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Abstract

A multi-variate exponential Lévy market is introduced along with sufficient
conditions on existence, uniqueness, and square integrability in the dynamics
of processes that represent wealth, both in a self-financing and in a
consumption setting. An utility maximisation problem is proposed and
sufficient conditions for well-posedness of solutions are stated. In the context
of CRRA utility functions, some properties of the set of constant portfolio
proportions that have an expected utility above a minimum threshold are
analysed.
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Chapter 1

Introduction and Motivation

There could not be a better way of motivating the importance to study models for
portfolio optimisation than the market turmoil that has happened as this text was being
written. In fact, during the master’s studies that give context to this text, the phrase "it
is a once in a lifetime crisis" has been often mentioned in the media to refer to events
like the covid pandemic, a war in Europe, a potential US-China conflict, and a banking
crisis that, as of the delivery of this thesis, caused three banks in the United States to go
bankrupt. Credit Swiss, too, had to be forcefully merged by its rival UBS while, oddly,
the value of some of its bonds indeed vanished. Just to put a further example, for year
end 2022, Norges Bank had -14.1% overall return on its pension fund and such return
was still 0.87% higher than its benchmark index, see [Nor23]. All this happening, while
inflation has been historically high across the world. Just for reference, the April 2023
Norwegian consumer price index yearly growth was of 6.4%.

Since the seminal work by Bachelier [Bac06] to describe the stock markets, the
necessity of having good models that describe the trajectories of assets, has not
diminished. In the present text, the log-returns of financial assets will be model by Lévy
processes driven diffusions. A good compendium of reasons supporting such a model
choice can be found in [CT04, Sections 7.3 and 7.4], however, we briefly enumerate some
of the stylised empirical properties of log-returns that are captured with jump diffusion
processes and not captured by the classic Black-Scholes model exposed in the seminal
paper [BS73]:

• Heavy tails: as originally pointed out by Mandelbrot in [Man63], it is often the
case that in short periods of time, one can observe once or more that daily returns
on assets’ magnitude surpass a threshold that is supposed to be observed not as
often under the assumption of normality.

• Distributional asymmetry: usually big daily losses are greater than big daily wins
although wins happen more often. This fact is also point out in [Man63]

• Jumps in prize trajectories: although it can sound like harmless mathematical
simplification to assume that asset’s prices follow a continuous path, a rational
investor could have very different behaviour under a discontinuous path market.
This assertion has big implications in financial concepts such as leverage and short
selling.

• As exposed in [Bar01], when the log-returns of an asset are assumed to follow
a standard Brownian motion with stochastic volatility, and the square of the
volatility is a generalised inverse Gaussian law type Ornstein-Uhlenbeck process,
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1.1. Thesis outline

then the non-instantaneous log-returns of assets can be very well approximated by
generalised hyperbolic laws, which are a class of Lévy processes.

1.1 Thesis outline

The thesis would develop as follows:

• Chapter 2 is devoted to give context and state the main results upon which the
rest of the thesis would be based on. We will start by introducing Lévy processes
and some of their properties in Section 2.1 so that later on, in Section 2.2, we can
present results on stochastic differential equations driven by such Lévy processes.
Section 2.3 would present results on optimisation problems in the context of general
Itô-Lévy diffusions and Section 2.4 would set the context upon which we will seek
to optimise. None of the results therein presented are original and most of the
theorems and proofs are cited with exception of a corollary that is not specifically
stated in any of the main sources consulted. The proof of the Hamilton-Jacobi-
Bellman is also shown as it turns to be quite insightful for the development of
Section 3.4.

• Chapter 3 is where the thesis itself develops. In Section 3.1 we begin by introducing
a multi-variate market model and state the integrabilty condition that will be
imposed to the Lévy measures of the processes describing the log-returns of risky
assets. Three examples of well known Lévy processes that satisfy such assumptions
are also presented. The model herein exposed was established by the author with
a lot of inspiration from [ØS19] although later on, after some further research, it
turned out to be not too different from other models previously presented in the
literature, where the most similarity was found with [EK04].

Next, Section 3.2 states conditions to be assumed in the dynamics of self-financing
portfolios and it is proven that any process satisfying such dynamics would be well-
posed. Section 3.3 presents a fixed time horizon portfolio optimisation problem for
general utility functions and states sufficient conditions such that a solution can
be indeed found. The main emphasis of this section was placed in showing that all
the integrability conditions such that the optimisation problem is well-posed are
indeed met. The results and proofs herein presented were developed by the author
based in results from Chapter 2 and standard tools from probability theory and
analysis. An example applied to CRRA (or HARA) utility functions is presented
at the end of this section.

Section 3.4 analyses well-posedness, from a financial perspective, of solutions of
the optimisation problem presented in the previous chapter in the context of
CRRA utiliy functions. It is shown that the set of constant portfolio proportions
whose expected future utility is above a minimum threshold, is a convex set whose
boundary conditions are inversely proportional to time to maturity. The supervisor
had the original idea on this approach to well-posedness and the analysis itself was
developed by the author.

Finally, Section 3.5 aims to show that the results obtained in Section 3.1,
Section 3.2, and Section 3.3 can be easily extended to a consumption setting. The
section is mainly based in an an example, in the context of CRRA utility functions,
in which the investor presents indifference between consuming wealth or receiving
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1.1. Thesis outline

a lump sum after consumption. This example was thought by the author to be
original, but turned out to be equivalent to others presented in the literature.

• Chapter 4 presents the concluding remarks and suggests some further lines of
research.
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Chapter 2

Theoretical background

2.1 Lévy processes

In this section, we will expose some basic theoretical results about Lévy processes. The
literature on this topic is rich, however, we will mainly base our exposition on this topic
upon [App09], [CT04] and [Sat13].

Definition 2.1.1 (Lévy process). Let L = {L(t) , t ≥ 0} be a stochastic process in R
n

defined on a probability space (Ω,F ,P). We say that L is a Lévy process if:

1. L(0) = 0 P-almost surely.

2. L has independent increments, i.e., for each n ∈ N and each 0 ≤ t1 < · · · < tn < ∞ the
random variables {L(tj+1) − L(tj), 1 ≤ j ≤ n} are independent.

3. L has stationary increments, i.e., for all s, t > 0, the distribution of L(s+ t) −L(s) does
not depend on s.

4. L is stochastically continuous, i.e., for all ǫ > 0 and for all t ≥ 0,
lims→t P (|L(s) − L(t)| > ǫ) = 0

Remark 2.1.2. Note that conditions 1 and 3 above allow us to express condition 4 as
lims↓0 P(|L(s)| > ǫ) = 0 as well.

In [Sat13, Section 2.11] it is shown that any Lévy process has a càdlàg modification.
In the rest of the thesis we will assume to work with such modification. In fact, some
sources like [CT04] set such càdlàg property as a defining characteristic of Lévy processes.

Definition 2.1.3 (Lévy measure). A Borel measure ν on R
n is said to be a Lévy measure

if it satisfies the following conditions:

1. ν({0}) = 0

2.
∫

Rn min{|z|2, 1}ν(dz) < ∞.

Lévy measures contain all the information necessary to understand how often and
with which magnituded Lévy processes jump through the following result.

Theorem 2.1.4. Let L(t) be a Lévy process in R
n and let B ∈ B(Rn). Then,

∫

B
ν(dz) = E [#{t ∈ [0, 1] : ∆L(t) 6= 0,∆L(t) ∈ B}] . (2.1)

Proof. See [CT04, Proposition 3.5]. �
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2.1. Lévy processes

The definition above characterises Lévy processes with jumps. In fact, any Lévy
process can be decomposed into a Brownian motion with drift plus a jumping process.
This result is formally given as follows:

Theorem 2.1.5 (Itô-Lévy decomposition). If L(t) is an n-dimensional Lévy process, then
there exist r ∈ [0,∞], b ∈ R

n, M ∈ R
n×m, an m-dimensional Brownian motion B(t),

and an independent Poisson random measure on R
n × R

+, N , such that:

L(t) = bt+MB(t) +

∫

|z|<r
zÑ(dz, t) +

∫

|z|≥r
zN(dz, t). (2.2)

Where Ñ(dz, dt) := N(dz, t) − ν(dz)t.

Proof. See [App09, Section 2.4] or [Sat13, Section 4.20]. �

Remark 2.1.6. The literature usually refers to the triplet (b,M, ν) as the characteristic
triplet of the Lévy process L. Such processes can have either of the following sample
path characteristics P-almost surely (see [CT04]):

1. It is continuous: this is the case when ν = 0.

2. It is piece-wise straight line: this happens when M = 0 and
∫

|z|<r ν(dz) < ∞. A process
with this characteristic is known as a (compensated) compound Poisson process and its
Lévy measure can be written as follows:

ν(dz) = λPJ(dz), λ > 0,

where PJ(dz) is a probability measure. It is called compounded Poisson process because
it can be expressed as:

L(t) =
∑

i≤N(t)

Ji,

where N(t) ∼ Poi(λt) and PJ(dz) is the law of the independent copies of the random
variable J . It is important to note that any process with a Lévy measure with support
bounded away from zero will immediately fall into this category.

3. The process has an infinite amount of jumps in any interval of time when
∫

|z|<r ν(dz) =
∞. It is also said that it has infinite jump activity.

4. It is a process of finite variation: This is the case when M = 0 and
∫

|z|<r |z|ν(dz) < ∞.
Conversely, if any of these two conditions is not satisfied, we the process will be of infinite
variation.

Note that Theorem 2.1.5 and Remark 2.1.6 do not specify anything about the
uniqueness of such decomposition. Indeed, r can be regarded as a "free" (not any
Lévy process admits any r ∈ [0,∞]) variable as long as b in Equation (2.2) is adjusted
accordingly. The following two theorems will be the base to setting restrictions in the
Lévy measures we will work with and, too, will justify our choice of r for the rest of the
text.

Theorem 2.1.7. Let L(t) be an R
n dimensional Lévy process. Let g : Rn → R be a non

negative function satisfying that for some k ∈ R
+:

g(x+ y) ≤ kg(x)g(y) ∀x, y ∈ R
n. (2.3)

Then,

E [g (L(t))] < ∞ ⇐⇒
∫

|z|≥1
g(z)ν(dz) < ∞ (2.4)
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2.1. Lévy processes

Proof. See [Sat13, Theorem 25.3]. �

As g(x) = ex is clearly sub-multiplicative, the theorem above will be specially useful
in Section 3.1. The next result we will justify our choice of r for the rest of the text.

Theorem 2.1.8. Let m ∈ N and L(t) be an n-dimensional Lévy process. Then

E[|L(t)|m] < ∞ ⇐⇒
∫

|z|≥1
|z|mν(dz) < ∞. (2.5)

Proof. In [Sat13, Corollary 25.8], the theorem above is presented as a corollary of
Theorem 2.1.8 after developing some theory on submultiplicative functions. In [App09,
Theorem 2.5.2], the proof relies on the fact that any process with jumps bounded from
below has a finite m-th moment. �

In what follows, we will assume to work with at least square integrable Lévy processes,
i.e., processes that fulfil the assumptions of the above theorem if we fix m = 2.
Consequently, we can choose r = ∞ which would let Equation (2.2) to be expressed
as:

L(t) = bt+MB(t) +

∫

Rn
zÑ(dz, t). (2.6)

The remaining results will be presented under such assumptions even though they can
be easily extended to a more general setting.

Theorem 2.1.9 (Lévy-Khinchine formula for Lévy processes). Let L be an n-dimensional
Lévy process with Itô-Lévy decomposition as in Theorem 2.1.5. Let also a ∈ C

n such
that ∫

|z|≥1
e(Re a)⊤zν(dz) < ∞. (2.7)

If we define the Lévy symbol ψL(a) of L as ,

ψL(a) := b⊤a+
1

2
a⊤MM⊤a+

∫

Rn

(

ea
⊤z − 1 − a⊤z

)

ν(dz), (2.8)

then for all t ≥ 0,

E

[

ea
⊤L(t)

]

= etψL(a). (2.9)

Proof. See [App09, Theorem 1.3.3] for the case when a is imaginary and [Sat13, Theorem
25.17(iii)] to generalise for a ∈ C

n. �

One of the most important characteristics of Lévy processes are affine after linear
transformations.

Theorem 2.1.10 (Linear transformations of Lévy processes). Let L(t) be a Lévy process
on R

n with characteristic triplet (b,M, ν). Let T ∈ R
m×n. Then Y (t) := TL(t) is a

Lévy process on R
m with characteristic triplet (bY ,MY , νY )given by:

• bY = Tb,

• MY = TMT⊤,

• νY (U) = ν({x : Tx ∈ U}), ∀U ∈ B(Rn).

Proof. See [CT04, Theorem 4.1]. �

A particular result of the theorem above that we will use in Section 3.1 is that sums
of Lévy processes are still Lévy processes.
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2.2. Itô-Lévy SDEs and jump diffusions

Corollary 2.1.11. Let m,n ∈ N. The sum of m Lévy processes in R
n is again a Lévy

process in R
n.

Proof. Let Li(t), i = 1, . . . ,m be an n-dimensional Lévy processes. Define L(t) :=
(L1(t)⊤, . . . , Lm(t)⊤)⊤. Define the matrix T as the n× (nm) matrix given by:

T :=
[

In, · · · , In

]

︸ ︷︷ ︸

m times

where In is the n× n identity matrix. Afterwards, apply the previous theorem. �

If the results above were not convenient enough, there is at least one more kind of
transformation that preserves a Lévy process

Theorem 2.1.12. If X(t) is an univariate Lévy process, Y (t) := eX(t) is also a Lévy
process.

Proof. See [App09, Theorem 5.1.6]. Later we will mention an example and show the
resulting characteristic triplets. �

2.2 Itô-Lévy SDEs and jump diffusions

Now we will present the results of the main stochastic processes that come to our focus.
Some of these results can indeed be generalised for a local setting. However, we will hold
on to our previously stated assumptions on square integrability.

Definition 2.2.1 (Itô-Lévy SDE). Let (Ω,F ,F = {Ft}t≥0,P) be a complete and filtered
probability space with such filtration being generated by an m-dimensional Brownian
motion B(t) and l 1-dimensional independent compensated Poisson random measures
Ñk with Lévy measure ν = νk. Let α : [0, T ]×R

n → R
n , Σ = Σi,j : [0, T ]×R

n → R
n×m,

and γ = γi,j : [0, T ] × R
n × R → R

n×l be Borel-measurable functions. We define the
Itô-Lévy stochastic differential equation (SDE) or simply Itô-Lévy SDE in R

n as

dX(t) = α (t,X(t)) dt+ Σ (t,X(t)) dB(t) +
l∑

j=1

∫

Rl
γ·,j

(
t,X(t−), z

)
Ñ(dz, dt)

X(0) = x, x ∈ R
n,

(2.10)

subject to the following condition:

n∑

i=1

E





∫ T

0



|αi(t, x)| +
m∑

j=1

Σi,j(t, x)2 +
l∑

j=1

∫

R

γi,j(t, x, z)
2νj(dz)



 dt



 < ∞, (2.11)

which is equivalent as to saying that Σ, γ ∈ L2 ([0, T ] × Ω) and α ∈ L1 ([0, T ] × Ω).

Remark 2.2.2. To keep the thesis as self-contained as possible, we have purposely omitted
any more general kind of SDE where, for instance, the integrands Σ, γ, need not to be in
L2 ([0, T ] × Ω). Furthermore, some sources like [App09], for instance, define these Itô-
Levy SDEs for more general jump measures. In this case, we could relax the notation,
and further computations, from

∫

Rl γ(z)Ñ(dz, dt) to
∑∫

R
γ(z)Ñ(dz, dt) by letting the

support of ν to be the coordinate axis of Rn. From a modelling perspective, this means
that none of the jump components can jump at the same time (see [EK04] or [Sat13,
Section 12]) or, equivalently, that the Poisson random measures are independent among
each others, as stated in Definition 2.2.1.
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2.2. Itô-Lévy SDEs and jump diffusions

Similarly to ordinary or partial differential equations, it is also relevant to ask
about the existence, uniqueness, and stability of solutions to problems of the form of
Equation (2.10). The next theorem states sufficient conditions to have existence and
uniqueness in such problems and also gives a sense of stability of the solutions, at least
in a stochastic sense.

Theorem 2.2.3 ([ØS19, Theorem 1.19]). Let X(t) be a stochastic differential equation as
in Definition 2.2.1. Let M be a real matrix and define ‖M‖2 : =

∑k
i,j=1(MM⊤)i,j.

Assume the following:

1. (At most linear growth) there exists a constant K1 < ∞ such that:

|α(t, x)|2 + ‖Σ(t, x)‖2 +
l∑

k=1

∫

R

|γ·,k (t, x, z)|2 νk (dzk) ≤ K1 (1 + |x|)2 . (2.12)

for all x ∈ R
n.

2. (Lipschitz continuity) there exists a constant K2 < ∞ such that:

|α(t, x1) − α(t, x2)|2 + ‖Σ(t, x1) − Σ(t, x2)‖2

+
l∑

k=1

∫

R

|γ·,k (t, x1, z) − γ·,k (t, x2, z)|
2 νk (dzk) ≤ K2 |x1 − x2|2 .

(2.13)

for all x1, x2 ∈ R
n.

Then there exists a unique càdlàg adapted solution X(t) such that

E

[

|X(t)|2
]

< ∞

for all t.

Proof. See[App09, Section 6.2] for a proof involving more general types of integrators
(not necessarily independent jump measures) and more general types of integrands that
do not need to be constrained by the assumption stated in Equation (2.11). �

Now, let us address the issue of how to find solutions to problems like Equation (2.10).

Theorem 2.2.4 (Itô’s Formula for Itô-Lévy SDE’s). Let X(t) be a Itô-Lévy process as in
Definition 2.2.1. Let also f ∈ C1,2([0, T ],×R

n). Define Y (t) : = f(t,X(t)). Then

dY (t) =∂tf(t,X(t))dt+
n∑

i=1

∂xi
f (t,X(t)) (αi(t,X(t))dt+ Σi,·(t,X(t))dB(t))

+
1

2

n∑

i,j=1

(ΣΣ⊤)i,j(t,X(t))∂xixj
f(t,X(t))

+
l∑

k=1

∫

R

(

f
(
t,X(t−) + γ·,k(t,X(t), z)

)
− f(t,X(t−))

−
n∑

i=1

γi,k(t,X(t), z)∂xi
f(t,X(t))

)

νk(dzk)dt

+
l∑

k=1

∫

R

(
f(t,X(t−) + γ·,k(t,X(t−), z) − f(t,X(t−))

)
Ñ(dz, dt)

(2.14)
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2.2. Itô-Lévy SDEs and jump diffusions

Proof. As in Theorem 2.2.3, [App09, Section 6.2] shows a proof for more general Lévy
measures and more general integrands. Intuitively, the formula is a chain rule for
deterministic functions with a stochastic argument where the stochastic process satisfies
Definition 2.2.1. It is very similar to the classical Itô formula but with the addition of
the compensated jumps and the effect of compensating such jumps. �

Remark 2.2.5. Theorem 2.2.4 should be evaluated at its left-limit to preserve the càdlàg
property of X into Y . To compact the notation, we wrote t instead of t− in the elements
of the formula not related to the jumps and the process X.

Theorem 2.2.4 above has an immediate application to understand the variance (and
martingality) of the stochastic integrals that result from Definition 2.2.1.

Theorem 2.2.6 (Itô Isometry). Let X(t) ∈ R
n be as in Definition 2.2.1 such that X(0) = 0

and α = 0. Then,

E






∣
∣
∣
∣
∣
∣

∫ T

0
Σ (t,X(t)) dB(t) +

∫ T

0

l∑

j=1

∫

Rl
γ·,j

(
t,X(t−), z

)
Ñ(dz, dt)

∣
∣
∣
∣
∣
∣

2





=
n∑

i=1

E





∫ T

0





m∑

j=1

Σi,j(t, x)2 +
l∑

j=1

∫

R

γi,j(t, x, z)
2νj(dz)



 dt





(2.15)

Proof. As we have assumed that Equation (2.11) holds, the result above is consequence
of applying Itô’s formula to f(t,X(t)) = |X(t)2|. However, the isometry is fundamental
in understanding the construction of stochstic integrals themselves. For details, see
[App09, Lemma 4.2.2] or [Øks13, Lemma 3.1.5]. �

Next, we will define the main type of processes that we will study for the rest of the
thesis:

Definition 2.2.7 (Itô-Lévy Diffusion). Consider a stochastic differential equation of the
form of Definition 2.2.1, then it is said to be a Itô-Lévy diffusion, jump diffusion, or
simply a diffusion if it is time homogeneous, i.e., when α(t, x) = α(x), Σ(t, x) = Σ(x),
and γ(t, x, z) = γ(x, z)

Note however that any equation of the form Definition 2.2.1 can be re-written to be
an Itô diffusion by defining a new process X̄(t) := (t,X(t)⊤)⊤, by letting ᾱ := (1, α⊤)⊤

and adding a zero row on top of Σ and γ to make Σ̄ and γ̄, respectively. In the rest of
the thesis, we will work with processes satisfying both conditions in Theorem 2.2.3 and
which can be written as X̄(t) (although for convenience we will drop the bar).

Theorem 2.2.8. A jump diffusion is a Markov process.

Proof. See [App09, Theorem 6.3.1]. �

Our best guess of the future state of an Itô diffusion is, by its Markovianity, a function
of its current value. Let us then mention some results relates to such best guesses.

Definition 2.2.9 (Generator of a diffusion). Let X(t) be an Itô-Lévy diffusion as in
Definition 2.2.7 that complies with the assumptions of Definition 2.2.1. Then the
generator A of X(t) is defined on functions f : Rn → R by

Af(x) = lim
t→0+

Ex [f (X(t))] − f (X(t))

t
(2.16)
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2.2. Itô-Lévy SDEs and jump diffusions

where such limit exists and where Ex [f (X(t))] = E [f (X(t)) |X(0) = x]. The set of
functions such that the limit exists at x will be denoted as DA(x) while DA denotes the
set of functions for which the limit exists for all x ∈ R

n (or R+ × R
n−1 according to the

context).

Remark 2.2.10. We could have as well written E [f (X(t)) |F0] instead of Ex [f (X(t))]
in the definition above, but we will omit this notation to stress on the Markovianity of
diffusions and to avoid an excessive use of it.

Let us now give a explicit representation to the diffusion generators just defined.

Theorem 2.2.11 ([ØS19, Theorem 1.22]). Suppose g ∈ C2
0 (Rn), i.e., f ∈ C2(Rn) such

that lim|x|→∞ f(x) = 0. Let X(t) ∈ R
n be a jump diffusion. Then Af(x) exists and is

given by

Af(x) =
n∑

i=1

αi(x)∂xi
f(x) +

1

2

n∑

i,j=1

(ΣΣ⊤)i,j∂xixj
f(x)

+
l∑

k=1

∫

R

(f (x+ γ·,k(x, z)) − f(x) −Df(x) · γ·,k(x, z)) νk(dzk).

(2.17)

Proof. Formally, the argument relies on operator theory and on the Lévy-Khinchine
decomposition. See [App09, Theorem 3.3.3] or [Sat13, Theorem 31.5]. Heuristically
however, one can observe that the formula is the same as Theorem 2.2.4 without the
random terms. �

Remark 2.2.12. Note that if ν = 0 and Σ = In, then Af(x) will be the the Laplace
operator, ∆f , or the heat operator, ∆f + ∂tf , depending if α = 0 or α = e1. In the
latter case, we would also need that X̄(t) = (t,X(t)⊤)⊤ as previously discussed.

The next theorem will be a cornerstone in the rest of the thesis as it gives an
expression explicitly to compute best guesses of the future state of diffusions.

Theorem 2.2.13 (Dynkin’s formula). Let X(t) ∈ R
n be a jump diffusion, let S ∈ R

n be
an open set and let g ∈ C2(Rn). Suppose that τ < ∞ such that τ ≤ τS : = inf{t >
0;X(t) /∈ S}. Furthermore assume the integrability condition:

Ex

[

|g(X(τ))| +

∫ τ

0
|Ag(X(t))| dt

]

< ∞ (2.18)

Then we can we get the following:

Ex [g(X(τ))] = g(x) + Ex

[∫ τ

0
Ag(X(t))dt

]

. (2.19)

Proof. See [ØS19, Theorem 7.24] for a formal proof. Heuristically, what happens is that
g(X(τ)) is expressed using Itô’s formula in its integral form and the stochastic integrals
vanish because their martingality is guaranteed by the integrability condition given in
Equation (2.18). �

In what follows, we will do as in [ØS19], and will compute Af(x) by the expression in
Equation (2.17) for all f such that the derivatives and integrals involved are well defined
(regardless if f is not a function such that lim|x|→∞ f(x) = 0 as in Theorem 2.2.11)
because the Theorem 2.2.13 shows that we can compute Af(x) as in Equation (2.17) as
long as Equation (2.18) holds.

Remark 2.2.14. Letting τ = t in Theorem 2.2.13, it is easy to observe that the process
g(X(t)) −

∫ t
0 Ag(X(s))ds is indeed a martingale.

10



2.3. Stochastic control

2.3 Stochastic control

Now, we will focus on optimisation problems that involve taking decisions under
uncertainty. Hence, a new stochastic process similar to that in Definition 2.2.1 will
be introduced with the caveat of having a new argument for a choice process or steering
wheel to implement decisions under uncertainty.

Definition 2.3.1 (Control process, [ØS19]). Let S ⊂ R
n and U ∈ R

p. The process
u(t) = u(t, ω) : [0,∞)×Ω → U is a control process assumed to be càdlàg and adapted. If
the process is a function u(t) = u(Y (t)) : Ω → U , we say that it is a Markovian control.

Similarly, we call Y (t) = Yu(t) a controlled diffusion whose dynamics can be explicitly
written as:

dY (t) = α (Y (t), u(t)) dt+ Σ (Y (t), u(t)) dB(t) +

∫

Rn
γ
(
Y (t−), u(t−), z

)
Ñ(dz, dt)

Y (0) = y, y ∈ R
n.

(2.20)

Now we will give the context in which we care to steer our control, in other words,
our objective function.

Definition 2.3.2 (Performance Criterion). Let

τS = inf{t > 0; Yu(t) /∈ S}

Define J = Ju(x) as

Ju(y) = Ey

[∫ τS

0
f (Y (t), u(t)) dt+ g (Y (τS)) 1{τS < ∞}

]

(2.21)

such that f : S × U → R and g : Rn → R are given functions. We say that the process
u is admissible and write u ∈ A if the stochastic differential equation that appears in
Definition 2.3.1 has a unique, strong solution Y (t) for all y ∈ S and

E

[∫ τS

0
f− (Y (t), u(t)) dt

]

< ∞ (2.22)

We would also need that the family {g− (X(τ))}τ≤τS
is uniformly integrable.

The stochastic control problem is to find the value function Φ(x) and optimal control
u∗ ∈ A such that:

Φ(y) = sup
u∈A

Ju(y) = Ju∗
(y). (2.23)

Definition 2.3.1 is general in the sense that it requires u to be adapted. However, under
some conditions, the optimal adapted control will be the same as the optimal Markovian
control. The next theorem will enumerate sufficient conditions needed to be in such a
convenient situation:

Theorem 2.3.3 (Equivalence of adapted and Markovian controls). Let ΦM (y) =
sup{Ju(y) : u = u(Y ) is a Markov control} and Φa(y) = sup{Ju(y) : u = u(t, ω) is an
Ft-adapted control}. Suppose there exists an optimal Markov control u0 for all y ∈ S
and such that:

1. all the boundary points of S, ∂S, are regular with respect to Yu0
(t), i.e., Py(τS = 0) = 1

for all y ∈ ∂S, τS = inf{t > 0; Yu(t) /∈ S}.

11



2.3. Stochastic control

2. ΦM ∈ C2(S) ∩ C(S̄) is bounded in S.

3. Ey [|ΦM (Yτ )| +
∫ τ

0 |AΦM (Y (t))| dt] < ∞ for all bounded stopping times τ ≤ τS , y ∈ S.

Then, ΦM = Φa for all y ∈ S.

Proof. See [Øks13, Theorem 11.2.3]. �

The next theorem is an important result that later on will help us to find the value
of the optimal performance criterion.

Theorem 2.3.4 (Hamilton-Jacobi-Bellman for Optimal Control of Jump Diffusions). Let
φu = φ be a function φ : S → R. Then,

1. Suppose φ ∈ C2(S) ∩ C(S̄) satisfies:

(a) Aφ(y) + f(y, v) ≤ 0 for all y ∈ S, v ∈ U .

(b) φ(y) = g(y) for all y ∈ ∂S.

(c) Ey [|φ(Y (τ))| +
∫ τ

0 |Aφ(Y (t))| dt] < ∞ for all u ∈ A and all τ ∈ T where T
represents the set of all stopping times τ ≤ τS .

(d) {φ−(Y (τ))}τ≤τS
is uniformly integrable for all u ∈ A and y ∈ S.

Then:
φ(y) ≥ Φ(y) for all y ∈ S (2.24)

2. Moreover, suppose that for each y ∈ S there exists a û(y) ∈ U such that û(y) maximises
u(y) 7→ Aφu(y) + f(y, u(y)) and such that:

(a) Aφû(y) + f(y, û(y)) = 0 and

(b) {φ−(Yû(τ))}τ≤τS
is uniformly integrable.

Suppose u∗(t) : = û(Y (t−)) ∈ A. Then u∗ is an optimal Markov control and:

φ(y) = Φ(y) = Ju∗
(y) for all y ∈ S (2.25)

Proof. At a glance, the wording of the theorem can seem rather confusing. However, it
is important to note the the first part of the claim is related to the sufficient conditions
to have an optimal performance criterion whereas the second part of it enumerates the
necessary conditions to have an optimal performance criterion. In what follows, we will
follow the proof given in [Øks13].

1. Let u ∈ A. For n = 1, 2, . . . put τn = min(n, τS). Then, by Theorem 2.2.13:

Ey [φ(Y (τn))] = φ(y) + Ey

[∫ τn

0
Aφu(Y (t))dt

]

.

By assumption 1a) we get the following inequality:

Ey [φ(Y (τn))] ≤ φ(y) − Ey

[∫ τn

0
f(Y (t), u(t))dt

]

=⇒ Ey

[

φ(Y (τn)) +

∫ τn

0
f(Y (t), u(t))dt

]

≤ φ(y).

12



2.4. Utility theory

Taking n to the limit and subsequently applying Fatou’s lemma:

φ(y) ≥ lim inf
n→∞

Ey

[

φ(Y (τn)) +

∫ τn

0
f(Y (t), u(t))dt

]

≥Ey

[

g (Y (τS)) 1{τS < ∞} +

∫ τS

0
f (Y (t), u(t)) dt

]

= Ju(y)

Where the last step was done by considering assumption 1b). Note as well that
assumptions 1c) and 1d) allowed us to give sense to the integrals above. Since u was
arbitrary we conclude that

φ(y) ≥ Φ(y) for all y ∈ S. (2.26)

2. Applying the same logic as in the previous steps to u∗(t) we get an equality, i.e.,

φ(y) = Ju∗
(y) ≤ Φ(y). (2.27)

Where the last inequality above is given by definition of Φ. Finally, combining
Equation (2.26) and Equation (2.27), we get Equation (2.25).

�

2.4 Utility theory

It is a well known principle in non-life insurance that premiums should be greater than
the expected value of the potential losses. See [Sch17, Section 1.10] for a good account
of reasons why this holds true. At a first glance, it sounds like a flawed principle because
by buying such insurance we indeed can expect to reduce our wealth. However, this
assessment turns out to be wrong because it ignores the fact that individuals and entities
are risk averse. Such risk aversion was initially pointed out by Daniel Bernoulli through
the St. Petersburg paradox, which says that it is not reasonable for anyone to pay
an arbitrary large amount of money to play a game where the expected outcome is ∞.
Indeed, this paradox is a reformulation of the fact that the marginal utility of an amount
of wealth is decreasing. For instance, a billionaire would gain less satisfaction by a 1
unit increase of wealth than a recently graduated student with no wealth. Risk aversion
is then the feature that describes investors’ preference of certainty over uncertainty,
even if it is at expense of the expected wealth. See [Ang14, Section 2.2] for a further
motivation on risk aversion or [Pro15, Section 22.2] to analyse it through a more actuarial
perspective.

Mathematically, risk aversion is measured through utility functions, which in the
context of this thesis would be functions of an investor’s wealth (or consumption).

Definition 2.4.1 (Utility function). Let W ⊆ R be an open set that is not bounded above
i,e, W = (−q,∞), q ∈ (−∞,∞]. A utility function is defined as g ∈ C2(W) such that,
for all W ∈ W:

1. g′(W ) > 0.

2. g′′(W ) < 0.

With this kind of functions in mind, it is more natural to define risk aversion.
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2.4. Utility theory

Definition 2.4.2 (Risk aversion). Given an utility function g(W ), an investor’s risk
aversion, a(W ), is given by:

a(W ) = −
g′′(W )

g′(W )
= −

d

dW
ln g′(W ) (2.28)

Analogously, an investor’s relative risk aversion is given by the valueWa(W ). Sometimes
as well, the reciprocal of the risk aversion, 1/a(W ), is called the risk tolerance.

See [Sch17, Section 2.1] for a thorough justification on the above assumptions on g
and an explanation on what a actually describes.

Remark 2.4.3. Let k1 ∈ R and k2 > 0. Note that a(W ) defined as in Equation (2.28)
would be the same for a function f(W ) := k1 + k2g(W ). This fact will turn out to be
useful later on.

Many sources, like for instance [Mer73] or [Sch17, Section 2.1], usually assume a(W )
to be a decreasing function (although it is always positive) as this represents that the
wealthier an individual is, the more risk she would be willing to take. In fact, this
assumption will motivate the most relevant examples that are to appear in the thesis,
specifically, utility functions of the form:

g(W ) =
W η

η
, η < 1, η 6= 0. (2.29)

Utility functions like the one above are said to have constant relative risk aversion
(CRRA) or hyperbolic absolute risk aversion (HARA). In [Ang14, Section 2.3], it is
mentioned that empirical studies show that η ∈ (−9, 0) for individual investors.

Remark 2.4.4. In economics texts this utility function is usually parameterised as
g(W ) = W 1−η/(1 − η), η > 0, η 6= 1 so that η can be interpreted as a relative risk
aversion parameter. We omit this parameterisation here to compact the notation.

One last characteristic of utility functions that is a direct consequence of
Definition 2.4.1 is that they are concave. The following result would therefore turn
out to be useful later on.

Theorem 2.4.5 (Jensen’s inequality for concave functions). Let λ be a finite measure on
E ⊆ R. Let h be a strictly concave function defined on E. If

∫

E |h(z)|λ(dz) < ∞ then,

h

(∫

E
zλ(dz)

)

>

∫

E
h(z)λ(dz). (2.30)

Proof. See [CK98, Theorem 7.46] for a measure theoretic proof of this result for convex
functions or see [Sch17, Theorem G.6] for a more direct proof tailored for concave
functions in the context of expectations. �
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Chapter 3

Methodology and results

3.1 The market model

Let m ∈ N and m ∈ N ∪ 0 and let (Ω,F ,F = {Ft}t≥0,P) be a complete and filtered
probability space with such filtration being generated by an m-dimensional Brownian
motion B(t) and l 1-dimensional independent compensated Poisson random measures
Ñk with Lévy measure ν = νk.

Let S = S(t) denote the vector of n + 1 markets asset’s value at time t of which
Si(0) = si, i = 0, . . . , n are known quantities. S0 is a risk-free bank account and Si,
i = 1, . . . , n, represent the n risky assets in the market. Such vector containing only the
risky assets will be denoted as Ŝ. As mentioned in Section 2.1, we will assume that the
log-returns of a pool of assets are described by a jump diffusion as in Definition 2.2.7.
Let then X = X(t) denote the n + 1 vector of instant log-returns of S at time t such
that X(0) = 0. In other words, let Si(t) = sie

Xi(t) for i = 0, . . . , n. Similarly as with Ŝ,
X̂ will represent the vector of log-returns for the n risky assets.

.The explicit dynamics of the market log-returns are the following:









dX0(t)
dX1(t)

...
dXn(t)









=









α0

α1
...
αn









dt+









0 · · · 0
σ1,1 · · · σ1,m

...
...

σn,1 · · · σn,m














dB1(t)
...

dBm(t)






+

∫

R









0 · · · 0
γ1,1z · · · γ1,lz

...
...

γn,1z · · · γn,lz















Ñ1(dz, dt)
...

Ñl(dz, dt)






,

(3.1)

where α0 ∈ R, αi > α0 and αi > 0 for all i ∈ 1, . . . , n; σi,j ∈ R for all i ∈ 1, . . . , n,
j ∈ 1, . . . ,m; and γi,j ∈ [−1, 1] for all i ∈ 1, . . . , n, j ∈ 1, . . . , l. The short-hand notation
for the equation above will then be:

dX(t) =αdt+ ΣdB(t) +

∫

R

γ(z)Ñ(dz, dt)

=αdt+ ΣdB(t) +
l∑

j=1

∫

R

γ·,j(z)Ñj(dz, dt).
(3.2)

Similarly as with the asset’s notation, we will denote the matrices Σ̂ and γ̂(z) = γ̂z as
the the versions without the first 0 row of Σ and γ(z), respectively. Furthermore, we
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will constraint our model such that Σ̂Σ̂⊤ or γ̂γ̂⊤ are invertible, which in this case is
equivalent to being positive definite.

The model above is similar to a multivariate Black-Scholes model with the addition
of the independent jumps that can affect either one or several stocks at the same time,
depending on the shape of γ. It is also an alternative with several risk sources (although
assuming that the market has an influence by at least one Brownian motion) to the
model presented in [BKR01] and is also a generalisation of the model proposed in [EK04]
because we do not constrain the amount of pure jump Lévy processes, in other words,
we do not necessarily assume that l ≤ n. It is also important to note that γi,j ∈ [−1, 1] is
equivalent to saying γi,j ∈ R because Theorem 2.1.10 states that we can re-scale the Lévy
measures accordingly. We then choose to give this shape to γ(z) to avoid an excessive
use of notation when stating integrability conditions for the Lévy measures.

Proposition 3.1.1. There exists a unique square integrable Lévy process that solves
Equation (3.1).

Proof. Recall that we assume that
∫

Rn |z|2ν(dz) < ∞, hence, the existence, uniqueness,
and square integrability part of the statement are a direct consequence of Theorem 2.2.3
as it is trivial to check Lipschitz continuity and linear growth for α, Σ, and γ as all of
these functions are constant mappings with respect to the variable x = X(t).

To prove that X(t) is indeed a Lévy process, let us write Equation (3.2) in integral
form:

X(t) = αt+ ΣB(t) +

∫

R

γ(z)Ñ(dz, t).

The first two terms above are easily recognisable from the Lévy-Itô decomposition,
Theorem 2.1.5. Let us analyse then the term of the Poisson random measure:

∫

R

γ(z)Ñ(dz, t) =
l∑

j=1

∫

R

γ·,j(z)Ñj(dz, t) =
l∑

j=1

∫

R









0
γ1,jz

...
γn,jz









Ñj(dz, t)

=
l∑

j=1

∫

R











0 0 · · · 0
γ1,j 0 · · · 0
0 γ2,j · · · 0
...

...
...

0 0 · · · γn,j



















0
z
...
z









Ñj(dz, t)

=
l∑

j=1











0 0 · · · 0
γ1,j 0 · · · 0
0 γ2,j · · · 0
...

...
...

0 0 · · · γn,j



















1
1
...
1









∫

R

zÑj(dz, t).

By the equation above becomes clear that we can apply Theorem 2.1.10 and
Corollary 2.1.11 with which we can conclude that indeed X(t) is a Lévy process. �

Now that we have investigated the dynamics of the log-returns of the market, we
will investigate the explicit dynamics of the assets, which by Theorem 2.1.12 we already
know that are still Lévy processes. Starting with the risk-free asset, it is clear that

dS0(t) = α0S0(t)dt (3.3)
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The dynamics of the risky assets can be obtained by applying Theorem 2.2.4, Itô’s
formula, to Si(t) = f(Xi(t)) = sie

Xi(t) for i = 1, . . . , n. The calculation is as follows:

dSi(t) =Si(t
−)







αi +
1

2

(

Σ̂Σ̂⊤
)

i,i
+

l∑

j=1

∫

R

(eγi,jz − 1 − γi,jz) νj(dz)



 dt

+Σ̂i,·dB(t) +
l∑

j=1

∫

R

(eγi,jz − 1) Ñ(dz, dt)



 .

(3.4)

Note that the equation above shows us an additional constraint that the Lévy measures of
the jumps must satisfy so that the stochastic differential equation above is well defined
or, in other words, so that our market makes sense. By virtue of Theorem 2.1.7 and
Theorem 2.1.8, we would only need to check that for all i ∈ 1, . . . , n, j ∈ 1, . . . , l:

∫

|z|≥1
eγi,jzνj(dz) < ∞.

Now, to check that Si(t) ∈ L2(Ω × [0, T ]) we could use the condition stated in
Equation (2.11). However, because we have proven in Proposition 3.1.1 that Xi(t) is
a Lévy process and we know that the explicit form of Si(t) is Si(t) = eXi(t), we can
use the Lévy-Khinchine formula as an alternative way to check square integrability. By
virtue of Theorem 2.1.9, the additional integrability condition has then to be observed
for all j = 1, . . . , l: ∫

|z|≥1
e2zνj(dz) < ∞.

For modelling purposes, it is convenient to have some flexibility in the choice of the
parameters γi,j ∈ [−1, 1] that descibe how jumps can collectively affect a set of stocks.
Therefore, we will assume for the rest of the thesis that whatever Lévy measure we work
with, will have to satisfy the following condition:

∫

|z|≥1
e2|z|νj(dz) < ∞. (3.5)

Remark 3.1.2. It is important to note that any Lévy process with P-almost surely
bounded jumps will immediately satisfy Equation (3.5).

The following examples will illustrate some pure jump Lévy processes with wide
financial applications that satisfy Equation (3.5) in the cases mentioned in Remark 2.1.6
of: finite activity, infinite activity but finite variation, and infinite activity with infinite
variation, respectively.

Example 3.1.3 (Compound Poisson process). Let PJ(z) be the probability density
function of the jumps of a compound Poisson process with Lévy measure ν, then it
follows by Remark 2.1.6 that

∫

|z|≥1
e2|z|ν(dz) < ∞ ⇐⇒

∫

|z|≥1
e2|z|

PJ(dz) < ∞. (3.6)

Particularly, this holds when the jump sizes are normally distributed, which is a process
proposed in [Mer76].
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In Section 2.1 we cited [Bar01] and mentioned that the non-instantaneous log-returns
of some stochastic volatility models can be very well approximated by some Lévy type
stochastic processes. The following two examples correspond to such a category and
correspond, too, to the class of subordinated Brownian motion processes which, simply
put, are classical Brownian motions evaluated at a random time called the subordinator.
See [CT04, Section 4.4.2-4.4.3] for further details.

Example 3.1.4 (Variance-gamma process). Assume that T (t) is Gamma process with
parameters a > 0 and b > 0, such that

E

[

ecT (t)
]

=

(

1 −
c

b

)−at

, c < b.

Let Y (t) := σB (T (t)) where σ > 0 and B(t) is a standard Brownian motion. The Lévy
measure of Y (t) can be consulted in [CT04, Table 4.5] and is given by:

νY (dz) =
b2

a|z|
exp






−

(

2b2

aσ2

) 1

2

|z|






dz.

Hence, Equation (3.5) will hold if

b2

aσ2
=

1

σ2V[T (1)]
> 2. (3.7)

In [CG19] and [MCC98] one can find particular financial examples in which modelling
through variance-gamma processes is useful.

Example 3.1.5 (Negative inverse Gaussian process). Similarly as with the previous
example, consider a model of the form Y (t) = σB (T (t)) where σ > 0 and B(t) is a
standard Brownian motion. However, assume this time that T (t) is an inverse Gaussian
process as described in [FC78] with parameters a, b > 0, such that

E

[

ecT (t)
]

= exp







at

b



1 −

√

1 −
2b2c

a










, c <

a

2b2
.

Let us define B := (σ2
V[T (1)])−1/2 =

√

a/b3/σ, then the Lévy measure of Y (t) can also
be consulted in [CT04, Table 4.5] and is given by:

νY (dz) =
a

4πb3|z|

∫ ∞

0
exp

{

−
1

2
B|z|

(

s+ s−1
)}

dsdz

By expanding (s− 1)2 it is easy to see that, (s + s−1) ≥ 2 holds for all s positive.
Therefore,

e2|z|νY (dz) ≤
a

4πb3|z|

∫ ∞

0
exp

{

−
1

2
(B − 2)|z|

(

s+ s−1
)}

dsdz.

Which shows that a sufficient condition for Equation (3.5) to hold is that

B > 2 ⇐⇒
1

σ2V[T (1)]
> 4.

In [Bar97], [Bar01], and [BKR01] it is discussed the importance of this process.

Remark 3.1.6. It is interesting to note that we found stronger limitations on the variance
of T (1), the subordinator, for the process with infinite variation than for the process with
finite variation. This situation is rather intuitive as evidently we can expect the infinite
variation process to vary more than its finite variation counterpart. Therefore, to assure
integrability we should not let the latter to vary too much by limiting its variance.
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3.2 The wealth process

Now let us define ϕ0(t) as the amount of money held in the bank account at time t.
The values ϕi(t), i = 1, . . . , n will will represent the amount of shares invested in stock
i at time t. We will assume that process (ϕ(t))t∈[0,T ] is adapted and càdlàg. Similarly

as with the assets, we define the vector ϕ(t) as ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕn(t))⊤ and will
let ϕ̂(t) be the vector of the amount of shares invested in the risky assets. Define now
the wealth at time t as the univariate stochastic process Wϕ(t) := ϕ(t)⊤S(t).

3.2.1 Self financing portfolios

Let us assume that the wealth process is self-financing, in other words, that there are no
inflows or outflows of money to or from the portfolio. In mathematical terms we have
that:

dWϕ(t) = ϕ(t−)⊤dS(t). (3.8)

Remark 3.2.1. Equation (3.8) is an assumption and not a consequence of Itô’s formula.

Usually in the literature, like in [Øks13, Definition 12.1.2] for example, it is defined
a set of admissible portfolios Θϕ as the the self-financing portfolios that are bounded
below. Mathematically this means that there is a constant K = K(ϕ), K ≥ 0 such that:

Wϕ(t) > −K(ϕ), P-almost surely.

And such an assumption is justified by the fact that an investor must have a limited
credit amount. This is indeed true, however, for the purposes of this thesis we will fix
a critical credit level K ∈ R, for the portfolios we are interested in to allow for a more
flexible model. In the context of risk management, for instance, capital (wealth) should
stay positive to avoid regulatory interventions in an institution while, in the other hand,
a negative wealth can be considered in this model if, for instance, an investor already
owns any assets that for any reason cannot be traded but that is willing to risk. In the
context of this thesis, we will then require that portfolios satisfy the following condition.

Wϕ(t) > K, P-almost surely.

for a fixed K < Wϕ(0).
The process ϕ above can take different values depending of the face value of a share,

i.e., it is susceptible to splits or dividends that can be re-invested in the same stock, for
instance. To avoid this scaling issue and to reduce the dimension we work with, we will
rewrite Wϕ(t) in terms of the proportions of the portfolio invested in certain assets. To
do so, let us define the vector θ = (θ1, . . . , θn)⊤ with i-th components:

θi(t) :=
ϕi(t)Si(t)

Wϕ(t)
, (3.9)

Which is adapted and càdlàg. Consequently, the proportion of wealth invested in the
bank account would be:

θ0(t) = 1 −
n∑

i=1

θi(t). (3.10)
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3.2. The wealth process

Although it is important to make clear that θ0 is not an element of the vector θ,
however, θ0 will represents the proportion on wealth invested in a bank account. Hence,
Equation (3.8) can be written as:

dW (t) = W (t−)
n∑

i=0

θi(t
−)

Si(t)
dSi(t). (3.11)

Using Equation (3.3), Equation (3.4), and dropping the sub-index ϕ to shorten the
notation, we can write Equation (3.11) as:

dW (t) = W (t−)

{(

1 −
n∑

i=1

θi(t
−)

)

α0dt

+
n∑

i=1

θi(t
−)







αi +
1

2

(

Σ̂Σ̂⊤
)

i,i
+

l∑

j=1

∫

R

(eγi,jz − 1 − γi,jz) νj(dz)



 dt

+Σ̂i,·dB(t) +
l∑

j=1

∫

R

(eγi,jz − 1) Ñ(dz, dt)











(3.12)

Define µ = (µ1, . . . , µn)⊤ as the risk premia vector with i-th component given by:

µi := (αi − α0) +
1

2

(

Σ̂Σ̂⊤
)

i,i
+

l∑

j=1

∫

R

(eγi,jz − 1 − γi,jz) νj(dz). (3.13)

Recall that we have assumed that αi > α0 and αi > 0 for all i ∈ 1, . . . , n. Hence µi > 0
for all i ∈ 1, . . . , n as the mapping z 7→ ez − 1 − z > 0 for all z ∈ R.

Define as well the n× l matrix Γ̂ with entries:

Γ̂i,j(z) := eγi,jz − 1 (3.14)

Then Equation (3.12) can be written in matrix notation as:

dW (t) = W (t−)

((

α0 + θ(t−)⊤µ
)

dt+ θ(t−)⊤Σ̂dB(t) + θ(t−)⊤
∫

R

Γ̂(z)Ñ(dz, dt)

)

.

(3.15)
If we want the equation above to be an Itô diffusion as in Definition 2.2.7, then
the process (θ(t))t∈[0,T ] should be a deterministic function of (t,W (t))⊤ which is an
assumption that we will consider throughout the rest of the thesis. However, later on
we will show that W (t) is good enough for our initial purposes. In what follows, we will
denote Wθ(t) := W (t) were W (t) is the solution to Equation (3.15) parameterised by
the asset allocation θ(t).

A last consideration before moving on is that it is financially reasonable to rule out
the possibility of having too big short or levered positions relative to the total value of the
wealth. Therefore, we will assume in the rest of the thesis that the process (θ(t))t∈[0,T ]

is bounded, i.e., there exists C > 0 such that |θ(t)| < C for all t ∈ [0, T ]. In other words
we will assume that credit constraints are imposed relative to the amount of wealth, in
addition to being to imposed in absolute terms. Hence we define:

Definition 3.2.2 (Reasonable portfolios). The set of reasonable portfolios denoted by Θ is
the set of all càdlàg and F-adapted stochastic processes in R

n that satisfy the following
conditions:

20



3.2. The wealth process

1. Wθ(t) > K, P-almost surely, for all t ∈ [0, T ].

2. |θ(t)| < C, P-almost surely, for all t ∈ [0, T ].

3. θ(t) = θ(W (t)) such that for all i ∈ 1, . . . , n, W 7→ Wθi(W ) is Lipschitz continuous in
(K,∞).

The first two conditions above have been justified so that the wealth process is
financially reasonable. The third condition however, appears to be a mere mathematical
technicality. Nevertheless, Equation (3.9) gives it financial sense. Heuristically, the third
condition above is asking that the amount of wealth invested in a certain asset should
not vary too much with respect to changes in total wealth.

Proposition 3.2.3. Let (θ(t))t∈[0,T ] ∈ Θ. Then there is a unique, square integrable, strong
solution to Equation (3.15).

Proof. The result will follow if we can show that the assumptions in Theorem 2.2.3,
Lipschitz continuity and at most linear growth, hold. Usually the former implies the
latter because

|h(x)|2 ≤ |h(x) + h(0)|2 + |h(0)|2 ≤ K|x|2 + |h(0)|2 ≤ min{K, |h(0)|2}(1 + |x|2),

nevertheless in this case we will prove both conditions separately because θ is defined
over an open set.

Even though the coefficients in Equation (3.15) appear to be linear in W , in general
this is not the case because θ is not necessarily a constant. However, because |θ| is
bounded by the constant C, P-almost surely, the norms in Theorem 2.2.3 can also be
bounded as we will now show for the at most linear growth condition:

W 2
(

α0 + θ⊤µ
)2

+W 2
∣
∣
∣θ⊤Σ̂

∣
∣
∣

2
+W 2

l∑

j=1

∫

R

(

θ⊤Γ̂·,j(z)
)2
ν (dz)

< (1 + |W |)2
(

2α2
0 + 2C2n

n∑

i=1

µ2
i + C2

∣
∣
∣1

⊤Σ̂
∣
∣
∣

2
+ C2n

l∑

j=1

n∑

i=1

∫

R

Γ̂i,j(z)
2νj (dz)

)

,

where in the inequality we also used the identity W 2 < (1 + |W |)2 and a version of
Cauchy-Schwartz inequality which in this case is (

∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i . Now it is

easy to observe that we only need the nl integrals above to be finite. Let us then fix
i ∈ 1 . . . , n and j ∈ 1, . . . , l. The explicit form the integral with respect to the Lévy
measure will then be:

∫

R

Γ̂i,j(z)
2νk (dzk) =

∫

R

(eγi,jz − 1)2 νj (dz)

=

∫

|z|<1
(eγi,jz − 1)2 νj (dz) +

∫

|z|≥1
(eγi,jz − 1)2 νj (dz) .

The first term of the Taylor expansion of eγi,jz around z = 0 is 1, hence, eγi,jz − 1 is
O(z) around zero and its square will be O(z2) which proves that the integral converges
in the region |z| < 1. Outside this region, the result follows immediately because,

∫

|z|≥1
e2γi,jzνj(dz) ≤

∫

|z|≥1
e2|z|νj(dz) < ∞,

where the last inequality is given by the fact that γi,j ∈ [−1, 1] and the condition stated
in Equation (3.5). Hence, we have proven the at most linear growth condition.
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3.3. Optimising wealth

Now, let us check for Lipschitz continuity. This step will be more notationally heavy
and thus we will split it into parts. Also, to avoid confusions, we will write θ = θ(W ).
In all cases, let W,V ∈ (K,∞).

For the drift term, observe that:

(W (α0 + θ(W )⊤µ) − V (α0 + θ(V )⊤µ))2 ≤ 2α2
0(W − V )2 + 2|Wθ(W )⊤µ− V θ(V )⊤µ|2

≤ 2α2
0(W − V )2 + 2|µ|2|Wθ(W ) − V θ(V )|2

≤ 2α2
0(W − V )2 + 2|µ|2K|W − V |2.

Where in the last step we used Lipschitz continuity and before (several times) Cauchy-
Schwartz inequality. Now, for the Brownian motion part:

|Wθ(W )⊤Σ̂ − V θ(V )⊤Σ̂|2 = |(Wθ(W ) − V θ(V ))⊤Σ̂|2 ≤ nm max
i≤n,j≤m

{

Σ̂i,j

}2
K|W − V |2.

And finally, for the jump part, let us pick an arbitrary j in 1, . . . , l:

∣
∣
∣
∣W

∫

R

θ(W )⊤Γ̂·,j(z)ν (dz) − V

∫

R

θ(V )⊤Γ̂·,j(z)ν (dz)

∣
∣
∣
∣

2

≤ |Wθ(W ) − V θ(V )|2
∣
∣
∣
∣

∫

R

Γ̂·,j(z)ν (dz)

∣
∣
∣
∣

2

≤ K|W − V |

∣
∣
∣
∣

∫

R

Γ̂·,j(z)ν (dz)

∣
∣
∣
∣

2

.

Where the convergence of the vector of integrals has been proven in a previous step. �

As a direct consequence of the proposition above, we can conclude that if any θ ∈ Θ
is to be interpreted as a control process like in Definition 2.3.1, such control will be
immediately admissible in the sense of Definition 2.3.2. In fact, this is what we will do
next.

3.3 Optimising wealth

Assume now that an investor holds a positive amount of money at time 0 denoted by w,
w > 0. Furthermore, assume the investor has the possibility of investing such quantity in
a market with stock dynamics described by Equation (3.4). Let us assume as well that
the investor cannot deposit or withdraw any money from its portfolio until a specific
time T . Furthermore, assume there are no transaction costs associated to the purchase
or sale of assets. In mathematical terms, we are assuming that the value of such portfolio
would be described by the dynamics exposed in Equation (3.15).

Let the investor be risk averse with a utility function describing her preferences,
g : (q,∞) → R, q < K, to be given by Definition 2.4.1. The strict inequality q < K is
not a minor assumption as it allows us to bound g(W (t)), and g′(W (t)) P-almost surely.
Furthermore. under this assumptions, we can consider without any loss of generality
that the utility function g is non-negative. In fact, if we let −K1 = min{g(−K), 0}, then
the function h(W (t)) = g(W (t)) + 2K1 will be non-negative and concave and, according
to Definition 2.4.2, the new function h will give the same risk aversion as g.

A natural question for the investor is how to define θ∗(t) ∈ Θ such that she can
maximise her future expected utility. In terms of Definition 2.3.2, the investor wishes to
maximise the performance criterion:

Jθ(w) = Ew [g(Wθ(T ))] (3.16)
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3.3. Optimising wealth

At a first glance one could think about using the Lévy-Khinchine formula in the
expression above and then equate its gradient with respect to the vector θ to zero.
However, θ(t) is a process. In order to investigate it we can use Theorem 2.2.13,
provided that the integrability condition therein assumed indeed holds, to characterise
the equation above as follows:

Ew [g(Wθ(T ))] = g(w) + Ew

[
∫ T

0
Ag(Wθ(t))dt

]

. (3.17)

The generator Ag(Wθ(t)) can be obtained by applying Equation (2.17) to the dynamics
given by Equation (3.15) and is given as follows:

Ag(W ) =
(

α0 + θ⊤µ
)

Wg′(W ) +
1

2
θ⊤Σ̂Σ̂⊤θW 2g′′(W )

+
l∑

j=1

∫

R

[

g
(

W
(

1 + θ⊤Γ̂·,j(z)
))

− g(W ) − θ⊤Γ̂·,j(z)Wg′(W )
]

νj(dz),
(3.18)

Where in the equation above, we purposely wrote W (t) as W and θ(t) as θ to compact
the notation. Later in the text we will keep doing so when the context allows.

Remark 3.3.1. The integrands in the l integrals in Equation (3.18) are non-positive for
all z ∈ R. Indeed, recall that g is strictly increasing and g′ is strictly decreasing. Denote
h := Wθ⊤Γ̂·,j(z) then the result follows by the mean value theorem, because if h is
positive then

g′(W ) >
g(W + h) − g(W )

h
,

and if h is negative,

g′(W ) <
g(W + h) − g(W )

h
.

The case when h = 0 can be solved by direct substitution where we get the value 0.

If we could maximise Equation (3.18) above as a function of θ for all t then we would
maximise Equation (3.17). Let us then compute the gradient of Ag(W ) with respect to
θ:

DθAg(W ) =µWg′(W ) + Σ̂Σ̂⊤θW 2g′′(W )

+
l∑

j=1

∫

R

(

g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

−Wg′(W )
)

Γ̂·,j(z)νj(dz),
(3.19)

assuming that the integrals and derivatives above exist. Later on we will verify such
assumptions. Letting DθAg(W ) = 0 to get the critical points we can possibly find an
optimal portfolio allocation.

Note that any θ∗(t) ∈ Θ satisfying DθAg(W ) |θ∗
= 0 will be a global maximum as

for all θ ∈ Θ,

J [DθAg(Wθ)] = Σ̂Σ̂⊤W 2g′′(W ) +
l∑

j=1

∫

R

g′′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

Γ̂·,j(z)Γ̂·,j(z)
⊤νj(dz),

(3.20)
is strictly negative definite because Σ̂Σ̂⊤ is strictly positive definite and all Γ̂·,j(z)Γ̂·,j(z)

⊤,
j = 1, . . . , l are positive semidefinite matrices and g′′ is, by assumption, negative in all
its domain. Hence, as long as the integrals and the derivatives are well defined, we can
conclude that the mapping θ 7→ Ag(Wθ) is concave. Thus, if there is a θ∗ ∈ Θ satisfying
DθAg(W ) |θ∗

= 0, it would be unique.
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3.3. Optimising wealth

Definition 3.3.2. The optimal portfolio proportion or optimal portfolio allocation is θ∗ ∈ Θ
that satisfies the following system of integral equations:

DθAg(W )

∣
∣
∣
∣
θ∗

=µWg′(W ) + Σ̂Σ̂⊤θ∗W
2g′′(W )

+
l∑

j=1

∫

R

(

g′
(

W
(

1 + θ⊤
∗ Γ̂·,j(z)

))

−Wg′(W )
)






eγ1,jz − 1
...

eγn,jz − 1




 νj(dz) = 0.

(3.21)

From the definition above, a direct relationship between the regularity of the utility
function and of the amount of money invested in different assets can be established in
the continuous case.

Proposition 3.3.3. Let l = 0. Then, condition 3) in Definition 3.2.2 holds for θ∗ if and
only if the risk tolerance (see Definition 2.4.2) is Lipschitz continuous.

Proof. Solving for θ∗ in Equation (3.21) we get:

θ∗(W ) = −
(

Σ̂Σ̂⊤
)−1

µ
g′(W )

Wg′′(W )
= −

(

Σ̂Σ̂⊤
)−1

µ
1

Wa(W )
,

Which immediately yields that:

Wθ∗(W ) = −
(

Σ̂Σ̂⊤
)−1

µ
1

Wa(W )

�

Heuristically, the proposition above states that if the risk tolerance is well behaved,
then the resulting wealth process with dynamics given by Equation (3.15) are well posed.

However nice the result above can be, it must be considered that not all θ that satisfies
Equation (3.21) and condition 3) in Definition 3.2.2 can be automatically considered as
a reasonable strategy.

Example 3.3.4. Let g(W ) = − exp{−W}. In this case, the risk tolerance is constant and
equal to 1. Therefore, in a market with continuous dynamics (where l = 0), θ that
satisfies Equation (3.21) will satisfy condition 3). Particularily, we will get:

θ =
(

Σ̂Σ̂⊤
)−1

µ
1

W
. (3.22)

However, if K > 0 and W , are too small, θ above can violate condition 2) of
Definition 3.2.2.

Let us get back to study the case with jumps. In this case, it is not as straight
forward to get to natural and interpretable conclusions as in Proposition 3.3.3. To see if
a control satisfying Definition 3.3.2 is indeed in Θ, an analysis to each specific case should
be considered. A first natural step is to check if the integral terms in Equation (3.18),
Equation (3.19), and, Equation (3.20) which we will respectively denote as AI , A

′
I , and

A′′
I , are well defined. To this end, let us present an auxiliary result.
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3.3. Optimising wealth

Lemma 3.3.5. Assume that θ ∈ Θ and let Wθ(t
−
0 ) > K. Define also the set Wt0 as

Wt0 :=
{

z ∈ R : Wθ(t
−
0 )
(

1 + θ(t−0 )⊤Γ̂·,j(z)
)

≤ K
}

,

then: ∫

Wt0

νj(dz) = 0, (3.23)

for all t0 ∈ (0, T ) and for all j ∈ 1, . . . , l.

Proof. Let us proceed by contrapositive and assume that

∫

Wt0

νj(dz) > 0, j ∈ 1 . . . , l.

By Theorem 2.1.4, we know that W can jump in [0, T ] with positive probability.
Equation (3.15) gives us that:

W (t0) = W (t−0 )

(

1 +

∫

R

θ(t−0 )⊤Γ̂(z)N(dz, dt0)

)

.

As we have assumed that the Poisson random measures are independent among them,
any jump above can be attributed to only one of such Poisson random measures which
without any loss of generality we will assume to be the j-th one. Hence the equation
above is equivalent to the following,

W (t0) = W (t−0 )

(

1 +

∫

R

θ(t−0 )⊤Γ̂·,j(z)Nj(dz, dt0)

)

.

By observing that θ(t−0 )⊤Γ̂·,j(0) = 0 and that the mapping z 7→ θ(t−0 )⊤Γ̂·,j(z) is
continuous we can conclude that the region Wt0 is bounded away from 0. Thus, for
all ǫ > 0 such that Wt0 ∈ R ∩ (−ǫ, ǫ)c,

P

(

∆W (t0) ≤ K −W (t−0 )
∣
∣
∣W (t0) −W (t−0 ) ≥ ǫ

)

∝
∫

Wt0

νj(dz) > 0.

Which implies that W (t0) ≤ K with positive probability. Hence, θ /∈ Θ, which by
contrapositive proves the claim. �

A consequence of this lemma is that if νj has support in R (except in 0 of course),
then, Wt0 = ∅ for all t0 ∈ (0, T ). Now we can check if our integrals are well defined.

Proposition 3.3.6. For fixed t ∈ [0, T ], θ(t) ∈ Θ, and W > K, the integral AI is well
defined.

Proof. To compact the notation, let us define for all j = 1, . . . , l the function Gj(z;W ) :=
g(W (1 + θ⊤Γ̂·,j(z))). Then, we can write AIj ,j = 1, . . . , l, as:

AIj :=

∫

R

[

Gj(z;W ) − g(W ) − θ⊤Γ̂·,j(z)Wg′(W )
]

νj(dz)

=

∫

|z|<1

[

Gj(z;W ) − g(W ) − θ⊤Γ̂·,j(z)Wg′(W )
]

νj(dz)

+

∫

|z|≥1

[

Gj(z;W ) − g(W ) − θ⊤Γ̂·,j(z)Wg′(W )
]

νj(dz).

(3.24)
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3.3. Optimising wealth

Let us denote As and AB the first and second parts, respectively, of the right hand side
of the above equation. Note as well that by Lemma 3.3.5, W (1 + θ⊤Γ̂·,j(z)) > K for all
z such that νj(dz) > 0.

The first two terms of the Taylor expansion of the function Gj(z;W ) around 0 are
g(W ) and Wg′(W )

∑n
i=1 θiγi,jz which is O(z), however, Wg′(W )

∑n
i=1 θi (eγi,jz − 1) is

also O(z). Hence we can conclude that the integrand in As is O(z2) around 0 and
because the integrator is a Lévy measure we have proven that the integral As converges.

Regarding AB, we will apply the triangle inequality and verify that each integral
term converges individually. Recall that Equation (3.5) holds, hence, by virtue of θ being
bounded, the integral of θ⊤Γ̂·,j(z)Wg′(W ) will converge. The term g(W ) is constant with
respect to z and hence it will converge as well. To prove that the term that integrates
G(z;W ) converges it suffices to recall that g is non-negative in (K,∞), hence we can
apply Jensen’s inequality, Theorem 2.4.5, which yields:

∫

|z|≥1
G(z;W )νj(dz) ≤ g

(
∫

|z|≥1
W (1 + θ⊤Γ̂·,j(z))νj(dz)

)

< ∞ (3.25)

�

The proposition above guarantees that the generator Ag(W (t)) is well defined for all
t. However, to make sure that we can indeed apply Equation (3.17) we need to check
that Equation (2.18) stated in Theorem 2.2.13 holds. We will now confirm that this is
the case.

Proposition 3.3.7. Fix (θ(t))t∈[0,T ] ∈ Θ, and assume that g′′ is bounded below in (K,∞),
then Equation (2.18) for g(Wθ(T )) will hold.

Proof. For convenience we will drop the subindex θ in Wθ(t). Let us rewrite the left
hand side of Equation (2.18) in the context of g(W (T )) and denote it as E, recall as
well that, as pointed out in Remark 3.3.1, the integrands are non-positive. Applying the
triangle inequality and Tonelli’s theorem to change the order of the expectations and
the integrals with respect to time we get:

E := Ex

[

g(W (T )) +

∫ T

0
|Ag(W (t))| dt

]

≤ Ew [g(W (T ))] +

∫ T

0
Ew

[∣
∣
∣

(

α0 + θ(t)⊤µ
)

W (t)g′(W (t))
∣
∣
∣

]

dt

+
1

2

∫ T

0
Ew

[∣
∣
∣θ(t)⊤Σ̂Σ̂⊤θ(t)W (t)2g′′(W (t))

∣
∣
∣

]

dt

−
∫ T

0

l∑

j=1

Ew

[
∫

R

g
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

− g(W (t)) − θ(t)⊤Γ̂·,j(z)W (t)g′(W (t))νj(dz)

]

dt.

Recall that C the upper bound on |θ(t)| for all t ∈ [0, T ], let then Ĉ, be an n-dimensional
vector in which Ci = C for i = 1, . . . , n, and denote K1 as the lower bound in g′′ hence
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we get:

E ≤g (Ew [W (T )]) +
(

α0 + Ĉ⊤µ
)

g′(K)

∫ T

0
Ew [|W (t)|] dt

+
1

2
Ĉ⊤Σ̂Σ̂⊤Ĉ|K1|

∫ T

0
Ew

[

W (t)2
]

dt

−
∫ T

0

l∑

j=1

Ew

[
∫

R

g
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

− g(W (t)) − θ(t)⊤Γ̂·,j(z)W (t)g′(W (t))νj(dz)

]

dt.

We know by Proposition 3.2.3 that W (t) is square integrable, thus, the first three terms
of the inequality above converge. Let us denote such common bound as K3. To verify
that the l integral terms above converge, we can apply again Tonelli’s theorem to change
the order of integration of the expectations and the integrals with respect the Lévy
measure:

E ≤ K3 −
∫ T

0

l∑

j=1

∫

R

Ew

[

g
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

− g(W (t)) − θ(t)⊤Γ̂·,j(z)W (t)g′(W (t))

]

νj(dz)dt.

(3.26)

Let us focus in the j-th term of the sum above. Define the vector C̄(z) with elements
C̄i(z) = Csign(z)sign(γi,j), hence we will get that C̄(z)⊤Γ̂·,j(z) ≥ θ(t)⊤Γ̂·,j(z) for all
z ∈ R although clearly C̄ /∈ Θ. By doing this we can verify the following:

Hj(z) := −Ew

[

g
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

− g(W (t)) − θ(t)⊤Γ̂·,j(z)W (t)g′(W (t))
]

≤ g
(

E [W (t)]
(

1 + C̄(z)⊤Γ̂·,j(z)
))

+ g (E [W (t)]) + g′(K)C̄(z)⊤Γ̂·,j(z)E[W (t)]

Where W (t) is still of the form W (t) = Wθ(t). The equation above implies, through a
very similar argument to that in Proposition 3.3.6, that

∫

|z|≥1
Hj(z)νj(dz) < ∞.

Now we are only missing to show that
∫

|z|<1Hj(z)νj(dz) < ∞. To verify this, we can
use Lemma 3.3.5 to obtain that:

d

dz
g
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

=g′
(

W (t)
(

1 + θ(t)⊤Γ̂·,j(z)
))

W (t)
n∑

i=1

θiγi,j

≤g′(K)W (t)
n∑

i=1

C̄i(z)e
γi,jz, P-almost surely.

The right hand side of the inequality above is P-integrable. Hence, we can apply
dominated convergence theorem so that:

d

dz
Ew

[

g
(

W
(

1 + θ(t)⊤Γ̂·,j(z)
))]

= Ew

[
d

dz
g
(

W
(

1 + θ(t)⊤Γ̂·,j(z)
))]

,

which will allow us to do a Taylor analysis to the mapping z 7→ Ew[Gj(z;W (t))] similar
to that in Proposition 3.3.6, concluding that indeed the integrals converge in the region
|z| < 1. �
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Now, let us make sure that with the same assumptions as before, the gradient of the
generator of g(Wθ(t)) actually makes sense.

Proposition 3.3.8. For fixed t ∈ [0, T ], θ(t) ∈ Θ, and W > K, the integral A′
I is well

defined.

Proof. Let us focus in one of the entries of one of the summands, i.e., let i ∈ 1, . . . , n,
j ∈ 1, . . . , l, i.e.,

A′
Ii,j =

∫

R

(

g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

−Wf ′(W )
)

(eγi,jz − 1) νj(dz)

=

∫

|z|<1

[

g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

−Wg′(W )
]

(eγi,jz − 1) νj(dz)

+

∫

|z|≥1

[

g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

−Wg′(W )
]

(eγi,jz − 1) νj(dz)

(3.27)

Let us too define as before A′
s and A′

B, respectively, as the first and second integrals of
the above equation. As (eγi,j − 1) is integrable with respect to νj(dz)1(|z| ≥ 1) and,

by Lemma 3.3.5,
∣
∣
∣g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))∣
∣
∣ is bounded, so it is clear that A′

B exists. To

prove that A′
s is well defined, note that close to zero (eγi,j − 1) is O(z). Note also

that g′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

−Wg′(W ) is O(z). The product of the two aformentioned

functions around zero will be O(z2) which proves that the integral converges. �

Finally, to justify the claim that the mapping θ 7→ AWθ is concave we have the
following result.

Proposition 3.3.9. Assume that g′′ is bounded below in (K,∞). Then, For fixed t ∈ [0, T ],
θ(t) ∈ Θ, and W > K, the integral A′′

I is well defined.

Proof. Let us focus in one of its entries and one of the integrals of A′′
I . Let i, k ∈ 1, . . . , n,

j ∈ 1, . . . , l. Then,

A′′
Iij =

∫

R

g′′
(

W
(

1 + θ⊤Γ̂·,j(z)
))

Γ̂·,j(z)Γ̂·,j(z)
⊤νj(dz).

Once more, Lemma 3.3.5 guarantees that
∣
∣
∣g′′

(

W
(

1 + θ⊤Γ̂·,j(z)
))∣
∣
∣ is bounded. Hence,

it suffices to show that each of the entries of the j-th summand converges, i.e., we need
to verify that: ∫

R

(eγi,jz − 1)(eγk,jz − 1)νj(dz) < ∞.

As the converge of the integral has already been shown in the proof of Proposition 3.2.3.
�

As a summary, let us explicitly state the assumptions under which Proposition 3.3.6,
Proposition 3.3.7, Proposition 3.3.8, and Proposition 3.3.9 hold:

1. Absolute credit condition: for some K ∈ R, (Wθ(t))t∈[0,T ] > K, P-almost surely.

2. Relative credit condition: for some C > 0, (|θ(t)|)t∈[0,T ] ≤ C, P-almost surely.

3. Stable positions in assets: for all i ∈ 1, . . . , n, Wθ(W ) is Lipschitz continuous.

4. Utility well-posedness: the utility function that describes the investor’s risk
aversion is given by Definition 2.4.1 and is such that g : (q,∞) → R and q < K.
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3.3. Optimising wealth

5. Bounded risk aversion: there exists K1 < 0 such that g′′ > K1, in (K,∞).

Observe too, that the set Θ can be defined as a set satisfying the conditions above. Let
us illustrate the results obtained so far with an example.

Example 3.3.10 (Inspired by [Øks13] Example 11.2.5). Let g(W ) = W η where η ∈ (0, 1).
Observe that in this case g satisfies the conditions stated in Definition 2.4.1 as g′(W ) =
ηW η−1 > 0 and g′′(W ) = η(η − 1)W η−2 < 0. Then Equation (3.18) is:

AW η =
(

α0 + θ⊤µ
)

ηW η +
1

2
θ⊤Σ̂Σ̂⊤θη(η − 1)W η

+
l∑

j=1

∫

R

((

1 + θ⊤Γ̂·,j(z)
)η

− 1 − ηθ⊤Γ̂(z),j
)

νj(dz)W
η.

(3.28)

To meet the assumptions in Proposition 3.3.6, the equation above yields a constraint in
Θ as we need for all j = 1, . . . , l that

1 + θ⊤Γ̂·,j(z) = 1 +
n∑

i=1

θi(e
γi,jz − 1) > 0, z ∈ R. (3.29)

If we let Θ = {θ ∈ [0, 1]n; θ⊤1 < 1}, i.e., we do not allow for any short-selling or any
leverage in portfolio and, furthermore, that some proportion of wealth, θ0 = 1−

∑n
i=1 θi,

should be kept in the bank account, then the conditions of Proposition 3.3.6 will indeed
be met. Note as well that this definition of Θ will also bound the term (1+θ⊤Γ̂·,j(z))

η−1

by θη−1
0 . Such inequality also an assumption in Proposition 3.3.9.

In the literature, for instance [EK04] and [BKR01] the same possibility set Θ is
stated. Note however that the condition {θ(t)⊤1 < 1} could be relaxed by limiting the
support of the Lévy measure or by imposing further constraints to the- the matrix γ.

Continuing with the example, Equation (3.19) would be:

DθAW
η
θ =µηW η + Σ̂Σ̂⊤θ(η − 1)ηW η

+
l∑

j=1

∫

R

((

1 + θ⊤Γ̂·,j(z)
)η−1

− 1

)

Γ̂·,j(z)νj(dz)ηW
η.

(3.30)

Setting the gradient above equal to 0, the common term ηW η will vanish, leaving us
with the following system of integral equations for the optimal portfolio proportion θ∗:

µ+ (η − 1)Σ̂Σ̂⊤θ∗ +
l∑

j=1

∫

R

((

1 + θ⊤
∗ Γ̂·,j(z)

)η−1
− 1

)

Γ̂·,j(z)νj(dz) = 0. (3.31)

If there is a solution in Θ for the above system, then such solution would be unique
as concavity is guaranteed by Proposition 3.3.9 because (1 + θ⊤Γ̂·,j(z))

η−2 is bounded

by θη−2
0 . Furthermore, such solution would be time and wealth homogeneous. In other

words, for a utility function of the form g(W ) = W η, η ∈ (0, 1) the optimal portfolio
proportion is constant regardless of the wealth amount and the time t it is being evaluated
at. Such a result is consistent with the findings in [ØS19, Example 5.2] where slightly
different market dynamics are assumed.

As a sanity check, if we let n = 1, m = 1 ,and l = 0 then the optimal proportion of
the portfolio that should be invested in the risky asset would be

θ∗ =
α1 − α0 + σ2/2

(1 − η)σ2
, (3.32)
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which is exactly the result obtained in [Øks13, Example 11.2.5] as the geometric
Brownian motion model therein presented is equivalent to assuming under our market
model a drift term in the risky asset of α1 − σ2/2.

Remark 3.3.11. In Example 3.3.10 we started assuming that q = K = 0, which a priori
contradicts our utility well-posedness condition, however, by virtue of not allowing any
short sells nor leverage in the portfolio, and by keeping an amount of money in the bank
account , we get that if α0 > 0 then we can pick K such that 0 < K < wθ0, and if
α0 < 0, we can choose 0 < K < wθ0 exp{α0T} > 0.

3.4 What about stability?

Assume now that we have found θ∗ ∈ Θ satisfying Equation (3.21). We have proven that
such θ∗ would be a unique portfolio maximising the future expected utility. However, one
can also wonder about how stable such a portfolio proportion actually is. For instance,
if the investor’s risk aversion changes, how much would the optimal θ∗ should change?
Even more, as pointed out in [DS21] or [NN18], there can be uncertainty around which
utility function can best represent the investor’s risk aversion. Indeed, there are several
ways to define stability. In this thesis, we will try to answer this question in a more
pragmatic way.

Let us assume that an investor would be comfortable or is willing to accept a future
utility slightly below the optimum output. Mathematically, if g is non-negative and
ε > 0 is small, then the investor would be indifferent about strategies such that their
performance criterion Jθ(w) is greater or equal than (1 − ε)Jθ∗

(w). Analogously, if g is
non-positive, we would look at the strategies such that Jθ(w) is greater or equal than
(1 + ε)Jθ∗

(w). In what follows, we will focus on utility functions with constant relative
risk aversion like those in Equation (2.29), i.e., of the form

g(W ) =
W η

η
, η < 1, η 6= 0,

to which the utility function used in Example 3.3.10 belongs.

Remark 3.4.1. Note that when η < 0, the utility function g(W ) = W η/η is bounded.
Hence, by Theorem 2.3.3, we know that any optimal control that we find will indeed
outperform any other adapted control.

We will limit, too, the question about optimal strategies to constant portfolio
proportions. Later on we will give a deeper justification on these constraints apart
from the fact that this kind of strategies immediately implies that Wθ(W ) = Wθ is
Lipschitz.

Definition 3.4.2 (ε-sub-optimal portfolio proportions). Let 0 < ε < 1. We define the
ε-sub-optimal region, Θε ∈ R

n, as the set:

Θε :=

{

{θ ∈ R
n : Jθ(w) ≥ (1 − ε)Jθ∗

(w)} if η > 0

{θ ∈ R
n : Jθ(w) ≥ (1 + ε)Jθ∗

(w)} if η < 0
, (3.33)

The elements of Θε would be called ε-sub-optimal portfolio proportions or ε-sub-optimal
strategies.

With this definition in mind, our stability concerns would be addressed by asking,
if ε is reasonably small, would the set Θε also be reasonably small? Would it have a
reasonable shape?
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We shall later address the size of Θε, however, inspired by the results obtained in
Equation (3.20) and Proposition 3.3.9, were we saw that any θ∗ would be unique because
the mapping θ 7→ AWθ is concave, we can educatedly guess that the set Θε is convex,
and such a guess would not be wrong.

Proposition 3.4.3. The set Θε is convex.

Proof. Assume that θa, θb ∈ Θε and that ξ ∈ [0, 1]. The result will follow if we show
that θc := ξθa + (1 − ξ)θb ∈ Θε. Indeed, the explicit dynamics of the wealth process are
given in Equation (3.15) and for θc can be expressed as follows:

dWθc
(t) =

(

α0 + θ⊤
c µ
)

W (t)dt+ θ⊤
c Σ̂W (t)dB(t) + θ⊤

c

∫

R

Γ̂(z)W (t)Ñ(dz, t)

=ξ

((

α0 + θ⊤
a µ
)

W (t)dt+ θ⊤
a Σ̂W (t)dB(t) + θ⊤

a

∫

R

Γ̂(z)W (t)Ñ(dz, t)

)

+ (1 − ξ)

((

α0 + θ⊤
b µ
)

W (t)dt+ θ⊤
b Σ̂W (t)dB(t) + θ⊤

b

∫

R

Γ̂(z)W (t)Ñ(dz, t)

)

.

Furthermore, the initial wealth can be expressed as w = ξw + (1 − ξ)w, thus, we can
conclude that Wθc

(t) = ξWθa
(t) + (1 − ξ)Wθb

(t). The result now follows because the
utility function g is concave. Indeed,

Ew [g(Wθc
(T ))] =Ew [g(ξWθa

(T ) + (1 − ξ)Wθb
(T ))]

≥ξEw [g(Wθa
(T ))] + (1 − ξ)E [g(Wθb

(T ))]

≥

{

(1 − ε)Jθ∗
(w) if η > 0

(1 + ε)Jθ∗
(w) if η < 0

,

where the last inequality is given by Definition 3.4.2. �

In a financial context, it is desirable that the set Θε is convex because any slightly
suboptimal strategy can be somehow connected to the best one. Furthermore, we will
not get into a situation where there is indifference between a too conservative portfolio
and a very risky portfolio without being indifferent to invest in any middle point.

Let us now investigate the boundaries of Θε.

3.4.1 Evaluating strategies

In order to say something about Θε, it would be useful to compute the value of
the performance criterion Jθ∗

(w). We could then follow Section 3.3 and substitute
θ∗ in Equation (3.17) to obtain Jθ∗

(w). However, we could also consider applying
Theorem 2.3.4. Indeed, let us define Φ(W, t) := Jθ∗

(W, t) = EW (t) [g(T )] such that
Φ(w, 0) = Jθ∗

(w) as we have been referring to. We also would need that Φ(W,T ) =
g(W ). Then, by Theorem 2.3.4, we would have that:

AΦ(W, t) =∂tΦ(W, t) +
(

α0 + θ⊤µ
)

W∂WΦ(W, t) +
1

2
θ⊤Σ̂Σ̂⊤θW 2∂2

WΦ(W, t)

+
l∑

j=1

∫

R

(

Φ
(

W
(

1 + θ⊤Γ̂·,j(z)
)

, t
)

− Φ(W, t) − θ⊤Γ̂·,j(z)W∂WΦ(W, t)
)

νj(dz)

=0.

(3.34)
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The equation above is a (highly) non-linear partial integro-differential equation that
seems pretty hard to solve. However, it is almost the same to Equation (3.18). It is so
similar, that it sparks the hope of finding a solution of the form Φ(W, t) = g(W )κ(t) for
some function κ. Under such assumption Equation (3.34) would be:

AΦ(W, t) =g(W )κ′(t) +
(

α0 + θ⊤µ
)

Wg′(W )κ(t) +
1

2
θ⊤Σ̂Σ̂⊤θW 2g′′(W )κ(t)

+
l∑

j=1

∫

R

(

g
(

W
(

1 + θ⊤Γ̂·,j(z)
))

− g(W ) − θ⊤Γ̂·,j(z)Wg′(W )
)

νj(dz)κ(t)

=0.

Our guess would be true would if we would be able to characterise κ(t) in the
equation above without saying anything about W , i.e. we would need Wg′(W )/g(W ),
W 2g′′(W )/g(W ) to become constants with respect to W , and for all A ∈ R where
g(AW ) is well defined, we would need g(AW )/g(W ) to also not depend on W . This is
the reason why we have chosen to work with utility functions with constant relative risk
aversion, as described in Equation (2.29). As mentioned in Section 2.4, it is desirable
to have decreasing risk aversion and indeed this family of utility functions have such a
characteristic. This is also a good argument to further investigate utility functions of
this type beyond the mathematical convenience just pointed out.

Proposition 3.4.4. Let g(W ) = W η/η, η < 1, η 6= 0, then Jθ∗
(w) is given by:

Jθ∗
(w) = Φ(w, 0) =

wη

η
eηRθ∗

T , (3.35)

where Rθ∗
is a constant given by:

Rθ∗
=
(

α0 + θ⊤
∗ µ
)

+
1

2
θ⊤

∗ Σ̂Σ̂⊤θ∗(η − 1)

+
l∑

j=1

∫

R

(
1

η

(

1 + θ⊤
∗ Γ̂·,j(z)

)η
−

1

η
− θ⊤

∗ Γ̂·,j(z)

)

νj(dz).
(3.36)

and θ∗ is given by Equation (3.31).

Proof. Let us follow Theorem 2.3.4 and, as we have just pointed out, quite educatedly
guess that Φ(W, t) = W ηκ(t)/η for some function κ : [0, T ] → (0,∞) where κ(T ) = 1.

The value θ∗ that maximises the mapping θ 7→ AΦ(Wθ, t) can be obtained by
repeating the steps that lead us to Equation (3.31) for g(W ) = W η/η instead of
g(W ) = W η and by doing so it can be concluded that that the optimal strategy is
still given by Equation (3.31). This should come at no surprise as Example 3.3.10 has
the same performance criterion as we have in this proposition, multiplied by a constant.
Hence the maximisers should be the same.

Following the guess Φ(W, t) = W ηκ(t)/η, Equation (3.34) would be:

AΦ(W, t) =
W η

η
κ′(t) +

(

α0 + θ⊤
∗ µ
)

WW η−1κ(t) +
1

2
θ⊤

∗ Σ̂Σ̂⊤θ∗W
2(η − 1)W η−2κ(t)

+
l∑

j=1

∫

R

(
W η

η

(

1 + θ⊤
∗ Γ̂·,j(z)

)η
−
W η

η
− θ⊤

∗ Γ̂·,j(z)WW η−1
)

νj(dz)κ(t)

=
W η

η
κ′(t) +W ηRθ∗

κ(t) = 0.
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Where Rθ∗
gathers all the common terms to W ηκ(t). The common term W η vanishes,

hence we get the ordinary differential equation:

{

κ′(t) = −ηRθ∗
κ(t)

κ(T ) = 1.

Which is solved by:
κ(t) = eηRθ∗

(T−t).

And thus, we get the equation:

Φ(W, t) =
W η

η
eηRθ∗

(T−t) (3.37)

Because AΦ(W, t) = 0, it is obvious that E [|AΦ(W, t)|] = 0 < ∞, hence, we only need to
check that the family (Φ(W, t))t∈[0,T ] is uniformly integrable. However, this is guaranteed
by Proposition 3.3.7. Furthermore, Proposition 3.3.6 and Proposition 3.3.8 guarantee
that all the integrals converge and Proposition 3.3.9 guarantees that the generator is
indeed maximised. This completes the proof because Jθ∗

(w) = Φ(w, 0). �

Equation (3.35) from the result above shows us that regardless of the sign of the
parameter η, it is desirable that Rθ∗

> 0, as this would mean we can expect the future
utility on our wealth to be greater than today’s. However, this is not necessarily the
case. In fact, the two second terms of of Equation (3.36) are always non-positive (see
Remark 3.3.1). Having Rθ∗

≤ 0 is therefore possible, specially if we specify our model
for log-returns (Equation (3.2)) adjusted for inflation. In fact, we can interpret Rθ∗

as
a risk aversion adjusted risk premia of the portfolio.

Remark 3.4.5. Equation (3.37) obtained in the proof of Proposition 3.4.4 implies through
Dynkin’s formula that for t < T :

Ew(t) [Φ(Wθ∗
(T ), T )] = Φ(w, t) + Ew(t)

[
∫ T

t
AΦ(Wθ∗

(s), s)ds

]

= Φ(w, t), (3.38)

which allows us to say that the discounted utility with an optimal investment strategy
is a P-martingale.

So far, we have used Theorem 2.3.4, the Hamilton-Jacobi-Bellman equation, to find
the value of the optimal future expected wealth subject to an utility function. However,
most of the principles in which such a result is based on, still apply to suboptimal
strategies. Mathematically, we are saying that if we define a process (φ(Wθ, t))t∈[0.T ]

such that φ(Wθ, T ) = G(Wθ(T )) = W η
θ /η then by Dynkin’s formula:

Ew [φ(Wθ, T )] = Ew [g(Wθ(T ))] = φ(w, 0) + Ew

[
∫ T

0
Aφ(Wθ(t), t)dt

]

, (3.39)

or equivalently:

φ(w, 0) = Ew

[

g(Wθ(T )) −
∫ T

0
Aφ(Wθ(t), t)dt

]

. (3.40)

If we want to have φ(w, 0) = Jθ(w) we then would need that:

Ew

[
∫ T

0
Aφ(Wθ(t), t)dt

]

= 0. (3.41)
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However, by means of T being arbitrary, or equivalently because we want to preserve that

φ(W (s), s) = EW (s)

[

g(Wθ(T )) −
∫ T
s Aφ(Wθ(t), t)dt

]

= EW (s)[g(Wθ(T ))] for all s < T ,

and for all values of Wθ(s), we should also set:

Aφθ(t,W ) = 0. (3.42)

Were we have introuduced the subindex θ in φ to explicitly state that φ is a function of
time and wealth parametrized by the investment strategy. Equation (3.42) above also
implies that Remark 3.4.5 still applies for suboptimal portfolios.

The reasoning above leeds to the following result.

Proposition 3.4.6. Let (θ(t))t∈[0,T ] = θ(0) ∈ Θ, g(W ) = W η/η, η < 1, η 6= 0. Then Jθ(w)
is given by:

Jθ(w) = φθ(w, 0) =
wη

η
eηRθT , (3.43)

where Rθ is a constant given by:

Rθ =
(

α0 + θ⊤µ
)

+
1

2
θ⊤Σ̂Σ̂⊤θ(η − 1)

+
l∑

j=1

∫

R

(
1

η

(

1 + θ⊤Γ̂·,j(z)
)η

−
1

η
− θ⊤Γ̂·,j(z)

)

νj(dz)κ(t).
(3.44)

Proof. The result follows the arguments given from Equation (3.39) to Equation (3.42)
and, because we are restricting θ to be constant, the details are analogous to those in
Proposition 3.4.4. �

Let us get back to characterise the set Θε. We already know that it is a convex set, so
we will investigate its boundary and denote its elements (with some abuse of notation)
as θ∂ . By Equation (3.37) and Equation (3.43) we get the following:

Rθ∂
=







ln(1−ε)
ηT +Rθ∗

if η > 0
ln(1+ε)
ηT +Rθ∗

if η < 0.
(3.45)

As in choosing the optimal strategy, Equation (3.45) above shows that determining
ε-sub-optimal strategies is still independent of the wealth level, however, Rθ∗

− Rθ∂

is inversely proportional to the time to maturity T , which does not appear in
determining optimal strategies. This makes financial sense because we are investing
in a (continuously) compounded way and the further we invest in a sub-optimal manner,
we can expect to affect the most our future utility, i.e., such a magnitude is inversely
proportional to time to maturity.

Hence, we can conclude that the optimal strategy given by Definition 3.3.2 is stable
in the sense that Θε has a reasonable shape as we have shown that it is convex, and
that the magnitude of the values that belong to it depends in a reasonable way upon
financially reasonable parameters.

Remark 3.4.7. Equation (3.45) can seem to be wrong because if we calculate the risk
aversion a = −g′′/g′ as in Definition 2.4.2, we would get that a(W ) = (1 − η)/W which
is a function that increases as η decreases. In other words, the lower η is, the more risk
averse an investor is. Therefore, we should expect Rθ∂

to be closer to Rθ∗
the smaller η

is. However η 7→ Rθ∂
(η) given by Equation (3.45) is not only non-monotone but singular

at η = 0 (a parameter value that we have ruled out but to which we can get arbitrarily
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3.5. Extension to optimal consumption

close to). This analysis however is wrong. As pointed out in the introduction of [DS21],
"utility has only relative, no nominal, meaning in the sense that it allows for ordering of
different strategies but the value function in itself is not directly comparable with other
value functions based on other preferences". In the context of our problem, a value ε
should not be reasonably small for two investors with different risk aversions. In the
context of Equation (3.45) ε is, in reality, ε(η).

3.5 Extension to optimal consumption

Let us continue to work with the framework of the previous section. This time however,
we will modify the wealth process so that the investor can dispose some of the wealth
for consumption purposes, i.e., we will drop the assumption stated in Equation (3.15)
and instead we will consider that

dW (t) = W (t−)

((

α0 + θ(t−)⊤µ
)

dt+ θ(t−)⊤
(

Σ̂dB(t) +

∫

R

Γ̂(z)Ñ(dz, dt)

))

−ρ(t−)dt.

(3.46)
Where ρ now represents consumption from the portfolio and W (t) = Wθ,ρ(t) is still
a controlled diffusion where the controls are θ and ρ. Let us define the reasonable
consumption strategies in an analogous way to Definition 3.2.2.

Definition 3.5.1 (Reasonable consumption). The set of reasonable consumption strategies
denoted by R is the set of all càdlàg and F-adapted stochastic processes in R that satisfy
the following conditions:

1. r < ρ(t) < W (t) − K, P-almost surely, for all t ∈ [0, T ] and some 0 < r ≤ K.

2. ρ(t) = ρ(W (t)) such that W 7→ ρ(W ) is Lipschitz continuous in (K,∞).

The purpose of the bounds imposed to ρ ∈ R are very natural. The lower bound
guarantees that we can always evaluate g(ρ) = ρη/η and that such value is bounded
below. The upper bound avoids reaching the critical threshold to wealth K. Lipschitz
continuity allows us to have the next result.

Corollary 3.5.2. Fix (θ(t))t∈[0,T ] ∈ Θ and (ρ(t))t∈[0,T ] ∈ R. Then Equation (3.46) has a
unique, strong, square integrable solution.

Proof. Equation (3.46) is almost the same as Equation (3.15) but with different drift.
Hence the analysis for the integrands of the stochastic terms in Proposition 3.2.3 remains
the same. Proving Lipschitz continuity and at most linear growth follows almost the same
steps as Proposition 3.2.3. �

In this new context, we will assume that the investor wishes to continuously consume
her wealth up to a point in time in which she will enjoy a lump sum. To this end, let us
define δ > 0, a discounting factor that will allow us to compare different consumption
utilities at different points in time. Let us also define ξ > 0, a constant that will allow
to tune the preferences of discounted wealth over discounted consumption (this is not
inconsistent with Remark 3.4.7 because we are not comparing preferences of the same
object). In this new setting our performance criterion is the following:

Jθ,ρ(w) = E

[
∫ T

0

ρ(s)η

η
e−δsds+ ξ

Wθ(T )η

η
e−δT

]

. (3.47)
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3.5. Extension to optimal consumption

We therefore want to find Jθ∗,ρ∗
(w), the maximiser of Equation (3.47), and state

sufficient conditions such that it is well defined. Using the theory developed in Section 3.3
and with arguments similar to those in Section 3.4.1, we will still guess (as educatedly
as before) that Φ(W, t) = κ(t)W η/η. By Theorem 2.3.4 we would need that:

AΦ(Wθ, t) + g(ρ)e−δt =
W η

η
κ′(t) +

((

α0 + θ⊤µ
)

W − ρ
)

W η−1κ(t)

+
1

2
θ⊤Σ̂Σ̂⊤θW 2(η − 1)W η−2κ(t)

+
l∑

j=1

∫

R

(
W η

η

(

1 + θ⊤Γ̂·,j(z)
)η

−
W η

η
− θ⊤Γ̂·,j(z)WW η−1

)

νj(dz)κ(t)

+
ρη

η
e−δt = 0.

(3.48)

The value that maximises θ 7→ AΦ(Wθ, t) + g(ρ) above is still given by Equation (3.31).
Let us find the maximiser for ρ 7→ AΦ(Wθ, t) + g(ρ):

−W η−1κ(t) + ρη−1
∗ e−δt = 0 ⇐⇒ ρ∗ = W

(

κ(t)eδt
)1/(η−1)

(3.49)

Taking ∂2
ρ(AΦ(Wθ, t) + g(ρ)), we will see that ρ∗ is a global maximum, hence, we found

the right ρ. Observe too that, similarly as before, the common term W η vanishes, leaving
us with the following:

AΦ(Wθ∗,ρ∗
, t) +

ρη∗
η
e−δt =

κ′(t)

η
+

((

α0 + θ⊤
∗ µ
)

−
(

κ(t)eδt
)1/(η−1)

)

κ(t)

+
1

2
θ⊤

∗ Σ̂Σ̂⊤θ∗(η − 1)κ(t)

+
l∑

j=1

∫

R

(
1

η

(

1 + θ⊤
∗ Γ̂·,j(z)

)η
−

1

η
− θ⊤

∗ Γ̂·,j(z)

)

νj(dz)κ(t)

+

(

κ(t)eδt
)η/(η−1)

η
e−δt = 0.

(3.50)

With our previous knowledge and the equation above, we can guess that κ(t) = Ke−δt

for some constant K. Substituting we get:

AΦ(Wθ∗,ρ∗
, t) +

ρη∗
η
e−δt =

−δKe−δt

η
+
((

α0 + θ⊤
∗ µ
)

K −Kη/(η−1)
)

e−δt

+
1

2
θ⊤

∗ Σ̂Σ̂⊤θ∗(η − 1)Ke−δt

+
l∑

j=1

∫

R

(
1

η

(

1 + θ⊤
∗ Γ̂·,j(z)

)η
−

1

η
− θ⊤

∗ Γ̂·,j(z)

)

νj(dz)Ke
−δt

+
Kη/(η−1)

η
e−δt = 0.

(3.51)
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The common term Ke−δ will vanish, hence, we can solve for K and get:

K =

(

η

η − 1

(

−
δ

η
+
(

α0 + θ⊤
∗ µ
)

+
1

2
θ⊤

∗ Σ̂Σ̂⊤θ∗(η − 1)

+
l∑

j=1

∫

R

(
1

η

(

1 + θ⊤
∗ Γ̂·,j(z)

)η
−

1

η
− θ⊤

∗ Γ̂·,j(z)

)

νj(dz)

))η−1

.

(3.52)

Where Proposition 3.3.6 guarantees that the integral terms in K will converge if θ∗

satisfies the credit conditions stated in Definition 3.2.2 (Lipschitz continuity of Wθ∗ is
immediately guaranteed because θ∗ is constant). Hence, we have (almost) proven for
ξ = K that:

Jθ∗,ρ∗
(w) = Φ(w, 0) = K

wη

η
=

(
η

η − 1

(

Rθ∗
−
δ

η

))η−1 wη

η
. (3.53)

Where Rθ∗
is given in Equation (3.36).

By the way we have found a solution, it is difficult to determine a general method
to maximise Equation (3.47) for a general ξ > 0 as the step between Equation (3.50)
and Equation (3.51) is too restrictive. However, the constant K is interesting enough
to be studied because it makes the value of the optimised performance criterion to be
independent from time to maturity as T does not appear in Equation (3.53).In other
words, an investor with such a preference, is indifferent about receiving the lump sum
tomorrow or in a thousand years. Nevertheless, this assertion is only valid if we check
that the integrability conditions in Theorem 2.3.4 are satisfied because, if that is not the
case, any investor would be indifferent between two undetermined amounts of money.
Before checking integrabilty conditions, let us observe that Rθ∗

− δ/η in Equation (3.53)
should be negative so that K > 0. This will indeed suffice to prove integrabilty in our
framework.

Proposition 3.5.3. Let θ∗ ∈ Θ, ρ∗ ∈ R and let δ > Rθ∗
η. Then Equation (3.53) is well

posed.

Proof. Choose an arbitrary T ∈ [0,∞) and recall that g is bounded below and increasing.
Recall also that, by Definition 3.5.1, 0 < r < ρ < W , hence,

Ew

[
∫ T

0
|AΦ(Wθ∗,ρ∗

(t), t)| dt

]

= E

[
∫ T

0

∣
∣
∣
∣

ρ∗(t)η

η

∣
∣
∣
∣ e

−δtdt

]

≤ −2 min

{
rη

η
, 0

}∫ T

0
e−δtdt+ Ew

[
∫ T

0

∣
∣
∣
∣

Wθ∗,ρ∗
(t)η

η

∣
∣
∣
∣ e

−δtdt

]

= K1 +

∫ T

0
Ew

[∣
∣
∣
∣

Wθ∗,ρ∗
(t)η

η

∣
∣
∣
∣

]

e−δtdt

≤ K1 +

∫ T

0
Ew

[∣
∣
∣
∣

Wθ∗
(t)η

η

∣
∣
∣
∣

]

e−δtdt

= K1 +

∣
∣
∣
∣

wη

η

∣
∣
∣
∣

∫ T

0
e(ηRθ∗

−δ)tdt < ∞.

Where K1 = −2 min {rη/η, 0}
∫ T

0 e−δtdt, and Wθ∗
(t) is a portfolio with the same

investment strategy as Wθ∗,ρ∗
but without consumption. The last line is given by

Proposition 3.4.4. �
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3.5. Extension to optimal consumption

Remark 3.5.4. Because the claim above was proved for all T , even if T = ∞, solving
this problem turns out to be analogous to solving the problem of perpetual consumption
presented in [Mer71] or [ØS19, Example 5.2].
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Chapter 4

Concluding remarks

In this thesis we defined a multi-variate Lévy process driven market model and stated
conditions such that the model itself and some optimisation problems that naturally
arise in the context of portfolio management, are well defined and can be solved. A
general conclusion to this thesis is that, under relatively mild conditions that are quite
reasonable in a financial context, we can find optimal portfolio proportions for CRRA
utility functions and, furthermore, the ground is settled to extend these conclusions to
other type of risk aversions. The financial implications of this thesis’ results ultimately
depend upon what we believe the actual structure of the market is or, in other words,
depend (as any mathematical model) upon what it is assumed.

4.1 The importance of assumptions

The model herein presented is quite flexible because it is very suitable for factor analysis
and, according to how we specify it, different financially meaningful conclusions can
be drawn. Let us for a moment get back to Example 3.3.10 at the end of Section 3.3
where we solved the problem of finding the optimal investment strategy for a fixed time
horizon portfolio in a very general setting. In that case we concluded that not having
any levered nor short positions guaranteed that the problem wouldn’t be miss-specified
and that expectations could be evaluated. If this were to be always true, why do banks
or private equity firms even exist? Are they doomed to fail?

It is not crystal clear that any model can answer any of these questions, quite the
opposite, somehow a (hopefully well supported) opinion on these issues is what should
drive any model choice. More concretely, in the context of the Example 3.3.10, if an
investor with risk preferences described by a CRRA utility function truly believes that
there is a systemic risk that can negatively impact all the risky assets at once with an
unbounded impact (which in the context of the thesis is equivalent to saying that γ·,j > 0
with a Lévy measure supported in (−∞, r) for some r > 0), then the answer is yes, the
value of the wealth of levered institutions is undetermined for such an investor. On the
other hand, if such an investor with CRRA preferences does believe that the market
operates in a continuous manner, then any constant proportion strategy is allowed.
Perhaps an investor believes there exists systemic risk but with a bounded impact on
log-returns, then questions like leverage can be opened to discussion again. Which of
these is the most reasonable assumption? Answering this question is left as an exercise
to the reader.

Ironies aside, this example illustrates and motivates why it is relevant to further
investigate models with jumps, because introducing jumps completely changes the
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4.2. Suggestions for further research

strategies a rational investor may follow. Specially in a world that changes as fast
as ours, it is imperative to have models in which any challenges to the what is believed
in the status quo can have an answer.

4.2 Suggestions for further research

It would be rather ironic to talk about assumptions as in the previous section without
pointing out what can be considered to be unrealistic or incomplete in our model. On
this regard, the first issue that can be mentioned is that the model here presented does
not account for transaction costs. Definitely it would be a great contribution to develop
an analogous analysis to the one presented herein in which market friction is accounted
for.

Furthermore, it is also clear that not everything has been done under the friction-
less market assumption, let alone in the concrete context of this thesis. For instance,
the most natural next step (according to the author) to this thesis would be to find an
analogous result for the general Lévy model to Proposition 3.3.3, where we found that
in the purely Brownian motion case, the regularity of the utility function is analogous
to the regularity of the amount of money invested in every asset when the investment
strategy is optimal. Another natural step in the direction of this thesis would be to
generalise the results here presented for the case when the Poisson random measures are
defined over R

n, i.e., to change the structure of the Lévy measures we work with from
∑l
i=1

∫

R
ν(dz) to

∫

Rn ν(dz). This would allow to account for more general dependence
structures in the log-returns of the risky assets.

Many other interesting suggestions for further research can be proposed because, as
in any topic that pertains to human knowledge, more questions arise after some study.
Indeed, any piece of research accomplishes its purpose, not by answering its questions
but by swapping the latter for better ones. I hope you enjoyed reading this thesis as
much as I enjoyed writing it.
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