefore being able to model
smaller and less persistent flow features. Additionally, LCSs will be computed for the month
of October in the same year, when stratification is stronger and surface currents follow
bottom topography to a lesser degree, to study whether there are any seasonal differences.
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Figure 3: A map over the Lofoten-Vesterålen archipelago with main currents. Both currents come
from the south and flow northwards. The Norwegian Atlantic Current is indicated by the red
arrow, and flows along the continental slope. The Norwegian Coastal Currents, indicated by black
arrows, splits into two south of Vestfjord, with on part flowing into Vestfjord, whereas the second
part flows east and then north. Blue two sided arrow indicate the location of Moskstraumen, a
strong tide-dependent current flowing through the strait between Lofotodden and Mosken. Figure
1 from Børve et al. (2021).
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2 Theory of Lagrangian Coherent Structures and En-
semble Prediction Systems

2.1 Hyperbolic Lagrangian Coherent Structures

Figure 4: Satellite image of phytoplankton bloom in the Gulf of Finland, July 18, 2018. Image
from Stevens and Dauphin (2018).

A satellite image of phytoplankton bloom in the Gulf of Finland is shown in Figure 4. Notice
that the phytoplankton pattern takes on a vortex-like shape, with the root cause most likely
being an underlying eddy, therefore tracing the edges of this eddy. However, the root cause
for such tracer patterns can often be hard to determine. In recent year, the concept of LCS
has emerged as a new and effective way to analyze the Lagrangian transport problem. The
theory aims to uncover special time-evolving manifolds in such complex dynamical systems,
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around which coherent trajectories are formed over a finite time interval (Haller and Yuan,
2000). In other words, the general idea behind LCS theory is to identify manifolds which
shape the flow around them, and the impact these structures have on transport. Assuming
that we have information about the velocity field at the time the satellite image in figure 4
is taken, LCSs can uncover the root cause for this organized tracer pattern.

2.1.1 Description and deformation of the flow field

The velocity field responsible for shaping tracer patters, such as the phytoplankton seen
in Figure 4, can in some situations be approximated to a planar flow field. This is due
to vertical velocities essentially being negligible compared to horizontal velocities at larger
scales, e.g. for geostrophic flows. Following Haller (2011), this 2D dynamical system can
then be defined as

v (x, t) , x ∈ U, t ∈ [t0, t1] , (1)

where v (x, t) is a smooth, time dependent velocity field defined over a bounded, open
domain U ∈ R2 over a time interval [t0, t1]. A velocity field is considered smooth if it is
continuous and differentiable everywhere. Given a particles initial position x0 = (x0, y0), its
trajectory through the dynamical system at time t is denoted by

x (t, t0,x0) . (2)

Using the above equation, a flow map is defined as

F t
t0
(x0) = x (t, t0,x0) . (3)

F t
t0
(x0) maps out the flow of a fluid element initially positioned at x0 = (x0, y0) at t0 into

its position at a later time t. In other words, F t
t0
(x0) describes a particles motion between

two points in space over a set time interval.

As multiple particles are transported by v (x, t), the distance between neighbouring particles
is likely to contract or expand over the time interval. At each point in space, this contraction
and expansion of separation between particles can be described by the gradient of the flow
map, i.e. the Jacobian of F t

t0
(x0):

∇F t
t0
(x0) =

[
∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

]
, (4)

where x and y constitute a fluid elements position at t. Haller (2015) states that, given two
neighbouring particles initially separated by an infinitesimal distance δ (t0), the evolution of
δ (t) over the time interval can be written in terms of Eq. 4:

δ (t) = ∇F t
t0
(x0) δ (t0) . (5)

Furthermore, the square magnitude of the above equation at t1 equals to

|δ (t1) |2 = ⟨∇F t
t0
(x0) δ (t0) ,∇F t

t0
(x0) δ (t0)⟩ = ⟨δ (t0) ,

[
∇F t

t0
(x0)

]∗∇F t
t0
(x0) δ (t0)⟩, (6)

where ∗ denotes a matrix transposition and ⟨ . ⟩ denotes an inner product in an Euclidean
space in R2, which is given by the dot product, so that

⟨α,β⟩ = ⟨(α1, α2) , (β1, β2)⟩ = α1β1 + α2β2, (7)
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where α = (α1, α2) and β = (β1, β2) are two vectors in R2. This allows us to employ the
Cauchy-Green strain tensor, as defined by Truesdell and Noll (2004)

Ct
t0
(x0) =

[
∇F t

t0
(x0)

]∗∇F t
t0
(x0) , (8)

which describes the speed and direction of deformation. Thus, Eq. 6 can be rewritten as

|δ (t1) |2 = ⟨δ (t0) ,Ct
t0
(x0) δ (t0)⟩. (9)

Ct
t0
(x0) is positive and symmetric. Therefore, two real positive eigenvalues and orthogonal

eigenvectors are contained in the tensor, which are related by

Ct
t0
(x0) ξi (x0) = λi (x0) ξi (x0) , |ξi (x0) | = 1, i = 1, 2, 0 < λ1 (x0) ≤ λ2 (x0) , (10)

where λi and ξi are eigenvalues and eigenvectors of Ct
t0
(x0) (Farazmand and Haller, 2012).

These notations will be used to define LCSs in the next sections.

2.1.2 Definition of Hyperbolic Lagrangian Coherent Structures

There exist three main types of LCSs: hyperbolic, parabolic and elliptic. Hyperbolic LCSs
describe the overall attraction and repulsion in the flow field, whereas parabolic and el-
liptic LCSs describe trajectories in jets and vortex boundaries, respectively (Haller, 2015).
Videos visualizing elliptic and parabolic LCSs can be found in Appendix D. As previous
studies regarding practical applications of LCSs primarily focus on hyperbolic LCSs, and
the detection method described in 2.1.3 is primarily suited for LCSs, I will focus on these
as well.

Hyperbolic LCSs take the shape of N − 1-dimensional manifolds, where N is the dimension
of the considered flow. Manifolds are therefore material lines in 2D flows and material
surfaces in three-dimensional (3D) flows (Peacock and Haller, 2013). Focusing on 2D flows,
hyperbolic LCSs are described by material lines. These are smooth, time-evolving curves,
denoted as M (t0), which act as locally the most attracting or repelling one-dimensional
(1D) manifolds at time t0. An example of the effect attracting and repelling LCSs have on
a fluid parcel can be seen in Figure 2. M(t0) evolves over the time interval t = [t0, t1] as it
is advected by the flow map F t

t0
, so that M(t0) → M(t1) = F t

t0
(M(t0)) (Farazmand and

Haller, 2012), defined in Eq. 3.

One can deduce whether M(t0) acts as an attracting or repelling material line over t, as well
as the strength of the attraction or repulsion by selecting a normal vector n0 of M(t0) with
length 1. Similarly to M(t0), n0 will also evolve with F t

t0
. Specifically, we are interested in

how the length of the normal component of n0, hereby denoted by ρtt0 (x0,n0), evolves over
the time interval. ρtt0 (x0,n0) refers to a normal repulsion or attraction rate of M(t) along
its trajectory. The normal component of n0 selected at any point of M(t0) will always have
the length of 1. If ρtt0 (x0,n0) < 1, the length of the normal component has decreased, thus
M(t) acts as an attracting material line over t. On the other hand, if ρtt0 (x0,n0) > 1, the
length of the normal component has increased, thus M(t) acts as a repelling material line
(Farazmand and Haller, 2012). The evolution of M(t0) and n0 is visualized in Figure 5.
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Figure 5: Visualization of the evolution of M(t0) and n0 as the system is advected by the flow.
A normal vector n0 has been selected at a point x0 on M(t0) at time t0. ∇F t

t0 (x0)n0 shows how
n0 has evolved over the time interval, whereas ρtt0 (x0,n0) is the component of ∇F t

t0 (x0)n0 which
is perpendicular to the evolved material line M(t). In this case, ρtt0 (x0,n0) > 1, therefore M(t)
is acting as a repelling material line over the time interval. Figure 1 from Farazmand and Haller
(2012).

Using the normal repulsion rate ρtt0 (x0,n0), Haller (2011) defines central definitions for LCS.
The relevant definitions are cited from their summary in Farazmand and Haller (2012):

"

1. A normally repelling material line over [t0, t1] is a compact material line segment
M(t) on which normal repulsion rate satisfies

ρt1t0(x0,n0) > 1, ρt1t0(x0,n0) > |∇F t1
t0 (x0)e0|

for any initial point x0 ∈ M(t0) and with unit tangent vector e0 to M(t0) at
x0. The second inequality here requires any possible tangential growth within
M(t) to be less than the growth normal to M(t) over the time interval [t0, t1].

2. A repelling LCS over [t0, t1] is a normally repelling material line M(t) whose
normal repulsion rate admits pointwise non-degenerate maximum along M(t0)
among all locally C−1-close material surfaces.

3. An attracting LCS over [t0, t1] is defined as a repelling LCS over the backward
time interval [t1, t0].

4. Finally, a LCS over [t0, t1] is a repelling or attracting LCS over the same time
interval.

"

Note that the computed LCS is the locally most repelling or attracting LCS over the finite
time interval T . However, LCSs are associated only with the finite time interval it was
computed over. LCS computed for one time interval does not necessarily imply the same
LCS over another time interval. This implies that LCSs calculated at one time interval with
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known dynamical velocity fields are subject to change over time and can therefore not be
used for reliable forecasting at a future or past time when the dynamical velocity fields are
unknown. However, as the ocean velocity fields contain multiple features which are persistent
over time, for example gyres and surface currents which follow bottom topography, there
might exist LCSs which are persistent over time as well.

In 3D flows, computation of 2D material surfaces is required for LCS detection (Peacock and
Haller, 2013). Advances have been made in detection of these, as well as their applications,
see e.g. Bettencourt et al. (2012) and Blazevski and Haller (2014). However, 2D LCSs are
conceptually simpler and I will not consider the 3D case here.

2.1.3 Approximating Lagrangian Coherent Structures with Finite-Time Lyapunov-
Exponent

Various methods have been proposed for LCS detection in 2D flows, among which the Finite-
Time Lyapunov-Exponent (FTLE) is the most widely used method (van Sebille et al., 2018).
This is the method of choice for this study. Other methods include, but are not limited to,
Finite-Size Lyapunov-Exponent (FSLE) (Aurell et al., 1997), where time required for the
separation to reach a specified distance is considered, and variational LCS detection method
(Haller, 2011). However, when it comes to the FSLE, Karrasch and Haller (2013) argue
that although this method can give an indication of nearby LCSs, FSLE yield false positives
under some conditions, as well as displaying multiple limitations and being less reliable.
Therefore, FTLE is more suited for LCS detection. LCSs detected with FSLE and FTLE
generally do not coincide (Karrasch and Haller, 2013).

The Lyapunov exponent quantifies the maximum average elongation rate between particles
in a system, i.e. the maximum average exponential convergence or divergence of initially
closely-located trajectories. This also estimates the instability in a chaotic system (Rosen-
stein et al., 1993; Dingwell, 2006). For a simple case, consider two points located close to
each other in a chaotic system, initially separated by a small distance δ0. Letting the two
points be advected by the background flow will change the separation between them, so
after a time t the separation is given by δt. In a chaotic system, separation between the two
points is assumed to grow exponentially in time, thus δt can be approximated as

δt ≈ δ0e
λt, (11)

where λ is the Lyapunov exponent, i.e. the separation rate. The reason we refer to the
Lyapunov exponent as being the maximum average elongation rate between particles, is
that for an n-dimensional system, there are n directions in which the separation evolves,
thus also n average Lyapunov exponents. The largest Lyapunov exponent will have the most
influence on the shape of the evolved n-dimensional system, therefore the largest Lyapunov
exponent is of interest (Rosenstein et al., 1993; Strogatz, 2019).

FTLE is the maximum average expansion/contraction rate for a pair of particles over a
finite time interval. Pierrehumbert and Yang (1993) considered FTLE as a powerful tool
for determining flow properties in a chaotic system. The authors considered a 2D circular
disk of tracers, with a small radius r0 which would evolve in a chaotic flow field over the
finite-time interval t = [t0, t1]. At time t1, the disk has been compressed in one direction and
stretched in another, thus transformed into an elliptic form with major axis a (t) and minor
axis b (t). See Figure 6 for a visualization of the system. As the disk exists in a chaotic
system, Pierrehumbert and Yang (1993) made the assumption that the axes will compress
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or expand exponentially with time. The length of the major axis after time interval t is then
given by

a(t) = reλt, (12)

where λ is the elongation rate, i.e. the desired FTLE (Pierrehumbert and Yang, 1993).
Solving for λ, the elongation rate is given by

λ =
ln (a(t)/r0)

t
. (13)

Assuming that the fluid is incompressible, the area of the circular disk will not change
as it transforms into an ellipse. The area of the circular disk at t0 is given by A(t0) =
πr20, whereas the area of the ellipse after time interval t is given by A(t) = πa(t)b(t). By
the incompressibility assumption, we have that A(t0) = A(tn) for any given time tn, thus
A(t0) = A(t) = a(t)b(t) = r20. If Eq. 13 gives the elongation rate, the second exponent,
which gives the rate of contraction of the minor axis, will not yield any additional information
(Pierrehumbert and Yang, 1993).

Figure 6: The evolution of an initially circular disk of tracers over the time interval t = [t0, t1]
located in a chaotic planar flow field. At t0, the disk is circular with radius r0. At t1 the disk has
become elongated in one direction and compressed in another, transforming into an elliptic disc.
a (t) and b (t) denotes the major and minor axis respectively.

Using Ct
t0

from Eq. 8, FTLE was connected to LCS by Haller (2001), where the author
proposed that the ridges of maxima in the FTLE field are LCSs. Further studies on the
topic by Shadden et al. (2005) defined LCSs as the ridges of the FTLE field. Ridges refer
to special gradient lines of the FTLE field which cross the minimum curvature.

To define LCSs as the ridges of the FTLE field, Shadden et al. (2005) consider again two
points, x = (x, y) and y = (x, y) + δ0, separated by a small distance δ0 and located in a
chaotic flow field. Both of these points are advected by the flow field, where the flow map
(Eq. 3) can be used to describe the separation between the two points after a time interval
t as

δt = F t
t0
(y)− F t

t0
(x) =

dF t
t0
(x)

dx
δ0. (14)
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This also yields information about the stretching experienced by the points. By employing
the standard Euclidean norm on the above equation, the size of the separation distance after
time interval t can be written as

∥δt∥ =

√
⟨δ0,

dF t
t0(x)

∗

dx

dF t
t0(x)

dx
δ0⟩, (15)

where ∗ denotes matrix transposition and ⟨ . ⟩ is an inner product. Now notice that

dF t
t0
(x)∗

dx

dF t
t0
(x)

dx
=

[
∇F t

t0
(x)

]∗∇F t
t0
(x) = Ct

t0
(x), (16)

i.e. Ct
t0

from Eq. 8. Synonym to the previous argument that the largest Lyapunov exponent
in an n-dimensional system will have the strongest influence on the stretching in the system,
δ0 is chosen such that it is in alignment with the eigenvector of Ct

t0
corresponding to the

largest eigenvalues of Ct
t0

to find the maximum stretching, so

max
δ0

∥δt∥ =
√
λmax

(
Ct
t0

)
∥δ0∥, (17)

where λmax
(
Ct
t0

)
is the largest eigenvalue of the Ct

t0
, and δt is in alignment with the eigen-

vector corresponding to this eigenvalue. Notice that Eq. 17 is similar to the notation for
the growth of separation between two particles in a chaotic system from Eq. 11. With this
in mind, Eq. 17 can be rewritten as

max
δ0

∥δt∥ = eσ
t
t0
(x)|t|∥δ0∥, (18)

where
σtt0 (x) =

1

|t|
ln
√
λmax

(
Ct
t0

)
(19)

has been substituted in so that Eq. 17 is on the same form as Eq. 11. Similarly to λ from
Eq. 11, which was the Lyapunov exponent, σtt0 (x) is now the largest FTLE in the chaotic
system over the time-interval t (Shadden et al., 2005). In summary, FTLE is a measure of
the maximum average separation rate between two particles over a finite time. Therefore,
the FTLE is a measure of repulsion and can thus be used to identify repelling LCSs.

The absolute value of the time-interval in Eq. 19 allows for integrations both forwards and
backwards in time. Thus, by definitions 2 and 3, the FTLE method allows us to detect both
attracting and repelling LCSs. However, FTLE is just a first approximation of LCSs. 2D
LCSs take the form of infinitesimally thin 1D manifolds, whereas FTLE approximate these
by regions around said 1D manifolds. Furthermore, Haller (2011) showed that this method
can yield both false positives and false negatives, and Beron-Vera et al. (2010) argues that
although FTLE has proved to be useful for hyperbolic LCS detection, it is uncertain whether
this method can be used for parabolic and elliptic LCS detection.

Haller and Sapsis (2011) points out that attracting LCSs might also be computed from
forward in time FTLE. The authors show that as ridges, i.e. local maximums, in forward
in time FTLE yields an approximation to repelling LCSs, troughs, i.e. local minimums,
in forward in time FTLE will yield attracting LCSs. Therefore, only a single integration
is necessary to detect both repelling and attracting LCSs. However, this approach is less
studied and as such I will use backward in time integrations for attracting LCS detection.
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LCS theory is derived from the Lagrangian perspective, with the purpose of analyzing La-
grangian fluid transport. However, the FTLE method itself computes values for the separa-
tion rate between particles at each specific model grid cell. Therefore, although the theory
originated from a Lagrangian perspective, there is a remapping of the Lagrangian informa-
tion back to a fixed Eulerian grid. Thus, one could say that the resulting LCSs is a hybrid
flow field description.

2.2 Forecasting with an Ensemble Prediction System

When forecasting, current state of the ocean and atmosphere are used as initial conditions,
and future states are then simulated using numerical weather models. As the equations of
motion governing the ocean (and atmosphere) are non-linear, small errors in initial condi-
tions in this chaotic system can result in large errors in forecast. As we can never truly know
the exact initial conditions of the ocean (and atmosphere), due to in-situ measurements not
being able to catch every single detail in the oceanic state, as well as errors in observational
data, forecasts accuracy and time is limited (Leutbecher, 2007).

The idea behind an ensemble prediction system (EPS) is to quantify the uncertainty caused
by non-linearity in forecasts by running multiple numerical ocean and weather model simu-
lations with slightly perturbed initial conditions, different atmospheric forcing, methods for
resolving ocean dynamics or including different parameterizations. This results in multiple
forecasts, as opposed to running a single simulation. Such a set of forecasts is called an
ensemble and one forecast withing the ensemble set is called an ensemble member. Each
ensemble member is initiated at t0 with initial conditions based on a probabilistic spread,
e.g. a Gaussian distribution. This initial spread should be consistent with uncertainty in
the model data (Leutbecher, 2007). Idealistically, each ensemble member is equally likely.
Assuming that the model is perfect, the ensemble will sample the uncertainty in the forecast.

Figure 7: Schematics of the evolution of a deterministic variable ψ over the time interval t = (t0, t1)
as predicted by en ensemble forecast with 5 ensemble members. a) large spread in the forecast
between ensemble members. b) small spread between ensemble members. c) all ensemble members
except for 1 predict similar outcomes.

Three schematics of different ensemble forecasts for a deterministic variable ψ are shown in
Figure 7. ψ can e.g. be temperature, precipitation or wind-speed. The initial condition of
ψ at t0 is slightly perturbed for the ensemble members and the three panels in the figure
depict three different ensemble forecasts for ψ as time t progresses. When forecasting, one
would run a statistical analysis of results outputted by the EPS. In Figure 7a, all ensemble
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members evolve differently over time, resulting in a large uncertainty in ψ at t1. In Figure
7b, each ensemble member evolves similarly, which results in a highly certain forecast of ψ.
Finally, in Figure 7c, all ensemble members evolve similarly except for one. In situations
where one ensemble member differ greatly from all the other, the outcome of that specific
ensemble member is considered unlikely. In other words, weather and ocean predictions are
inherently probabilistic.
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3 Data and Methods

3.1 The Analytical Double-Gyre Model

3.1.1 Double-Gyre Setup

The analytical double-gyre system is commonly used in LCS literature (Shadden et al., 2005).
The system will be used to validate my implementations of LCSs, as well as to illustrate
the concept of EPS influence on LCSs in a fully controlled analytical system. The resulting
LCSs of the system are well studied and known, making it a common testing ground for
new theories and implementations. The analytical model for the time-dependent double-
gyre system is described in Shadden et al. (2005). The closed system contains two gyres in
a domain x ∈ [0, 2]× y ∈ [0, 1], one gyre rotating clockwise and the other counterclockwise.
These two gyres then vary periodically, expanding and contracting in the x-direction. The
flow in the system can be described as a stream-function

ψ (x, y, t) = A sin (πf (x, t)) sin (πy) , (20)

where
f (x, t) = a (t)x2 + b (t)x, (21)

a (t) = ϵ sin (ωt) , (22)

b (t) = 1− 2ϵ sin (ωt) . (23)

Using the relation that the velocities, u, v are given by u = −∂ψ
∂y

and v = ∂ψ
∂x

, we can write
the velocity field as

u = −πA sin (πf (x)) cos (πy) , (24)

v = πA cos (πf (x)) sin (πy)
df

dx
. (25)

Here, ϵ describes the expansion and contraction of the gyres in the x-direction, A determines
the rotational velocity, and ω/2π is the frequency of the oscillations (Shadden et al., 2005).
Henceforth, the frequency of oscillations will just be noted as ω, dropping the 1/2π term
in the notation, but keeping it in calculations. Note however, that if one would set ϵ = 0,
Eqs. 22 and 23 will lose their time-dependent term, i.e. the flow in the system becomes
time-independent. An example of the velocity field in the double-gyre system can be seen
in Figure 8.

This double-gyre setup is a simplification of double-gyre patterns that occur frequently in
geophysical flows, and should not be considered as an approximation to real fluid flows
(Coulliette and Wiggins, 2000). The most impactful simplification of the double-gyre setup
is that in real fluid flows, flow structures tend to emerge and dissipate over different time-
scales, whereas the two gyres in the setup will always be there and no new structures will
emerge or disappear.

17



Figure 8: Velocity field in a double-gyre system with parameters ϵ = 0.25, ω = 0.682 and A = 0.1
at times: a) t = 0, b) t = 3, c) t = 6 and d) t = 9. Direction of flow indicated by black arrows.
Strength of the flow indicated by with green.

3.1.2 Ensemble in a Controlled Analytical System

The parameters A, ω and ϵ in the analytical double-gyre system can be perturbed to create
an simple analytical ensemble. I will produce a double-gyre ensemble, which will represent
an idealized ensemble system. This double-gyre ensemble can then be used to study how
LCSs vary depending on small perturbations in the flow, comparing LCS and velocity field
sensitivity to parameter perturbations, before applying the LCS detection method to more
turbulent velocity fields from a realistic ocean EPS.

The analytical double-gyre ensemble will be initialized with a simple random Gaussian
distribution around a specified mean value and standard deviation for the parameters. In this
case, the rotational velocity A = 0.1 will be kept constant, while the frequency of oscillations
ω and the expansion/contraction ϵ will be spread around mean values of ω = 0.682 and
ϵ = 0.25, with standard deviations being 0.15 and 0.1 respectively.

Velocity fields from the computed double-gyre ensemble can be compared to each other to get
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an indication for how much these fields vary due to small perturbations in the parameters.
By using the velocity fields to compute LCSs, we can also get a sense for how sensitive LCSs
are to the variations in the flow. This sensitivity can then be compared to the variability of
velocity fields between ensemble members, allowing us to investigate whether LCSs show a
higher or lower sensitivity to perturbations in the parameters compared to the underlying
velocity field. If there are large variations in the LCSs, this approach will also allow us to
investigate where in the domain these variations take place, while also yielding information
about which parts of the domain stay robust over ensemble members.

3.2 Region of Study

Figure 9: Sea surface temperature [deg C] over the whole Barents-2.5 model domain at time 2022-
05-29 00:00. Dashed blue lines highlight the region of interest for this study, which is the oceanic
part around the Lofoten-Vesterålen islands, and is enlarged on the right.

The region over which I will investigate LCSs is the coastal ocean around LoVe. This is an
archipelago along the coast of northern Norway. In Figure 9, sea surface temperature is used
as a proxy to show the Barents-2.5 model domain and the LoVe region is highlighted by
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dashed blue lines. This region is well studied due to its vast marine biodiversity, as mentioned
in Section 1, including the aforementioned study conducted by Dong et al. (2021).

The LoVe archipelago consist of six major islands: Austvågøy, Vestvågøy, Flakstadøy, Moske-
nesøy, Værøy, Røst. In addition to multiple smaller islands, these islands constitute a com-
plex coastline which extends far away from the Norwegian mainland. A wide fjord named
Vestfjorden is formed in between the LoVe archipelago and the mainland with a wide open-
ing from the south, as seen in Figure 3. This fjord has large implications on the coastal
current in the region, causing complex ocean flow features (Mitchelson-Jacob and Sundby,
2001).

There are two main surface currents in the region, the Norwegian Atlantic Slope Current
(NwASC) and the Norwegian Coastal Current (NCC), both of which are flowing northwards.
These currents are depicted in Figure 3. The NwASC flows along the continental slope,
located some distance away from the coastline. This current is connected to the North
Atlantic Ocean, from which the NwASC transports warm and saline water northwards
(Rossby et al., 2009).

The NCC flows close to the Norwegian coast, and is a low-salinity current due to fresh-water
accumulation from river-runoffs along the coast. These fresh water masses are transported by
the NCC northwards towards the Arctic Ocean (Gascard et al., 2004). South of Vestfjorden,
the NCC branches into two currents. One flows northward into Vestfjorden, whereas the
other part flows westward, curving around the southern tip of LoVe, before flowing northward
along the coastline again. In winter, southerly winds cause water mass accumulation along
the coast. The geostrophic adjustment to the resulting sea surface tilt can lead to increased
current velocities during winter (Mitchelson-Jacob and Sundby, 2001).

Large-scale surface currents, such as the NwASC and NCC are heavily influenced by the
bottom topography, which is complex in this region (Sundby, 1984; Bosse et al., 2018). As
is indicated in Figure 3, both these currents are steered by the bottom topography, which
is steepest directly north-west of LoVe.

This particular region of the NwASC and NCC exhibits the most intense eddy-formation
and heat-exchange region along the Norwegian coast. An unstable front between the two
currents often emerges at the steepest part of the continental slope (Trodahl and Isachsen,
2018). This is caused by instability that emerges from the laterally and vertically sheared
currents and steep continental slope (Koszalka et al., 2013; Isachsen, 2015). Eddies formed
in the NwASC tend to break off from the current and drift westwards, merging with the
Lofoten Basin Eddy (Søiland and Rossby, 2013).

The dynamic and highly deterministic tide generates regular and periodic tidal currents.
Narrow straits formed by the archipelagos islands allow for water-mass exchanges between
Vestfjorden and the shelf region. These water-mass exchanges are forced by tidal forces. The
combination of these tidal forces with strong winds steered by mountains on the archipelago
and mainland, as well as the narrowing of the current caused by the straits, can result in
strong currents through the narrow straits (Moe et al., 2002). Moskstraumen, indicated in
Figure 3 is one of the strongest strait-currents in this region.
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3.3 Regional Ocean Ensemble Prediction System

To study the robustness of LCSs and their potential uncertainty due to inherently uncertain
velocity fields, we look at the regional Barents-2.5 EPS. Barents-2.5 is a coupled numerical
ocean and sea-ice model developed by the Norwegian Meteorological Institute (MET Nor-
way). The model covers the Barents Sea, coast off northern Norway and the oceans around
Svalbard (see Figure 9). Barents-2.5 is MET Norway’s main ocean and sea-ice forecasting
model in this region, used e.g. for tracking marine pollution, sea-ice drift and during search-
and-rescue operations. The model is based on the METROMS framework, and incorporates
a coupling between ROMS (Regional Ocean Modelling System) as the ocean component and
CICE (Los Alamos Sea Ice Model) as the sea-ice component (Fritzner et al., 2018). The
model’s horizontal grid resolution is 2.5 km. The vertical grid consists of 42 vertical layers
which follow bottom topography, a so called s-coordinate system, so that the thickness of
each layer varies based on the bottom topography.

Recently, an EPS has been developed based on Barents-2.5. The system consists of 24
ensemble members, divided into 4 sets of 6 members. The sets are initiated with a 6 hour
delay, at 00 UTC, 06 UTC, 12 UTC and 18 UTC, with a forecast period of 66 hours.
Each ensemble member is initialized by its own state from the previous day in order to
preserve sufficient spread in the ensemble. The EPS forecast is initialized with largely
varying initial conditions in the mesoscale circulation, as to represent model uncertainties.
This ensemble spread is further controlled by the Ensemble Kalman Filter data assimilation
scheme, which reduces the spread of observed variables (Evensen, 1994; Röhrs et al., 2023).
The first member in each set is forced by most recent atmospheric conditions from the
AROME-Arctic model (four ensemble members) (Müller et al., 2017), also developed by
MET Norway. AROME-Arctic has the same domain and horizontal resolution as Barents-
2.5 EPS, making the two models compatible without the need for any interpolation between
the grids (Duarte et al., 2022). The remaining Barents-2.5 ensemble members are forced
by 20 ensemble members from the integrated forecast system developed by the European
Centre for Medium Range Weather Forecasts (ECWF-ENS) (Röhrs et al., 2023).

Model data files are available on thredds.met.no. Model data from all ensemble members
from April and October 2022 has been used in this study. For some days in these two months
the EPS does not contain data for all members. A conscious choice has therefore been made
to exclude days where some ensemble members are missing when computing LCSs. I will
refer to the ensemble members as members 0-23.

3.4 Particle trajectory model

An open-source Python-based framework called OpenDrift (Dagestad et al., 2018), a tool
for Lagrangian particle modelling, will be used to model particle advection. OpenDrift is
developed by MET Norway, and integrates particle trajectories as the particles are advected
by the underlying ocean flow-field:

x⃗(t) = x⃗0 +

∫ t

0

v⃗(x, y, z, t′)dt′. (26)

OpenDrift allows for the selection of either Euler-Cromer or fourth order Runge-Kutta
(RK4) propagation scheme when solving the ordinary differential equations for the particle
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positions (Dagestad et al., 2018). RK4 considers the change of flow during a time step, and
is therefore more accurate than Euler-Cromer. As such, RK4 will be used for simulating
particle propagation with OpenDrift.

Suppose a particle is positioned in the ocean at coordinate x⃗i, and we are interested in how
the particle propagates over time based on the underlying velocity field. RK4 can be used
to numerically calculate the particles position at time ti+1. To do this, a set of equations is
used

x⃗i+1 = x⃗i +
1

6
(k1 + 2k2 + 3k3 + k4)

k1 = hf (ti, x⃗i)

k2 = hf

(
ti +

h

2
, x⃗i +

k1
2

)
k3 = hf

(
ti + h/2, x⃗i +

k2

2

)
k4 = hf + (ti + h, x⃗i + k3)

(27)

Where h is the step size and f is an arbitrary function which calculates the set of derivatives
of x⃗, so that

dx⃗

dt
= f (t, x⃗) (28)

The idea behind the RK4 algorithm is that intermediate steps are being considered. Cal-
culating k1 yields the slope at ti, and if one would ignore the remaining k values, the result
would be the same as Euler-Cromer. However, the remaining k values yield the slopes at
the intermediate steps. The computation of k2 yields the slope at the midpoint, x⃗i+1/2, and
then by computing k3, the slope is at x⃗i+1/2 is improved further. Finally, the slope at x⃗i
can be computed using k4. Due to these intermediate steps, RK4 will be more accurate,
although slower, than Euler-Cromer (Hjorth-Jensen, 2015).

3.5 Method for detection of finite-time Lyapunov exponents in a
flow field

I develop an LCS detection software utilizing the FTLE approach. A simple step-wise
schematic of my software is shown in Figure 10. First, the software places particles in
a uniform, equidistant grid in a velocity field. The grid resolution matter. Small-scale
structures will not be detected with a low resolution. A high resolution will factor in
chaos in small-scale structures which might affect the outcome, at the cost of increasing
the computational time significantly. Furthermore, as the Barents-2.5 EPS model has a
resolution of 2.5 km×2.5 km, computing FTLE fields at a very high resolution, e.g. 100 m×
100 m, is not expedient. However, having a somewhat higher resolution than Barents-2.5
EPS is still possible by interpolating between the Barents-2.5 EPS grid cells. OpenDrift
includes a function for linear interpolation between the grid cells (Dagestad et al., 2018).
For this reason, I chose to have a resolution of 1000 m × 1000 m in the computed FTLE
fields.

After placing a grid of particles into the velocity field, the next step is to integrate these
particles backwards in time over a set time-interval as per definition 3 in Section 2.1.2.
Step 1 in Figure 10 is a backward in time integration from t = 1 to t = 0, corresponding to
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Figure 10: Schematic of my LCS detection software. Step 1) a grid of particles is integrated over
a set time interval. Step 2) The Jacobian of the flow map is computed for each grid cell. Step
3) Cauchy-Green Strain tensor is computed. Step 4) Maximum eigenvalue of the Cauchy-Green
strain tensor is used to compute FTLE. The FTLE values for each grid cell can then be visualized.
An example of attracting hyperbolic LCSs is shown here for the double-gyre system.
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attracting hyperbolic LCSs. Only initial and final particle positions are necessary for further
computations, whereas intermediate positions are not needed. The integration time will be
set to 24 hours when computing LCSs in the Barents-2.5 EPS, unless stated otherwise. The
flow map from Eq. 3, which maps the flow of particles from their initial to final position, is
now obtained, and the Jacobian of the flow map (Eq. 4) can be computed in step 2.

The Jacobian of the flow map has to be computed for each grid cell, and the central aim
of this computation is elongation rate, i.e. the change in distance between particles. In
Figure 11, the view is centered on particle xi,j. This particle corresponds to a single grid
cell in the model, and the elongation between neighbouring particles over the time interval
can be investigated. At t = 1, particles are positioned at their initial locations, and the
distance between particles is the same in all directions. Therefore, the distance between
particles x1,i−1,j and x1,i+1,j is given by 2∆x1, that is, twice the distance between particles
in the x-direction. Likewise, the distance between x1,i,j−1 and x1,i,j+1 can be expressed by
2∆y1 = 2∆x1.

At t = 0, particles have been advected backwards in time by the underlying velocity. As
the velocity field is not homogeneous, particles have been advected differently during the
integration time. The distance between particles at t = 0 is no longer equidistant, and the
distance has to be calculated by taking the difference between their positions. Thus, for
each grid cell xi,j = (xi,j, yi,j), the components of Eq. 4 can be expressed numerically as

∂x0
∂x1

=
x0,i+1,j − x0,i−1,j

2∆x1
∂x0
∂y1

=
x0,i,j+1 − x0,i,j−1

2∆y1
∂y0
∂x1

=
y0,i+1,j − y0,i−1,j

2∆x1
∂y0
∂y1

=
y0,i,j+1 − y0,i,j−1

2∆y1

(29)

Next, the software computes Ct
t0

from Eq. 8 for each grid cell using the corresponding ∇F t
t0

for that grid cell. Following Eq. 19, the highest eigenvalue of Ct
t0

is selected using the
numpy.linalg.eigvals() function from the numpy Python package (Harris et al., 2020), which
is used to compute the largest FTLE value over the time interval at each grid point. Solving
for the largest eigenvalue of Ct

t0
yields the strongest deformation rate, and the corresponding

largest eigenvector yields the direction for which deformation is strongest. Finally, we have
a grid of FTLE values, which can be visualized to approximate attracting hyperbolic LCSs.

24



Figure 11: The flow of a particle xi,j = (xi,j , yi,j) and its neighbouring particles positioned in
a velocity field. Particles are initially positioned in an equidistant grid at t = 1, so the distance
between all particles is the same. Particles are advected by the underlying velocity field, and their
positions at t = 0 are shown. At t = 0, the distance between particles is no longer equidistant.
Purple lines show each particles’ movement over the time interval, which is mapped out by the
flow map.

3.6 Validation of Lagrangian Coherent Structure

I will conduct a simple experiment in the double-gyre system to verify whether particle
trajectories are in fact shaped by LCSs computed using my LCS detection software. Here,
I will compute attracting hyperbolic LCSs using short backwards integrations at different
simulation times of the double-gyre system, with the expectation that LCSs at one time are
independent of LCSs at other times. Separately from the LCS computations, I will release a
cluster of particles at the double-gyre simulation start, and conduct a long forwards-in-time
Lagrangian particle integration using the background velocity field. If the theory and my im-
plementation are valid, advected particles should be attracted towards the locally strongest
LCS, getting shaped by and spreading along the attracting LCSs, but never crossing through
them. As mentioned in Sections 2.1.2 and 3.4, future particle states are dependent on their
state history, whereas LCSs are independent of each other given that they are computed
over different time intervals.

A similar experiment will be conducted for LCSs computed in the Barents-2.5 EPS velocity
field. Instead of computing LCSs for different times, I will rather compute one attracting
LCS field for a selected time. Then, particles will be placed in a grid seven days prior to
the LCS field and advected forwards-in-time towards the time the LCS field is computed
at. During this seven day integration time, particles are likely to have drifted long enough
for their trajectories to be impacted by LCSs. A comparison between these two will yield
information about whether particle trajectories are in fact affected by LCS. However, the
Barents-2.5 EPS velocity field is more chaotic and uncontrolled than the analytical double-
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gyre system. New flow structures constantly emerge and disappear in the model, meaning
that particle trajectories can be affected by LCSs which existed prior to the LCSs computed
at the final date. Thus it is expected that particle trajectories and LCSs will be more related
in the double-gyre system than in Barents-2.5 EPS.

3.7 Detecting Robust and Persistent LCSs

To detect which, if any, LCSs are robust or persistent, an average of LCSs over ensemble
members and time will be computed. It is expected that there will be differences in the
LCSs predicted by ensemble members as the velocity fields are perturbed, as well as changes
in LCSs over time in a single ensemble member following their time-dependency. However,
the average might reveal any similarities over ensemble members and time. The average is
defined as

F =
1

N

i=N∑
i=0

Fi, (30)

where F is the average value, Fi is the i-th sample for F and N is the number of samples. To
differentiate between averages, the notation Fm refers to an average over ensemble members,
whereas F t refers to an average over time.

The standard deviation (SD) then gives a measure of the spread in the sample distribution.
A low SD signifies that individual samples are close to the average, and a high SD signifies
that there is a large spread in the samples. SD is defined as

σ =

√∑i=N
i=0 |Fi − F |2

N
, (31)

where σ is the SD, and the other variables are the same as for the average. As with the
average, σFm signifies a SD over ensemble members and σFt signifies a SD over time.

A conceptual example of two individual LCSs and their approximate average is shown in
Figure 12. The two LCSs act as either repelling or attracting LCSs at two different locations.
The resulting average field is a combination of these two LCSs, yielding an average region
of attraction/repulsion. Assuming that both LCSs consist of the same homogeneous FTLE
values, the average will have two times higher FTLE values in the location where the two LCS
intersect than everywhere else. Therefore, the average smooths out the LCSs, transforming
them from simple curves to a 2D field. In essence, resulting Fm and F t will not directly
yield regions of attraction/repulsion, but rather, regions where LCSs are statistically more
likely to form over ensemble members or time.

Generally, the SD gives information about the spread of the field around the average. A
high average and low SD in a part of the domain signifies that it is virtually certain that
LCSs are formed here, whereas a high SD signifies that there is a low certainty. However,
in this case the SD might not contain much information about certainty. Assuming that
the LCSs in Figure 12 are only separated by a small distance, the average will cover a small
region, thus yielding an accurate estimate for where LCSs can be found. Yet the SD will be
large as the LCSs are perturbed and only overlap at a single point in space.

The extent of the average region and SD will be smaller if the LCSs overlap, whereas the
FTLE values contained in the average region will be greater. This yields a high certainty
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about the position of LCSs, hence there is a high robustness or persistence. If the average
covers a larger region and the average FTLE values are smaller, then it can be assumed
that the average has smoothed out the field to a larger degree because predicted LCSs are
perturbed by some distance. The SD will likely be large in that case. In that sense, it can
be assumed that LCSs are predicted inside the average region, but their exact position is
variable. Hence it is highly certain that LCSs exist in this general region, but their exact
position are uncertain across ensemble member or time.

Additionally, the ensemble average, Fm, and time average, F t, should not be considered as
definitive transport barriers. The reason for which is that it is unknown whether the LCSs
which form this average are from the same model realization or exist at the same time. It is
also impossible to deduce whether average consist of a few long LCSs or many short LCSs.
The former is acting as transport barriers over a large region, whereas the latter only act
as transport barriers over a short distance, so material can drift between them. Instead, F t

and Fm should be considered as average accumulation or dispersion regions for attracting
and repelling LCSs respectively, with the potential of containing a transport barrier.

Figure 12: Example of two LCSs (left) and the average region covered by the LCSs (right).

A final note is that the FTLE given in Eq. 19 is a logarithmic value. This can cause
complications in both the averages and SDs, as

i=2∑
i=1

ln (Xi) = ln (X1) + ln (X2) = ln (X1 ·X2) . (32)

The average might therefore not necessarily be the best method for finding robust and
persistent LCSs.
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4 Results

In this section, presentation of results is divided into two parts: 1) LCSs in the double-
gyre system and 2) LCSs in the Barents-2.5 EPS. As outlined in Section 3, the first part
is meant as a testing environment for my implementation of the methods. Here, I study
whether or not particle trajectories are influenced by LCSs in a simple system and how
this system responds to small perturbations in parameters. In the second part, I apply the
methods to an operational forecasting system which is modelling turbulent ocean velocity
fields, representing realistic flow.

4.1 The Analytical Double-Gyre System

4.1.1 Verification of Lagrangian Coherent Structures in the Analytical System

LCSs in the analytical double-gyre at four different times can be seen in Figure 13. Cor-
responding velocity fields are present in Figure 8. Particles have been placed on top of a
locally strong attracting LCS at time t = 0, located to the left of the separation between the
two gyres, which will be referred to as the conflux from now on. For visualization, particles
initially located to the left of this LCS are colored in blue, whereas particles on the right are
colored in green. As the system evolves, the velocity field has advected and reshaped the
cluster of particles. Snapshots of their positions are shown with the corresponding attracting
LCSs for that time. The evolution of LCSs is not perfectly captured in these four images;
therefore, a video of their evolution over time can be found here or go to the GitHub in
Appendix C.
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Figure 13: Approximation of attracting LCS (red) calculated with FTLE method for the analytical
double-gyre at times: a) t = 0, b) t = 3, c) t = 6 and d) t = 9. Double-gyre parameters are with
parameters ϵ = 0.25, ω = 0.682 and A = 0.1. Stronger red regions signify stronger attraction in
the domain. Blue and green dots are advected particles which have been placed in the system at
t = 0 and allowed to drift with the velocity field for the duration of the simulation. The particles
have the same properties, and are colored based on which side of the underlying LCS they are
initially located on.

As seen in Figure 8, the left gyre rotates clockwise, whereas the right gyre rotates counter-
clockwise. As such, particles placed in the top-middle of the domain at t = 0 are expected to
initially drift downwards, then drift either left or right, depending on which gyres’ velocity
field has the strongest influence, then upwards and finally towards the middle again.

Advected particles are seen to drift towards regions of high attraction in the figure, following
these regions as the system evolves. The particle cluster in Figure 13a is seen to stretch
along the locally strongest attracting LCS as the system evolves, similarly to what can be
seen in the schematic in Figure 2, leaving a trail of particles behind. Particle trajectories
are seen to follow the aforementioned expected drift from the previous paragraph, while also
curving with the curvature of the underlying LCSs. Thus particle trajectories are seen to
be shaped by the LCSs.
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The LCS around which particles are initially positioned follows the conflux and both are
seen to move left and right periodically. Particles located on top of this LCS are seen to
follow this sideways shift while also drifting downwards along this LCS. Furthermore, the
particles are seen to be advected towards the boundaries of the system, where they can be
seen to spread along the bottom wall in Figure 13c and along the left and right walls in
Figure 13d.

Notice that the LCSs have shaped particle trajectories in such a way that both green and
blue particles can be found in both gyres at times t = 6 and t = 9. Even though particles
were initially positioned in close proximity to one another, they have drifted in different
directions. Furthermore, the particles initial positions with respect to the conflux LCS does
not decide which gyre they end up in, as both colors of particles are found in both gyres at
time t = 9. Rather, their position at t = 9 appears to be dependent on how the dominating
LCS which shape their trajectories has developed.

As theory suggests, particles are supposed to be attracted towards the locally strongest
attracting LCS and spread along it. However, particles should not be able to cross this LCS
as it acts as a transport barrier. This can be seen to happen in all panels of Figure 13. The
particles are clearly separated into green and blue particles at all times, with the LCS acting
as the border of separation. There is no clear indication of particles crossing through this
LCS, at least not drifting a meaningful distance through it. The simulation shows that the
LCSs act as transport barriers.

Particles and LCSs have been computed independent of each other. Particles have been
advected forward in time from t = 0, and their new positions at the next time step are
dependent on their positions at the previous time step. Meanwhile, the LCSs have been
computed by advecting a grid of particles backwards in time and LCSs at one time step are
independent of LCSs at different time steps. It is interesting to see that even though LCSs
are changing drastically from one time to another, advected particle trajectories continue to
be shaped by them.

4.1.2 Analytical System with Perturbed Parameters

An ensemble of an analytical double-gyre system has been produced, as described in Section
3.1.2. 25 values for the ϵ and ω parameters have been randomly selected with a Gaussian
distribution and resulting values for both parameters are shown in Figure 14. The param-
eters are then randomly paired to create an ensemble of 24 analytical double-gyres. The
velocity fields and computed LCSs for the ensemble at simulation time t = 3 are shown
in Figure 15. The constants across the ensemble are the rotational velocity A, the system
boundaries and the fact that there exists two separate gyres .
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Figure 14: Spread of 25 randomly Gaussian distributed a) ϵ and b) ω values around the average
values ϵ = 0.25, ω = 0.682 and standard deviation σϵ = 0.1, σω = 0.15. The red line in indicates
the inputted target average, ϵ and ω, while the blue line indicates the average value of the randomly
distributed sets, which is ϵset ≈ 0.259 for ϵ and ωset ≈ 0.658 for ω. The standard deviations of the
randomly distributed set are σϵset ≈ 0.084 and σωset ≈ 0.129
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Figure 15: An ensemble of an analytical double-gyre system. Produced by perturbing the ϵ and
ω parameters with a Gaussian distribution and keeping A constant. Attracting LCSs have been
computed for simulation time t = 3 and are seen in red. The velocity field of the systems is
shown with black arrows. Each ensemble member is marked by a number between 0-24, and the
corresponding ϵ and ω is in their title. Blue lines in member four highlight three dominant LCSs
of interest.
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First investigating the velocity fields, the most notable difference between ensemble members
is the location of the conflux along the x-axis. The position of the conflux is dependent on
two factors: 1) how fast these two gyres propagate left and right and 2) how much the gyres
contract and expand before bouncing off the wall and switching propagation direction. The
former being described by ω and the latter described by ϵ. Increasing ω yields faster left-right
propagation, whereas increasing ϵ increases the left-right distance the gyres can propagate.
Other differences in the velocity field are marginal.

Shifting focus to the LCSs, each ensemble member contains an attracting LCS in the middle
of the system. This specific LCS starts in the top-middle of each system and moves straight
downward, effectively acting as a barrier between the two gyres. As the conflux moves, so
does this LCS, thus its location is also dependent on ω and ϵ due to the aforementioned
reasons. However, the length of this LCS along the y-axis before it curves towards the left
is variable between ensemble members.

Three LCSs of interest have been highlighted and numbered in ensemble member four. Other
than the conflux LCS, these three appear to be the most prominent LCSs in the system, but
are seen to be highly variable across the ensemble. LCS 1 appears to be the most variable
LCS in the ensemble, in the sense that it is not present/easily distinguishable in all ensemble
members, e.g. 0 and 20. LCS 2 resembles a large tongue-like structure that stretches along
the bottom part of the domain. The thickness of this tongue is its most notable difference
across the ensemble. Furthermore, members 2, 18 and 21 show the existence of a smaller
tongue inside LCS 2, that is not present in other members. Finally, LCS 3 is another
tongue-like structure that stretches upwards along the right wall and curves around itself.
The shape of its downwards curvature and the tongues thickness varies drastically across
the ensemble.

Overall, it is shown in Figure 15 that there is a higher visible variation between LCSs than
velocity fields in the ensemble. All ensemble members show a clear indication of the three
highlighted LCSs, expect for some of the members which are missing LCS 1. As these
three LCSs, in addition to the conflux LCS, are present in all ensemble members, it can be
concluded that they are virtually certain to exists in some form or another. Their presence
is therefore considered robust. However, the shape of the LCSs varies between ensemble
members, where LCS 1 and LCS 3 show the largest variability. Additionally, all ensemble
members show higher FTLE values along the boundaries.
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Figure 16: a) The average attracting LCSs Fm over ensemble members. Dashed blue lines indicate
where LCS 1, 2, 3 and conflux LCS are usually positioned in the ensemble. b) The standard
deviation σFm over ensemble members. c) LCS computed with double-gyre parameters ϵ = 0.25
and ω = 0.682, which were the average values for the Gaussian distribution. d) LCS in a double-
gyre with the ensemble average values for the two parameters, ϵset ≈ 0.259 and ωset ≈ 0.658.

The average of attracting LCSs, Fm, and its standard deviation, σFm , have been computed
for the double-gyre ensemble and are shown in Figure 16a and 16b respectively. Addition-
ally, the LCSs for a double-gyre computed with the target values from Figure 14 and one
computed using the average values of the ensemble are shown in Figures 16c and 16d. Im-
mediately notice that Fm has smoothed the LCSs by a large degree. The highest Fm values
are lower than the ones seen in Figures 16b and 16c, whereas the lowest values are higher.
Therefore, the gradient between maximum and minimum values has decreased.

LCSs are no longer clearly defined in Fm. Instead, stronger red regions signify locations
where the LCSs are generally found across the ensemble. The conflux LCS, as well as LCS
2, are distinct characteristic LCSs found in all ensemble members. An indication of these
two is seen in Fm. It can be seen from Figure 15 that the conflux LCS is slightly perturbed
along the x-axis across ensemble members. This is reflected in σFm , which shows a small
increase in σFm in the general region where this LCS is usually positioned. However, the
region covered by σFm is small around the conflux, so that both the existence and position
of this LCS is certain.

The numbered LCSs are seen to be more variable across the ensemble members in Figure 15.
LCS 1 was seen to not be present in all ensemble members and its shape varies drastically.

34



Incidentally, there is no clear indication of LCS 1 in Fm and its existence can therefore not
be ascertained from Fm, even though it is seen in individual members. However, large σFm

values along the top wall to the left of the conflux indicate that there is LCS activity here.

Both LCSs 2 and 3 can be identified in Fm. Large 2D fields of relatively high average
FTLE values are present in Figure 16a where LCS 2 and 3 are usually positioned, thus their
existence is virtually certain across the ensemble. However, because of their variability in
the ensemble, their exact positions are uncertain. This is reflected in σFm , which is large
in both regions. σFm indicates that although LCS 2 is virtually certain, it can be located
practically anywhere in the bottom-left quarter of the domain.

A part of LCS 3 is always present along the right wall, which is indicated by high values in
Fm in this region and along all other walls. Furthermore, σFm is small along the domain
boundaries, signifying that it is virtually certain that LCSs exist along the walls. This is
not surprising, as particles are not able to pass through walls. Hence, particles which flow
into a wall will accumulate here, as can be seen happening at t = 9 in Figure 13

However, the rest of LCS 3 is not as prominent in Fm. The ensemble predicts that this LCS
will curve downwards, but its downwards extent is highly variable. The downwards curve
is therefore easily distinguishable in Fm, but the rest of LCS 3 can be hard to spot. It no
longer resembles a tongue. This is also reflected in the high values of σFm , which span over
a large portion of the right gyre. Therefore, it is known that LCS 3 will exist in the system
in some form or another, but its position can be anywhere inside the right gyre.

In essence, it is shown here that Fm is able to indicate regions where LCSs are generally
formed. The standard deviation, σFm , then yields information about spacial spread of these
LCSs and thus their certainty. This same method will now be applied to LCSs in the
Barents-2.5 EPS, to check for robustness and persistence.

4.2 The Barents-2.5 EPS

4.2.1 Velocity fields in the Barents-2.5 EPS

Instantaneous absolute velocity fields from four ensemble members of the Barents-2.5 EPS
are shown in Figures 17a-17d. It is evident that velocities in the model differ over ensemble
members, although some similarities arise. Particularly, all four ensemble members predict
high velocities in the upper part of the domain and along the bathymetry contours south of
Vestfjorden. As discussed in Section 3.2, the NCC flows northwards along the coastline, and
branches into two parts south of Vestfjorden. One part then flows into Vestfjorden, which
is likely the high velocity seen here in Figure 17.
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Figure 17: Instantaneous absolute velocity fields computed by
√
u2 + v2, where u and v are the

longitudal and lateral components of the velocities respectively, for four members of the Barents-2.5
EPS model on April 4, 2022. These only show the magnitude of the velocity and not the direction.
a) Member 0, b) member 1, c) member 2 and d) member 3. e) The average velocity field over
April, averaged over all 24 ensemble members. The average absolute velocity field in e) has been
multiplied by a factor of 2 to enchance visibility with regards to the other panels.
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A major difference in velocity fields can be seen along the steep continental slope. Both
the NwASC and NCC flow in this region, but only ensemble member 0 predicts particularly
high velocities here. The velocities along the continental slope are inconspicuous compared
to the surroundings in the three remaining ensemble members. As described in Section 3.3,
member 0 is forced by AROME-Arctic, whereas the other member depicted in Figure 17
are forced by ECWF-ENS, which could be the reason for why only member 0 shows high
velocities at the continental slope. Figure 17 is an example of the spread in the velocity
fields between ensemble members.

The monthly and ensemble averaged velocity field is shown in Figure 17d. Note that this
average is multiplied by a factor of 2, and as such, showcases lower absolute velocities than
the individual instantaneous absolute velocity fields in Figures 17a-17d. This is due to the
fact that the average smooths out the velocity field. The average current show stronger
velocities south of Vestfjorden, where one part of the NCC flows. Furthermore, Figure 17d
indicates prominent velocities along the continental slope. This implies that there is in fact
a strong current in this region on average, even though the current itself might vary on
hourly and between ensemble members.

4.2.2 Verification of Lagrangian Coherent Structures

A similar experiment to the one conducted in Figure 13 for the analytical double-gyre is
shown in Figure 18, now for the Barents-2.5 model. A grid of particles has been released
and advected forward in time to their final position after seven days. Figures 18a and 18b
show the particles initial and final positions respectively. The LCSs in the background of
these figures are the same and are computed for the final date. These LCSs are shown in
Figure 18c without particles to enhance their visibility.
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Figure 18: Particles in a field of attracting hyperbolic LCSs represented as FTLE field. Hyperbolic
LCSs are the same for all panels, and computed for 2022.11.07. a) initial position of a grid
of particles marked with black dots, at time 2022.11.01. The velocity field is used to integrate
the particle transport seven days forward in time. b) Final positions of particles at 2022.11.07.
Particles that collide with the coastline during the integration time are removed from the system.
Blue boxes highlight two regions of interest. c) Hyperbolic LCSs for 2022.11.07, without the
particles to enhance their visibility. The blue line outlines the general shape of underlying LCSs.
Velocity fields are provided by the Barents-2.5 model.

The modelled Lagrangian particle trajectories have been affected by the LCSs. A blue line
in Figure 18c traces a half elliptic shape of LCSs around LoVe, effectively tracing what
appears to be a transport barrier around the islands. Albeit the traced LCSs seem to be
disjointed, thus forming gaps in this transport barrier. Incidentally, the region inside the
blue line is also the region where most of the particles are located at their final position,
which indicates that the LCSs retain particles on the continental shelf for the simulation
duration. Furthermore, the outline of the particle cluster at their final position is seen to
approximately take the shape of the LCSs.

The two blue boxes in Figure 18b highlight two regions of interest. Box 1 highlights a
trail of particles which flow westward away from the main particle cluster. It can be seen
that this trail of particles is located on top of an attracting LCS and stretch alongside it,
emphasizing the potential accumulation region property of attracting hyperbolic LCSs. Box
2 highlights a region where there are strong and clearly defined LCSs ordered in an elliptic
pattern. Particles can be seen to follow this pattern quite accurately. There is a large
concentration of particles seemingly close to the highlighted LCSs,and a low concentration
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of particles inside the elliptic LCS pattern, thus the pattern attracts particles, but does not
allow particles to propagate towards the center of the LCS. This indicates that particles are
attracted towards the LCSs in the moment on small scales.

Finally, there is a large and thick trail of particles extending westward out of the main parti-
cle cluster directly north of box 1. At this time, there exist no obvious LCSs responsible for
shaping this trail. However, the computed LCSs are just instantaneous fields and can differ
drastically between time intervals. This particular trail of particles, seemingly positioned
far away from any distinct LCS, can therefore have been shaped by LCSs which existed at
this location at previous times.

It is interesting to see that even in model data, where the LCSs are prone to emerging
and disappearing over short time intervals, instantaneous LCSs computed of a short time
interval can describe the shape of a particle cluster computed with long Lagrangian particle
trajectories over a seven day integration time.

4.2.3 Robustness of LCSs

Instantaneous LCSs are shown for eight ensemble members in Figure 19 over the LoVe
region. As expected, there are differences in the predicted attracting LCSs due to differences
in velocity fields between ensemble members. A notable feature of interest is the spiraling
structure found in members 0 and 6 in the top of the domain, where the continental slope
curves westward. This feature could potentially be describing an eddy formed in the NwASC,
which, as mentioned in section 3.2, tend to break off from the NwASC and drift westwards
(Søiland and Rossby, 2013), although investigating the velocity field itself would be necessary
to confirm this. This feature is more pronounced in member 6 than in member 0 and is not
found in any other ensemble member shown here, although a strong LCS which curves along
the continental slope is present here in most members. This feature is therefore uncertain,
as its only predicted by two of the eight ensemble members.
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Figure 19: Attracting hyperbolic LCSs approximated with backwards FTLE over the Lofoten-
Vesterålen region. Time interval has been chosen to be 24 hours, starting at 2022.04.09 00:00
and integrating backwards to 2022.04.08 00:00. Eight FTLE fields for this date computed using
velocity fields from eight ensemble members of the Barents-2.5 EPS model are shown. Red regions
symbolize higher FTLE values, therefore also stronger rate of attraction. Ocean bathymetry is
indicated by dashed black lines. Blue boxes in member 0 mark three locations where FTLE
structures are similar over all members.

Another difference between the ensemble members can be found along the lower part of the
continental slope. Here, half of the members predict multiple pronounced attracting LCSs,
whereas the other half predicts less activity. As expected, LCSs found in one member are
generally different/not present in any other member.

However, some similarities among ensemble members are present. All ensemble members
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predict a strong surface current along the continental slope on average and the coastline
is constant over ensemble members. Although the exact positions and number of LCSs is
different in the ensemble, all members predict more activity along the continental slope.
Additionally, there are three features which are almost exactly the same in all members at
this particular time. These are highlighted with blue boxes in member 0.

In box 1, all ensemble members predict a pronounced LCS which follows the continental
slope and curves around the northern tip of LoVe. The LCS highlighted by box 2 extends
along the western coast of the southern tip of LoVe. All ensemble members predict that this
LCS starts at the southern tip of LoVe and the shape of it appears to be similar across the
ensemble, although its length in the north-east direction along the coastline varies. Box 3
highlights an attracting LCS located south of Vestfjorden, where the NCC flows as discussed
in Section 3.2. This LCS is different from the other two in the way that it does not directly
interact with the coast, indicating that there can be similarities between ensemble members
away from the coast as well.

LCSs are shown to be highly variable across ensemble members. These differences are
more immediately noticeable than in the ocean currents from Figure 17. However, the
highlighted regions show the existence of locations where LCSs are predicted similarly across
the ensemble, which in Figure 19 are regions where the current is steered by geomorphology.
Thus these regions are potentially robust.
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Figure 20: Average attracting LCSs over ensemble members Fm (top row) and their standard
deviation σFm (bottom row) of LCSs over ensemble members for four days in April 2022. Fm
is colored in red, whereas σFm is colored in purple. Bathymetry is visualized with dashed black
contours. Blue boxes in the top right panel highlight three regions of interest.

The average attracting LCSs, Fm, and their standard deviation, σFm , over ensemble members
are shown for four days in April 2022 in Figure 20. Note that the range of Fm is shown
from 0.02h−1 to 0.05h−1, as to enhance visibility of higher values. The average smooths out
the attracting LCSs. This smoothing is seen to transform the LCSs from the simple curves
shown in Figure 19 into 2D fields, as discussed in Section 3.7.
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The ensemble average, Fm, shows high average FTLE values directly on top of the steep
continental slope for all dates. This signifies that the majority of ensemble members predict
high LCS activity here. However, Fm is generally smooth over the continental slope west of
LoVe, which indicates that ensemble members disagree on the exact positions of LCSs here.
This is further emphasized by σFm , which indicates large deviation around the continental
slope.

The blue boxes in Figure 20 highlight regions which exhibit particularly high Fm values.
Furthermore, Fm still resembles distinct curves inside these highlighted regions. Note that
these regions are the same as the ones highlighted in Figure 19, which were considered to
potentially contain robust LCSs.

First looking at the region highlighted by box 1 in Figure 20, a distinct LCS is found to
curve around the northern tip of LoVe. This LCS is present for all dates, although it is seen
to vary to a large degree between the dates. Figure 21 enlarges the region highlighted by
box 1 to enhance visibility. On April 4, the distinct LCS can be seen to be surrounded by
high FTLE values and is accompanied by a large σFm . This signifies that although a distinct
LCS is detected on April 4, individual ensemble members have predicted various additional
LCSs in this region at this time. Furthermore, due to a large σFm directly where the distinct
LCS is located on April 4, it can be assumed that the exact location of this particular LCS
is perturbed across the ensemble. The shape of this distinguishable LCS is similar on April
8, however, the surrounding high FTLE values has vanished and σFm is low on April 8. This
means that on April 8, this LCS is highly robust.

On April 18, more distinct LCSs have emerged, extending far north and south along the
continental slope. These distinct lines have become thicker, meaning that ensemble members
disagree on their exact position, which is reflected in the large σFm on this date. Finally, on
April 24, the LCS highlighted by box 1 has mostly been smoothed out and σFm is large over
a large region, signifying that the LCS has become less robust compared to previous dates.
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Figure 21: Zoom on the region highlighted by box 1 in Figure 20

The two highlighted regions in boxes 2 and 3 in Figure 20 also indicate distinguishable
LCSs in the ensemble average. The extent of the LCSs in box 2 diminish over time, but is
only accompanied by a high σFm on April 4 which does not cover a larger region that Fm.
Therefore, the LCS in box 2 can be considered robust. The distinguishable LCS in box 3
appears to for the most part change shape between the dates, but all dates indicate large
σFm south of Vestfjorden, again signifying uncertainty in the position of this LCS across the
ensemble.

The distinguishable nature of the LCSs highlighted in boxes 1-3 is a result of these being
predicted similarly by the majority of ensemble members. The high σFm in these regions for
some dates is expected as even a slight perturbation in the LCSs between ensemble members
can result in a high σFm , as discussed in Section 3.7. It is therefore important to note that
a high σFm might not signify non-robust features if it covers a much smaller region than the
average LCS itself, although a low σFm indicates a high certainty. As such, the highlighted
regions are considered to be robust for the particular dates.

4.2.4 Persistence of LCSs

The time-evolution of attracting hyperbolic LCSs is shown for ensemble member 0 in Figure
22. There are large changes over time in FTLE, both in the general amount of attracting
LCSs and their position.
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Figure 22: Attracting hyperbolic LCSs approximated with backwards FTLE over the Lofoten-
Vesteråen region. High FTLE values are shown in red, whereas low FTLE values are show in
white. The FTLE fields have been computed using velocity data from the first member of the
Barents-2.5 EPS model, at eight different dates. Ocean bathymetry is indicated by dashed black
lines. Blue box signifies a particular region of interest.

The first half of April shows the largest variability between the dates, where it can be seen
that both the general position and number of LCSs is very variable over the first four dates,
depicted in the top row of Figure 22. Most LCS activity is constrained to the northern part
of the domain on April 2, but to the southern part of the domain on April 6 and 9. Then,
LCS activity increases on April 12, where pronounced LCSs are seen to cover the whole
domain. On the other hand, although LCSs change over the four dates in the second half
of April, shown in the bottom row of Figure 22, their general positions appear to be similar
over time.
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Generally, LCSs can be seen to frequently form along the continental slope in April. Addi-
tionally, note the region south of Vestfjorden, highlighted by the blue box. Here, the LCSs
appear to be similar to a certain degree over time and can potentially be persistent.

Figure 23: F t (top row) and σFt (bottom row) of LCSs over the month of April 2022, for four
different members in the Barents-2.5 EPS model. F t is colored in red, whereas σFt is colored in
purple. Bathymetry visualized with dashed black contours. Blue boxes highlight in member 0
highlight three regions of interest: 1) northern tip of LoVe, 2) southern tip of LoVe and 3) south of
Vestfjord. Pink polygons in member 6 highlight three regions where there is little LCS formation.
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The time averages F t depicted in the top row of Figure 23 yields information about the
persistence of LCSs in a complex dynamical system. The four top panels show that when
averaging LCSs over a longer period of time, the position of F t is very similar across ensemble
members. Furthermore, immediately note that the smoothing of LCSs due to averaging is
greater here than in the ensemble average. There are no clearly distinguishable LCSs in F t,
as was the case for Figure 20 for the ensemble average.

There appears to be three distinct regions in the domain where F t is small, highlighted with
purple polygons in the panel of Figure 23 corresponding to member 6. These three regions
signify locations where LCSs are less likely be formed over time. Furthermore, σFt is small
in these regions, indicating that it is virtually certain that there is little LCS activity inside
the purple polygons over time.

From the figure it is clear that LCSs tend to form over the continental slope, where the
surface current is strong on average and steered by bottom topography. Additionally, LCSs
are shown to frequently form at the northern and southern tips of LoVe, as well as south
of Vestfjorden. The coastline is always present, thus will have a similar influence on the
currents over time and could influence LCSs similarly. However, the standard deviation
σFm is also shown to be large and cover a wide region over the continental slope and the
highlighted regions. Any high F t is accompanied by high σFt , indicating that LCS positions
are uncertain over time, although F t indicates where they are most likely to exist.

4.2.5 LCS features generated by the deterministic tide

In Figure 24, the focus has been centered around the southern tip of LoVe, where the daily
variability of LCSs is shown for ensemble member 0. To capture this variability, a data
set containing LCSs with 2 hour integration times have been used, instead of the 24 hour
integration time. Sea surface height (SSH) as a function of time on the same day is shown
in Figure 24b. Tides are considered to be regular, in the sense that they can be modeled
and predicted quite accurately.
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Figure 24: a) Attracting LCSs in red at 2 hour intervals on April 3, 2022, computed using the
velocity field from Barents-2.5 EPS member 0. Green line represents an arbitrary line through the
straits between the islands. Blue arrows represent the horizontal velocities. b) Time series of sea
surface height for the regions, averaged over ensemble members.
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The positions of LCSs in Figure 24a with regards to the islands indicate a clear response
to SSH. The green line drawn represents an arbitrary line stretching through the straits
between the islands. Ignoring the LCS to the left of the top island, which is always present
in some sense or another, we focus on at which side of the green line LCSs generally tend
to be found on. It can be seen that at 00 : 00, most LCSs are found on the eastern side
of the green line. Then, between 02 : 00 and 06 : 00, LCSs are found on the western side.
Every six hours, the LCSs appear to swap between east and west position with respect to
the green line, coherent with SSH.

The horizontal velocities follow the same periodicity as the LCSs. It is seen in Figure 24a
that the current periodically swap propagation direction through the straits on a six hour
interval. LCSs are positioned on the east of the strait when currents propagate eastward
and vice-versa. The current transports material from one side of the strait to the other,
accumulating the material where the flow exits the strait. As such, material will converge
around the strait exit, hence attracting LCSs will be predicted there.

Horizontal velocities and LCSs are shown to vary periodically. This periodicity is coherent
with SSH. Figure 24 only show LCSs for one ensemble member, but a similar effect is seen
in other ensemble members. Two different ensemble members are shown in Figures 33 and
34 in Appendix B. Thus it has been shown here that the tides can have an effect on LCS
formation, at least around straits where the current propagation also depends on the tides.

4.2.6 Seasonality

Monthly average LCSs over all Barents-2.5 EPS ensemble members, as well as the corre-
sponding density distributions, are shown for April and October 2022 in Figures 25a, 25b
and 25e. In the northern section of the domain, north of LoVe, between the bathymetry
contours and the coast, the April average predicts few LCSs. However, it appears that this
same region is the most active region in the domain during October. From the distribu-
tion of FTLE values, it can be seen that the April average consists of higher values than
the October average, but it seems that the few high FTLE values in October are mostly
concentrated in the norther region.
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Figure 25: Attracting LCSs averaged over both time and ensemble members for a) April and
b) October. Ensemble and monthly averaged absolute velocities, computed with

√
u2 + v2 for c)

April and d) October. Bathymetry indicated with black contours. e) The distribution of the FTLE
values seen in a) and b).

The October average indicates that LCSs are for the most part only formed along the
coastline. There is a small indication of LCS formation along the continental slope, but this is
not a region where LCSs commonly form. On the contrary, the April average shows a smaller
signal along the coastline, but much more frequent LCS formation over the continental slope.
Additionally, October indicates almost no LCS formation to the west of the continental
slope, whereas LCSs tend to form here regularly in April. Overall, it appears that LCSs
form almost anywhere in the domain during April and only in concentrated regions close to
the coast in October.

The FTLE distributions show that the April average has a sharp peek at 0.02h−1 and few
values below this. On the other hand, October displays no sharp peek and most values are
found in the range

[
0.01h−1, 0.018h−1

]
. At 0.03h−1, the distributions appear to converge

and the frequency of higher values than that appears to be approximately the same for both
months. In general, the values seen in April are higher but the highest values, indicating
locations where individual LCSs overlap often over time and ensemble members, are the
same.

Monthly absolute velocity fields over all ensemble members for the two months are shown
in Figures 25c and 25c. It can be seen that both months on average indicate strong currents
along the continental slope. However, the currents appear to be stronger during October.
Furthermore, the part of the NCC which flows into Vestfjorden appears to flow further into
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Vestfjorden and closer to the coast in October. At the top of the domain, it can be seen
that the current splits in October, indicating that the NwASC flows westward following the
westward curvature of the continental slope, whereas the NCC continues flowing along the
coastline. Finally, although there are stronger currents in October, April indicates a higher
amount of weaker small-scale structures in the domain, especially west of the continental
slope. Figures showing LCSs in different members and for different times, as well as Fm

and F t for October can be found in Appendix B.
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5 Discussion

LCSs are seen to be highly variably across both ensemble members and time. However,
potentially robust and persistent LCSs have been identified. In this section I will discuss
the following: i) whether LCSs computed with my own detection software have an impact
on particle trajectories, ii) whether the parameter choices I have made have drastic impli-
cations on computed LCSs, iii) potential causes for robustness and iv) potential causes for
persistence.

5.1 Applicability of LCS detection method

The resulting LCSs of the analytical double-gyre system is well-studied in literature (Shad-
den et al., 2005). The quickest verification method for my LCS detection software is there-
fore to compare my double-gyre solutions to previous studies. Figure 3a of Froyland and
Padberg-Gehle (2012) and Figure 3 of Fuchs et al. (2012) are two previous examples of
double-gyre LCSs. Here, the authors also use the FTLE detection method, albeit they com-
pute repelling hyperbolic LCSs, and use different parameters for the system itself. I have
therefore computed repelling LCSs in the double-gyre system using the same parameters as
the authors, which can be found in Figures 30 and 31 in Appendix A for the two studies
respectively. As it can be seen, the results are fairly similar, thus my detection software is
consistent with previous works.

Attracting hyperbolic LCSs act as transport barriers and accumulation regions for material
transport. Experiments were conducted to verify these properties of LCS, which can be
seen in Figures 13 and 18. Overall, particle trajectories show an overall agreement with
LCSs. The largest difference between these two experiments is that the double-gyre system
always contains two gyres which move periodically, whereas the Barents-2.5 velocity field is
turbulent and chaotic. As previously mentioned, flow structures, such as eddies or fronts
located in this region (see e.g. Koszalka et al. (2013); Isachsen (2015); Trodahl and Isachsen
(2018)), constantly emerge and dissipate in Barents-2.5 and LCSs can do so just as quickly.
Therefore, the LCSs detected in the Barents-2.5 experiment may all be fairly ephemeral and
particles could have previously been affected by which existed at previous times.

Note that Barents-2.5 is a 3D model, whereas the double-gyre is strictly 2D. I used massles
particles in these experiments and forced these to stay at the ocean surface in the Barents-
2.5 velocity field. However, the model includes 3D velocities. Hence, the flow in Barents-2.5
is not 2D divergentless. Convergence or divergence of the surface flow will cause vertical
velocities to conserve 3D volume transport. Assuming that a particular LCS transport
barrier only exists at the surface, vertical motion could allow particles to simply flow beneath
this transport barrier. As the double-gyre is strictly 2D, this is not an issue as mass is always
conserved.

First looking at the experiment in the double-gyre system, it is apparent that particle
trajectories are in fact shaped by the closest attracting LCS. Particles start off in a cluster
and spread out along the underlying LCS without actually crossing it. LCSs are therefore
seen to prevent mixing between the green and blue particles. In this system, the particle
cluster acts exactly like in the simple schematic of attracting LCSs in Figure 2, in which the
theorized properties of LCSs are shown. LCSs work well as a proxy for revealing dynamical
constrains on the trajectories in the double-gyre and more prominent LCSs indicate locations
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where particles are more likely to reside.

The experiment conducted using velocity fields from the Barents-2.5 model yielded a weaker
indication of LCS influence on trajectories than the double-gyre experiment. The clusters
edge takes the shape of the outlining prominent LCSs, whereas the inner particles which are
positioned far away from any prominent LCS at the final date appear to be less influenced
by them. Inner particles might simply exist too far away from any dominant LCSs for them
to have any effect. More particle trajectories could potentially be shaped by the LCSs given
a longer integration time. Some regions inside the particle cluster appear to have a higher
particle concentration at the final time. There are no apparent underlying LCSs here at this
time, but these higher concentration regions could be a result of LCSs which existed prior
to this date.

The LCSs indicate a transport barrier along the continental slope. This transport barrier is
constructed from multiple LCSs with some separation in between, thus gaps in the transport
barrier are present which particles should be able to flow through. Even so, the particle
positions indicate that the transport barrier have retained particles at the continental shelf.
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5.2 Impact of parameter choice on FTLE computations

Figure 26: FTLE integrated over a) 2 hours, b) 12 hours and c) 24 hours. Three regions of
interest are highlighted with blue boxes. Yellow regions near the coast signify grid cells without
FTLE values. d) the distribution of FTLE values in the domain for the three integration times.

A choice was made regarding the time interval LCSs were computed over. This time interval
is set to 24 hours in all results except for when studying daily variability, where it is set to
2 hours. Particles are integrated over this time interval by Eq. 26. The question is whether
the choice of integration time significantly changes the resulting LCSs. LCSs computed for
the same target time, but integrated over three different time intervals, are shown in Figure
26. An increase in integration time appears to lower FTLE values, which can be explained
by Eq. 19, as there is a division over the integration time. This can be considered as a
scaling factor which does not directly impact the shapes and positions of LCSs, however,
for longer integrations the computations might be affected by short lived LCSs.
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LCSs appear to be thinner and more defined for higher integration times. This is most likely
due to the FTLE method aiming to approximate LCSs, which are really infinitesimally thin
curves, with fields of attraction/repulsion around these thin curves. Increasing integration
time allows the grid of particles used for the computations more time to spread into distinct
structures. Take for instance the LCS inside box 2 in Figure 26, which appears to be one
thick curve when integrating over 2 or 12 hours, but appear as two thinner curves when
integrating over 24 hours. This shows that thick LCSs detected using the FTLE method
could consist of multiple thin LCSs. Therefore, allowing the grid of particles to drift for
longer can reveal a larger number of LCSs, which can have implications on my results.
Additionally, as the field is thicker, it might cause two short LCSs to connect into one long.
Thus creating a seemingly long transport barrier, when in reality there are gaps in this
transport barrier, such as the LCS directly above the box 1. However, a longer integration
time also makes the particle grid uneven.

The actual positioning and shape of LCSs appear to be mostly similar for the different
integration times, although some discrepancies can be found. For example, note the circular
shape of the LCS outlined by box 1 at integration time 12 and 24 hours. These resemble a
vortex of some sort, similar to what can be seen in Figure 4. However, this circular shape
is harder to distinguish at integration time 2 hours. Similarly to before, this can again be
due to the grid of particles not having enough time to drift into the ordered patters they
are supposed to end up in. This could cause errors in how the LCS and the flow field they
describe are perceived.

Yellow regions near the coastline in Figure 26 highlight regions without FTLE values. It
is apparent that the extent of missing values increases with increased integration time.
The advection model described in Section 3.4 is set up so that advected grid particles
which collide with the coastline are removed from the system. This conscious choice is
made because there is no flow through land, thus allowing for particle propagation here is
not realistic and could yield large errors near the coast. Subsequently, particles generally
propagate a further distance with increased integration intervals, allowing more particles
to collide with the coast. The missing values cause information to be lost along the coast,
where there can potentially be high robust and persistent activity, but have no impact LCSs
in the open ocean.

The distributions of FTLE values in the domain for each integration times are shown in
Figure 26d. All three appear to be similar to Rayleigh distributions. The distributions
show that there is a larger spread in FTLE values for shorter integration times. With
increased integration times, both fewer high values and lower maxima are seen. Following
the observation that FTLE values decrease with an increase in integration time, the peak
of the distributions also shifts towards lower values with longer integration times.

The distributions show that there are more negative values for shortern integration times.
A negative FTLE value over a region means that the dynamical system of this region is
locally non-chaotic (Alimi et al., 2021). Furthermore, Eq. 18 implies that if the FTLE value
is 0h−1, then |δt∥ = ∥δ0∥, and there is a steady state. As there are less negative values
with higher integration times, the negative values that appear at 2 hours might not actually
tell the whole picture. For backwards in time integrations, two particles can converge for a
short time, which yields negative FTLE values forward in time. However, when integrating
over a longer time period, it is revealed that the particles only converged initially and
started separating afterwards, thus yielding positive FTLE values forward in time. Longer
backwards in time integrations can integrate over these short backwards in time convergences
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and particles diverge on average over backwards-time, yielding more positive FTLE values
forward in time.

Increasing integration time allows for distinguishing separate attracting LCSs, as well as
structures in the domain, although information along the coast is lost. An increase in
integration times also yields less negative values, thus there are less non-chaotic regions in
the system.

As stated in Section 3.3, the Barents 2.5 EPS has a 2.5 km×2.5 km horizontal resolution. As
a result, smaller structures are not predicted by the ensemble. This means that even though
there exists a small eddy, which could potentially give rise to a prominent LCS, this eddy
is not captured by Barents 2.5. EPS. An eddy of size 5 km would also just be represented
by two grid cells, which would probably not result in significant LCSs. I made a conscious
choice to interpolate the grid down to 1000m × 1000 m with linear interpolation. This still
does not allow the model to detect structures lower than its original resolution. Instead,
it smooths the velocity field, so the transitions between grid cells are more continuous, as
required in section 2.1.1.

Finally, the FTLE detection method itself can have an effect on resulting LCSs. Multiple
methods have previously been studied for detecting these structures and can yield different
results. It is therefore not given that the FTLE method is the best for this particular study,
even though this is one of the more common approaches in practical studies, alongside
the Finite-Size Lyapunov Exponent. Furthermore, the software only visualizes the general
strength of attraction using the largest eigenvalue of Ct

t0
, and not the direction of said

attraction. Another approach would be to compute strainlines from the largest eigenvector
of Ct

t0
to solve for the direction of deformation (Farazmand and Haller, 2012).

5.3 Uncertainty of LCSs in flow field

5.3.1 Double-Gyre ensemble

Given the inherent velocity field uncertainty and the implications they have on other La-
grangian methods, LCS sensitivity to variations in the velocity field have been tested. A
simple double-gyre ensemble has been computed and shown in Figure 15. This allowed
for testing implementations in a fully controlled system and an ensemble average has been
attempted as a method for detecting robust LCSs.

As shown in Figure 15, variations between the velocities are marginal in the double-gyre
ensemble. The only visible difference in the velocity fields is the position of the conflux.
However, LCSs immediately exhibit noticeable differences between the ensemble members.
This tells us that LCSs are more sensitive to parameter perturbations.

As seen in Figure 13, LCSs do not form or dissipate in the system. Instead, the LCSs simply
move around with the flow. It can therefore be assumed that the LCSs in the system are
persistent, although they move around and change shape. However, if we would conduct a
time average over the double-gyre system, we would most likely not detect any persistent
features in F t, as the positions of LCSs constantly change.

Four distinct LCSs have been considered to be robust in the double-gyre ensemble, as they
are present in all ensemble members. Particularly, the LCS located at the conflux appears
to be the most robust feature of the system, only varying slightly in position and length.
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The length of the conflux length dependent on the ϵ parameter and it is shown in Figure 32
the conflux LCS spans across the entire y-axis with ϵ = 0, thus forming a complete transport
barrier between the two gyres. The remaining three LCSs are seen to vary to a larger degree.

The ensemble average, Fm and standard deviation, σFm , are shown in Figure 16. Fm

has been able to indicate three of the four selected LCSs, although the LCSs have been
smoothed. Fm now indicates regions where LCSs are generally formed. Furthermore, σFm

yields information about the spacial spread of LCSs. Higher and more concentrated values
in Fm are most likely due to LCSs overlapping, which causes σFm to be small. This signifies
that both the existence and positions of LCSs are certain, and is seen to happen around
the constant boundaries and at the conflux. Fm might show a strong indication of LCS
formation, but σFm can also be large in these regions. This means that there is a high
certainty that there exist LCSs inside the region of Fm in question, but their exact position
is unknown. It has also been shown that in some cases, LCSs are present in the ensemble,
but not indicated by Fm. It is still possible to reveal these LCSs them with σFm . The
ensemble average and standard deviation has proved useful in identifying robust features in
the simple ensemble.

5.3.2 Ocean ensemble

Velocity fields in Barents-2.5 EPS indicate a more variable flow field than the double-gyre
ensemble. This higher variability is reflected in the LCSs, where clearly distinguishable
structures appear to vary to a large degree in both position and shape. This emphasizes
the importance of an EPS. An LCS predicted by one member might not be present in any
other member, thus making this LCS highly uncertain to exist.

Averaging over ensemble members has been conducted as a method for detecting robust
features. As can be seen in Figure 20, Fm smooths out the LCSs, resulting in regions where
LCSs are more likely to be formed, rather than thin curves. However, some LCSs are still
clearly distinguishable, particularly around the northern and southern tips of LoVe and
south of Vestfjorden, where currents are influenced by geomorphology.

Due to the averaging, the curves representing LCSs have become thicker. However, for them
to still exist as distinguishable curves in Fm, most ensemble members must have predicted
LCSs at almost the same locations. This is further emphasized by σFm , which indicates
some variation between ensemble members where there are prominent Fm curves, but σFm

rarely covers a particularly larger region than Fm.

Few pronounced LCSs are generally seen in Fm over the continental slope. Rather, smoothed
regions in F appear here. σFm also indicates high variability along the continental slope.
This suggest that it is certain that LCSs are formed along the continental slope, but their
exact positions here are highly uncertain between ensemble members.

Generally speaking, regions which indicate the highest LCS formation are situated where
large scale geological features are present, i.e. along the continental slope and coastlines.
As attracting LCSs indicate regions where convergence between particles is largest, LCS
formation is less dependent on current strength, but rather the direction of the current. A
homogeneous straight current will most likely not attract material in any particular location,
no matter its strength, as all particles will flow in the same direction at the same rate. For
distance between particles to change, the current needs to be variable, e.g. by curving or
having flow structures break off the main current. Here, the importance of these geological
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features with regards to robustness comes to light, as they will steer the current flow in a
similar manner over ensemble members.

The robust LCS feature at the southern tip of LoVe is most likely formed due to the curvature
of the NCC around the southern tip. It is well known that the NCC splits into two parts
south of Vestfjord, where one part flows into Vestfjord and follows the coastline on its right
side to a large degree, thus ends up curving around the southern tip. This apparently causes
material to converge towards the southern tip of LoVe.

This current curving inside of Vestfjord could also explain the robust LCS directly south
of Vestfjord. Here, the LCS is situated in a region where there is both a northward and
southward flowing current. Therefore, any mixing and turbulent flow is bound to happen
here. The currents then flow northwards alongside the LoVe coastline, but when this coast-
line suddenly disappears, a part of the current is steered eastward and curves around the
northern tip. As there is bottom topography which curves around the northern tip, these
most likely have an influence on the eastward steering of the current as well. Similarly to the
reasoning for the southern tip, this curvature of the current along the northern tip could be
a driving factor for enhanced LCS formation here. As this happens in all ensemble members
in some form or another, these regions appear to be robust.

The reason for less positional certainty along the continental slope is most likely due to a
more variable current in this location between ensemble members. The current is steered
by the bottom topography, but not by the coastline. This bottom topography causes some
curving and turning of the current, and small scale structures break off from the main
current due to baroclinic instability. However, the chaotic baroclinic flow is most likely not
as robust as the current steering along the coast of LoVe. This in turn causes more positional
uncertainty in LCS formation here than along the coastline.

Because of the existence of clearly defined LCSs in Fm, I can assume that averaging over
ensemble members does yield and indication for robust LCSs. For some regions, where there
is a large positional spread in LCSs, Fm can only indicate the approximate region where
these are formed. This results in a smoothed region of higher FTLE values. In other regions,
where the ensemble members agree to a larger degree, Fm takes the form of thick curves
with high FTLE value, which in turn is where the most robust LCSs are found, as this is
caused by ensemble members agreeing on the position of LCSs to a large degree. Certain
robust LCSs can be distinguished.

5.4 Temporal variability of LCSs

Persistence is defined as LCSs which exist over a longer time period and can vary over
different time-scales. A flow feature might be persistent over one month, but maybe not
over the whole year. I divide this section into three parts: 1) daily persistence, 2) persistence
over the month of April and 3) seasonal persistence.

5.4.1 Daily variability

A tidal dependency of LCSs has been investigated around the southern tip of LoVe, seen
in Figure 24. This is where Moskstraumen is situated, which exhibits the regions strongest
tidal pumping (see Figure 3) (Børve et al., 2021), along with other similar currents which
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form in between straits. The east-west position of LCSs appear to be dependent on which
direction these strait currents flow, i.e. if the current flows westward then LCSs are on the
west side and vice versa. The periodic tidal pumping sets the current directions and causes
material to be transported through the straits.

As the tidal pumping causes strong material transport through the straits, the particles ad-
vected to compute LCSs should also be transported through this strait. Therefore, particles
should accumulate on either side of the straits, based on the current direction, which in turn
results in detected LCSs. However, as this is a region close to the coastline, some of the grid
particles will collide with the coast and result in some missing information. Furthermore,
the distance between these islands is small compared to the resolution of the Barents-2.5
EPS model, thus there are only a couple of model grid cells in between each island. This,
in addition to the 2 hour integration time which has been shown to cause thicker LCSs,
result in LCSs in this region which are of low resolution. It is therefore almost impossible
to distinguish any distinct turbulent flow structures from LCSs alone. The LCSs here tell
more about the position of the accumulation zones with regards to the straits.

Nøst and Børve (2021) investigate the details of a tidal current as it passes through a strait.
The authors state that as the current exits the strait, the pressure gradient force and friction
from the coast will work in the opposite direction of the flow, decelerating the flow. This
can cause flow separation and a vortex forms at the separation point. The flow can also
separate at both sides of the strait exit and two vortices with opposite signs are formed, as
seen in Figure 27. These two vortices can then form a self-propagating dipole.

Figure 27: Figure 1 of Nøst and Børve (2021). A schematic of the current flow through a
strait due to tidal pumping. a) flow into the strait. b) flow out of the strait.

This simplified description of the flow resembles the double-gyre system from Section 3.1.
Similar LCSs as those seen in Figure 15 might therefore appear on around the straits.
However, there is no indication of these in Figure 24. This could be because the double-gyre
is a heavily simplified description of this flow, or that the resolution of the model is not high
enough. Even so, there is a clear indication of periodicity of LCSs along the straits which is
caused by tidal pumping.
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5.4.2 Monthly variability

LCS variations in April 2022 can be seen for member 0 of the Barents-2.5 EPS in Figure
22, whereas the monthly time average, F t, can be seen for multiple ensemble members in
Figure 23. It has been shown that there is a large variation over time in LCSs. This is
further reflected in F t, where there are no clearly defined curves representing average LCSs.
Rather, everything has been smoothed out. This means that there exists no LCSs in the
domain which stay in one location for a longer time. This is expected, as the LCSs are time
dependent and can either drift, emerge or dissipate over time.

One exception could be the LCS south of Vestfjorden, which resembles a smoothed out curve.
Looking back at Figure 22, this LCS is present at almost all time steps and only indicates a
small perturbation over time. This implies that the velocity field is rather persistent in this
location over time. However, F t still appear as a smoothed curve and not a very distinct
curve, indicating variability. This is further reflected by σFt , which indicate high positional
variability south of Vestfjorden.

The southern tip of LoVe also showcase persistent LCS formation. However, σFt surrounds
the whole southern tip. As such, σFt indicates that it is uncertain which side of the southern
tip LCS are formed on. It almost appears as if LCSs can swap what side of this tip they are
on. This variability can be caused by tides, as discussed in Section 5.4.1.

No clearly distinct persistent LCSs were detected by the monthly time average. However, F t

yields an indication over where LCSs frequently tend to form. Any high F t is accompanied
by a σFt , thus the variability over time is large. A different approach for detecting persistence
could be proposed, e.g. by selecting a particular LCS and studying how it evolves over time.
The LCSs lifetime, propagation distance, growth/dissipation-rate and shape evolution can
then be studied. There could be a connection between the size of an LCS and its longevity.

Dong et al. (2021) avoided averaging when studying the persistence of the transport barrier
along the continental slope. Instead, the authors defined a set of criterion for the existence
of this transport barrier and investigated the frequency of the criterion being fulfilled. I see
frequent LCS formation along the continental slope in F t that could be an indication of the
transport barrier in Dong et al. (2021). It is therefore plausible for this transport barrier to
exist in Barents-2.5 EPS as well, which had a finer spatial and temporal resolution than the
geostrophic current product used by Dong et al. (2021). However, the authors computed
repelling LCS using the Finite-Size Lyapunov Exponent, which generally do not coincide
with LCSs from the FTLE method by Karrasch and Haller (2013). Hence, we are technically
investigation different LCSs. Furthermore, separate LCSs are indistinguishable in F t. As
discussed in Section 3.7, it is uncertain whether F t consists of a few long, continuous and
long-lived LCSs along the continental slope, forming a transport barrier, or many short and
short-lived LCSs that material can drift between.

5.4.3 Seasonal variability

The seasonal differences between April and October are shown in Figure 25. Here, an average
over both time and ensemble members has been conducted, hence the LCSs are smoothed
out. LCSs are seen to form in very different locations for the two months.

The current velocities are shown to be higher in October, likely due to an increased baro-
clinic component of the flow as discussed in Section 3.2. Furthermore, Figures 25c and 25d
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indicates that the part of the NCC that flows into Vestfjorden flows closer to the coastline
during October. There is a correlation between the average monthly velocities in Vestfjorden
and the average LCSs, as average LCSs south and inside of Vestfjorden lay practically on
top of the average velocities for the two months.

The correlation between LCS and velocity field positions is not as apparent along the conti-
nental slope. It has been shown that there is a frequent LCS formation along the continental
slope in April, where the NwASC flows. However, there is practically no LCS formation in
the same region in October, even though the NwASC is still situated in the same location.
The ocean experiences surface heating during summer, which in turn makes the ocean more
stratified in October than in April, meaning that bottom topography has a larger impact
on surface currents in April. This decreased topographical steering in October could yield
less turbulent flows and small-scale flows which break off the main current, leading to less
LCS formation along the continental slope.

The increased appearance of LCSs in October between the continental slope and mainland,
north of LoVe, could be explained by the average current. There is a much more pronounced
splitting of the current here in October than in April. A splitting of the current could
potentially cause some turbulent flows which could give rise to LCSs, although this would
have to be investigated further to ascertain. On the other hand, April indicates more LCS
formation west the continental slope. Again, the currents shown in Figures 25c and 25d
indicate more activity here during April, which could explain increased LCS formation.

Both months indicate high LCS activity along the northern and southern tip of LoVe. The
currents should be affected similarly by the coastline for the two months. Thus the coastlines
is important for LCS formation throughout the whole year.

The overall behaviour of LCSs depends on season. Driving factors could be different wind
velocities, which exert different wind stress, current velocities and ocean stratification. Dong
et al. (2021) showed that there is a persistent LCS which appeared in April over multiple
years. As LCSs change depending on season, there could be an annual dependency on LCSs
as well. LCSs should therefore be studied for other months over multiple years to investigate
whether there is an annual trend in LCS formation for each month. Further investigation
for seasonal dependency and causes could be addressed in future studies.

5.5 Robustness and persistence

Both F t and Fm show enhanced LCS formation along the northern and southern tip of
LoVe, south of Vestfjorden and along the continental slope, seen in Figures 20 and 23. As a
result, these regions can be considered both robust and persistent. A common factor is that
the flow in these regions is steered by geomorphological features. As these are constant over
both ensemble members and time, it stands to reason that they exhibit both persistence
and robustness.

The region on the continental shelf of LoVe is known for high nutrient concentrations
(Sundby et al., 2013). LCSs are shown to frequently form along the continental slope,
both over time and ensemble members, which could form a transport barrier. This could
explain why nutrients are usually retained in this region.

Both averages also indicate that there are LCSs present in the deep ocean basin, west
of the continental slope. This region exhibit a higher degree of smoothing than the four
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aforementioned regions from the previous paragraph. This signifies that the LCSs here are
neither robust nor persistent, therefore the position and shape of LCSs in the deep ocean
basin are highly uncertain.

Figure 28: Zoom on the thin but distinguishable structure in Fm from Figure 20. This structure
is found in the top region of the LoVe domain on April 14, 2022.

There are some features which appear to only be robust, not persistent. An example of one
such feature is the thin LCS seen in the top of the domain on April 14, which has been
enlarged in Figure 28. Here, a thin and distinguishable LCS is present in Fm, which is not
present on any of the other dates. The fact that this LCS is so thin, compared to many of
the other thick LCSs in Fm, signifies that most ensemble members predicted this particular
LCS to exist at this exact location on this day. This is further confirmed by σFm , which
indicates little to none variability around this LCS. This LCS is completely gone in F t. Thus
it is robust for the particular date, but not persistent.
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Figure 29: Distributions of FTLE values in the LoVe domain. a) distribution for ensemble member
18 in the Barents-2.5 EPS over time. Red graph is the distribution of F t, whereas the green graph
depicts the average distribution in the domain over time. Green shaded region shows the standard
deviation from the average over time. b) Distribution of FTLE values on April 4, 2022, for all
ensemble members in the Barents-2.5 EPS. Purple graph is the distribution of Fm at this time,
whereas the gray and light-gray show the average distribution over ensemble members and standard
deviation from this average respectively.

Generally, the time average F t is smoother than the ensemble average Fm, as seen in Figures
20 and 23. This is also reflected in the standard deviations, where σFt is larger and has a
wider spatial extent than σFm . This signifies that there is a larger variability over time than
over ensemble members. Another way to look at this is through the distribution of FTLE
values in the domain, shown in Figure 29. Here, the distributions in Figure 29a represent
FTLE values at different times for ensemble member 18, whereas the distributions in Figure
29b are FTLE values for all ensemble member for a selected date. These distributions yield
information about the FTLE values, but do not yield information about position of LCSs
and the values are dependent on parameter choices as discussed in Section 5.2.

The most frequent FTLE values for the individual times and ensemble members are centered
around ≈ 0.017h−1 in Figure 29. Attracting LCSs of interest in Figures 19 and 22 all have
values higher than 0.05h−1. The central value in Figure 29 therefore signifies negligible
LCSs or the space between two LCSs. From the distributions it can be concluded that
higher FTLE values, therefore also more dominant LCSs, are less likely to occur in the
system.

The individual distributions resemble some form of Rayleigh distributions. However, the
distributions of Fm and F t are Gaussian distributed. This transformation can be explained
by the Central Limit Theorem, which states that given a sufficiently large sample of the
population the distribution of the mean of the sample will converge towards a normal dis-
tribution (Kwak and Kim, 2017). The distributions of Fm and F t indicate that the most
frequent FTLE value has shifted higher, and the smoothing by the average has resulted in
fewer negative and high FTLE values.

The standard deviation yields information about the robustness and persistence of LCSs.
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This standard deviation is generally larger over time than over ensemble members in Figure
29. This emphasizes the notion that there is higher variability over time than across ensemble
members, which is why F t is smoother than Fm in Figures 20 and 23.
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6 Summary and conclusions

LCSs provide a Lagrangian diagnostic tool for describing the properties of a velocity field. A
solid mathematical LCS theory has been built in previous studies, and LCSs have previously
been applied practically to understand fluid transport. However, it is well known that the
ocean is a chaotic flow system, which has large implications on flow field uncertainty and
thus also other Lagrangian methods. Uncertainty should therefore arise in LCSs as well.

Utilizing the FTLE method, I have developed a software for hyperbolic LCS detection.
Attracting hyperbolic LCSs have then been computed and their influence on particle tra-
jectories has been investigated, first in a simple analytical system, then in a realistic model.
LCSs are known to only be valid for the time interval they are computed over, thus their
influence on particle trajectories comes into question given their potentially short lifetime.
LCSs are shown to affect particle trajectories in both systems, although having a more im-
mediately apparent influence in the analytical system. The reason for this might be that
flow structures, and thus also LCSs, are prone to emerging and disappearing in the realistic
model but not in the simple analytical system. Particle trajectories could therefore have
been affected by LCSs which existed at previous times.

Averaging over LCSs has been proposed as a method for assessing their robustness and
persistence. LCSs are shown to be fairly robust in some parts of the region of study.
Specifically, ensemble members predict similar LCSs in locations where the ocean current is
steered by coastlines and bottom topography. These robust LCSs are therefore considered
to be certain at that particular time. Locations where LCSs are predicted by the ensemble
members, but the position and shape of these is uncertain, have also been shown. In such
cases, averaging between ensemble members yields large regions where LCSs are more likely
to exist.

Due to their time-dependent nature, as well formation and dissipation of flow structures in
the turbulent ocean, LCSs have shown to have a smaller degree of persistence. Persistence
of LCSs has been investigated in the realistic model over three timescales: daily, monthly
and seasonal. A daily variation of LCSs has been shown to occur around the straits in the
southern tip of LoVe. This daily LCS variation is periodic and is tightly dependent on the
tidal phase. Tides cause tidal pumping through the straits, thus creating specific currents
in this location which have large implications on LCSs. No clearly distinguishable monthly
persistent LCSs have been detected, although the smooth average indicate that they form
frequently along the continental slope, south of Vestfjorden and around the northern and
southern tips of LoVe. Finally, it has been shown that large seasonal differences occur.
This happens most likely due to differences in current strength, the currents location with
regards to the coastline and the amount of bathymetry steering, which is more influential
when the vertical water column is weakly stratified. Seasonal and annual persistence should
be studied further.

The averaging conducted in this study was able to detect clearly distinguishable robust
LCSs, as well as regions where LCSs are frequently form over the ensemble or time. This
does not necessarily mean that LCSs are formed in regions indicated by the average at
every time step. The smoothed time average makes sense, as LCSs are able to move around
with the flow. Therefore it is possible that LCSs persist, but are not clearly distinguishable
in the average because they drift. A method for selecting a particular LCS and following
its time-evolution should therefore be considered, e.g. a similar criterion method as Dong
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et al. (2021). Furthermore, future studies could investigate whether there is a connection
between LCS size, shape and lifetime. Their lifetime, as well as distance propagated during
the lifetime, could yield important information about LCS spatiotemporal persistence.

LCSs have proved effective at describing material propagation in a simple analytical system.
In the turbulent ocean model, material is shown to generally be steered by LCSs as well.
LCSs proved to be robust to a certain degree, meaning that models predict LCSs similarly,
thus they are certain. However, there exists a multitude of non-robust LCSs as well. As
such, LCSs do not circumvent the non-linearity and uncertainty issue, and an EPS should
be used for an LCS forecast, similarly to other probabilistic forecasts.

Further studies on the persistence of LCSs are necessary and their evolution over time is
uncertain. The accuracy of an LCS forecast is therefore uncertain. However, due to their
effect on transport and their robustness, LCSs could be considered as a tool for now-casting,
i.e. predicting where material is most likely located right now, when we do not care where
it has been or will be in a couple of days. LCS now-casting could therefore prove useful in
e.g. locating drifting debris, oil-spill and contamination.
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A Appendix A: Double-Gyre

Figure 30: Repelling hyperbolic LCSs in double-gyre system. Computed for t = 0 over a
time interval T = 5, with parameters A = 0.25, ϵ = 0.25 and ω = 2π
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Figure 31: Repelling hyperbolic LCSs in double-gyre system. Computed for t = 0 over a
time interval T = 10, with parameters A = 0.1, ϵ = 0.25 and ω = 2π/10.
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Figure 32: Attracting hyperbolic LCSs in time-independent double-gyre system, with ϵ = 0.
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B Appendix B: Barents-2.5 EPS

B.1 Tidal effect

Figure 33: Daily variability of LCSs around the southern tip of LoVe for member 2.

78



Figure 34: Daily variability of LCSs around the southern tip of LoVe for member 3.
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B.2 Attracting hyperbolic LCSs for October

Figure 35: Attracting LCSs for October 6. 2022 using velocity fields from the eight first
members of the Barents-2.5 EPS.
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Figure 36: Fm for four dates in October 2022, and corresponding σFm .
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Figure 37: Attracting LCSs for eight dates for member 0 of the Barents-2.5 EPS for October.
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Figure 38: F t over October for four members in the Barents-2.5 EPS, and corresponding
σFt .

C Appendix C: GitHub Link

The software developed for computing LCSs in this thesis is available on https://github.com/
mateuszmatu/LCS.
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D Parabolic and Elliptic LCSs

Parabolic LCSs in atmosphere of Jupiter: https://epubs.siam.org/doi/suppl/10.1137/
140983665/suppl_file/chevron_movie.mov

Elliptic LCSs in atmosphere of Jupiter: https://epubs.siam.org/doi/suppl/10.1137/
140983665/suppl_file/grs_movie.mov

Both LCSs computed and videos created by Hadjighasem and Haller (2016).
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