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Abstract

In the present paper the Natvig measures of component importance for repairable
systems, and its extended version are analysed for two three component systems and
a bridge system. The measures are also applied to an offshore oil and gas production
system. According to the extended version of the Natvig measure a component is
important if both by failing it strongly reduces the expected system uptime and by
being repaired it strongly reduces the expected system downtime. The results include a
study of how different distributions affect the ranking of the components. All numerical
results are computed using discrete event simulation. In a companion paper [4] the
advanced simulation methods needed in these calculations are described.

KEYWORDS: Importance measures; Repairable systems; Discrete event simulation; Birn-
baum; Barlow-Proschan; Natvig

1 Basic ideas, concepts and results

Intuitively it seems that components that by failing strongly reduce the expected remaining
system lifetime are very important. This is at least true during the system development
phase. This is the motivation for the Natvig measure [5] of component importance in
nonrepairable systems. In [6] a stochastic representation of this measure was obtained by
considering the random variable:

Zi= Y:il - }/;07 (1)

where:
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YZ-O = The remaining system lifetime just after the failure of the ith component.

Y} = The remaining system lifetime just after the failure of the ith component, which,
however, immediately undergoes a minimal repair; i.e., it is repaired to have the
same distribution of remaining lifetime as it had just before failing.

Thus, Z; can be interpreted as the increase in system lifetime due to a minimal repair of
the ith component at failure. The Natvig measure of importance of the ith component is

then defined as:
70 EZ;

= = 5 (2)
N Zj:l EZJ'

tacitly assuming FZ; < oo, i =1,...,n. Obviously
. n .
o<1y <1, Y1y =1 (3)
i=1

For repairable systems we consider a time interval [0,¢] and start by introducing some
basic random variables (i = 1,...,n):

T;; = The time of the jth failure of the ith component, j =1,2,.. .,

S;j = The time of the jth repair of the ith component, j =1,2,..,
where we define Sjp =0. Let (i =1,...,nand j =1,2...):

Uij = T;; — Sij—1 = The length of the jth lifetime of the ith component.
D;; = S;; — T;; = The length of the jth repair time of the ith component.

We assume that U;; has an absolutely continuous distribution Fj(t) with density f;(t)
letting F;(t) L. F;(t). Furthermore, D;; is assumed to have an absolutely continuous
distribution G;(t) with density g;(t) letting G;(t) 41— Gi(t). EUij = pi, ED;j = v; and
all lifetimes and repair times are assumed independent.

Parallel to the nonrepairable case we argue that components that by failing strongly

reduce the expected system uptime should be considered as very important. In order to
formalize this, we introduce (i =1,...,n and j =1,2,...):

TZ’] = The fictive time of the jth failure of the ith component after a fictive minimal
repair of the component at Tj;.

Y;(J)- = System uptime in the interval [min(73;,t), min(7};, ?)] assuming that the ith com-
ponent is failed throughout this interval.

Yz} = System uptime in the interval [min(73;,t), min(7};,?)] assuming that the ith com-

ponent is functioning throughout this interval as a result of the fictive minimal

repair.

In order to arrive at a stochastic representation similar to the nonrepairable case, see
Eq.(1), we introduce the following random variables (i =1,...,n):

Zij:Yvi}_Yggv J=12,.... (4)



Thus, Z;; can be interpreted as the fictive increase in system uptime in the interval
[min(7};,t), min(7};, )] as a result of the ith component being functioning instead of failed
in this interval. Note that since the minimal repair is fictive, we have chosen to calculate the
effect of this repair over the entire interval [min(7;;,t), min(7};,?)] even though this interval
may extend beyond the time of the real repair, S;;.

In order to summarize the effects of all the fictive minimal repairs, we have chosen to
simply add up these contributions. Note that the fictive minimal repair periods, i.e., the
intervals of the form [min(73;,t), min(7};,?)], may sometimes overlap. Thus, at a given
point of time we may have contributions from more than one fictive minimal repair. This
is efficiently dealt with by the simulation methods presented in [4]. Taking the expectation,

we get:

E[insm <1)Zi5| L BYi(t), (5)
j=1

where I denotes the indicator function. The time dependent Natvig measure of the im-
portance of the ith component in the time interval [0, ] in repairable systems can then be

defined as:
EYi(t)

251 BY;(t)
We now also take a dual term into account where components that by being repaired

strongly reduce the expected system downtime are considered very important. Introduce
(t=1,...,nand j =1,2,...):

19 (t) (6)

Slfj = The fictive time of the jth repair of the ¢th component after a fictive minimal
failure of the component at S;;.

X?j = System downtime in the interval [min(S;;,t), min(S};,)] assuming that the ith
component is functioning throughout this interval.

Xilj = System downtime in the interval [min(S;;,t), min(S};,¢)] assuming that the ith
component is failed throughout this interval as a result of the fictive minimal
failure.

We then introduce the following random variables parallel to Eq.(4) (i =1,...,n):

Wi; = X5 — X1}, j=1,2,.... (7)
In this case W;; can be interpreted as the fictive increase in system downtime in the interval
[min(S;j, ), min(SZ{j7 t)] as a result of the ith component being failed instead of functioning
in this interval.

Now adding up the contributions from the repairs at S;;, j = 1,2,..., and taking the
expectation, we get:

E [ 31Ty < OWis| £ EXi(t). (8)

The time dependent dual Natvig measure of the importance of the ith component in the
time interval [0,¢] in repairable systems can then be defined as:
EX;(t)

) =<5 (9)
D Z?:l EX;(t)
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An extended version of Eq.(6) is given by:

70— EYilt) + BXi(t)
W= S0 + B 1o
In |7] it is shown that:
P(TY, — Siy1 > (1)
R PN 210
= F;(t) + ; filt U)E(t—u)du
— F()[1 - ln (1)
Hence, applying Eq.(11) we get
J TR () (- n F(t)dt (12)
0

_ / RN — In F(8)]dt — / F(t)dt
0 0

= B(T}; — Sij-1) — E(Ty; — Sij-1)

= B(T}; — Tyj) L.

Accordingly, this integral equals the expected prolonged lifetime of the ith component due
to a minimal repair. Completely parallel we have:

/ " Gi(t)(— I Gy()dt = (S}, — i) L o, (13)
0

Let A;(t) be the availability of the ith component at time ¢, i.e., the probability that the
component is functioning at time ¢. The corresponding stationary availabilities are given
by:

A; =1 A;(t) = =1,...,n. 14
i tl{go ’L() Mi“‘yi’ ? s y ( )

Introduce A(t) = (A1(t),...,An(t)) and A = (Ay,...,A,). Now the availability of the
system at time ¢ is given by h(A(t)), where h is the system’s reliability function.
The Birnbaum measure [2| at time ¢ is given by:

19(t) = h(1s, A() — h(0;, A(1)), (15)

which is the probability that the ¢th component is critical for system functioning at time ¢.
The corresponding stationary measure is given by:

19 = Jim 19(t) = h(1;, A) — h(0;, A), (16)
with standardized version ‘
. I(’)
-2 (17)
i1y
The Barlow and Proschan stationary measure [1] is given by:
(4)
i I [(pi + vi)
15 =L (18)

S0 I (g + )

4



which is the stationary probability that the failure of the ¢th component is the cause of
system failure, given that a system failure has occurred. Note that if (u; +v5),j=1,...,n
are all equal, Eq.(18) reduces to Eq.(17).

In [8] the following stationary versions of Eqs. (6), (9) and (10) are arrived at:

19D ) (i + v

@) _ i 70
Iy’ = lim I (t) = — . . (19)
oo Sl (g + )i
i . i [I(i)/(ﬂi + i)y}
I](V?D - tliglo I](V?D(t) T\ X () p’ (20)
Zj:l[IB /(ws + Vj)]’/j
i i TD /(s + v (i + P
10 — tim 79(1) = g/ (ki + vi)l(pg +v7) (21)

=0 ST (g + o)+ )

Note that if u? ,j =1,...,n are all equal, which by Eq.(12) is the case when all components
have the same lifetime distribution, then Eq.(19) reduces to Eq.(18). Similarly, if l/;) ,j =
1,...,n are all equal, which by Eq.(13) is the case when all components have the same repair
time distribution, then Eq.(20) reduces to Eq.(18). Similarly, if both ,u?, j=1,...,n areall
equal and 1/?, j=1,...,n are all equal, which by Eqgs. (12) and (13) is the case when all
components have the same lifetime distribution and the same repair time distribution, then
Eq.(21) reduces to Egs.(18) and (17).

Now consider the special case where the lifetime and repair time distributions are Weibull
distributed; i.e.,

Fi(t)=e X0% X >0, 0; >0,
Gi(t) =e 0" 5> 0,6 >0.

We then have:
/ Fi(t)(— In Fy(t))dt
0

= ii /OO ul/ai-i-l—le—udu
0

(67 )\i
111 11
- (1) =2
(67 )\i (ai + ) (673
Hence, Eq.(21) simplifies to:
(4)
(i I i + vi)|(pi/ o + vi/ B
10— s+ o 1)) )

ST g+ ) (g s+ vi ) B5)

Now assume that «; is increasing and A; changing in such a way that pu; is constant.
Hence, according to Eq.(14) the availability A; is unchanged. Then f](\? is decreasing in «;.
This is natural since a large «; > 1 corresponds to a strongly increasing failure rate and
the effect of a minimal repair is small. Hence, according to f](é) the ith component is of less
importance. If on the other hand «a; < 1 is small, we have a strongly decreasing failure rate
and the effect of a minimal repair is large. Hence, according to f%) the ith component is of

higher importance. A completely parallel argument is valid for ;.



In the present paper the Natvig measures of component importance for repairable sys-
tems, given by Eqs.(6), (9) and (10) are in Section 2 analysed for two three component
systems and in Section 3 for the bridge system. In Section 4 the measures are applied to
an offshore oil and gas production system. Some concluding remarks are given in Section
5. In a companion paper [4] the advanced simulation methods needed in the calculations
are described. In [8] a more thorough theoretical presentation of the Natvig measures for
repairable systems and their stationary versions is given.

2 Component importance in two three component systems

In this section we will simulate the component importance in two systems with three com-
ponents. Figure 1 shows the systems we will be looking at.

M) M)
/ /
2 1

-0

M) M) M)
/ / /
3 2 3

(a) System A (b) System B

Figure 1: Systems of three components.

The life- and repair times are assumed to be gamma distributed. We will first see how
an increasing variance in the lifetime distribution of one of the components influences the
component importances. The effect of a decreasing mean time to repair of one of the
components will be investigated next.

Let first the components have the following life- and repair time distributions:
Component 2: Fy(t) ~ gamma($,3k), Ga(t) ~ gamma(4, 3),
Component j: Fj(t) ~ gamma(8,1), G;(t) ~ gamma(4,1), j=1,3,

where k is a positive number. The mean lifetimes are p1o = 12 for component 2 and p; = 8,
j =1,3. All components have mean time to repair equal to v; = 2, i = 1,2,3. The variance
associated with the lifetime distribution of component 2 is 36k, while the variance associated
with the lifetime distribution of components 1 and 3 is 8. The variances in the repair time
distributions are 1 for all components. Table 1 displays the results from the simulations for

(

all three versions of the Natvig measure and for fg) and [ Bz)_ p-

We first note that for both systems I](\Z[?D(t) and Igl p are practically equal. Since sta-
tionarity is reached and the repair time distributions are the same for all three components,
this is in accordance with the results of Section 1. Furthermore, component 2’s importance
is increasing in k£ both for the I](\?) (t) and the extended measure. Hence, according to these
measures the increased uncertainty associated with an increasing variance leads to increased
importance of a component. This behavior is present in both systems.



System A System B
ki V) IV, Ve 1Y 18, 1IYe iy, Ve 1Y 1y,
1 0772 0809 0782 0.780 0.810 | 0.477  0.523 0.488 0.487 0.524
1/2 2 0137  0.095 0126 0.128 0.095 | 0.265 0.191  0.244 0.248 0.190
3 0.091 0.096  0.092 0.092 0.095 | 0.261 0.286 0.267 0.265 0.286
1 0729 0809 0749 0.780 0.810 | 0.429 0.524  0.451 0.487 0.524
1 2 0.185 0.095 0.163 0.128 0.095 | 0.337 0.190 0.304 0.248 0.190
3 0.086  0.095 0.088 0.092 0.095 | 0.234  0.286 0.246 0.265 0.286
1 0674 0810 0.705 0.780 0.810 | 0.373 0.524  0.404 0.487 0.524
2 2 0247  0.095 0212 0128 0.095 | 0.422  0.190 0.375 0.248 0.190
3 0.079  0.095 0.083 0.092 0.095 | 0.204  0.286 0.221 0.265 0.286
1 0612 0809 0.654 0.780 0.810 | 0.318 0.523 0.355 0.487 0.524
4 2 0.316 0.096 0.269 0.128 0.095 | 0.508 0.191 0.451 0.248 0.190
3 0.072  0.095 0.077 0.092 0.095 | 0.174  0.285 0.194 0.265 0.286
1 0.544 0.810 0.596 0.780 0.810 | 0.265 0.523 0.305 0.487 0.524
8 2 0.392 0.096 0.334 0.128 0.095 | 0.590 0.191 0.529 0.248 0.190
3 0.064 0.095 0.070 0.092 0.095 | 0.145 0.286 0.167 0.265 0.286
1 0.520 0.810 0.574 0.780 0.810 | 0.247 0.524 0.287 0.487 0.524
10 2 0419 0.095 0.359 0.128 0.095 | 0.618 0.190 0.556 0.248 0.190
3 0.061 0.095 0.067 0.092 0.095 | 0.135 0.286 0.157 0.265 0.286

Table 1: Simulations of System A and B with varying variance in the lifetime distribution
of component 2. Components 1 and 3 have identical life- and repair time distributions. The
time horizon is t = 20000.

k System A System B
/2 1>2>3 1>3>2
1-2 1>2>3 1>2>3
4—-10 1>2>3 2>1>3

Table 2: The ranks of the extended measure of component importance corresponding to the
results in Table 1.

We will then look at how the extended measure ranks the components which is shown
in Table 2. For system A components 2 and 3 are equally important according to I](;l P
irrespective of k. Since the variance of the lifetime distribution of component 2 is greater
than the corresponding one of component 3 for all k, the former component is more important
than the latter according to the extended measure. However, component 1 is not challenged
as the most important for this measure being in series with the rest of the system and by
far the most important according to fg).

For system B component 3 is more important than component 2 according to I](;l p ir-
respective of k. This is also true for the extended measure for £k = 1/2. However, as the
variance of the lifetime distribution of component 2 increases, this component gets increas-
ingly more important according to the extended measure, and finally the most important

one.



We will now turn our attention to the case where one of the components experiences
a decreasing mean time to repair (MTTR). First we will assume that this is the case for
component 1, and that components 2 and 3 have identical life- and repair time distributions.
Then the roles of components 1 and 2 are interchanged.

More specifically, let the components have the following life- and repair time distributions:

Component 1: Fj(t) ~ gamma(24,1), G1(t) ~ gamma(%, k),

Component j: F;(t) ~ gamma(24,1), G;(t) ~ gamma(4, %), j=2,3,

where k is a positive number. Component 1’s mean time to repair is v; = %, while com-
ponents 2 and 3 have constant mean times to repair equal to v; = 2, ¢ = 2,3. The mean
times to failure are equal for all components, thus u; = 24, i = 1,2,3. The availabilities
of the components are A; = ﬁ for component 1 and A; = %, 1 = 2,3 for components
2 and 3. The variances are constant in all distributions. In the lifetime distributions the
variances are 24 for all components. This is also the variance in the repair time distribution
of component 1. The variance in the repair time distributions of components 2 and 3 equals

1.

System A System B
w0 19,0 Mo Y 1. 1Je mhn Pe 1Y 10,
0.875 0.970 0.920 0.928 0.875 | 0.080 0.291 0.126  0.138 0.080
0.875 0.971 0.921 0.906 0.875 | 0.148 0.457 0.225 0.194 0.148
0.875 0.972 0.922 0.896 0.875 | 0.207 0.564 0.306 0.243 0.207
0.876 0.972 0.923 0.890 0.875 | 0.258 0.635 0.372 0.286 0.258
0.875 0.972 0.922 0.886 0.875 | 0.345 0.734 0.472 0.359 0.342

DY =W N =R

Table 3: Simulations of System A and B with decreasing MTTR of component 1. Compo-
nents 2 and 3 have identical life and repair time distributions. The time horizon is t = 20000.

The simulation results are shown in Table 3, where the importance of component 1 is
listed for all three versions of the Natvig measure and for f](gl) and Igz p- Since components 2
and 3 have interchangeable positions both in System A and B, and identical life- and repair
time distributions, they have the same importance for each of the five measures. These
importances are easily found given the ones for component 1. Now we note for both systems
that I](\}) (t) and I](Sll p are practically equal. Since stationarity is reached and the lifetime
distributions are the same for all three components, this is in accordance with the results in
Section 1.

For system A all measures are practically constant in & for component 1 except fg) which
is decreasing in k. The latter fact follows since the component is in series with the rest of
the system and its availability, A;, increases due to the decreasing mean time to repair, ;.

For I(l)

5_p it follows from Eq.(18) that the increase in the asymptotic failure rate 1/(p1 +11)

as vy decreases, compensates for the decrease in fg).
For system B component 1 is in parallel with the rest of the system and the increase in

(1)

Aj as v1 decreases leads to an increasing fg). Since 1/(p1 + v1) increases as well, I;” ,, also

increases. As for system A I](\})(t) behaves like Igzp.

Now, we consider the case where components 1 and 3 are assumed to have identical life-



and repair time distributions. More specifically, we assume that the components have the
following life- and repair time distributions:

Component 2: Fy(t) ~ gamma(8,1), Ga(t) ~ gammal(z, L2
Component j: Fj(t) ~ gamma(8,1), G;(t) ~ gamma(6,1), j=1,3,

where k is once again a positive number. In this example all components have identical
lifetime distributions with a mean time to failure u; = 8, ¢ = 1, 2,3. Moreover, the variances
associated with the lifetime distributions are all equal to 8. The repair time distributions are
identical for components 1 and 3 as well. The mean time to repair of these components are
vj =3, j = 1,3, while the mean time to repair of component 2 is vy = % The variances in
the repair time distributions are % for all components. The availabilities of the components

_ _8k 8
areAg—mandAj—H,j—l,&

System A System B
ki 1900 19,0 0@ 19 19,1900 19,0 D¢ 19 19,
1 0.653 0.656 0.654 0.634 0.654 | 0.652 0.655 0.653 0.623 0.652
1/2 2 0.116 0.112 0.115 0.142 0.115 | 0.174 0.170 0.173 0.211 0.174
3 0.231 0.232 0.231 0.224 0.231 | 0.174 0.175 0.174 0.166 0.174
1 0.682 0.683 0.682 0.673 0.682 | 0.586 0.589 0.587 0.575 0.586
3/4 2 0.136 0.134 0.135 0.147 0.136 | 0.206 0.204 0.206 0.222 0.207
3 0.182 0.183 0.182 0.180 0.182 | 0.207  0.208 0.207 0.203 0.207
1 0.700 0.700 0.700 0.700 0.700 | 0.542 0.542 0.542  0.543 0.543
1 2 0.150 0.150 0.150 0.150 0.150 | 0.229 0.229 0.229 0.229 0.229
3 0.150 0.150 0.150 0.150 0.150 | 0.229 0.229 0.229 0.229 0.229
1 0.722 0.719 0.721 0.733 0.722 | 0.490 0.487 0.489 0.501 0.489
3/2 2 0.167  0.170 0.168 0.154 0.167 | 0.255 0.258 0.256 0.238 0.255
3 0.111 0.111 0.111  0.113 0.111 | 0.255 0.255 0.255 0.261 0.255
1 0.734 0.731 0.733 0.753 0.735 | 0.456 0.454 0.455 0.475 0.458
2 2 04177 0.181 0.178 0.156 0.176 | 0.272 0.277 0.274 0.243 0.271
3 0.089 0.088 0.089 0.090 0.088 | 0.271 0.269 0.271 0.282 0.271
1 0.745 0.740 0.743 0.767 0.744 | 0.438 0.432 0.436 0.458 0.437
5/2 2 0.183 0.188 0.184 0.158 0.183 | 0.282 0.288 0.284 0.247 0.282
3 0.072 0.072 0.072 0.075 0.073 | 0.281 0.279 0.280 0.295 0.282

Table 4: Simulations of System A and B with decreasing MTTR of component 2. Com-
ponents 1 and 3 have identical life- and repair time distributions. The time horizon is
t = 20000.

k System A System B
1/2-3/4 1>3>2 1>3>2
1 1>3~2 1>3=2

3/2-5/2 1>2>3 1>2>3

Table 5: The ranks of the extended measure of component importance corresponding to the
results in Table 4.



Table 4 shows the results from the simulations. As for the previous case I](\l,)(t) and Ig)_ p
are practically equal since the lifetime distributions are the same for all three components.
When k£ = 1, all components have identical life- and repair time distributions. Hence, in
accordance with the results of Section 1 all measures give the same results in each system
in this case. Irrespective of k the results are very similar for the three Natvig importance
measures and Igl p in each system. For System A for all measures the importance of
component 3 is decreasing in k, while the other components get increasingly more important.
For System B for all measures the importance of component 1 is decreasing in k, while the
other components get increasingly more important. According to fg) this behavior can
be explained by comparing the structures of the two systems. In System A components 2
and 3 are connected in parallel. Thus, when the availability of component 2 increases, the
importance of component 3 decreases. In System B component 1 is in parallel with the rest
of the system. The availability of the branch containing components 2 and 3 improves as
component 2 gets stronger. As a result, the importance of component 1 decreases.

We now turn to the ranking of the components according to the extended measure which
is shown in Table 5. We see that component 1 is ranked on top in both systems for all values
of k, so we focus on the ranking of components 2 and 3. As seen from Table 5 the rankings
between these two components are identical for both systems. To explain this, however, we
consider each system separately.

We first consider System A where the ranking is the same for .fg). When k£ < 1, com-
ponent 2 has a lower availability than component 3. Since these components are connected
in parallel, according to f](;) component 3 is ranked before component 2. As soon as k gets
larger than 1, the roles of component 2 and 3 change. Now component 2 has the higher
availability of the two, thus according to fg) this component is ranked before component 3.

We then turn to System B. Here the ranking of the Natvig measures does not follow fg)

rather Ig)_P since the factor 1/(ug + v2) is increasing in k due to v» is decreasing in k.

3 Component importance in the bridge system

In this section we will investigate the bridge system depicted in Figure 2. As in the previous
section the life- and repair times are assumed to be gamma distributed. We will again
first see how an increasing variance in the lifetime distribution of one of the components
influences the component importances. More specifically, we assume that the components
have the following life- and repair time distributions:

Component 1: F(t) ~ gamma(22, k), Gi(t) ~ gamma(2,1),

Component j: F;(t) ~ gamma(3,2), G;(t) ~ gamma(2,1), j =2,3,4,

Component 5: Fy(t) ~ gamma(12,1), G5(t) ~ gamma(2,1),

where k is a positive number. The mean lifetimes of components 1 and 5 are p; = 12,
J = 1,5 which is twice the size of the mean lifetimes of the other components. Thus, u; = 6,
j = 2,3,4. All the components have the same repair time distributions with expectation
vj = 2,5 =1,...,5. The resulting availabilities are A; = g, j=1,5and A; = %, 7 =2,3,4.
The variances in the lifetime distributions are 12 for all components except for the lifetime
distribution of component 1 which has a variance of 12k. In the repair time distributions
the variances are 2. The results of the simulations are shown in Table 6, while the ranks
of the extended measures are shown in Table 7. As for the case presented in Table 1 all
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Figure 2: The bridge system.

components have the same repair time distribution. Hence, in accordance with the results
in Section 1, I](\Z,?D(t) and Igl p are practically equal.

Parallel to the case mentioned above component 1’s importance is increasing in k£ both
for the I](\;) (t) and the extended measure. Hence, again according to these measures the
increased uncertainty associated with an increasing variance leads to increased importance
of a component.

The ranks of the extended measure shown in Table 7 changes a lot as for System B in
the case mentioned above. As k increases, and component 1 becomes more uncertain, it also
becomes more important. Already when k = 1 components 1 and 5 have swapped places in
the ranking, and component 1 becomes the most important component when k > 6.

We will now look at how a decreasing mean time to repair of one of the components
influences the importance measures. More specifically, we let the life- and repair time dis-
tributions be as follows:

Component 1: Fy(t) ~ gamma(8,1), G1(t) ~ gamma(k%, %),

Component j: Fj(t) ~ gamma(8,1), G;(t) ~ gammal(6, %), j=2,3,4,5,

where k as above is a positive number. In this example the lifetime distributions are equal
for all components, thus all components have mean time to failure yu; = 8,7 =1,...,5. The
variance in this distribution is also equal to 8. Components 2, ..., 5 have mean time to repair
equal to 3. The mean time to repair of component 1 is %, which is decreasing in k. The
variance in the repair time distributions are % for all components, while the availabilities
areAlzss—ﬁg andAj:%,j:2,...,5.

The results of the simulations are shown in Table 8. As for the cases presented in Tables
3 and 4 all components have the same lifetime distributions. Hence, in accordance with the
results in Section 1 I](\Z,) (t) and I](;)_ p are practically equal. When k = 1, all components have
identical life- and repair time distributions. Hence, in accordance with the results in Section
1 all measures give the same results in this case. As is seen from the table, the results are very
similar for all three Natvig importance measures and Ig)_ p- The importance of components
1 and 2 are increasing in k, while the ones of components 3 and 4 are decreasing in k.
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ki 190 IV, 190 15 19,
1 0.147 0.202 0.164 0.271 0.202
2 0277 0.258 0.271 0.197 0.257
1/2 3  0.089 0.082 0.087 0.063 0.082
4 0.276 0.257 0.270 0.197 0.257
5 0.211 0.202 0.208 0.271 0.202
1 0.198 0.203 0.200 0.271 0.202
2 0.260 0.256 0.259 0.197 0.257
1 3 0.083 0.082 0.083 0.063 0.082
4 0.261 0.257 0.260 0.197 0.257
5 0.198 0.202 0.199 0.271 0.202
1 0.235 0.203 0.226 0.271 0.202
2 0.249 0.256 0.251 0.197 0.257
3/2 3 0.079 0.082 0.080 0.063 0.082
4 0.248 0.256 0.250 0.197 0.257
5 0.189 0.203 0.193 0.271 0.202
1 0.262 0.201 0.245 0.271 0.202
2 0.240 0.257 0.245 0.197 0.257
2 3 0.077 0.082 0.078 0.063 0.082
4 0.239 0.256 0.244 0.197 0.257
5 0.182 0.203 0.188 0.271 0.202
1 0.386 0.202 0.342 0.271 0.202
2 0.198 0.256 0.212 0.197 0.257
6 3 0.063 0.082 0.068 0.063 0.082
4 0.200 0.258 0.214 0.197 0.257
5 0.153 0.203 0.165 0.271 0.202

Table 6: Simulations of the bridge system with increasing variance in the lifetime distribution
of component 1. The time horizon is t = 20000.

k Rank

1/2 2x=4>5>1>3
1 2=4>1~x5>3
3/2 2~4>1>5>3
2 l~2~4>5>3
6 1>2=4>5>3

Table 7: The ranks of the extended measure of component importance corresponding to the
results in Table 6.

The same is true for fg). The resulting ranks, which are identical for all the three Natvig
measures, are shown in Table 9. As in the previous case, component 3 is always the least
important component. For all the importance measures there is a turning point at k = 1. For
this k all components have identical life- and repair time distributions leaving components
1, 2, 4 and 5 equally important.

A more in depth analysis of the results in this and the previous section is given in [3]. As
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a conclusion the results of the present section very much parallel the ones of the previous
one.

ki 0w 10,0 Mo Ip 1,
1 0.174 0.170 0.173 0.211 0.174
2 0.198 0.199 0.198 0.189 0.198
1/2 3 0.074 0.074 0.074 0.071 0.074
4 0.323 0.323 0.323 0.308 0.322
5 0.232 0.234 0.233 0.222 0.232
1 0.233 0.233 0.233 0.233 0.233
2 0.234 0.234 0.234 0.233 0.233
1 3 0.066 0.066 0.066 0.066 0.066
4 0.233 0.234 0.234 0.233 0.233
5 0.234 0.233 0.234 0.233 0.233
1 0.264 0.268 0.265 0.246 0.264
2 0.250 0.249 0.2560 0.257 0.251
3/2 3 0.063 0.062 0.063 0.064 0.062
4 0.189 0.187 0.188 0.193 0.188
5 0.234 0.233 0.234 0.240 0.234
1 0.295 0.302 0.297 0.259 0.294
2 0.269 0.267 0.268 0.283 0.269
5/2 3 0.058 0.057 0.058 0.061 0.059
4 0.143 0.141 0.142 0.150 0.143
5 0.235 0.233 0.234 0.247 0.235

Table 8: Simulations of the bridge system with decreasing MTTR of component 1. The time
horizon is t = 20000.

k Rank

1/2 4>5>2>1>3
1 4=5~2=x1>3
3/2 1>2>5>4>3
5/2 1>2>5>4>3

Table 9: The common ranks of the three measures of component importance corresponding
to the results in Table 8.

4 Application to an offshore oil and gas production system

We will now look at a West-African production site for oil and gas based on a memo [9].
For this real life example we need to do some simplifications. Originally this is a multi-state
system, which means that it has several functioning levels. In this paper, however, we are
only considering binary systems. Thus a simplified definition of the system will be used.
There are several different possible definitions, but we will use the following:
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The oil and gas production site is said to be functioning if it can produce some amount
of both oil and gas. Otherwise the system is failed.

Oil and gas are pumped up from one production well along with water. These substances
are separated in a separation unit. We will assume this unit to function perfectly.

After being separated the oil is run through an oil treatment unit, which is also assumed
to function perfectly. Then the treated oil is exported through a pumping unit.

The gas is sent through two compressors which compress the gas. When both compressors
are functioning, we get the maximum amount of gas. However, to obtain at least some gas
production, it is sufficient that at least one of the compressors is functioning. If this is the
case, the uncompressed gas is burned in a flare, which is assumed to function perfectly.
The compressed gas is run through a unit where it is dehydrated. This is called a TEG
(Tri-Ethylene Glycol) unit. After being dehydrated, the gas is ready to be exported. Some
of the gas is used as fuel for the compressors.

The water is first run through a water treatment unit. This unit cleanses the water so
that it legally can be pumped back into the wells to maintain the pressure, or back into the
sea. If the water treatment unit fails, the whole production stops.

@%3:@‘

Figure 3: Model of oil and gas production site.

The components in the system also need electricity which comes from two generators. At
least one generator must function in order to produce some oil and gas. If both generators are
failed, the whole system is failed. The generators are powered by compressed and dehydrated
gas.

Thus, the simplified production site considered in the present paper, consists of the
following 8 relevant components, which are assumed to operate independently:

1. Well: A production well where the oil and gas come from.

2. Water cleanser: A component which cleanses the water which is pumped up from the
production well along with the oil and gas.

Generator 1: Generator providing electricity to the system.
Generator 2: The same as Generator 1.

Compressor 1: A compressor which compresses the gas.
Compressor 2: The same as Compressor 1.

TEG: A component where the gas is dehydrated.

e A T

Oil export pump: An oil export pump.

The structure of the system is shown in Figure 3. The components 1, 2, 7 and 8 are all
in series with the rest of the system, while the two generators, 3 and 4, operate in parallel
with each other. Similarly the two compressors, 5 and 6, operate in parallel with each other.
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Component Failure rate v 7%
1 2.736-10~% 7.000 3654.97
2 8.208-1073 0.167 121.83
3& 4 1.776 - 1072 1.167  56.31
5& 6 1.882-1072 1.083 53.11
7 1.368-1073 0.125 730.99
8 5.496-10~% 0.125 1819.51

Table 10: Failure rates, mean repair times and mean lifetimes of the components in the oil
and gas production site.

Table 10 shows the given failure rates, mean repair times and mean lifetimes of the
components in the system. The time unit is days. The mean lifetimes are considerably
larger than the mean repair times. For some components (the well, the TEG unit and the
oil export pump) the mean lifetimes are actually several years.

4.1 Exponentially distributed life- and repair times

In this section we assume that the components have exponentially distributed life- and repair
times. The failure rates in the lifetime distributions are the inverses of the mean lifetimes,
while the repair rates are the inverses of the mean repair times. Thus, all the parameters
needed in the simulations can be derived from Table 10. The time horizon t is set to 100000
days.

In Table 11 we see that I](\;) (t) is equal to its extended version 1:1(\2,) (t). This is because
E[Y;(t)] is very large compared to E[X;(¢)] for all components. Hence, the contributions of
the latter terms in Eq.(10) are too small to make any difference.

The reason for this is that the repair times of the components are much shorter than the
corresponding lifetimes. Hence, the fictive prolonged repair times of the components due
to the fictive minimal failures are much shorter than the fictive prolonged lifetimes due the
fictive minimal repairs. Especially, the fictive prolonged repair times will, due to the much
longer lifetimes, mostly end long before the next real repair. Hence, it is very unlikely that
the fictive minimal failure periods will overlap. As a conclusion it is very sensible for this
case study that I](\? (t) is equal to f](\z,) (t).

We also observe from Table 11 that for the two equal measures the components 1, 2, 7 and
8 that are in series with the rest of the system have approximately the same importance. This
can be seen by the following argument. Since t = 100000 days we have reached stationarity.
Furthermore, for the exponential lifetime distribution p = ;. If components ¢ and j both
are in series with the rest of the system, by conditioning on the state of component j and
applying Eq.(14), the numerator of Eq.(19) equals h(1;,1;, A)A;A;. By a parallel argument
this is also the numerator of I](\?).

Note also that the remaining components that are parts of parallel modules are much
less important than the ones in series with the rest of the system. This is due to the very
small unavailability (1 — A;) that appears as a common factor when factoring the numerator
of Eq.(19). Indeed, in the exponential case we have, if i = 3 or 4 and j = 5 or 6, or vice
versa, that this numerator equals

A1 A A7 As(1 — (1 — A))A) (1 — A) A,
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where all factors except (1 — A;) are close to 1. Furthermore, from Table 10 we see that
all components 3, 4, 5 and 6 have almost identical unavailabilities, explaining why these
components have identical importances.

The ranks of the component importance for the three versions of the Natvig measure are
given in Table 12. We suggest to apply the common ranking based on the measures I](\;) (t)

and 1:](\? (t).

Component I](\l,)(t) IJ(\l,?D (t) I_J(é) (t)
1 0.244 0371  0.244

2 0.249  0.267  0.249
3&4 0.005  0.080  0.005
5&6 0.005  0.077  0.005

7 0.247  0.033  0.246

8 0.241 0.013 0.241

Table 11: Component importance using exponential distributions.

Measure Rank

19t 2>7>1>8>3~4~5~6
pt) 1>2>3~4>5~6>7>8
V) 2>7>1>8>3~4~5~6

Table 12: The ranks of the component importance for the three versions of the Natvig measure
according to the results given in Table 11.

4.2 Gamma distributed life- and repair times

In this section we assume instead that the components have gamma distributed life- and
repair times. More specifically, we assume that for ¢ = 1,...,8, the lifetimes of the ith
component have the densities:

() — 1 @il ooy (— )
) = gt en(—t/8).

while the repair times of the ith component have the densities:

1 ,
9i(t) = ————t%"Lexp(—t/)).
(BN ()
Thus, fori=1,...,8 and j = 1,2,..., we have:

E[Usj] = pi = i3,
Var[Uj] = ai(8)?,

E[Dij] = vi = o;3;,
Var[Di;] = oj(3)?,



where p1,...,us and v1,...,vg are given in Table 10.

By choosing different values for the density parameters it is possible to alter the variances
in the lifetime distributions and still keep the expectations fixed. In order to see the effect
of this on the importance measures, we focus on component 1 where we consider five dif-
ferent parameter combinations for the lifetime distribution. For all these combinations, the
expected lifetime is 3654.97 days, but the variance varies between 1.827-103 and 1.170 - 106.
Table 13 lists these parameter combinations. For the remaining gamma densities we use
the parameters listed in Table 14 and Table 15. All parameters are chosen such that the
expectations in the life- and repair time distributions match the corresponding values given
in Table 10. We also use the same time horizon ¢ = 100000 days as in the previous section.

Set, oq 061 Variance
1 7309.940 0.500 1.827-10°
2 550.033  6.645 2.429-10%
3 101.493 36.012 1.316-10°
4 45.687  80.000 2.924-10°
5 11.422  319.994 1.170-10°

Table 13: Parameter sets for the lifetime distribution of component 1.

Component Q; 0; Variance
2 30.000 4.062 4.950 - 10?

3& 4 30.000 1.877 1.057-102
5& 6 10.000 5.311 2.821-10?

7 179.958 4.062 2.969 - 103
8 218.219 8.338 1.517-10%
Table 14: Parameters in the lifetime distributions of components 2, ..., 8.
Component o G Variance
1 3.500 2.000 1.400- 10!
2 0.668 0.250 4.175-1072

3& 4 3.000 0.389 4.540-10"!
5& 6 1.500 0.722 7.819-10~1!

7 1.000 0.125 1.563-1072
8 1.000 0.125 1.563-102
Table 15: Parameters in the repair time distributions of components 1,...,8.

Tables 16, 17, 18, 19 and 20 display the results obtained from simulations using the
parameters listed in Tables 13, 14 and 15. As for the case with exponentially distributed
life- and repair times, I](\Z,) is equal to its extended version 1:](\;).

We now observe that for these two equal measures the components 1, 2, 7 and 8 that are
in series with the rest of the system have different importances as opposed to the case with
exponentially distributed life- and repair times. However, the remaining components that

are parts of parallel modules are still much less important.
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Furthermore, we see that the extended component importance of component 1 is increas-
ing with increasing variances, and decreasing shape parameters o, all greater than 1, in its
lifetime distribution. Since we have reached stationarity, this observation is in accordance
with the discussion following Eq.(22) concerning the Weibull distribution.

Component I](\l,) (t) I](\Z,?D (t) j:](\l,) (t)
1 0.031 0.246 0.034

2 0.521 0.419  0.520
3&4 0.010  0.059  0.011
5& 6 0.018 0.081  0.019

7 0.202  0.043  0.200

8 0.188  0.017  0.186

Table 16: Component importance using gamma distributions. Variance of component 1
lifetimes: 1.827 - 103.

Component I](\z,) (t) IJ(\Z,?D (t) f](\?) (t)
1 0.107  0.244  0.109

2 0.477 0415 0476
3&4 0.009  0.059 0.010
5& 6 0.017  0.082  0.017

7 0.194 0.043 0.193

8 0.169  0.018 0.168

Table 17: Component importance using gamma distributions. Variance of component 1
lifetimes: 2.429 - 10%.

Component  I{(t) I{p(t) Iy(1)
1 0.213 0.248 0.213

2 0.420 0.415 0.420
3&4 0008 0.058  0.009
5&6 0.015 0.081 0.015

7 0.166 0.042 0.164

8 0.156 0.017 0.155

Table 18: Component importance using gamma distributions. Variance of component 1
lifetimes: 1.316 - 10°.

Table 21 displays the ranks of the components according to the extended measure. Along
with the increased importance, according to the extended measure, of component 1 as a;
decreases, we observe from this table a corresponding improvement in its rank. All the other
components are ranked in the same order for every value of a;. This is as expected from
Eq.(21) since the ordering is determined by its numerator. For all components except com-
ponent 1 the numerator depends on the life- and repair time distributions of this component
only through A, which is kept fixed when varying a;. We also see that the components
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Component I](\l,) (t) I](\Z,?D (t) 1:](\1,) (t)
1 0.301  0.248  0.300

2 0.375  0.414  0.376
3&4 0.007  0.058  0.008
5& 6 0.013 0.081  0.014

7 0.149  0.049 0.148

8 0.134 0.018 0.133

Table 19: Component importance using gamma distributions. Variance of component 1
lifetimes: 2.924 - 10°.

Component  I{(t) I{p(t) Iy (1)
1 0476  0.239  0.475

2 0.279 0.421 0.280
3&4 0006 0.058  0.006
5&6 0.010 0.082 0.010

7 0.111 0.043 0.111

8 0.102 0.017 0.101

Table 20: Component importance using gamma distributions. Variance of component 1
lifetimes: 1.170 - 10°.

that are in series with the rest of the system are ranked according to the shape parameter
«;, such that components with smaller shape parameters are more important.

Table Rank

16 2>7>8>1>5~6>3~14
17 2>7>8>1>56=~6>3~14
18 2>1>7>8>5~6>3~4
19 2>1>7>8>5=6>3~14
20 1>2>7>8>5b~6>3~4

Table 21: The ranks of the extended component importance according to the results given in
Tables 16, 17, 18, 19 and 20.

5 Concluding remarks

In the present paper first a review of basic ideas, concepts and theoretical results, as treated
in [8], for the Natvig measures of component importance for repairable systems, and its
extended version, has been given. Then two three component systems and the bridge system
were analysed. We saw that an important feature of the Natvig measures is that they
reflect the degree of uncertainty in the life- and repair time distributions of the components.
Finally, the theory was applied to an offshore oil and gas production system which is said
to be functioning if it can produce some amount of both oil and gas. First life- and repair
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times were assumed to be exponentially distributed and then gamma distributed both in
accordance with the data given in the memo [9]. The time horizon was set at 100000 days
so stationarity is reached.

A finding from the simulations of this case study is that the results for the original Natvig
measure and its extended version, also taking a dual term into account, are almost identical.
This is perfectly sensible since the dual term vanishes because the fictive prolonged repair
times are much shorter than the fictive prolonged lifetimes. The weaknesses of this system
are linked to the lifetimes and not the repair times.

Component 1 is the well being in series with the rest of the system. For this component
we see that the extended component importance, in the gamma case is increasing with
increasing variances, and decreasing shape parameters, all greater than 1, in the lifetime
distribution. This is in accordance with a theoretical result for the Weibull distribution.
Along with this increased importance we also observed a corresponding improvement in its
ranking.

As a conclusion we feel that the presented Natvig measures of component importance
for repairable systems on the one hand represent a theoretical novelty. On the other hand
the case study indicates a great potential for applications, especially due to the simulation
methods developed, as presented in the companion paper [4].
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