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Abstract

Mixed-phase clouds are substantial contributors to the modulation of
precipitation and the radiation budget, particularly in the Arctic where
they are ubiquitous throughout the year. One important characteristic of
mixed-phase clouds is the degree to which they can actually be considered
mixed, as opposed to having ice and liquid spatially separated in so-
called pockets. Despite the wide range of implications, few attempts
have been made to quantify the nature of such pockets. In this thesis,
spatial heterogeneity is investigated through a case study of an Arctic
mixed-phase cloud field occurring 12 November 2019 in Ny-Ålesund,
Svalbard. The case study is modelled with the Weather Research and
Forecasting model, constrained with representative ice nucleating particle
concentrations (INPC) and cloud droplet number concentrations (CDNC)
following measurements conducted during the Ny-Ålesund Aerosol Cloud
Experiment field campaign. Cloud heterogeneity is evaluated from two
perspectives – in terms of (i) droplet size and (ii) phase. For perspective
(i) a machine learning algorithm is applied to detect heterogeneity of
in-situ droplet size distribution measurements. Large variations in
droplet size distributions are detected even on the meter scale, and
a apparent relationship between droplet size and ice concentration is
revealed. For (ii), two new methods are developed for quantification
of cloud-top phase heterogeneity in the model. It is found that the
spatial scales of genuine mixing at cloud-top are particularly sensitive
to INPC and CDNC, and are heavily influenced by external forcing,
particularly from topography. Furthermore, it is showed that WRF
severely underestimates ice concentrations when constrained to the clean
conditions often measured in remote, pristine environments such as the
Arctic. Inclusion of several secondary ice production (SIP) pathways
helped to ameliorate the discrepancy, although not sufficiently. Improved
knowledge of the SIP mechanisms is needed to better represent Arctic
mixed-phase clouds in models.
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CHAPTER 1

Introduction

Mixed-phase clouds present a complex system of water in all three phases
as solid, liquid and gas. They are observed across all latitudes and seasons
(Shupe et al., 2008) owing partly to the broad range of temperatures between
approximately -38 and 0◦C at which they can form and exist.

Mixed-phase clouds play an important role in the radiation balance, particularly
in the Arctic and over the Southern Ocean where they are ubiquitous throughout
the year (Dong and Mace, 2003). This includes a negative shortwave effect due
to reflection of incoming solar radiation as well as a predominantly positive
longwave effect as a result of intercepted outgoing thermal radiation from the
ground. The net radiative impact depends on macroscopic factors such as
cloud base altitude or cloud top temperature, but the radiative properties are
also largely dependent on the clouds’ microphysical composition. The balance
between supercooled liquid and ice is important because a liquid cloud is more
reflective than a glaciated cloud of the same given total water content due to
the smaller and more numerous cloud droplets (Sun and Shine, 1994). The
size distribution of cloud droplets is also central as a cloud of generally smaller
droplets appears optically thicker than a cloud of larger droplets given the same
total water content (Lohmann, Lüönd et al., 2016). Knowledge of what controls
the ice-liquid-interactions and microphysical properties of mixed-phase clouds
is thus, essential to ultimately understand the Arctic climate system.

In order for ice to form in mixed-phase clouds, a small subset of atmospheric
aerosols called ice nucleating particles (INPs; e.g. Pruppacher and Klett,
1997; Vali et al., 2015) are required. As such, INPs play a critical role in the
concentration of ice in mixed-phase clouds and more generally in weather and
climate by facilitating the microphysical and dynamic processes that follow
the production of ice (Burrows et al., 2022). However, the number of ice
crystals in clouds has been observed to exceed the number of INPs by up to
four orders of magnitude (Auer et al., 1969). This discrepancy is typically
attributed to secondary ice production (SIP), describing all processes where
already nucleated ice initiates further ice production (Ladino et al., 2017).
Several SIP mechanisms have been studied over the past decades (e.g. Hallett
and Mossop, 1974, Vardiman, 1978, Phillips et al., 2018, Field et al., 2017),
but despite their proposed importance for the prevalence of ice in clouds, the
physical basis remains poorly understood (Field et al., 2017).

Due to the difference in saturation vapor pressure over liquid and ice, the mixed-
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1. Introduction

phase cloud system is thermodynamically unstable and thus, ice crystals may
grow at the expense of the supercooled liquid droplets in a process referred to
as the Wegener-Bergeron-Findeisen (WBF) process (Bergeron, 1928; Findeisen,
1938; Wegener, 1911). This has significant impacts on the properties of mixed-
phase clouds, such as lifetime, precipitation rates and composition. However,
the WBF process only acts on the microphysical level and is thus dependent
on the spatial distribution of liquid droplets and ice particles within the cloud.
Mixed-phase clouds may either be homogeneously mixed with ice and liquid
uniformly distributed throughout the cloud, or conditionally mixed if the ice and
liquid is clustered into separated single-phased pockets (Korolev and Milbrandt,
2022a). Spatial separation of the phases would act to severely inhibit the
efficiency of the WBF process. Therefore, the microphysical structure of the
clouds is important for accurate simulations of cloud macrophysical properties,
precipitation, and radiation in numerical weather prediction (NWP) models as
well as earth system models (ESMs).

Both reanalysis products, NWP models, and ESMs frequently underestimate
the amount of supercooled liquid water in mixed-phase clouds (Komurcu et al.,
2014) causing large errors in annual mean downwelling shortwave radiation in
both the Arctic and Southern Ocean (Bodas-Salcedo et al., 2016; Naud et al.,
2014; Vergara-Temprado et al., 2018). The partitioning of ice and supercooled
liquid within clouds is commonly represented in ESMs effectively only as a
function of temperature, and the point of equal abundance differs between
models by up to 40◦C, contributing substantially to the uncertainties in high-
latitude cloud feedbacks (McCoy et al., 2015). Furthermore, for models that do
not employ simple temperature-dependent phase functions, parametrizations of
the WBF process typically assume genuine homogeneous mixing of the phases
within cloudy grid cells (Storelvmo et al., 2008). However, observations show
that such mixtures rarely occur in nature (Korolev et al., 2003) and that the
phases may be separated at scales much smaller than the typical grid resolution
used in NWP (Korolev and Milbrandt, 2022b). This indicates that models may
overestimate the efficiency of the WBF process, yielding a too rapid depletion
of the supercooled liquid. A better understanding of the factors that influence
and drive the mixed-phase processes is thus of vital importance to improve
the representations of mid- and high-latitude clouds in models and to reduce
uncertainties related to cloud feedbacks in future climate projections.

This thesis is centered around a case study from November 12, 2019 of an Arctic
mixed-phase cloud, which was extensively measured during the Ny-Ålesund
Cloud Experiment (NASCENT; Pasquier, David et al., 2022). The case is
modelled with the Weather Research and Forecasting (WRF; Skamarock et al.,
2019) NWP model on three domains of unequal extent and resolution, applying
a state-of-the-art cloud microphysics parameterization scheme (Morrison et al.,
2009) to simulate a wide range of cloud properties. Measurements of INPs
and cloud droplets were conducted during the campaign and are used here
to constrain the model with realistic aerosol concentrations. Furthermore, in-
situ observations of cloud hydrometeors were obtained through digital in-line
holography (Ramelli et al., 2020), providing high-resolution size distribution
data of both cloud ice and liquid. The combination of model and in-situ
observations allows for assessment of cloud microphysics at scales ranging from
hundreds of kilometers down to a few meters.
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1.1. Outline

The overarching goal of this thesis is to assess the spatial distribution of cloud
ice and supercooled liquid within mixed-phase clouds during this case study.
The spatial scales of single-phase pockets (conditionally mixed cloud) and
mixed-phase pockets (genuinely mixed cloud) will be quantified in both the
modelled and observed cloud field to evaluate the degree of which mixed-phase
clouds are actually mixed. Through this process, the thesis will attempt to
address the three main research questions summarized in Box 1 below.

• Research Question 1
How often and under which conditions does a state-of-the-art NWP
model produce genuinely mixed-phase clouds, and how well does it
compare to in-situ observations?

• Research Question 2
How does the model simulate the spatial distribution of cloud phases
in an Arctic mixed-phase cloud, and what is the sensitivity to INP
and cloud droplet concentrations and parametrizations of SIP?

• Research Question 3
How homogeneous are observed cloud droplet size distributions on
the meter- to kilometer-scale and how much are they influenced by
the presence of ice?

1.1 Outline

The rest of the thesis is organised as follows:

Chapter 2 covers the main theoretical background relevant for this thesis.

Chapter 3 gives a brief description of the setting and location of the analysed
case study.

Chapter 4 introduces the instruments from which measurements were collected,
as well as the methods used for analysis of the observational data.

Chapter 5 gives a description of the model, experiment setup, and the
algorithms developed for analysis in this thesis.

Chapter 6 presents the general results of the modelling study from a statistical
point of view.

Chapter 7 features the results following the implementation of a new algorithm
to quantify the spatial intermittency of the cloud phases.

Chapter 8 evaluates the variability of cloud droplet size distributions through
application of machine learning techniques.

Chapter 9 yields a summary of the key points put forth in the thesis, and
presents suggestions for further work on the subject.

Appendix A features results and sensitivity tests from validation of the machine
learning algorithm used for size distribution analysis.
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1. Introduction

Appendix B gives a statement on the availability of the computer code
developed for analysis in this thesis.
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CHAPTER 2

Theory

2.1 Cloud microphysics

This section provides a brief description of the cloud physics background relevant
to this thesis, including droplet and ice crystal formation, the Wegener-Bergeron-
Findeisen process and secondary ice production.

2.1.1 Droplet nucleation and growth

Clouds are formed when air parcels containing water vapor are brought beyond
saturation such that condensation into liquid droplets becomes the most stable
energy state of the water. It can be shown that the equilibrium vapor pressure
es over a planar surface of liquid water yields the (simplified) temperature-
dependent Clausius-Clapeyron equation (Clapeyron, 1834; Clausius, 1850);

des

dT
= Lves

RvT 2 (2.1)

where T is the air temperature, Lv is the specific latent heat of evaporation of
water and Rv is the ideal gas constant of water vapor. Equation 2.1 can be
solved explicitly for es analytically;

es = es0 exp( Lv

RvT0
− Lv

RvT
) (2.2)

where es0 and T0 are the saturation vapor pressure and temperature at some
reference point (Ambaum, 2020). It follows that the amount of water vapor the
air can hold before reaching its theoretical maximum increases exponentially
with temperature. The strong dependence on air temperature explains why
most clouds form only when sufficient cooling occurs, for instance through
expansion following adiabatic lifting or through emission of longwave radiation.

Liquid water exhibits strong intermolecular hydrogen bonds, which gives rise to
a surface tension energy barrier that must be overcome before water droplets
can form from the vapor state as given by Equation 2.3 (Wallace and Hobbs,
2006),
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2. Theory

∆E = 4πR2
dσ − 4

3πR3
dnkT ln e

es
(2.3)

where Rd is the radius of the droplet, σ is the interfacial energy between vapor
and liquid, n is the concentration of water molecules and k is the Boltzmann
constant. The first term is given by the surface tension of water, and is
thus always positive and proportional to the total surface area of the droplet.
The second term expresses difference in internal energy per water molecule of
the liquid and gaseous phase, and is therefore dependent on the water vapor
saturation. Solving for the critical droplet radius R = Rc at which point the
droplet is in (unstable) equilibrium with its surroundings yields the Kelvin
equation (Thomson, 1872);

Rc = 2σ

nkT ln e
es

(2.4)

The Kelvin equation determines the droplet radius after which any further
increase in supersaturation will cause the droplet to grow unconditionally and
is said to become activated. The energy barrier is in practice large enough that
water droplet embryos are never able to develop and grow homogeneously into
cloud droplets in Earth’s atmosphere (Wallace and Hobbs, 2006). The presence
of foreign particles in the air acts to lower the critical supersaturation threshold
and cloud droplets consequently form through heterogeneous nucleation in
natural clouds. Cloud Condensation Nuclei (CCN), a small subset of typically
soluble aerosol, serve as host surfaces on which water vapor can condense. Once
dissolved, the dissociated ions of the soluble substance act to strengthen the
molecular bonds within the liquid and therefore lower the saturation pressure
over the droplet’s surface. The fractional amount of lowered saturation water
vapor pressure over the solute compared to a droplet of pure water e′

e is given
by Raoult’s equation (Raoult, 1889);

e′

es
=

[
1 + imMw

Ms( 4
3 πR3ρ′ − m)

]−1
(2.5)

where m is the mass, ρ′ the density and i the Van’t Hoff factor of the dissolved
CCN, and Ms and Mw are number of moles of the CCN and pure water,
respectively. Combining Kelvin’s equation 2.4 and Raoult’s equation 2.5 one
obtains the Köhler equation (Köhler, 1921) describing the growth of a water
droplet containing soluble substances;

e′

es
= exp( 2σ′

n′kTR
)
[
1 + imMw

Ms( 4
3 πR3ρ′ − m)

]−1
(2.6)

The strong impact of CCNs on the activation and growth of cloud droplets
means that the CCN concentration (CCNC) of the environment determines
many cloud properties. Higher CCNC, such as typically found in continental
air masses as compared to maritime air (Pruppacher and Klett, 1997), lead to
more activated droplets and a stronger competition for water vapor (Lamb and

8



2.1. Cloud microphysics

Verlinde, 2011). As a result, polluted air masses typically facilitate clouds with
smaller and more numerous droplets compared to cleaner air masses, which can
have significant implications for the cloud albedo, lifetime, and precipitation
rates (eg. Albrecht, 1989; Barthlott et al., 2022; Lohmann, Lüönd et al., 2016;
Twomey, 1974).

2.1.2 Ice nucleation and growth

Analogous to the Clausius-Clapeyron equation (Eq. 2.1) one can obtain explicitly
an equation for the saturation ratio for supercooled water in the presence of ice
(Ambaum, 2020);

e

ei
= exp( Lm0

RvT0
− Lm

RvT
)
(T0

T

) cpl−cpi
Rv (2.7)

where Lm is the latent heat of melting and cpl and cpi the isobaric heat capacity
of liquid and ice, respectively. As with liquid droplets, the nucleation of ice
particles requires some excess energy barrier to be overcome, even if the solid
state is thermodynamically favored, related to the rearrangement of its molecules
into a lattice. Similar to cloud droplets ice particles are theoretically capable of
nucleating homogeneously and directly from the vapor phase, but it requires
temperatures below -65◦C and supersaturations above approximately 1000%
(Houze, 2014) and so does not occur naturally in the atmosphere. Instead
homogeneous nucleation of ice occurs indirectly via the liquid phase through
freezing of an already condensed cloud droplet. Theoretical descriptions of ice
growth are more complicated than for droplets due to the irregular habits of ice
crystals. One common simplification is to instead consider a smallest inscribed
sphere of radius Ri around the crystal. Its properties are then modified by
two habit-dependent and often empirically determined constants αi and βi to
correct for irregularities in its volume and surface area, respectively. Similar to
Kelvin’s Equation (Eq. 2.4), the critical crystal radius for ice nucleation from
the liquid phase is then given by Equation 2.8;

Ri = 2βiσi

αinikT ln es

esi

(2.8)

Growth of an ice embryo to the critical nucleation radius requires temperatures
below -38◦C when freezing occurs homogeneously (Pruppacher and Klett, 1997),
but ice nucleation may be initiated heterogeneously at much higher temperatures
with the aid of ice nucleating particles (INPs) (Kanji et al., 2017). Heterogeneous
nucleation is typically subdivided into three modes of action (Vali et al., 2015):

1. Deposition nucleation – nucleation occurring directly from the vapor phase
as water vapor deposits onto the INP.

2. Freezing nucleation: immersion freezing – nucleation occurring from the
liquid phase if the INP is already collected by the water droplet and ice
starts to grow around it.
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2. Theory

3. Freezing nucleation: contact freezing – nucleation occurring upon contact
when an already existing droplet collides with an INP.

The main characteristic of a good INP is typically that to some extent it
mimics the structure of the ice lattice and that it is virtually insoluble in water,
such as some mineral dusts. Ice nucleation has been hypothesized to occur
at impurities on the surface of the INP at so-called ice active sites (Kiselev
et al., 2017; Pruppacher and Klett, 1997). The probability of nucleation by the
INP then scales with the size of the particle, as the probability of the presence
of an ice active site is greater (Kanji et al., 2017). However, ice nucleating
activity has also been discovered in soluble and biological macromolecules from
sources including fungal species, bacteria and pollen (Pummer et al., 2015).
Studies suggest that ice nucleation at temperatures in the range -38 to -15◦C is
dominated by mineral dusts whereas freezing at higher temperatures requires
the presence of INPs from biological sources (Murray et al., 2012). The number
of particles that can act as INPs in a given volume of air is therefore first
and foremost a function of air temperature as INPs become active at different
sub-zero temperatures (DeMott et al., 2010).

The INP number concentration (INPC) is typically several orders of magnitude
smaller than the CCNC, and varies greatly both spatially and temporally
(Wallace and Hobbs, 2006). The production of ice in clouds can therefore
be severely inhibited when the cloud temperature is above the homogeneous
freezing range and few INPs are present. INPs are also efficiently removed
from the atmosphere because of their ability to facilitate precipitation via ice
nucleation. The lifetime of an efficient INP is therefore limited and the INPC is
strongly dependent on the proximity to its sources (Leck and Svensson, 2015).

2.1.3 The Wegener-Bergeron-Findeisen process

Combining Equations 2.2 and 2.7 one can obtain the difference in saturation
vapor pressure with respect to liquid esl and ice esi shown in Figure 2.1. The
saturation vapor pressure is greater over a plain surface of supercooled liquid
than over ice for any given temperature below the melting point due to the
stronger molecular bonds in the solid lattice. This difference in vapor pressures
means that liquid droplets may evaporate and ice crystals grow simultaneously
for certain relative humidities and temperatures, through what is called the
Wegener-Bergeron-Findeisen (WBF) process (Bergeron, 1928; Findeisen, 1938;
Wegener, 1911).

It is now known that the majority of precipitation reaching the surface originates
from the ice phase (Mülmenstädt et al., 2015), and the WBF process, where
ice grows rapidly at the expense of liquid, has long been proposed as a major
contributor (eg. Findeisen, 1938; Lau and Wu, 2003; Wallace and Hobbs,
2006). By definition, the WBF process occurs only when esl > e > esi as the
liquid and ice will both evaporate (grow) for vapor pressures above (below)
the given range (Korolev, 2007). Korolev and Mazin (2003) showed that vapor
pressures in this range can be related to updraft velocities using quasi-steady
supersaturation approximations for mixed-phase clouds. The updraft must be
strong enough (positive upwards) for ice to grow but not strong enough that a
positive supersaturation with respect to liquid is sustained. Thus the updraft uz,
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2.1. Cloud microphysics

Figure 2.1: Temperature dependence of saturation vapor pressures in Pa over
a plain surface of liquid water (light blue, dashed), ice (dark blue, dashed)
and the difference between them (red, solid). Arrows indicate the associated
ordinate axis. Figure from Nath and Boreyko (2016).

in combination with concentrations of ice and liquid, yields boundary conditions
for when WBF may occur, which is useful for parameterizations of WBF in
numerical weather and climate models (Storelvmo and Tan, 2015).

2.1.4 Secondary ice production

From field observations it has long been evident that there can be large
discrepancies of several orders of magnitude between the observed ice crystal
number concentrations (ICNC) and INPC in clouds (Auer et al., 1969; Kanji
et al., 2017). The main mechanism proposed to bridge the gap from INPC to
ICNC is secondary ice production (SIP), describing the process of producing
new ice particles from already nucleated ice (Ladino et al., 2017).

Several SIP pathways have been proposed, of which rime splintering, or the
Hallett-Mossop process (HM; Hallett and Mossop, 1974), has received the most
attention (Field et al., 2017). HM is proposed to occur when a supercooled liquid
droplet collides with a much larger rimed ice crystal causing the droplet to freeze
and shatter, producing several new ice splinters that may subsequently grow.
Physical descriptions remain elusive but the process has been well supported by
in-situ observations and laboratory studies indicating that HM is most active
in the temperature range of -8 to -3◦C (Field et al., 2017).

Droplet shattering (DS) is another proposed mechanism for SIP wherein a large
drizzle-sized liquid droplet nucleates from the outside for example via contact
nucleation. As the outside freezes and expands, pressure builds in the still
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2. Theory

liquid interior of the droplet causing it to eventually break and emit several new
ice particles into the interstitial air (Keinert et al., 2020; Lauber et al., 2018).
While the process is efficient in convective cloud regimes or in orographically
induced clouds (Georgakaki et al., 2022; Lauber et al., 2021) where large frozen
drops can be suspended in air for longer, previous modelling studies have found
it to be less substantial in polar stratiform clouds (Fu et al., 2019; Sotiropoulou
et al., 2020).

SIP has also been found to occur without the presence of liquid through collision
fragmentation, also referred to as mechanical breakup (BR), which may occur
when two larger ice crystals collide and break up as described in Vardiman, 1978.
BR may operate at a wide temperature range with a maximum efficiency around
−15◦C (Mignani et al., 2019), and is proposed to be particularly important
when temperatures are too low for HM to occur (Sotiropoulou et al., 2020).

2.1.5 Some Common Cloud Measures

Mass concentrations of cloud water are usually quantified through the mixing
ratio parameter q, which is computed as the mass ratio of ice, liquid, or both,
to air. With a given dry air density ρd one can also compute the volume of air
to get water contents (WC) in units of g/m3. The WC of ice and liquid defines
the ice and liquid water content (IWC, LWC, respectively) of the cloud,
respectively. The sum of IWC and LWC is defined as the (condensed) total
water content (TWC). Ice and liquid water path (IWP, LWP, respectively)
are obtained through vertical integration of IWC and LWC, respectively. They
yield a measure of the total ice or liquid cloud water content in a column of air,
which is particularly relevant for the radiation balance.

Ice water fraction (IWF) is a commonly used measure of the balance between
frozen and liquid water in clouds. It is calculated according to Equation 2.9 as
the ratio of IWC to TWC;

IWF = IWC
TWC (2.9)

Depending on the focus of the study, the inverse version of Equation 2.9 defined
by taking the ratio of LWC to TWC is also commonly used, and is referred to
as the supercooled liquid fraction (SLF). This thesis will refer to IWF as the
main quantity for ice-liquid-balance in the following analysis.
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CHAPTER 3

Case Study Background

3.1 The NASCENT campaign

The data in this thesis was collected during the Ny-Ålesund Cloud Experiment
(NASCENT; Pasquier, David et al., 2022), which was conducted between
September 2019 and August 2020 in Svalbard, Norway. During the
campaign, atmospheric measurements regarding aerosols, clouds, radiation,
and meteorological properties were performed at five different sites around
Ny-Ålesund. Ny-Ålesund is a former mining town now dedicated to Arctic
research on the west coast of Spitsbergen. The town is situated at the South-
Western coast of Kongsfjorden with several steep mountains surrounding it
that significantly influences the observed wind directions close to the surface
(Figure 3.1). Homogenized wind profiles obtained from radiosondes presented
in Maturilli and Kayser (2017) show a clear effect of wind channeling through
Kongsfjorden, with predominantly South-Easterly winds in the lowest 1000
meters contrary to the typically westerly winds higher up. Local weather
patterns are also influenced by the proximity to large areas of open water off the
south west coast of Svalbard providing a source of diabatic heating particularly
in wintertime (Serreze et al., 2011).

The data used for analysis in this thesis, including INPCs from air samples
and in-situ measurements of droplet and ice size distributions, are described in
Chapter 4.

3.2 Meteorological setting

The case study considered in this thesis comprises measurements from 9-12
November, 2019 in the high Arctic that were made during the polar night
with no direct incoming sunlight. The weather pattern during the period was
shaped by a warm front that passed over Ny-Ålesund on 11 November shown
in Figure 3.2. As the front passed over and left Ny-Ålesund in the warm sector
behind it a pronounced air temperature increase was seen at the surface, with
temperatures going from below -10◦C on 10 November to relatively stable
temperatures varying between -3◦ and 0◦C on 12 November (Figure 3.3, upper
panel). The ground was covered by snow throughout the period and the snow
depth increased from about 11 cm on 9 November to 17 cm on 12 November.
There were several snow showers on all days except 11 November. 12 November
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3. Case Study Background

Figure 3.1: Topographic map of Ny-Ålesund with the measurement locations
from the NASCENT campaign superimposed. Bar lengths and directions give
the frequency of occurrence of each wind speed interval (colored) from each
wind direction, respectively. Figure from Pasquier, David et al. (2022).

in particular saw many short but intensive showers, with a total of about 6 mm
of liquid water equivalent precipitation adding about 4 cm to the accumulated
snow depth.
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3.2. Meteorological setting

Figure 3.2: Weather map for Svalbard on 12 November 2019 at 06 UTC, showing
the estimated location of the warm front relative to measurement location at Ny-
Ålesund (red triangle). Also shown is relative humidity (green filled contours)
and air temperatures at 1000 hPa (colored contours). Model data is from the
MEPS weather maps (Hellmuth and Hofer, 2019), and figure is from Pasquier,
David et al. (2022)

Figure 3.3: Weather observations from the Norwegian Met Office’s meteoro-
logical station ’SN99910’ at Ny-Ålesund during the case study. Upper panel
shows hourly observations of air temperature at 2 meters above ground (black)
and the surface air pressure reduced to sea level (grey). Lower panel shows
daily snow depth (black) and 24-hourly accumulated precipitation (grey).
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CHAPTER 4

Observational Methods

4.1 Instruments

4.1.1 Holographic imager

HoloBalloon (Ramelli et al., 2020) is a tethered balloon system designed to
carry the HOLographic Imager for Microscopic Objects 3B (HOLIMO3B).
HOLIMO3B provides high resolution droplet size distributions, which can be
used to examine the spatial homogeneity of the cloud. It has a sample volume
of approximately 18.6 cm3 and uses digital in-line holography to size and count
all of the hydrometeors larger than 6 microns within this volume. Due to the
difference in shape between cloud droplets and ice crystals, all hydrometeors
larger than 25 microns were classified as either cloud droplets or ice crystals
using a convolutional neural network (Touloupas et al., 2020). The case study
for this thesis took place on November 12 2019, when the HoloBalloon platform
measured during three separate flights at altitudes up to about 850 m MSL.
During these flights, the holograms were captured at a frame rate of 6 holograms
per second.

Figure 4.1: The HoloBalloon platform (a), with the HOLIMO3B instrument
setup (b). Figure from Ramelli et al. (2020).
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4. Observational Methods

4.1.2 INP measurements

Air samples during the NASCENT campaign were taken with a high flow-
rate aerosol-to-liquid impinger (Coriolis µ, Bertin Instruments, France). The
impinger collects aerosols larger than 0.5 µm by rotating the air within a
sterilized plastic cone with distilled water at high speeds, with a collection
efficiency of 50%, 80% and 94% for 0.5, 2 and 5 µm particles, respectively
(Wieder et al., 2022). It was active for one hour per measurement and operated
at a flow-rate of 300 L min−1, sampling a total volume of 18 m3 each time. The
INP concentrations within the air samples were measured with the Droplet Ice
Nuclei Counter Zürich (DRINCZ) developed by David et al. (2019). DRINCZ
consists of a back-lit temperature controlled ethanol bath, a submerged PCR
tray slot, a USB web camera and a pump to keep the bath level constant
(David et al., 2019). The sterilized PCR tray contains 96 wells each filled with
50 µL of the liquid sample and is covered by a sterilized plastic film to avoid
contamination. The tray is lowered into the ethanol bath and the temperature is
incrementally decreased from -2◦C down to -32◦C or until all wells are frozen, at
a fixed rate of 1◦C. The web camera takes a picture for every 0.25◦C interval. As
a well freezes the intensity of the light from the back-lit panel changes abruptly.
By the end of the run, the two adjacent pictures that recorded the highest
intensity difference for each well separately gives the freezing temperature of
the given well. The INPCs (following Vali, 1971) for each temperature interval
are then estimated based on the recorded freezing temperatures of all 96 wells.

4.2 The KS-clustering algorithm

The KS-clustering algorithm, henceforth referred to as the KSC algorithm, was
first described by Allwayin et al. (2022) and developed specifically for data
collected during the ACE-ENA campaign (Wang et al., 2022) with the aircraft-
mounted HOLODEC instrument (Fugal et al., 2004). This thesis implements a
revised version, which is adapted to fit holographic data from the NASCENT
campaign. The data analysed in this thesis was obtained with the HoloBalloon
instrument (Section 4.1.1), which stays at a roughly fixed location in the air
and measures as the cloud passes through. This yields a spatial resolution
dependent on the wind speed w and measurement frequency f , which in sum, is
much higher than for research flights. For instance with the mean wind speed
on November 12, 2019 of roughly 10 m/s, HoloBalloon yields a spatial resolution
of 1.7 meters which is almost 18 times higher than during ACE-ENA.

The two major components of the KSC algorithm are the Kolmogorov-Smirov
(KS) test and automated unsupervised clustering, which are described in detail
below in Sections 4.2.1 and 4.2.2, respectively. The rest of this section covers
details on the implementation of each component as well as the synthesis of the
full algorithm and the choices made to get the results presented in this thesis.

4.2.1 The KS-test

The Kolmogorov-Smirnov (KS) test is a popular non-parametric statistical
method that is frequently used to evaluate whether a given set of observations
is plausibly derived from a known probability distribution (Kolmogoroff, 1941).
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4.2. The KS-clustering algorithm

The two-sample variant of the test, which enables comparison of two independent
sets of observations, is particularly advantageous as it does not require any
a priori assumptions about the data (Young, 1977). The test entails the
construction of the empirical cumulative distribution function (eCDF) for each
dataset, which are then compared by means of the KS statistic k, measuring
the maximum vertical distance between the two eCDF curves. Let Ca of size
m and Cb of size n be the eCDFs of observations from sample a and sample b,
respectively. Then k is given by Equation 4.1 (Gibbons, 1992).

k = sup
x

|Ca(x) − Cb(x)| (4.1)

k thus falls between 0 and 1, whereby a high value indicates that the two samples
are clearly different and a small value indicates a high degree of similarity. With
Equation 4.2 one can compute the exact probability p of observing some KS-
statistic km,n larger than or equal to the observed k, under the null hypothesis
H0 that the two samples originate from the same parent distribution (Gibbons,
1992).

p = P (km,n ≥ k) = 1 − A(m, n)(
m+n

m

) (4.2)

Here, A(m, n) denotes the number of possible paths going from the point (0, 0) to
(m, n) in a plane within the confines of a distance nk from the diagonal between
the points. For large sample sizes, however, Equation 4.2 is computationally
inefficient as the number of additions required for computing A(m, n) grows (for
fixed m) as n

3
2 (Hodges, 1958). Smirnov (1939) proved that for large sample

sizes, p can be estimated by Equation 4.3, where
√

mn
m+n is a normalizing factor

for km,n highlighting the dependence on sample sizes.

p = P (
√

mn

m + n
km,n ≥ k) = 1 − 2

∞∑
i=1

(−1)i−1e−2i2k2
(4.3)

It is common to define a significance level α that determines the grounds on
which the null hypothesis is to be rejected or not. The k-value corresponding
to p = α is referred to as the critical value kc. Under the null hypothesis H0
that the two samples originate from the same parent distribution, the p-value
determines whether to keep H0 if k < kc ⇒ p > α, or to reject it if the
distributions are sufficiently dissimilar with p < α.

The KS-test builds on the assumption that input observations are continuous.
When applied to discrete observations, Noether (1963) showed that the test
produces too conservative results, with critical values smaller than or equal
to corresponding values for the continuous case. Since the droplet diameter
observations analysed here are binned, two methods are proposed in this thesis
to avoid the issue. The first proposed option, referred to here as the FIT
method, is to fit each size distribution to a gamma curve prior to testing using
the Maximum Likelihood Estate method from the gamma.fit() method in the
scipy.stats module. Random samples are then drawn from the fitted gamma
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4. Observational Methods

distribution until the same number of droplets as before is obtained. This acts
to smooth the eCDF of the observations creating artificially continuous samples
based on the original binned data, but comes at the cost of introducing another
source of uncertainty related to the fitting method.

The other proposed option, hereby termed the NOFIT method, is to use the
KS-test statistic directly as the distance measure in the KS-matrix, instead of
applying the p-value equation to produce a binary result of either failure or
success. This avoids the p-value deficiencies under the discrete case, but the test
may be less efficient at discriminating between samples as it becomes linearly
dependent on the similarity between distributions. Both the NOFIT and the
FIT method are tested and described in further detail in Appendix A, but the
thesis is focused primarily on results achieved using the NOFIT approach.

4.2.2 Unsupervised classification

Unsupervised classification is a type of machine learning algorithm that does
not require any prior labelling or ’human’ knowledge of the data to be passed
on (Marsland, 2014). The classifiers work by examining patterns or natural
clusters in the input data based on various techniques and measures, and have
the significant advantage over supervised learning algorithms, which rely on
being fitted to labelled training data for initialization (Berry et al., 2020).
The independence of labelling reduces selection bias as well as the number of
assumptions made about the domain a priori, working in favor of more objective
results. Unsupervised learners also rely in most cases on some initial subjective
choices through the selection of a set of ’rules’ for the classification, commonly
referred to as hyperparameters. Common input clustering hyperparameters are
measures such as the number of clusters expected, minimum cluster size, or the
maximum distance two points can be apart to still be considered as part of the
same parent cluster. The type of hyperparameters needed is determined by the
type of clustering method to be applied, and so different types of algorithms
are appropriate for handling different tasks depending on the properties of the
data and the research questions to be addressed (Berkhin, 2006).

The Density-Based Spatial Clustering Algorithm with Noise (DBSCAN; Ester
et al., 1996) has the advantage of not requiring the number of clusters present
in the results to be specified. It is therefore appropriate for cases where little
or nothing is known about the structure of the data prior to classification.
It originates from a group of unsupervised algorithms called density based
classifiers, which have become increasingly popular for their ability to detect
clusters of unequal sizes and arbitrary shapes (Amini et al., 2014). They
also possess the ability to handle data containing noise, by classifying outliers
that are not sufficiently similar to any surrounding points as not part of any
class at all. DBSCAN utilizes only two hyperparameters, ϵ ∈ R>0, a measure
of the maximum size of the neighborhood defined around each point in the
domain space, and min_samples ∈ Z>0, which determines the minimum number
of samples within the ϵ-neighborhood around a given point required for a cluster
to be defined around it (Ester et al., 1996).

Hierarchical Density-Based Spatial Clustering Algorithm with Noise (HDBSCAN;
Campello et al., 2013) is an extension of DBSCAN which combines methods
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4.2. The KS-clustering algorithm

from hierarchical clustering algorithms, which are able to find clusters of varying
densities, with the DBSCAN advantages of identifying various shapes as well as
not requiring a pre-determined number of clusters (Campello et al., 2020). At
its simplest, HDBSCAN requires the selection of only one input hyperparameter
’minimum points’, or K, as a measure of how conservative the algorithm should
be in terms of required density thresholds surrounding the clusters. It avoids
the use of ϵ by instead defining a core distance for each given point defined as
the distance to its K’th nearest neighbor. Based on all computed core distances,
a Minimum Spanning Tree (MST) is constructed such that all points in the
domain are linked through minimizing the edge weight. The MST defines
the basis for generating the cluster hierarchy, where each entry in the tree
is sorted hierarchically based on the core distance weights (Campello et al.,
2013). For practical purposes, HDBSCAN can also be initialized with another
hyperparameter ’minimum cluster size’, which sets how many samples a class
must contain to be defined as its own cluster. This has the advantage of having
an intuitive interpretation allowing the user to specify how many points are
needed to yield a significant statistical basis for a cluster. Following the cluster
hierarchy, HDBSCAN extracts the classes that are most ’stable’ by iteratively
removing branches of the MST (in decreasing order of distance) and recording
how many iterations each class persists before dropping below the minimum
cluster size. Thus, HDBSCAN ultimately returns the classes that are most
independent of the distance metrics chosen (McInnes et al., 2017).

Here, the Python implementation in the HDBSCAN Clustering Library
by McInnes et al. (2017) is applied. The major hyperparameters are
min_cluster_size and min_samples. min_cluster_size determines the number of
size distributions required to form a cluster, and was fixed to 10 in the results
presented in this thesis. Under a mean wind speed of 10ms−1, this corresponds to
approximately 17 meters of cloud, and was chosen as an attempt to find a balance
between significantly large cluster sizes and cluster resolution. min_samples

was found to be less crucial to the sensitivity of the results. Large values
(much greater than min_cluster_size) tends to yield only one large cluster
whereas low values (much less than min_cluster_size) returns mostly noise.
Intermediate values were found to yield fairly stable results, and the parameter
was left unchanged from its default value equal to min_cluster_size in the results
presented here.

The HDBSCAN Clustering Library supports using a combination of DBSCAN
and HDBSCAN through selection of an ϵ parameter, which in practice merges
small clusters produced by HDBSCAN if they are closer to each other in the
domain space than the threshold given by ϵ (McInnes et al., 2017). This can
be included to avoid distinguishing between clusters of very similar properties.
A lower threshold of ϵ = 0.001 was used in this thesis, chosen after testing to
yield a balance between cluster size distribution diversity and significance.

4.2.3 Algorithm methodology

The full KSC procedure is summarized in Figure 4.2 and elaborated below.

1. A minimum droplet number cutoff CN is defined such that only holograms
with a total droplet count above this threshold are considered for the
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further analysis. This thesis follows the cutoff proposed in Allwayin et al.
(2022) of CN = 0.7Nd, where Nd is the mean droplet count per hologram
for the given segment. If 0.7Nd < 100 a minimum CN of 100 is used
instead to ensure a reasonable statistic for the size distribution.

2. All remaining holograms are randomly down-sampled to contain the same
number of droplets equal to CN . To reduce uncertainties related to
resampling the procedure is repeated ne times such that each hologram
consists of ne randomly down-sampled ensemble members containing CN

number of droplets. In this thesis, ne was fixed to 20.

3. Each ensemble member in each hologram represents a size distribution
of liquid cloud droplets in a binned format. In the FIT method, the
discretized size distributions is smoothed by being fitted to a gamma
distribution defined by a shape, scale and location parameter. This yields
an artificially continuous set of diameter sizes, which is a prerequisite for
the KS test. The algorithm is tested both with and without this step.

4. The KS matrix is now constructed by looping through each hologram and
comparing to every other hologram, including itself. For row i of the KS
matrix corresponding to hologram hi in the defined cloud segment, each
ensemble member in hi is compared to every ensemble member in all other
holograms. The entry on row i and column j in the KS matrix is then the
average KS score between all ensemble members in hologram hi versus all
ensemble members in hologram hj . The binary KS result based on the
p-value equation (Eq. 4.2 or 4.3) is used for the FIT method, whereas
the NOFIT method uses the KS-statistic directly. The KS matrix is now
considered a distance matrix containing the distance between every pair
of holograms in the ’KS space’, where ’closeness’ is indicated by a low
average KS score.

5. The computed KS distance matrix is used as input to HDBSCAN
for automatized clustering of holograms. The hyperparameters
min_cluster_size and min_samples are determined based on the number
of holograms included in the given cloud segment. HDBSCAN clusters
holograms with similar distributions together based on closeness in the
KS space.

The output from KSC are Nc separate groups of holograms where Nc is the
number of detected classes. The average characteristic droplet size distribution
is then calculated for each group individually, as well as statistics for ice water
content, total water content etc. The algorithm has a total computational
cost of the order 1

2 n2
H ∗ n2

m, where nH and nm are the numbers of holograms
and ensemble members, respectively. The factor of one half appears due to
commutativity of the two-sample KS test, making the KS matrix symmetric.
Because of computational limitations, the high resolution severely limits the
total segment lengths which can be analysed with the algorithm. Binning of
holograms into 1 second time steps (6-by-6 holograms) was thus introduced to
increase the segment lengths for analysis. This effectively increases the sampled
hologram volume and produces much higher total droplet and ice crystal counts
per distribution giving improved statistical significance.
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4.2. The KS-clustering algorithm

Figure 4.2: Flowchart of the KS clustering algorithm.
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CHAPTER 5

Modelling Methods

5.1 Experiment setup

5.1.1 The Weather Research and Forecasting model description

The Weather Research and Forecasting (WRF; Skamarock et al., 2019) model
is used to simulate this case study of mixed-phase clouds in Ny-Ålesund.
WRF is a numerical weather prediction system developed by the National
Center for Atmospheric Research, USA. Here, WRF is run with the Advanced
Research WRF configuration version 4.0.1. The model is non-hydrostatic, fully-
compressible and module-based, meaning it can be run with a wide range of
physical parameterization schemes on scales ranging from large eddy simulations
to the synoptic or global scale.

Here, WRF is initialized with input from the European Centre for Medium-
Range Weather Forecasts (ECMWF) 5th generation reanalysis (ERA5) product.
The model is nudged with the default value for nudging strength of 3 · 10−4

s−1 every 6 hours at 06, 12, 18 and 00 UTC in terms of horizontal winds,
temperature and specific humidity. The nudging process lasts 60 minutes and
is gradually decreased towards the end of the period to avoid noise due to a
shock as the nudging ends. The model time step is set to 30 seconds, and each
simulation starts November 11 at noon, allowing 12 hours of spin-up before
the start of analysis at midnight November 12. Boundary layer processes are
handled by the Yonsei University scheme (Hong et al., 2006), and longwave
and shortwave radiation is parameterized with the CAM scheme (Collins et al.,
2004). Each simulation experiment is run on three nested domains of unequal
size and resolution shown in Figure 5.1;

• Domain 1 (d01, outer) covers an area of 1800km (W-E) x 1350km (S-N)
extending from the coast of Greenland in the west to Franz Josef Land in
the north-east, with a spatial resolution of 15km. The model output is
hourly.

• Domain 2 (d02, middle) extends an area of 515km (W-E) x 480km (S-N)
covering most of the Svalbard archipelago and has a spatial resolution of
5km. The model output is hourly.
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5. Modelling Methods

Figure 5.1: Extent of the three model domains (left panel) and the number of
layers per kilometer of altitude (right panel). Star indicates the position of the
measurement site in Ny-Ålesund.

• Domain 3 (d03, inner) covers an area of 100km (W-E) x 100km (S-N) on
the west coast of Spitsbergen and has a spatial resolution of 1km. The
output interval is 5 minutes.

The domains apply nesting such that the boundary conditions of the inner
domains are provided by the next larger domain. The outermost domain d01
has boundary conditions supplied by ERA5. All three domains have the same
vertical resolution with 172 layers extending up to a height of 17km. The levels
are decreasing exponentially in density with altitude, and approximately half
are located in the first 2500 meters where the low-level mixed-phase clouds are
located.

5.1.2 Simulation experiments

WRF supports several different cloud microphysics parameterizations. Here,
cloud microphysics are simulated with the double-moment bulk microphysics
parameterization scheme following Morrison et al. (2005) and adapted in
Morrison and Grabowski (2008), henceforth referred to as the ’Morrison scheme’.
The Morrison scheme includes prognostic equations for both mass and number
concentrations of cloud ice as well as the precipitating hydrometeor species
rain, snow and graupel. Mixing ratios for cloud droplets are also simulated, but
the cloud droplet number concentration (CDNC) is prescribed, and set to 250
cm−3 in the default version of the Morrison scheme. INPC is also prescribed,
with deposition nucleation following Cooper (1986), and immersion freezing
following Bigg (1953).

Ground based in-situ measurements of aerosols during the NASCENT campaign
from both Gruvebadet, the Swiss site, and Zeppelin indicate that the default
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Figure 5.2: Temperature dependence of the INPC in the deposition mode as
prescribed in the Default run (blue curve) and Adapted run (orange curve).

prescribed INP concentrations in the Morrison scheme are several orders of
magnitude above realistic values for the Arctic at this time of year (Pasquier,
David et al., 2022). The default value for CDNC of 250 cm−3 is also much higher
than what is typically found in clouds formed in pristine environments such as
the Arctic. Two separate experiments are thus run; one control run using the
default Morrison scheme, and one adapted run where the INPC and CDNC are
both constrained to measurements. The experiments are henceforth referred
to as ’Default’ and ’Adapted’, respectively. The default configuration of the
scheme uses a CDNC of 250 cm−3, and an INPC (units L−1) in the deposition
mode dependent on the temperature T (units ◦C) as given by Equation 5.1
(Cooper, 1986).

Default : INPC(T ) = 0.005 exp(−0.304T ) (5.1)

In the simulations with adapted microphysics, CDNC was set to 10 cm−3 in
agreement with in-situ measurements from HoloBalloon (Pasquier, David et al.,
2022) on the same day. In the same run, the INPC (units L−1), based on
measurements from DRINCZ (see Section 4.1.2), was set as the temperature
dependent exponential fit given by Equation 5.2 (Pasquier, David et al., 2022).

Adapted : INPC(T ) = exp(−0.4146T − 12.4059) (5.2)

The degree to which INPC is lowered going from Default to Adapted is dependent
on temperature, and ranges from two orders of magnitude at about -25◦C to more
than three orders of magnitude close to 0◦C. The full relation for temperatures
between −30 and 0◦C is shown in Figure 5.2.

HM is the only SIP mechanism included in the default configuration of the
Morrison scheme. In the WRF implementation, HM is initiated when the
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Table 5.1: Critical mixing ratios in units kg/kg of the default implementation
of HM in the Morrison scheme and the modified thresholds applied in these
experiments.

Snow Graupel
q∗

snow q∗
cloud q∗

rain q∗
graupel q∗

cloud q∗
rain

Original 10−4 0.5 ∗ 10−3 10−4 10−4 0.5 ∗ 10−3 10−4

Modified 10−8 10−6 10−6 10−8 10−6 10−6

temperature is within the HM range of −8 to −3◦C, and the following two
conditions are met simultaneously;

1. Snow (graupel) mixing ratio qsnow (qgraupel) must be greater than some
critical mixing ratio q∗

snow (q∗
graupel), and,

2. Cloud droplet mixing ratio qcloud > q∗
cloud or rain mixing ratio qrain >

q∗
rain.

Even though parts of the cloud in the case study were within the HM temperature
range, the default critical mixing ratios were found to be too high for secondary
ice to be produced in the default scheme. As an attempt to improve the
agreement between simulated and observed ice crystal number concentrations,
another set of simulations is included in the analysis, henceforth referred to
as Default+SIP and Adapted+SIP. In order to increase the production of
secondary ice in Default+SIP and Adapted+SIP the critical mixing ratios for
HM to occur are significantly reduced, as summarized in Table 5.1. This
adjustment is justified by the argument that parameterizations are developed
based on laboratory experiments with varying cloud droplet size distributions
that are not necessarily representative of realistic cloud water and ice mixing
ratios (e.g. Hallett and Mossop, 1974; Mossop, 1978). Yet the thresholds for
the initiation of the HM process are implemented in models for continental
and maritime cloud droplet size distributions, which are significantly different
than what is observed in the pristine Arctic environment (Field et al., 2017).
The low CDNC in the Arctic allows for the same width in cloud droplet
size distribution with a much lower liquid mixing ratio, potentially allowing
for HM initiation at lower mixing ratios thresholds compared to less pristine
environments. Furthermore, additional SIP processes are accounted for through
the inclusion of parameterizations for DS as well as BR, following the WRF
implementation by Sotiropoulou et al. (2021).

Thus, a total of 4 WRF simulations are analysed and compared in this thesis,
as summarized in Table 5.2.

5.2 Analysis methods

Two new methods are developed for quantification of the spatial scales at
which modelled clouds appear liquid, glaciated or homogeneously mixed. The
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Table 5.2: Summary of the key differences between the WRF experiments
analysed in this thesis.

Default Default+SIP Adapted Adapted+SIP
INPC Unchanged Unchanged Modified Modified
CDNC 250cm−3 250cm−3 10cm−3 10cm−3

HM Unchanged Modified Unchanged Modified
BR No Yes No Yes
DS No Yes No Yes

analysis can be applied to any level or part of the cloud, but in this thesis the
algorithms are applied with respect to the cloud-top. Cloud-top analysis allows
for comparison with remote sensing by satellite in potential future work, as the
cloud-top is observable from space.

The modelled cloud-top phase and its variability are analysed from two different
viewpoints – temporally and spatially, and the two new algorithms developed
are hereby termed the ’temporal’ and the ’spatial’ algorithm, respectively. In
the temporal analysis the cloud is described as it flows through each vertical
column in the model, thus following the Eulerian description of fluid motion.
The spatial description, on the other hand, looks at each timestep of the model
output separately and quantifies how the cloud phase is distributed spatially,
and thus ’tracks’ single-phase pockets from the Lagrangian point of view.

The procedures of the two methods are described in detail below, following a
brief description of the main calculations and post-processing applied before
analysis.

5.2.1 Calculations

Output from the Morrison scheme in WRF are mixing ratios q (units kg kg−1)
per grid cell of two liquid hydrometeor classes, cloud droplets and rain, and
three solid classes, ice, snow and graupel. Mixing ratios are converted to
water contents (units g m−3) via the air density ρ, which is calculated using
virtual temperature Tv, air pressure P , and the ideal gas constant of dry air Rd

following Equation 5.3 (Wallace and Hobbs, 2006).

ρ = P

RdTv
(5.3)

The relationship between water content WC and mixing ratio q is then given
by Equation 5.4

WC = 1000ρ q (5.4)

All classes are included in the calculation of IWF (Eq. 2.9), such that LWC
and IWC are given by Equations 5.5 and 5.6, respectively.

LWC = LWCcloud + LWCrain (5.5)
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IWC = LWCice + LWCsnow + LWCgraupel (5.6)

In the following analysis, a cloud volume is defined as mixed-phase based on
the upper and lower thresholds for IWF of 0.1 and 0.9, respectively, following
Korolev et al. (2003). A cloud fraction (CF) threshold is applied such that
only grid cells with CF > 0.5 are included in the calculation of IWF. All other
grid cells are given a non-numerical placeholder as the IWF. This is done to
avoid out-of-cloud precipitation or volumes of very small WC to influence the
subsequent analysis. The edges of the two inner domains are also clipped before
analysis to avoid issues related to artefacts following the nesting procedure
(Chavez and Barros, 2023). The 10 outermost grid cells from each edge is thus
excluded from all analysis, reducing the total domain extents from 100x100km
and 515x480km to 80x80km and 415x380km for d03 and d02, respectively.

5.2.2 The temporal algorithm

For the temporal analysis of the cloud-top phase, each horizontal grid cell is
treated separately and cloud-top pockets are counted as the cloud is advected
with the wind through the given column of the model. The temporal algorithm
described can be applied to quantify both mixed-phase and single-phased cloud-
top segments, but the focus here will be on mixed-phase. The cloud-top is
located based on the apical grid cell with a cloud fraction above 50%, and a
mean value for the IWF is calculated based on the upper 7 layers of cloud below
cloud-top. For each time step and horizontal grid cell the cloud-top is then
characterized as mixed-phase based on the IWF thresholds stated in Section
5.2.1, or liquid (ice) if the IWF is below (above). The temporal algorithm
then converts the data into N timeseries of length ns with a continuously
mixed-phased cloud-top, where ns is the number of time steps in the segment
and N is the total number of segments. Based on the mean cloud-top wind
speed ws in meters per second during the segment occurrence, and the temporal
resolution of the model output rT in seconds, the length of each mixed-phase
cloud-top segment Ls in meters is computed according to Equation 5.7.

Ls = rT nsws (5.7)

The temporal cloud-top segment lengths are compared between the two smallest
domains d02 and d03 to investigate the influence of model resolution on cloud
phase heterogeneity. The 5 minute output of d03 is coarsened to hourly to
match the temporal resolution of d02 before the algorithm is run. The output
of the algorithm for d03 is subsequently regridded by averaging 5 by 5 grid cells
together to match the 5 times lower spatial resolution of d02.

5.2.3 The spatial algorithm

In the spatial analysis, or Lagrangian view, of the cloud-top phase distribution,
the mixed pockets are counted spatially for each timestep t in the model output.
At every t the mean cloud-top horizontal wind direction is calculated for the
whole domain. A set of transects spanning the whole domain are defined
and oriented along the mean cloud-top wind direction at the given time, each
separated by 5 grid cells as exemplified in Figure 5.3. The cloud-top is located
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along each of the transects, and ice and water contents are averaged across the
upper 7 in-cloud layers at every point. The mean cloud-top IWF is calculated
for all points and the cloud-top is classified as liquid, mixed or ice based on the
same IWF thresholds of 0.1 and 0.9 as before. The spatial algorithm counts the
number ns of consecutive cloud-top grid cells classified as mixed-phase along
the interpolated transect through the model domain. The length of the pockets
are now determined by the spatial resolution along the transect rtr, given by the
horizontal cloud-top wind angle θw (0◦ N) and the horizontal spatial resolution
of the model rH , according to Equation 5.8.

Figure 5.3: Illustration of the
transects (red lines) at some given
timestep for domain d03 along
which the cloud-top spatial pockets
are counted.

rtr = rH cos(θw) (5.8)

The length Ls of a given pocket is then
given by Equation 5.9.

Ls = nsrtr (5.9)

For each transect, mean and total pocket
lengths, number of pockets and total
length of the segment are recorded. Val-
ues are added together for all transects
at each given timestep to yield a timeser-
ies of pocket statistics across the whole
domain. This process is repeated also
for single-phased pockets with respect to
both liquid or ice.
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CHAPTER 6

Statistics of Cloud Phase Mixing

An important characteristic of mixed-phase clouds, one that is perhaps under-
communicated in some scientific research, is the degree of homogeneity of
mixing between liquid droplets and ice particles (Korolev and Milbrandt,
2022b). Whether or not a cloud should be classified as mixed-phase is in
reality determined not only by how much ice and liquid it contains, but is also
a question of the spatial and temporal scales that the cloud is evaluated at.
Mixed-phase is often defined by the IWF interval between 0.1 and 0.9 (e.g.
Korolev et al., 2003), but unless well mixed, this definition becomes largely
dependent on the size and location of the considered cloud volume.

In this chapter, the degree of phase-mixing is evaluated statistically by
quantifying how often, where, and under which conditions homogeneous mixing
is produced in the modelled cloud field. When evaluating the homogeneity of
the cloud field, the minimum cloud volumes considered are set by the model
resolution of the smallest domain d03, with 1-by-1 km horizontally and between
20-40 m vertically, depending on altitude. Statistics of the cloud, occurring
as either pure liquid, pure ice, or mixed-phase, are presented as a function of
time, temperature, altitude and TWC. Lastly, the LWC, IWC and ICNC as
simulated by the model runs over Ny-Ålesund are compared to the HoloBalloon
measurements from November 12 to examine the agreement between model and
observations for this case study.

6.1 Domain-averaged cloud phase statistics

The cloud phases are evaluated as a function of time, to examine the evolution
of the cloud throughout the day of 12 November. From Figure 6.1, showing
IWC, ICNC and IWF as averaged over d03, the higher INPC in Default is
evident through its high ice concentrations, exceeding those of Adapted by
about an order of magnitude on average. Without added SIP processes, the
variations in both IWC and ICNC are very small. When additional SIP is
included, however, the ice contents are at times increased by up to two orders of
magnitude. Both Default and Adapted show a large impact from SIP toward the
end of the simulation period, starting at approximately 18:00. Default+SIP and
Adapted+SIP show a close agreement in both number and mass concentrations
of ice during this high SIP event, but with a somewhat longer lasting effect
in Default+SIP. Adapted+SIP predicts a strong impact from secondary ice
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Figure 6.1: Simulated (a) IWC in g m−3, (b) ICNC in L−1, and (c) IWF for
November 12, 2019, as averaged over the whole d03. Blue colors show the
Default runs whereas orange colors show the Adapted runs. Lighter colors
indicate the SIP runs.

also during the night and morning until about 09:00, which does not occur in
Default+SIP. During this time, Adapted+SIP produces both higher IWC and
ICNC than what is seen in the Default runs, despite the much lower INPC. It is
unclear why this strong signal is simulated in Adapted+SIP, whereas no change
is seen in Default+SIP. Examination of the SIP tendencies did not yield any
immediate explanations (not shown). Ascertaining the source of this surprising
increase in ICNC in the Adapted+SIP simulation is beyond the scope of this
thesis, but should be investigated further in future modelling studies.

It is evident in Figure 6.1c that the Default runs have an average IWF that is
0.2 greater than that of Adapted. The lowering of INPC effectively removes
the cloud from the mixed-phase zone, as defined earlier, when considering the
average cloud spanning the whole domain of d03. Perhaps surprisingly, the
inclusion of additional SIP processes does not substantially contribute to close
this gap. Even though the additional SIP processes cause sudden increases in
the IWC, almost no difference is seen in the IWF between simulations with
and without SIP during those events. When the IWF remains constant while
the IWC is increased, it follows from the definition of IWF that one of two
situations are possible. Either, 1) the TWC is increasing proportionally with
the IWC thus leaving the balance between them unchanged, or 2) the regions
of increased SIP already had a high IWF before and thus an increase in ice
mass cannot increase the IWF further. The first possibility can be supported by
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6.1. Domain-averaged cloud phase statistics

Figure 6.2: Frequency of occurrence in percent of ice, mixed-phase, and liquid
out of all cloudy model grid cells on 12 November.

considering the HM process, the efficiency of which is dependent on the presence
of both smaller and larger liquid droplets (Hallett and Mossop, 1974). Thus,
having more liquid water in the cloud would potentially enhance the production
of ice through HM, without large altercations to the IWF. On the other hand,
the second possibility may be supported by enhancement of BR in high ice
conditions, as the likelihood of ice-ice-collisions scales with the concentration of
ice particles (Phillips et al., 2017; Vardiman, 1978; Yano et al., 2016)

It is worth noting that although the Default have a domain-averaged IWF well
within the mixed-phase zone throughout the day, this is not at all the case
when considering each grid cell separately as in Figure 6.2. Here it is evident
that liquid is by far the most dominant of the phases. Following the definition
of IWF < 0.1 for liquid clouds, liquid makes up at least 90% of the mass in
approximately 70% of the grid cells in the Default runs and close to 90% in the
Adapted runs. Mixed-phase, on the other hand, occurs only in about 5% of the
grid cells for both the Default and Adapted runs. This once again highlights
the importance of scale when defining mixed-phase clouds.

Figure 6.3 shows the probability density functions (PDFs) of the occurrence
of ice, liquid, and mixed-phase versus temperature of the entire simulated
cloud deck on November 12. Each PDF is here normalized to itself, first and
foremost highlighting the differences in shape between the runs. However, it
should be mentioned that a direct comparison in magnitudes between each
of the runs is not achievable from this type of analysis, due to the different
scaling factors applied to each. Considering the shapes, it is evident that the
agreement between runs with and without SIP is much closer than between
experiments with modified and default aerosol concentrations alone. From the
probability density of any cloud phase shown in Figure 6.3d, the PDFs are
very similar across the simulations, indicating that the experiments seem to
agree on the temperatures required for cloud formation. Agreement is also
high for the liquid phase, although shifted slightly to higher temperatures for
the Adapted runs (Fig. 6.3c). The difference between Default and Adapted is
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Figure 6.3: Probability density of occurrence of ice (a), mixed-phase (b), and
liquid (c) versus temperature, each normalized to 1. Panel d) shows the
probability density of any cloud phase versus temperature. Color-coded as in
Figure 6.1.

greatest for the mixed-phase and ice cloud occurrences, and the Adapted runs
both appear to require colder temperatures for ice to be present (Fig. 6.3a
and b). The Default runs show a bimodal tendency for ice clouds, with peaks
in occurrences at temperatures around both -12 and -7◦C. The warmer peak
is also evident for the mixed-phase clouds. The Adapted runs show some of
the same bimodal shape for the mixed-phase, but not as much for ice clouds.
The lower temperature peak could indicate the range where the ice is primary
nucleated in the cloud during these simulations. The baseline of ICNC seen in
Figure 6.1b stays fairly constant slightly above 0.1 L−1 for the Default runs
and about an order of magnitude lower for the Adapted runs. From Equations
5.1 and 5.2 stated in Chapter 5 regarding the prescribed INPC in Default and
Adapted, a temperature of -12◦C would yield an INPC of approximately 10−1

and 10−3 L−1, respectively. This corresponds very well particularly for the
Default runs, and could be an indication of the ice production in the Default
runs being INP-limited even with the much higher prescribed INPC. For the
Adapted simulations, however, the baseline of mean ICNC is in fact greater
than the assumed INPC at T = −12◦C even without additional SIP processes
included. This means that the ice particles must either have been transported
from other, lower temperatures at which nucleation occurred, or that some ice
particles may in fact have been produced through the unmodified HM process
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Figure 6.4: Same as in Figure 6.3, but as a function of altitude.

at higher temperatures in the Adapted run.

Figure 6.4 shows the probability density of phase occurrences as a function
of altitude. As in Figure 6.3, all four experiments agree closely on the total
vertical distribution of the cloud (panel d), whereas the largest differences are
seen in the ice containing states. Where both Default runs exhibit a strong
peak in probability of occurrence for mixed-phase clouds at an altitude of about
600 meters, the Adapted runs yield mixed-phase clouds distributed more evenly
across a wider range of altitudes. For the Default runs, ice clouds primarily
occur around the same altitude as mixed-phase clouds, whereas the occurrence
of liquid clouds is predominantly at higher altitudes. This may be indicative of
more liquid-topped mixed-phase clouds with precipitating ice falling through
closer to the cloud base, consistent with previous studies of Arctic mixed-phase
clouds (eg. Boer et al., 2009, Morrison et al., 2012). However, similar to Figure
6.3a, the ice clouds in the Default runs show a bimodal tendency with altitude,
with a smaller peak in occurrences also evident above the dominant liquid cloud
layer. This shows that the clouds in the Default runs have a predominantly
liquid interior with a base of typically either mixed-phase or ice, but that the
top can be either liquid or glaciated depending on additional factors. In the
Adapted runs the structure is almost inverted with most of the pure ice or
mixed-phase cloud occurrences located above the dominant liquid cloud altitude.
This is likely due to the much lower ice concentrations in Adapted, making the
ice-containing phases unable to compete with liquid in terms of the IWF. As
such, the characterization of ice and mixed-phase in the Adapted runs appears
to be mostly dependent on the LWC being very low, for instance close to the
cloud edges. However, as was seen in Figure 6.2, the occurrence of mixed-phase
and ice in the Adapted runs is very low, and so the statistical significance of
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Figure 6.5: Solid lines show the simulated temperature profiles from the four
experiments (colored) calculated as the mean for 12 November across the
horizontal domain extent. Color-shaded indicate a distance of one standard
deviation from the mean, whereas dashed lines show the span between minimum
and maximum temperatures produced at each altitude per model. Grey, shaded
region represents the temperature range where HM is activated in the model.

their respective vertical distribution is likely small.

The differences between runs with and without SIP appeared close to negligible
in terms of determining the phase occurrences as a function of either temperature
and altitude. One possible explanation for this can be found in Figure 6.5
showing the mean lapse-rates of each model simulation. All four experiments
predict approximately the same average lapse rates with similar degrees of
variability. Superimposed is also the temperature range over which HM is
assumed active in the model. Only the part of the cloud located below ∼600
meters was on average within the HM temperature range. This could potentially
explain the small increase in mixed-phase occurrences in the Adapted run at
altitudes lower than ∼500 meters, although it would not be expected to have
a large impact as this region was for the majority was below cloud-base. The
experiments do, however, show large spread between the highest and lowest
recorded temperatures across the domain and through the day, and so HM
was theoretically possible up to an altitude of about 1200 meters. Any ice
production in the model above this level must therefore have occurred through
heterogeneous nucleation in the runs without added SIP processes, or possibly
through BR and/or DS in the runs with SIP.

The effect of SIP processes are much more apparent when considering IWF
as a function of TWC, as shown through a 2-dimensional probability density
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Figure 6.6: 2-dimensional probability density of IWF versus TWC. Yellow colors
indicate a higher probability of occurrence.

histogram in Figure 6.6. Liquid clouds (IWF < 0.1) are the most frequent cloud
type across most TWC in every experiment, with them most common at low
TWC and becoming less frequent with increasing TWC. The effect of using
representative aerosols is evident in that higher IWFs occur more frequently
across a broader range of TWC in Default compared to Adapted. Adapted also
has a much lower probability density of clouds at the glaciated stage of IWF
> 0.9. This suggests that by reducing the concentration of INPs to observed
values, the model produces complete glaciation of the cloud much less frequently.
The effect of including additional SIP processes acts to dramatically increase
the probability of occurrence of the ice-containing states at IWF > 0.1 over a
much broader range of TWCs. Whereas glaciated clouds occurred only at very
low TWC in the runs without additional SIP, IWF > 0.9 are observed also at
much higher values following the inclusion of SIP. LWC is by definition small at
the glaciated state. Therefore, it follows that the higher frequency of occurrence
of IWF > 0.9 at high TWC is due to a large increase in IWC with SIP.
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Figure 6.7: Simulated ICNC (a), IWC (b), and TWC (c) averaged over a box
surrounding the location of HoloBalloon for each of the model experiments
(colour lines). The confines of the box is defined horizontally by the four grid
cells closest to the location of HoloBalloon, and vertically by the lowest 7 layers
of the simulated cloud cover. HoloBalloon measurements (red dots) from the
three flights on November 12 are averaged over 5-minute time steps to match
the temporal output of the model.

6.2 Comparison with HoloBalloon

The ICNC, IWC, and TWC as simulated by each of the model experiments are
compared to the measurements from HoloBalloon in Figure 6.7. Because the
exact position of the simulated and observed cloud may be somewhat offset,
particularly in terms of the cloud base altitude, a volume surrounding the
position of HoloBalloon was defined for the comparison. This step involves
averaging over a box confined horizontally by the four grid-cells closest to the
HoloBalloon location, and vertically by the lowest 7 layers of cloud counting
from cloud-base. Thus, only in-cloud grid-cells are included in the comparison,
and the averaging acts to reduce the potential influence of small spatial or
temporal offsets between the simulated and observed cloud.

All simulations severely underestimate the ICNC on average compared to
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measurements from HoloBalloon, and whereas HoloBalloon shows large degrees
of variability between the three separate flights, the model experiments exhibits
an almost entirely constant ICNC throughout the day. The inclusion of SIP
processes increases the variability somewhat, causing for instance a spike in
the ICNC during the second flight around 13:30 in both Default+SIP and
Adapted+SIP, and during the third flight in Default+SIP. However, even during
these spikes, the ICNC as simulated by both Default+SIP and Adapted+SIP
only get close to the observed values during a short period of the second flight
(Fig 6.7a). The effect of SIP is less apparent in terms of the IWC, which is
expected, as the processes act primarily to multiply ice particles, sometimes
at the expense of their relative size such as through the BR mechanism. Still,
there may be a contribution from SIP in terms of mass through the combination
of other processes, such as WBF or deposition growth in general, if smaller and
more numerous ice crystals are favorable for the growth rates. This effect is
only apparent here during a shorter period around 13:00 in the Adapted run.

As seen in Figure 6.7b-c, simulated IWC is within the range of observational
variability only during the second flight, through which liquid is the dominant
phase in both the observed and simulated TWC. It is evident from the
comparison that both Default runs achieve a much closer agreement with
observations in terms of both ICNC and IWC from HoloBalloon than does
Adapted. However, as is known from measurements of INPC, the default
Morrison scheme assumes aerosol conditions which are unrealistic in pristine
environments such as the Arctic. When the model is constrained to observed
concentrations of INPs and cloud droplets, the Adapted runs show that both
the IWC and ICNC are decreased by up to an order of magnitude, increasing
the gap from observations even further. As such, it appears that the Default
runs may perform better when evaluated purely in terms of number and mass
concentrations of ice, but likely for the wrong reasons. This is an indication that
additional and/or enhanced parametrizations of SIP processes are necessary
in model simulations in order to reduce the discrepancy in simulated ice
concentrations under realistic aerosol conditions for the Arctic.
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CHAPTER 7

Cloud-Top Phase Variability

The cloud-top is a key factor in the dynamics of the mixed-phase cloud system,
and its phase is of vital importance particularly for the lifetime of the cloud.
Supercooled liquid is a strong driver of radiative cooling when present near
the cloud top, enhancing in-cloud turbulence which in turn acts to resupply
moisture to balance the constant loss of water to the ice phase (Morrison et al.,
2012). When the cloud-top contains ice, however, the WBF process may cause
a rapid depletion of supercooled liquid which has important implications for
both lifetime, dynamics, precipitation rates, and radiative properties of the
cloud (Korolev and Milbrandt, 2022b). Additionally, ice particles formed at
the cloud-top may grow rapidly through the WBF process as this is typically
the region where stratiform clouds exhibit the highest liquid water contents
(Carey et al., 2008). Upon sufficient mass gain through deposition, the ice
particles may achieve high enough fall speeds to sediment through the cloud’s
interior, potentially depleting more supercooled liquid water on its way through
either riming, the WBF process, or both (Kumjian et al., 2014). Thus, the
microphysical processes of the cloud-top have the potential to influence the
cloud phase of the entire cloud, and the balance between ice and liquid at
cloud-top is therefore often a good indicator of the state the cloud is in.

Here, results from the analysis using the two new methods for quantification of
cloud-top phase variability are presented. Cloud-top pockets are quantified in
terms of mean length, total extent, and number of occurrences, and the results
are focused on the smallest domain d03. The chapter concludes with results
regarding the influence of model resolution on pocket structure by investigating
differences arising from applying the temporal algorithm on both d02 and d03.

7.1 Spatial pockets

Shown in Figures 7.1, 7.2, and 7.3 are the results of applying the spatial
algorithm on d03 with respect to ice pockets, mixed-phase pockets, and liquid
pockets, respectively. As the whole domain was mostly cloudy throughout 12
November, the three figures are closely related, since the occurrences of ice,
mixed-phase or liquid cloud-tops are mutually exclusive if a cloud is present.

The first half of the day is characterized by a few small and isolated glaciated
patches (Figure 7.1) in an otherwise liquid- or mixed-phase-topped cloud cover
(Figures 7.2 and 7.3). After noon, an abrupt increase in both the length and
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Figure 7.1: Spatial distribution of glaciated cloud-top pockets. Upper panel
shows the mean length of each pocket (solid line, left axis) with its associated
95% confidence interval for the mean (shaded area, left axis), and the evolution
of the mean cloud top altitude in model levels (dashed line, right axis). Bottom
panel shows the number of transitions between glaciated and non-glaciated
cloud tops (solid line, left axis) and the evolution of cloud-top temperature
(dashed line, right axis). Line colors represent the different model experiments.
Cloud-top is defined here as the apical 7 layers of the cloud.

number of glaciated pockets is seen in the Default simulations. With an average
of 5 pockets per 100km and a mean length of each pocket extending to almost 15
km, it follows that approximately 75% of the examined cloud-top transects are
glaciated after noon. Whereas a small increase in pocket numbers is seen also
in the Adapted runs, the mean length of each glaciated segment here remains
nearly constant and below 5 km throughout the day. Preceding the cloud-top
glaciation in the Default runs at noon is a period where mixed-phase cloud-tops
dominate (Figure 7.2). These are the only cloud-tops where the WBF process
can act since both liquid and ice must be present. Due to the potential impact
of WBF, the mixed-phase cloud-tops are inherently unstable as the ice may
rapidly deplete the liquid and consequently glaciate the cloud-top. This is
evident in both Default runs where the period of long mean mixed-phase cloud-
top segment lengths around noon is transitioned into a state where glaciated
cloud-tops dominate in a matter of only a few hours (Figure 7.1). Around noon,
an abrupt change is seen also in the cloud-top altitude (dashed lines, panel a)
and temperature (dashed lines, panel b). The Default runs predict a rapid rising
of about 400 meters from an altitude of 1000m to 1400m ASL. The Adapted
runs predict a much less pronounced cloud-top rise with only about half of
what is seen in Default, causing the cloud-top to reach altitudes of about 1200
mASL. The cloud-top rising is preceded by a distinct increase in the cloud-top
temperature seen in both Default and Adapted, starting shortly after 06:00 and
leading up to noon. As the cloud-top ascends, the temperature is consequently
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Figure 7.2: Same as in Figure 7.1, but for mixed-phase cloud tops.

Figure 7.3: Same as in Figure 7.1, but for liquid-topped cloud segments.

decreased again in Default, whereas Adapted maintains a somewhat higher
temperature as the cloud does not ascend as far.

Consistent with findings in Chapter 6, liquid is present in the cloud-top as
the dominating phase far more often in Adapted compared to Default (Figure
7.3). With much fewer INPs available to initiate the primary nucleation of ice,
it is expected that the ICNC is consequently decreased in the Adapted runs,
which was also seen in Chapter 6. However, a reduction in the number of ice
particles in the cloud would also act to decrease the efficiency of the WBF,
which reduces the sink of liquid water to the ice phase. This is evident by the
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much more constant mean length and number of pockets for all three phases
for Adapted compared to Default. The nucleation and subsequent growth of
ice in clouds cause a release of latent heat related to the phase change, which
can potentially increase the instability and aid in additional vertical growth
of the cloud. When the ice nucleation in the model is hampered, for instance
through the lowering of the INPC such as in Adapted, the latent heat release is
much lower, which could explain the greatly reduced cloud-top rising compared
to Default. This hypothesis is strengthened also by the small differences seen
between Default and Default+SIP, where the latter extends about 40m higher
up at the maximum between 15:00 and 18:00. The enhanced production of ice
through SIP, as seen during some periods of the day in Chapter 6, is associated
with a further increase in the latent heat release, which again may cause the
additional cloud-top rising seen in Default+SIP (Seifert and Beheng, 2006). This
could indicate that the cloud microphysics, here in terms of ice production, may
be an important driver for the larger scale dynamical changes to the cloud seen
in Default through the sudden rising of the mean cloud-top. Such a difference is
not seen between the Adapted runs, likely because the ice production is already
too low to begin with.

Other than the small additional increase in cloud-top height in Default+SIP,
there are few differences between the run with and without extra SIP processes
included. SIP appears to have a much smaller impact on the cloud-top phase
distributions compared to the domain-averaged IWC seen in Chapter 6, likely
explained at least in part by the cloud-top temperatures falling outside of the
HM temperature range. Therefore, any additional production of ice through
SIP at cloud-top must come from either BR or DS, but their contributions
alone appear largely insignificant for the cloud-top phase analysis in this case.

Spatial intermittency of mixed-phase clouds was studied through in-situ
measurements by aircraft in Korolev and Milbrandt (2022b). Aircraft
measurements yield a similar data structure as the spatial algorithm presented
here, where analysis is carried out along a straight segment over a time span
short enough to assume an approximately stationary cloud. They found that
genuinely mixed cloud segments may vary in length on a cascade of scales,
ranging from 100 km down to at least 100 m. They calculate an average length
below 1 km at temperatures around -12◦C, which is less than the minimum
detection length in the spatial algorithm. The Default runs substantially exceeds
this estimate, with mean lengths > 5 km throughout the day (Figure 7.2a). The
cloud-tops in the Adapted runs are dominated by liquid (Figure 7.3), reducing
the prevalence of mixed-phase pockets, but even so the mean length of genuinely
mixed segments typically computes close to 5 km. This is consistent with
discussion presented in Korolev and Milbrandt (2022b), arguing that even
cloud-resolving models with horizontal resolutions close to 1 km tend to be
biased toward the mixed-phase, due in part to difficulties with representing
sub-grid scale heterogeneity.

7.2 Temporal pockets

The results from applying the temporal algorithm on d03 are shown in Figure
7.4. It is worth noting that the temporal approach causes some inherent
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Figure 7.4: Mean length in km (panels a-d), total length in 100 km (panels
e-h), and total count (panels i-l) of mixed-phase cloud-top pockets per grid-cell.
Panels m-p show the mean cloud-top IWF. Rows correspond to the various
model runs. Black contours show the outline of the west coast of Svalbard.
Cloud-top is defined here as the mean of the upper 7 model layers of the cloud.

differences from the spatial approach, perhaps most importantly regarding the
resolution. Since the pocket lengths are calculated according to Equation 5.7,
the minimum pocket length is now a function of both the wind speed and the
temporal resolution of the domain. With a mean wind speed at cloud-top of
10 m s−1 and the 5 minute output of d03, the length of a cloud-top segment
lasting only one output time step in the simulation is 3km, which is up to 3
times more than the minimum length in the spatial algorithm.

Consistent with previous results, the differences between runs with and without
additional SIP processes are small when looking at the cloud-top. The impact
from SIP on the cloud-top pocket structure thus appear to be close to negligible
in the simulations for this case study. From Figures 7.4m-p, showing the mean
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Table 7.1: Domain-averaged mixed-phase pocket statistics corresponding to
Figure 7.4.

Default Default+SIP Adapted Adapted+SIP
Mean Length (km) 147 150 47 46
Total Length (km) 806 792 603 601
Transitions 10 10 20 20
Mean IWF 0.41 0.41 0.15 0.16

cloud-top IWF it is evident that the Default runs contain much more ice at
cloud-top compared to Adapted. As a result, the pocket structures look very
different between the Default and Adapted runs. Although Default and Adapted
yield similar total lengths of mixed-phase pockets over land, as seen in Figures
7.4e-h, the mean lengths (Figures 7.4a-d) and the number of transitions (Figures
7.4i-l) reveal that mixed-phase pockets in Adapted runs tend to be smaller and
more intermittent. Whereas the mean pocket lengths averaged across d03 in
the Default runs are approximately 150km, the mixed-phase cloud-top segments
in the Adapted runs are only about 1/3 of this as summarized in Table 7.1.

Evident in all panels of Figure 7.4 is the effect of topography on phase
occurrences. Both Default and Adapted show a clear tendency towards increased
occurrence of mixed-phase cloud-tops over land – particularly in terms of total
mixed-phase pocket lengths. Since the pockets are evaluated at stationary points
through the Eulerian view in the temporal algorithm, the effect of topography
is much more pronounced compared to the spatial algorithm. Points located
in the vicinity of mountains or steep hills will be under topographic influence
throughout the analysed period, and therefore potentially get much different
results than for instance oceanic points. The difference between land and ocean
is most pronounced in Adapted where the total length of mixed-phase pockets
are several 100km less than over land. Gierens et al. (2020) showed in their
observational study of mixed-phase clouds in Ny-Ålesund that orographically
driven local wind patterns can have profound impacts on the properties and
occurrence of the low-level mixed-phase clouds. In our case, this is perhaps
particularly evident in Figures 7.4m-p where the mean cloud-top IWF is much
higher than the domain average for both Default and Adapted runs in a region
over the island Prins Karls Forland to the south-west of Ny-Ålesund. This
region of enhanced cloud-top IWF marks the location of the highest mountain
of the island, Monacofjellet, with an altitude of 1084 m MSL. The mean wind
direction on November 12 was south-westerly, causing updrafts to the south-
western side of the mountain as the air is forced upwards, followed by a region
of downdrafts on the lee-side of the island. The sinking motion brings the air
into the sub-saturated regime where both ice and water may evaporate, but
as the liquid evaporates at a faster rate compared to ice, the IWF increases
(Heymsfield and Miloshevich, 1993; Lohmann, Henneberger et al., 2016). The
orographic effect is seen through an increase of the mean cloud-top IWF in
this region of up to 0.5 in both Default and Adapted runs. The effect is more
confined to a smaller region surrounding only the very tallest mountains in the
Adapted runs, which could be due to the cloud droplets in Default evaporating
faster due to their smaller size, as discussed in Chapter 6.
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7.3 Effect of model resolution on pocket structure

Previous studies have highlighted the influence of model resolution on
the simulated pocket structure of mixed-phase clouds, with its associated
implications regarding the WBF process (Henneberg et al., 2017; Korolev and
Milbrandt, 2022b; Tan et al., 2016). Here, this resolution effect is investigated
on the transition between the two smallest domains, d03 and d02, through
comparison of the temporal algorithm results as applied on each separately.
Shown in Figure 7.5 are the resulting differences between the two domains.
Note that the results presented in Section 7.2 for d03 are not exactly the
same as those applied here. For a direct comparison between the two domains,
the results from d03 were regridded to match the resolution of d02 after the
calculations were performed. However, since the temporal resolution also differs
between the two domains, the data from d03 was coarsened to the same hourly
output as in d02 before calculation of the pocket statistics. This was done to
avoid resolution effects in the results, which could emerge due to the dependence
on temporal resolution in Equation 5.7.

Once again, effects of topography are apparent, similar to the results seen in
the previous section. The representation of topography is differing between
the two domains due to the 5 times lower resolution in d02 compared to d03.
With lower resolution it becomes more difficult for d02 to pick up features of
particularly steep terrain since each 5km2 area is represented only by a single
altitude instead of the 25 in d03. This becomes apparent especially in the total
pocket length of the Adapted runs shown in Figures 7.5g-h. Here, the orographic
effects on the total mixed-phase pocket lengths seen in d03 are not produced
as close to the windward side of the coast in d02, causing a difference of more
than 400km between the domains in some regions. Due to the much lower
INPC in Adapted, the cloud-tops are in this run mostly liquid, and without
the presence of topography to perturb the updrafts, ice is not produced at
high enough rates to produce mixed-phase cloud-tops. The effect is not as
apparent along the coasts in the Default runs, likely because these runs contain
enough ice to have cloud-tops well within the mixed-phase regime. Thus, any
further perturbation of the vertical motion does not cause severe impacts on the
mixed-phase cloud-tops, unless the wake effects cause strong enough downdrafts
for the liquid to be depleted appreciably.

Interestingly, as seen in Figures 7.5m-p, there are large differences in the
produced IWF at cloud-top between the two domains across all simulations
analysed. The Adapted runs on d02 produce a cloud-top IWF about 0.12 higher
than on d03 on average, whereas both Default runs on d02 have an average
IWF at cloud-top more than 0.3 above that of d03. The difference is seen
most clearly over land, but is also present to some degree over ocean without
the influence of topography. This effect of increased ice production by the
coarser domain could be an indication of an overestimation of the WBF process
efficiency in the model. Since ice and liquid is assumed homogeneously mixed
within each respective grid-cell of the domain, the 5-times lower resolution of
d02 may cause unrealistically large interfaces between the two phases, whereas
the inherent thermodynamical instability of their coexistence would in reality
act to separate them (Korolev and Milbrandt, 2022b). In the case of d03 the
phases are still assumed homogeneously mixed within a grid-cell, but the higher
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Figure 7.5: Same as in Figure 7.4 but now showing the difference between the
clipped domain of d02 and the temporally and spatially coarsened domain of
d03. d03 was coarsened temporally before and spatially after the application of
the temporal algorithm.
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spatial resolution enables the separation of ice and liquid to a greater extent.
As the phases are better separated, the phase interface on which the WBF
process can act is reduced and the efficiency may be lowered purely as a result
of the higher resolution (Henneberg et al., 2017). This resolution effect on the
WBF process has been found to cause large underestimations of supercooled
liquid water in clouds represented by global climate models of much coarser
resolutions (Komurcu et al., 2014), but clearly applies also to NWP models as
shown here.
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CHAPTER 8

Variability of Droplet Size
Distributions

Cloud microphysics refers to the small-scale processes driving the formation and
evolution of individual particles in a population of cloud hydrometeors. Due
to the large number of droplets contained within a typical cloud, theoretical
descriptions as well as numerical simulations of each individual droplet’s life-
cycle is impossible (Morrison et al., 2020). Instead, cloud droplet populations
are described from a statistical point of view through size distributions. Cloud
droplet size distributions are important for a wide range of cloud processes,
such as the formation of precipitation (Barthlott et al., 2022), and is closely
linked to cloud phase for instance through SIP (Barthlott et al., 2022; Pasquier,
Henneberger et al., 2022).

In this chapter, variability of the cloud droplet size distributions are investigated
using machine learning to extract cloud segments that contain statistically
significant differences from the mean cloud droplet population. The procedure,
termed the KSC algorithm (Chapter 4), is applied to observations of cloud
droplet size distributions collected with HoloBalloon from the two first flights
on 12 November.

The KSC algorithm can be applied on a wide range of scales by merging adjacent
holograms together. For instance, running KSC on the original holograms yields
a spatial cloud resolution of around 1.7 m, with an assumed wind speed of 10
m s−1. Merging of holograms into 1s time steps gives six times higher total
sampled cloud volume, but consequently a lower spatial resolution of around 10
m. Although merging comes at the cost of a lower spatial resolution, it has some
significant advantages, such as more statistically robust size distributions due to
higher mean droplet counts. Importantly, merging also lowers the computational
cost for clustering of a given cloud segment as the number of holograms are
reduced.

Section 8.1 presents the results from a case study of a shorter segment of cloud
where KSC is applied with both the original high resolution holograms, and
with the 1s merged holograms for comparison. Section 8.2 shows the results of
clustering droplet size distributions on the whole cloud segments from the flights
performed on 12 November, enabled by using the 1s merged holograms. Finally,
Section 8.3 features a comparison between the cloud droplet size distributions
in the WRF simulations, and the KSC results from Section 8.2.
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8. Variability of Droplet Size Distributions

Figure 8.1: CDNC (grey bars, left axis) and 30-second averaged ICNC (solid
black line, right axis) measured by HoloBalloon through the case study segment.
Holograms with total droplet counts less than the droplet cutoff of 70% of the
mean are not included in the analysis and thus not shown.

8.1 Case study: shorter cloud segment

Before applying the KSC algorithm to HoloBalloon data, the technique was
validated using a synthetically produced dataset with size distributions drawn
randomly from three different gamma functions of known shape and scale.
Additionally, the dataset included some size distributions also of random shapes
and scales to mimic noise. The algorithm successfully identified the all the
size distributions as belonging to each of their parent classes, and most of the
noise samples were correctly labelled accordingly. Results from the validation
process and a more thorough discussion of the KSC performance can be found
in Appendix A.

KSC is applied to a case study of a cloud segment from the second flight with
HoloBalloon on 12 November, using both 1.7 m and 10 m resolution to examine
the effect of lowering the original resolution. The period from 12:37:49 to
12:42:17 was selected based on a number of factors. The segment was sampled
shortly after HoloBalloon entered the cloud, therefore capturing a transect
ranging from the cloud-base to 40 meters into the cloud’s interior at an altitude
of 670 m MSL. As can be seen from Figure 8.1, the CDNC was relatively
constant throughout the segment with a mean CDNC = 9.3cm−3, although
there were some periods of droplet counts falling below the cutoff threshold at
6.5cm−3. The segment also contained periods with varying degrees of measured
ice concentrations, ranging from close to 0 in the beginning of the segment to
more than 10L−1 towards the end (black line, Figure 8.1).

Shown in Figure 8.2 are the results from KSC applied on the case study segment
with 10 m resolution. In the KS-matrix (Figure 8.2a), the dark diagonal running
from the upper left corner shows the low KS-score that results from comparing
a hologram to itself, and is therefore inherent in all the KS-matrices produced
by KSC. This diagonal can be interpreted as the ’timeline’ of the cloud segment,
showing increasing time downwards along the diagonal. At least two clusters
are clearly discernible by eye, with a small one located in the first part of the
segment (upper left corner of the KS-matrix), and a second large one spanning
almost the entire rest of the segment. HDBSCAN successfully extracts the
smaller cluster, labelled Class 1 (blue) with 118 holograms, as seen in Figure
8.2b. The second large cluster is also detected and labelled Class 2 (green)
with 708 holograms, but HDBSCAN classifies also a third cluster, Class 3 (red),
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8.1. Case study: shorter cloud segment

Figure 8.2: Results from the KS-clustering of the case study segment, using the
NOFIT method and HDBSCAN with min_sample_size=10 and min_samples=10.
Shown in panel a is the KS-matrix with the mean KS-score (colors) between
all holograms as indicated by the axes. The cluster matrix (panel b) show the
classes (colors) that each pair of holograms are predicted to belong to. The
mean size distributions (panel c) and the fitted shape and scale parameters
for all class members (panel d) are computed for each of the identified classes
individually. Classes are labelled according to increasing average ICNC.
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8. Variability of Droplet Size Distributions

Figure 8.3: ICNC in L−1, averaged across each of the respective classes as
detected by the KSC algorithm in Figure 8.2.

encompassed by Class 2 and consisting of only 11 holograms.

From Figures 8.2c-d it is evident that the mean cloud droplet size distributions
are clearly different between the classes, although Class 2 and 3 look somewhat
more similar in both shape and median size. Class 1 contains on average
much smaller cloud droplets and has a distinct peak in probability density at
a diameter of approximately 17µm. Class 2 and 3 each have their maximum
probability density at approximately 25 and 29µm, respectively. In addition,
Class 2 and 3 both have a much broader distribution shape compared to class
1. Where almost all droplets in Class 1 are confined between 10 to 22µm,
Class 2 and 3 both have droplets ranging from the minimum detection size of
HOLIMO3B of 6 µmat the smallest, to above 40 µmat the largest.

Shown in Figure 8.3 are the mean ICNCs averaged across each of the detected
classes for the case study. There are clearly large differences between the three
classes. Where Class 1 contains only about 0.5L−1, the largest cluster, Class
2, contains almost 10 times as much ice with 5.2L−1. Class 3 has even more
ice with 17.4L−1. Class 3, which is by far the smallest and fully contained
within Class 2 in Figure 8.2b, seems to represent the extremities of Class 2
since it consists of distributions with similar shapes and scales but is shifted
somewhat towards larger diameters and more ice. As previously mentioned,
the cloud segment was sampled shortly after HoloBalloon entered the cloud,
and the first part of the segment, represented well by Class 1, is thus collected
close to cloud-base. This could explain the high prevalence of small cloud
droplets found in Class 1, as the cloud-base marks the first point when rising
air achieves supersaturation and liquid droplets start to nucleate. Following
the evolution along the updraft from cloud-base, droplets are given more time
to grow through condensation and so broaden the size distribution spectrum.
The transition from the narrow mean size distribution seen in Class 1 to the
much broader mean distributions of Class 2 and 3 occurs in only a matter of a
few tens of meters of gained altitude. The rapid transition may be aided by
the very clean conditions under which the cloud is forming (Pasquier, David
et al., 2022), acting to reduce the competition for water vapor and allowing
each droplet to grow larger before a quasi-steady supersaturation is reached
(Lamb and Verlinde, 2011). Further growth and broadening of the distribution

60



8.1. Case study: shorter cloud segment

Figure 8.4: Same as in Figure 8.2, but with holograms merged in 1-second time
steps.

is then possibly also enhanced through collision-coalescence processes, as some
of the fewer but larger droplets produced by clean-air condensation growth may
act as coalescence embryo (Lamb and Verlinde, 2011). However, since a large
contribution from collision-coalescence would cause a significant decrease in the
CDNC, the most heavily influenced droplet size distributions would be expected
to fall below the cutoff of the algorithm at 70% of the segment’s mean CDNC.
Although a small decrease can be seen during the second part of the segment, it
is far from enough to explain the broadening of the size distribution seen here.
Thus, collision-coalescence was likely not a dominant process during this case
study, consistent with results in Motos et al. (2023).

The same cloud segment is analysed with KSC (Figure 8.4) using also a coarsened
resolution of 10 m to investigate the sensitivity to spatial resolution, motivated
by the potential for using KSC on longer flight segments by lowering the
computational cost. Merging of holograms into 1-second time steps involves a
6-fold lowering of the spatial resolution such that each hologram now represents
the probing of a 10m long cloud segment. Thus, the total number of holograms
included in the KS-matrix is much lower, whereas the total droplet count per
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Figure 8.5: Mean ICNC in L−1 per class corresponding to Figure 8.4.

hologram is correspondingly increased.

The KS-matrix in Figure 8.4a is visually very similar to the KS-matrix in
Figure 8.3a, although the lower resolution is apparent. Class 1 in Figure 8.4b
is detected as before, now containing 20 merged holograms corresponding to
120 of the original holograms. Class 2 and 3 look somewhat different from the
earlier case in that the distribution of holograms among them is more even.
The mean cloud droplet size distributions for each class show the same picture
as earlier, with a narrow Class 1 of generally smaller droplets, and the broader
Class 2 and 3 containing much larger droplets. However, the differences in the
maximum probability density between the classes are somewhat smaller than in
the high resolution case, with peaks now at 17, 19, and 25 µm for Class 1, 2 and
3, respectively. Compared to the high resolution analysis, Class 2 now appears
more as an intermediate step between Class 1 and 3. Following the merging
of 6-by-6 holograms and given a constant value for min_cluster_size=10, the
small clusters in the high resolution case, such as the previous Class 3 in Figure
8.2b with only 11 holograms, would no longer be detected by HDBSCAN. As
a result, Class 3 is now produced instead as a larger cluster with a mean size
distribution shifted less towards larger droplets compared to the high resolution
clusters. This demonstrates how the lowering of the resolution to some extent
acts to even out extremities found on the very smallest scales.

Figure 8.5 shows that the differences in mean ICNC between the three classes
are still detected. Class 1 still contains by far the least ice, as expected, since
the cluster appears very similar across the two resolutions in Figures 8.2b and
8.4b. Class 3 still has the most ice, but on average much less than before seeing
as the cluster is larger and the very high ice contents of the 11 holograms in the
previous Class 3 are averaged out across a lot more holograms. The application
of merging appears to produce a more linear transition between the classes,
rather than picking up smaller classes with very different size distributions.
Merging also increases the sample size of size distribution, in this case from
about 100 to 600 cloud droplets, which greatly reduces the risk of clustering on
insignificant differences in the size distributions arising from too small sample
sizes. This is particularly important when using the NOFIT method, where
the p-value equation taking into account the sample size is not applied.
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Figure 8.6: CDNC (grey bars, left axis) and 30-second averaged ICNC (solid
black line, right axis) measured by HoloBalloon through the entirety of Flight 1
(panel a) and Flight 2 (panel b).

Table 8.1: Cluster statistics for Flight 1 corresponding to Figure 8.7.

Class Number 1 2 3 4 5 Noise
Hologram Count 10 39 19 33 13 80%

8.2 Clustering of entire flights

The KSC algorithm was applied on the 1-second merged cloud segments from
the entirety of Flight 1 and 2 with HoloBalloon on 12 November. Flight 1
contained on average almost 10 times more ice than Flight 2, and exhibited much
more variation in the CDNC throughout, shown in Figure 8.6. Flight 1 was
measuring in cloud for a duration of 25 minutes, whereas Flight 2 lasted longer
with a total duration of 70 minutes. Only the parts of the flights measured at a
relatively constant altitude were analysed here, so the first and last 2 minutes of
in-cloud measurements were excluded. This was done to avoid clustering of the
size distribution differences arising mainly from the probing of different stages
in the cloud evolution as shown in the previous section with the differences
between cloud base and interior.

Shown in Figure 8.7 are the results from clustering on 1-second merged holograms
on Flight 1. The KSC algorithm extracts a total of 5 different clusters from
the cloud segment, of sizes given in Table 8.1. Worth noting is the significant
amount of detected noise, which is likely arising from the use of the NOFIT
method described in Section 4.2.1. As NOFIT does not apply the p-value
equation for the KS-test, size distributions are discriminated based on the linear
KS-test statistic rather than the binary ’success’ or ’failure’ variant, potentially
making it harder for the clustering algorithm to find regions of higher density in
the data. Further considerations on the use of the NOFIT method can be found
in Appendix A. The two dominant clusters found from Flight 1 are Class 2
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Figure 8.7: Results from applying KSC on the entire cloud segment of Flight 1
with HoloBalloon on 12 November.

(light blue) and Class 3 (orange) consisting of 39 and 33 holograms, respectively,
which corresponds to roughly 390 and 330 meters of cloud in total. The mean
size distributions of the classes vary greatly in terms of location, ranging in
peak probability density from 13 µm(Class 5) to 24 µm(Class 1). All clusters
exhibit size distributions of fairly similar shapes, perhaps apart from Class
2, which also contains distributions extending to higher values for the fitted
gamma shape parameter (Figure 8.7).

The cluster variability was large also for Flight 2, the results of which are shown
in Figure 8.8. A total of 7 size distribution clusters were detected from the
cloud segment, with one cluster much larger than all other, labelled Class 6, as
shown in Table 8.2. For Flight 2, the clusters consist of both broad and narrow
mean size distributions, similar to what was seen in the results from the case
study (Figures 8.2 and 8.4). For Flight 1, however, all clusters have relatively
narrow mean size distributions, with no broad distributions resembling those
found in both the case study and in Flight 2. As can be seen from Figure 8.6a,
Flight 1 sampled a cloud segment that contained large variations in CDNC as
well as a high ICNC compared to the case study segment taken from Flight 2
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Figure 8.8: Results from applying KSC on the entire cloud segment of Flight 2
with HoloBalloon on 12 November.

Table 8.2: Cluster statistics for Flight 2 corresponding to Figure 8.8.

Class Number 1 2 3 4 5 6 7 Noise
Hologram Count 18 20 19 16 48 304 32 75%

(Figure 8.1). This could indicate that Flight 1 was more influenced by turbulent
mixing, consistent also with updraft velocity measurements (Pasquier et al.,
2020), and thus appeared more heterogeneous than what was seen in the case
study from Flight 2.

The mean ICNC per class was calculated for both Flight 1 and 2 and is shown
in Figures 8.9a and 8.9b, respectively. Classes containing more ice appear to
follow the same tendency seen in the case study analysis of having generally
larger droplets. Figures 8.7d and 8.7d reveal in combination with Figures 8.9a
and 8.9b that higher ice contents are also positively correlated with the fitted
gamma shape parameter of the size distributions. The effect is examined further
in Figure 8.9c where the ICNC is shown as a function of the mean droplet
diameter per class. In Flight 1, the increase in ICNC with increasing mean
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Figure 8.9: Mean ICNC in L−1 per class in Flight 1 (panel a) and Flight 2
(panel b), corresponding to Figures 8.7 and 8.8. Panel c) shows the mean ICNC
as a function of the mean droplet diameter per class detected in each flight.

droplet diameters is monotonic and grows approximately exponentially. In
Flight 2 the tendency is more varied, but a positive relation is still evident.

As with any two correlated variables there are three possibilities regarding the
apparent relationship between droplet size distribution shapes and ice contents:

1. the presence of ice has a causal effect on the size distribution shape,

2. the size distribution shape has a causal effect on ice contents, or

3. both are affected simultaneously by secondary conditions, and there is no
direct causal relationship between them.

In this case, the three types of relationships are all possible and may exist in
combination with each other.

One possible explanation for the evident correlation is offered by the WBF theory.
Growth or evaporation rates of liquid droplets are determined by the saturation
vapor pressure of the interstitial air, giving rise to a quasi-steady equilibrium
between water in the liquid and gaseous phase. If ice is present, however, vapor
may be lost through depositional growth of the ice crystal, thereby altering
the balance between the liquid droplets and the vapor, ultimately resulting
in evaporation of liquid to restore the equilibrium (Lamb and Verlinde, 2011).
If enough ice is present in proximity to the liquid under the right conditions,
some smaller droplets may lose enough mass to disintegrate completely. This
could potentially explain why the classes with high ICNC have a much lower
frequency of occurrence of smaller droplets, as seen in both Figure 8.7 and 8.8.

The complete loss of smaller droplets to the ice phase would also contribute
to the higher mean droplet diameters seen in Figure 8.9. However, it does not
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explain why the larger droplets are more frequently observed under high ice
conditions. This could, however, possibly be explained through the second
causal relationship, wherein the size distribution shape affects the ICNC. SIP
by the HM process has been found through laboratory experiments to require
the presence of droplets with radii both below 12 µmand above 24 µm(Korolev
and Leisner, 2020; Mossop, 1978). This condition is clearly met for instance
in Class 1 of Flight 1, which has a secondary plateau in probability density
for droplets below 16 µmin addition to the primary peak at 25µm. On the
other hand, the classes with ICNC close to zero, such as Class 4 and 5, contain
almost no droplets large enough for HM to occur. For Flight 2 only two classes
are clearly outside the HM size thresholds, Class 6 and 7, which are also the
classes containing by far the least ice. This is particularly significant as Class 6
is also the largest of the detected classes, consisting of more than 300 merged
holograms.

Another potential mechanism to explain the presence of high ICNC with
larger droplets is through the DS process. Recent studies have suggested that
droplet shattering may occur when supercooled liquid droplets larger than 50
µmare present (Lauber et al., 2018) and that the probability of DS occurrence
increases with increasing diameters (Keinert et al., 2020). Analysis conducted
by Pasquier, Henneberger et al. (2022) following the NASCENT field campaign
reveals evidence of a high SIP event during Flight 1 on 12 November. They
find that large supercooled liquid droplets were present in this time span and
that conditions were favorable for SIP by the DS mechanism. Although hardly
visible in the probability density distributions in Figures 8.7 and 8.8, owing to
their low relative frequency of occurrence, cloud droplets above 50 µm were
detected during both flights (not shown), thereby likely contributing at least in
part to the positive dependence of ICNC on droplet size found in Figure 8.9c.

8.3 Comparison with size distributions from WRF

Cloud microphysics in NWP and climate models can typically be sub-categorized
into two types regarding how they handle droplet size distributions (Morrison
et al., 2005). Bin models explicitly simulate the evolution of cloud particles and
are thus, able to predict the behavior of the size distributions, at the cost of
requiring substantial amounts of computing resources. Bulk models represent a
simplified alternative where the size distributions are assumed to have a shape,
scale and/or intercept based on a variety of thermodynamic conditions. Under
this simplification, size distributions are no longer simulated explicitly in the
cloud evolution, but bulk models have been found able to replicate most features
predicted by bin models in cloud-resolving models, while requiring several orders
of magnitude less model integration time (Jiang et al., 2000; Morrison et al.,
2005). The Morrison microphysics scheme is a bulk model and assumes cloud
droplet size distributions based on the simulated air temperature, pressure, and
mixing ratio of cloud droplets. It also depends on the CDNC, which is constant
in the Morrison scheme and set in this case to 250 and 10cm−3 for Default and
Adapted, respectively.

The cloud droplet size distributions as simulated in the model experiments
during the two flights are shown in Figure 8.10 together with the observed and
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Figure 8.10: Simulated and observed bin-weighted cloud droplet size
distributions in µm−1cm−3 from Flight 1 (panel a) and Flight 2 (panel b) on 12
November. Solid, coloured lines are the mean simulated size distributions within
a box surrounding the location of HoloBalloon, averaged over the duration of
the flights. Shaded coloured area shows the spread represented by a distance of
one half standard deviation from the mean. Solid, black curve shows the average
observed size distributions from HoloBalloon, and the coloured, dashed lines
represent each of the classes as detected by the KSC algorithm corresponding
to Figures 8.7 and 8.8 for Flight 1 and 2, respectively.
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classified size distributions from the KSC algorithm. Size distributions from
the model are calculated as the average over a box surrounding the location
of HoloBalloon, similar to what was done in Chapter 6, and the shaded region
represents one half standard deviation of the the spread within this box during
the flights. The lower droplet size detection limit with HOLIMO3B of 6 µm is
evident in the figure, and explains the discrepancy between the model runs and
HoloBalloon at these small diameters. Large differences in shape between the
Default and Adapted runs are apparent during both flights, where the Adapted
runs show much larger concentrations for larger droplet sizes. As previously
discussed, this is typical for clean air conditions where the competition for water
vapor between droplets is greatly reduced due to the scarcity of available CCN
(Georgakaki et al., 2021; Twomey, 1974). Through the lowering of the CDNC,
acting as a proxy for CCNC, in the Adapted runs, the model achieves much
better agreement with observed concentrations of cloud droplets within the
range of about 10-35 µm. With the configuration of CDNC in the Default runs,
the assumed size distribution substantially overestimates the presence of small
cloud droplets (less than 20 µm while larger droplets are underrepresented.
The Adapted simulations, however, greatly overestimate the occurrence of large
droplets during both flights. The overestimation is particularly evident in Flight
1, as the Adapted runs fail to capture the observed narrowing of the mean
size distributions compared to Flight 2. The Default runs, on the other hand,
do capture an increase in the occurrence of larger droplets from Flight 1 to 2
similar to what was observed. The drop-off in concentration with increasing
droplet sizes also corresponds better between the Default runs and observations.
Inaccurate representations of cloud droplet size distributions may be problematic
for the simulation of a wide range of macrophysical properties, such as radiation
transfer (Wang et al., 2022) and precipitation efficiency (Liu et al., 2020), and
microphysical processes, such as DS (Phillips et al., 2018) or riming (Saleeby
and Cotton, 2008). These results indicate that the Morrison scheme may assume
shapes of the cloud droplet size distributions that do not represent the cloud
droplet populations well under Arctic conditions.
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CHAPTER 9

Conclusion

9.1 Summary

This thesis was centered around a case study of Arctic mixed-phase clouds on
12 November 2019, which was comprehensively observed during the NASCENT
field campaign (Pasquier, David et al., 2022). A combination of cloud-resolving
modelling and in-situ measurements was used to evaluate some important
yet unanswered questions regarding the characteristics of mixed-phase clouds.
These are summarized through three overarching research questions stated in
Chapter 1, which loosely correspond to the three parts of the results featured
in Chapters 6, 7, and 8, respectively.

Firstly, Research Question 1 asked the question of how often and under
which conditions mixed-phase clouds tend to be genuinely mixed. In Chapter 6,
it was found that although the modelled cloud contained an average IWF well
within the mixed-phase zone, only about 5% of the total cloud volume could be
considered genuinely mixed. The use of representative aerosols in the simulation
caused a shift from ice to liquid, with the occurrence of liquid increasing
from 70% to about 90%, however the cloud maintained the same percentage
of genuinely mixed cloud volume at 5%. Furthermore, when constrained to
observed INPC and CDNC the model was found to severely underestimate the
prevalence of ice compared to in-situ measurements. The default configuration of
the model was found to perform better in terms of simulated ice concentrations,
although likely for the wrong reason through overestimating INPC. Including
parameterizations of BR and DS as additional SIP pathways, as well as lowering
the thresholds required for HM initiation, showed the potential of SIP to reduce
the discrepancy between modelled and observed ice. Further research on the
efficiency of these processes, for instance regarding the number of splinters
produced by HM, may yield further improvements to the simulation of ice under
realistic Arctic conditions.

Secondly, Research Question 2 regards the simulated spatial distribution
of cloud phase. Chapter 7 addressed this from the perspective of cloud-top
through two new analysis algorithms developed in this thesis. It was found that
the spatial scales at which a mixed-phase cloud can be considered genuinely
mixed is highly influenced by the representation of INPC in the model, but
largely insensitive to the SIP parameterizations used in this thesis. Other
external factors, such as topography and cloud-top lifting, were also found
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to have a substantial impact on the cloud-top phase variability. Effects of
model resolution were revealed to influence not only the mean IWF but also
the spatial scales of genuine mixing at cloud-top, and may thus have important
implications for the efficiency of the WBF process. One possible solution to
mitigate the resolution issue includes the representation of subgrid variability
when simulating the WBF process. This has previously been done for large scale
climate models of much coarser resolution (e.g. Storelvmo et al., 2008), but
could potentially yield an impact even for high resolution models as indicated
by the results presented here.

Lastly, Research Question 3 considered variability in cloud droplet size
distributions on various scales, and the relationship between size distribution
characteristics and ice. In Chapter 8, an adapted version of an automated
clustering algorithm following Allwayin et al. (2022) was implemented and
applied to in-situ observations of droplet diameters from the NASCENT
campaign. The clustering algorithm detected several groups of significantly
different size distributions for all analysed cloud segments, exhibiting large
spread in both shape and median diameter. A positive relation was
found between mean ICNC and median droplet diameter per distribution.
Several possible explanations are proposed for the apparent relationship,
such as enhanced SIP through HM or DS, but assertion of their relative
importance requires further research. Observations were also compared to
the implicitly simulated droplet size distributions from the model, upon which
a large overestimation of small droplets was revealed using the default model
configuration. Much better agreement with observations was achieved by
constraining the model to observations of CDNC, although this instead caused
an overestimation of larger cloud droplets. This shows that the representation
of droplet size distributions in the model is, as of now, likely not ideal for use
under clean Arctic conditions, and should be evaluated in future modelling of
Arctic clouds.

9.2 Outlook and concluding remarks

In this thesis, two new methods for the quantification of modelled cloud-top
heterogeneity were developed, which are particularly useful for comparison with
satellite products, aircraft measurements, or stationary in-situ observations of
cloud phase. One possible path forward entails the implementation of more
sophisticated methods for detection of single- or mixed-phase cloud pockets.
Unsupervised machine learning would likely prove particularly useful for this
purpose, as it could, with minimal subjective influence, detect irregularly
shaped pocket structures and provide more thorough statistical descriptions of
pocket characteristics, such as lifetime, size, composition, and, perhaps most
importantly, evolution. This improvement to the pocket analysis algorithms
could potentially contribute to a more thorough understanding of how the
model handles spatial phase heterogeneities at cloud-top.

Furthermore, the apparent relationship that was found between ice contents
and the characteristics of the droplet size distributions should be investigated
further. The clustering algorithm, first described in Allwayin et al. (2022)
and adapted here, proved useful for the analysis carried out in this thesis,
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but further improvements are possible. Specifically, the algorithm applies the
Kolmogorov-Smirnov test as the metric for distribution dissimilarity, which has
a null distribution that is strictly not valid for discrete data (Noether, 1963).
This thesis presented two possible workarounds, which both yield satisfactory
results. However, there exists alternatives to the Kolmogorov-Smirov test which
are designed or modified to work also under the discrete case (Dufour and
Farhat, 2002), some of which could potentially yield performance improvements
when the algorithm is generalized to discrete data.

Finally, it has been evident through this thesis that the WRF model with
microphysics parameterized with the Morrison scheme struggles to accurately
represent mixed-phase clouds under the clean Arctic conditions that were
observed during the NASCENT campaign. This is clearly a problem that
requires further attention in future modelling research. Several studies have
pointed to the role of SIP being underrepresented in models, and called for the
inclusion of more SIP processes in addition to HM, in particular BR and DS
(eg. James et al., 2021; Pasquier, Henneberger et al., 2022; Phillips et al., 2017;
Sotiropoulou et al., 2020). Here it was found that, although the representation
of BR and DS and the modification of the HM initiation thresholds improved
simulated ice concentrations to some extent, their relative efficiency was not
sufficient to achieve agreement with observations. This was presumably due to
shortcomings in the SIP parameterizations arising from insufficient knowledge
of their mechanisms. A combination of theoretical research striving for a more
a complete description of the underlying physics, and experimental research to
better quantify these processes, is likely needed to improve the representation of
several SIP pathways in models. These advancements have proven necessary to
reduce the discrepancy between simulated and observed ice mass and number
concentrations in Arctic clouds, and to ultimately improve our understanding
of the complex Arctic climate system.
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APPENDIX A

KS-Clustering Validation with
Synthetic Data

KSC was evaluated using a synthetically produced dataset containing three
different gamma distributions with known shape and scale parameters. The
synthetic data consisted of 50 samples randomly drawn from each of the gamma
distributions defined by the shapes 10, 20, 30 and scales 0.6, 0.5, 0.4 µm,
respectively. Additionally, some noise was included represented by another 50
samples drawn from separate gamma functions of randomly chosen values for
shapes and scales, within the range of 5 to 60 and 0.3 to 0.9 µm, respectively.
The test data thus consists of a total of 200 ’holograms’ which are randomly
shuffled around to change the order of appearance.

Figures A.1 and A.2 show the results of running KSC on the synthetic dataset
using the NOFIT and FIT methods, respectively, as described in Section
4.2.1. Each is initialised with 10 ensemble members, and HDBSCAN with
min_cluster_size=10 and min_samples=10 is applied for clustering. Notably, KSC
successfully classified all of the non-noise distribution samples and attributed
them to each of their respective parent classes for both NOFIT and FIT. Most
of the noise samples were correctly labelled as noise in both cases, although a
total of 14 and 5 samples for NOFIT and FIT, respectively, were incorrectly
included in some of the other classes. However, it is worth noting that the
noise samples are in fact randomly drawn from a shape and scale range, which
includes the location of the actual classes. Therefore, the noise can by chance
get values similar to the non-noise distributions and so legitimately belong to
that class.

Moreover, it is evident from Figures A.1d and A.2d that KSC tends to classify
similar holograms along certain isolines of scales and shapes of some relation.
The incorrectly classified noise samples illustrate this dependence clearly as
these are all located on extensions to the isolines for each of the respective classes.
As shown for instance by Pastukhov et al., 2020, these isolines in the shape-
scale-diagram represent states of constant mean of the gamma distribution - the
mean can stay constant following an increase in the scale parameter provided
the shape is decreased accordingly. This is an indication of the sensitivity of
KSC towards the distribution location. A shift in the mean between two sample
distributions causes a large increase in the KS-statistic between them, and thus
a greater separation in the KS-space. From the synthetic dataset it appears
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A. KS-Clustering Validation with Synthetic Data

Figure A.1: Results of the KS-clustering of the synthetic data, using the NOFIT
method and HDBSCAN with min_sample_size=20 and min_samples=20. The KS-
matrix (panel a) shows the mean KS-score (colors) between all holograms as
indicated by the axes. The cluster matrix (panel b) shows the class (colors) that
each pair of holograms are predicted to belong to. The mean size distributions
(panel c) and the fitted shape and scale parameters (panel d) are computed
for each of the identified classes individually. Note that the class numbers are
arbitrary and determined only by the random initiation of HDBSCAN.
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Figure A.2: Same as Figure A.1 but using FIT.

that NOFIT is perhaps more sensitive to the mean compared to FIT as the
isolines of constant means are extended further away from the classes in the
shape-scale-diagram in Figure A.1d.
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APPENDIX B

Code Availability Statement

All analysis in this thesis was carried out using the programming language
Python. All computer code developed during this thesis is publicly available on
GitHub through the following link:

https://github.com/sldamman/Master.git

This includes:

• The spatial and temporal algorithms, developed for analysis of cloud-top
phase heterogeneity in output from the WRF, but is easily generalizable
to include also output from other models of reanalysis products, and likely
also to observational data for instance from satellite.

• The KS-clustering algorithm, inspired by Allwayin et al., 2022 and adapted
here to work also with discretized holographic data of higher spatial
resolution.

• Statistical analysis methods, applied primarily in Section 6, as well as all
visualization and plotting procedures.

The computer code and algorithms published on the GitHub repository may be
maintained and updated following progress and improvements in the future.
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