
Causal discovery with
Bayesian networks
Rayyan Syed
Master’s Thesis, Spring 2023

Name of masterprogram: Data Science,Statistics and Machine Learning
Scope of the project: 60 study points

Acknowledgements

I want to start with tanking my supervisor Johan Pensar Professor of Data
Science at the Department of Mathematical at UIO.This journey has been
long.It would have been hard to be able to come through without his insight.

i

Abstract

One of the most widely used tools for causal discovery is based on causal models
represented by the framework of Bayesian network. In the most challenging
cases of causal discovery the underlying BN structure is not known and must be
computed in a way that it takes into account the uncertainty that exist when
trying to predict the underlying structure. The structure uncertainty can then
be transformed into an uncertainty regarding a causal relationship between
variables reflecting the strength of how likely a causal relationship is given data
assumed to come from the underlying causal model. There are different methods
account for such uncertainty. We will focus on Bayesian model averaging over
structures implemented trough Markov Chain Monte Carlo(MCMC) and a
state-the-art dynamic programming algorithm.The general way of expressing
parameters for a causal model is through the use of conditional probability
tables CPTs. It has been demonstrated that more expressive models that
account for additional structures in each CPT may lead to improved predication
over traditional causal models. We will represent the regularities within CPTs
through more refined independency relations, defined according to the concept
of context-specific independence(CSI), in the form of CSI-trees which are learned
with a greedy algorithm. To identify plausible models, we use a score-equivalent
Bayesian score. An optimal combination of these models will be found with the
help of Bayesian model averaging in order to find the posterior distribution over
the causal target of interest. These methodologies where tested on synthetic
data generated from known benchmark Bayesian networks. A comparison
between CPTs and CSI-trees with the help of AUC show that no significant
improvement was made on the tested networks. However for some data sizes
some improvement could be seen. One reason might be that no exact CSI-tree
representation of the conditional distribution exist for these networks,since the
true distributions are defined through CPD tables. Another reason might be
that it was necessary to regulate the model fit with a model structure prior to
avoid overfitting in the learning process. The prior used in this work might have
been suboptimal. A comparison between MCMC and state-the-art dynamic
programming algorithm shows that the result under AUC are similar,however
the convergence of the MCMC over structure for some networks tested is slow.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

1 Introduction 1

2 Theory 3
2.1 Conditional Independence . 3
2.2 Graphs . 3
2.3 Bayesian Networks . 5
2.4 Bayesian networks as causal models 12

3 Structure learning 13
3.1 CPT based score . 13
3.2 CSI score . 17
3.3 MCMC over structures . 24
3.4 Exact algorithm . 31

4 Simulation Study 34
4.1 Simulation setup . 34
4.2 Results . 36
4.3 Discussion of results . 53

5 Conclusion 55

Bibliography 57

A R code 58
A.1 Main File . 58
A.2 Log-marginal likelihood computation for CPT based score . . 66
A.3 CSI based log-marginal likelihood computation 68
A.4 Function for computing and writing marginal-likelihoods

multiple parentsets . 74
A.5 MCMC algorithm . 76

iii

CHAPTER 1

Introduction

Causality is an important concept in most scientific studies. While the optimal
approach for inferring causal relationships is from controlled experiments, such
experiments can often be hard to perform for various reasons. For this reason
one would like to identify causal relations based on data generated through
passive observation. One framework that has received a lot of attention is the
framework of do-calculus.The typical assumption in this approach is that the
causal structure over the variables is known and belongs to some class of (causal)
Bayesian networks. In general this assumption cannot always be made with
ease. In the most challenging setting the BN structure is completely unknown
and must be learned from available data, a problem known in the graphical
model framework as structure learning. This study will focus on development of
a method for inferring the presence or absence of a causal relationship between
a pair of variables without the help of experimental data. We will define causal
relationships with help of Bayesian networks, in which the presence of a causal
relationship from X to Y corresponds to the existence of a directed path from
X to Y in BN structure G. Notation X ⇝ Y will be used to denote such a
path. We will phrase the problem of causal relationships this way so that the
problem becomes a structure learning problem. Given the uncertainty involved
in structure learning, we will compute the posterior of X ⇝ Y through Bayesian
model averaging:

p(X ⇝ Y |Data) =
∑

G∈G(X⇝Y)

p(G|Data), (1.1)

where p(G|Data) is the posterior probability of G given the data,and G(X ⇝ Y)
are all DAGs that contain X ⇝ Y . The computational cost of calculating (1.1)
is large. Using state-the-art dynamic programming the calculation can be done
exactly for around 20 variables. Beyond that one must resort to other methods
such as Markov Chain Monte Carlo(MCMC). One of the goals of our study
will be to compare one state-the-art dynamic programming algorithm [Pen+20]
against MCMC in terms of Bayesian model averaging. In addition we want
to study the effect of the incorporation of local structure in the models when
evaluating (1.1). By local structure,we refer to a structure describing local
properties of the relationship between a node and its parents (or direct cause),
in particular we will use tree-based structure that are able to capture a form
of context-specific independence(CSI). Earlier research has shown that local
structure learning can improve model accuracy in terms of estimation of the
joint distribution that factorizes over the graph structures G. We aim to test

1

the hypothesis that local structures will prove themself to be beneficial for
causal discovery as we hope they will aid in distinguishing between Markov
equivalent graphs in terms of the conditional independence that they imply.
We will start our journey with the notion of conditional independence. Further
we will look into necessary graph theoretical concepts. What follows after
that is combining the notion of conditional independence with defined graph
theoretical concepts. After that we will go through our chosen structured based
learning scores, before proceeding to Bayesian model averaging and some theory
on the exact algorithm. We will finish with a simulation study and a discussion
about the results.

2

CHAPTER 2

Theory

2.1 Conditional Independence

In this work our interest is in modeling the joint distribution over a set of
categorical random variables. We use the notation P (X1, ..., Xn) for the
probability mass function of random variables X = {X1, ...Xn}. A particularly
important concept in the considered framework is conditional independence.

Definition 2.1.1. [KF09, Definition 2.3] We say that an event α is conditionally
independent of event β given event γ in P ,denoted

P |= (α ⊥ β|γ), if P (α|β ∩ γ) = P (α|γ) orP (β ∩ γ) = 0

Definition 2.1.2. [KF09, Definition 2.4] Let X, Y, Z is a set of random
variables.We say that X is conditionally independent of Y given Z in a
distribution P if P satisfies (X=x ⊥ Y=y|Z=z) for all x ∈ V al(X),
y ∈ V al(Y) and z ∈ V al(Z). The variables in the set Z are often said to
be observed. If the set Z is empty, then instead of writing (X ⊥ Y|∅), we write
(X ⊥ Y) and say that X and Y are marginally independent.

The
As an alternative characterization of conditional independence we can also use

the following statement.

Proposition 2.1.3. [KF09, Proposition 2.3]
The distribution P satisfies (X ⊥ Y |Z) if and only if

P (X, Y |Z) = P (X|Z)P (Y |Z)

Definition 2.1.4. [KF09, Definition 3.2] Let P be a distribution over X . We
define I(P) to be the set of independence assertions of form (X ⊥ Y|Z) that
holds in P .

2.2 Graphs

A graph is a structure made up of nodes denoted by X and edges denoted by
E. Every pair of nodes are either none-connected or connected by an edge,
which is either undirected,Xi −Xj , or directed Xi → Xj(or Xi ← Xj). Some
particularly important attributes of a graph are listed below.

3

2.2. Graphs

• Parent/child: Xj is parent to Xi in the graph whenever we have
Xj → Xi. Analogously, Xj is said to be the child of Xi. We denote
all parents of Xi by PaXi

.

• Degree of a node: Number of nodes it is directly connected to through
an edge.

• degree of graph: The maximal of all node degrees.

• In-degree of a node: The number of parents the node has,that is
,|PaXi

|.

In addition to these basic properties, there are additional properties that will
be of relevance to this work. These will be listed in the following and they are
taken from Koller and Friedman [KF09]. Some of the definitions are slightly
modified.

Definition 2.2.1. [KF09, Definition 2.15] We say that X1, ..., Xk form a path in
the graph K = (X , E) if, for every i = 1..., k − 1,we have either Xi → Xi+1 or
Xi −Xi+1. A path is directed if, for at least one i we have Xi → Xi+1.

Definition 2.2.2. [KF09, Definition 2.16] We say that X1, ..., Xk form a trail in
the graph K = (X , E) if, for every i = 1, ..., k − 1, we have Xi ⇌ Xi+1.

Definition 2.2.3. [KF09, Definition 2.17]
A graph is connected if for every Xi,Xj there is a trail between Xi and Xj .

Definition 2.2.4. [KF09, Definition 2.18] We say that X is an ancestor of Y
in K = (X , E), and that Y is descendant of X, if there exist a direct path
X1, ..., Xk with X1 = X and Xk = Y .We use DeschendantsX to denote X ′s
descendants, AncestetorsX to denote X ′s ancestor, and NoneDecsendantsX

to denote the set of node in X −DescendantsX .

The independencies in Ip(G) for figure (2.2) is:..................................
The ancestors of a node X in a graph will be the parents of X plus the parents

of the parents of X and so on, while the descendants of X is all nodes that has
X as, ancestor.

Definition 2.2.5. [KF09, Definition 2.19]
Let G = (X , E) be a directed graph. An ordering of the nodes X1, ..., Xn is a
topological ordering relative to G if i < j whenever Xi → Xj ∈ E.

Definition 2.2.6. [KF09, Definition 2.20] A cycle in K is a directed path
X1, ..., Xk where X1 = Xk.A graph is acyclic if it contains no cycles.

The
We will in this work focus on directed acyclic graphs (DAGs). In Figure (2.1)

is an example of a directed graph that is not a DAG due to the existence of a
direct cycle.

4

2.3. Bayesian Networks

XY

Z

Figure 2.1

Definition 2.2.7. [KF09, Definition 2.21]
Let K be PDAG(partially directed acyclic graph) over X . Let K1, ..., Kl be a
disjoint partition of X such that:

• the induced subgraph over Ki contains no directed edges;

• for any pair of nodes X ∈ Ki and Y ∈ Kj for i < j, an edge between X
and Y can only be a directed edge X → Y

Each component Ki is called a chain component

Importantly, in graphical model framework, a graph is used to represent the
dependence structure over the involved variables. The correctness of the implied
independence statements with respect to some reference set is given by the
following definition.

Definition 2.2.8. [KF09, Definition 3.3] Let K be any graph object associated
with a set of independencies I(K). We say that K is an I-map for a set of
independencies I if I(K) ⊆ I

2.3 Bayesian Networks

Since we will work with Bayesian Networks we will call the DAG a BN structure.
In this work, we will focus on Bayesian networks, for which the dependence
structure is represented by a DAG. More specifically, the dependence structure
encoded by a DAG can be characterized by the local Markov property.

5

2.3. Bayesian Networks

Definition 2.3.1. [KF09, Definition 3.1]
A BN structure is a DAG G whose nodes represent random variables
X1, ..., Xn.The structure G encodes the following set of conditional independency
assumptions:

Xi ⊥ NoneDescXi
|PaXi

, i = 1, ..., n

which are known as the local independencies in G and denoted by IL(G).

In addition to the local independencies there are additional independencies that
are implied by IL(G) through the so called semi-graph axioms [KF09].

X

YZ

K

L

S

Figure 2.2

To explain the concept of using DAG as BN structure, we will use the example
DAG in Figure 2.2. There are two nodes in Figure 2.2 that has an empty
parent set. Here the local property still holds,PaX = PaS = ∅ and the local
Marcov property implies marginal independence. We will now list up all the
independencies in IL(G):
X ⊥ S
S ⊥ X
L ⊥ X, Z, Y |K, S
K ⊥ X, S|Z, Y
Z ⊥ Y |S, X
Y ⊥ Z|S, X

In addition to these independencies there are other so called global independence
structures that can’t be captured directly using definition 2.3.1. Global
independence defines the conditional independencies for a DAG more generally.
It is defined through the notion of d-seperation, which is a graph-theoretic
criterion for reading off independence statements directly from the graph.

6

2.3. Bayesian Networks

Definition 2.3.2. [KF09, Definition 3.6]
Let G be an BN structure,and X1

.
↼−−⇁ .. ↼−−⇁ Xn a trail in G.Let Z be a subset of

observed variables.The trial X1
.

↼−−⇁ .. ↼−−⇁ Xn is active given Z if

• whenever we a v-structure Xi−1 → Xi ← Xi+1 then Xi or one of its
descendants is in Z;

• no other node along the trail is in Z.

Definition 2.3.3. [KF09, Definition 3.7]
Let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated
given Z, denoted dsepG(X; Y|Z), if there is no active trail between any node
X ∈ X and Y ∈ Y given Z. We use I(G) to denote the set of independencies
that correspond to d-separation:

I(G) = {(X ⊥ Y|Z) : d− sepG(X; Y|Z)}

This is a sample text in bluekk

Theorem 2.3.4. [KF09, Theorem 3.3] If a distribution P factorizes according
to G,then I(G) ⊆ I(P)

Theorem 2.3.4. ensures soundness of d-separation.
We denote the independencies not captured by local independency by
Ip(G).Definition 2.3.3 can be used both to find IL(G) and Ip(G). The union of
IL(G) and Ip(G) forms I(G). Some of the independencies in Ip(G) for DAG G
are:
The independencies in Ip(G) for figure (2.2) is:

K ⊥ X|Z, Y
X ⊥ L|Z, Y, S
Z ⊥ L|K, S
Y ⊥ L|K, S
S ⊥ K|Z, Y

For two distinct DAGs G1 = G2 we might have that they encode the same
dependence structure,that is I(G1) = I(G2).This property is known as I-
equivalence(or Markov equivalence).

Definition 2.3.5. [KF09, Definition 3.9]
Two graph structures K1 and K2 over X are I-equivalent if I(K1) = I(K2).
The set of all graphs over X is partitioned into a set of mutually exclusive and
exhaustive I-equivalence classes, which are the set of equivalence classes induced
by the I-equivalence relation.

Inspired by d-separation I-equivalence between two DAG’s can easily be tested
by a simple graph-based algorithm.

Definition 2.3.6. [KF09, Definition 3.10]
The skeleton of a Bayesian network graph G over X is an undirected graph over
X that contains an edge {X, Y } for edge (X, Y) in G.

Definition 2.3.7. [KF09, Definition 3.11]
A v-structure X → Z ← Y is an immorality if there is no direct edge between
X and Y if there is such an edge it is called a covering edge for the v-structure

7

2.3. Bayesian Networks

Based on the concepts of skeleton and immoralities, we can then characterize
I-equivalence as follows:

Theorem 2.3.8. [KF09, Theorem 3.8] Let G1 and G2 be two graphs over X .Then
G1 and G2 have the same skeleton and the same set of immoralities if and only
if they are I-equivalent

Figure 2.3 and figure 2.4 shows the two I-equivalence classes for three nodes
X, Y, Z that are connected as a chain.For the DAG’s in Figure 2.3, we have the
implied independency statement X ⊥ Y |Z while for DAG in Figure 2.4 we have
that X ⊥ Y .

X

Z

Y

Y

Z

X

Z

Y X

Figure 2.3

XY

Z

Figure 2.4

The I-equivalence class of the DAG’s in figure 2.3 can be seen as:

XY

Z

Figure 2.5

Figure 2.5 is the cPDAG of the I-equivalence class shown in Figure 2.3. A
cPDAG is a PDAG that illustrates I-equivalent DAGs.
A Bayesian network is a tuple containing a DAG structure and a set of
conditional probability distributions (CPDs) that define the joint distribution
under the associated DAG. Generally one can write any joint distribution over
a set of random variables X1, ..., Xk as a product using the chain rule: .

P (X1, ..., Xk) = P (X1)P (X2|X1)P (X3|X1, X2)...P (Xk|X1, ..., Xk−1)

8

2.3. Bayesian Networks

This decomposition holds for any factorization order. In the case of Bayesian
networks, we have a similar type of factorization, which is known as the chain
rule for Bayesian networks. There is a fundamental connection between the
view of a DAG as a dependence structure and a specification of how to factorize
a joint distribution.

Definition 2.3.9. [KF09, Definition 3.4]
Let G be a BN structure (i.e DAG) over the variable X1, .., Xn. We say that
a distribution P over the same space factorizes according to G if P can be
expressed as a product

P (X1, ..., Xn) =
n∏

i=1
P (Xi|PaXi

), (2.1)

is called a chain rule of Bayesian Network

Definition 2.3.10. [KF09, Definition 3.5]
A Bayesian network BN is a pair B = (G, P) where P factorizes over G, and
where P is specified as a set of CPDs associated with the nodes in G.The
distribution P is often annotated PB

Thus, by specifying the CPD of each node given its parents, we specify the joint
distribution under a specific DAG.

Theorem 2.3.11. [KF09, Theorem 3.1]
Let G be a BN structure over a set of random variables X and P be a joint
distribution over the same space. If G is an I-map for P , then P factorizes
according to G

Theorem 2.3.12. [KF09, Theorem 3.2]
Let G be a BN structure over a set of random variables X and let P be a joint
distribution over the same space. If G is an I-map for P , then P factorizes
according to G.

Theorem 1.3.13 and 1.3.14 looked at together ensures that I(G) ⊆ I(P) whenever
P factorizes over G.
Generally one assumes that a Bayesian network is an minimal I-map.

Definition 2.3.13. [KF09, Definition 3.13]
A graph K is a minimal I-map for a set of independencies I if it is an I-map for
I,and if the removal of even a single from K renders it not an I-map.

A procedure for finding minimal I-maps given a variable orderingX1, ..., Xn

is to use the definition of local independency iteratively by selecting minimal
parent-sets for the nodes that follow the definition of local independency.

• Pick a minimal subset U ⊂ (X1, ...Xi−1) for which

Xi ⊥ (X1, ..., Xi−1) \ U |U

.

• set PaXi to be U

9

2.3. Bayesian Networks

The standard way of representing the CPDs of Bayesian network with categorical
variables is to use conditional probability tables (CPD-tables or CPTs). A CPT
is a lists the conditional distributions for each configuration on the parental
variables. As an example consider a Bayesian network over the DAG in Figure
2.4 for the joint distribution factorizes as

P (X, Y, Z) = P (X)P (Y)P (Z|X, Y)

Now, assuming binary variables, we have would represent the above CPDs
with CPTs in table 2.1-2.3,where every row represents a CPD under a parent
configuration.

condition z1 z0

x0, y0 p1 1− p1
x0, y1 p2 1− p2
x1, y1 p3 1− p3
x1, y0 p4 1− p4

Table 2.1: CPD table for P (Z|X, Y)

x1 x0

p5 1− p5

Table 2.2: CPD table for P (X)

x1 x0

p6 1− p6

Table 2.3: CPD table for P (Y)

An alternative way of representing CPDs of a variable is through CSI trees where
CSI stands for context specific independence. This representation is useful when
the certain CPDs within an CPT are identical. The main disadvantage with
CPT is the number of parameters that has to be defined increases exponentially
with the number of parents. Estimating the parameters accurately becomes
harder when the number of parameters are large compared to the available data.
This is one reason for the need to restrict the number of parameters. In many
real life situation the need for a reduction in parameter size comes naturally
and can be characterized through the notion of context-specific independence.
CSI-trees follows something called CSI independence.

Definition 2.3.14. [KF09, Definition 5.1]
Let X,Y,Z be pairwise disjoint set of variables,let C be a set of variables(that
might overlap with X ∪Y ∪ Z),and let c ∈ V al(C).We say that X and Y are
contextually independent given Z and the context c denoted (X ⊥c Y|Z,c) if

P (X|Y,Z,c) = P (X|Z,c) whenever P (Y,Z,c) > 0

10

2.3. Bayesian Networks

For probability distribution P (X, Y|Z = z) some joint events of Z might
be equal. If one uses a CPT to represent the CPDs one has to define all
conditional distributions regardless of them being equal or not. This motivates
the construction of other types of representations. One such representation is a
CSI-tree. As an example the CSI-tree of Table 2.1 is:

X

Y Y

p1p2 p3p4

0 1

0
1

1
0

Figure 2.6

CSI can be seen as a generalization of conditional independence. If the CPD-
table for P (Z|X, Y) instead look like the one in Table 2.4 where we have identical
CPDs on the third and fourth row,we could represent it more compactly using
the CSI-tree in Figure 2.7.

condition z1 z0

x0, y0 p1 1− p1
x0, y1 p2 1− p2
x1, y1 p3 1− p3
x1, y0 p3 1− p3

Table 2.4: CPD table for P (Z|X, Y)

For table 2.4 the new CSI-look like:

X

Y

p1p2 p3

0
1

0
1

Figure 2.7

In Figure 2.7 we have that P (Z|X = 1, Y) = P (Z|X = 1),representing
a CSI of the form (Z ⊥c Y |X = 1) that is, the context is specified by
X = 1.Each branch represents a joint conditional configuration. If some
variable is not included in a branch, it means that the value of that variable
does not influence the conditional distribution regardless if one includes it
or not. The leafs contains the parameters representing a CPD. In Figure
2.7 p1 = P (Z = 1|X = 0, Y = 0),p2 = P (Z = 1|X = 0, Y = 1) and
p3 = P (Z = 1|X = 1).The reason for testing CSI-trees as an alternative

11

2.4. Bayesian networks as causal models

representation for the node-specific CPDs is to see if it is beneficial form a
causal discovery point of view. For example,we want to study if the additional
restrictions imposed by CSI can help in orientating additional edges within an
I-equivalence class.

2.4 Bayesian networks as causal models

A causal model has the same form as a BN:A tuple consisting a BN structure
and a set of CPD-tables grouping parameters on the basis of nodes conditioned
on there parents. Each CPD table is called a causal mechanism.The causal
mechanism has the same form as the CPD table but is the output of a stochastic
function which changes and it describes the functional relation between a
node and its parents.The difference between a BN and a causal model is the
interpretation of the edges. In a causal model we assume that the edges between
the node and its parents represent direct causal relationships with respect to
the observed variable. With this interpretation the causal mechanisms will
change when fixing specific values of the parental configurations and we will
see changes of the output of the stochastic function. This is not possible to do
with a standard BN,where the direction of the edges does not have a causal
interpretation.
For BN, X → Y , defined over two binary variables X, Y , we can answer
P (Y |X = 1) but we cannot reason about the effect that an intervention,where
we set a value,e.g,X = 1, will have on the distribution. To denote that we are
changing the CPD P (Y |X) by setting X = 1 we write to P (Y |do(X = 1)),
where do(X = 1) means that X takes the value 1 with probability 1. The action
of setting X = 1 we call an intervention on what value X takes. One cannot
distinguished two BN X → Y and X ← Y based observing specific values of
the parent set. By interpreting X → Y as a causal model and setting X = 1
we have that:

P (Y |do(X = 1)) = P (Y |X = 1), (2.2)

while the output of P (X|do(Y = 1)) will be:

P (X|do(Y = 1)) = P (X) (2.3)

This is because P (Y |X) is a causal mechanism,assuming X → Y , while the
CPD table P (X|Y) is not. While we can always change the parameters in the
CPT for a Bayesian network, this change those not have a causally interpretable
meaning,and at the same time it defines a new Bayesian network. In a causal
model, when the change in the CPD table(causal mechanism) happens, this has
the interpretable meaning of intervening on a value of a parental configuration
at the same time as the causal model remaining unchanged. More generally,as
stated in the following definition, given a causal Bayesian network,we can answer
intervention queries that involve any of the variables involved in the model.

Definition 2.4.1. [KF09, Definition 21.1] A causal model C over X is a Bayesian
network over X ,which, in addition to answering probability queries,can also
answer queries P (Y|do(z), x),as follows:

PCP (Y|do(z), x) = PCZ=zP (Y|x)

12

CHAPTER 3

Structure learning

Constraint-bases vs score based

Structure learning is the task of learning the DAG structure of a BN based on
some data that is assumed to have been generated by the model. Constraint
based learning and score based learning are the main categories of methods
used to learn Bayesian network structures. Constrained based methods utilize
a sequence of independency test to learn the structure. Score based learning
methods uses a scoring function together with a search algorithm to traverse
the graph space in order to find a high-scoring DAG.The space of DAGs grows
exponentially with the number of nodes. Therefore, one typically has to resort
to heuristic methods that are not guaranteed to find the global optimum.
We will focus on score based learning methods. The reason for our choice is
earlier experience in that constrained based methods tend to be less robust then
score based methods. Constrained based learning is more sensitive to error in
capture individual independency tests. Score based methods are more robust
in the sense that they capture the overall graph structure. In this work we will
consider two score based methods, one for standard CPD tables and one that
also learn CSI-trees for each considered network.

3.1 CPT based score

We define ΘG = {θX1|P aX1
, ..., θXn|P aXn

} to be all CPD tables PB which
factorizes over the BN structure G.That is,

θXi|P aXi
= (θXi|ui

) : ui ∈ V al(PaXi
),

the CPD’s of Xi,where θXi|ui
specifies the conditional distribution of Xi given

that the parents have taken on the configuration ui. Our score will be the
log-joint distribution log P (D, G).

log P (D, G) = log P (D|G) + log P (G) (3.1)

This is also called the Bayesian score and it consists of the log marginal likelihood
given G (log P (D|G)) and a graph prior (log P (G)). For CPT scores we will use

13

3.1. CPT based score

a uniform prior P (G) ∝ 1. Our goal is to approximate the posterior distribution
P (G|D).

P (G|D) = P (D|G)P (G)
P (D)) ∝ P (D|G)P (G) (3.2)

Where P (D) is a constant for all G. The key component of the Bayesian score
is marginal likelihood

P (D|G) =
∫

ΘG

P (D|θG, G)P (θG|G)dθG (3.3)

which is the expected likelihood P (D|θG, G), under some prior on the model
parameters P (θG|G).P (D|θG, G) is the likelihood given a Bayesian network
structure G. Under certain assumptions, the marginal likelihood for a BN
structure can be computed in closed form.
The likelihood can be written as:

L(D : ΘG) =
M∏

m=1
P (x1[m], ..., xn[m] : θ), (3.4)

where (x1[m], ..., xn[m]) is the m’th joint instance of random variable X1, ..., Xn

from a dataset generated with M instances. The product comes from the
assumption that each instance was generated independently. We can express
the likelihood under a BN structure as:

L(θ : D) =
m∏

m=1
PG(x1[m], ..., xn[m] : θ)

=
∏
m

∏
i

P (xi[m]|paXi [m] : θ)

=
∏

i

∏
m

P (xi[m]|paXi
[m] : θ)

(3.5)

We can then express the likelihood as a product of node-wise likelihoods:

L(θ : D) =
∏

i

Li(θXi|P aXi
: D) (3.6)

This decomposition is called the global decomposition property of the likelihood.
This holds because of the assumption that the parameters θXi|P aXi

are assumed
to be disjoint from θXj |P aXi

for all j ̸= i. The global decomposition property
ensures that the factorization of the likelihood can be done with respect to
CPD-tables of the BN structure.
We can further decompose the likelihood by using the local decomposition
property:

L(θ : D) =
∏

i

∏
ui∈V al(P aXi

)

Li(θXi|ui
: D), (3.7)

which makes it possible to look at each parameters of each row within a CPD-
table separately.

14

3.1. CPT based score

Now the local likelihoods in Equation (3.6) will be in the form of Equation (3.8)
when we use categorical likelihood:

L(θ|D) =
K∏
k

θ
M [k]
k , k = 1, ..., K (3.8)

where k = 1, ...K represents the different categories, θk denotes the probability
of observing category k, and M [k] denotes the number of times category k is
observed in the data.
By putting a Dirichlet prior on the model parameters:

(θ1, ..., θk) ∼ Dirichlet(α1,, αn) ∝
∏

i

θαi−1
i (3.9)

α =
∑

k

αk,

we can compute the posterior distribution, and consequently,marginal likelihood
in closed form.

Proposition 3.1.1. [KF09, Proposition 17.3]
If P (θ) is Dirichlet(α1, ...αK) then P (θ|D) is Dirichlet(α1 + M [k], ..., αK +
M [K]) where M [k] is the number of occurrences of xk

The Dirichlet prior is said to be a conjugate prior to the categorical
likelihood,meaning that the posterior is in the same family of distributions as
the prior. The general expression for the marginal likelihood with a categorical
likelihood and Dirichlet prior is given as:

P (D|G) = Γ(α)
Γ(α + M)

∏
k

Γ(αk + M [k])
Γ(αk) (3.10)

We want the decomposition properties to hold for the marginal likelihood as
well. The same type of decomposition holds if the prior satisfies global and
local parameter independence in addition to the likelihood having global and
local decomposition property.

Proposition 3.1.2. [KF09, Proposition 18.2]
Let G be a network structure,and let P (θG|G) be a parameter prior satisfying
global parameter independence.
Then,

P (D|G) =
∏

i

∫
ΘXi|P aXi

∏
m

P (xi[m]|paXi [m], θXi|P aXi
, G)P (θXi|P aXi

|G)dθXi|P aXi

Moreover if the prior P (θG|G) also satisfies local parameter independence

P (D|G) =
∏

i

∏
ui∈V al(P aG

Xi
)

∫
θXi|ui

∏
m,ui[m]=ui

P (xi[m]|ui, θXi|ui
, G)P (θXi|ui

|G)dθXi|ui

15

3.1. CPT based score

Under the assumptions of likelihood decomposition and parameter independence,
we can compute the marginal likelihood in closed form:

P (D|G) =
∏

i

∏
P aXi

Γ(αXi|paXi
)

Γ(αXi|paXi
+ M [paXi

])
∏
xi

Γ(αxi|paxi
+ M [xi, paxi])

Γ(αXi|paxi
) ,

(3.11)

where αXi|paXi
=

∑
xi

αxi|paXi
and PaXi

are the parent joint events of Xi.
Note that the marginal likelihood is a product of node-wise factors, or a sum
when log is used. Assuming a similar factorization of the graph prior, the score
is thus a product(or sum) of node-wise scores.This property is particularly
important when traversing the space of DAGs in the search phase since local
modifications to a DAG will typically only change a few node-wise scores and
the remaining can be reused from the previous iteration.
In addition to this decomposability, we want all DAGs in the same I-equivalence
class have equal scores.

Definition 3.1.3. [KF09, Definition 18.4]
Let score(G : D) be some scoring rule.We say that it satisfies score equivalence
if for all I-equivalent networks G and G′ we have score(G : D) = score(G′ : D)
for all data set D.

This equality is important for us because the best output of our methods is the
I-equivalence class of the BN structure for the true underlying causal model.
For our prior, score equality within I-equivalence classes holds when one uses
a Dirichlet parameter prior from the BDE family. In this work we are using
such a prior. More specifically, we are using the BDEu prior for which the
hyper-parameters are set according to:
We are using BDEU prior.

αxi|P aXi
= N

|V al(Xi)||V al(PaXi
)| (3.12)

where V al() is the outcome space of input variables and |V al()| is simply the
number of outcomes.

Algorithm 1. CPD-algorithm

Input: data,Xi,PaXi
,{V al(Xi)}n

i=1
assign V al(PaXi

)
assign αxi|parxi

= N
|V al(Xi)|∗|V al(XP aXi

)|

Scoreval = 0
for each paxi

∈ V al(PaXi
)

count occurrence of each configuration i.e all M [xi, paxi
]

assign M [paxi] =
∑

xi
M [xi, paxi]

Scoreval = Scoreval +
Γ(αXi|paXi

)
Γ(αXi|paXi

+M [paXi
])

∏
xi

Γ(αxi|paxi
+M [xi,paxi

])
Γ(αXi|paxi

)

An overview of the algorithm for computing the family scores is given in
Algorithm 1.

16

3.2. CSI score

3.2 CSI score

A CSI-tree is a structure imposing a special kind of local parameter sharing.
To understand local parameter sharing, it might be helpful to first understand
global parameter sharing. Instead of structuring the parameters in ΘG in
terms of CPDs in a CPD table denoted by P (Xi|PaXi , ΘG) for nodes Xi ∈ X
given its parent-set PaXi , we will instead partition the set of all parameters
in ΘG into subsets θ1, ..., θk where each θk include parameters that are shared
across the CPD tables [KF09, page 755]. For each of these subsets their is
an accommodating set of variables Lk such that L1, ..., Lk form a partition of
X ,that is,L1, ..., Lk are disjoint and there union is equal to X . This ensures
that one can then associate a disjoint set of parameters to a disjoint set of
nodes, where one can find all parameters related to any node in Lk in the set
of parameters θk. We have the following implication:

P (Xi|Ui, θ) = P (Xi|Ui, θk) (3.13)

Ui are the parents of Xi, we also have that any pair of nodes X and Y in Lk.
Further, we will assume that the CPDs for all X, Y ∈ Lk are identical:

P (X|UX , θk) = P (Y |UY , θk) (3.14)

Note that above equality can only hold for X, Y where V al(X) = V al(Y) at
the same time as V al(UX) = V al(UY).
For notational convenience ,for any Xi ∈ Lk,let sk denote the values of Xi and
fk denote the configurations of the parents PaXiwhich we here denote by Ui.
Based on this, one can now decompose the probability distribution to factorize
over a specific network as:

P (X1, .., Xn|θ) =
n∏
i

P (Xi|PaXi
, θ) (3.15)

=
K∏

k=1

∏
Xi∈Lk

P (Xi|Ui, θ) (3.16)

=
K∏

k=1

∏
Xi∈Lk

P (Xi|Ui, θk) (3.17)

The first equality comes from chain rule of Bayesian network, the second equality
comes from the disjoint sets Lk and third equality comes from independency of
the set of parameters for variables in Lk to any other parameter set.
We assume now that every conditional distribution in the CPD-table follows
a multinomial distribution. We use θk

sk|fk
to denote the specific conditional

probability P (Xi = sk|Ui = fk, θk) for some Xi ∈ Lk. We can then express the
likelihood under global parameter sharing as:

L(θ : D) =
K∏

k=1

∏
sk,fk

∏
Xi∈Lk

θk
sk|fk

(3.18)

=
∏
k=1

∏
Xi∈Lk

(θk
sk|fk

)Mk[sk,fk] (3.19)

17

3.2. CSI score

where

Mk[sk, fk] =
∑

Xi∈Lk

I(xi = sk, ui = fk) (3.20)

Thus,in the above expression we add up the counts of multiple variables in the
network based on the parameter equality enforcement, due to global parameter
sharing.

The parameters can not only be shared globally, but also locally in a single CPD
table. One way of incorporating local parameter sharing is through the use of
CSI-trees. The branches encodes a specific configuration of the conditioning
set, where one is sharing parameters across different conditional distributions
within a CPD table. We will again focus on the case where we assume that
the CPDs of graph G defines a set of multinomial distributions. For each
variable in G, together with a parent joint event ui ∈ V al(Ui), we have a
multinomial distribution. We define the set D = ∪n

i {P (Xi|ui) : ui ∈ V al(Ui)}
which contains all multinomial distribution in all CPDs of graph G.
We define a set of locally shared parameters θ1, ..., θk where each θk is associated
with a set Dk ⊆ D. Similar to before, we assume that D1, ..., Dk form a partition
of D and that all conditional distributions within Dk share the same parameters
θk. Note that for this type of constraint we must have that all distributions in
the same class,Dk, must have the same set of values.
As an example, for CSI-tree in figure (2.7) we have the sets D1,D2 and D3.

D1 = P (Z|x0, y0) (3.21)
D2 = P (Z|x0, y1) (3.22)
D3 = P (Z|x1, y1), P (Z|x1, y0) (3.23)

where the CPDs in D3 would be represented by the same parameters.Local
parameter sharing can be seen in an analogous way as global parameter sharing
by decomposing the likelihood.Starting with:

P (D|θ) =
∏

i

∏
ui

∏
xi

P (xi|ui, θ)M [xi,ui], (3.24)

when local parameter sharing is introduced, one can aggregate inner term
according to the specific local parameter sharing set Dk thereby getting:

18

3.2. CSI score

P (D|θ) =
∏

i

∏
ui

∏
xi

P (xi|ui, θ)M [xi,ui] (3.25)

=
∏

i

K∏
k=1

∏
j

(θk
j)M [xj

i
,ui] (3.26)

=
K∏

k=1

∏
j

(θk
j)

∑
⟨Xi,ui⟩

M [xj
i
,ui] (3.27)

For CSI-tree the set Dk is restricted to only include local branches where the
set of parent configurations are generated from context involving a subset of
the parental variables.
With the introduction of local sharing in the form of introducing a CSI-trees
as, middle-step when computing the marginal-likelihood, the full CSI-tree
that represents all full configurations of the parents as individual branches
typically gets reduced such that shorter branches represent a set of CPDs. More
specifically Dk is defined through branch k,and the parent configurations in Dk

are identical for the variables specifying specific branch k.
Under local(and global) parameter sharing, we can still compute the marginal-
likelihood in closed form using a similar approach and assumptions as in the
standard case. The only difference is that instead of modelling each parent
configuration separately, we must now have classes of parent configurations that
result in the same CPD. Going back to our example D1, D2, D3 represents the
branches in the CSI-tree shown in Figure(2.7), the marginal likelihood becomes:

3∏
k=1

Γ(αZ|k,J)
Γ(αZ|k,J + M [k])

∏
z

Γ(
∑

j∈J [M [z, k, j] + αz|k,j])
Γ(

∑
j∈J αz|k,j) , (3.28)

where J is the set of configurations of parent variables that are not used to
specify the branch,that is, the variables Z is context-specifically independent of
given the context if the branch.
For this example we have three Dk For D1 , J = ∅.For D2, J = ∅.For D3,
J = {y0, y1}. resulting in the counts:

M [1] =
∑

z∈{0,1}

M [z, x = 0, y = 0] (3.29)

M [2] =
∑

z∈{0,1}

M [z, x = 0, y = 1] (3.30)

M [1] =
∑

z∈{0,1}

∑
y∈{0,1}

M [z, x = 1, y] (3.31)

=
∑

z∈{0,1}

M [z, x = 1] (3.32)

19

3.2. CSI score

αz|k,j = N

|V al(Z)||V al(X, Y)| . (3.33)

αZ|k,J =
∑
j∈J

∑
z∈Z

αz|k,j (3.34)

Instead of now talking about DAGs in the same I-equivalence class having
equal score, one can now talk about the score function returning the same
score for DAGs in the same CSI-equivalence class. For a formal definition of
CSI-equivalence we will refer to [Pen+13].

XY

Z

Figure 3.1: BN structure H

To illustrate the difference between I-equivalence and CSI-equivalence, we will
first list all DAGs in the I-equivalence class for BN Network H in Figure 3.1,
then we will put a label on one of the edges,representing a CSI, and see how
the parameter constraint creates a CSI-equivalence class. All variable in H are
binary.

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

Figure 3.2: I-equivalence-class for BN H

Starting with the standard case the six I-equivalent DAGs are shown in Figure
3.2. Next, in Figure 3.3(a) we set X = 1 as a label on the edge going from Y to
Z indicating that this edge is removed if X = 1, thus representing a CSI of the
form (Z ⊥ Y |X = 1). The corresponding CSI-tree in Figure 3.3(b) shows how
the same CSI is captured by through the CPD structure of Z.

20

3.2. CSI score

XY

Z

X=1

(a)

X

Y p1

p2p3

10
0

1

(b)

Figure 3.3: BN structure with label X = 1

XY

Z

X=1

XY

Z

X=1

XY

Z

X=1

XY

Z

X=1

Figure 3.4: The CSI-equivalence class for the labeled DAG in 3.3(a) and csi-tree
when the edge between Y and Z has label X = 1

When the edge between Y and Z is labelled according some value of X, one has
to look at BN structures where X influences the probability relation between Y
and Z. This means that X has to be a parent of at least Z or Y . The CSI-tree
for Z and Y in BN structures where X is a descendant of both Y and Z does
not include X. These structures can not capture the conditional edge existence
between Y and Z based on a value of X.
From Figure 3.2 and Figure 3.4 we see that the DAGs in the CSI-equivalence
class is a subset of these in the I-equivalence class. Furthermore,the orientation
of the existing edges is half the times in either direction in the I-equivalence
class.In the CSI-equivalence class we have the same thing for the edges between
Y and Z, however,there is slightly higher support for X → Y and X → Z than
Y → X and Z → X, respectively.This way, a CSI can provide some additional
information regarding orientation of some of the edges.

Graph Prior

When computing the scores for the CSI-method,we will use the sparsity-
promoting graph prior from reference [Pen+15]:

log(P (G)) = −
d∑

j=1
(1 + t)|pa(j)| · log n, (3.35)

21

3.2. CSI score

where t ≥ 0 is a tuning parameter of how much edges in G will be penalized.
The factor log n is used to adapt the effect of penalization to the number of
data samples.

The reason is that the marginal-likelihood alone has a tendency to overfit the
data, resulting in overly complex models that include many none-true edges,that
is,false positives, which again leads to BN structures learned by a CSI-score
is of type of LDAG. [Pen+13] gives a detailed explanation of the overfitting
problem. Rather then using prior of [Pen+13], we will instead go with the
approach taken in [Pen+15],where the prior does not penalize the CSI-trees
directly,but rather penalize the density of the global DAG structure.

CSI-Algorithm

The space of CSI-tree quickly becomes large as the number of parents is increased.
For this reason the algorithm implemented for the construction of CSI-trees
will be based on greedy hill climb, which tries to maximize the log marginal
likelihood.The family score is then given by the log-marginal likelihood of the
identified CSI-tree with the graph prior added. To further represent the search
space we set an upper limit to the number of parents,K,such that,

∑K
k=0

(
n−1

k

)
possible parent sets are considered for each node. With a greedy hill climb on
the space of CSI-tree one want to find the important joint configurations of the
conditioning set that defines the unique CPDs within a CPD-table.
Our goal is to find the I-equivalence class of the underlying true BN structure.
We are trying to find this based on a data set of limited sample size that will
contain a considerable amount of noise. Therefore, we do not want our method
to overfit on the data. One reason that CSI-scores might do better than CPT-
scores is that it does not necessarily consider full parental configurations, but
instead it tries to capture the most relevant CPDs through partially specified
parental configurations. This counteract the exponential blowup og the parental
outcome space, which is the main reason why it might be beneficial in terms of
identifying the true global graph structure. Our algorithm works by reducing
the parent set configurations of each node through choosing the nodes that
noticeably outperform the others in every step of the CSI-tree building process.
This is done by comparing the score of the current CSI-tree to a CSI-tree where
all nodes that have not yet been added to a branch are added as a test of
whether they increase the score or not.This procedure is done to all branches
of the current CSI-tree state.The node resulting in the biggest improvement is
selected.
The construction starts with the root. The root is selected based on computing
all scores of parent set size 1, where the score is the sum of the log-marginal
likelihood and the prior. After the root node has been added, the branch of the
CSI-tree are iteratively extended,or grown, by splitting on parents that are not
yet included in the considered branch. Each branch has its own score which is
a sum of the log-marginal-likelihoods one gets by iterating the values for the
node the tree is being built for, when the configuration of the parent set is held
fixed. For the root selection, the scores one gets by iterating over the parent
configurations is compared with the score that is calculated when no parent
is included,.i.e instead of M [xi, paxi] in expression (3.11) one uses the count

22

3.2. CSI score

M [xi],and instead of M [PaXi
], M is used.We compare these score by taking

the score difference between a sum and the score for when no parent is included.
This is done for all joint configuration and for all potentially addable parents.
The greatest one that is greater then 0 gets added as root. Each component
of its sum is the score for a branch. Once the first split has happened, the
only configurations considered in the next iteration are those that include both
the root and all the potentially addable parents that do not exist in a branch,
for all branches.Again, the scores in the next iteration is compared with the
previous values of the branches. The procedure of growing the branches of the
tree is continued until no improvement is possible or the three is of full depth,
meaning that each branch include all the parents.
A disadvantage with such an approach is that the algorithm only looks one step
ahead comparing the current score against the new score obtained after a single
split, even if the split that gives the biggest improvement now might lead to a
suboptimal tree further ahead. However our goal is not to necessarily find the
optimal CSI-tree. We mainly want to test whether the CSI-tree-score learned
from a greedy hill climb result in an improvement over the standard CPT-score.

23

3.3. MCMC over structures

Algorithm 2. CSI-tree-algorithm

Input:data,Xi,XP aXi
,{V al(Xi)}n

i=1
assign V al(Xi)
while TRUE

assign init = 0
for each Xj in XP aXi

do
for each branch k do

if Xj notin branch k
assign values of Xj , V al(Xj)
count occurrence of each configuration ,i.e all M [xi, k, xj]
assign αxi|xj ,k = N

|V al(Xi)|·|V al(k,Xj)|
assign αXi|k,xj

=
∑

xi
αxi|xj ,k

for each xj ∈ V al(Xj) do
assign M [k, xj] =

∑
xi

M [xi, k, xj]
Score(k′

xj
) = Γ(αXi|k,xj

)
Γ(αXi|k,xj

+M [k,xj])
∏

xi

Γ(αxi|k,xj
+M [xi,k,xj])

Γ(αxi|k,xj
)

end for
diffscore =

∑
xj

Score(k′
xj

)− Score(k)
if diffscore > init

init = diffscore
Xchoise = Xj

kchoice = k
end if

end if
end for

end for
if init still is 0

BREAK while
end if
else

add Xchoice to branch kchoice in tree
end else

end while

Algorithm.2 shows the pseudo-code of the function used to calculate CSI-log-
marginal likelihood.

3.3 MCMC over structures

If the goal is prediction and the sample size is large enough choosing one of
the models that have a high score could give acceptable accuracy. Our goal
is structure discovery and selecting out one high scoring DAG is less useful.
It then make sense to consider averaging over multiple high scoring models
to approximate the underlying BN structure. One way of doing this is using
Markov Chain Monte Carlo (MCMC),more specifically Metropolis Hastings over
structures to get samples from posterior distribution before averaging over these
samples. Running the MCMC until convergence to the stationary distribution
P (G|D) and estimating the true DAG through averaging over the samples

24

3.3. MCMC over structures

DAGs, we get an approximation of the posterior probability of the existence
of a causal path from X to Y .This procedure is called Bayesian model averaging.

We define a Markov chain over the space of DAGs,restricting the max parent
set size to some upper limit. This Markov chain converges to the posterior
distribution P (G|D) if its designed carefully to be equal to the stationary
distribution for the chain. This is ensured by the chain being irreducible,
aperiodic, positively recurrent and the choice of the proposal distribution has to
satisfy the detailed balance. Condition,which is satisfied when the probability
of going from one DAG x to another DAG x′ is equal to going from x′ to
x.The characteristic of the chain is ensured by the construction of a satisfactory
proposal distribution, proposal distribution should not have the possibility of
jumping to far from the current accepted value because such a proposal will
fail to locate the correct neighbourhood depending on how big the jumps are.

In this article the proposal distribution T () is defined based on the neigh-
bourhood of the current BN structure which is constructed by adding,deleting
or reversing a single edge in the considered DAG, ensuring that acyclicity is
maintained.The proposal distribution for a given DAG is then defined as the
uniform distribution over the neighbourhood:

T (G|G′) =
{

1
|nbhd(G)| if G′ ∈ nbhd(G)
0 else

(3.36)

The acceptance probability then becomes:

p = min(1,
T (G|G′) · P (G′|D)
T (G′|G) · P (G|D)) (3.37)

= min(1,
T (G|G′) · P (D|G′)P (G′)

P (D))

T (G′|G) · P (D|G)P (G)
P (D)

) (3.38)

= min(1,
T (G|G′) · P (D|G′)P (G′)
T (G′|G) · P (D|G)P (G)) (3.39)

For the CPD-scores the graph prior is uniform over all graphs.The acceptance
probability gets reduced to:

p = min(1,
T (G|G′) · P (D|G′))
T (G′|G) · P (D|G)) (3.40)

If the proposed state is accepted the current state is set to G′, otherwise it is
set to G.
For CPD-scores, when convergence is reached we can hope to sample from
the I-equivalence class of the underlying BN structure that the data has been
generated from. The DAGs in the class will have the same scores, and the chain
would ideally circle around the neighbourhood of the equivalence class.

25

3.3. MCMC over structures

The deletes in the neighbourhoods ensures that there always is a probability for
the proposed DAG being simpler than the current DAG. The reverse operator
is there to make it easy to move back when the trajectory diverges from good
paths towards convergence. Since our BN structure scores are decomposable this
allows for only adding or subtracting one score from the currently accepted DAG
score to attain the score of the proposed DAG, when the difference between
the two DAGs is an add or delete. Reverse move has a delete and add but the
same logic requires the update of two scores. We will start the chain with a
"burn-in" period which is not only important for the trajectory to hit the target
neighbourhood but also because every sample is correlated with the starting
value. This correlation will never entirely disappear, but a long enough burn-in
is necessary for this correlation to be small enough so that it does not influence
the sample values to much. Once the samples are saved, one can compute
approximate posterior probabilities of various DAG features by averaging over
the sampled DAGs. In this case, we would like to find if there exist a directed
path between a variable and another. By first transforming each DAG in the
sample from G to (I − G)−1 which the geometric series

∑∞
n=1 Gn converges

to, one can find how many ways one could go from node j to node i, where i
is row in an adjacency matrix representing a DAG and j is column. Here the
interest is the existence of any such path. Therefore the next transformation
needed is to convert all positive matrix elements of (I − G)−1 to 1. Now by
summing element-wise all the matrices and dividing by the number of samples,
this information is attained. Each element in this matrix is approximated
posterior probability of there existing a directed path from node(row) j to node
(column) i.
The matrix we where referring to is known as the adjacency matrix. An
Adjacency matrix is a representation used both for directed and undirected
graphs. It is a one-zero matrix where each element represents the existence or
non-existence of an edge between two nodes. Depending on preference, either
one can interpret 1 in position (i, j) as the existence of an edge from i to j or
an edge from j to i. Here one choose the first,since the exact algorithm being
used to compare with uses this notation. A zero in place (i, j) of course means
the none-existence of an edge from i to j.

Order MCMC has been shown to be superior when it comes to convergence
and mixing compared to structure MCMC [GH08], the disadvantage being
each DAG has multiple orders. The MCMC chain could therefore deviate
substantially depending on the the chosen order in each iteration. The reason
for this is using order as DAG representation fails to determine the prior of a
DAG. Since one is sampling orders the prior is specified over orders. This is not
a problem when one has a lot of available data. We will focus on testing our
methods on relative small sample size and focus on implementing MCMC over
structures. Empirically, structure MCMC seem to be slow in mixing. Since
the moves in the space of DAGs is small,the sampler tends to get trapped in
local maxima more easily. There are ways to mitigate such issues and one way
is proposed in [GH08], where a new reversal move is introduced. The reason
is that the conventional reversal move does not take into consideration if the
reverse is useful or not in combination with the current parent set. For this
reason, Grzegorczyk and Husmeier proposed a new move called the REV move.

26

3.3. MCMC over structures

However this will not be implemented here.The reason for bringing up this
article is because it highlights some of the problems when implementing MCMC
both over orders and over structures.

Score search

The MCMC implemented for this work takes in a scorefile where all scores are
computed up to a max parent size. Each row in the scorefile includes the score
followed by the size of the parent-set and the specific parentset. The scores are
ordered and one can therefore find each score algorithmically.

This is the general pattern of score-file is illustrated in Figure 3.5.

Figure 3.5: Example of scorefile

The pattern repeats for every node. The first row gives the node and number
of values calculated for that node. After that, the scores are listed in the first
column. The second column contains how many parents the score in a specific
row is based on.The rest of every row contains the specific parent set.Every
parent set is an ordered set such that 1 comes before 2 and so on. All parent
sets for a specific node is ordered so that looking at any column in the columns
containing parents they also have this order when the parent set size is fixed.
One can find the index of each score by expressing the index as a sum of
binomial coefficients, plus the node index, plus the index of the first value with
a specific parent size. The nodes can be found by observing that in the first
column only natural numbers excluding zero in the column are the nodes. The

27

3.3. MCMC over structures

next column represents the parent size. This includes only positive integers.
Since all nodes have an equal number of parent set combinations, these indexes
are the same no matter if we are searching for parent set of specific size for
node 1, 5 or 14 and so on.
In addition, one needs a way to find the right index for a node within the set
of all same size parent sets. Here one can utilize the fact that we can express
the indexes as a sum of binomial coefficients. We use this method to find the
correct parents up until the last one where we can map the last parent to an
index between 1 to n i.e the number of nodes in the network. Since we exclude
the last parent, our parent combination has become reduced by one. The total
number of elements being chosen from has also been reduced by one because
the node that we are searching for can not be included in its own parent set.
It will be helpful to define some variables like ,cardinality of parent-set subtracted
by one PaX . Number of elements to choose from n subtracting one here as
well. To find first parent we have to iterate j in expression:(

n− j

|PaX |

)
j will give us the number of elements that have to be excluded in every step.Let
say the first parent is 4 for node X = 1. The cardinality of the parent set is 5
so |PaX | = 4. To find the first element in the scorefile with this specification,
we know that we have to jump over first parent being 2 or 3.

therefore we have to jump over :(
n− 1
|PaX |

)
+

(
n− 2
|PaX |

)
when jumping over 2 we have to remember that since we are finding parent
set for 1, 1 is not part of the parent set.When jumping over 3 we also have to
remember that 1 and 2 can’t be part of the any combination that starts with 3.
When we have found 4, the number of elements to chose from n has been
reduced by 2 for the next parent in the parent set and the size of the elements
we pick out has been reduced by 1. Now n = n − 2 and |PaX | = |PaX | − 1.
We continue like this until the next to last element in the parent set. For the
last element we know the lower bound and the upper-bound of the elements
that we have to search from. The upper bound is the number of nodes in the
network. The lower bound is the next to last element in the parent-set plus
1. The sequence we get is the natural numbers between those bounds. By
extracting the index of these elements in this interval,we have the last index.
Finally we can sum all of these components up.This method seemed to be much
more efficient then our function using general row search functions in R.

28

3.3. MCMC over structures

MCMC Algorithm

Algorithm 5. MCMC algorithm

G1 = inital BN Structure
Calculate initial P (G1, D)
X1 = P (G1, D)
Calculate initial neighbourhood NB(G1)
T (G′|G) = 1

|NB(G1)|
for t = 2 to T do

Save samples Gt for t after burn− in with thinning
Calculate initial neighbourhood NB(G′)
T (G|G′) = 1

|NB(G′)|
Choose one G′ uniformly from NB(G′)

if: X → Y in G but not in G′

Divide P (X → Y, D) to P (G, D)
Multiply P (∅ → Y, D) to P (G, D)
Set result equal to P (G′, D)

if: X → Y in G′ but not in G
Multiply P (X → Y, D) to P (G, D)
Divide P (∅ → Y, D) to P (G, D)
Set result equal to P (G′, D)

if : X → Y in G and X ← Y in G′

Divide P (X → Y, D) to P (G, D)
multiply P (X ← Y, D) to P (G, D)
Set result equal to P (G′, D)

AssignP (G′|D)
p = min(1, T (G|G′)∗P (G′|D)

T (G′|G)∗P (G|D))
g = sample uniform number from (0, 1)
if g ≤ p then

Xt = P (G′, D)
Gt = G′

T (G′|G) = T (G|G′)
end if

else:
Xt = Xt−1

end for
return samples

Algorithm.5 shows the pseudo-code of the MCMC algorithm.

29

3.3. MCMC over structures

Algorithm 3. scoremapfunction

Input:VEC(node,cardinality of parent set,parent set)
assign set1 1 to first parent in parent set excluding node.
assign set2, first node in parent set to last parent in parent set
assign set3 , 1 to first parent in parent set.
assign nr of parents except last l= |parent set|-1.
assign nr:nodes=nr of nodes except the node the score belongs to.
assign step=0.
assign n=1.
assign count=1.
while n!=0

if n==cardinality of parent set
BREAK

end if
if n=1

if node in set3
assign useset = set1

end if
else

assign useset = set3
end else

end if
else

assign useset = set2
end else
if n>=2

reduce useset by excluding the node in set2 from 1 to count
end if
assign count:2 = 0
for j in 1 to |useset|

if n>=2
count = count+1

end if
update count:2 = count:2+1
if useset[j] == VEC[(3+n-1)]

nr:nodes = nr:nodes-count:2
BREAK

end if
step= step +

(
nr:nodes−j

l

)
end for
n=n+1
l=l-1

end while
assign vector of elements from next to last node pluss one in parentset to
nr of nodes in DAG and find which index of last element.
if parentset only contains one element the While loop will not be
used.Therefore assign last parent index to index where parent is.
return nodeindex+ parentset size index+step+last parent index

30

3.4. Exact algorithm

Algorithm.3 shows the pseudo-code of the function that maps the parentsets
to the corresponding indexs in the scorefile

Algorithm 4. neighborhoodfunction

Input:adjacency-matrix,max parent size
assign index set H for add indexes, indexes where adjacency matrix is 0
assign index set K for reverse, indexes where adjacency matrix is 1
assign index set S for delete, indexes of where adjacency matrix is 1
remove indexes from H and K that would create parentset larger then
max parent size
assign D = {|H|, |K|, |S|}
for k in 1 to 3

for a in 1 to D[k]
if D[k] == |H|

add 1 to each element H[a] and check if the resulting graph
is a DAG using topological sort

if D[k] == |K|
reverse an element K[a] check if the resulting graph is a
DAG using topological sort.

if D[k] == |S|
delete edge setting 1 to 0 for S[a].

end for
end for
save all element-wise changes to adjacency matrix

Algorithm.4 shows the pseudo-code of the function for calculating the
neighbourhood of a DAG.

The basic idea of topological sort is to find an order containing all nodes in the
DAG. This order must abide by the principal of "ancestor before descendants".
Any node that is a descendant of some other node must come after this node. If
this is not possible, the graph is not a DAG,.i.e, it contains one or more cycles.
The algorithm ensures this by always marking the ancestors before descendants.
If a cycle exist then a node that is already marked will be visited and thus
failing the order principal.

3.4 Exact algorithm

The simulation study in this work will not only, compare the MCMC
approximation of the two methods, but it will also compare the MCMC algorithm
to the exact algorithm presented in the paper [Pen+20]. More specifically we
will use the part of the algorithm that computes exact posterior probabilities of
all pairwise ancestor relations, which corresponds to the existence of a causal
relationship. Our interest is not to quantify how strong these effects are,only
the existence. This algorithm can be applied up to a network of 20 variables.
We are using it as a ground truth. This algorithm estimates the best result of
our approach. In the following, we will give a brief overview of how it works.

31

3.4. Exact algorithm

We define V = {1, ..., n} as the nodes in a BN structure G.We will used Pai

to denote the parents of node i ∈ V . The algorithm calculates the posterior
probability of a DAG Gi given some data, under standard assumptions ,by the
formula:

P (Pai|D) = P (D)−1
∑

G:P ai

∏
v∈V

wv(Pav)

wv(Pav) stands for :

wv(Pav) = P (Dv|DP av
, Pav)qv(Pav)

wv(Pav) is the weight of node v when Pav is parent set of node v. qv(Pav) is

the node-wise contribution of node v to the prior P (G) . Since P (G) is modular,
P (G) can be decomposed into a product where each element in the product is
qv(Pav). Each term of the product of P (Gi|D) is a weight contribution of node
v to the posterior.
We define:

Wi(S) :=
∑

G:P ai=S

∏
v∈V

wv(Pav),

to be the un-normalized posteriors for two distinct nodes i, j ∈ V . The set S is
defined as S ⊆ V \ i for any fixed i.
By rearranging the sums in the expression,one can divide the problem of
computing the whole expression into smaller expressions, which is easier to
handle.One can re-express Wi(S) by partitioning the the sum product of weights
into three sum-product of weights, and at the end multiply all of them together.
The algorithm takes the advantage of this by re-expressing Wi(S) as:

Wi(S) =
∑

S⊆U⊆V \i

f(U)wi(S)bi(V \ i \ U)

where f(U) is the total weights of all DAGs of the non descendants of node i
“forward weights”, bi(V \ i \ U) is the total weights of all combinations of the
parent-sets Pav ⊆ V \ v “backward weights”, where v refers to all nodes that in
addition to being a parent to some other node, also is the descendant of i and at
the same time does not contribute in creating a cycle. By combining the set in
Pav with a specific non-descendant set U , one can construct all possible DAG’s,
having U as the non-descendants of i. One can do this for all possible U . The
decomposition is done by the intuitive fact that for every i the nodes can either
be a non-descendants of i or descendant, and if they are a descendant, they
might be a parent of some node within the set of descendants which the nodes
are part of,and this again can create different paths from i to some descendant
j. For every none-descendant set U , of varying size, one sums out these nodes
as they do not influence the path between i to j directly. By summing them
out one has detached that part of the DAG which does not contribute directly
to the path from i to j. One can write this mathematically as:

f(U) :=
∑

G∈G(U)

∏
v∈U

wv(Pav),

32

3.4. Exact algorithm

bi(T) :=
∑

G∈G(U)

∏
v∈U

wv(Pav),

where G(U) being all DAG’s generated by U .We define the set T = V \ {i} \ U
containing the descendants of node i under the conditions that:

• Pav ⊆ V \ v for each v ∈ T ,

• The directed graph (T ,∪v∈T uv : u ∈ Pav ∩ T) is acyclic,

• Every Pav intersect T ∪ i ,.i.e, is a descendant of i.

The details will be skipped.The key idea is that f(U) and bi(T) can be computed
efficiently through recursive recurrence relations [TH12].

An analogous formula exist when one wants to calculate direct ancestral path
between any node i and j in the DAG G.

P (i⇝ j|D) = p(D)−1
∑

G:i⇝j

∏
v∈V

wv(Pav)

Some of this bears resemblance to what we will do. We are also interested in
p(i⇝ j|D). The weights is our un-logged family scores where each un-logged
family score is multiplied together to attain the posterior of DAG’s given data.
However,our approach is different in the sense that we try to approximate the
same posterior target using MCMC.

33

CHAPTER 4

Simulation Study

4.1 Simulation setup

In this simulation study we will use the BNs Survey,Asia,Sachs and Child from
the BNlearn repository. Our first task will be to calculate CPT-scores and
CSI-scores before adding the chosen prior for each score type. The number of
parent sets increases rapidly with the number of nodes at the same time as
the growth in parameters is due to an increase in the value that every variable
take. Therefore, it is not feasible to calculate the scores for all parent sets
of the nodes when number of nodes in the network when it is large enough
and we will restrict the parent sets the max parent-size to 4 for the Sachs
and 3 for the Child network. The Sachs network has 11 variables and its
distribution consists 178 parameters and for an 11 variable network one can
create 11264 unique parent set combinations, while the Child network has 20
variables, 10485760 unique parent sets combinations and the distribution for this
network has 230 parameters. The rapid increase of the number of parent sets
and parameters is especially a problem when building the CSI-tree. Secondly,
we run MCMC and the exact algorithm based on the scores. We sample 20
data-sets of the same sample size for data samples sizes ns = 200, 500, 1000
for networks Asia,Sachs and Child. For Survey network the data sample size
will range over ns = 200, 500, 1000, 5000, 10000, 100000. This is because both
methods had problem in determining the underlying graph structure on sample
sizes ns = 200, 500, 1000 and gave nearly identical results for the two different
score types. The underlying graph structure for this network is the only member
of its I-equivalence class.
For each MCMC estimation and Exact algorithm estimation of the ancestral
paths an AUC will be calculated using the true direct ancestral paths as
benchmark. AUC is the area under the ROC-curve. Each point in this curve
arise from to coordinates (x=FPR,y=TPR).

TPR = TP

TP + FN
(4.1)

FPR = FP

FP + TP
. (4.2)

FPR is a ratio between the number of false positives compared to the number
of positives that is predicted to be positive by the method i.e the sum of actual
positives that the method correctly determined to be positive and the positives

34

4.1. Simulation setup

that the method defined to be positive but actually is negative based on the
threshold used to distinguish between positives and negatives. TPR is a ratio
between, the number of true positives that was captured compared to how
many that actually exist in reality based on the threshold used to distinguish
between positives and negatives. If both x and y is equal it means that the
ratios TPR and FPR are equal varying the threshold. One can denote this by
drawing the line y=x. If this is the output of the method it is not good.1. In
contrast,perfect accuracy would result in a ROC curve that goes through the
points (0,0),(0,1),(1,1),which also would result in an area of 1.

The way we can generate the points of the ROC curve is by first flattening
our estimate,which is in the form of a matrix, before sorting the elements
in decreasing order. The true underlying ancestral path matrix is flattened
and sorted in the same order. The flattened sorted estimate now provide the
thresholds. For each posterior probability we count how many 0’s exist above
and including this probability in the true underlying ancestral path vector
divide by total number of elements above an including the probability in the
true vector. This is also called FPR. For the TPR we count how many 1’s
above the probability exist and divide by total number of 1′s in the vector.
The AUC is then calculated using a package in R called CARROT, using the
flattened sorted matrices as input the AUC function. An example of a few ROC
curves is shown in Figure 4.1.

Figure 4.1: The following picture shows four ROC-curves on top of each other
for one CSI-score and one CPT-score calculated for the Asia network when
MCMC and the exact method is run on both scoretypes.The x-axis shows the
FPR and the y-axis shows the TPR

1Our experiments are done on a ASUS TUF GAMING F15 computer

35

4.2. Results

We use a uniform prior on the CPT scores because this prior has been shown to
work well for these types of scores. We will use the prior mentioned in section
3.2 for the CSI-scores. The graph prior hyper-parameter will be varied between
the values t = 0, t = 0.5, t = 2 for networks Asia,Survey and Sachs. One of the
hyper-parameter values will be used when running the MCMC. For network
Asia and Survey, t = 0 will be used to compare the MCMC AUC with the exact
algorithm AUC, while for the Sachs network t = 2 will be used. The rest of the
hyper-parameters will be tested on the networks with the exact algorithm. The
exact algorithm is slow when applied on the scores for the Child network which
contains 20 nodes. Therefore, we only run MCMC on this network together with
hyper-parameter for the graph prior fixed to t = 0.5.[Pen+15] empirically found
that t = 0.5 works well in the context of density estimation.We will run MCMC
on Survey,Asia and Child networks with a burn-in of 150000. Every 10’th
sample after that will be gathered until 200000 iterations. The Sachs network
MCMC will be run with a burn-in of 250000.Every 10’th sample after that
will be gathered until 300000 iterations. For larger networks it can sometimes
take longer for the MCMC to converge. However due to computational cost of
topological sort used in the computation of the neighbourhood of the proposed
DAG for larger networks the MCMC,we fix the number of iterations with this
in mind.
The cPDAGs will be shown for each network to illustrate the complexity of
learning the correct edges in the networks illustrated in Figure 4.2,4.6,4.10 and
4.16.

4.2 Results

The following section will be dedicated for illustrating the results from the
simulation study mostly in the form of box-plots. A small experimental error
was made when running the MCMC for networks Asia and Survey. The CPT-
score and CSI-score was tested on different data-sets. For these networks the
2X2 grid plot in Figure 4.3,4.7, have to be looked at column-wise only. Each
of the columns shows how close the MCMC results are compared to the exact
algorithm. An additional box-plot is included using only the exact algorithm
on both CPT-scores and CSI-scores on the same datasets in order to compare
the result of the two scoring methods for these networks, shown in Figure 4.4
and 4.8. This is done for computational reasons.
Further Figure 4.5(Survey network) ,4.9(Asia network) shows plots using the
exact algorithm with CSI-score tested on the hyper-parameters not used when
comparing the CPT-score and CSI-score in Figure 4.4 for Survey network, and
Figure 4.7 for the Asia network .
Figure 4.11 , 4.12 and 4.13 shows AUC results for the Sachs network. In
Figure 4.11 the small error was corrected. The grid plot can be compared both
column-wise and row-wise when comparing AUC for ancestral paths.Figure 4.12
show AUC for direct causal relations for the Sachs network, while Figure 4.13
shows the results of the AUC with CSI-score for the rest of the hyper-paramters
not used in Figure 4.11. No Figure like Figure 4.12 is added for the Survey
Network and Asia network because of the small error made. Figure 4.12 is still
added for illustration. Figure 4.14 shows a convergence plot of the MCMC when
compared to the exact algorithm for network Survey,Asia,Sachs network both

36

4.2. Results

for CSI-score and CPT score.Figure 4.17 shows the AUC for ancestral paths
of the Child network both when using CSI-scores and CPT-score with MCMC
with the same datasets. Figure 4.18 shows the AUC for direct causal relations
of the Child network both when using CSI-scores and CPT-score with MCMC.

37

4.2. Results

S

E

RO

T

A

(a) Survey Network
(b) Figure illustrates the CPDAG for Sur-
vey Network

Figure 4.2

Figure 4.3: This plot is for the Survey network. The box-plot in upper left
corner shows AUC ancestral path directions using MCMC with CSI-score.The
box-plot on lower left corner shows AUC using the exact-algorithm with CSI-
score.The sample sizes for these vary with ns=500,1000,2500,5000,10000.The
box-plot in upper right corner shows AUC using MCMC with CPT-
score.The box-plot in lower right corner shows AUC estimates using
exact algorithm with CPT-score.The sample sizes for these vary with
ns=500,1000,2500,5000,10000,100000.The CPT scores are calculated on dif-
ferent data-sets then the CSI-score.The comparison is done column-wise.

38

4.2. Results

Figure 4.4: This plot is for the Survey network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset using the exact algorithm.This is done using the exact-algorithm.Upper
box-plot shows the result for the CSI-score.The CSI-scores are calculated with
the hyper-parameter of the prior set to t=0

39

4.2. Results

Figure 4.5: This plot is for the Surevy network.The plot on the right shows
AUC for prediction of ancestral paths for the Survey network using prior hyper-
parameter t=0.5.On the left,The hyperparameter was set to t=2.This plot is
generated using the exact algorithm with CSI-score.

40

4.2. Results

smoke

bronclung

either dysp

tub

asia

xray

(a) Asia network
(b) Figure illustrates

the CPDAG for Asia Network

Figure 4.6

41

4.2. Results

0.5

0.6

0.7

0.8

0.9

1.0

200 500 1000
ns

A
U

C

200

400

600

800

1000
ns

0.6

0.7

0.8

0.9

1.0

200 500 1000
ns

A
U

C

200

400

600

800

1000
ns

0.5

0.6

0.7

0.8

0.9

1.0

200 500 1000
ns

A
U

C

200

400

600

800

1000
ns

0.7

0.8

0.9

1.0

200 500 1000
ns

A
U

C

200

400

600

800

1000
ns

Figure 4.7: This plot is for the Asia network.The box-plot in upper left corner
shows AUC for prediction of ancestral paths using MCMC with CSI-score.The
box-plot on lower left corner shows AUC using the exact-algorithm on CSI-
score.The sample sizes for these vary with ns=200,500,1000.The box-plot in
upper right corner shows AUC using MCMC with CPT-score.The box-plot
in lower right corner shows AUC using exact algorithm with CPT-score.The
sample sizes for these vary with ns=200,500,1000.The CPT scores are calculated
on different data-sets then the CSI-score.The comparison is done column-wise.

42

4.2. Results

Figure 4.8: This plot is for the Asia network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset.This is done using the exact-algorithm.Upper box-plot shows the result
for CSI-score.The CSI-scores are calculated with the hyper-parameter of the
prior set to t=0

43

4.2. Results

Figure 4.9: This plot is for the Asia network.Figure to the right shows AUC
for prediction of ancestral paths prior hyper-parameter t=0.5.On the left,the
hyper-parameter was set to t=2.This plot is generated using the exact algorithm.

44

4.2. Results

PKC

PKA

Raf

Mek

Erk

Akt

Jnk xray

(a) Sachs network

Plcg

P ip3

Pip2

(b) Figure illustrates the CPDAG for Sachs Network

Figure 4.10

45

4.2. Results

Figure 4.11: This plot is for the Sachs network.The box-plot in upper left
corner shows AUC for prediction of ancestral paths using MCMC with CSI-
score.The box-plot on lower left corner shows AUC using exact-algorithm with
CSI-score.The sample sizes for these vary with ns=200,500,1000.The box-plot
in upper right corner shows AUC using MCMC with CPT-score.The box-plot
in lower right corner shows AUC estimates using exact algorithm with CPT-
score.The sample sizes for these vary with ns=200,500,1000.The CPT scores
were calculated on the same data-sets as the CSI-score.The CSI-scores were
calculated with the hyper-parameter of the prior set to t=2.

46

4.2. Results

Figure 4.12: This plot is for the Sachs network.Figure to the right shows AUC
for prediction of ancestral paths with the prior hyper-parameter t=0.On the
left,the hyper-parameter was set to t=0.5.This plot was generated using the
exact algorithm with the CSI-score.

47

4.2. Results

Figure 4.13: This plot is for the Sachs network.Box plots showing AUC for
predicting direct causal relations using CSI-score and CPT-scores on the same
data-set.This is done using MCMC. The upper box-plot shows the result for
CSI-score which was calculated with t=2.

48

4.2. Results

(a) Convergence plot for Survey Network (b) Convergence plot for Asia Network

(c) Convergence plot for Sachs Network

Figure 4.14: Convergence plot for network Asia,Survey and Sachs.In each plot
the upper figures compares the result of 20 MCMC runs compared to the
exact algorithm for CSI-score while the plot below shows the comparison for
CPT-scores

49

4.2. Results

BirthAsphixia

Disease

DuctF lowSick CardiaMixing LungParench LungF low LV H

LV HreportChestXrayCO2HypoxianInO2HypDistribGruntingAge

GruntingReport LowerBodyO2 RUQO2 CO2Report XrayReport

Figure 4.15: Child network

Figure 4.16: Figure illustrates the CPDAG for Survey Network

50

4.2. Results

Figure 4.17: This plot is for the Child network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset.This is done using the MCMC.Upper box-plot shows the result for
CSI-score.The CSI-scores are calculated with the hyper-parameter of the prior
set to t=0.5.

51

4.2. Results

Figure 4.18: This plot is for the Child network.Box plots showing AUC for
predicting direct causal relations using CSI-score and CPT-scores on the same
data-set.This is done using MCMC. The upper box-plot shows the result for
CSI-score which was calculated with t=0.5.

52

4.3. Discussion of results

4.3 Discussion of results

From the plots comparing the AUC results of the MCMC compared to the
exact method one see that they look similar, but there is a bit more variance
for MCMC results. The convergence plots in Figure 3.16 of the Sachs network
and the Survey network shows some tendency of bad mixing. This is apparent
in the plot for the Sachs network to a much larger extent. The structure
MCMC implemented is known for having this problem.One reason for this is the
preposed moves in the space of DAGs being small. The convergence therefore
can be expected to be slow especially for larger networks. The AUC plot shows
that this problem is not a hinder for good AUC accuracy.
One see that the prior hyper-parameter has a big influence on the result for the
CSI-scores. For each dataset and BN structure there is some optimal parameter.
This hyper-parameter is not possible to find when the underlying BN structure
is not known. We are testing our method on known structures in order to
see which method performs better when applied to data-sets where the true
BN structure is not known. Our method of comparing the methods require
that the true BN is known. Therefore we do not try to pinpoint the optimal
hyper-parameter through some iterative method. We choose the approach of
testing a few values for the hyper-parameter in order to see whether the result
changes.
One can see from the box-plot of the Asia network and the Survey network
that t=0 (a uniform prior) in Figures 4.4 and Figures 4.8 does better then
enforcing sparsity on the structures by increasing the value of t (Figure 4.5 and
4.9). The Sachs network is kind of the outlier here because the improvement is
big when setting t=2 in Figure 4.11 compared to when t=0 or t=0.5(Figure
4.12).However, even when t=2, the CSI-score still does worse compared to
the CPT scores when looking at sample sizes 500 and 1000. This observation
can indicate that for some networks and for some dataset sizes it is best to
treat more parameters as different instead of putting them equal.In a certain
dataset the parameters might seem similar to each other.One should therefore
be cautious. Depending on if the methods perform equally well or poorly the
reasons are different. When the dataset is able to capture important parameter
equalities that exist in the true distribution,this might lead to the result being
improved or staying equal.The equality might come from that the direction of
the edges implied by the data are irrelevant in the CSI-equivalence class when
using CSI-score and I-equivalence class when using CPT-score.It can also mean
that the CSI trees grows fully giving full CPD representations.For the case
where the methods perform equally poorly, if the true parameters are almost
equal, then in the empirical distribution they might become more equal when
the data sample size is small. Parameter reduction in this case will not help
to determine which parameters actually is equal within the set of parameters
that seems to be equal from the data.In addition, when the dataset is to small
it is hard to compute any of the parameters accurately. The CPD tables of
the Survey network could be explained by this logic. The parameters that
involve node E when E is both part of the parent set and when the parameter
is a probability of a value E given its parent set, are almost equal in the true
distribution, and 4 out of 7 edges in the BN network are attached to E.For
ns = 200, 500, 1000, the two methods perform equally poorly which can be seen
in Figure 4.4.

53

4.3. Discussion of results

How close to equal some parameters within the CPTs for the true distribution
are will determine the result of setting them explicitly equal based on the dataset
generated from this distribution and at the same time determine how close the
estimate of the two methods are. If the dataset make the parameters seem
more equal then they are,the csi-method will underperform because it might set
parameters equal when the minor difference in the empirical distribution is based
on actual inequality in the true distribution. At some point the distribution
starts being captured by the data-set when the sample size is increased. On
these datasets setting equality when the parameters seem to be equal in the
empirical distribution has the advantage of resulting in more data for each
parameter estimation without having the downside of ignoring the parameters
that are not equal in the true distribution. We are using a greedy algorithm
which means that we will not be able to find the optimal parameter reduction.
What the greedy algorithm does for us is ranking the parents in the parent set
of a node through putting equality on some of the parameters based on the data
while ignoring others. If the data reflect the distribution, one should be able to
find some of the important parents.If all the parameter equalities given that the
dataset reflect the true distribution had been found one would be able to find
more important parents. By finding important parents, one has determined
the edge direction of certain edges in global structure thus hopefully making it
easier to find the edge directions of the true underlying BN structure.
When the data is large enough, the edge direction becomes apparent
automatically at least for these networks where the underlying true distribution
is known.We can see that for the network Asia and Child network for sample
size ns=1000, there is a variance reduction and a small increase in mean value
for the CSI based scores compared to the CPT based scores. For the Survey
network, an improvement is made when ns = 5000. The Sachs network might
show what is illuded to above,where the data-set does not reflect the distribution
well enough, so that parameter equality does not have a positive effect. This is
the case for all sample sizes. Setting parameter equal in this situation might be
giving a disproportionate probability to the wrong edges. Here it seems that
enforcing full CPD representations work better then estimating some of them
more accurately.

54

CHAPTER 5

Conclusion

In this work we have considered the problem of inferring causal relationships
from data. For this purpose, we presented the framework Bayesian networks
in order to define the problem of doing causal discovery given data into a
structure learning problem. We defined the concept of conditional independence
seen through the graph structure of the framework together with how the
independencies in an accommodating family of distributions (CPD Tables) can
be captured by the graph structure.We then defined the relationship between a
BN and a causal model, which is mainly that the edged of the BN entails a causal
relation.In addition, we defined the concept of context-specific independence
for CPD Tables in form of a CSI-tree, which is a more general way of looking
at conditional independence.
We introduced the Bayesian score illustrated its decomposability properties,
which we used further in order to be able to compute the score more efficiently, by
computing its components scores separately before later putting them together.
More specifically,we illustrated that the components scores are the node-wise
contributions condition on its parents joint configurations. We defined the
standard methodology of computing the Bayesian score, under standard CPT-
tables, before defining our methodology of computing the score under CSI-trees
learned with the help of greedy hill climb.
In order to take into account the uncertainty that exist in learning causal
models, we considered two algorithms Marcov Chain Monte Carlo(MCMC)
over structures and a state-of-the-art dynamic programming algorithm used
together with Bayesian model averaging in order to estimate the models posterior
distribution given data. We applied the considered approach in a simulation
study.
The procedures was compared by generating data from known BNs, applying
the different procedures and illustrating the comparisons with box-plots of
AUC.Finally, we ended with some discussion of the results. A comparison
between CPTs and CSI-trees show that no significant improvement was made
on the tested networks .However for some data sizes some improvement could
be seen. One reason might be that no exact CSI-tree representation of the
conditional distribution exist for these networks, since the true distributions are
defined through CPD tables. Another reason might be that it was necessary to
regulate the model fit with a model structure prior to avoid overfitting in the
learning process. The prior used in this work might have been suboptimal. A
comparison between MCMC and state-the-art dynamic programming algorithm

55

shows that the result under AUC are similar, however the convergence of the
MCMC over structure for some networks tested was slow.

56

Bibliography

ref8 [Gel+04] Gelman, A. et al. Bayesian Data Analysis. 2nd ed. Chapman and
Hall/CRC, 2004.

ref3 [GH08] Grzegorczyk, M. and Husmeier, D. ‘Improving the structure MCMC
sampler for Bayesian networks by introducing a new edge reversal
move’. In: Machine Learning vol. 71 (June 2008), pp. 265–305.

ref6 [HGC95] Heckerman, D., Geiger, D. and Chickering, D. ‘Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data’. In:
Machine Learning vol. 20 (Sept. 1995), pp. 197–243.

ref2 [KF09] Koller, D. and Friedman, N. Probabilistic Graphical Models: Prin-
ciples and Techniques. Adaptive computation and machine learning.
MIT Press, 2009.

ref5 [Pen+13] Pensar, J. et al. ‘Labeled Directed Acyclic Graphs: a generalization
of context-specific independence in directed graphical models’. In:
Data Mining and Knowledge Discovery vol. 29 (Oct. 2013).

ref4 [Pen+15] Pensar, J. et al. ‘The role of local partial independence in learning
of Bayesian networks’. In: International Journal of Approximate
Reasoning vol. 69 (Nov. 2015).

ref7 [Pen+20] Pensar, J. et al. ‘A Bayesian Approach for Estimating Causal Effects
from Observational Data’. In: Proceedings of the AAAI Conference
on Artificial Intelligence vol. 34 (Apr. 2020), pp. 5395–5402.

ref1 [TH12] Tian, J. and He, R. ‘Computing Posterior Probabilities of Structural
Features in Bayesian Networks’. In: CoRR vol. abs/1205.2612 (2012).
arXiv: 1205.2612.

57

https://arxiv.org/abs/1205.2612

APPENDIX A

R code

A.1 Main File

1
2
3
4
5 #import packages.
6 library(bnlearn)
7 library(MASS)
8 library(tidyverse)
9 library(CARRoT)

10 library(data.table)
11 library(gRbase)
12
13
14
15 source("runfile_apply.R")
16 source("run_apply_csi.R")
17 source("neede_functions_MCMC.R")
18
19
20
21 #load rda file of networks from bnlearn repository.
22
23 load("asia.rda")
24 load("survey.rda")
25 load("sachs.rda")
26 load("child.rda")
27 load("earthquake.rda")
28 load("alarm.rda")
29
30
31
32 #generate cpdag of loaded network.
33 d=cpdag(bn)
34
35
36 library(graph)
37 library(igraph)
38 #plot cpdag.
39 plot(as_graphnel(as.igraph(d)))
40
41
42 #detach packages because they had a conflict with Rbase library.
43 detach("package:gRbase", unload=TRUE)
44 detach("package:igraph", unload=TRUE)
45
46
47 #adjacency matrix of loaded network.
48 true_matrix=amat(bn)
49
50
51 #Direct ancestral relatoin matrix for loaded network.
52 true_matrix_1=solve(diag(11)-(true_matrix))
53 true_matrix_1=1*apply(true_matrix_1, 2, function(x) x>=1)
54
55
56 #nr of nodes in network.
57 nr_nodes=11
58 #maxparentsize for scorefile.
59 max_parent_size=4
60
61
62 #find how many values each variable in network takes by generating a large dataset.
63 data <- rbn(x = bn, n = 100000)
64
65 data_set_large=as.data.frame(map_df(data, as.numeric))
66
67 p=lapply(1:nr_nodes, function(x){unique(data_set_large[,x])})
68
69

58

A.1. Main File

70 #
###

71 #Function:write_func
72 #

###

73 #Input:
74 #read_this: path of scorefile containing P(D|G).
75
76 #nr_nodes:how many nodes in network.
77
78 #paramter:how many parentcombinations for each node.
79
80 #name:what name should be given to new scorefile containing P(G,D).
81 #t:tuning paramter for prior.
82 #nr_data:how many data samples is scorefile based on
83
84 #Output:scorefile containing scores P(G,D)
85
86
87 #This function adds prior for graph G added on the P(D|G) contained in scorefile , in

order to estimate P(G,D).
88 #

##

89 write_func=function(read_this,nr_nodes,parameter,name,t,nr_data){
90
91 # These rows in scorefile are excluded sinse these rows contains node together with how

many parent-combination of that node.
92 seqq=c(seq(1,nr_nodes*parameter,parameter)+1:nr_nodes,1)93
94 #Add prior on rest of the rows.
95 for(i in setdiff(1:nrow(read_this),seqq)){
96 component=as.numeric(strsplit(read_this[i,]," ")[[1]])
97 component[1]=component[1]-(1+t)^(length(component)-2)*log(nr_data)98
99 read_this[i,]=gsub(",","",toString(component))

100
101 }
102
103 #convert scorefile back to type .score
104 colnames(read_this)=NULL
105
106
107
108 read_this_name=paste0(’C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_

sachs/n200/t05/’,"temp.",name,".score")
109 #write new scorefile
110 write.matrix(read_this,sep=" , ",file=read_this_name)
111
112
113
114
115 }
116
117
118
119 #

###

120 #Function:run_write
121 #

###

122 #Input:
123 #nr_of:how many scorefiles should be made.
124
125 #nr_nodes:how many nodes in network.
126
127 #paramter:how many parentcombinations for each node.
128
129 #t:tuning paramter for prior.
130
131 #nr_data:how many data samples is scorefile based on
132
133 #Output:scorefiles containing scores P(G,D)
134
135
136 #This function adds prior for multiple scorefiles where how many scorefiles are specified

by nr_of.
137 #

##

138
139
140 run_write=function(nr_of,parameter,nr_nodes,t,nr_data){
141
142 for(j in 1:nr_of){
143 add=samp[j]
144 pas_string=toString(add)
145 if(k==1){
146 score_type=paste0("cat","type",pas_string)}
147 if(k==2){
148 score_type=paste0("csi","type",pas_string)
149 }
150 # define path of scorefiles
151 read_this=paste0(’C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_sachs/

n200/’,"temp.",score_type,".score")
152 read_this=read.csv(file = read_this, header = FALSE)
153
154 #calling write_func

59

A.1. Main File

155 write_func(read_this,nr_nodes,parameter,score_type,t,nr_data)
156
157 }
158
159
160
161 }
162
163 # Input variables for prior function write_func.
164 #Index names for score files.
165 samp=3:22
166 #If k=1 scorefile name is of cattype if k=2 scorefile name is of csitype.
167 k=1
168 #Number of parent combinations for each node.
169 parameter=386
170 #nr_nodes assigns how many nodes in network.
171 nr_nodes=11
172
173 #Tuning paramter of prior.
174 t=0.5
175 #Size of the data the scores are calculated from.
176 nr_data=200
177 #Add prior on 20 score files.
178 run_write(20,parameter,nr_nodes,t,nr_data)
179
180
181 #

###

182 #Function:run_func_1
183 #

###

184 #Input:
185 #max_parent_size:max parent size for scorefile.
186
187 #nr_nodes:how many nodes in network.
188
189 #paramter:how many parentcombinations for each node.
190
191 #j:iterator index.
192
193 #p:contains a list of lists where each list contains the values of a node in the network.
194
195 #k:is a vector used to set name on scorefile depending on if the scorefile is CSI type or

CPT type.
196
197
198 #Output:scorefiles containing scores P(D|G).
199
200
201 #This function calculates the scorefiles cotaining all P(D|G).
202 #

##

203
204
205 run_func_1=function(max_parent_size,nr_nodes,j,p,k){
206
207 #generate data of size ns from loaded network
208 data <- rbn(x = bn, n = ns)
209 #convert variables from factor to numeric
210 data_set=as.data.frame(map_df(data, as.numeric))
211 #convert to data.table
212 setDT(data_set)
213
214
215 add=j+samp
216 pas_string=toString(add)
217
218 #Set name of scorefile.based on k scorefile name changes
219 if(k[1]==1){
220 score_type_1=paste0("cat","type",pas_string)}
221 if(k[2]==2){
222 score_type_2=paste0("csi","type",pas_string)
223 }
224
225 #calulates and writes CPT based log-marginal likelihood to scorefile
226 csitree_calc_parent_score_to_file_2(data_set,score_type_1 , max_parent_size, file_out="

temp",p)
227 #calulates and writes CSI based log-marginal likelihood to scorefile
228 csitree_calc_parent_score_to_file_3(data_set,score_type_2 , max_parent_size, file_out="

temp",p)
229
230 }
231
232
233 #

###

234 #Function:run_func_2
235 #

###

236 #Input:
237 #max_parent_size:max parent size for scorefile.
238
239 #nr_nodes:how many nodes in network.
240
241 #true_matrix:some transformation of the adjacency matrix of the network
242

60

A.1. Main File

243 #j:iterator index.
244
245 #p:contains a list of lists where each list contains the values of a node in the network
246
247 #cpt_or_csi:which scoretype to run MCMC on.
248
249
250 #Output:AUC
251
252
253 #This runs MCMC over a scorefile
254 #

##

255
256
257 run_func_2=function(max_parent_size,nr_nodes,j,p,true_matrix,cpt_or_csi){
258
259 add=j+samp
260 pas_string=toString(add)
261 if(cpt_or_csi==1){
262 score_type=paste0("cat","type",pas_string)}
263 if(cpt_or_csi==2){
264 score_type=paste0("csi","type",pas_string)
265 }
266
267 #read scorefiles
268 read_this=paste0(’C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_sachs/

t2/’,"temp.",score_type,".score")
269 read_this=read.csv(file = read_this, header = FALSE)
270 #run MCMC
271 MCMC_AUC=func_MCMC(read_this,true_matrix,max_parent_size,j,nr_nodes,ns,cpt_or_csi)
272
273 return(MCMC_AUC)
274 }
275
276
277 #Adding length of previous run.
278 samp=20
279
280 #Set data size.
281 ns=1000
282 #How many data files.
283 n=20
284 #Which score type.
285 k=c(1,2)
286
287 cpt_or_csi=1
288
289 #Run in parallel.
290 #Import packages needed for parallel runs.
291 library(parallel)
292 library(doSNOW)
293 #Divide processor into smaller clusters.
294 cl <- makeCluster(6,type = "SOCK",outfile="log.txt")
295 registerDoSNOW(cl)
296
297
298
299
300 #Feed clusters functions the input variables needed.
301 clusterExport(cl,c("func","func_2","samp","bn","k","cpt_or_csi","p","run_func_1","run_func

_2","cat_calc_parent_score_to_fil_3_plane","CSI_tree_apply_imp_3_mat_B_3","csitree_
calc_parent_score_to_file_3","csitree_calc_parent_score_to_file_2","func_MCMC","ns",
"max_parent_size","nr_nodes","true_matrix_1","n"),envir = environment())

302
303
304
305
306 #import libraries for each cluster.
307 clusterEvalQ(cl, c(library(data.table),library(MASS)
308 ,library(tidyverse)
309 ,library(CARRoT),library(bnlearn),library(gRbase)))
310
311
312 #calculate scorefiles.
313 parLapply(cl,1:n,function(x){run_func_1(max_parent_size,nr_nodes,x,p,k)})
314
315 #Run MCMC on them and return AUC vector of all runs either for csi-score or for cpt score.
316 AUC_vec=unlist(parLapply(cl,1:n,function(x){run_func_2(max_parent_size,nr_nodes,x,p,true_

matrix_1,cpt_or_csi)}))
317
318
319
320
321 # Stop cluster on master
322 stopCluster(cl)
323
324
325
326
327
328 #All plots are generated with a similar construction to the following code.
329 #Make an empty list where every element in the list will be a matrix.There will be four

matrices each one containing the AUC of CSI score results using MCMC,
330 #CSI score AUC using exact algortihm,CPT score AUC using MCMC and CPT score AUC using

exact algortihm.
331 #Every column in the matrices represents the result for a specific data sample size
332 Plot_list=list()
333 #we will generate 20 AUC for every data sample size
334 #set k=1

61

A.1. Main File

335 k=1
336 #set m=20
337 m=20
338 # ns defines the domain of data sample sizes
339 ns=c(1000,500,200)
340 #define empty AUC vector
341 AUC_calc=matrix(0,20,1)
342 #for 4 different methods of computing AUC
343 for(j in 1:4){
344 #for all sample sizes
345 for(i in 1:length(ns)){
346 #if CSI score posterior ansectral path matrices using MCMC
347 if(j==1){
348 #extract names of all matrices
349 matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/csi_sachs/direct_cause/joint", pattern=NULL, all.files=FALSE,
350 full.names=FALSE)
351 match_sring=grep(toString(ns[i]),matrix_name_extract)
352 matrix_name_extract=matrix_name_extract[match_sring]
353
354
355
356
357 matrix_name_extract=sort(matrix_name_extract,decreasing = TRUE)
358
359 paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/cat_

sachs/direct_cause/joint/",matrix_name_extract)
360
361
362 paste_to_each=lapply(1:length(paste_to_each),function(x)gsub(" ", "", paste_to_each[x])

)
363 }
364 #if CPT score posterior ansectral path matrices using MCMC
365 if(j==2){
366
367
368 #extract names of files containing matrices
369 matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/cat_sachs/direct_cause/joint", pattern=NULL, all.files=FALSE,
370 full.names=FALSE)
371
372
373
374 match_sring=grep(toString(ns[i]),matrix_name_extract)
375 matrix_name_extract=matrix_name_extract[match_sring]
376
377
378
379
380 matrix_name_extract=sort(matrix_name_extract,decreasing = TRUE)
381
382 paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/cat_

sachs/direct_cause/joint/",matrix_name_extract)
383
384
385 paste_to_each=lapply(1:length(paste_to_each),function(x)gsub(" ", "", paste_to_each[x])

)
386
387
388 }
389
390 #if CSI score posterior ansectral path matrices using exact algorithm
391 if(j==3){
392 #extract names of files containing matrices
393 matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/exact_csi_sachs/t0", pattern=NULL, all.files=FALSE,
394 full.names=FALSE)
395
396
397
398 paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/exact_

csi_sachs/t0/",matrix_name_extract)
399
400 paste_to_each=paste_to_each[order(as.numeric(gsub("[^0-9]+", "", paste_to_each)))]
401
402
403 paste_to_each=lapply(1:length(paste_to_each),function(x)gsub(" ", "", paste_to_each[x])

)[k:m]
404
405
406 }
407
408
409 #if CPT score posterior ansectral path matrices using exact algorithm
410 if(j==4){
411 #extract names of files containing matrices
412 matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/exact_cat_survey", pattern=NULL, all.files=FALSE,
413 full.names=FALSE)
414
415
416
417 paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/exact_

cat_survey/",matrix_name_extract)
418
419 paste_to_each=paste_to_each[order(as.numeric(gsub("[^0-9]+", "", paste_to_each)))]
420
421 paste_to_each=lapply(1:length(paste_to_each),function(x)gsub(" ", "", paste_to_each[x])

)[k:m]
422
423

62

A.1. Main File

424
425 }
426
427
428 #Extract matrices
429 Matrix_vec=lapply(1:length(paste_to_each),function(x)unname(as.matrix(read.csv(file =

paste_to_each[[x]], header = FALSE))))
430
431 #if matrices is from exact algorithm elements becomes strings.We have to convert them

to numeric matrices
432 if(j>2){
433 Matrix_vec=lapply(1:length(paste_to_each),function(x)Matrix_vec[[x]][-1,])
434
435
436 Matrix_vec=lapply(1:length(paste_to_each),function(x){matrix(as.numeric(Matrix_vec[[x

]]),ncol = ncol(Matrix_vec[[x]]))})
437
438
439
440
441
442 }
443
444
445 #use class_prob to get matrix of two columns.First column reprsents estimated ancestral

path probabilities sorted in a decending way.Second column
446 #represents true ancestral vector matrix sorted in the same order as estimated

probabilities.
447 AUC_input=lapply(1:length(Matrix_vec),function(x)class_prob(Matrix_vec[[x]]))
448
449 #concatinate zero vector with AUC vector of every estimated matrix for ns[i]
450 AUC_calc=cbind(AUC_calc,do.call(rbind,lapply(1:length(Matrix_vec),function(x)AUC(AUC_

input[[x]][,1], AUC_input[[x]][,2]))))
451
452 k=k+20
453 m=m+20
454 }
455 #Fill in matrices into list
456 Plot_list[[j]]=AUC_calc
457 k=1
458 m=20
459 #redefine zero vector for each j
460 AUC_calc=matrix(0,20,1)
461
462 }
463
464
465
466
467
468
469
470 #remove zero vector from all matrices
471 Plot_list=lapply(1:length(Plot_list),function(x) as.matrix(Plot_list[[x]][,-1]))
472
473
474 #import ggplot2
475 library(ggplot2)
476
477
478
479 #Rechape every matrix in Plot_list to a vector and concatinate it with an indicator vector

of which column in belonged to
480 box_matrix=lapply(1:4,function(z){Reduce("rbind",
481 Reduce("rbind",lapply(1:ncol(Plot_list[[z]]),function(y){lapply(1:nrow(Plot_list[[z]]),
482 function(x){cbind(Plot_list[[z]][x,y],y*as.numeric(x>0))})})))})
483 #give name to every element in box_matrix
484 lapply(1:length(box_matrix),function(x)colnames(box_matrix[[x]])<<-c("AUC","ns"))
485
486
487 #if sorting was done wrong reshuffle an the scale x axis correctely
488 for(i in 1:4){
489 if(i==1){
490 ns=c(1000,500,200)
491
492
493
494
495 apply(matrix(1:nrow(box_matrix[[i]]),1,nrow(box_matrix[[i]])),2,function(x){box_matrix[[

i]][x,2]<<-ns[box_matrix[[i]][x,2]]})
496 }
497 if(i==2){
498 ns=c(1000,500,200)
499
500
501 apply(matrix(1:nrow(box_matrix[[i]]),1,nrow(box_matrix[[i]])),2,function(x){box_matrix[[

i]][x,2]<<-ns[box_matrix[[i]][x,2]]})
502 }
503
504 if(i==3){
505 ns=c(1000,500,200)
506
507 apply(matrix(1:nrow(box_matrix[[i]]),1,nrow(box_matrix[[i]])),2,function(x){box_matrix[[

i]][x,2]<<-ns[box_matrix[[i]][x,2]]})
508 }
509
510 if(i==4){
511 ns=c(500,200,1000)
512
513
514 apply(matrix(1:nrow(box_matrix[[i]]),1,nrow(box_matrix[[i]])),2,function(x){box_matrix[[

63

A.1. Main File

i]][x,2]<<-ns[box_matrix[[i]][x,2]]})
515
516 }
517 }
518
519 #assign each plot to a variable and generate boxplot for each variable
520 for(i in 1:length(box_matrix)){
521 token_seq=paste("token_",i,"")
522
523 assign(token_seq,ggplot(as.data.frame(box_matrix[[i]]), aes(x=(samples=factor(ns)), y=AUC

,color=ns)) + labs(y= "AUC", x = "ns")
524 +geom_boxplot(outlier.color="black"))
525 }
526
527 library(gridExtra)
528 #plot a grid-plot of all box-plots
529 grid.arrange(‘token_ 1 ‘,‘token_ 2 ‘,‘token_ 3 ‘,‘token_ 4 ‘)
530
531
532
533
534
535 #

###

536 #Function:compute_roc
537 #

###

538 #Input:
539 #compare:estimated ancestral path matrix .
540
541 #i:depending on i the color of the plot changes.
542
543
544
545
546 #Output:Roc curve
547
548
549 #This function for generating Roc curves
550 #

##

551
552 compute_roc=function(compare,i){
553 #list of colors of plot
554 color=c("red","blue","yellow","brown")
555
556 #flatten matrix to vector
557 rechape_compare=c(compare)
558 #attain order of rechape_compare
559 rechape_compare_order=order(rechape_compare,decreasing = TRUE)
560
561 #order rechape_compare in descending order
562 order_MCMC=rechape_compare[rechape_compare_order]
563
564 #flatten true ancestral path matrix
565 rechape_true=c(true_matrix)
566 #sort it in the same oder as rechape_compare
567 order_true=rechape_true[rechape_compare_order]
568
569 #concatinate vectors
570 compare_true_with_mcmc=cbind(order_MCMC,order_true)
571 #count how many 1’s and 0’s in order_true
572 how_many_total=table(order_true)
573
574 #count how many 1’s and 0’s exist every time one adds an element of order_true
575 how_many_one_zero=lapply(1:nrow(compare_true_with_mcmc),function(x)table(order_true[1:x])

)
576
577 #how_many_one_zero is a list, transforming it into a matrix
578 how_many_one_zero_rbind=do.call(rbind,how_many_one_zero)
579
580 #how many ones are in order_true
581 how_many_total=matrix(how_many_total)[,1]
582
583 #when number of 0’s is 0 in first rows in how_many_one_zero_rbind .On these rows in how_

many_one_zero_rbind number of 1’s get duplicated
584 #therefore one had to manually set 0 on these rows.
585 #In addition how_many_one_zero_rbind changes the placement of what is count of zero and

what is count of 1 for these rows.The rest of the rows that has a sum smaller then
how_many_total[2] stays unchanged.

586 how_many_one_zero_rbind=t(apply(how_many_one_zero_rbind, 1, function(x)if(sum(x)<= how_
many_total[2]){ sort(replace(x, duplicated(x), 0))}else{x}))

587
588
589 #calculate TPR and FPR
590 how_many_one_zero_rbind_transform=apply(matrix(1:ncol(how_many_one_zero_rbind),1,ncol(how

_many_one_zero_rbind)), 2,
591 function(x) how_many_one_zero_rbind[,x]/how_many_total[x])
592
593 #create Roc curve
594 lines(how_many_one_zero_rbind_transform[,1],how_many_one_zero_rbind_transform[,2],type =

"l",col=color[i])
595
596 }
597 #import matrices
598 call_on_al_matrix=read.csv("C:/Users/rasyd/Documents/gitrepo/master/BIDA/matrix1.txt",sep=

",",header = TRUE)

64

A.1. Main File

599 call_on_al_matrix_2=read.csv("C:/Users/rasyd/Documents/gitrepo/master/BIDA/matrix.txt",sep
=",",header = TRUE)

600 #plot empty plot
601 plot(NA, type="n", xlab="", ylab="", xlim=c(0, 1), ylim=c(0, 1))
602 par(new=TRUE)
603 #draw Roc curves
604 compute_roc(edge_matrix_1_cat,1)
605 compute_roc(edge_matrix_1,2)
606 compute_roc(as.matrix(call_on_al_matrix),3)
607 compute_roc(as.matrix(call_on_al_matrix_2),4)
608 legend("bottomright", cex=0.5, title="ROC-Curve",
609 c("MCMCcat","MCMCSI","Exact_cat","Exact_csi"), fill=c("red","blue","yellow","brown"),

horiz=TRUE)

65

A.2. Log-marginal likelihood computation for CPT based score

A.2 Log-marginal likelihood computation for CPT based
score

1
2 #

###

3 #Function:cat_calc_parent_score_to_fil_3_plane
4 #

###

5 #Input:
6 #data:data used.
7
8 #node:which node to calculate log-marginal likelihood from.
9

10 #parent_comb:Specific parent combination
11
12
13
14 #p:contains a list of lists where each list contains the values of a node in the network
15
16
17
18
19 #Output:Return log-marginal-likelihood
20
21
22 #This function calculates the CPT based log-marginal-likelihood
23 #

##

24
25
26 cat_calc_parent_score_to_fil_3_plane <- function(data,node,parent_comb,p){
27
28
29
30
31 # N in the BDEU prior is set to 1
32 N <-1
33
34
35 #Function for counting specific configuration in data
36 M_xi_parent_count=function(data,col_2){
37
38 M_xi_parent=data[, .(n = .N), by = col_2]
39 return(M_xi_parent)
40 }
41
42
43 #function for comparing vector with row in matrix
44 comparetorow=function(x,y){
45 nbr=nrow(x)
46 nbc=ncol(x)
47 ret=!vector("logical",nbr)
48 for(i in 1:nbr){
49 for(k in 1:nbc){
50 if(x[i,k]!=y[k]){
51 ret[i]=FALSE
52 break
53 }
54 }
55 }
56 return(ret)
57 }
58
59
60
61
62
63
64
65
66
67 #List of unique values of node
68 uniq_Xi_value=matrix(p[[node]])
69
70
71 #nr of unique values for node
72 nr_uniq_Xi_value1=nrow(uniq_Xi_value)
73
74 #parents of node
75 par=parent_comb
76
77 #columnname of node and nodes parents in dataset
78 col_2=names(data[,.SD,.SDcols=c(node,par)])
79
80 #part of data with nodes parents as columnname
81 parent_set_entries=data[,.SD,.SDcols=c(par)]
82
83
84 #unique configurations in dataset for parent_set_entries
85 uniq_par_value=as.matrix(unique(parent_set_entries))
86
87
88 #number of unique parent_set_enteries in dataset
89 nr_uniq_par_value=nrow(unique(parent_set_entries))
90

66

A.2. Log-marginal likelihood computation for CPT based score

91
92 #list of values of parents to node
93 parent_set_entries_to_alpha=p[c(par)]
94
95 #multiplication of length of all element in list parent_set_entries_to_alpha
96 in_between_move=lapply(1:length(parent_set_entries_to_alpha),function(x){length(parent_

set_entries_to_alpha[[x]])})
97 nr_uniq_par_value_to_alpha=Reduce(’*’,in_between_move)98
99 #calculate BDEU prior

100 alpha_node_parnode=N/(nr_uniq_Xi_value1*nr_uniq_par_value_to_alpha)101
102 #Vector containing BDEU prior for all values of node
103 alpha_node_parnode_vec=rep(alpha_node_parnode,nr_uniq_Xi_value1)
104
105 #Sum of all element in alpha_node_parnode_vec
106 alpha_sum_parnode=sum(alpha_node_parnode_vec)
107
108
109 #count how many times every configuration in data set reduced to entries for columnnames

col_2
110 a=unname(as.matrix(M_xi_parent_count(data,col_2)))
111
112 # CPT score set to 0
113 src=0
114
115
116 #For every parent configuration of node
117 for(parent in 1:nr_uniq_par_value){
118
119
120
121
122 #extract part of matrix "a" that contain the parent configurations of node
123 if(nrow(a)==1){
124
125 b=matrix(a[,-c(1,ncol(a))],nrow = 1)
126
127 }else{
128 if(is.null(nrow(a[,-c(1,ncol(a))]))){
129 b=matrix(a[,-c(1,ncol(a))],ncol = 1)}else{
130 b=(a[,-c(1,ncol(a))])
131 }
132
133 }
134
135 #find index in matrix "a" that matches specific parent configuration.This returns a

logical vector for indexes of counts where values of node appear
136 #for the specific parent config
137 w=a[comparetorow(b,uniq_par_value[parent,]),]
138
139
140 #if w contains only one row and is a vector
141 if(is.null(nrow(w))){
142
143 #make zero vector
144 fill=rep(0,nr_uniq_Xi_value1)
145
146 #collect counts from w
147 M_X_split=(w[c(ncol(a))])
148
149 # collect values of node in data from w
150 con=w[c(1)]
151
152
153 #code below is written to have fixed length on count vector no matter how many counts

exist for node
154
155 #match with theoretical values of node
156 where_in_total=match(uniq_Xi_value,con)
157 #remove NA from match
158 where_in_total=which(where_in_total>0)
159
160 #put counts in zero matrix
161 fill[where_in_total]=M_X_split
162 #rename zero vector
163 M_X_split=fill
164 #sun all elements in M_X_split
165 M_parent_count=sum(M_X_split)
166
167
168 }else{
169 #Else if w contains more then one row and is a matrix.Same procedure is done as when w

is a vector
170
171 M_X_split=(w[,c(ncol(a))])
172
173 con=w[,c(1)]
174
175
176 fill=rep(0,nr_uniq_Xi_value1)
177
178 where_in_total=match(uniq_Xi_value,con)
179
180 where_in_total=which(where_in_total>0)
181
182
183 fill[where_in_total]=M_X_split
184
185 M_X_split=fill
186

67

A.3. CSI based log-marginal likelihood computation

187 M_parent_count=sum(M_X_split)
188
189 }
190
191 #if some counts are different from zero exist in zero vector fill
192 if(sum(M_X_split)!=0){
193
194
195 #add to CPT log-marginal likelihood
196
197 src=src+(lgamma(alpha_sum_parnode)-lgamma(alpha_sum_parnode+M_parent_count)+sum(lgamma

(alpha_node_parnode_vec+(M_X_split))-lgamma(alpha_node_parnode_vec)))
198
199 }
200 }
201
202
203 #return CPT log-marginal likelihood
204 return(src)
205 }

A.3 CSI based log-marginal likelihood computation

1 #
###

2 #Function:CSI_tree_apply_imp_3_mat_B_3
3 #

###

4 #Input:
5 #data:data used.
6
7 #idented_for:which node to calculate log-marginal likelihood from.
8
9 #parent_comb:Specific parent combination

10
11
12
13 #p:contains a list of lists where each list contains the values of a node in the network
14
15
16
17
18 #Output:Return log-marginal-likelihood
19
20
21 #This function calculates the CSI-log-marginal-likelihood
22 #

##

23
24
25 CSI_tree_apply_imp_3_mat_B_3 <- function(data, parent_set,intended_for,p){
26 #set N in BDEU prior to 1
27 N <-1
28
29 #set containing node=intended_for together with its parentset
30 #set <- c(parent_set,intended_for)
31
32 #function for counting number of time configurations occure in dataset
33 M_xi_parent_count=function(data,cols_2){
34
35
36
37 M_xi_parent=data[, .(n = .N), by = cols_2]
38 return(M_xi_parent)
39 }
40
41 #function for comparing vector with row in matrix
42 comparetorow=function(x,y){
43 nbr=nrow(x)
44 nbc=ncol(x)
45 ret=!vector("logical",nbr)
46 for(i in 1:nbr){
47 for(k in 1:nbc){
48 if(x[i,k]!=y[k]){
49 ret[i]=FALSE
50 break
51 }
52 }
53 }
54 return(ret)
55 }
56
57 #this function is used when selecting the root
58 indicator_function_2=function(row,ma,a){
59 row_ma=ma[row,]
60 row_config=row_ma[!is.na(row_ma)]
61
62 #This part is same as CPT based log-marginal-computation
63
64
65 if(nrow(a)==1){
66

68

A.3. CSI based log-marginal likelihood computation

67 b=matrix(a[,-c(1,ncol(a))],nrow = 1)
68
69 }else{
70 if(is.null(nrow(a[,-c(1,ncol(a))]))){
71 b=matrix(a[,-c(1,ncol(a))],ncol = 1)}else{
72 b=(a[,-c(1,ncol(a))])
73 }
74
75 }
76
77
78 w=a[comparetorow(b,row_config),]
79
80 M_X_split=0
81
82 if(is.null(nrow(w))){
83
84 fill=rep(0,length(val_intended_for))
85
86
87 M_X_split=(w[c(ncol(a))])
88 con=w[c(1)]
89 where_in_total=match(val_intended_for,con)
90 where_in_total=which(where_in_total>0)
91
92 fill[where_in_total]=M_X_split
93
94 M_X_split=fill
95
96
97 }else{
98
99

100 M_X_split=(w[,c(ncol(a))])
101 con=w[,c(1)]
102
103
104 fill=rep(0,length(val_intended_for))
105
106 where_in_total=match(val_intended_for,con)
107 #where_in_total=where_in_total[!is.na(where_in_total)]
108 where_in_total=which(where_in_total>0)
109 fill[where_in_total]=M_X_split
110 #print(fill)
111 M_X_split=fill
112
113
114 }
115
116
117
118 return(M_X_split)
119 }
120
121 #this function is used after root is selected.Difference between indicator_function_3 and

indicator_function_2 is the first line in code when defining row_ma
122 indicator_function_3=function(row,ma,a,next_element_con){
123 row_ma=ma[row,-1]
124
125
126 #This part is same as indicator_function_2
127 row_config=row_ma[!is.na(row_ma)]
128 row_config=as.numeric(c(row_config,next_element_con))
129
130
131
132
133
134
135 if(nrow(a)==1){
136
137 b=matrix(a[,-c(1,ncol(a))],nrow = 1)
138
139 }else{
140 if(is.null(nrow(a[,-c(1,ncol(a))]))){
141 b=matrix(a[,-c(1,ncol(a))],ncol = 1)}else{
142 b=(a[,-c(1,ncol(a))])
143 }
144
145 }
146
147
148
149
150 w=a[comparetorow(b, row_config),]
151
152
153 M_X_split=0
154
155 if(is.null(nrow(w))){
156
157 fill=rep(0,length(val_intended_for))
158
159
160 M_X_split=(w[c(ncol(a))])
161 con=w[c(1)]
162 where_in_total=match(val_intended_for,con)
163 where_in_total=which(where_in_total>0)
164
165 fill[where_in_total]=M_X_split
166
167 M_X_split=fill

69

A.3. CSI based log-marginal likelihood computation

168
169
170 }else{
171
172
173 M_X_split=(w[,c(ncol(a))])
174 con=w[,c(1)]
175
176
177 fill=rep(0,length(val_intended_for))
178
179 where_in_total=match(val_intended_for,con)
180
181 where_in_total=which(where_in_total>0)
182 fill[where_in_total]=M_X_split
183
184 M_X_split=fill
185
186
187 }
188
189
190
191 return(M_X_split)
192 }
193
194
195
196
197
198 #indicator for root selection
199 indicator=0
200 # n is set to 0
201 n=0
202
203
204
205
206 #CSI-log-marginal-likelihood is set to 0
207 sco=0
208
209
210
211
212 #list of theoretical values of node
213 val_intended_for=p[[intended_for]]
214 #how many values in val_intended_for
215 len_val_intended_for=length(val_intended_for)
216
217 #while TRUE
218 while (n<1) {
219
220
221
222 #if indicator is 0
223 if(indicator==0){
224
225 #sort element of parentset
226 elements=parent_set
227
228 #Renaming of len_val_intended_for
229 no_split_uniq=len_val_intended_for
230
231 #count how many entries of value of node exist in dataset
232 M_X_no_split=table(data[,.SD,.SDcols=c(intended_for)])
233
234 # The specific values of node that exist in dataset
235 con=as.numeric(names(M_X_no_split))
236 #Create zero vector for storing counts of occurrences of value of node
237 fill=rep(0,length(val_intended_for))
238
239 #this is done to have fixed length on count vector no matter how many counts exist for

node
240
241
242
243
244
245
246
247
248
249 #match with theoretical values of node
250 where_in_total=match(val_intended_for,con)
251 #remove NA from where_in_total
252 where_in_total=where_in_total[!is.na(where_in_total)]
253 #put counts in zero matrix
254 fill[where_in_total]=as.numeric(M_X_no_split)
255 #rename zero vector
256 M_X_no_split=fill
257
258
259
260 #calculate BDEu prior when no parent is included
261
262 alpha_no_split= N/(no_split_uniq)
263 alpha_no_split_vec=rep(alpha_no_split,len_val_intended_for)
264
265 aplha_sum_no_split=sum(alpha_no_split_vec)
266
267
268 M_sum_no_split= sum(M_X_no_split)
269 #calculate log marginal likelihood for when node has no parent

70

A.3. CSI based log-marginal likelihood computation

270 src_no_split=lgamma(aplha_sum_no_split)-lgamma(aplha_sum_no_split+M_sum_no_split)+sum(
lgamma(alpha_no_split_vec+M_X_no_split)-lgamma(alpha_no_split_vec))

271
272 #if input parentset is empty break whileloop return CSI-score
273 if(is.null(parent_set)){
274 sco=src_no_split
275
276 break
277 }
278
279
280
281
282 #Set comparing value to 0
283 split_t=0
284 #Set CSI-score to 0
285 scores=0
286
287 #for each element(parent node) in parentset of node
288 for(element in (elements)){
289
290 # list of columnnames for node=intended_for and element in dataset
291 cols=names(data[,.SD,.SDcols=c(intended_for,c(element))])
292
293
294
295
296
297 #Compute how many theoretical values does element have
298 parent_set_entries_to_alpha=p[c(element)]
299
300 #calculate number of unique values for element
301 in_between_move=lapply(1:length(parent_set_entries_to_alpha),function(x){length(parent

_set_entries_to_alpha[[x]])})
302 nr_uniq_par_value_to_alpha=Reduce(’*’,in_between_move)303
304
305
306
307
308 # unique values of element in dataset
309 split_uniq_par_val=unname(as.matrix(unique(data[,.SD,.SDcols=c(element)])))
310 #number of unique values of element in dataset
311 split_uniq_parent=nrow(split_uniq_par_val)
312 con_2=split_uniq_par_val
313
314 #initialize empty score vector
315 src_split=rep(0,split_uniq_parent)
316 #count how many instances of different configurations for node intended_for and

element that exist in dataset
317 c=unname(as.matrix(M_xi_parent_count(data,cols)))
318
319
320 #for each value of element
321 for(row in 1:nrow(split_uniq_par_val)){
322 #element value held fixed vary values of nodes,put each count into a vector M_X_split
323 M_X_split=indicator_function_2(row,split_uniq_par_val,c)
324
325 #if at least one configuration exist
326 if (sum(M_X_split)!=0){
327
328
329 alpha_split=N/(len_val_intended_for*nr_uniq_par_value_to_alpha)
330 alpha_split_vec=rep(alpha_split,len_val_intended_for)
331
332 alpha_sum_split=sum(alpha_split_vec)
333 M_sum_split=sum(M_X_split)
334 #calculate log marginal likelihood for node when element’s value is held fixed
335 src_split[row]=lgamma(alpha_sum_split)-lgamma(alpha_sum_split+M_sum_split)+sum(

lgamma(alpha_split_vec+M_X_split)-lgamma(alpha_split_vec))
336
337 }
338
339
340
341
342 }
343
344 #if at least one log marginal likelihood exist
345 if(sum(src_split)!=0){
346 #if the sum of log-marginal likelihood is greater then split_t
347 if((sum(src_split)-sum(src_no_split))>split_t){
348 #save element
349 choice=element
350
351 #Which value of element has log-marginal likelihood 0
352 w_zeo=which(src_split==0)
353 if(length(w_zeo)!=0){
354 #exclude this score
355 scores=src_split[-c(w_zeo)]
356 #Exclude the value related to that score
357 con_3=c(con_2[-c(w_zeo),])
358 }else{
359
360 #else all values has a score
361 scores=src_split
362
363 con_3=c(con_2)
364 }
365 #set positive difference to be new comparing value

71

A.3. CSI based log-marginal likelihood computation

366 split_t=(sum(src_split)-sum(src_no_split))
367
368 }
369 }
370 }
371
372
373
374
375
376 #if all element and there values have been looked at and score still is zero no root is

found
377 if(sum(scores)==0){
378
379 sco=src_no_split
380
381 break
382
383 }else{
384
385 #Else root is found define tree
386
387
388 #chosen elements value in data
389 choise_uniq=con_3
390 #number of values of element in data
391 choise_unique_nr=length(choise_uniq)
392
393 #matrix containing score for every branch(value)
394 mat=matrix(c(scores,choise_uniq),ncol = 2)
395 #element corresponding value in mat
396 al_matrix=matrix(rep(choice,choise_unique_nr),ncol = 1)
397
398 #set indicator to 1
399 indicator=1
400
401 }
402 }else{
403
404
405 #continue building tree in the same way
406 scores=0
407 split_t=0
408 #for element in parentset
409 for(element in elements){
410
411 #for every row in mat
412 for(row in 1:nrow(mat)){
413
414
415
416
417 #go through every row in al_matrix
418 parent_elements_row=al_matrix[row,]
419
420 parent_elements_row= (parent_elements_row[!is.na(parent_elements_row)])
421
422 #add element in branch(row)
423 cols=names(data[,.SD,.SDcols=c(intended_for,parent_elements_row,element)])
424
425 #if element is not in row of al_matrix continue
426 ‘%!in%‘ <- Negate(‘%in%‘)
427 if(element%!in%parent_elements_row){
428
429 #do the same procedure as described above to calculate log-marginal-likelihood of

branches adding element to each row in al_matrix on every branch(row)
430 #that does not contain element(parent node) look for which element added to which

branch gives the greatest improvement.Grow mat(tree) with the values of that
element

431
432 parent_set_entries_to_alpha=p[c(parent_elements_row,element)]
433
434
435 in_between_move=lapply(1:length(parent_set_entries_to_alpha),function(x){length(

parent_set_entries_to_alpha[[x]])})
436 nr_uniq_par_value_to_alpha=Reduce(’*’,in_between_move)437
438
439 split_uniq_parent_config=nrow(unique(data[,.SD,.SDcols=c(parent_elements_row,element

)]))
440
441 c=unname(as.matrix(M_xi_parent_count(data,cols)))
442
443
444 next_el=unname(as.matrix(unique(data[,.SD,.SDcols=element])))
445 con_2=next_el
446
447 s_vec=rep(0,nrow(next_el))
448
449
450 for(s in 1:length(s_vec)){
451
452 M_X_split=indicator_function_3(row,mat,c,next_el[s])
453
454
455
456 if(sum(M_X_split)!=0){
457
458
459 M_sum_split=sum(M_X_split)
460
461 alpha_split= N/(len_val_intended_for* nr_uniq_par_value_to_alpha)

72

A.3. CSI based log-marginal likelihood computation

462 alpha_split_vec=rep(alpha_split,len_val_intended_for)
463
464 alpha_sum_split=sum(alpha_split_vec)
465 s_vec[s]=lgamma(alpha_sum_split)-lgamma(alpha_sum_split+M_sum_split)+sum(lgamma(

alpha_split_vec+M_X_split)-lgamma(alpha_split_vec))
466
467 }
468
469
470 }
471
472
473 if(sum(s_vec)!=0){
474 src_no_split=mat[row,1]
475
476 diff=sum(s_vec)-src_no_split
477
478
479
480
481 if(diff>split_t){
482 w_zeo=which(s_vec==0)
483 if(length(w_zeo)!=0){
484 scores=s_vec[-c(w_zeo)]
485
486 con_3=c(con_2[-c(w_zeo),])
487 }else{
488 scores=s_vec
489
490 con_3=c(con_2)
491 }
492
493 which_element_choosen=element
494
495 which_row_branch=row
496 #update split_t the same way as before
497 split_t=diff
498
499
500 }
501 }
502
503 }
504
505 }
506 }
507
508
509 #if no element added to each branches give any improvement break
510 if(all(scores==0)){
511
512 break
513 }else{
514
515 #else add the element to the branch that gave the best improvement
516
517 #values of chosen element
518 choosen_element_uniq_val=con_3
519
520 #number of values of element in dataset
521 choosen_element_uniq_val_nr=length(choosen_element_uniq_val)
522
523
524
525
526 #if more then one value exist for element in dataset, expand the rows with the number

of values of element-1
527 if(length(con_3)>1){
528 v=rep(1,length(mat[,(ncol(mat))]))
529 v[which_row_branch]=choosen_element_uniq_val_nr
530
531
532 mat=(mat[rep(1:nrow(mat), times = v),])
533
534
535 al_matrix=al_matrix[rep(1:nrow(al_matrix), times = v),]
536
537 }
538
539 #else only one value exist for element in dataset and expand only the columns
540
541 #new configurations to add to mat
542 new_node_value=matrix(rep(NA,nrow(mat)),ncol=1)
543
544 #put values of element into new_node_value
545 new_node_value[which_row_branch:(which_row_branch+choosen_element_uniq_val_nr-1),]=

choosen_element_uniq_val
546
547
548
549 #new configurations to add to al_matrix
550 new_node_to_al=matrix(rep(NA,nrow(mat)),ncol=1)
551
552
553 #put in chosen element into al_matrix
554 new_node_to_al[which_row_branch:(which_row_branch+choosen_element_uniq_val_nr-1),]=

which_element_choosen
555
556 #concatinate these vectors with mat and al_matrix
557 mat=cbind(mat,new_node_value)
558 al_matrix=cbind(al_matrix,new_node_to_al)
559

73

A.4. Function for computing and writing marginal-likelihoods multiple
parentsets

560
561 #change scores of mat
562 mat[which_row_branch:(which_row_branch+choosen_element_uniq_val_nr-1),1]=scores
563
564
565
566
567 }
568 }
569 }
570
571 # If while-loop stopped after root was added to tree redefine sco from 0 to the sum of

the branch scores in mat
572 if(sco==0){
573 sco=sum(as.numeric(mat[,1]))
574 }
575
576 #return log-marginal likelihood
577 return(sco)
578 }

A.4 Function for computing and writing
marginal-likelihoods multiple parentsets

1
2
3 #

###

4 #Function:func
5 #

###

6 #Input:
7 #data:data used.
8 #k:parentsize.
9 #node:which node to calculate log-marginal likelihood from.

10
11 #parent_comb:Specific parent combination
12
13 #fid:path of scorefile.
14
15 #set_of_intrest:contains all node in the network .
16
17 #p:contains a list of lists where each list contains the values of a node in the network
18
19
20
21
22 #Output:Writes score for all combinations of set_of_intrest for all parentsets for

specific parentsize.This function will be put into
23 #function below csitree_calc_parent_score_to_file_3.
24
25
26
27 #

##

28 #import CSI algorithm
29 source("csi_tree_imp_2.R")
30 func=function(data,node,k,fid,set_of_intrest,p){
31
32
33 #calculate log-marginal likelihood for empty parent
34 if(k==0){
35 N=1
36
37 writeLines(paste(node, nps), con = fid, sep = "\n")
38
39
40 uniq_Xi_value=matrix(p[[node]])
41
42
43 nr_uniq_Xi_value1=nrow(uniq_Xi_value)
44
45
46 alpha_node_parnode1=N/(nr_uniq_Xi_value1)
47 alpha_node_parnode1=rep(alpha_node_parnode1,nr_uniq_Xi_value1)
48 alpha_sum_parnode1=sum(alpha_node_parnode1)
49 M_X_i=table(data[,..node])
50
51 con=as.numeric(names(M_X_i))
52 fill=rep(0,nrow(uniq_Xi_value))
53
54
55
56 where_in_total=match(uniq_Xi_value,con)
57 where_in_total=which(where_in_total>0)
58
59 fill[where_in_total]=as.numeric(M_X_i)
60
61 M_X_i=fill
62
63 M_sum_count=sum(M_X_i)

74

A.4. Function for computing and writing marginal-likelihoods multiple
parentsets

64
65
66 src=(lgamma(alpha_sum_parnode1)-lgamma(alpha_sum_parnode1+M_sum_count)+sum(lgamma(alpha_

node_parnode1+M_X_i)-lgamma(alpha_node_parnode1)))
67
68 writeLines(paste(trimws(format(round(src, 6), nsmall=6)),k, sep = " "), con = fid, sep =

"\n")
69 src=0
70 }else{
71
72 #Else for all parentsets of node with cardinality k
73 parent_set=setdiff(set_of_intrest,node)
74 parent_comb=combn(parent_set,k)
75
76 #calculate all CSI-log-marginal-likelihoods
77
78 lapply(1:ncol(parent_comb),function(x){ writeLines(paste(trimws(format(round(CSI_tree_

apply_imp_3_mat_B_3(data,c(parent_comb[,x]),node,p),6), nsmall=6)),k,paste(parent_
comb[,x],collapse = " "), sep = " "), con = fid, sep = "\n")})

79
80
81 }
82 }
83
84
85
86 #csitree_calc_parent_score_to_file_2 is simlar to csitree_calc_parent_score_to_file_3
87
88
89 #

###

90 #Function:csitree_calc_parent_score_to_file_3
91 #

###

92 #Input:
93 #data:data used.
94 #score_type: type of score.
95 #file_out:Name of score file
96
97 #max_parent_size:bound on parentsize
98
99

100 #p:contains a list of lists where each list contains the values of a node in the network
101
102
103
104
105 #Output:Writes score for all combinations of set_of_intrest for all parentsets for all

parentsizes up to the bound max_parent_size.
106
107
108
109 #

##

110
111
112 csitree_calc_parent_score_to_file_3 <- function(data, score_type, max_parent_size, file_

out,p){
113
114 #N=1
115
116
117 #number of nodes
118 numcol= ncol(data)
119 #list of nodes
120 set_of_intrest=1:numcol
121
122
123
124
125 #calculate and write to file scores of all parent combinations of all parentsets for all

nodes for all parent cardinalities smaller or euqal to max_parent_size
126 fid <- file(paste0("C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_

survey/n5000/",file_out, ".", score_type, ".score", sep = ""),"wt")
127
128 writeLines(toString(numcol), con = fid, sep = "\n")
129
130 #call on func and iterate over all nodes in network and all parent sizes
131
132 apply(matrix(set_of_intrest,1,length(set_of_intrest)),2,function(x)apply(matrix(0:max_

parent_size,1,(max_parent_size+1)),2,function(y) func(data,x,y,fid,set_of_intrest,p
)))

133
134 #close file
135 close(fid)
136
137
138
139 }

75

A.5. MCMC algorithm

A.5 MCMC algorithm

1 #
###

2 #Function:run_func_2
3 #

###

4 #Input:
5
6 #read_this:path of scorefile
7 #max_parent_size:how many scorefiles should be made.
8
9 #nr_nodes:how many nodes in network.

10
11 #true_matrix_2:some transformation of the adjacency matrix of the network
12
13 #j:iterator index.
14
15
16
17 #ns_i:data sample size.
18 #khh:which score type, CSI or CPT
19
20 #Output:AUC
21
22
23 #This runs MCMC over a scorefile
24 #

##

25
26
27
28 func_MCMC=function(read_data,true_matrix_2,max_parent_size,j,nr_nodes,ns_i,khh){
29 #change .score file to .txt file
30 func_score=function(read_data){
31 library("MASS")
32 add=paste0("Score_csi_",toString(j),".txt")
33
34 write.matrix(read_data,sep=" , ",file=add)
35
36
37 score_csi_2=read.csv(file = add, header = FALSE,sep=" ")
38
39 return(score_csi_2)
40 }
41
42 #run func_score on score-file
43 score_csi_2=(func_score(read_data))
44 # remove 2 first rows containing only NA values
45 score_csi_2=score_csi_2[-c(1,2),]
46 #list of nodes
47 nodes=1:nr_nodes
48 #index of nodes
49 integer=(as.numeric(score_csi_2[,1]) - abs(floor(as.numeric(score_csi_2[,1])))) == 0
50
51
52 integer_true=which(integer==TRUE)
53
54 #index of first occurrence of parentset with specific parentset cardinality.These indexes

are the same for all nodes in list nodes
55 seq_3=rep(0,max_parent_size)
56 for(i in 1:max_parent_size){
57 seq_3[i]=choose(nr_nodes-1,i)
58 }
59
60 #Function for finding score with empty parentset
61 integer_zero=function(score_csi_2,int,node){
62
63 index=int[node]+1
64 return(as.numeric(score_csi_2[index,1]))
65 }
66
67
68
69 #Function for finding score of parentset of a specific node
70 integer_map=function(score_csi_2,input_row,integer,nodes,seq_3,nr_nodes){
71 #node is in first place in input_row
72 node=input_row[1]
73
74 #parentset cardinality of parentset of node is in third place in input_row
75 nr_parent=input_row[3]
76
77 #set_1 is a set of node from 1 to first parent in parentset excluding node
78 set_1=setdiff(1:input_row[4],node)
79 #set_3 is a set of node from 1 to first parent in parentset
80 set_3=1:input_row[4]
81 #set_2 is a set of node from first parent to last parent excluding node
82 set_2=setdiff(input_row[4]:nodes[length(nodes)],node)
83
84
85 #step will be used as the number of indexes that has to be jumped over
86 step=0
87
88 #Count for while loop
89 n=1
90 #count will be used to denote how many times one is in the for loop after n>=2

76

A.5. MCMC algorithm

91 count=1
92 #number of parents excluding last parent
93 node_1_len=nr_parent-1
94 #number of nodes excluding node
95 nr_nodes_1=nr_nodes-1
96 #while true
97 while(n!=0){
98
99 #if n=number of parents

100 if(n==length(input_row[4:(length(input_row))])){
101
102 break
103 }
104
105 #if n is 1
106 if(n==1){
107 #if node is between 1 to first parent
108 if(node%in%set_3){
109 #use set_1
110 set_4=set_1
111
112
113 }else{
114 #else use set_3
115 set_4=set_3
116 }
117 }else{
118
119 # for n>1 use set_2
120 set_4=set_2
121
122 }
123 #if n>=2 reduce set_4 by indexes 1 to how many times in forloop after n>=2
124 if(n>=2){
125
126 set_4=set_4[-c(1:(count))]
127 }
128
129
130 #count for how many times in forloop
131 count_4=0
132
133 #for j from 1 to length of set_4
134 for(j in 1:(length(set_4))){
135 #if n>=2 find number of elements to exclude from first element in constant set set_2
136 if(n>=2){
137 count=count+1
138 }
139
140 #number of times in forloop
141 count_4=count_4+1
142
143 #if element j in set_4 equal parentset element n-1 in input_row
144 if(set_4[j]==input_row[(4+n-1)]){
145
146 #subtract number of parent with how many times inside forloop before the if statement

is activated denoted by count_4
147 nr_nodes_1= nr_nodes_1-count_4
148 #break forloop
149 break
150 }
151 #Add how many rows to jump over in scorefile
152 step=step+choose((nr_nodes_1-j),node_1_len)
153
154
155 }
156 #subtract element from number of elements
157 node_1_len=node_1_len-1
158
159 # update n
160 n=n+1
161
162 }
163
164 #find last parent in parentset.If parentset contains one element then the whileloop will

not be used else last
165 #parent will be between next to last parent+1 and nr_nodes
166 if(nr_parent==1){
167
168 #define seq_4
169 seq_4=setdiff((1:nr_nodes),node)
170
171 }else{
172 #else we have to find the last element based on next to last element
173 what=input_row[(length(input_row)-1)]
174 seq_4=setdiff((what+1):nr_nodes,node)
175
176 }
177 #find index of last parent in parentset
178 add=which(seq_4==input_row[length(input_row)])
179 #add to step
180 step=step+add-1
181
182 #calculate index of node parent combination
183 extract_row=integer[node]+sum(seq_3[1:(nr_parent-1)])+step+2
184 if(nr_parent==1){
185 extract_row=integer[node]+step+2
186 }
187

77

A.5. MCMC algorithm

188 #return score of node parent combination
189 return(as.numeric(score_csi_2[extract_row,1]))
190 }
191
192
193
194
195
196 #Function for calculating neighbourhood of a DAG
197 func_nabour_imp_large_B_2=function(adj){
198
199 #index how many potential adds
200 index_add=which(adj==0,arr.ind = TRUE)
201 # how many 1’s in every column
202 nr_of_par_each=apply(adj,2,sum)
203
204 #remove edge from node to itself
205 index_add=index_add[index_add[,1] !=index_add[,2],]
206
207 #number of deletes
208 index_delete_rev_1=which(adj==1,arr.ind = TRUE)
209
210 #number potential reverse
211 index_delete_rev_2=which(adj==1,arr.ind = TRUE)
212
213 #if any column has more then max_parent_size 1’s
214 if(any(nr_of_par_each>=(max_parent_size))){
215 #find which column
216 which_add_greater_then=which(nr_of_par_each>=(max_parent_size))
217 #match these elements with column vector in index_add matrix
218 match_val=match(index_add[,2],which_add_greater_then)
219 #remove NA
220 match_val=which(match_val>0)
221 #delete indexes corresponding to element in second column in index_add being equal to

match_val
222 if(length(match_val)!=0){
223 index_add=index_add[-match_val,]
224 }
225 }
226
227
228 #If potential reverse index matrix is none empty
229 if(length(index_delete_rev_2)!=0){
230
231 # column 1 represents rows in adjecency matrix.If a reverse happens these elements will

represent columns in the adjecency matrix
232 current_switch=index_delete_rev_2[,1]
233 # sort first column in reverse index matrix
234 which_true=sort(unique(current_switch))
235
236 #how many 1’s exist in the columns in the adjecency matrix that will get an extra 1 by

reversing
237 larger_then_max=apply(matrix(adj[,c(which_true)],ncol=length(which_true)),2,function(x)

sum(x))
238
239
240
241
242
243 #if any of these columns already have more then max_parent_size 1’s
244 if(any(larger_then_max>=(max_parent_size))){
245 #which index in which_true has this characteristic
246 which_reverse_greater_then=which(larger_then_max>=max_parent_size)
247 # find which column in which_true
248 which_true= which_true[which_reverse_greater_then]
249 what_to=match(1:nr_nodes,which_true)
250 mmacth=which(what_to>0)
251
252 match_val=match(index_delete_rev_2[,1],mmacth)
253
254 match_val=which(match_val>0)
255
256
257 #exclude the adjacency matrix indexes contained in first column in index_delete_rev_2

that matches match_val
258 if(length(match_val)!=0){
259 index_delete_rev_2=index_delete_rev_2[-match_val,]
260 }
261
262 }
263 }
264
265 #Set bounds for number of add,delete and reverse
266
267 if(length(index_add)==0){
268 index_add=c(1,2)
269
270 u=0
271 }else{
272 u=nrow(index_add)
273 }
274 if(length(index_delete_rev_1)==0){
275 index_delete_rev_1=c(1,2)
276 l=0
277 }else{
278 l=nrow(index_delete_rev_1)
279 }
280
281

78

A.5. MCMC algorithm

282 if(length(index_delete_rev_2)==0){
283 index_delete_rev_2=c(1,2)
284 pp=0
285 }else{
286 pp=nrow(index_delete_rev_2)
287 }
288
289 #define a zero matrix
290 zero_matrix=array(0,c(nrow(adj),ncol(adj)))
291 #Define a two dimentional storing matrix
292 B_matrix=array(0,c(nrow(adj)*(u+l+pp),ncol=ncol(adj)))293
294 #every k:m row is a matrix in B_matrix
295 k=1
296 m=ncol(adj)
297
298 #for j=1 add, j=2 delete and j=3 reverse
299 for(j in 1:3){
300 if(j==1){
301 #set bound for number add checks
302 f=u
303 }
304
305 if(j==2){
306 #set bound for number delete checks
307 f=l
308 }
309 if(j==3){
310
311 #set bound for number reverse checks
312 f=pp
313 }
314 for(i in 1:f){
315
316 #if add
317 if(j==1){
318
319 if(is.null(nrow(index_add))){
320
321 next
322 }
323
324 #set 1 on index index_add[i,] in adj(adjacency matrix)
325 zero_matrix=adj
326 zero_matrix[array(index_add[i,],c(1,2))]=1
327
328
329 }
330
331 #if delete
332 if(j==2){
333 if(is.null(nrow(index_delete_rev_1))){
334
335 next
336 }
337 #set 0 on index index_add[i,] in adj(adjacency matrix)
338 zero_matrix=adj
339 zero_matrix[array(index_delete_rev_1[i,],c(1,2))]=0
340
341
342
343 }
344 #if reverse
345 if(j==3){
346 if(is.null(nrow(index_delete_rev_2))){
347
348 next
349 }
350 #set reverse index_add[i,] in adj(adjacency matrix)
351 zero_matrix=adj
352 rev=array(index_delete_rev_2[i,],c(1,2))
353 zero_matrix=reverse_oper_adjacent(zero_matrix,rev[1],rev[2])
354
355 }
356 #check whether the change made adj cyclic
357 ind=is_dag(zero_matrix)
358
359 #if not
360 if(ind==TRUE){
361
362 #if add
363 if(j==1){
364
365 #add to B_matrix
366 B_matrix[k:m,1:ncol(adj)]=zero_matrix
367 #change k and m
368 k=k+ncol(adj)
369 m=k+ncol(adj)-1
370 }
371 #if delete
372 if(j==2){
373 #add to B_matrix
374 B_matrix[k:m,1:ncol(adj)]=zero_matrix
375
376
377 #change k and m
378 k=k+ncol(adj)
379 m=k+ncol(adj)-1
380

79

A.5. MCMC algorithm

381
382
383 }
384
385 #if reverse
386 if(j==3){
387 #add to B_matrix
388 B_matrix[k:m,1:ncol(adj)]=zero_matrix
389
390 #change k and m
391 k=k+ncol(adj)
392 m=k+ncol(adj)-1
393
394
395
396 }
397
398 }
399
400
401 }
402
403
404 }
405
406
407 #remove zero rows in last portion of B_matrix
408 B_matrix=B_matrix[1:(k-1),]
409
410
411 return(B_matrix)
412 }
413
414
415
416
417 #Function for reversing edge of adj
418 reverse_oper_adjacent=function(adj,i,node){
419 #make copy of adj
420 adj_copy=adj
421 #set value of matrix on index node,i to value of matrix on index i,node
422 adj[node,i]= adj[i,node]
423
424 #set value of matrix on index i,node to value of matrix on index node,i
425 adj[i,node]=adj_copy[node,i]
426
427 return(adj)
428 }
429
430
431
432 #Function for indexing B_matrix in neighbourhood function into matrices of adj size
433 sec_func=function(stack_matrix,adj_row){
434 k=1
435 m=adj_row
436 nr_matrix=nrow(stack_matrix)/adj_row
437
438 seq_mat=array(0,c(nr_matrix,2))
439 seq_mat[1,]=c(k,m)
440 if(nr_matrix>1){
441 for(i in 2:nr_matrix){
442
443 k=k+adj_row
444 m=k+adj_row-1
445 seq_mat[i,1]=k
446
447 seq_mat[i,2]=m
448 }
449 }
450
451 return(seq_mat)
452 }
453
454
455 #Function returning columns where adj_1 is different from adj_2 together with the columns

of both adj_1 and adj_2 where they differ
456 diff_adj=function(adj_1,adj_2){
457
458
459
460
461 ind=which(adj_1!=adj_2,arr.ind = TRUE)
462
463
464 return(list(a=ind[,2],b=adj_1[,ind[,2]],c=adj_2[,ind[,2]]))
465 }
466
467 #Function for converting node,parentsize, parentset represented by 0 1 vector into

parentset represented with natural numbers and finding the score for this vector
468 from_adjecency_row_2=function(input_diff1,input_diff2){
469
470 matr_desing_node=input_diff1
471
472 nr_parent=sum(input_diff2)
473
474
475 parent=which(input_diff2==1)
476
477
478
479 if(nr_parent>0){

80

A.5. MCMC algorithm

480 score=integer_map(score_csi_2,c(matr_desing_node,123,nr_parent,parent),integer_true,
nodes,seq_3,nr_nodes)

481 }else{
482 score=integer_zero(score_csi_2,integer_true,matr_desing_node)
483 }
484
485
486 return(score)
487
488 }
489
490
491
492
493
494 #Function for converting adjacency matrix into a set of (node,parentsize,parentset)

represented with
495 #natural numbers in order to find the score for the adjacency matrix.
496
497 from_adjecency_to_matrx=function(adj){
498
499
500 matr_desing=matrix(0,ncol(adj),ncol(adj)+3)
501
502 matr_desing[,1]=1:ncol(adj)
503 matr_desing[,2]=1
504 matr_desing[,3]=apply(adj,2,sum)
505
506 v=apply(adj,2,function(x) which(x==1))
507
508
509 for(j in 1:nrow(matr_desing)){
510 if(matr_desing[j,3]==0){
511 next
512 }
513
514 parent=v[j][[1]]
515
516 len_par=length(parent)
517
518 matr_desing[j,4:(4+len_par-1)]=sort(parent)
519 }
520
521
522 for(i in 1:nrow(matr_desing)){
523 if(matr_desing[i,3]==0){
524
525 matr_desing[i,2]= integer_zero(score_csi_2,integer_true,matr_desing[i,1])
526
527 }else{
528
529
530 none_zero=match(0,matr_desing[i,])-1
531
532
533
534
535 matr_desing[i,2]= integer_map(score_csi_2,matr_desing[i,1:none_zero],integer_true,

nodes,seq_3,nr_nodes)
536
537
538 }
539 }
540
541 return(matr_desing[,2])
542
543 }
544
545
546 #number of iterations
547 N=600000
548 #thinning
549 lag=10
550 #how many MCMC chains
551 m=1
552 #start collecting samples after burn in
553 start=550000
554
555 #stop collecting samples
556 stop=600000
557
558 #sample collection sequence
559 save_every=seq(start,stop,lag)
560
561 #set initial DAG for chains
562 inital_value_adj=matrix(0,m*nr_nodes,nr_nodes)563
564 #Slice inital_value_adj depending on m
565 slice_intial=sec_func(inital_value_adj,nr_nodes)
566
567 #calculate initial score
568 inital_value_scores=matrix(0,nr_nodes,m)
569 for(i in 1:dim(slice_intial)[1]){
570
571
572 inital_value_scores[,i]=(from_adjecency_to_matrx(inital_value_adj[slice_intial[i,1]:

slice_intial[i,2],]))
573
574 }
575
576
577 inital_value_score=colSums(inital_value_scores)

81

A.5. MCMC algorithm

578
579 #define storage matrix for traversal of chain in score space
580 X_t_matrix=matrix(0,m,N)
581 #put initial score as first column in storage matrix X_t_matrix
582 X_t_matrix[,1]=inital_value_score
583
584
585 #matrix for saving samples
586 save_array=array(0,c(nr_nodes*(length(save_every)),nr_nodes,m))587
588 #slice save matrix
589 slice_save_array=sec_func(save_array,nr_nodes)
590
591 #iterator for slice_save_array
592 acc_vec=rep(0,m)
593
594
595 w=0
596
597 #Save currently accepted matrix in matr_current
598 matr_current=array(0,c(m*nr_nodes,nr_nodes))
599 #Save currently proposed matrix in matr_prop
600 matr_prop=array(0,c(m*nr_nodes,nr_nodes))601
602 start=Sys.time()
603
604 #for 2 to N
605 for(i in 2:(N)){
606 #for 1 to m chains
607 for(k in 1:m){
608
609 # set initial DAG to matr_current for chain k and calculate neighbourhood of inital DAG
610 if(w==0){
611 matr_current[slice_intial[k,1]:slice_intial[k,2],]=inital_value_adj[slice_intial[k,1]:

slice_intial[k,2],]
612 neighbour_candate=func_nabour_imp_large_B_2(matr_current[slice_intial[k,1]:slice_

intial[k,2],])
613
614 }
615
616 #slice neighbour_candidate
617 neighboors_cand_slice=sec_func(neighbour_candate,nr_nodes)
618 #number neighbours in neighbour_candidate
619 nr_of_neighboors=nrow(neighboors_cand_slice)
620
621 #sample uniform one DAG from neighbour_candidate
622 matr_prop_nr=sample.int(nrow(neighboors_cand_slice),1)
623
624 #put it equal to matr_prop
625 matr_prop[slice_intial[k,1]:slice_intial[k,2],]=neighbour_candate[neighboors_cand_slice

[matr_prop_nr,1]:neighboors_cand_slice[matr_prop_nr,2],]
626
627 #Collect matr_current at state i
628 if(i%in% save_every){
629
630 #go to next index in slice_save_array
631 acc_vec[k] = acc_vec[k]+1
632 # save matr_current in state i in position acc_vec[k],1]:slice_save_array[acc_vec[k

],2],,k in save_array
633 save_array[slice_save_array[acc_vec[k],1]:slice_save_array[acc_vec[k],2],,k]=matr_

current[slice_intial[k,1]:slice_intial[k,2],]
634
635 }
636
637 #calculate neighbourhood of current state of prop_matr
638 prop_neighbor=func_nabour_imp_large_B_2(matr_prop[slice_intial[k,1]:slice_intial[k

,2],])
639
640 #number of neighbours in prop_neighbor
641 prop_neighbor_nr=nrow(sec_func(prop_neighbor,nr_nodes))
642
643 #find difference between current state of matr_current and current matr_prop
644 diff_c_p=diff_adj(matr_current[slice_intial[k,1]:slice_intial[k,2],],matr_prop[slice_

intial[k,1]:slice_intial[k,2],])
645
646 #If one column is returned it means the difference is an add or delete
647 if(length(unlist(diff_c_p$a))==1){
648
649 #Define which column differ
650 extract_1=as.numeric(diff_c_p$a)
651 #column in matr_current
652 extract_2=diff_c_p$b
653 #column in matr_prop
654 extract_3=diff_c_p$c
655 #score of column in matr_current
656 what_to_delete=from_adjecency_row_2(extract_1,extract_2)
657 #score of this column in matr_prop
658 what_to_add=from_adjecency_row_2(extract_1,extract_3)
659
660 #compute score of matr_prop by subtracting score of column in matr_current and adding

score of this column in matr_prop
661 prop_score=X_t_matrix[k,(i-1)]+what_to_add-what_to_delete }else{
662
663 #else the difference is an reverse if the neigbourhood function is correct.
664
665 #Define which column differ
666 extract_1=t(diff_c_p$a)
667
668 #column in matr_current

82

A.5. MCMC algorithm

669 extract_5=diff_c_p$b
670 #column in matr_prop
671 extract_6=diff_c_p$c
672
673 #score of column in matr_current
674 what_to_delete=apply(matrix(c(1,2),1,2),2,function(x) from_adjecency_row_2(extract_1[,

x],extract_5[,x]))
675 #score of this column in matr_prop
676 what_to_add=apply(matrix(c(1,2),1,2),2,function(x) from_adjecency_row_2(extract_1[,x],

extract_6[,x]))
677
678 #compute score of matr_prop by subtracting score of column in matr_current and adding

score of this column in matr_prop
679 prop_score=X_t_matrix[k,(i-1)]+sum(what_to_add)-sum(what_to_delete)
680 }
681
682 #calculate acceptance ratio
683 R = min(1,exp((prop_score+log(1/prop_neighbor_nr))-(X_t_matrix[k,(i-1)]+log(1/nr_of_

neighboors))))
684
685
686
687 #Sample random uniform number and check if its smaller or equal to acceptance rate
688 if(runif(1)<=R)
689 {
690 #if this is the case add matr_prop score to X_t_matrix
691 X_t_matrix[k,(i)]=prop_score
692 #Change matr_current to matr_prop
693 matr_current[slice_intial[k,1]:slice_intial[k,2],]=matr_prop[slice_intial[k,1]:slice_

intial[k,2],]
694 #calculate neighbourhood of matr_current
695 neighbour_candate=func_nabour_imp_large_B_2(matr_current[slice_intial[k,1]:slice_

intial[k,2],])
696
697
698
699 #increase w
700 w=w+1
701
702 }else{
703 #else do not change matr_current and set score t equal to score t-1
704 X_t_matrix[k,(i)]=X_t_matrix[k,(i-1)]
705 }
706
707
708
709 }
710
711
712
713 }
714
715
716 #transform the samples matrixes where each element in the matrix represent how many ways

irrelevant of path length one can go from parent(column) to node(row)
717 gemetric_s_sum=lapply(1:nrow(slice_save_array),function(x)solve(diag(nr_nodes)-save_array

[slice_save_array[x,1]:slice_save_array[x,2],,1]))
718
719
720 #transform matrices in gemetric_s_sum into 1 0 matrices indicating if there is at least 1

way to go from parent(column) to node(row).
721 one_path=lapply(1:length(gemetric_s_sum), function(x) gemetric_s_sum[[x]]>=1)
722
723 #take an average of matrices in one_path.
724 edge_matrix_sum=Reduce(’+’, one_path)
725
726
727 edge_matrix=edge_matrix_sum/length(one_path)
728
729
730 edge_matrix[row(edge_matrix)==col(edge_matrix)]=1
731
732
733 #take an average of the samples.This average shows the estimate for direct causal

relation between parent(column) to node(row).
734 direct_cause=lapply(1:nrow(slice_save_array),function(x)save_array[slice_save_array[x,1]:

slice_save_array[x,2],,1])
735 direct_mat=Reduce(’+’, direct_cause)
736 direct_mat=direct_mat/length(one_path)
737
738
739
740
741
742 #this function returns random string based on vector vec
743 randstr <- function(vec) {
744 characters=vec[1]
745 numbers=vec[2]
746
747 lowercase=vec[3]
748 uppercase=vec[4]
749 ASCII <- NULL
750
751 if(numbers>0) ASCII <- c(ASCII, sample(48:57, numbers,replace = TRUE))
752 if(uppercase>0) ASCII <- c(ASCII, sample(65:90, upperCase,replace = TRUE))
753 if(lowercase>0) ASCII <- c(ASCII, sample(97:122, lowerCase,replace = TRUE))
754 if(characters>0) ASCII <- c(ASCII, sample(c(65:90, 97:122), characters,replace = TRUE))
755
756 string=rawToChar(as.raw(sample(ASCII, length(ASCII))))
757 return(string)

83

A.5. MCMC algorithm

758 }
759
760 samp_1=sample(4:6,1,replace = TRUE)
761
762 samp_2=sample(1:samp_1,4,replace = TRUE)
763
764 uniq=randstr(samp_2)
765
766 if(khh==1){
767 keep_adding="cat"}
768 if(khh==2){
769 keep_adding="csi"
770 }
771
772 string_to_add=paste0("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/csi_

sachs/causal_mechanism/plot2/",toString(j),".txt")
773
774 write.matrix(edge_matrix,sep=" , ",file=string_to_add)
775
776
777
778 samp_1=sample(4:6,1,replace = TRUE)
779
780 samp_2=sample(1:samp_1,4,replace = TRUE)
781
782 uniq=randString(samp_2)
783
784 if(khh==1){
785 keep_adding="cat"}
786 if(khh==2){
787 keep_adding="csi"
788 }
789
790 #string_to_add=paste0("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/cat_

child/direct_cause/n1001/",keep_adding,toString(ns_i),uniq,toSting(j),".txt")
791 #toSting(j+1)
792 #write.matrix(direct_mat,sep=" , ",file=string_to_add)
793
794
795
796
797
798
799 # Function for sorting estimate probabilities and true ancestral relationship matrix in

same order and concatinating them
800 class_prob=function(compare){
801
802
803 rechape_compare=c(compare)
804 rechape_compare_order=order(rechape_compare,decreasing = TRUE)
805
806 order_MCMC=rechape_compare[rechape_compare_order]
807
808
809 rechape_true=c(true_matrix_2)
810 order_true=rechape_true[rechape_compare_order]
811
812
813 compare_true_with_mcmc=cbind(order_MCMC,order_true)
814
815
816
817
818 return(compare_true_with_mcmc)
819
820 }
821 r=c("edge_matrix")
822
823
824
825 #calculate AUC
826 AUC_calc=AUC(class_prob(get(r))[,1],class_prob(get(r))[,2])
827
828 #return AUC
829 return(AUC_calc)
830
831 }

84

	Acknowledgements
	Abstract
	Contents
	Introduction
	Theory
	 Conditional Independence
	Graphs
	 Bayesian Networks
	Bayesian networks as causal models

	Structure learning
	CPT based score
	CSI score
	MCMC over structures
	Exact algorithm

	Simulation Study
	Simulation setup
	Results
	Discussion of results

	Conclusion
	Bibliography
	R code
	Main File
	Log-marginal likelihood computation for CPT based score
	CSI based log-marginal likelihood computation
	Function for computing and writing marginal-likelihoods multiple parentsets
	MCMC algorithm

