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Abstract

In this thesis we give a complete description of the extremal β-KMS weights for the gauge-
action on the C∗-algebra associated to a second-countable topological graph. We give a
description in terms of ergodic measures ν on the boundary path space ∂E satisfying
σ∗ν = eβν on ∂E ∖E0. And a description in terms of extremal β-sub-invariant measures
µ on the vertex space E0. We also develop some theory about regular Borel measure
using sheaf-theory that has been useful for comparing different measures and gives a new
description of the pullback of a regular Borel measure along a local homeomorphism.
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Chapter 1

Introduction

Topological graphs give a setting for studying a large family of C∗-algebras, among others
it generalizes the existing theory of graph algebras and gives a new setting to study
homeomorphism C∗-algebras. A lot of the theory was first developed by Katsura in
[Kat04]. Katsura associated a C∗-algebra to the quadruple E = (E0,E1, r, s) where E0

and E1 are locally compact Hausdorff spaces, s ∶ E1 → E0 is a local homeomorphism
and r ∶ E1 → E0 is continuous. It was shown by Yeend in [Yee07] that the C∗-algebras
constructed from topological graphs admit a groupoid model. This is done by constructing
the boundary path space ∂E and constructing a monoidal action on this space from the
natural numbers N via the backwards shift map σ ∶ ∂E ∖E0 → ∂E. With this one can
consider the Deaconu-Renault groupoid of this action.

Groupoid C∗-algebras have been a fruitful class of C∗-algebras when studying
dynamical systems and β-KMS states. Given a groupoid G and a continuous groupoid
homomorphism c ∶ G → R, one is able to construct a C∗-dynamical system (C∗(G),R, αc)
using Pontryagin duality. A lot of work was initiated by Renault in [Ren80] where he
is able to give a description of the β-KMS states for αc in the case where G is a locally
compact Hausdorff étale groupoid. He shows that each β-KMS state for αc restricts
to a quasi-invariant probability measure on the unit space G(0) with Radon-Nikodym
derivative e−βc. When the groupoid is principal he is also able to show that these β-KMS
states are in fact all the β-KMS states for αc.

In [Nes13] Neshveyev is able to generalize Renault’s description of β-KMS states
for αc on principal étale groupoids to the non-principal case. Christensen is able to
further generalize Neshveyev’s results to give a description of β-KMS weights for αc in
[Chr23]. In particular, Christensen is able to give a representation result, akin to Riesz
representation Theorem, for a class of β-KMS weights for αc on injectively graded étale
groupoids, cf. Theorem 3.5.14. This result by Christensen is fundamental for a lot of the
work done in this thesis.

Schafhauser initiated the study of tracial states on C∗-algebras associated to
topological graphs in [Sch18]. The C∗-algebra of a topological graph comes equipped with
a natural action from the circle group, generally called the gauge-action. Schafhauser was
in particular interested in the tracial states which are gauge-invariant, and he was able to
give a description of these tracial states both in terms of invariant probability measures
on the boundary path space ∂E and vertex-invariant probability measures on the vertex
space E0. Schafhauser was unable to completely characterize the gauge-invariant tracial
states but conjectured that for free topological graphs, every tracial state should be
gauge-invariant.

In [Chr22] Christensen uses the program developed by Schafhauser along with his
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Chapter 1. Introduction

results from [Chr23] to study tracial weights on C∗-algebras associated to second-countable
topological graphs. He is in particular able to give a description of the gauge-invariant
tracial weights, see Theorem 5.3.4, and proves Schafhauser’s conjecture to be true.

We realized that the techniques developed by Schafhauser in [Sch18] and Christensen
in [Chr22] can be used to study β-KMS weights for the gauge-action on C∗-algebras
associated to second-countable topological graphs. In particular, Christensen’s description
of gauge-invariant tracial weights allows us to give a complete description of the extremal
β-KMS weights for the gauge-action in terms of ergodic measures ν on the boundary
path space ∂E satisfying σ∗ν = eβν on ∂E ∖E0. The work done by Schafhauser further
allowed us to give a description of these measures ν on the boundary path space ∂E in
terms of β-sub-invariant measures on the vertex space E0. Our main result is stated in
Theorem 6.0.12.

Outline

• In chapter 2 we study the structure of regular Borel measures on second-countable
locally compact Hausdorff spaces using sheaf-theory. This approach allows us
to give a description of the pullback of a regular Borel measure along a local
homeomorphism that does not rely on the duality between measures and linear
functionals. We also show that this description of the pullback is the same as the
description given by Riesz representation Theorem for second-countable spaces, c.f.
Proposition 2.0.16.

• In chapter 3 we give an introduction to étale groupoids and construct the full
groupoid C∗-algebra. We define C∗-dynamical systems and weights, and give
enough background theory to understand and state Theorem 3.5.14, which gives a
description of the β-KMS weights on the full groupoid C∗-algebra.

• In chapter 4 we study topological graphs and construct the associated boundary
path space. We give a detailed proof showing that the boundary path space admits
a locally compact Hausdorff topology and that there is a monoidal action from
the natural numbers N on the boundary path space via the backwards shift map
σ ∶ ∂E ∖E0 → ∂E. With this action we construct the associated Deaconu-Renault
groupoid giving us a groupoid model of the graph C∗-algebra. The graph C∗-algebra
is equipped with a natural action from the circle group, called the gauge-action. We
restate Theorem 3.5.14 in the context of topological graphs and the gauge-action,
c.f. Theorem 4.4.5.

• In chapter 5 we study the loop structure of a second-countable topological graph
and relate it to the gauge-invariance of tracial weights on the graph C∗-algebra.
We are able to state a refinement of Theorem 4.4.5, c.f. Theorem 5.3.7, which gives
a description of the extremal β-KMS weights on the graph C∗-algebra in terms of
ergodic measures ν on the boundary path space satisfying σ∗ν = eβν on ∂E ∖E0.

• In chapter 6 we study β-sub-invariant measures on the vertex space of a second-
countable topological graph. The main result in this chapter gives a bijection
between the regular Borel measures ν on the boundary path space satisfying
σ∗ν = eβν on ∂E ∖E0 and the β-sub-invariant measures on the vertex space, c.f.
Theorem 6.0.11.
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Chapter 2

Sheaf of measures

We will at multiple occasions need to be able to pullback and pushforward measures
between spaces. The pullback is usually defined using Riesz representation Theorem,
which gives a description of the pullback in terms of an integral. We would however prefer
to describe the pullback without invoking any integrals, this led us towards sheaf-theory.

We ended up developing enough theory in complete generality that we felt we are
justified in dedicating an entire chapter to it. We start by defining the pushforward of a
measure.

Definition 2.0.1.
Let X and Y be topological spaces, f ∶ X → Y be continuous and µ be a Borel
measure on X. We get a Borel measure f∗µ on Y , the pushforward of µ, defined
by f∗µ(B) = µ(f−1(B)) for Borel subsets B ⊂ Y . ♡

Note that the pushforward of a regular Borel measure isn’t necessarily regular. At the
end of this chapter we give criteria for when the pushforward of a regular Borel measure
is regular.

Let f ∶X → Y be a local homeomorphism, µ be a Borel measure on Y and U be an
open subset of X such that f ∣U is injective. We define the pullback f ∣∗Uµ of µ on U by
setting f ∣∗Uµ(B) = µ(f(B)) for all Borel subsets B in U . If we let U be a cover of X
with open subsets U in X such that f ∣U is injective, we get a family of Borel measures
{f ∣∗Uµ}U∈U . We would like to be able to glue these measures to obtain a global measure
on X, and we would like the resulting measure to be independent of our choice of open
cover of X.

Sheaf-theory is precisely the tool that axiomatizes such problems and gives us a
clear road map for things we need to prove in order to define the pullback of a measure.
For an introduction in sheaf-theory see [Har77]. We nevertheless present the necessary
definitions here. To our knowledge using sheaf-theory to study measures in this context
is all original work.

Definition 2.0.2.
Let X be a topological space. A presheaf of sets F on X is a collection of the following
data:

• For each open subset U ⊂X we have a set F(U), where the elements of this set is
called the sections of F over U .

• For each inclusion of open subsets V ⊂ U in X we have a function

ρUV ∶ F(U)→ F(V )
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Chapter 2. Sheaf of measures

called the restriction morphism. For sections s ∈ F(U) we write ρUV (s) = s∣V .

The restriction morphisms have to satisfy the functorial properties:

(1) For every open subset U ⊂ X the restriction morphism ρUU must be the identity
function on F(U).

(2) For inclusions of open subsets W ⊂ V ⊂ U in X we have that the composition of
restriction morphisms ρVW ○ ρUV = ρUW . ♡

Definition 2.0.3.
Let F be a presheaf of sets on X. We say that F is a sheaf of sets if the following axioms
hold for any open subset W ⊂X and any open cover U of W :

(Locality) Suppose we have sections s, t ∈ F(W ) such that s∣U = t∣U for all U ∈ U . Then s = t.

(Gluing) Suppose we have a family of sections {sU}U∈U with sU ∈ F(U), such that
sU ∣U∩V = sV ∣U∩V for all U,V ∈ U . Then there exists a global section s ∈ F(W ) such
that s∣U = sU for all U ∈ U . ♡

Note that if F is a sheaf of sets on X, and we have a family of sections that agree on
intersections, the sheaf axioms give the existence of a unique global section that restricts
to each of the local sections. What we now want to show is that for suitable topological
spaces we can give sets of regular Borel measures a sheaf structure. With that in place
we get an obvious way of defining the pullback of a regular Borel measure. At the end of
this section we give an alternate way of defining the pullback of a regular Borel measure
using Riesz representation Theorem.

Definition 2.0.4.
Let X be a topological space. For each open subset U ⊂X, let

M(U) = {µ ∶ B(U)→ [0,∞] ∣ µ is a Borel measure},

where B(U) denotes the Borel σ-algebra of U . For inclusion of open subsets V ⊂ U
in X, we define the restriction map ρUV ∶ M(U) → M(V ) by µ∣V (B) = µ(B) where
µ ∈M(U) and B ⊂ V is a Borel subset. This is well-defined since any Borel subset in
V is automatically a Borel subset in U , since V is open in U . We denote the collection
of this data, namely the setsM(U) and the restriction maps ρUV ∶M(U) →M(V ), by
M. ♡

Lemma 2.0.5.
Let X be a topological space, thenM is a presheaf of sets on X.

Proof.
Fix an open subset U ⊂ X and let µ ∈M(U). Clearly µ∣U = µ, so ρUU = idM(U). If we
have inclusions of open subsets W ⊂ V ⊂ U in X we have for all Borel subsets B ⊂W that

(µ∣V )∣W (B) = µ∣V (B) = µ(B) = µ∣W (B).

Hence, ρVW ○ ρUV = ρUW .

For general topological spaces X we won’t get thatM is a sheaf. To prove the locality
axiom we require that any open cover U of X has a countable subcover, which isn’t
guaranteed. The need for this comes from the fact that the measure of a disjoint union
equals the sum of the respective measures only if the union is at most countable. We do
however get a sheaf for second-countable spaces.
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Lemma 2.0.6.
Let X be a second-countable space, thenM is a sheaf of sets on X.

Proof.
Note first that second-countability of X implies that any subspace of X is also second-
countable. Hence, it suffices to prove that locality and gluing holds for X to conclude
that they hold for any open subset of X.

Let U be an open cover of X. Since X is second-countable we get a countable
sub-cover V of U . Let V = {Vi}i∈N be an indexing of V.

For subsets S ⊂X we introduce the notation S(i) = S ∩ (Vi ∖ (V1 ∪ ...∪Vi−1)). Clearly
S = ⋃i∈N S(i) with S(i) ∩ S(j) = ∅ for i ≠ j and each S(i) ⊂ Vi.
Locality:
Suppose we have Borel measures µ, ν ∈M(X) such that µ∣U = ν∣U for all U ∈ U . Then
for any Borel subset B ⊂X we have that

µ(B) = µ(⋃
i∈N
B(i)) =∑

i∈N
µ(B(i)) =∑

i∈N
µ∣Vi(B(i)) =∑

i∈N
ν∣Vi(B(i)) = ν(B).

Gluing:
Suppose we have a Borel measures µU ∈M(U) for each U ∈ U such that µU ∣U∩V = µV ∣U∩V
for all U,V ∈ U . Define µi = µVi . We define a global Borel measure µ ∈M(X) by

µ(B) =∑
i∈N
µi(B(i)), (2.1)

where B ⊂X is a Borel subset. This is indeed a measure:

µ(∅) =∑
i∈N
µi(∅) = 0,

µ(B) =∑
i∈N
µi(B(i)) ≥ 0,

µ
⎛
⎝⋃j∈N

Bj
⎞
⎠
=∑
i∈N
µi

⎛
⎝⋃j∈N

Bj(i)
⎞
⎠
=∑
i∈N
∑
j∈N

µi(Bj(i)) = ∑
j∈N
∑
i∈N
µi(Bj(i)) = ∑

j∈N
µ(Bj),

where B ⊂ X is a Borel subset, and {Bj}j∈N is a collection of mutually disjoint Borel
subsets in X. Note that we can interchange the sums in the last line because we are
summing positive numbers.

Now let U ∈ U and B ⊂ U be a Borel subset. Note that each B(i) ⊂ U ∩ Vi. Then we
have that

µ∣U(B) = µ(B)
=∑
i∈N
µi(B(i))

=∑
i∈N
µi∣U∩Vi(B(i))

=∑
i∈N
µU ∣U∩Vi(B(i))

=∑
i∈N
µU(B(i))

= µU (⋃
i∈N
B(i))

= µU(B).
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Chapter 2. Sheaf of measures

We now give an example of a (not second-countable) space for which locality doesn’t
hold.

Example 2.0.7.
Consider R with the discrete topology. Let U = {{x}}x∈R be an open covering of R. Let
µ be the measure defined by

µ(B) = {0 if B is countable or finite,
∞ if B is uncountable.

This clearly defines a measure. It is clear that µ agrees with the zero measure on all
restrictions to {x} ∈ U , however µ is not the zero measure, so locality doesn’t hold. ♢

We are however mostly interested in regular Borel measures. Some authors give
different definitions of a regular measure, we will use the definition used by Christensen
from the book Measure Theory by Cohn. Point (1) in this definition is not included by
some.

Definition 2.0.8 ([Coh13] page 189-190).
Let X be a topological space. A Borel measure µ on X is regular if

(1) for each compact subset K ⊂X we have that µ(K) <∞,

(2) for each Borel subset B ⊂X we have that

µ(B) = inf{µ(U) ∣ U ⊃ B with U open in X},

(3) and for each open subset U ⊂X we have that

µ(U) = sup{µ(K) ∣ K ⊂ U with K compact}. ♡

We now want to find the requirements on our topological space for whichMreg, the
family of regular Borel measures, becomes a sheaf.

Lemma 2.0.9.
Let X be a topological space, thenMreg is a sub-presheaf ofM on X.

Proof.
We only need to check that the restriction of a regular Borel measure is again a regular
Borel measure. Fix open subsets U,V ⊂X such that V ⊂ U and let µ ∈Mreg(U).
(1) Let K ⊂ V be compact, then K is compact in U , hence

µ∣V (K) = µ(K) <∞.

(2) Let B ⊂ V be a Borel subset, then

µ∣V (B) = µ(B)
= inf{µ(W ) ∣ W ⊃ B with W open in U}
≤ inf{µ(W ) ∣ W ⊃ B with W open in V }
= inf{µ∣V (W ) ∣ W ⊃ B with W open in V }.

We get the inequality in the third line because every open subset of V is also an
open subset of U . To see that µ∣V (B) ≥ inf{µ∣V (W ) ∣ W ⊃ B with W open in V }
we notice that for any open subset W ⊂ U containing B we get that W ∩ V is open
in V and contains B with µ(W ∩ V ) ≤ µ(W ). Hence,

µ∣V (B) = inf{µ∣V (W ) ∣ W ⊃ B with W open in V }.
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(3) Let W ⊂ V be an open subset, then

µ∣V (W ) = µ(W )
= sup{µ(K) ∣ K ⊂W with K compact in U}
= sup{µ(K) ∣ K ⊂W with K compact in V }
= sup{µ∣V (K) ∣ K ⊂W with K compact in V }.

Thus, the restriction of a regular Borel measure is still regular. The fact thatMreg is a
presheaf now follows from the fact thatM is a presheaf.

To make life simpler for ourselves we choose to work with second-countable locally
compact Hausdorff spaces. For such spaces we have the following result which we state
without proof.

Lemma 2.0.10 ([Coh13] Proposition 7.2.3).
Let X be a second-countable locally compact Hausdorff space and µ be a Borel measure
on X. If µ is finite on compact sets we have that µ is regular.

Proposition 2.0.11.
Let X be a second-countable locally compact Hausdorff space. ThenMreg is a sub-sheaf
ofM on X.

Proof.
We have that any subspace of X is second-countable locally compact and Hausdorff,
hence it suffices to prove that locality and gluing holds for X to conclude that it holds
for any open subset of X.

Let U be an open cover of X. Locality forMreg follows by the same argument as
forM. To prove gluing, suppose we have regular Borel measures µU ∈Mreg(U) for each
U ∈ U such that µU ∣U∩V = µV ∣U∩V for all U,V ∈ U . We get a global measure µ ∈M(X)
by equation (2.1). SinceM is a sheaf we get that µ restricts to each µU for U ∈ U . It
remains to check that µ is in fact regular. Let

V = {V ⊂X ∣ V is open in X and V ⊂ U for some U ∈ U}.

This is an open cover of X: For any x ∈X let U ∈ U be a neighborhood about x. Then
X ∖U is closed, and since X is locally compact Hausdorff, X is in particular regular, so
we can find disjoint open subsets V and W containing x and X ∖U respectively. Then
V ⊂ U , showing that V ∈ V.

Let now K ⊂ X be compact, then V is an open cover of K, so it admits a finite
sub-cover {Vi}ni=1 of K. Let Ui ∈ U be such that Vi ⊂ Vi ⊂ Ui. Then K ∩Vi ⊂ Ui is compact.
Thus,

µ(K) ≤
n

∑
i=1
µ(K ∩ Vi) =

n

∑
i=1
µ∣Ui(K ∩ Vi) =

n

∑
i=1
µUi(K ∩ Vi) <∞.

Hence, by Lemma 2.0.10 we have that µ is in fact regular, proving that gluing holds for
Mreg.

We now show that we can pullback measures.

Proposition 2.0.12.
Let f ∶ X → Y be a local homeomorphism between second-countable locally compact
Hausdorff spaces and µ be a regular Borel measure on Y . Then there exists a unique
regular Borel measure f∗µ on X, the pullback of µ, such that f∗µ(U) = µ(f(U)) for all
open subsets U ⊂X where f ∣U is injective.

7



Chapter 2. Sheaf of measures

Proof.
Let

U = {U ⊂X ∣ U is open in X and f ∣U is injective}.
Since f is a local homeomorphism this is an open cover of X. For each U ∈ U we get
a regular Borel measure f∗µU ∈Mreg(U) by the equation f∗µU(B) = µ(f(B)), where
B ⊂ U is a Borel subset. The fact that this defines a Borel measure is obvious. Regularity
follows as such: Let K ⊂ U be compact, then f∗µU(K) = µ(f(K)) <∞ by compactness
of f(K) which follows by continuity of f . By Lemma 2.0.10 f∗µU is regular.

Now we need to show that these measures agree on intersections. Let U,V ∈ U . Then
for any Borel subset B ⊂ U ∩ V we have that

f∗µU ∣U∩V (B) = f∗µU(B) = µ(f(B)) = f∗µV ∣U∩V (B).

SinceMreg is a sheaf we then get that there exists a unique regular Borel measure f∗µ
on X such that for any U ∈ U

f∗µ(U) = f∗µ∣U(U) = f∗µU(U) = µ(f(U)).

We now give an alternate description of the pullback of a regular Borel measure using
Riesz representation Theorem, which we recall here without proof.

Theorem 2.0.13 ([Coh13] Theorem 7.2.8, Riesz Representation Theorem).
Let X be a locally compact Hausdorff space and l ∶ Cc(X) → C be a positive bounded
linear functional. Then there exists a unique regular Borel measure µ on X such that

l(f) = ∫
X
fdµ

for all f ∈ Cc(X).

Lemma 2.0.14.
Let X and Y be topological spaces, ϕ ∶ X → Y a local homeomorphism and f ∈ Cc(X).
Then the function

y ↦ ∑
x∈ϕ−1(y)

f(x)

from Y to the complex numbers C is well-defined and continuous with compact support.

Proof.
For each x ∈ supp(f) let Ux be an open neighborhood in X about x such that ϕ∣Ux is
injective. Then {Ux}x∈supp(f) is an open cover of supp(f), and since f is compactly
supported we get a finite subcover {Uxi}ni=1 of supp(f). Then we may write for each
y ∈ Y

∑
x∈ϕ−1(y)

f(x) =
n

∑
i=1
f ○ ϕ∣−1

Uxi
(y).

This equality makes the above assertions obvious.

Proposition 2.0.15.
Let ϕ ∶X → Y be a local homeomorphism between locally compact Hausdorff spaces and µ
be a regular Borel measure on Y . Then there exists a unique regular Borel measure ϕ∗µ
on X such that

∫
X
fdϕ∗µ = ∫

Y
∑

x∈ϕ−1(y)
f(x)dµ(y),

where f ∈ Cc(X).

8



Proof.
Define a linear functional l ∶ Cc(X)→ C by

l(f) = ∫
Y

∑
x∈ϕ−1(y)

f(x)dµ(y).

By Lemma 2.0.14 this is indeed a bounded linear functional. Positivity follows by
positivity of the measure µ. By Riesz representation Theorem, there exists a unique
regular Borel measure ϕ∗µ on X such that for any f ∈ Cc(X)

∫
X
fdϕ∗µ = l(f) = ∫

Y
∑

x∈ϕ−1(y)
f(x)dµ(y).

We end this section by proving that for second-countable locally compact Hausdorff
spaces, these two ideas of pullbacks are the same. Hence, when we work with second-
countable locally compact Hausdorff spaces we will simply refer to the pullback of a
measure as the pullback of a measure. We also show that the pushforward of regular
Borel measure is again regular if the function in question is proper.

Proposition 2.0.16.
Let ϕ ∶ X → Y be a local homeomorphism between second-countable locally compact
Hausdorff spaces and µ be a regular Borel measure on Y . Then the pullback of µ as in
Proposition 2.0.12 equals the one in Proposition 2.0.15.

Proof.
Let λ be the pullback of µ as in Proposition 2.0.12 and ν be the pullback of µ as in
Proposition 2.0.15. Let

U = {U ⊂X ∣ U is open in X and ϕ∣U is injective}.

This is an open cover of X since ϕ is a local homeomorphism. By Proposition 2.0.11 we
know thatMreg is a sheaf on X, so we need only check that λ∣U = ν∣U for each U ∈ U to
conclude that λ = ν. Let U ∈ U and B ⊂ U be a Borel subset. Then

ν∣U(B) = ν(B)

= ∫
X
χBdν

= ∫
Y

∑
x∈ϕ−1(y)

χB(x)dµ(y)

= ∫
Y
χB(ϕ∣−1

U (y))dµ(y)

= ∫
Y
χϕ(B)dµ

= µ(ϕ(B))
= λ∣U(B).

Proposition 2.0.17.
Let f ∶X → Y be a proper continuous function between second-countable locally compact
Hausdorff spaces and µ be a regular Borel measure on X. Then the pushforward f∗µ of
µ is regular.
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Chapter 2. Sheaf of measures

Proof.
Let K ⊂ Y be compact, then

f∗µ(K) = µ(f−1(K)) <∞

since f−1(K) is compact in X. By Lemma 2.0.10 we have that f∗µ is regular.

Note that in the proofs of Proposition 2.0.12 and Proposition 2.0.16, most of the work
was done by finding a suitable open cover of our space. This will in general be the case.
Using sheaf theory reduces a lot of the proofs in this thesis to the problem of finding a
suitable open cover of our space.
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Chapter 3

Étale groupoids and their C∗-algebras

A lot of theory about groupoid C∗-algebras was developed by Renault and can be found
in [Ren80]. Sections one through four in this chapter will loosely follow the structure and
presentation done in the lecture notes by Sims on Hausdorff étale groupoids and their
C∗-algebras, cf. [Sim17]. It will be mentioned when original proofs are presented.

The last section of this chapter gives an outline of the theory needed to understand
Theorem 3.5.14 ([Chr23] Theorem 7.4) which gives a description of the β-KMS weights
on a groupoid in terms of ergodic measures on the unit space of this groupoid.

3.1 Definition and basic results

One elegant way of defining a groupoid G is to say that it is a small category where each
morphism is invertible. This definition is a great way of visualizing a lot of the algebra
that a groupoid describes. We will however start this section by giving a more direct
definition and work our way towards the category theoretic definition from this.

Definition 3.1.1.
A groupoid is a set G with a distinguished subset G(2) ⊂ G × G with a multiplication map
G(2) → G where (x, y)↦ xy, and an inverse map G → G where x↦ x−1. These maps have
to satisfy the following three axioms:

(Associativity) If (x, y), (y, z) ∈ G(2) then both (xy, z), (x, yz) ∈ G(2) and (xy)z = x(yz),

(Inverse 1) (x−1)−1 = x for any x ∈ G,

(Inverse 2) (x,x−1) ∈ G(2) for any x ∈ G and for any (x, y) ∈ G(2) we have that x−1(xy) = y and
(xy)y−1 = x. ♡

This definition only mentions the algebra that is present in a groupoid. We will
eventually think of the multiplication map as composition of morphisms. In this context
it is useful to define what will eventually become the objects of our category.

Definition 3.1.2.
Let G be a groupoid. The unit space of G is the set G(0) = {x−1x ∣ x ∈ G}. The elements
of G(0) are called units. Notice that since for any x ∈ G we have that (x−1)−1 = x, so we
can also describe G(0) as the set {xx−1 ∣ x ∈ G}.

Associated to the unit space we define two maps r, s ∶ G → G(0) by the equations

r(x) = xx−1, s(x) = x−1x,

11
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for an element x ∈ G. These definitions are well-defined by the inverse axioms, ensuring
that both (x,x−1), (x−1, x) ∈ G(2). We call r the range map and s the source map. ♡

We will throughout this thesis use the letters x, y, z to denote general elements in the
groupoid and u, v,w to denote units.

Lemma 3.1.3.
Let G be a groupoid and x ∈ G, then the following holds.

(i) (r(x), x), (x, s(x)) ∈ G(2) and r(x)x = x = xs(x),

(ii) r(x−1) = s(x) and s(x−1) = r(x),

(iii) x−1 ∈ G is the unique element such that (x,x−1) ∈ G(2) and xx−1 = r(x). Similarly,
x−1 ∈ G is the unique element such that (x−1, x) ∈ G(2) and x−1x = s(x).

Proof.

(i) Associativity gives (r(x), x), (x, s(x)) ∈ G(2) since both (x,x−1), (x−1, x) ∈ G(2).
The second inverse axiom gives us that

r(x)x = (xx−1)x = x = x(x−1x) = xs(x).

(ii) By the first inverse axiom the following calculations hold:

r(x−1) = x−1(x−1)−1 = x−1x = s(x)

s(x−1) = (x−1)−1
x−1 = xx−1 = r(x).

(iii) Suppose (x, y) ∈ G(2) and xy = r(x) = xx−1. Since (x−1, x) ∈ G(2) associativity says
that (x−1x, y), (x−1, xy) ∈ G(2). The second inverse axiom then gives us that

y = (x−1x)y = x−1(xy) = x−1r(x) = x−1(xx−1) = x−1.

The second part of this statement is similarly proven.

The following lemma shows that we have left- and right-cancelation in a groupoid.

Lemma 3.1.4.
Let G be a groupoid. Suppose (x, y), (z, y) ∈ G(2) and xy = zy. Then x = z. Similarly, if
(y, x), (y, z) ∈ G(2) and yx = yz. Then x = y.

Proof.
Associativity gives us that (x, yy−1), (z, yy−1) ∈ G(2), and the second inverse axiom allows
the following calculation to hold:

x = x(yy−1) = (xy)y−1 = (zy)y−1 = z(yy−1) = z.

The second part of this statement follows by a similar argument.

Lemma 3.1.5.
Let G be a groupoid. Then (x, y) ∈ G(2) if and only if s(x) = r(y). We also have that

(i) r(xy) = r(x) and s(xy) = s(y) for any (x, y) ∈ G(2),

(ii) (xy)−1 = y−1x−1 for any (x, y) ∈ G(2) and,
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(iii) r(u) = u = s(u) for any u ∈ G(0).
Proof.
Suppose first that s(x) = r(y), then by definition we have that x−1x = yy−1. Then
(x, yy−1) = (x,x−1x) ∈ G(2), and since (yy−1, y) ∈ G(2), we get by the second inverse axiom
and associativity that (x, y) = (x, yy−1y) ∈ G(2).

Now suppose (x, y) ∈ G(2), then we have that (x−1, xy) ∈ G(2), so we may perform the
following calculation:

s(x)y = x−1xy = y = r(y)y,
where the last equality follows by Lemma 3.1.3 (i). By Lemma 3.1.4 we get that
s(x) = r(y). This completes the first part of the proof.

(i) Let (x, y) ∈ G(2), then (r(x), xy) ∈ G(2), so by Lemma 3.1.3 (i) we have that

r(x)(xy) = (r(x)x)y = xy = r(xy)(xy).

Thus, by Lemma 3.1.4 we have that r(x) = r(xy). The statement about the source
map is similarly proven.

(ii) Let (x, y) ∈ G(2). First we want to make sure that the product y−1x−1 is defined.
By statement (i) we have that

y−1y = s(y) = s(xy) = (xy)−1(xy).

By the uniqueness part of Lemma 3.1.3 (iii) we have that y−1 = (xy)−1x. Then,
since (x,x−1) ∈ G(2) we get by associativity that (y−1, x−1) = ((xy)−1x,x−1) ∈ G(2).
It follows by associativity that (xy, y−1x−1) ∈ G(2). Hence, by statement (i)

xyy−1x−1 = xx−1 = r(x) = r(xy) = (xy)(xy)−1.

The uniqueness part of Lemma 3.1.3 (iii) then gives us that y−1x−1 = (xy)−1.

(iii) Let u ∈ G(0) and choose x ∈ G such that u = x−1x. By statement (i) we immediately
get that s(u) = s(x) = x−1x = u. By Lemma 3.1.3 (ii) we then get that

r(u) = r(x−1) = s(x) = u.

With these results established we can see that a groupoid is indeed a small category
where each morphism is invertible.

Proposition 3.1.6.
Let G be a groupoid. Then G becomes a small category where each morphism is invertible
by letting G be the set of morphisms, G(0) be the set of objects, s ∶ G → G(0) be the domain
map and r ∶ G → G(0) be the co-domain map. The composition of morphisms is given by
the multiplication map G(2) → G.
Proof.
Note first that the composition is well-defined by Lemma 3.1.5 and associativity follows
by the associativity axiom for groupoids. To show the existence of identity morphisms
we first note that since G(0) ⊂ G we have that any object u ∈ G(0) is also a morphism. The
morphism u is the clear candidate for the identity on the object u. First we note that u
is indeed a morphism from u to u by Lemma 3.1.5 (iii) saying that r(u) = u = s(u). Now
suppose that x, y ∈ G are such that r(x) = u and s(y) = u. By Lemma 3.1.3 (i) we have
that ux = x and yu = y, hence u is the identity morphism from u to u.

The fact that each morphism is invertible follows by the fact that we have an inverse
map G → G and the inverse axioms for groupoids.
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The fact that the converse is also true, that each small category where each morphism
is invertible gives a groupoid, is obvious. Hence, one is justified in defining groupoids as
small categories with invertible morphisms.

With this in place we introduce a very important example for this thesis.
Example 3.1.7 (Deaconu-Renault groupoids).
Let X be a set, G an abelian group and S ⊂ G a submonoid of G. In a lot of cases G = Z
and S = N. Suppose S acts on X. By this we mean for each s, t ∈ S we have functions
ϕs, ϕt ∶X →X such that

ϕ0 = idX
ϕt ○ ϕs = ϕt+s.

To avoid cluttered notation we will simply denote the functions ϕs by the symbol s. Let
G be the set

G = {(x, s − t, y) ∈X ×G ×X ∣ sx = ty}.
Further we let G(0) = {(x,0, x) ∣ x ∈ X} and associate this with X in the obvious way.
We define the range and source maps, multiplication and the inverse map as follows:

r(x, g, y) = x,
s(x, g, y) = y,

(x, g, y)(y, h, z) = (x, g + h, z),
(x, g, y)−1 = (y,−g, x).

We easily check that this multiplication is well-defined: Let s1, s2, t1, t2 ∈ S such that
s1x = t1y and s2y = t2z, then

(s2 + s1)x = s2(s1x) = s2(t1y) = (s2 + t1)y = t1(s2y) = t1(t2z) = (t2 + t1)z,
showing that the multiplication map is well-defined.

With these operations G becomes a groupoid. We will check that this defines a small
category with invertible morphisms. G becomes the set of morphisms and X becomes
the set of objects. The multiplication map defines composition of morphisms and s and
r gives us domain and co-domain maps.
Associativity:
Let (x, g, y), (y, h, z), (z, f,w) ∈ G, then

((x, g, y)(y, h, z))(z, f,w) = (x, g + h, z)(z, f,w)
= (x, g + h + f,w)
= (x, g, y)(y, h + f,w)
= (x, g, y)((y, h, z)(z, f,w)).

Identity:
We will show that G(0) becomes the set of identity morphisms. Let (x,0, x) ∈ G(0),
(x, g, y) ∈ G and (z, h, x) ∈ G. Clearly (x,0, x) is a morphism from x to x, and

(x,0, x)(x, g, y) = (x, g, y),
(z, h, x)(x,0, x) = (z, h, x).

Invertibility:
Let (x, g, y) ∈ G, then

(x, g, y)(x, g, y)−1 = (x, g, y)(y,−g, x) = (x, g − g, x) = (x,0, x),
(x, g, y)−1(x, g, y) = (y,−g, x)(x, g, y) = (y,−g + g, y) = (y,0, y). ♢
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We introduce another important example of groupoids, namely equivalence relations.
This is perhaps one of the earliest examples of groupoids which was studied in detail.
They will in particular give an introduction to principal groupoids.

Example 3.1.8 (Equivalence relations).
Let R be an equivalence relation on a set X. Set R(0) = {(x,x) ∣ x ∈X}. We may clearly
identify R(0) with X. We define the range and source maps, multiplication and the
inverse map as follows:

r(x, y) = x,
s(x, y) = y,

(x, y)(y, z) = (x, z),
(x, y)−1 = (y, x),

for (x, y), (y, z) ∈ R. These operations are all well-defined by the axioms for an equivalence
relation. With these operations R becomes a groupoid. We will check that this defines
a small category with invertible morphisms. R becomes the set of morphisms and X
becomes the set of objects. The multiplication map gives us composition of morphisms
and s and r gives us domain and co-domain maps.
Associativity:
Let (x, y), (y, z), (z,w) ∈ R, then

((x, y)(y, z))(z,w) = (x, z)(z,w)
= (x,w)
= (x, y)(y,w)
= (x, y)((y, z)(z,w)).

Identity:
We will show that R(0) becomes the set of identity morphisms. So let (x,x) ∈ R(0),
(x, y) ∈ R and (z, x) ∈ R. Clearly (x,x) is a morphism from x to x, and

(x,x)(x, y) = (x, y),
(z, x)(x,x) = (z, x).

Invertibility:
Let (x, y) ∈ R, then

(x, y)(x, y)−1 = (x, y)(y, x) = (x,x),
(x, y)−1(x, y) = (y, x)(x, y) = (y, y). ♢

We want to define the principal groupoids to be precisely the groupoids which
are isomorphic to equivalence relations. It is therefore necessary to define groupoid
homomorphisms.

Definition 3.1.9.
Let G and H be groupoids. A function ϕ ∶ G → H is a groupoid homomorphism if
(ϕ × ϕ)(G(2)) ⊂H(2) and ϕ(xy) = ϕ(x)ϕ(y) whenever (x, y) ∈ G(2). ♡
Lemma 3.1.10.
Let G be a groupoid. We may associate an equivalence relation to G(0) by setting

R(G) = {(r(x), s(x)) ∣ x ∈ G} ⊂ G(0) × G(0).

The map x↦ (r(x), s(x)) is a surjective groupoid homomorphism between G and R(G).
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Proof.
We first show that R(G) is an equivalence relation.
Reflexivity:
Let u ∈ G(0). Then (u,u) = (r(u), s(u)) ∈ R(G).
Symmetry:
Let (u, v) ∈ R(G) and choose x ∈ G such that (u, v) = (r(x), s(x)). Then we have that
(v, u) = (s(x), r(x)) = (r(x−1), s(x−1)) ∈ R(G).
Transitivity:
Let (u, v), (v,w) ∈ R(G) and choose x, y ∈ G such that r(x) = u, s(x) = v = r(y) and
s(y) = w. Then

r(xy) = r(x) = u, s(xy) = s(y) = w,
thus (u,w) = (r(xy), s(xy)) ∈ R(G).

The map x↦ (r(x), s(x)) is clearly surjective, and a groupoid homomorphism by

(r(xy), s(xy)) = (r(x), s(y)) = (r(x), s(x))(r(y), s(y))

for any (x, y) ∈ G(2). Note that the last equality follows since s(x) = r(y) by
Lemma 3.1.5.

Definition 3.1.11.
We say that a groupoid G is principal if the map x ↦ (r(x), s(x)) from G to R(G) is
injective. ♡

A groupoid is clearly algebraically isomorphic to an equivalence relation if and only
if it is principal. We want to make the distinction between equivalence relations and
principal groupoids when we introduce a topology to groupoids, as an equivalence relation
will generally have the relative topology from the set it is an equivalence relation on,
while a principal groupoid might have some other topology.

Definition 3.1.12.
Let G be a groupoid and u, v ∈ G(0). We define the sets

Gu = {x ∈ G ∣ s(x) = u},
Gu = {x ∈ G ∣ r(x) = u},
Gvu = Gu ∩ Gv = {x ∈ G ∣ s(x) = u, r(x) = v}.

Note that for any unit u ∈ G(0), the set Guu becomes a group with identity element u.
These groups are called isotropy subgroups.

We define the set

Iso(G) = ⋃
u∈G(0)

Guu = {x ∈ G ∣ r(x) = s(x)},

called the isotropy subgroupoid of G. The fact that this is a subgroupoid is clear. We
also clearly have that G(0) ⊂ Iso(G). ♡

If we use the category theoretic definition of a groupoid G we can think of the isotropy
subgroupoid Iso(G) as measuring to what extent the objects in our category have an
interesting internal structure. If there is no isotropy, i.e. Iso(G) = G(0), then the only
morphisms from one object to itself is the identity morphism, which isn’t that interesting.
However, if a groupoid has a lot of isotropy there will be many morphisms from one
object to itself.

We end this section by showing that the principal groupoids are exactly the groupoids
with no isotropy.
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Lemma 3.1.13.
A groupoid G is principal if and only if G(0) = Iso(G).

Proof.
Suppose G is principal. Let x ∈ Iso(G) and set u = r(x) = s(x). By definition, we have
that u ∈ G(0) hence r(u) = u = s(u). Then

u↦ (r(u), s(u)) = (r(x), s(x))↤ x,

and since G is principal we have that these maps are injective. In particular, we get that
x = u ∈ G(0), hence G(0) = Iso(G).

Now suppose that G(0) = Iso(G). We want to show that the map x↦ (r(x), s(x)) is
injective. Assume (r(x), s(x)) = (r(y), s(y)). Since s(x) = s(y) = r(y−1), we have that
the product xy−1 is defined and

r(xy−1) = r(x) = r(y) = s(y−1) = s(xy−1).

Thus, xy−1 ∈ Iso(G) = G(0), so

xy−1 = s(xy−1) = s(y−1) = (y−1)−1y−1 = yy−1.

Hence, by the uniqueness part of Lemma 3.1.3 (iii) we get that x = y, meaning that the
map x↦ (r(x), s(x)) is injective, hence G is principal.
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3.2 Topological groupoids

We have now established all the necessary algebraic tools about groupoids, however our
goal will be to use these objects to study C∗-algebras. Hence, it will be necessary to
develop some theory for topological groupoids. In particular some theory about étale
groupoids will be established. Étale groupoids can be thought of as the groupoid analogue
to discrete groups, and they give rise to some nice computational results.

Definition 3.2.1.
A topological groupoid is a groupoid G endowed with a topology such that the range
map, source map, multiplication map and inverse map, are continuous. The subsets
G(2) ⊂ G × G and G(0) ⊂ G are endowed with the subspace topologies. ♡

Our goal in this section is to show that when a groupoid G is endowed with a suitably
nice topology, the sets Gu and Gu are discrete.

Lemma 3.2.2.
If G is a topological groupoid, then G(0) is closed if and only if G is Hausdorff.

Proof.
Suppose G is Hausdorff and let (uλ)λ∈Λ ⊂ G(0) be a net that converges to an element
u ∈ G. For any index λ ∈ Λ we have that r(uλ) = uλ = s(uλ) since uλ ∈ G(0). Then by
continuity of the range and source maps we have that

limuλ = lim r(uλ) = r(limuλ) = r(u).

Similarly, limuλ = s(u). Since G is Hausdorff, limits are unique. We therefore get that
r(u) = u = s(u), hence u ∈ G(0), meaning that G(0) is closed.

Now suppose G(0) is closed. Let (xλ)λ∈Λ ⊂ G be a net and x, y ∈ G be such that
limxλ = x and limxλ = y. By continuity of the inverse and multiplication maps we have
that the net (x−1

λ xλ)λ∈Λ ⊂ G(0) converges to the element x−1y. Since G(0) is closed we get
that x−1y ∈ G(0). Thus,

x−1y = r(x−1y) = r(x−1) = x−1x,

so y = x by Lemma 3.1.4, meaning that G is Hausdorff.

Definition 3.2.3.
A topological groupoid G is étale if the range map r ∶ G → G is a local homeomorphism. ♡

Note that for an étale groupoid G we have that the source map s ∶ G → G is also a
local homeomorphism by the fact that we may write s(x) = r(x−1) for any x ∈ G. This
uses the fact that the inverse map is a homeomorphism, which is clear.

Lemma 3.2.4.
Let G be an étale groupoid. Then G(0) is open in G.

Proof.
For each x ∈ G let Ux be an open neighborhood in X about x such that r∣Ux is injective.
Then each r(Ux) is open in G and a subset of G(0). Hence,

G(0) = ⋃
x∈G

r(Ux),

showing that G(0) is open in G.
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Definition 3.2.5.
Let G be an étale groupoid. A subset B ⊂ G is called a bisection if there exists an open
subset U ⊂X containing B such that both r∣U and s∣U are injective. ♡

Lemma 3.2.6.
Let G be a second-countable étale groupoid. Then G has a countable base of open bisections.

Proof.
Since G is second-countable we can find a countable dense subset {xn}n∈N ⊂ G. For each
n ∈ N choose countable neighborhood bases {Un,i}i∈N, {Vn,i}i∈N about xn such that both
r∣Un,i and s∣Vn,i are injective for every i ∈ N. Then {Un,i ∩Vn,i}n,i∈N is a countable base of
open bisections.

Corollary 3.2.7.
Let G be a second-countable Hausdorff étale groupoid. Then Gu and Gu are discrete.

Proof.
Let x ∈ Gu, then by definition s(x) = u. By Lemma 3.2.6 we may find a basic open
bisection U about x, then the restricted source map s∣U is injective. In particular
s∣−1
U (u) = x. Hence, {x} = Gu ∩U is open in Gu. Since G is Hausdorff, {x} is also closed

in Gu, thus Gu is discrete.
The proof that Gu is discrete is completely analogues to this one.

We end this section by further developing some theory about Deaconu-Renault
groupoids. Some details presented here can be found in Sims’ notes, but most of it is
original work.

Example 3.2.8 (Deaconu-Renault groupoids continued).
Let X be a second-countable locally compact Hausdorff space. We will for simplicity
consider the Deaconu-Renault groupoid associated to X where we have a monoidal action
from N as a submonoid of Z. So suppose N acts on X by local homeomorphisms and
denote by G the associated Deaconu-Renault groupoid. For open subsets U,V ⊂X and
natural numbers m,n ∈ N, we define the set Z(U,m,n,V ) to be

Z(U,m,n,V ) = {(x,m − n, y) ∣ x ∈ U, y ∈ V, mx = ny}.

Then the collection

B = {Z(U,m,n,V ) ∣ U,V open in X, m,n ∈ N}

form a base making G a second-countable locally compact Hausdorff étale groupoid,
which we will prove in the following lemmas. ♢

Lemma 3.2.9.
B is a base.

Proof.
G is covered by basic opens:
It is easily seen that

G = ⋃
m,n∈N

Z(X,m,n,X).

The intersection of two basic opens is precisely covered by basic opens:
Fix open subsets U1, U2, V1, V2 ⊂ X and natural numbers m1,m2, n1, n2 ∈ N. Define
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Z1 = Z(U1,m1, n1, V1) and Z2 = Z(U2,m2, n2, V2) and let (x, g, y) ∈ Z1 ∩ Z2. Since
m1 − n1 = g = m2 − n2 we get that m1 −m2 = n1 − n2. By possibly relabeling we may
assume that m1 ≥m2, and n1 ≥ n2. Let r ∈ N be such that m1 −m2 = r = n1 − n2. Define
U3 = U1 ∩U2 and V3 = V1 ∩ V2. Then we have that (x, g, y) ∈ Z(U3,m2, n2, V3).

Now we just need to show that Z(U3,m2, n2, V3) ⊂ Z1 ∩ Z2. It is clear
that Z(U3,m2, n2, V3) ⊂ Z2. To see that Z(U3,m2, n2, V3) ⊂ Z1, let (z, h,w) ∈
Z(U3,m2, n2, V3). Then we get that

m1z = (r +m2)z = r(m2z) = r(n2w) = (r + n2)w = n1w,

hence (z, h,w) ∈ Z1.

Lemma 3.2.10.
G is second-countable.

Proof.
Since X is second-countable we may choose a countable base for X: {Uk}k∈N. Then the
collection {Z(Uk,m,n,Ul)}k,m,n,l∈N is a countable base for G.

Lemma 3.2.11.
G is Hausdorff.

Proof.
Let (x1,m1 − n1, y1), (x2,m2 − n2, y2) ∈ G such that (x1,m1 − n1, y1) ≠ (x2,m2 − n2, y2).
There are three cases to consider: x1 ≠ x2, y1 ≠ y2 and m1 − n1 ≠m2 − n2.

If x1 ≠ x2 we may choose disjoint open neighborhoods U1, U2 ⊂ X about x1, x2
respectively since X is Hausdorff. Then (x1,m1 − n1, y1) ∈ Z(U1,m1, n1,X), (x2,m2 −
n2, y2) ∈ Z(U2,m2, n2,X) and Z(U1,m1, n1,X) ∩ Z(U2,m2, n2,X) = ∅. A similar
argument holds for when y1 ≠ y1.

Finally, if m1 − n1 ≠ m2 − n2 we notice that Z(X,m1, n1,X) ∩ Z(X,m2, n2,X) =
∅. This completes the proof, since clearly (x1,m1 − n1, y1) ∈ Z(X,m1, n1,X) and
(x2,m2 − n2, y2) ∈ Z(X,m2, n2,X).

To prove that G is locally compact we will use a description of compact sets that uses
universal nets. For a quick introduction in universal nets see [Kjæ95]. We will here only
state the definition and main result that we will use.

Definition 3.2.12.
Let X be a set. A net (xλ)λ∈Λ in X is universal if for every subset Y ⊂X we have that
the net is either eventually in Y or eventually in X ∖ Y . ♡

Theorem 3.2.13 ([Kjæ95] Theorem 1.6.2).
Let X be a topological space. Then X is compact if and only if every universal net in X
converges.

With this we can prove that G is locally compact.

Lemma 3.2.14.
G is locally compact.
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Proof.
For this we will prove that if K,L ⊂ X are compact, we have for any natural numbers
m,n ∈ N that Z(K,m,n,L) is compact. Let ((xλ,m − n, yλ))λ∈Λ be a universal net in
Z(K,m,n,L). Then (xλ)λ∈Λ is a universal net in K, and since K is compact we have
that this net converges to an element x ∈K. Similarly, we have that (yλ)λ∈Λ converges
to an element y ∈ L. Since N acts on X by local homeomorphisms and X is Hausdorff we
have that

mx = lim
λ
mxλ = lim

λ
nyλ = ny,

so (x,m − n, y) ∈ Z(K,m,n,L). It remains to show that ((xλ,m − n, yλ))λ∈Λ converges
to (x,m − n, y).

Let Z(U, p, q, V ) be an open neighborhood about (x,m−n, y). Since the net (xλ)λ∈Λ
converges to x we have that it is eventually in U . Similarly, (yλ)λ∈Λ is eventually in V .
By passing to a subnet we may assume that xλ ∈ U and yλ ∈ V for all indices λ ∈ Λ. Since
both mx = ny and px = qy we have that m − n = p − q, so m − p = n − q.

In the case where m ≤ p, let r = p −m. Then we have for all indices λ ∈ Λ that

pxλ = (r +m)xλ = r(mxλ) = r(nyλ) = (r + n)yλ = qyλ.

Hence, (xλ,m − n, yλ) ∈ Z(U, p, q, V ) for all indices λ ∈ Λ.
In the case where m > p, let s =m−p. By continuity of the action on X by N we have

that the nets (pxλ)λ∈Λ and (qyλ)λ∈Λ converges to px and qy respectively. By assumption,
px = qy. Let W ⊂ X be an open neighborhood about px = qy such that action by b∣W
is injective. Then we have that (pxλ)λ∈Λ and (qyλ)λ∈Λ are eventually in W . For large
enough indices λ we have that the equalities

b(pxλ) = (b + p)xλ =mxλ = nyλ = (b + q)yλ = b(qyλ)

imply that pxλ = qyλ by injectivity of b∣W . Hence, ((xλ,m − n, yλ))λ∈Λ is eventually in
Z(U, p, q, V ) proving that this net converges to (x,m − n, y).

To see that G is locally compact let (x,m−n, y) ∈ G. Choose relatively compact open
neighborhoods U,V ⊂X about x and y respectively. Then (x,m−n, y) ∈ Z(U,m,n,V ) ⊂
Z(U,m,n,V ), where Z(U,m,n,V ) is compact. Since G is Hausdorff this shows that G
is locally compact.

Lemma 3.2.15.
G is étale.

Proof.
Let (x,m−n, y) ∈ G and U,V ⊂X be open neighborhoods about x, y ∈X respectively such
that m∣U and n∣V are injective. Let W = (mU)∩ (nV ), U ′ =m∣−1

U (W ) and V ′ = n∣−1
V (W ).

Since N acts on X by local homeomorphisms we get that all these sets are open in X.
We claim that the range map restricted to Z(U ′,m,n, V ′),

r ∶ Z(U ′,m,n, V ′)→ Z(U ′,0,0, U ′)

is a homeomorphism. By definition, we have that r is continuous, and by construction of
U ′ and V ′ we have that r is bijective. To check that r is open we check instead that its
inverse is continuous. Let (xλ)λ∈Λ be a net in U ′ converging to x ∈ U ′. By construction,
we have for each index λ ∈ Λ that there exists a unique yλ ∈ V ′ such that mxλ = nyλ.
There is also a unique y ∈ V ′ such that mx = ny. Since X is Hausdorff we get that

lim
λ
nyλ = lim

λ
mxλ =mx = ny.
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So since n∣V ′ is injective we get that (yλ)λ∈Λ converges to y. We now have a net
((xλ,m−n, yλ))λ∈Λ in Z(U ′,m,n, V ′) such that (xλ)λ∈Λ converges to x ∈ U ′ and (yλ)λ∈Λ
converges to y ∈ V ′. However, this is precisely the situation we had in the proof showing
that G is locally compact, so we can conclude that ((xλ,m − n, yλ))λ∈Λ converges to
(x,m − n, y). Hence, r is open.
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3.3 Continuous functions on groupoids

If we have a locally compact Hausdorff groupoid, G, we get a commutative C∗-algebra by
looking at C0(G), where the algebra structure on C0(G) is simply given by the point-wise
product. However, we would very much like to preserve the non-commutative structure
that we get from a groupoid. To this end we define a convolution product on Cc(G) and
see that we get a *-algebra which will in general be non-commutative.

Definition 3.3.1.
Let G be a second-countable locally compact Hausdorff étale groupoid. We want to make
the complex vector space Cc(G) into a *-algebra. This is done by defining multiplication
using the convolution product: For f, g ∈ Cc(G) and x ∈ G we define f ∗ g ∈ Cc(G) by the
equation

(f ∗ g)(x) = ∑
yz=x

f(y) g(z),

where the sum ranges over (y, z) ∈ G(2) such that x = yz. For f ∈ Cc(G) and x ∈ G we
define the involution of f by the equation

f∗(x) = f(x−1). ♡

Proposition 3.3.2.
Let G be a second-countable locally compact Hausdorff étale groupoid. Let f, g ∈ Cc(G)
and x ∈ G. Then the set {(y, z) ∈ G(2) ∣ yz = x, f(y) g(z) ≠ 0} is finite.

Proof.
If yz = x we have that r(x) = r(yz) = r(y) and s(x) = s(yz) = s(z), so y ∈ Gr(x) and
z ∈ Gs(x). By Corollary 3.2.7 these are discrete sets, thus the intersections Gr(x)∩ supp(f)
and Gs(x) ∩ supp(g) are finite since f and g have compact support. This completes the
proof.

With this the convolution product on Cc(G) is well-defined, justifying our use of it in
Definition 3.3.1. Note that the convolution product may equivalently be defined by the
equations

(f ∗ g)(x) = ∑
y∈Gr(x)

f(y) g(y−1x) (3.1)

= ∑
y∈Gs(x)

f(xy−1) g(y). (3.2)

Note that in the proof of Proposition 3.3.2 it was not required that the functions
were continuous, hence the convolution product may be extended to any function with
compact support. In particular the functions δa ∶ G → {0,1} where a ∈ G defined by

δa(x) = {1, x = a,
0, x ≠ a,

will be useful when constructing an injective *-representation of Cc(G).
We will see that the convolution products becomes particularly simple when the

functions we are convolving are supported on bisections. It is useful to know that these
functions span the entire *-algebra.
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Lemma 3.3.3.
Let G be a second-countable locally compact Hausdorff étale groupoid. Then

Cc(G) = span{f ∈ Cc(G) ∣ supp(f) is a bisection}.

Proof.
By Lemma 3.2.6 we may choose a countable base of open bisections for G. Let f ∈ Cc(G)
and {Ui}i∈N be an open cover of supp(f) with each Ui a bisection. By compactness of
supp(f) we may pass to a finite sub-cover {Ui}ni=1. Let {hi}ni=1 be a partition of unity
subordinate to {Ui}ni=1. Define functions fi ∈ Cc(G) by the point-wise products fi = f ⋅ hi.
Then supp(fi) ⊂ Ui, and

f =
n

∑
i=1
fi.

Lemma 3.3.4.
Let G be a second-countable locally compact Hausdorff étale groupoid. Suppose f, g ∈ Cc(G)
are supported on bisections. Then for any x ∈ supp(f∗g) such that x = yz with y ∈ supp(f)
and z ∈ supp(g) we have that

(f ∗ g)(x) = f(y) g(z).

Proof.
Let U,V ⊂ G be open bisections such that supp(f) ⊂ U and supp(g) ⊂ V . Then r∣U and s∣V
are injective. Let x ∈ supp(f ∗g) be such that x = yz with y ∈ U and z ∈ V . By injectivity
of r∣U we have that y is the unique element in U such that r(x) = r(yz) = r(y). Similarly,
z is the unique element in V such that s(x) = s(yz) = s(z). Hence, (y, z) ∈ G(2) is the
only pair in G(2) that satisfies yz = x and f(y) g(z) ≠ 0. Thus, (f ∗g)(x) = f(y) g(z).

Lemma 3.3.5.
Let G be a second-countable locally compact Hausdorff étale groupoid. Then Cc(G(0)) is
a *-subalgebra of Cc(G).

Furthermore, for f ∈ Cc(G) supported on a bisection we have that f∗ ∗ f ∈ Cc(G(0)) is
supported on s(supp(f)) and (f∗ ∗ f)(s(x)) = ∣f(x)∣2 for any x ∈ supp(f).

Similarly, f ∗ f∗ ∈ Cc(G(0)) is supported on r(supp(f)) and (f ∗ f∗)(r(x)) = ∣f(x)∣2
for any x ∈ supp(f).

Finally, for f ∈ Cc(G) and h ∈ Cc(G(0)) we have that

(h ∗ f)(x) = h(r(x)) f(x) and
(f ∗ h)(x) = f(x)h(s(x))

for any x ∈ supp(f).

Proof.
The fact that Cc(G(0)) is a *-subalgebra of Cc(G) follows immediately by the fact that
G(0) is open in G, which follows by Lemma 3.2.4 since G is étale.

For f ∈ Cc(G) supported on a bisection we have that f∗ is supported on (supp(f))−1.
By the equations, r(x−1) = s(x) and s(x−1) = r(x) for any x ∈ G, we get that (supp(f))−1

is a bisection. Hence, by Lemma 3.3.4, we have that for any x = y−1z ∈ supp(f∗ ∗ f) with
y, z ∈ supp(f),

(f∗ ∗ f)(x) = f∗(y−1) f(z) = f(y) f(z).
Since the product y−1z is defined we have that r(z) = s(y−1) = r(y), and since supp(f)
is a bisection we get that y = z by injectivity of r∣supp(f). Hence, any x ∈ supp(f∗ ∗ f) is
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of the form y−1y = s(y) with y ∈ supp(f). So f∗ ∗ f is indeed supported on s(supp(f)),
and the equation

(f∗ ∗ f)(s(x)) = ∣f(x)∣2

holds. The statement about f ∗ f∗ is similarly proven.
Let f ∈ Cc(G) and h ∈ Cc(G(0)). By equation (3.1) we have that

(f ∗ h)(x) = ∑
y∈Gr(x)

f(y)h(y−1x)

for any x ∈ G. Since h ∈ Cc(G(0)) we have that h(y−1x) ≠ 0 only if y−1x ∈ G(0), so assume
it is. Then

y−1x = s(y−1x) = s(x) = x−1x,

hence y = x. Thus,
(f ∗ h)(x) = f(x)h(s(x)).

The equation for h ∗ f is similarly proven to be true.

This lemma also establishes that Cc(G(0)) is a commutative *-subalgebra of Cc(G)
and the convolution product simplifies to the point-wise product: If f, g ∈ Cc(G(0)) we
have that

(f ∗ g)(x) = f(x) g(s(x)) = f(x) g(x) = g(x) f(x) = g(x) f(s(x)) = (g ∗ f)(x)

for any x ∈ G(0). Thus, Cc(G(0)) sits inside the commutative C∗-algebra C0(G(0)).
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3.4 The full groupoid C∗-algebra

To give Cc(G) the structure of a C∗-algebra we will construct a C∗-norm by looking
at all the *-representations of Cc(G). For this to work we need to make sure that the
representations are suitably bounded. In the non-second-countable case this is quite
tricky. However, Sims is able to give an easy proof in the second-countable case, which
we present here.

Proposition 3.4.1.
Let G be a second-countable locally compact Hausdorff étale groupoid. Then for any
f ∈ Cc(G) there exists a constant Kf ≥ 0 such that ∥π(f)∥ ≤Kf for all *-representations
π ∶ Cc(G)→ B(H) on a Hilbert space H. If supp(f) is a bisection, Kf may be chosen to
be equal to ∥f∥∞.

Proof.
Suppose π ∶ Cc(G) → B(H) is a *-representation on a Hilbert space H. Then the
restriction π∣Cc(G(0)) uniquely extends to a *-homomorphism between C0(G(0)) and
B(H). As a *-homomorphism between C∗-algebras it is in particular norm-decreasing.
So for f ∈ Cc(G) supported on a bisection we have by Lemma 3.3.5 that f∗ ∗ f ∈ Cc(G(0))
and ∥f∗ ∗ f∥∞ = ∥f∥2

∞. Hence,

∥π(f)∥2 = ∥π(f∗ ∗ f)∥ ≤ ∥f∗ ∗ f∥∞ = ∥f∥2
∞.

The general case follows by Lemma 3.3.3, allowing us to write any f ∈ Cc(G) as a
linear combination f = ∑ni=1 fi with each fi ∈ Cc(G) supported on a bisection. Set
Kf = ∑ni=1 ∥fi∥∞. Then the triangle inequality gives us that

∥π(f)∥ ≤
n

∑
i=1

∥π(fi)∥ ≤
n

∑
i=1

∥fi∥∞ =Kf .

With this we want to say that we get a C∗-norm on Cc(G) by looking at the equation

∥f∥max = sup{∥π(f)∥ ∣ π ∶ Cc(G)→ B(H) is a *-representation},

where f ∈ Cc(G). A priori we don’t know that this is a norm, it could be the case that
this only defines a semi-norm on Cc(G). To show that this is indeed a norm we will
construct a *-representation that is injective.

Definition 3.4.2.
Let G be a second-countable locally compact Hausdorff étale groupoid. For a unit u ∈ G(0)
we define a *-representation πu ∶ Cc(G)→ B(`2(Gu)) by the equation

πu(f)δa = ∑
x∈Gr(a)

f(x)δxa,

with f ∈ Cc(G) and a ∈ Gu. πu is called the regular representation of Cc(G) associated to
u. Note that it is sufficient to define the operator πu(f) on the subspace span{δa}a∈Gu
since it is dense in `2(Gu) (this follows by Corollary 3.2.7 ensuring that Gu is discrete).
The fact that πu is a continuous *-homomorphism follows by the fact that the above
formula is simply the convolution product between f and δa. ♡

We give a straight forward proof of the next fact.
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Proposition 3.4.3.
Let G be a second-countable locally compact Hausdorff étale groupoid. Then the *-
representation ⊕u∈G(0) πu is injective.

Proof.
Let f ∈ Cc(G) and assume that πu(f) = 0 for all units u ∈ G(0). Then for any a ∈ G we
have that

0 = ⟨πs(a)(f)δa, δs(a)⟩ = ∑
x∈Gr(a)

f(x)⟨δxa, δs(a)⟩ = f(a−1),

where the last equality follows from the fact that ⟨δxa, δs(a)⟩ ≠ 0 if and only if xa = s(a),
implying that x = a−1. Thus, f(G) = f((G)−1) = {0}, meaning f = 0. Hence, ⊕u∈G(0) πu is
injective.

With this we can give an explicit construction of a C∗-algebra associated to a groupoid
G.

Definition 3.4.4.
Let G be a second-countable locally compact Hausdorff étale groupoid. The reduced
C∗-algebra of G, denoted by C∗

r (G), is the completion of

⎛
⎝ ⊕
u∈G(0)

πu
⎞
⎠
(Cc(G)) ⊂ ⊕

x∈G(0)
B(`2(Gu)). ♡

Although this C∗-algebra is useful in many situations it is not the C∗-algebra we will
be working with. Thanks to Proposition 3.4.3 we know that there exists an injective
*-representation of Cc(G), so we are justified in making the following definition.

Definition 3.4.5.
Let G be a second-countable locally compact Hausdorff étale groupoid. We get a C∗-
algebra, which we denote by C∗(G), by taking the completion of Cc(G) in the C∗-norm

∥f∥max = sup{∥π(f)∥ ∣ π ∶ Cc(G)→ B(H) is a *-representation},

where f ∈ Cc(G). We call C∗(G) the full C∗-algebra of G. This construction identifies
Cc(G) as a dense subspace of C∗(G). ♡
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3.5 C∗-dynamical systems, weights and a characterization of
β-KMS weights

With the necessary preliminaries about groupoids established we look to introduce enough
theory to understand Theorem 3.5.14 ([Chr23] Theorem 7.4). First we need to define
what a C∗-dynamical system is and what a β-KMS weight is.

Definition 3.5.1 ([BR87] Definition 2.7.1).
A C∗-dynamical system is a triple (A,G,α) with A being a C∗-algebra, G a locally
compact group and α a strongly continuous map α ∶ G→ Aut(A) satisfying

αe = idA
αgαh = αgh,

where e ∈ G is the identity element and g, h ∈ G. By strongly continuous we mean that
the map g ↦ αg(a) is norm-continuous for all a ∈ A. ♡

We will in particular be interested in the case where G = R. In this case it will be
possible to analytically continue the dynamics of α from R to C.

Definition 3.5.2 ([BR87] Definition 2.5.20).
Let (A,R, α) be a C∗-dynamical system. For z ∈ C with Im(z) ≥ 0 we define the set
S(z) to be the horizontal strip S(z) = {w ∈ C ∣ Im(w) ∈ [0, Im(z)]}. When Im(z) ≤ 0 we
define S(z) similarly, S(z) = {w ∈ C ∣ Im(w) ∈ [Im(z),0]}.

We define the set D(αz) ⊂ A to be the elements a ∈ A such that there exists a
continuous function f ∶ S(z) → A which is analytic on the interior of S(z) such that
f(t) = αt(a) for all t ∈ R. We define αz(a) = f(z) for z ∈ S(z). Analytic in this context
means that the composition ϕ ○ f is holomorphic on the interior of S(z) for all ϕ ∈ A∗.
We say that an element a ∈ A is analytic for α if there exists an entire function f ∶ C→ A
such that f(t) = αt(a) for all t ∈ R. ♡

Next we define what a weight is. We may think of weights as unbounded positive
functionals, and in some way a generalization of regular measures.

Definition 3.5.3 ([Ped79] Definition 5.1.1).
Let A be a C∗-algebra and denote by A+ the convex cone of positive elements in A. A
weight on A is a map ψ ∶ A+ → [0,∞] such that

ψ(a + b) = ψ(a) + ψ(b)
ψ(λa) = λψ(a)

for all a, b ∈ A+ and λ ≥ 0. We denote by Aψ+ the set of all positive elements a ∈ A+ for
which ψ(a) <∞. Since the positive elements of a C∗-algebra span the entire C∗-algebra
we define Aψ = span(Aψ+), and we may extend ψ uniquely to a positive functional on Aψ
in the obvious way. (This is done in detail in [Ped79] lemma 5.1.2).

We call a weight ψ

• densely defined if Aψ+ is dense in A+,

• lower semi-continuous if {a ∈ A+ ∣ ψ(a) ≤ λ} is closed for all λ ≥ 0, and

• proper if it is densely defined and lower semi-continuous. ♡
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Definition 3.5.4 ([Kus97] Definition 2.8).
Let (A,R, α) be a C∗-dynamical system and β ∈ R. We call a weight ψ on A a β-KMS
weight for α if it is a proper weight satisfying

(1) ψ ○ αt = ψ for all t ∈ R, and

(2) for every a ∈D(α−βi/2) we have that

ψ(a∗a) = ψ(α−βi/2(a)α−βi/2(a)∗). ♡

The theory of dynamical systems and weights is vast and there are a lot of things
that is worth mentioning. However, for the purposes of this thesis we will have to settle
with only familiarizing ourselves with these definitions.

Note that for groupoids, if we have a continuous groupoid homomorphism c ∶ G → R
we get a C∗-dynamical system (C∗(G),R, αc) by using Pontryagin duality as follows:

Definition 3.5.5.
Let G be a second-countable locally compact Hausdorff étale groupoid and c ∶ G → R
be a continuous groupoid homomorphism. Let t ∈ R and χt ∶ R → T be the character
associated to t. Then we get a continuous *-homomorphism αct ∶ Cc(G)→ Cc(G) defined
by

αct(f)(x) = (χt ○ c)(x) f(x) = eitc(x) f(x), for x ∈ G and f ∈ Cc(G).
By continuity this extends to a *-homomorphism αct ∶ C∗(G) → C∗(G). It is clear that
αc−t is an inverse to αct , so we get a map αc ∶ R→ Aut(C∗(GE)) defined by t↦ αct . ♡

Note that if z ∈ C we have that αcz(f) ∈ Cc(G) for every f ∈ Cc(G), hence every
f ∈ Cc(G) is analytic for αc. We will also need to know that β-KMS weights for αc will
be finite on Cc(G). We state this result by Christensen without proof.

Proposition 3.5.6 ([Chr23] Proposition 6.1).
Let G be a second-countable locally compact Hausdorff étale groupoid, c ∶ G → R be a
continuous groupoid homomorphism and β ∈ R. If ψ is a β-KMS weight on C∗(G) for
αc, then Cc(G) ⊂ C∗(G)ψ.

Now we turn our attention towards studying measures on the unit space of a groupoid.

Definition 3.5.7 ([Ren80] Definition 3.1).
Let G be a second-countable locally compact Hausdorff étale groupoid and µ be a regular
Borel measure on the unit space G(0). Denote by µr = r∗µ and µs = s∗µ the pullbacks of
µ along r and s. ♡

When the measures µr and µs were first defined, they were defined as in
Proposition 2.0.15, using Riesz representation Theorem. We will also be using the
definition of the pullback as in Proposition 2.0.12, hence the fact that these are equal
(by Proposition 2.0.16) is extremely valuable.

We will be interested in when these measures are equivalent, i.e. they are absolutely
continuous with respect to each other. In this case we can compute their respective
Radon-Nikodym derivatives.

Definition 3.5.8 ([Ren80] Definition 3.2 and Definition 3.4).
Let G be a second-countable locally compact Hausdorff étale groupoid, µ a regular Borel
measure on the unit space G(0) and c ∶ G → R be a Borel function. We say that µ is
quasi-invariant with Radon-Nikodym cocycle c if µr and µs are equivalent and dµr

dµs
= c.

We denote the set of all quasi-invariant measures with Radon-Nikodym cocycle c by
∆(c). ♡
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Note that in the above definition we may assume that c is positive everywhere since
µr and µs are equivalent. Then dµs

dµr
= 1/c.

Now we can show that every β-KMS weight for αc gives rise to a quasi-invariant
measure with Radon-Nikodym cocycle e−βc. Thanks to Proposition 3.5.6, Renault’s proof
of these results generalizes without any problems, c.f. [Ren80] Proposition 5.4.

Proposition 3.5.9.
Let G be a second-countable locally compact Hausdorff étale groupoid, c ∶ G → R be a
continuous groupoid homomorphism and β ∈ R ∖ {0}. If ψ is a β-KMS weight on C∗(G)
for αc then ψ restricts to a quasi-invariant measure µ ∈ ∆(e−βc) on the unit space G(0).

Proof.
By Proposition 3.5.6 we have that ψ∣Cc(G) is bounded, in particular ψ∣Cc(G(0)) is bounded.
Thus, by Riesz representation Theorem, c.f. Theorem 2.0.13, we get a regular Borel
measure µ on the unit space G(0) such that

ψ(h) = ∫
G(0)

hdµ

for every h ∈ Cc(G(0)). Note that this requires that the convolution product on Cc(G(0))
reduces to the point-wise product. Now we need to check that µ ∈ ∆(e−βc).

Let f ∈ Cc(G) and u ∈ G(0). By equation (3.2) we get that

(f∗ ∗ f)(u) = ∑
y∈Gu

f∗(y−1) f(y) = ∑
y∈Gu

∣f(y)∣2.

Since f is analytic for αc we also get by equation (3.1) that

(αc−βi/2(f) ∗ α
c
−βi/2(f)

∗)(u) = ∑
y∈Gu

eβ/2c(y)f(y) (eβ/2cf)∗(y−1)

= ∑
y∈Gu

eβ/2c(y)f(y) eβ/2c(y)f∗(y−1)

= ∑
y∈Gu

eβc(y)∣f(y)∣2.

By Lemma 2.0.14 we get that the maps

u↦ ∑
y∈Gu

∣f(y)∣2

u↦ ∑
y∈Gu

eβc(y)∣f(y)∣2

are in Cc(G(0)) for every f ∈ Cc(G). So we get, by using the definition of pullback in
Proposition 2.0.15, that

∫
G
∣f ∣2dµs = ∫

G(0)
∑
y∈Gu

∣f(y)∣2dµ(u)

= ψ(f∗ ∗ f)
= ψ(αc−βi/2(f) ∗ α

c
−βi/2(f)

∗)

= ∫
G(0)

∑
y∈Gu

eβc(y)∣f(y)∣2dµ(u)

= ∫
G
eβc∣f ∣2dµr
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for every f ∈ Cc(G). In particular, if f ∈ Cc(G) is positive we have that there exists a
unique positive function g ∈ Cc(G) such that g2 = f . Thus,

∫
G
fdµs = ∫

G
∣g∣2dµs = ∫

G
eβc∣g∣2dµr = ∫

G
eβcfdµr.

So µ ∈ ∆(e−βc).

Definition 3.5.10 ([Ren80] Definition 3.5).
Let G be a second-countable locally compact Hausdorff étale groupoid. We say that a
subset B ⊂ G(0) is invariant if r(s−1(B)) = B.

Let c ∶ G → R be a Borel function. We say that µ ∈ ∆(c) is extremal when for any
µ1, µ2 ∈ ∆(c) that satisfies µ = t µ1 + (1 − t)µ2 for 0 < t < 1, we have that µ1 = µ = µ2.

We say that a Borel measure ν on G(0) is ergodic if for any B ⊂ G(0), that is invariant,
we have that

ν(B) = 0 or ν(G(0) ∖B) = 0. ♡

We state the next theorem without proof.

Theorem 3.5.11 ([Chr23] Theorem 5.5).
Let G be a second-countable locally compact Hausdorff étale groupoid and c ∶ G → R be a
positive Borel function. A measure µ ∈ ∆(c) is extremal if and only if it is ergodic.

These measure-theoretic definitions and results lay the foundations for the dynamics
of the groupoid. Christensen is able to use this to give a description of the β-KMS weights
of groupoids with the additional structure of being injectively graded by an abelian group.

Definition 3.5.12 ([Chr23] Definition 7.1).
Let A be a discrete countable abelian group and G be a second-countable locally compact
Hausdorff étale groupoid. We say that G is injectively graded by A if there is a continuous
groupoid homomorphism Φ ∶ G → A satisfying ker Φ ∩ Gxx = {x} for all x ∈ G(0). This is
equivalent to Φ being injective on all isotropy subgroups of G. ♡

In most cases the group A in the above definition will be the integers Z.
Now we have defined everything we need to state Christensen’s main theorems.

Theorem 3.5.13 ([Chr23] Theorem 7.3 (1) and (2)).
Let G be a second-countable locally compact Hausdorff étale groupoid injectively graded by
a discrete countable abelian group A via a map Φ ∶ G → A. Let c ∶ G → R be a continuous
groupoid homomorphism and let β ∈ R. If µ ∈ ∆(e−βc) ∖ {0} is ergodic then:

(1) The subset
X(C) = {x ∈ G(0) ∣ Φ(Gxx) = C}

is Borel and invariant for each subgroup C ⊂ A.

(2) There exists a unique subgroup B ⊂ A with µ(G(0) ∖X(B)) = 0.

Theorem 3.5.14 ([Chr23] Theorem 7.4).
Let G be a second-countable locally compact Hausdorff étale groupoid injectively graded by
a discrete countable abelian group A via a map Φ ∶ G → A. Let c ∶ G → R be a continuous
groupoid homomorphism, β ∈ R ∖ {0} and µ ∈ ∆(e−βc) ∖ {0} be ergodic. Denote by B the
unique subgroup of A associated to µ given by Theorem 3.5.13 (2). There exists an affine
bijection from the state-space of the group C∗-algebra C∗(B) to the β-KMS weights for
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αc on C∗(G) that restricts to the functional on Cc(G(0)) corresponding to µ. A state ϕ
maps to the β-KMS weight ψϕ given by

ψϕ(f) = ∫
X(B)

∑
g∈Gxx

f(g)ϕ(uΦ(g))dµ(x)

for f ∈ Cc(G).

Note that since the subgroup B is a discrete abelian group we have that its C∗-algebra
is isomorphic to C(B̂) where B̂ is the Pontryagin dual to B. The state space of C∗(B)
is then given by the probability measures on B̂. So given a second-countable locally
compact Hausdorff étale groupoid G injectively graded by a discrete countable abelian
group A via a map Φ ∶ G → A, a continuous groupoid homomorphism c ∶ G → R and
β ∈ R ∖ {0}, we get a β-KMS weight by the following procedure:

(1) Choose µ ∈ ∆(e−βc)∖{0} ergodic and let B be the unique subgroup of A associated
to µ.

(2) Choose ν a probability measure on B̂.

Then we get a β-KMS weight for αc by the equation

ψµ,ν(f) = ∫
X(B)

∑
g∈Gxx

f(g) (∫
B̂
χ(Φ(g))dν(χ))dµ(x) (3.3)

where f ∈ Cc(G).
The β = 0 case is special. If we have a 0-KMS weight ψ, point (2) in Definition 3.5.4

says that ψ(a∗a) = ψ(aa∗) for all a ∈D(α0). This is precisely what it means to be tracial.
One could define a tracial weight to be a 0-KMS weight, but it is more useful to think of
tracial weights as β-KMS weights for the trivial dynamics.

Definition 3.5.15.
Let A be a C∗-algebra and ψ be a proper weight on A. We say that ψ is tracial if it
satisfies ψ(a∗a) = ψ(aa∗) for all a ∈ A. ♡

If we now replace the groupoid homomorphism c ∶ G → R in Theorem 3.5.14 with
the identity homomorphism we get that this theorem gives a description of the tracial
weights. Note that we will in this case be interested in the ergodic measures µ ∈ ∆(1).
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Chapter 4

Topological graphs and a groupoid
model for their C∗-algebras

In this chapter we define locally compact Hausdorff graphs E = (E0,E1, r, s) and the
associated boundary path space ∂E. We construct a locally compact Hausdorff topology
on the boundary path space and use this to construct a locally compact Hausdorff étale
groupoid GE . We further give a description of the dynamics of the graph C∗-algebra in
terms of the dynamics on the boundary path space and restate Theorem 3.5.14 in light
of these new descriptions.

4.1 Topological graphs

The definition of a topological graph is inspired by directed graphs (E0,E1, r, s) where
E0 is the discrete (usually at-most countable) set of vertices, and E1 is the discrete
(usually at-most countable) set of edges, and r, s ∶ E1 → E0 are functions defining the
direction of each edge. One usually calls r the range map and s the source map. Making
this topological, one usually generalizes and say that E0 and E1 are topological spaces
where now r and s are continuous. However, for our purposes this is too general. We
therefore make the following definition.

Definition 4.1.1.
A topological graph E is a quadruple (E0,E1, r, s) where E0 and E1 are locally compact
Hausdorff spaces, s ∶ E1 → E0 is a local homeomorphism, called the source map, and
r ∶ E1 → E0 is a continuous map called the range map. We call E0 and E1 the vertex
space and edge space respectively. In the case where both E0 and E1 are second-countable
we will say that the topological graph E is second-countable. ♡

Note that we now have range and source maps for both graphs and groupoids. We
hope it will be clear from context which objects we are working with.

We now want to describe paths in the graph. There are multiple conventions used for
describing a path, we will use the one that is used by Christensen in his paper [Chr22].

Definition 4.1.2.
Let E be a topological graph. For edges {e1, ..., en} ⊂ E1 satisfying s(ek) = r(ek+1) we
define a path of length n to be the composition

e = e1e2⋯en,
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and we write ∣e∣ for the length of e. We denote by En the set of all paths of length n,
we may consider it as a subspace of ∏n

k=1E
1 giving it the structure of a locally compact

Hausdorff space. We define the finite path space E∗ by

E∗ =
∞
⊔
n=0

En.

Similarly, we define the infinite path space E∞ as the set of all infinite compositions
e1e2⋯.

It is possible to extend the range and source maps to E∗ by setting

r(e) = r(e1), s(e) = s(e∣e∣).

For v ∈ E0 we set r(v) = v = s(v). It is also possible to extend the range map to E∞ by
the same equation as above. ♡

We will generally use the letters u, v and w to denote vertices, the letters e, f and g
to denote edges and a, b and c to denote paths. We would very much like to talk about
paths without having to constantly refer to its length, we therefore make the following
definition.

Definition 4.1.3.
Let E be a topological graph and a ∈ E∗ ⊔E∞. Write a = a1a2⋯a∣a∣. For k,n ∈ N such
that k ≤ n ≤ ∣a∣ we will write

a(n) = a1a2⋯an,
a(k,n) = akak+1⋯an,
a(0) = r(a).

If we want to refer to a specific edge in the path we will simply use the subscript notation
an to denote the n-th edge of a. ♡
Lemma 4.1.4.
Let E be a topological graph and a ∈ E∗ ⊔E∞. Then the map a↦ a(n) is continuous for
every n ≤ ∣a∣.
Proof.
If a ∈ E∗, suppose k ≥ n and let

pkn ∶
k

∏
i=1
E1 →

n

∏
i=1
E1

be the projection onto the first n entries. By universality of the product topology, pkn is
continuous and restricts to a continuous map

qkn ∶ Ek → En.

Then the map a↦ a(n) is simply
∞
⊔
k=n

qkn ∶
∞
⊔
k=n

Ek → En,

which is continuous by universality of the disjoint union topology.
If a ∈ E∞ the map a↦ a(n) is simply the restriction of the projection

pn ∶
∞
∏
i=1
E1 →

n

∏
i=1
E1

to E∞, which is continuous by universality of the product topology.
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Next we want to introduce the regular vertices. We want to capture the vertices that
have edges pointing to them, but not too many edges. In the discrete graph case this
is defined by saying that the inverse image r−1(v) of a vertex v is finite and non-empty.
For the general case we have to be a bit more careful.

Definition 4.1.5.
Let E be a topological graph and v ∈ E0 be a vertex. We say that v is regular if there
exists a relatively compact open neighborhood U ⊂ E0 about v such that the inverse
image r−1(U) ⊂ E1 is compact, and r(r−1(U)) = U . We denote the set of regular vertices
as E0

reg.
A vertex v is singular if it is not regular, and we denote the set of singular vertices as

E0
sng = E0 ∖E0

reg.
Finally, we define a finite path to be singular if the source of the path is a singular

vertex. We denote the set of singular finite paths as E∗
sng = E∗ ∩ s−1(E0

sng). ♡

Lemma 4.1.6.
Let E be a topological graph. Then the set of regular vertices is open.

Proof.
If E0

reg is empty it is open, so assume it is not empty. Then for v ∈ E0
reg there exists an

open neighborhood Uv ⊂ E0 about v that satisfies all the criteria making v regular. For
any w ∈ Uv we have that Uv is an open neighborhood about w making w a regular vertex.
Hence, we may write

E0
reg = ⋃

v∈E0
reg

Uv

showing that E0
reg is open.

Note that topological graphs gives a general setting for quite a lot of different
structures. If we consider a topological graph with the discrete topology we simply get a
directed graph. Another nice example is the following.

Example 4.1.7.
Let Z be a locally compact Hausdorff space and h ∶ Z → Z be a local homeomorphism.
We get a topological graph by setting E0 = E1 = Z, the range map r = idZ and the source
map s = h. ♢

With this example in mind a lot of the intuition one would hope to have about graphs
disappear. It would be tempting to use a lot of the theory for countable directed graphs
and try to generalize them to the topological case, but this example might display why
one needs to be extra careful when working with topological graphs. Unfortunately this
means that the proofs we present in this chapter are quite detail oriented, making them
quite cumbersome to read.
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4.2 The boundary path space of a topological graph

The boundary path space ∂E was first shown to have a natural locally compact Hausdorff
topology by Yeend, c.f. [Yee07]. In this section we give a proof of the same fact following
the outline of a proof given by Schafhauser c.f. [Sch18] Proposition 3.2.

Definition 4.2.1.
Let E be a topological graph, we define the boundary path space to be the disjoint union

∂E = E∗
sng ⊔E∞. ♡

Proposition 4.2.2.
Let E be a topological graph. For subsets S ⊂ E∗ we define

Z(S) = {a ∈ ∂E ∣ a(n) ∈ S for some n ∈ N with n ≤ ∣a∣}.

Then the collection

B = {Z(U) ∖Z(K) ∣ U is open in E∗, K is compact in E∗}

form a base for a locally compact Hausdorff topology on ∂E.

To prove that this gives a locally compact topology turns out to be extremely
complicated due to some subtleties regarding the singular paths. If we, for a moment,
grant the fact that B is a base for a topology on ∂E we can prove the following useful
fact. Note that Schafhauser’s proof of this is done making some simplifications which we
felt weren’t justified.

Lemma 4.2.3.
Let E be a topological graph and K ⊂ E∗ be compact. Then the set Z(K) is compact in
∂E.

Proof.
Let K ⊂ E∗ be compact and (aλ)λ∈Λ ⊂ Z(K) be a universal net. We want to construct a
path in Z(K) that we can show is the limit point of (aλ)λ∈Λ.

The first reduction we make is to establish that (aλ)λ∈Λ has a subnet consisting of
boundary paths that are extensions of paths in K of a specific length k. To do this we
use the fact that K is compact, so we have that the set

N = {k ∈ N ∣ K ∩Ek ≠ ∅}

is finite. For each index λ ∈ Λ let kλ ∈ N be the largest integer such that aλ(kλ) ∈ K.
Thus, the net (kλ)λ∈Λ is a universal net in N , so it is eventually constant, and we let
k be that constant. By passing to a subnet we may assume that aλ(k) ∈ K for every
index λ ∈ Λ. Then (aλ(k))λ∈Λ is a universal net in the compact set K thus it converges
to some finite path a ∈K of length k.
The first induction argument:
If s(a) ∈ E0

sng we are done since this implies that a ∈ Z(K). It might still be the case
that a is too short and won’t be a limit point of (aλ)λ∈Λ. But since s(a) ∈ E0

sng there is
no obvious way for us to extend a yet.

If s(a) ∈ E0
reg we have that there exists a relatively compact open neighborhood

U ⊂ E0
reg about s(a) such that r−1(U) ⊂ E1 is compact and r(r−1(U)) = U . By continuity

of the source map we have that the net (s(aλ(k)))λ∈Λ converges to s(a), so we have

36



4.2. The boundary path space of a topological graph

that (s(aλ(k)))λ∈Λ is eventually in U . By passing to a subnet we may assume that
s(aλ(k)) ∈ U for all indices λ ∈ Λ. Since U ⊂ E0

reg we have that aλ(k) ∉ ∂E. In particular,
we have that ∣aλ∣ > k for all indices λ ∈ Λ. Let aλk+1 be the (k + 1)th edge of aλ. Then
aλk+1 ∈ r−1(U) ⊂ r−1(U) and (aλk+1)λ∈Λ is a universal net in the compact set r−1(U), so it
converges to an edge ak+1 ∈ r−1(U). By continuity of the range and source maps, and
since E0 is Hausdorff, we have that

r(ak+1) = lim r(aλk+1) = lim s(aλk) = lim s(aλ(k)) = s(a).

Thus, the composition a′ = aak+1 ∈ Ek+1 is defined and the net (aλ(k + 1))λ∈Λ converges
to a′ by universality of the product topology. We may continue this argument inductively
to construct a path ã ∈ Z(K), either of infinite length or of finite length with a singular
source. This completes the first induction argument.

With this in place we may assume that we have a universal net (aλ)λ∈Λ ⊂ Z(K) and
a path a ∈ Z(K) such that for any n ∈ N with n ≤ ∣a∣, the net (aλ(n))λ∈Λ converges to
a(n). Furthermore, there exists a k ∈ N with k ≤ ∣a∣ such that aλ(k) ∈ K for all indices
λ ∈ Λ. In the case where a has finite length it might turn out that a is not a limit point
of the net (aλ)λ∈Λ. We will in this case show that we can extend a in another inductive
argument to guarantee ourselves a limit point of the net (aλ)λ∈Λ.
The second induction argument:
If (aλ)λ∈Λ converges to a we are done, since this is what we want to achieve. So assume
that (aλ)λ∈Λ doesn’t converge to a. Then there exists an open subset U ⊂ E∗ and a
compact set L ⊂ E∗ such that a ∈ Z(U)∖Z(L) and (aλ)λ∈Λ is not eventually in this basic
open set in ∂E. Since a ∈ Z(U) there exists n ∈ N such that a(n) ∈ U . By construction
of a we have that (aλ(n))λ∈Λ converges to a(n), so (aλ(n))λ∈Λ is eventually in U . By
passing to a subnet we may assume that aλ(n) ∈ U for all indices λ ∈ Λ, so aλ ∈ Z(U) for
all indices λ ∈ Λ. Since we are assuming that (aλ)λ∈Λ is not eventually in Z(U)∖Z(L) we
get that (aλ)λ∈Λ must eventually be in Z(L). By passing to a subnet we may therefore
assume that aλ ∈ Z(L) for all indices λ ∈ Λ.

Since L is compact we have that the set

M = {l ∈ N ∣ L ∩El ≠ ∅}

is finite. For each index λ ∈ Λ let lλ ∈ M be the largest integer such that aλ(lλ) ∈ L.
Thus, the net (lλ)λ∈Λ is a universal net in M , so it is eventually constant. Let l be that
constant. For our purposes we may assume that L ∩En = ∅ for all n > l since any aλ(n)
will in this case not be in L by maximality of l. So we may assume that l = maxM .

We want to argue that l > ∣a∣. If l ≤ ∣a∣ we have that the map a ↦ a(m) is defined
for all m ∈ M and a(m) ∉ L since a ∈ Z(U) ∖ Z(L). For m ∈ M we have that Em is
Hausdorff and L is compact, hence the set Em ∖L is an open neighborhood about a(m).
Since the net (aλ(m))λ∈Λ converges to a(m) we have that (aλ(m))λ∈Λ is eventually in
Em ∖L for all m ∈M , in particular for m = l. This contradicts the fact that (aλ)λ∈Λ is
eventually in Z(L). Hence, l > ∣a∣.

By compactness of L we have that the universal net (aλ(l))λ∈Λ converges to a path
b′ ∈ L of length l. By the first induction argument applied to b′ we get a path b ∈ Z(L).
We claim that b is an extension of a. Indeed, by the properties of a and b we have for
every n ∈ N with n ≤ ∣a∣ that the net (aλ(n))λ∈Λ converges to both a(n) and b(n). Since
En is Hausdorff we get that a(n) = b(n), in particular we have that b(∣a∣) = a(∣a∣) = a.
And finally since ∣a∣ < l and l ≤ ∣b∣ we get that b is a true extension of a. So even though
s(a) ∈ E0

sng we have now managed to extend a. Furthermore, since b(k) = a(k) ∈ K
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we have that b ∈ Z(K), so we may continue this argument inductively until we have a
boundary path in Z(K) that is the limit point of (aλ)λ∈Λ. This completes the second
induction argument and proves that for any K ⊂ E∗ that is compact, we have that Z(K)
is compact.

Proof of Proposition 4.2.2.
We first show that B is a base.
∂E is covered by basic opens:
This is achieved by noticing that E0 is open in E∗ and the empty set is compact, so we
may write ∂E = Z(E0) ∖Z(∅).
The intersection of two basic opens is precisely covered by basic opens:
Fix open subsets U,V ⊂ E∗ and compact subsets K,L ⊂ E∗ and let

a ∈ (Z(U) ∖Z(K)) ∩ (Z(V ) ∖Z(L)) = (Z(U) ∩Z(V )) ∖ (Z(K) ∪Z(L)).

Then there exists k, l ∈ N such that a(k) ∈ U and a(l) ∈ V . Without loss of generality we
may assume that k ≤ l. Set

W = {b ∈ V ∣ ∣b∣ ≥ k and b(k) ∈ U}.

Notice that we can write

W = (V ∩ (
∞
⊔
n=k

En)) ∩ (k)−1(U ∩Ek),

where (k)−1 denotes the inverse image of the map b↦ b(k). By Lemma 4.1.4 this map
is continuous, hence W is open in E∗. Clearly a ∈ Z(W ) and Z(W ) ⊂ Z(U) ∩ Z(V ).
Furthermore, K ∪L is compact and Z(K) ∪Z(L) = Z(K ∪L), so

a ∈ Z(W ) ∖Z(K ∪L) ⊂ (Z(U) ∖Z(K)) ∩ (Z(V ) ∖Z(L)).

Hence, B is a base.
∂E is Hausdorff :
Let a, b ∈ ∂E with a ≠ b. Let ∣a∣ = k and ∣b∣ = l with k and l possibly infinite.

We first consider the case when k = l. Then there exists m ∈ N such that a(m) ≠ b(m).
Note that for finite paths, m may be chosen to be equal to k and l. Since Em is Hausdorff
we may find disjoint open neighborhoods U,V ⊂ Em about a(m) and b(m) respectively.
By definition, U and V are also open in E∗, and we have that Z(U)∩Z(V ) = ∅. Clearly
a ∈ Z(U) and b ∈ Z(V ).

For the case with k < l and a(k) ≠ b(k) we may choose disjoint open neighborhoods
as we did in the case when k = l.

Finally, when k < l and a(k) = b(k) we can do as follows: Since Ek+1 is locally compact
we may choose a relatively compact open neighborhood U ⊂ Ek+1 about b(k + 1). Then
Z(U) and ∂E ∖Z(U) are disjoint open neighborhoods about b and a respectively. Hence,
∂E is Hausdorff.
∂E is locally compact:
Let a ∈ ∂E. Choose a relatively compact open neighborhood U ⊂ E0 about r(a), then
a ∈ Z(U) ⊂ Z(U) where Z(U) is compact by Lemma 4.2.3.
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4.3 Deaconu-Renault groupoids of topological graphs

With the work in the previous sections we have constructed the boundary path space
of a topological graph and endowed it with a suitable topology. Now we will show that
there exists a natural action from N on the boundary path space allowing us to form the
associated Deaconu-Renault groupoid.

Definition 4.3.1.
Let E be a topological graph and let a ∈ ∂E ∖E0. We define a map σ ∶ ∂E ∖E0 → ∂E by

σ(a) = a(2, ∣a∣), if ∣a∣ ≥ 2,
σ(a) = s(a), if ∣a∣ = 1.

We call σ the backwards shift map. ♡

Proposition 4.3.2 ([Sch18] proposition 3.5).
Let E be a topological graph. Then the backwards shift map σ ∶ ∂E ∖E0 → ∂E is a local
homeomorphism.

Proof.
We want to show that σ is open, continuous and locally injective, proving that σ is a
local homeomorphism. We start with proving that σ is open. To do this we want to
relate the backwards shift of boundary paths with the backwards shift of finite paths.
We therefore define maps for n > 1: σn ∶ En → En−1 by σn(a) = a(2, n). Since we consider
En as a subspace of the product space ∏n

k=1E
1, we have that σn is the projection onto

the last n − 1 coordinates showing that σn is continuous. For n = 1 we define σ1 = s, the
source map. Then we define the map

σ∗ =
∞
⊔
n=1

σn ∶ E∗ ∖E0 → E∗.

The fact that σ is open will now follow from the equality

σ((Z(U) ∖Z(K)) ∖E0) = Z(σ∗(U ∖E0)) ∖Z(σ∗(K ∖E0)),

where U ⊂ E∗ is an open subset and K ⊂ E∗ is compact. If we can prove that σ∗ is open
and continuous we get that σ∗(U ∖E0) is open in E∗ and σ∗(K ∖E0) is compact in E∗,
showing that σ((Z(U) ∖Z(K)) ∖E0) is indeed open.

To prove that σ∗ is continuous and open we first notice that by universality of the
disjoint union topology it is enough to show that σn is continuous and open for all n ≥ 1.
We have already stated that continuity follows by universality of the product topology.

We now show that σn is open for each n ≥ 1. For n = 1 we have that σ1 is the source
map, which is a local homeomorphism, hence it is open. Fix n ≥ 2, an open subset U ⊂ En
and a ∈ U . We want to show that σn(U) ⊂ En−1 is an open subset. Let (bλ)λ∈Λ be a net
in En−1 that converges to σn(a). Let V ⊂ E1 be an open neighborhood about a1 such
that the restricted source map s∣V is injective. By continuity of the range map we have
that

lim r(bλ) = r(σn(a)) = s(a1),
which is in s(V ), so we have that the net (r(bλ))λ∈Λ is eventually in s(V ). By passing
to a subnet we may assume that r(bλ) ∈ s(V ) for all indices λ ∈ Λ. Injectivity of s∣V
gives that for each index λ ∈ Λ there exists a unique edge eλ ∈ V such that s(eλ) = r(bλ).
Furthermore, we have that the net (eλ)λ∈Λ converges to a1 since (s(eλ))λ∈Λ converges to
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s(a1). Then the net (eλbλ)λ∈Λ converges to a in U , hence this net is eventually in U . As
a consequence we get that (bλ)λ∈Λ = (σn(eλbλ))λ∈Λ is eventually in σn(U). Thus, σn(U)
is open in En−1 proving that σn is open. This proves that σ is open.

To prove that σ is continuous let a ∈ ∂E ∖ E0 and (aλ)λ∈Λ be a net in ∂E ∖ E0

that converges to a. Let U ⊂ E∗ be an open subset and K ⊂ E∗ be compact such
that σ(a) ∈ Z(U) ∖ Z(K). Then there exists an m ∈ N such that σ∗(a(m)) ∈ U . In
particular this means that ∣a∣ ≥m, so Z(Em) is an open neighborhood about a. Hence,
the net (aλ)λ∈Λ is eventually in Z(Em), thus ∣aλ∣ ≥ m for large enough indices λ. By
Lemma 4.1.4 the map a ↦ a(m) is continuous, so by continuity of σ∗ we get that the
net (σ∗(aλ(m)))λ∈Λ converges to σ∗(a(m)), hence this net is eventually in U . This
shows that (σ(aλ))λ∈Λ is eventually in Z(U). One similarly proves that (σ(aλ))λ∈Λ is
eventually not in Z(K), hence (σ(aλ))λ∈Λ is eventually in Z(U) ∖ Z(K). This shows
that (σ(aλ))λ∈Λ converges to σ(a), proving that σ is continuous.

We finally prove that σ is locally injective. Fix a ∈ ∂E∖E0 and let V ⊂ E1 be an open
neighborhood about a1 such that s∣V is injective. Then Z(V ) is an open neighborhood
about a. Let b, b′ ∈ Z(V ) with σ(b) = σ(b′). Then b1, b′1 ∈ V and

s(b1) = r(σ(b)) = r(σ(b′)) = s(b′1).

Since s∣V is injective we get that b1 = b′1. Thus,

b = b1σ(b) = b′1σ(b′) = b′.

This completes the proof.

Definition 4.3.3.
Let E be a topological graph. By Proposition 4.3.2 we get a monoidal action from N
on ∂E by the map (k, a) ↦ σk(a) from N × ∂E to ∂E where σk = σ ○ ... ○ σ is repeated
composition of σ, k times. We let

GE = {(a, k − l, b) ∈ ∂E ×Z × ∂E ∣ k, l ≥ 0, k ≤ ∣a∣, l ≤ ∣b∣, σk(a) = σl(b)}.

Notice that this is the Deaconu-Renault groupoid associated to ∂E with a monoidal
action from N as a submonoid of Z. Thanks to Example 3.2.8 we know that GE is a
locally compact Hausdorff étale groupoid. If we further have that E is second-countable
we also get that GE is second-countable, so we may form the full C∗-algebra C∗(GE) in
this case. ♡
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4.4 The dynamics of a topological graph

In this section we give a description of Christensen’s theorem, Theorem 3.5.14, in the
setting of the Deaconu-Renault groupoid associated to the boundary path space of a
second-countable topological graph. In particular, we give a description of the invariant
sets of the unit space and a description of the quasi-invariant measures on the unit space.

We start by showing that there is a natural action from the circle group on C∗(GE),
generally called the gauge-action. We will do this using Pontryagin duality, as in
Definition 3.5.5.

Definition 4.4.1.
Let E be a second-countable graph. Let Φ ∶ GE → Z be the homomorphism given by
Φ(a, k, b) = k. We get a gauge-action on C∗(GE) by dualizing Φ as follows: Let z ∈ T ⊂ C
and χz ∶ Z→ T be the character associated to z, i.e. for k ∈ Z,

χz(k) = zk.

Then we get a continuous *-homomorphism γz ∶ Cc(GE)→ Cc(GE) defined by

γz(f)(a, k, b) = (χz ○Φ)(a, k, b) f(a, k, b) = zkf(a, k, b).

By continuity this extends to a *-homomorphism γz ∶ C∗(GE)→ C∗(GE). It is clear that
γz̄ is an inverse to γz, so we get a map γ ∶ T→ Aut(C∗(GE)) defined by z ↦ γz.

We can use this action to get an action from R as well, by simply letting
αΦ ∶ R→ Aut(C∗(GE)) be defined by αΦ

t = γeit . This describes the dynamics of the graph,
so it makes sense to talk about β-KMS weights for αΦ.

We say that a tracial weight ψ on C∗(GE) is gauge-invariant if it is invariant under
the map γ, i.e. for all A ∈ C∗(GE)+ and z ∈ T we have that

ψ(γz(A)) = ψ(A).

Note that every β-KMS weight for αΦ is necessarily gauge-invariant by definition. ♡

The statements in the next two lemmas can be found without proof within the text
on page 6 of [Chr22] for the case β = 0. Lemma 4.4.3 is a generalization from the β = 0
case to the β ≠ 0 case. A proof of the β = 0 case can be found within the proof of lemma
3.2 in [Tho14]. We will present our own proofs of these facts.

Note also that we only work with the graph groupoid in this section so all range and
source maps are the ones from the groupoid GE .

Lemma 4.4.2.
Let E be a second-countable topological graph. Then B ⊂ G(0)E ≅ ∂E is invariant (as in
Definition 3.5.10) if and only if σ−1(B) = B ∖E0.

Proof.
Let B ⊂ ∂E be invariant, i.e. r(s−1(B)) = B. We will prove that σ−1(B) = B ∖E0. Let
a ∈ σ−1(B). In particular, we have that (a,1, σ(a)) ∈ s−1(B), so

a = r(a,1, σ(a)) ∈ r(s−1(B)) = B.

Hence σ−1(B) ⊂ B ∖E0.
Now assume a ∈ B ∖E0. Then (σ(a),−1, a) ∈ s−1(B), so

σ(a) = r(σ(a),−1, a) ∈ r(s−1(B)) = B,
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hence B ∖E0 ⊂ σ−1(B). Thus, σ−1(B) = B ∖E0.
For the converse assume that σ−1(B) = B ∖E0. Clearly B ⊂ r(s−1(B)) since for any

a ∈ B we have that (a,0, a) ∈ s−1(B), hence

a = r(a,0, a) ∈ r(s−1(B)).

Assume that a ∈ r(s−1(B)), then there exists (a, k − l, b) ∈ GE such that b ∈ B. Since
σk(a) = σl(b) we get that ∣b∣ ≥ l. In particular, we have that b ∈ B ∖E0, so b ∈ σ−1(B)
implying that σ(b) ∈ B. Since ∣b∣ ≥ l we get that ∣σ(b)∣ ≥ l−1, so we may repeatedly apply
σ to b at least l times to conclude that σl(b) ∈ B. Hence,

σk(a) = σl(b) ∈ B.

Thus, σk−1(a) ∈ σ−1(B) = B ∖ E0, so in particular σk−1(a) ∈ B. We can repeat this
k times to get that a ∈ B, which implies that r(s−1(B)) ⊂ B. Hence, r(s−1(B)) = B
completing the proof.

Lemma 4.4.3.
Let E be a second-countable topological graph, β ∈ R ∖ {0}, Φ ∶ GE → Z be as in
Definition 4.4.1 and ν be a regular Borel measure on ∂E. Then ν ∈ ∆(e−βΦ) if and only
if σ∗ν = eβν on ∂E ∖E0.

Proof.
Suppose that ν ∈ ∆(e−βΦ). Let B ⊂ GE be a Borel subset. Then we have that B∩Φ−1({k})
is a Borel subset for any k ∈ Z since Φ is continuous. Hence,

νr(B) = ∫
B
e−βΦdνs

= ∑
k∈Z
∫
B∩Φ−1({k})

e−βΦdνs

= ∑
k∈Z
∫
B∩Φ−1({k})

e−βkdνs

= ∑
k∈Z

e−βk ∫
B∩Φ−1({k})

dνs

= ∑
k∈Z

e−βkνs(B ∩Φ−1({k})).

So we have that ν ∈ ∆(e−βΦ) if and only if

r∗ν = ∑
k∈Z

e−βk(s∗ν)∣Φ−1({k}), (4.1)

where the notation (s∗ν)∣Φ−1({k}) simply means that

(s∗ν)∣Φ−1({k})(B) = s∗ν(B ∩Φ−1({k}))

for Borel subsets B ⊂ GE . Note that if W ⊂ GE is an open bisection we have that equation
(4.1) takes the form

ν(r(W )) = ∑
k∈Z

e−βkν(s(W ∩Φ−1({k}))).

Now consider the collection

U = {U ⊂ ∂E ∖E0 ∣ U is open in ∂E and σ∣U is injective}.
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By Proposition 4.3.2 we have that σ is a local homeomorphism, so U is an open cover of
∂E ∖E0. By Proposition 2.0.11,Mreg is a sheaf on ∂E ∖E0, so it suffices to check that
σ∗ν = eβν on each U ∈ U to conclude that they are equal on ∂E ∖E0.

We claim that for any U ∈ U the basic open set Z(U, 1, 0, σ(U)) is a bisection. Indeed,
any element in Z(U,1,0, σ(U)) is of the form (a,1, σ(a)) by injectivity of σ∣U . Hence,
the equations

a = r(a,1, σ(a)) = r(b,1, σ(b)) = b,
σ(a) = s(a,1, σ(a)) = s(b,1, σ(b)) = σ(b),

show that r∣Z(U,1,0,σ(U)) and s∣Z(U,1,0,σ(U)) are injective.
Fix U ∈ U and let B ⊂ U be a Borel subset. It is clear that Z(B,1,0, σ(B)) is a

Borel subset of Z(U, 1, 0, σ(U)) and that Z(B, 1, 0, σ(B))∩Φ−1({k}) is nonempty if and
only if k = 1, and in this case Z(B,1,0, σ(B)) ∩Φ−1({1}) = Z(B,1,0, σ(B)). Hence, by
equation (4.1) we get that

ν(B) = r∗ν(Z(B,1,0, σ(B)))
= e−βs∗ν(Z(B,1,0, σ(B)))
= e−βν(σ(B)).

For the converse we will show that equation (4.1) holds. By Proposition 2.0.11,Mreg
is a sheaf on GE , so it suffices to check that equation (4.1) holds on each open subset in
some suitable open cover of GE . The open cover we will use is the following:

V = {Z(U,m,n,V ) ∣ m,n ∈ N, U ∈ Um and V ∈ Un},

where

Uk = {U ⊂ ∂E ∖Ek−1 ∣ U is open in ∂E ∖Ek−1 such that σk∣U is injective}.

V is an open cover of GE : Let (a,m−n, b) ∈ GE , then ∣a∣ ≥m and ∣b∣ ≥ n, so a ∈ ∂E ∖Em−1

and b ∈ ∂E ∖ En−1. For every k ∈ N we have that σk is a local homeomorphism by
Proposition 4.3.2, so we have that there exists a U ∈ Um and a V ∈ Un such that a ∈ U
and b ∈ V . Hence, (e,m − n, b) ∈ Z(U,m,n,V ) where Z(U,m,n,V ) ∈ V.

Next we claim that each Z(U,m,n,V ) ∈ V is a bisection. Indeed, let (a1,m −
n, b1), (a2,m − n, b2) ∈ Z(U,m,n,V ) and suppose r(a1,m − n, b1) = r(a2,m − n, b2). By
definition of r we get that a1 = a2. Then we get that

σn(b1) = σm(a1) = σm(a2) = σn(b2).

By injectivity of σn∣V we get that b1 = b2, hence r∣Z(U,m,n,V ) is injective. Injectivity of
s∣Z(U,m,n,V ) is similarly proven to be true.

Fix Z(U,m,n,V ) ∈ V and let B ⊂ Z(U,m,n,V ) be a Borel subset. It is clear that
B ∩Φ−1({k}) is nonempty if and only if k =m−n, and in this case B ∩Φ−1({m−n}) = B.
Also since r∣B and s∣B are injective, we have that

B = Z(r(B),m,n, s(B)).
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By linearity of the pullback σ∗ we have that eβkν = (σk)∗ν on ∂E ∖Ek−1 for every k ∈ N,
hence

eβmν(r(B)) = (σm)∗ν(r(B))
= ν(σm(r(B)))
= ν(σn(s(B)))
= (σn)∗ν(s(B))
= eβnν(r(B)).

Note that equality two and four follows by injectivity of σm∣U and σn∣V . Hence,

ν(r(B)) = e−β(m−n)ν(s(B)),

so equation (4.1) is satisfied, completing the proof.

We now want to describe the isotropy subgroups of GE .

Definition 4.4.4.
Let E be a second-countable topological graph. For a ∈ ∂E we define the periodicity
group of a to be the group

Per(a) = {k − l ∈ Z ∣ k, l ∈ N, k, l ≤ ∣a∣ and σk(a) = σl(a)}.

It is clear that this is the isotropy subgroup (GE)aa. ♡

Finally, we notice that the map Φ ∶ GE → Z defined in Definition 4.4.1 gives us an
injective grading of the groupoid, since Φ clearly becomes injective when restricted to
the different periodicity groups.

We are now able to rephrase Theorem 3.5.14 and equation (3.3) in terms of these
periodicity groups. It is worth noting that due to Lemma 4.4.2 and Lemma 4.4.3 we are
able to make sense of this result by only having data from the graph. Note that for β = 0
this reduces to [Chr22] Theorem 1.3 which gives a description of the tracial weights on
the graph C∗-algebra.

Theorem 4.4.5.
Let E be a second-countable topological graph, β ∈ R ∖ {0}, Φ ∶ GE → Z be as in
Definition 4.4.1 and ν be an ergodic measure on ∂E such that σ∗ν = eβν on ∂E ∖E0.
Then there exists a unique subgroup H of Z with

ν(∂E ∖ {a ∈ ∂E ∣ Per(a) =H}) = 0,

and there is an affine bijection between the probability measures on the Pontryagin dual
Ĥ of H and the set of β-KMS weights for αΦ on C∗(GE) restricting to the functional
on Cc(∂E) corresponding to ν. A probability measure λ on Ĥ maps to a β-KMS weight
ψν,λ given by

ψν,λ(f) = ∫
∂E
∑
n∈H

f(a,n, a) (∫
Ĥ
χ(n)dλ(χ))dν(a),

for f ∈ Cc(GE).

In Chapter 5 we achieve a small refinement of this theorem where we show that the
subgroup H of Z is always trivial in the β ≠ 0 case.
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Chapter 5

Gauge invariance of tracial weights on
C∗-algebras of topological graphs

In this chapter we show that the question of whether or not the C∗-algebra of a second-
countable topological graph E admits a gauge-invariant tracial weight, depends on the
loop structure of the graph. In particular, we will show that C∗(GE) admits a tracial
weight which is not gauge-invariant if and only if the graph E contains a summable loop.

We also show that if ν is an ergodic measure on ∂E satisfying σ∗ν = eβν on ∂E ∖E0

with β ≠ 0, then the associated subgroup H of Z given by Theorem 4.4.5 is trivial.

5.1 Loops in topological graphs

In this section we develop the terminology needed to study loops in topological graphs.
The important concepts will be the idea of an isolated loop, a summable loop, and the
notion of a free topological graph. We will also prove some basic results about these
concepts.

First we introduce some useful notation.

Definition 5.1.1.
Let E be a topological graph and S,R ⊂ E0 be subsets. We define the following sets:

E∗S = {a ∈ E∗ ∣ s(a) ∈ S},
RE∗ = {a ∈ E∗ ∣ r(a) ∈ R},

RE∗S = {a ∈ E∗ ∣ r(a) ∈ R, s(a) ∈ S}. ♡

Definition 5.1.2.
Let E be a topological graph. We say that a path c ∈ E∗ is a loop if ∣c∣ ≥ 1 and r(c) = s(c).
We denote the set of loops on E as ΩE. Every loop c ∈ ΩE gives rise to a well-defined
infinite path c∞ = cc⋯

If c is a loop we say that a ∈ E∗ is an exit of c if a ∈ E∗r(c) and not of the form
a = bc for any path b ∈ E∗. We denote the set of exits of c by E∗

c . ♡

Definition 5.1.3.
Let E be a topological graph. We say that a loop c ∈ ΩE is a simple loop if r(ci) ≠ r(cj)
for any 1 ≤ i, j ≤ ∣c∣ with i ≠ j. ♡

Definition 5.1.4.
Let E be a topological graph. We say that a loop a ∈ ΩE is an isolated loop if it satisfies
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(1) a ≠ cn for any loop c ∈ ΩE and n ≥ 2.

(2) There exists an open neighborhood Vr(a) ⊂ E0 about r(a) with ∣Vr(a)E∗
a ∣ <∞.

Note that (2) essentially says that the number of exit paths of a that end close to a is
finite. ♡

Definition 5.1.5.
Let E be a topological graph. We say that a loop a ∈ ΩE is a summable loop if it satisfies

(1) a ≠ cn for any loop c ∈ ΩE and n ≥ 2.

(2) For all w ∈ E0 there exists an open neighborhood Vw ⊂ E0 about w with ∣VwE∗
a ∣ <∞.

Note that (2) essentially says that the number of exit paths of a to an arbitrary vertex is
finite. ♡

Lemma 5.1.6 ([Chr22] Lemma 4.2).
Let E be a topological graph and a ∈ ΩE be an isolated loop. Then every loop c ∈ r(a)E∗

is of the form an for some n ∈ N. In particular a is a simple loop.

Proof.
By contradiction assume that there exists a loop c ∈ r(a)E∗ that is not of the form an

for any n ∈ N. Choose n as large as possible such that c = c′an. Then c′ is a loop with
∣c′∣ > 0. Since n was chosen to be as large as possible we get that c′ ∈ E∗

a . It might be the
case that r(c′i) = r(a) for i ≠ 1. In this case we may decompose c′ = c′′d into two loops c′′
and d with r(di) = r(a) if and only if i = 1. Since c′ ∈ E∗

a we get that d ∈ E∗
a . We now

want to show that dm ∈ E∗
a for all m ∈ N.

If ∣d∣ ≥ ∣a∣ we immediately get that dm ∈ E∗
a for all m ∈ N. So suppose that ∣d∣ < ∣a∣.

Choose k ∈ N minimally such that ∣dk∣ ≥ ∣a∣. If dk ∈ E∗
a we again get that dm ∈ E∗

a

for all m ∈ N, so suppose that dk = ba for some loop b. Since a is isolated we have by
Definition 5.1.4 (1) that a ≠ dk, so ∣b∣ > 0. Since k was chosen minimally we get that
∣b∣ < ∣d∣, hence we get that d = bd′ for some loop d′, which contradicts the fact that
r(di) = r(a) if and only if i = 1 since r(d′) = r(a) and d ≠ d′.

Hence, we get that {dm}m∈N ⊂ Vr(a)E∗
a , which contradicts Definition 5.1.4 (2).

If a is not simple then there exists i, j distinct such that r(ai) = r(aj). Then, by
assuming that i < j we can construct a loop a′ = a(i− 1)a(j, ∣a∣), which is in r(a)E∗, that
is not of the form an for any n ∈ N, contradicting the first part of this proof.

Definition 5.1.7 ([Kat04] Definition 5.4).
Let E be a topological graph. Then E is free if there does not exist a vertex v ∈ E0 that
satisfies the following:

(F1) There exists a simple loop c = l1...ln ∈ ΩE such that r(c) = v.

(F2) If e ∈ E1 with s(e) ∈ {r(b) ∣ b ∈ E∗v} and r(e) = r(lk) for some k, then e = lk.

(F3) v is isolated in {r(b) ∣ b ∈ E∗v}. ♡

Lemma 5.1.8 ([Chr22] Lemma 4.4).
Let E be a second-countable topological graph. Then E is free if and only if there does
not exist an isolated loop c ∈ ΩE.
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Proof.
For the if statement assume that there does not exist an isolated loop in ΩE. We will,
by contradiction, assume that E is not free. Then there exists a vertex v ∈ E0 that
satisfies (F1), (F2) and (F3) in Definition 5.1.7. Let a ∈ vE∗ be the simple loop from
(F1). Since a is simple it satisfies (1) in Definition 5.1.4. By (F3) there exists an open
neighborhood Vv ⊂ E∗v about v such that for any b ∈ E∗v with r(b) ∈ Vv we have that
r(b) = v. We will show that VvE∗

a = {v}. In this case we have that the loop a satisfies (2)
in Definition 5.1.4, hence a is isolated giving us our desired contradiction. By (F3) we
have that any path in VvE∗

a must be a loop, so suppose c ∈ VvE∗
a is a loop. Then

r(c1) = r(c) = v = r(a) = r(a1),

and
s(c1) = r(σ(c)) ∈ {r(b) ∣ b ∈ E∗v},

so by (F2) we have that c1 = a1. If ∣c∣ > 1 we see that

r(c2) = s(c1) = s(a1) = r(a2)

and
s(c2) = r(σ2(c)) ∈ {r(b) ∣ b ∈ E∗v},

so again by (F2) we get that c2 = a2. We may inductively continue this argument to get
that

c = ana(k)

for some n ∈ N and 0 ≤ k < ∣a∣. But s(c) = v = s(a), so we have that k = 0 since a is a
simple loop. Then c ∈ E∗

a is of the form ba for some path b, a contradiction with the
definition of E∗

a . This proves the if statement.
For the only if statement assume that E is free. We will, by contradiction, assume

that there exists an isolated loop a ∈ ΩE. Set v = r(a). By Lemma 5.1.6 we get that a
is simple, so v satisfies (F1). Let e ∈ E1 be such that s(e) = r(b) for some b ∈ E∗v and
r(e) = r(ak) for some k. Then a(k − 1)eb ∈ r(a)E∗ is a loop, so by Lemma 5.1.6 we have
that a(k − 1)eb = an for some n ≥ 1. Hence, e = ak so (F2) holds for v. Since a is isolated
there exists an open neighborhood Vv ⊂ E0 about v such that ∣VvE∗

a ∣ <∞. Hence,

N = {r(b) ∣ b ∈ VvE∗
a with r(b) ≠ v}

is a finite set in E0. Since E0 is Hausdorff we get that N is closed, so Vv ∖N is open in
E0, and it contains v. Hence, Vv ∖N shows that v is isolated in {r(b) ∣ b ∈ E∗v}, thus
v satisfies (F3). So, v is a vertex showing that E is not free, a contradiction since we
assumed E to be free.

Definition 5.1.9.
Let E be a topological graph. We say that two loops a, b ∈ ΩE are equivalent if ∣a∣ = ∣b∣
and there exists a k ∈ N with 0 ≤ k < ∣a∣ such that σk(a∞) = b∞. ♡

Lemma 5.1.10.
Let E be a topological graph. Then the relation defined in Definition 5.1.9 is an equivalence
relation on ΩE.
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Proof.
Let a, b, c ∈ ΩE. Clearly a is equivalent to a by choosing k = 0 in the definition. Assume
that a is equivalent to b, let k be such that σk(a∞) = b∞ and define l = ∣a∣ − k. Then we
have that

a∞ = σ∣a∣(a∞) = σk+l(a∞) = σl(b∞).
Hence, b is equivalent to a. Now assume further that b is equivalent to c and let m be
such that σm(b∞) = c∞. Then we have that

σk+m(a∞) = σm(b∞) = c∞.

If k +m ≥ ∣a∣ choose n = k +m− ∣a∣ to see that a is indeed equivalent to c. This completes
the proof.

Lemma 5.1.11 ([Chr22] Lemma 4.5).
Let E be a topological graph. Suppose that a, b ∈ ΩE are two equivalent loops and V ⊂ E0

is a subset such that ∣V E∗
b ∣ < ∞, then ∣V E∗

a ∣ < ∞. In particular this implies that a is
summable if and only if b is summable.

Proof.
Set n = ∣a∣ = ∣b∣ and 0 ≤ k < ∣a∣ such that σk(a∞) = b∞. Then b = a(k + 1, n)a(k). If
c ∈ V E∗

a we get that ca(k) ∈ V E∗r(b). We will show that the map c↦ ca(k) from V E∗
a

has codomain V E∗
b ⊔ {db ∣ d ∈ V E∗

b }. Indeed, if c = db2 for some path d. Then

ca(k) = da(k + 1, n)a(k)a(k + 1, n)a(k) = da(k + 1, n)aa(k),

hence c = da(k + 1, n)a, contradicting the fact that c ∈ E∗
a . We then get an injective map

V E∗
a → V E∗

b ⊔ {db ∣ d ∈ V E∗
b }.

So if ∣V E∗
b ∣ <∞ we get by injectivity of this map that ∣V E∗

a ∣ <∞.

Definition 5.1.12.
Let E be a topological graph. We say that a path b ∈ ∂E is eventually cyclic if there
exists a loop c ∈ ΩE and an exit a ∈ E∗

c such that b = ac∞. We denote the set of all
eventually cyclic paths by ρE.

For S ⊂ E0 we define

ρES = {b ∈ ρE ∣ s(bi) ∈ S for infinitely many i ≥ 1}
= {b ∈ ρE ∣ b = ac∞ with s(ci) ∈ S for some 1 ≤ i ≤ ∣c∣}. ♡

Lemma 5.1.13 ([Chr22] Lemma 4.6).
Let E be a topological graph and S ⊂ E0 be Borel. Then ρES is an invariant Borel subset
of ∂E.

Proof.
ρES is obviously invariant under σ. For i ∈ N the map r○σi ∶ ∂E∖E∗

sng → E0 is continuous
by Proposition 4.3.2. Hence, the sets

Mn = (σn)−1(E∞) ∩
n

⋃
i=1

(r ○ σi)−1(S)

are Borel in ∂E. Thus,
ρES =

∞
⋃
n=1

⋃
m∈N

(σm)−1(Mn)

is Borel in ∂E.
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5.2 Ergodic measures on eventually cyclic paths

In this section we show that there is a bijection between rays of non-zero ergodic measures
ν on ∂E satisfying σ∗ν = ν on ∂E ∖E0 that are concentrated on the eventually cyclic
paths and equivalence classes of summable loops.

The following fact is extracted from [Chr22] proposition 5.1, which we will need in its
full generality.

Lemma 5.2.1.
Let E be a second-countable topological graph. If ν is an ergodic measure on ∂E such
that ν(∂E ∖ ρE) = 0, then there exists a loop c ∈ ΩE such that c ≠ an for any loop a ∈ ΩE
and ν(∂E ∖ {bc∞ ∣ b ∈ E∗

c }) = 0.

Proof.
We will construct the set {bc∞ ∣ b ∈ E∗

c } by inductively showing that ν is concentrated
on smaller and smaller sets. First we consider the family

V = {V ⊂ E0 ∣ V is relatively compact in E0}.

This is an open cover of E0 since E0 is locally compact and Hausdorff. Since E0 is
also second-countable we get that V admits a countable subcover {Vi}i∈N. We have that
ρE = ⋃i∈N ρEVi with each ρEVi Borel and invariant by Lemma 5.1.13. Since ν is ergodic
we have that for each i ∈ N that either

ν(ρEVi) = 0 or ν(∂E ∖ ρEVi) = 0.

Since ν is concentrated on ρE and ν ≠ 0 we get that there exists a j ∈ N such that

ν(∂E ∖ ρEVj) = 0.

We now want to show that there exists a vertex v ∈ Vj such that ν is concentrated on ρEv.
First we notice that Vj as a subspace of E0 is second-countable compact and Hausdorff.
In particular Vj is metrizable by Urysohn’s metrization Theorem. So we may assume
that the topology on Vj is given by a metric. We may then cover Vj with open sets of
diameter less than one, and in the same way we found the set Vj , we may conclude that
there exists an open set W1 of diameter less than one such that

ν(∂E ∖ ρEW1) = 0.

Then we may cover W1 of open sets of diameter less than 1/2 and again conclude that
there exists an open set W2 ⊂W1 of diameter less than 1/2 such that

ν(∂E ∖ ρEW2) = 0.

Continuing inductively we get a sequence of open sets {Wi}∞i=1 such that for each i we
have that Wi+1 ⊂Wi, where Wi has diameter less than 1/i and

ν(∂E ∖ ρEWi) = 0.

Then

0 = ν (
∞
⋃
i=1
∂E ∖ ρEWi) = ν (∂E ∖ (

∞
⋂
i=1
ρEWi)) = ν (∂E ∖ ρE (

∞
⋂
i=1
Wi)) .
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Since ν ≠ 0 we get in particular that ⋂∞i=1Wi ≠ ∅. Hence, ⋂∞i=1Wi = {v} for some v ∈ E0

since the diameter of these sets approach zero. Thus, ν is concentrated on ρEv.
Next we would like to show that this set is at most countable. So consider the family

U = {U ⊂ E∗ ∣ U is open in E∗ and s∣U is injective}.

Since s is a local homeomorphism we get that this is an open cover of E∗, and since
E is second-countable we get that E∗ is second-countable, hence U admits a countable
subcover {Ui}i∈N. Writing

s−1({v}) = ⋃
i∈N
s∣−1
Ui({v})

we see that s−1({v}) is at most countable, hence ρEv = ρE∩s−1({v}) is at most countable.
Writing {ci}i∈I = ΩEv where I is an at most countable set, we get that

ρEv =⋃
i∈I

{b(ci)∞ ∣ b ∈ E∗v},

where each of the sets {b(ci)∞ ∣ b ∈ E∗v} are invariant Borel sets. The fact that these
are Borel follows from the fact that ∂E is Hausdorff, making singleton sets Borel. These
sets are countable, so they can be written as a countable union of singleton sets, making
them Borel. Again since ν is ergodic we get that either

ν({b(ci)∞ ∣ b ∈ E∗v}) = 0 or ν(∂E ∖ {b(ci)∞ ∣ b ∈ E∗v}) = 0.

And since ν ≠ 0 we get that there exists a loop c ∈ ΩE with s(c) = v such that

ν(∂E ∖ {bc∞ ∣ b ∈ E∗v}) = 0.

It might be the case that c = an for some loop a ∈ ΩE and n ≥ 2. In this case c∞ = a∞, so
we might assume that this is not the case, i.e. c ≠ an for any loop a ∈ ΩE and n ≥ 2.

It only remains to prove that E∗
c is in bijection with {bc∞ ∣ b ∈ E∗v}. We will do this

via the map b↦ bc∞.
To prove surjectivity consider the element bc∞ with b ∈ E∗v. Either b ∈ E∗

c , in this
case b↦ bc∞, or b = b′cn for some n ≥ 1 and b′ ∈ E∗

c . Then

b′ ↦ b′c∞ = b′cnc∞ = bc∞.

To prove injectivity suppose bc∞ = ac∞ with b, a ∈ E∗
c . If ∣b∣ = ∣a∣ we get that b = a by

direct comparison. If ∣b∣ > ∣a∣ we get that b = ab′ with b′ ∈ E∗
c . Then we have that

ab′c∞ = bc∞ = ac∞,

so b′c∞ = c∞. Since b′ ∈ E∗
c we get that b′ = ckd for some loop d ∈ E∗

c with 0 < ∣d∣ < ∣c∣.
But then c = dn for some n ≥ 2, a contradiction. Hence, b = a proving injectivity.

Proposition 5.2.2 ([Chr22] Proposition 5.1).
Let E be a second-countable topological graph. Assume that ν ∈ ∆(1) is a non-zero ergodic
measure on ∂E such that ν(∂E ∖ ρE) = 0. Then there exists a summable loop c ∈ ΩE
such that ν is concentrated on the at most countable set

{bc∞ ∣ b ∈ E∗
c }.

Hence, ν is of the form
ν = r ∑

b∈E∗
c

δbc∞

for some r > 0.
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Proof.
By Lemma 5.2.1 we get a loop c ∈ ΩE such that c ≠ an for any loop a ∈ ΩE and
ν(∂E ∖ {bc∞ ∣ b ∈ E∗

c }) = 0. Define r = ν({c∞}). Since ν ∈ ∆(1) we get by Lemma 4.4.3
that σ∗ν = ν on ∂E ∖E0, hence

ν = ∑
b∈E∗

c

ν({bc∞})δbc∞

= ∑
b∈E∗

c

ν(σ∣b∣({bc∞}))δbc∞

= ∑
b∈E∗

c

ν({c∞})δbc∞

= ν({c∞}) ∑
b∈E∗

c

δbc∞

= r ∑
b∈E∗

c

δbc∞ .

It only remains to show that c is indeed summable. We have chosen c such that
Definition 5.1.5 (1) is satisfied. Let w ∈ E0 and Vw ⊂ E0 be an open neighborhood about
w such that Vw is compact. By regularity of ν and Lemma 4.2.3 we get that

r∣VwE∗
c ∣ = r ∑

b∈E∗
c

δbc∞(Z(Vw)) = ν(Z(Vw)) ≤ ν(Z(Vw)) <∞.

Hence, c satisfies Definition 5.1.5 (2), so c is summable.

Theorem 5.2.3 ([Chr22] Theorem 5.2).
Let E be a second-countable topological graph. Then there is a bijection between the rays
of non-zero ergodic measures ν ∈ ∆(1) concentrated on ρE and equivalence classes of
summable loops c ∈ ΩE. The ray corresponding to the loop c is {rν ∣ r ≥ 0}, where

ν = ∑
b∈E∗

c

δbc∞ . (5.1)

Proof.
Let c ∈ ΩE be a summable loop. We want to define a measure by equation (5.1). To do
this we first check that the sum in this equation is at most countable to make sure that
this is indeed a measure. Consider the family

U = {U ⊂ E∗ ∣ U is open in E∗ and s∣U is injective}.

Since s is a local homeomorphism, this is an open cover of E∗. Furthermore, since E
is second-countable, we get that E∗ is second-countable, hence U admits a countable
subcover {Ui}i∈N. By writing

s−1({s(c)}) = ⋃
i∈N
s∣−1
Ui({s(c)})

we see that s−1({s(c)}) is at most countable, hence E∗
c is at most countable. Thus, the

measure ν given by equation (5.1) is indeed a measure.
ν is non-zero:

ν({c∞}) = ∑
b∈E∗

c

δbc∞({c∞}) = 1.

ν is regular :
Since ∂E is second-countable locally compact Hausdorff by Proposition 4.2.2 we have by
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Lemma 2.0.10 that it is enough to show that ν(K) <∞ for any K ⊂ ∂E that is compact.
So let K ⊂ ∂E be a compact set. By continuity of r ∶ ∂E → E0 we get that r(K) ⊂ E0

is compact. Since c is summable we can for each w ∈ r(K) find an open neighborhood
Vw ⊂ E0 about w such that ∣VwE∗

c ∣ <∞. Then the collection {Vw}w∈r(K) is an open cover
of r(K), hence it admits a finite subcover {Vi}ni=1. Then

K ⊂ Z(V1) ∪ ... ∪Z(Vn).

It follows that

ν(K) ≤ ν(Z(V1) ∪ ... ∪Z(Vn))
≤ ν(Z(V1)) + ... + ν(Z(Vn))
= ∑
b∈E∗

c

δbc∞(Z(V1)) + ... + ∑
b∈E∗

c

δbc∞(Z(Vn))

= ∣V1E
∗
c ∣ + ... + ∣VnE∗

c ∣
<∞.

ν is ergodic:
To show that ν is ergodic let B ⊂ ∂E be invariant. To say that either

ν(B) = 0 or ν(∂E ∖B) = 0

is equivalent to saying that

B ∩ {bc∞ ∣ b ∈ E∗
c } = ∅ or B ∩ {bc∞ ∣ b ∈ E∗

c } = {bc∞ ∣ b ∈ E∗
c }.

Equivalently if ac∞ ∈ B for one a ∈ E∗
c we have that bc∞ ∈ B for all b ∈ E∗

c . So assume
that ac∞ ∈ B for one a ∈ E∗

c . Since B is invariant we get that c∞ = σ∣a∣(ac∞) ∈ B. Then
for any b ∈ E∗

c we get that bc∞ ∈ (σ∣b∣)−1(B) ⊂ B, so bc∞ ∈ B.
ν ∈ ∆(1):
Let B ⊂ ∂E be Borel such that σ∣B is injective. To see that ν(σ(B)) = ν(B) it is enough
to see that ∣B ∩ {bc∞ ∣ b ∈ E∗

c }∣ = ∣σ(B) ∩ {bc∞ ∣ b ∈ E∗
c }∣ which is obvious by injectivity

of σ∣B. Hence, σ∗ν = ν, so by Lemma 4.4.3 ν ∈ ∆(1).
Finally, we show that equivalent summable loops maps to the same measures. So

assume that c′ is equivalent to c. We want to show that

{bc∞ ∣ b ∈ E∗
c } = {a(c′)∞ ∣ a ∈ E∗

c′}.

By symmetry, it is enough to show that

{bc∞ ∣ b ∈ E∗
c } ⊂ {a(c′)∞ ∣ a ∈ E∗

c′}.

Let b ∈ E∗
c and 0 ≤ k < ∣c∣ be such that σk((c′)∞) = c∞, then we have that bσk(c′) is

either in E∗
c′ or of the form ac′ with a ∈ E∗

c′ . In either case we get that

bc∞ = bσk(c′)(c′∞), bσk(c′) ∈ E∗
c′

bc∞ = bσk(c′)(c′∞) = ac′(c′∞) = a(c′)∞, a ∈ E∗
c′ .

Hence, we get a well-defined map

{Equivalence classes of summable loops}

{Rays of non-zero ergodic measures ν ∈ ∆(1) concentrated on ρE}
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given by equation (5.1). This map is surjective by Proposition 5.2.2. To see that this
map is injective let ν1 and ν2 be two measures given by the loops c1 and c2 as in equation
(5.1). Assume that ν1 = ν2. Then

1 = ν2({(c2)∞}) = ν1({(c2)∞}) = ∑
b∈E∗

c1

δbc1({(c2)∞}).

Hence, there exists an exit b ∈ E∗
c1 such that (c2)∞ = b(c1)∞. Then the equation

σ∣b∣((c2)∞) = (c1)∞

show that c1 is equivalent to c2. Note that the fact ∣c1∣ = ∣c2∣ also follows from this
equality since both loops are summable. This completes the proof.
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5.3 Gauge-invariant tracial weights

With the analysis of measures concentrated on eventually cyclic paths from the previous
section we are able to give criteria for when there exists non gauge-invariant tracial weights.
We are also able to show that for β ∈ R ∖ {0} and ergodic measures ν on ∂E satisfying
σ∗ν = eβν on ∂E ∖E0 that the associated subgroup H of Z given by Theorem 4.4.5 is
trivial. We start by making an observation about the periodicity subgroups Per(a).

Lemma 5.3.1.
Let E be a second-countable topological graph and a ∈ ∂E. Then Per(a) ≠ {0} if and only
if a ∈ ρE.

Proof.
Suppose Per(a) ≠ {0}. Then there exists k, l ∈ N such that k > l and σk(a) = σl(a).
Define c = σl(a). Then we have that

σk−l(c) = σk−l(σl(a)) = σk(a) = σl(a) = c,

so c(k − l) is a loop in ΩE. Write b = a(l) and d = c(k − l). Then

a = bd∞.

If k and l were chosen minimally we can conclude that b ∈ E∗
d showing that a ∈ ρE.

Now suppose that a ∈ ρE, and let c ∈ ΩE and b ∈ E∗
c be such that a = bc∞. Set

k = ∣b∣ + ∣c∣ and l = ∣b∣. Then k > l since ∣c∣ ≥ 1 and

σk(a) = σl(a).

Hence, k − l ∈ Per(a), showing that Per(a) ≠ {0}. In fact Per(a) = (k − l)Z = ∣c∣Z.

Proposition 5.3.2 ([Chr22] Proposition 6.1).
Let E be a second-countable topological graph. If there exists a tracial weight ω on C∗(GE)
which is not gauge-invariant, then there exists a summable loop in ΩE.

Sketch of proof.
Suppose ω is a tracial weight on C∗(GE) that is not gauge-invariant. By Proposition 3.5.9
we have that there exists a measure ν ∈ ∆(1) on ∂E such that

ω(h) = ∫
∂E
hdν

for all h ∈ Cc(∂E). We would like to use Theorem 4.4.5 to describe ω, but we are not
guaranteed that ν is ergodic. Christensen is able to show in his proof that there must
exist an extremal tracial weight on C∗(GE) that is not gauge-invariant using convexity
theory. We will in this sketch skip this part of the proof for the sake of brevity. See
[Chr22] proposition 6.1 for the full details.

Having found an extremal tracial weight ψ on C∗(GE), which is not gauge-invariant,
we get by Theorem 4.4.5 a unique invariant ergodic measure νψ on ∂E, a unique subgroup
Hψ of Z and a unique character χψ ∈ Ĥψ such that for any f ∈ Cc(GE) we have that

ψ(f) = ∫
∂E

∑
n∈Hψ

f(a,n, a)χψ(n)dνψ(a),

where νψ is concentrated on the set {a ∈ ∂E ∣ Per(a) =Hψ}. Since ψ is non-zero we get
that νψ is non-zero. We want to show that νψ is concentrated on ρE, then we get by
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Proposition 5.2.2 that there exists a summable loop in ΩE. By Lemma 5.3.1 it is enough
to show that Hψ is non-trivial since in this case

{a ∈ ∂E ∣ Per(a) =Hψ} ⊂ ρE.

Since ψ is not gauge-invariant we have by Proposition 3.5.6 that there exists a function
f ∈ Cc(GE) and z ∈ T such that ψ(γz(f)) ≠ ψ(f). In particular this implies that

ψ(γz(f)) =∫
∂E

∑
n∈Hψ

znf(a,n, a)χψ(n)dνψ(a)

≠∫
∂E

∑
n∈Hψ

f(a,n, a)χψ(n)dνω(a) = ψ(f).

If Hψ = {0} these expressions are necessarily equal, contradicting the fact that ψ is not
gauge-invariant. Hence, Hψ ≠ {0} completing the proof.

Proposition 5.3.3 ([Chr22] Proposition 6.2).
Let E be a second-countable topological graph. If there exists a summable loop c ∈ ΩE,
then there exists a non gauge-invariant tracial weight on C∗(GE).

Proof.
Let c be a summable loop in ΩE. By Theorem 5.2.3 we get a non-zero ergodic measure
ν ∈ ∆(1) such that

ν = ∑
b∈E∗

c

δbc∞ .

By Lemma 5.3.1 the unique subgroup H ⊂ Z associated to ν given by Theorem 3.5.13
(2) is H = ∣c∣Z. Then we get a tracial weight by Theorem 4.4.5 where for f ∈ Cc(GE) we
have that

ψ(f) = ∫
∂E
∑
n∈H

f(a,n, a)dν(a).

Now let f ∈ Cc(GE) be a positive function such that supp(f) ⊂ Φ−1({∣c∣}) and
f(c∞, ∣c∣, c∞) = 1. The existence of such a function f is guaranteed by for example
considering the characteristic function

χΦ−1({∣c∣})∩V ,

where V ⊂ GE is a relatively compact open neighborhood about (c∞, ∣c∣, c∞). The function
χΦ−1({∣c∣})∩V is then ν integrable, so we can approximate it with continuous functions
with compact support. Choosing one of these approximations gives us our desired f ,
after possibly rescaling. Then ψ(f) > 0. Let z ∈ T be such that z∣c∣ ≠ 1, then

ψ(f) =∫
∂E
f(a, ∣c∣, a)dν(a)

≠∫
∂E
z∣c∣f(a, ∣c∣, a)dν(a) = ψ(γz(f)).

Hence, ψ is not gauge-invariant, completing the proof.

By Proposition 5.3.2 and Proposition 5.3.3 we get the following result.

Theorem 5.3.4 ([Chr22] Theorem 6.4).
Let E be a second-countable topological graph. All tracial weights on C∗(GE) are gauge-
invariant if and only if there does not exist a summable loop a ∈ ΩE.
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Corollary 5.3.5 ([Chr22] Theorem 6.5).
Let E be a second-countable topological graph. If E is free then every tracial weight on
C∗(GE) is gauge-invariant.

Proof.
If there exists a non gauge-invariant tracial weight on C∗(GE), then by Theorem 5.3.4 there
exists a summable loop in ΩE. Summable loops are clearly isolated, so by Lemma 5.1.8,
E is not free, a contradiction.

We end this chapter by showing that if ν is an ergodic measure on ∂E satisfying
σ∗ν = eβν on ∂E ∖ E0 with β ≠ 0, then the associated subgroup H of Z given by
Theorem 4.4.5 is trivial.

Proposition 5.3.6.
Let E be a second-countable topological graph, β ∈ R ∖ {0}, Φ ∶ GE → Z be as in
Definition 4.4.1 and ν be an ergodic measure on ∂E such that σ∗ν = eβν on ∂E ∖E0.
Then the unique subgroup H of Z associated to ν given by Theorem 4.4.5 is trivial.

Proof.
Suppose, to get a contradiction, that H ≠ {0}. Since ν is concentrated on the set
{a ∈ ∂E ∣ Per(a) = H}, we get by Lemma 5.3.1 that ν is concentrated on ρE.
Since ν is ergodic we get by Lemma 5.2.1 that there exists a loop c ∈ ΩE such that
ν(∂E ∖ {bc∞ ∣ b ∈ E∗

c }) = 0. So we have that

ν = ∑
b∈E∗

c

ν({bc∞})δbc∞

= ∑
b∈E∗

c

e−β∣b∣ν({c∞})δbc∞

= ν({c∞}) ∑
b∈E∗

c

e−β∣b∣δbc∞ .

This also shows us that H = ∣c∣Z. As in the proof of Proposition 5.3.3 we can find a
positive function f ∈ Cc(G) with supp(f) ⊂ Φ−1(∣c∣) such that f(c∞, ∣c∣, c∞) = 1. Let z ∈ T
be such that z∣c∣ = i. Let ψν be the β-KMS weight given by Theorem 4.4.5 associated to
ν. Then

ψ(f) = ∫
∂E
∑
n∈H

f(a,n, a)dν(a) = ν({c∞}) ∑
b∈E∗

c

e−β∣b∣f(bc∞, ∣c∣, bc∞) > 0,

and
ψ(γz(f)) = iν({c∞}) ∑

b∈E∗
c

e−β∣b∣f(bc∞, ∣c∣, bc∞).

Hence, ψ is not gauge-invariant, a contradiction since ψ is by definition invariant under
the dynamics αΦ. So H must be the trivial group.

Theorem 5.3.7.
Let E be a second-countable topological graph, β ∈ R ∖ {0} and Φ ∶ GE → Z be as in
Definition 4.4.1. There is a bijection between the set of ergodic measures ν on ∂E such
that σ∗ν = eβν and the extremal β-KMS weights for αΦ on C∗(GE). The extremal β-KMS
weight associated to the measure ν is given by the equation

ψν(f) = ∫
∂E
f(a,0, a)dν(a), (5.2)

for f ∈ Cc(GE).
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Proof.
Let ψ be an extremal β-KMS weight on C∗(GE) for αΦ. The associated measure ν given
by Proposition 3.5.9 must necessarily be extremal, which by Theorem 3.5.11 means that
ν is ergodic. Hence, ψ satisfies the criteria for Theorem 4.4.5. By Proposition 5.3.6 we
have that the subgroup H of Z associated to ν is trivial, so ψ takes the form

ψ(f) = ∫
∂E
f(a,0, a)dν(a),

for f ∈ Cc(GE). This establishes the bijection since any ergodic measure ν on ∂E satisfying
σ∗ν = eβν on ∂E ∖E0 gives us an extremal β-KMS weight by equation (5.2).
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Chapter 6

Sub-invariant measures

The results in Chapter 5 are of theoretical use, but given a second-countable topological
graph E it will be difficult to use these results to make concrete computations. In
this chapter we show that there is an affine bijection between the set of quasi-invariant
measures on the boundary space ∂E and the set of sub-invariant measures on the vertex
space E0. The sub-invariant measures can in some cases be used to easily compute the
KMS-spectra of certain topological graphs.

The results in this chapter are proved using the same techniques found in [Chr22]
and [Sch18].

Definition 6.0.1.
Let E be a second-countable topological graph and β ∈ R. We define the map
T ∶ Mreg(E0) → M(E0) by T = r∗s∗ where r, s ∶ E1 → E0 are the range and source
maps respectively. We say that a regular Borel measure µ on the vertex space E0 is
β-sub-invariant if

Tµ ≤ eβµ on E0

with equality on E0
reg. Denote the set of all β-sub-invariant measures byMβ

sub(E0). ♡

Lemma 6.0.2.
Let E be a second-countable topological graph, β ∈ R and Φ ∶ GE → Z be as in
Definition 4.4.1. Then the range map r ∶ ∂E → E0 induces a map

r∗ ∶ ∆(e−βΦ)→Mβ
sub(E

0).

Proof.
Let ν ∈ ∆(e−βΦ). To show that r∗ν is regular it is enough, by Proposition 2.0.17, to show
that r ∶ ∂E → E0 is proper. Let K ⊂ E0 be compact. Then r−1(K) = Z(K) which is
compact in ∂E by Lemma 4.2.3. Hence, r is proper.

Let
U = {U ⊂ E1 ∣ U is open in E1 and s∣U is injective}.

Since s ∶ E1 → E0 is a local homeomorphism, U is an open cover of E1. Since E1 is
second-countable, U admits a countable sub-cover {Ui}i∈N. Fix a Borel subset B ⊂ E0.
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Then

T (r∗ν)(B) =∑
i∈N
r∗ν(s(r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1))))

=∑
i∈N
ν(Z(s(r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1)))))

=∑
i∈N
ν(σ(Z(r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1)))))

= eβ∑
i∈N
ν(Z(r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1))))

= eβν (⋃
i∈N
Z(r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1))))

= eβν (Z (⋃
i∈N
r−1(B) ∩ (Ui ∖ (U1 ∪ ... ∪Ui−1))))

= eβν(Z(r−1(B)))
≤ eβν(Z(B))
= eβ(r∗ν)(B),

where the fourth equality follows by Lemma 4.4.3 and the inequality in the penultimate
line is an equality if B ⊂ E0

reg. Thus, r∗ν ∈M
β
sub(E0).

To prove injectivity of r∗ we will use some theory about π-systems. See Chapter 1.6
in [Coh13] for a thorough description of π-systems and Dynkin classes. We will here only
state the definition of a π-system and the main result that we will need.

Definition 6.0.3.
Let X be a set. A π-system on X is a family of subsets of X that is stable under finite
intersections. ♡

Lemma 6.0.4 ([Coh13] Corollary 1.6.4).
Let (X,A) be a measurable space and C be a π-system such that σ(C) = A. If µ and ν
are measures on (X,A) that agree on C and there exists a countable increasing sequence
of sets {Cn}n∈N in C such that µ(Cn) <∞ for all n ∈ N and X = ⋃n∈NCn, then µ = ν.

Now we give description of a π-system that will be quite useful.

Lemma 6.0.5.
Let E be a second-countable topological graph. Then the family

C = {Z(V ) ⊂ ∂E ∣ V ⊂ En is a Borel subset and n ∈ N} (6.1)

is a π-system that generates the Borel σ-algebra of ∂E.

Proof.
Let U ⊂ E∗ be open and K ⊂ E∗ be compact. It is enough to show that Z(U) ∖Z(K) ∈
σ(C) to show that C generates the Borel σ-algebra. Define, for n ∈ N, Un = U ∩En and
Kn =K ∩En. Then we have that the following equality

Z(U) = Z (⋃
n∈N

Un) = ⋃
n∈N

Z(Un)

shows that Z(U) ∈ σ(C). Similarly, we get that Z(K) ∈ σ(C). Hence, Z(U) ∖ Z(K) ∈
σ(C).
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Now we need to show that C is a π-system. Let U ⊂ En and V ⊂ Em be Borel sets.
We may assume that n ≥m. We define

W = {e ∈ U ∣ e(m) ∈ V }.

By Lemma 4.1.4 we have that W is Borel since we can write W = U ∩ (m)−1(V ) where
(m)−1 denotes the inverse image of the map e↦ e(m). Clearly

Z(U) ∩Z(V ) = Z(W ),

which shows that C is a π-system.

Lemma 6.0.6.
Let E be a second-countable topological graph, β ∈ R and Φ ∶ GE → Z be as in
Definition 4.4.1. Then the map

r∗ ∶ ∆(e−βΦ)→Mβ
sub(E

0),

induced by the range map r ∶ ∂E → E0, is injective.

Proof.
Fix ν1, ν2 ∈ ∆(e−βΦ) such that r∗ν1 = r∗ν2. We want to check that ν1 = ν2 on the π-system
(6.1) in the previous lemma. Suppose V ⊂ En is Borel, let

U = {U ⊂ En ∣ U is open in En and σn∣U is injective}.

This is an open cover of V since σn is a local homeomorphism, and since En is
second-countable we get that U admits a countable subcover, {Ui}i∈N. So to check
that ν1(Z(V )) = ν2(Z(V )) it is enough to check that ν1(Z(Ui)) = ν2(Z(Ui)) for each
i ∈ N by disjointing V with the Ui’s. By Lemma 4.4.3 we get that

ν1(Z(Ui)) = e−βnν1(σn(Z(Ui)))
= e−βnν1(Z(σn(Ui)))
= e−βn(r∗ν1)(σn(Ui))
= e−βn(r∗ν2)(σn(Ui))
= ν2(Z(Ui)).

Hence, ν1 = ν2 on the π-system (6.1). To conclude that ν1 = ν2 on the Borel σ-algebra of
∂E we need to show that we can cover ∂E with a sequence of increasing sets from the
π-system (6.1), with each set having finite measure. We can do this as follows: Consider
the collection

V = {V ⊂ E0 ∣ V is relatively compact in E0}.
Since E0 is locally compact Hausdorff this is an open cover of E0, and since E0 is
second-countable V admits a countable subcover {Vi}i∈N. Define Wi = ⋃ij=0 Vj . Then each
Wi is relatively compact in E0 and Wi ⊂Wi+1, so we have that the sequence {Z(Wi)}i∈N
is an increasing sequence such that

⋃
i∈N
Z(Wi) = Z (⋃

i∈N
Wi) = Z(E0) = ∂E.

Finally, we have that
ν1(Z(Wi)) ≤ ν1(Z(Wi)) <∞

since ν1 is a regular measure and Z(Wi) is compact by Lemma 4.2.3. Hence, ν1 = ν2 by
Lemma 6.0.4, which proves that r∗ is injective.
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Proving surjectivity of r∗ turns out to be quite complicated. The β = 0 case is done
by Schafhauser, c.f. [Sch18] Proposition 4.4, and it turns out that his proof generalizes to
all values of β quite easily. The main idea will be to show that the boundary space ∂E is
the limit of spaces ∂En, where each space ∂En only contains paths of length less than or
equal to n. In this case we may use the backwards shift map to pullback a measure µ on
E0 to each ∂En and get a measure defined on ∂E by making some limit arguments.

The spaces ∂En are defined analogous to ∂E, namely:

Definition 6.0.7.
Let E be a topological graph. We define the n-th boundary path space ∂En by

∂En = E0
sng ⊔ ... ⊔En−1

sng ⊔En.

For subsets S ⊂ E0 ⊔ ... ⊔En we define the set

Zn(S) = {a ∈ ∂En ∣ a(k) ∈ S for some k satisfying 1 ≤ k ≤ ∣a∣}.

∂En becomes a locally compact Hausdorff space with the topology generated by sets
Zn(U)∖Zn(K) where U ⊂ E0⊔ ...⊔En is an open subset and K ⊂ E0⊔ ...⊔En is compact.
The proof of this is completely the same as the one for ∂E done in Section 4.2. Of course
if E is second-countable, ∂En becomes second-countable as well. Note that for n = 0 we
have that ∂E0 = E0.

For n ≥ 1 we define maps ρn ∶ ∂En → ∂En−1 by

ρn(a) = {a(n − 1), ∣a∣ = n,
a, ∣a∣ < n,

as well as maps ρn,∞ ∶ ∂E → ∂En by

ρn,∞(a) = {a(n), ∣a∣ > n,
a, ∣a∣ ≤ n.

Note that ρ0,∞ is the range map r ∶ ∂E → E0. ♡

Lemma 6.0.8 ([Sch18] Proposition 3.3).
Let E be a topological graph. Then the maps ρn and ρn,∞ are continuous, proper and
surjective for each n ≥ 1.

Proof.
Surjectivity:
Let a ∈ ∂En−1. If s(a) ∈ E0

sng we have that a ∈ Eksng for some k satisfying 1 ≤ k ≤ n − 1,
hence a ∈ ∂En and ρn(a) = a.

If s(a) ∈ E0
reg we have that ∣a∣ = n − 1. By definition of regular vertices there exists an

edge e ∈ E1 such that r(e) = s(a), hence the path ae ∈ En ⊂ ∂En and ρn(ae) = a.
Inductively applying this argument gives us that ρn,∞ is also surjective.

Continuity:
For subsets S ⊂ E0⊔...⊔En−1 it is clear that ρ−1

n (Zn−1(S)) = Zn(S). So if U ⊂ E0⊔...⊔En−1

is an open subset and K ⊂ E0 ⊔ ... ⊔En−1 is compact, then

ρ−1
n (Zn−1(U) ∖Zn−1(K)) = Zn(U) ∖Zn(K).

Hence, ρn is continuous. Basically the same argument show that ρn,∞ is continuous.
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Proper :
Let K ⊂ ∂En−1 be compact and consider the family

U = {U ⊂ E0 ⊔ ... ⊔En−1 ∣ U is relatively compact in E0 ⊔ ... ⊔En−1}.

Since E0 ⊔ ... ⊔En−1 is locally compact Hausdorff, U is an open cover of E0 ⊔ ... ⊔En−1.
In particular, the collection {Zn−1(U)}U∈U is an open cover of K, so there exists a finite
subset of U , {Ui}ki=1, such that K ⊂ Zn−1(U1) ∪ ... ∪Zn−1(Uk). Then

ρ−1
n (K) ⊂

k

⋃
i=1
ρ−1
n (Zn−1(Ui)) ⊂

k

⋃
i=1
ρ−1
n (Zn−1(Ui)) ⊂

k

⋃
i=1
Zn(Ui).

By Lemma 4.2.3, ⋃ki=1Zn(Ui) is compact in ∂En. Since ρn is continuous we have that
ρ−1
n (K) is closed in ⋃ki=1Zn(Ui), hence ρ−1

n (K) is compact. The proof that ρn,∞ is proper
follows by the same argument.

Lemma 6.0.9 ([Sch18] Proposition 3.3).
Let E be a topological graph. Then ∂E is homeomorphic to limn(∂En, ρn).

Proof.
Note first that by Lemma 6.0.8 the maps ρn are continuous. It therefore makes sense to
consider the limit limn(∂En, ρn) in the category of topological spaces. It is clear that we
are in the situation where each of the diagrams

∂En ∂En−1

∂E

ρn

ρn,∞
ρn−1,∞

commute. We want to show that if X is a topological space with continuous maps
fn ∶X → ∂En such that the diagrams

∂En ∂En−1

X

ρn

fn
fn−1

commute, then there exists a continuous map f ∶ X → ∂E such that fn = ρn,∞ ○ f for
all n ∈ N. We construct this function f as follows: Fix x ∈ X. There are two cases
to consider. First if there exists an m ∈ N such that a = fm(x) satisfies ∣a∣ < m then
a ∈ E∗

sng ⊂ ∂E, so we define f(x) = a. The second case is if an = fn(x) satisfies ∣an∣ = n
for all n ∈ N. Then we have that

an−1 = fn−1(x) = ρn(fn(x)) = ρn(an) = an(n − 1),

so each path an is an extension of the path an−1. Thus, we may take the limit to get
an infinite path a ∈ E∞ ⊂ ∂E. We define f(x) = a, where a(n) = an for each n ∈ N. It is
clear by this definition of f that the diagrams

∂En

∂E X

ρn,∞

f

fn
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commute. We now need to show that f is continuous.
Since E∗ is locally compact Hausdorff we have that any open subset U ⊂ E∗ can

be written as a union of relatively compact subsets of E∗. So we need only check that
f−1(Z(U) ∖Z(K)) is open in X for a relatively compact subset U ⊂ E∗ and a compact
set K ⊂ E∗. For such sets we have that they can only intersect En for finitely many
n ∈ N. Hence, there exists a k ∈ N such that U ∩En = K ∩En = ∅ for all n ≥ k. Thus,
Z(U) ∖Z(K) = ρ−1

k,∞(Zk(U) ∖Zk(K)), so

f−1(Z(U) ∖Z(K)) = f−1(ρ−1
k,∞(Zk(U) ∖Zk(K))) = f−1

k (Zk(U) ∖Zk(K)),

which is open in X by continuity of fk. Thus, f is continuous.
By universality of the limit limn ∂En we have that there exists a unique continuous

map g ∶ ∂E → limn ∂En, and by the discussion earlier in this proof there exists a continuous
map f ∶ limn ∂En → ∂E, making all the triangles in the following diagram commute:

∂En ∂En−1

∂E limn ∂En

ρn

ρn,∞ ρn−1,∞

g

fn fn−1

f

We need to show that f is the inverse of g. We start by showing that g ○ f is the identity
on limn ∂En. Let x ∈ limn ∂En and define y = g ○ f(x). By commutativity of the bottom
right triangle we get that fn−1 ○ g ○ f = fn−1, so fn−1(y) = fn−1(x) for all n ≥ 1. By
universality of the limit we get that x = y.

Now we show that f ○ g is the identity on ∂E. Let a ∈ ∂E and define b = f ○ g(a).
By commutativity of the bottom left triangle we get that ρn,∞ ○ f ○ g = ρn,∞, so
ρn,∞(b) = ρn,∞(a) for all n ∈ N. It is clear from the definition of ρn,∞ that a = b.
This finishes the proof.

Lemma 6.0.10 ([Sch18] Proposition 4.4).
Let E be a second-countable topological graph, β ∈ R and Φ ∶ GE → Z be as in
Definition 4.4.1. Then the map

r∗ ∶ ∆(e−βΦ)→Mβ
sub(E

0)

induced by the range map r ∶ ∂E → E0 is surjective.

Proof.
Let µ ∈Mβ

sub(E0). We want to define regular Borel measures µn on ∂En for each n ∈ N
such that (ρn)∗µn = µn−1. We will then use universality of the limit to show that there
exists a unique regular Borel measure ν on ∂E such that r∗ν = µ.

First we set µ0 = µ as ∂E0 = E0. We recursively define µn by the equation

µn = e−βσ∗µn−1 + µ∣E0
sng

− e−β(Tµ)∣E0
sng
.

For Borel subsets B ⊂ ∂En we read this equation as follows:

µn(B) = e−β(σ∗µn−1)(B ∖E0) + µ(B ∩E0
sng) − e−β(Tµ)(B ∩E0

sng). (6.2)

Just as in Proposition 4.3.2 we have that σ ∶ ∂En∖E0 → ∂En−1 is a local homeomorphism,
so σ∗µn−1 becomes a regular Borel measure on ∂En ∖ E0 by Proposition 2.0.12.
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Furthermore, since µ ∈Mβ
sub(E0) we have that µ − e−β(Tµ) is a regular Borel measure

by the inequality Tµ ≤ eβµ. Hence, µn is a regular Borel measure.
We will prove by induction that (ρn)∗µn = µn−1. For n = 1 we have that ρ1 ∶ ∂E1 → E0

is the map r⊔ idE0 ∶ E1⊔E0
sng → E0 and σ ∶ ∂E1∖E0 → E0 is the source map s ∶ E1 → E0.

Hence,

(ρ1)∗µ1 = e−β(r∗s∗µ) + µ∣E0
sng

− e−β(Tµ)∣E0
sng

= e−β(Tµ) + µ∣E0
sng

− e−β(Tµ)∣E0
sng

= e−β(Tµ)∣E0
reg
+ µ∣E0

sng

= µ∣E0
reg
+ µ∣E0

sng

= µ
= µ0.

So assume that (ρk)∗µk = µk−1 for all k ≤ n. To show that (ρn+1)∗µn+1 = µn we will
consider the collection

Cn = {Zn(V ) ⊂ ∂En ∣ V ⊂ Ek is a Borel subset and 0 ≤ k ≤ n}.

Just as in Lemma 6.0.5 this is a π-system that generates the Borel σ-algebra of ∂En.
The case with V ⊂ E0 is special, so we will tackle this last.

Fix a Borel subset V ⊂ Ek where 1 ≤ k ≤ n. Note that for the set Zn(V ) equation
(6.2) simplifies to

µn(Zn(V )) = e−β(σ∗µn−1)(Zn(V )). (6.3)

Consider the family

Uk = {U ⊂ Ek ∣ U is open in Ek and σ∣U is injective}.

Since σ is a local homeomorphism on Ek we get that Uk is an open cover of Ek, in
particular it is an open cover of V . Since Ek is second-countable we get that Uk
admits a countable subcover of V , denote it by {Ui}i∈N. By disjointing V we get that
(ρn+1)∗µn+1(Zn(V )) = µn(Zn(V )) if (ρn+1)∗µn+1(Zn(Ui)) = µn(Zn(Ui)) for all i ∈ N. So
we compute:

(ρn+1)∗µn+1(Zn(Ui)) = µn+1(ρ−1
n+1(Zn(Ui)))

= µn+1((Zn+1(Ui)))
= e−β(σ∗µn)(Zn+1(Ui))
= e−βµn(σ(Zn+1(Ui)))
= e−βµn(Zn(σ(Ui)))
= e−βµn(ρ−1

n (Zn−1(σ(Ui))))
= e−β(ρn)∗µn(Zn−1(σ(Ui)))
= e−βµn−1(Zn−1(σ(Ui)))
= e−βµn−1(σ(Zn(Ui)))
= e−β(σ∗µn−1)(Zn(Ui))
= µn(Zn(Ui)).

When V ⊂ E0 we have that Zn(V ) ∖E0 = Zn(r−1(V )). By disjointing r−1(V ) with
sets U ∈ U1 we may assume that σ∣r−1(V ) is injective. The same calculation as above
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can now be carried out, where we also have to drag along the terms involving µ∣E0
sng

and (Tµ)∣E0
sng

. So we have that (ρn+1)∗µn+1 = µn on the π-system Cn. Making the same
argument as we did in Lemma 6.0.6, we get by Lemma 6.0.4, that (ρn+1)∗µn+1 = µn on
∂En.

Having defined the measures µn we proceed to construct the measure ν on ∂E. Gelfand
duality establishes an equivalence between the category of locally compact Hausdorff
spaces and the category of commutative C∗-algebras. Since ∂E is the limit of the directed
system given by (∂En, ρn)n∈N by Lemma 6.0.9, we get that C0(∂E) = colimnC0(∂En) by
Gelfand duality. Note that the map C0(∂En−1)→ C0(∂En) is given by precomposing with
ρn. We want to show that this map restricts to a map Cc(∂En−1)→ Cc(∂En). Indeed, if
f ∈ Cc(∂En−1) we have that ρ−1

n (supp(f)) is compact, since ρn is proper by Lemma 6.0.8.
Thus f ○ ρn ∈ Cc(∂En). Note that the same argument shows that f ○ ρn,∞ ∈ Cc(∂E) for
every f ∈ Cc(∂En) and n ∈ N.

Denote by ln ∶ Cc(∂En)→ C the positive bounded linear map

ln(f) = ∫
∂En

fdµn.

By Lemma 6.0.8 we have that ρn is surjective for each n ∈ N, so we get commutative
diagrams

Cc(∂En) Cc(∂En−1)

C

ln
ln−1

By continuity of ln we get that ln extends uniquely to a positive continuous *-
homomorphism, which we also denote by ln ∶ C0(∂En)→ C. Hence, we get commutative
diagrams

C0(∂En) C0(∂En−1)

C

ln
ln−1

By universality of the co-limit we get that there exists a unique positive continuous
*-homomorphism l ∶ C0(∂E)→ C, making the following diagram commute for every n ∈ N:

C0(∂En)

C0(∂E) C

ln

l

Restricting l to Cc(∂E) we can use Riesz representation Theorem, c.f. Theorem 2.0.13,
to get that there exists a unique regular Borel measure ν on ∂E such that

l(f) = ∫
∂E
fdν

for every f ∈ Cc(∂E). In particular the diagram

Cc(E0)

Cc(∂E) C

l0

l
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commutes, i.e.

l(f ○ r) = ∫
∂E
f ○ rdν = ∫

r(∂E)
fd(r∗ν) = ∫

E0
fd(r∗ν) = ∫

E0
fdµ

for all f ∈ Cc(E0). The second equality follows by Lemma 6.0.8 saying that r = ρ0,∞ is
surjective. Hence, r∗ν = µ.

It remains to show that ν ∈ ∆(e−βΦ), which by Lemma 4.4.3 is equivalent to showing
that σ∗ν = eβν on ∂E ∖E0. By universality of the co-limit we have that this holds since
equation (6.3) holds.

This completes the proof showing that r∗ is surjective.

We then get the following result.

Theorem 6.0.11.
Let E be a second-countable topological graph, β ∈ R and Φ ∶ GE → Z be as in
Definition 4.4.1. The map r ∶ ∂E → E0 induces an affine bijection between the sets
∆(e−βΦ) andMβ

sub(E0).

Proof.
The bijection between ∆(e−βΦ) andMβ

sub(E0) is given by Lemma 6.0.6 and Lemma 6.0.10.
The fact that this bijection is affine follows by the fact that the pushforward r∗ is linear,
so convex combinations are preserved.

Now we get a description of the extremal KMS weights on C∗(GE) in terms of the
sub-invariant measures on the vertex space.

Theorem 6.0.12.
Let E be a second-countable topological graph, β ∈ R ∖ {0} and Φ ∶ GE → Z be as in
Definition 4.4.1. There is a bijection between the following three sets:

(A) Extremal β-KMS weights for αΦ on C∗(GE).

(B) Ergodic measures ν on ∂E satisfying σ∗ν = eβν on ∂E ∖E0.

(C) Extremal β-sub-invariant measures µ ∈Mβ
sub(E0).

Proof.
The bijection between (A) and (B) is Theorem 5.3.7. The bijection between (B) and
(C) is Theorem 6.0.11 along with Lemma 4.4.3.

67



Chapter 6. Sub-invariant measures

68



Chapter 7

Conclusion

In [Sch18] Schafhauser gives a complete description of the gauge-invariant tracial states
on the C∗-algebra of a topological graph E in terms of vertex-invariant probability
measures on the vertex space E0. Christensen is able to use his main result from [Chr23]
to generalize Schafhauser’s work to give a description of tracial weights on the C∗-algebra
of a second-countable topological graph E in terms of what he calls harmonic- and
boundary-measures on the vertex space E0, c.f. [Chr22]. Christensen is in particular
able to give a description of the gauge-invariant tracial weights and is able to prove a
conjecture by Schafhauser that every tracial state on the C∗-algebra of a free topological
graph is gauge-invariant.

We noticed that the techniques developed in these papers, c.f. [Sch18] and [Chr22],
generalize to give a description of all extremal β-KMS weights for the gauge-action on
the C∗-algebra of a second-countable topological graph. In particular, we noticed that
Christensen’s proof of gauge invariance of tracial weights c.f. [Chr22] Theorem 6.4, can
also be used to show that there is a bijection between the extremal β-KMS weights
for the gauge-action and ergodic measures ν on the boundary path space ∂E satisfying
σ∗ν = eβν on ∂E ∖E0, c.f. Theorem 5.3.7. With this result in place, it remained to check
that Schafhauser’s techniques generalized from the case of tracial weights to the case of
β-KMS weights for the gauge-action. This we did in Chapter 6. Collecting all our results
gives us Theorem 6.0.12.

A lot of the proofs we have given are inspired by the existing proofs by Schafhauser and
Christensen. We do, however, use the theory we developed in Chapter 2 to great extent.
Realizing that sheaf theory would be useful to compare measures on a second-countable
space has allowed us to prove many things without invoking the duality between measures
and functionals. Furthermore, since many of our results are of the type "two measures
are equal", most of the challenge in proving these results is to find a suitable open cover
of our space and check if these measures are equal locally.

If time had permitted, it would have been interesting to further study the sheaf
structure of regular Borel measures. There are in particular many algebraic invariants
one can compute given a sheaf. On first sight, it is a problem that the set of regular
Borel measures does not have the structure of an abelian group. It does, however, have
the structure of an abelian monoid, so it would be possible to consider the associated
Grothendieck group. It would be interesting to see how far one could apply sheaf-theory
in this case.
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