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Abstract

One of the most widely used tools for causal discovery is based on causal models
represented by the framework of Bayesian network. In the most challenging
cases of causal discovery the underlying BN structure is not known and must be
computed in a way that it takes into account the uncertainty that exist when
trying to predict the underlying structure. The structure uncertainty can then
be transformed into an uncertainty regarding a causal relationship between
variables reflecting the strength of how likely a causal relationship is given data
assumed to come from the underlying causal model. There are different methods
account for such uncertainty. We will focus on Bayesian model averaging over
structures implemented trough Markov Chain Monte Carlo(MCMC) and a
state-the-art dynamic programming algorithm.The general way of expressing
parameters for a causal model is through the use of conditional probability
tables CPTs. It has been demonstrated that more expressive models that
account for additional structures in each CPT may lead to improved predication
over traditional causal models. We will represent the regularities within CPTs
through more refined independency relations, defined according to the concept
of context-specific independence(CSI), in the form of CSI-trees which are learned
with a greedy algorithm. To identify plausible models, we use a score-equivalent
Bayesian score. An optimal combination of these models will be found with the
help of Bayesian model averaging in order to find the posterior distribution over
the causal target of interest. These methodologies where tested on synthetic
data generated from known benchmark Bayesian networks. A comparison
between CPTs and CSI-trees with the help of AUC show that no significant
improvement was made on the tested networks. However for some data sizes
some improvement could be seen. One reason might be that no exact CSI-tree
representation of the conditional distribution exist for these networks,since the
true distributions are defined through CPD tables. Another reason might be
that it was necessary to regulate the model fit with a model structure prior to
avoid overfitting in the learning process. The prior used in this work might have
been suboptimal. A comparison between MCMC and state-the-art dynamic
programming algorithm shows that the result under AUC are similar,however
the convergence of the MCMC over structure for some networks tested is slow.
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CHAPTER 1

Introduction

Causality is an important concept in most scientific studies. While the optimal
approach for inferring causal relationships is from controlled experiments, such
experiments can often be hard to perform for various reasons. For this reason
one would like to identify causal relations based on data generated through
passive observation. One framework that has received a lot of attention is the
framework of do-calculus.The typical assumption in this approach is that the
causal structure over the variables is known and belongs to some class of (causal)
Bayesian networks. In general this assumption cannot always be made with
ease. In the most challenging setting the BN structure is completely unknown
and must be learned from available data, a problem known in the graphical
model framework as structure learning. This study will focus on development of
a method for inferring the presence or absence of a causal relationship between
a pair of variables without the help of experimental data. We will define causal
relationships with help of Bayesian networks, in which the presence of a causal
relationship from X to Y corresponds to the existence of a directed path from
X to Y in BN structure GG. Notation X ~» Y will be used to denote such a
path. We will phrase the problem of causal relationships this way so that the
problem becomes a structure learning problem. Given the uncertainty involved
in structure learning, we will compute the posterior of X ~» Y through Bayesian
model averaging:

p(X ~Y|Data) = > p(G|Data), (1.1)
GEG(X~Y)

where p(G|Data) is the posterior probability of G given the data,and G(X ~~ Y')
are all DAGs that contain X ~» Y. The computational cost of calculating (1.1)
is large. Using state-the-art dynamic programming the calculation can be done
exactly for around 20 variables. Beyond that one must resort to other methods
such as Markov Chain Monte Carlo(MCMC). One of the goals of our study
will be to compare one state-the-art dynamic programming algorithm |[Pen+20]
against MCMC in terms of Bayesian model averaging. In addition we want
to study the effect of the incorporation of local structure in the models when
evaluating (1.1). By local structure,we refer to a structure describing local
properties of the relationship between a node and its parents (or direct cause),
in particular we will use tree-based structure that are able to capture a form
of context-specific independence(CSI). Earlier research has shown that local
structure learning can improve model accuracy in terms of estimation of the
joint distribution that factorizes over the graph structures G. We aim to test



the hypothesis that local structures will prove themself to be beneficial for
causal discovery as we hope they will aid in distinguishing between Markov
equivalent graphs in terms of the conditional independence that they imply.
We will start our journey with the notion of conditional independence. Further
we will look into necessary graph theoretical concepts. What follows after
that is combining the notion of conditional independence with defined graph
theoretical concepts. After that we will go through our chosen structured based
learning scores, before proceeding to Bayesian model averaging and some theory
on the exact algorithm. We will finish with a simulation study and a discussion
about the results.



CHAPTER 2

Theory

2.1 Conditional Independence

In this work our interest is in modeling the joint distribution over a set of
categorical random variables. We use the notation P(Xj,...,X,) for the
probability mass function of random variables X = {X1,...X,,}. A particularly
important concept in the considered framework is conditional independence.

Definition 2.1.1. [KF09, Definition 2.3] We say that an event « is conditionally
independent of event  given event 7 in P,denoted

P (oL Bly), if P(alfNy) = Plaly) orP(BN7) =0

Definition 2.1.2. Definition 2.4] Let X,Y,Z is a set of random
variables.We say that X is conditionally independent of Y given Z in a
distribution P if P satisfies (X=x L Y=y|Z=z) for all x € Val(X),
y € Val(Y) and z € Val(Z). The variables in the set Z are often said to
be observed. If the set Z is empty, then instead of writing (X L Y|()), we write
(X L7Y) and say that X and Y are marginally independent.

As an alternative characterization of conditional independence we can also use
the following statement.

Proposition 2.1.3. [KF09, Proposition 2.3]
The distribution P satisfies (X L Y|Z) if and only if
P(X,Y|Z) = P(X|Z)P(Y|Z)
Definition 2.1.4. [KF09, Definition 3.2] Let P be a distribution over X. We

define I(P) to be the set of independence assertions of form (X L Y|Z) that
holds in P.

2.2 Graphs

A graph is a structure made up of nodes denoted by X and edges denoted by
E. Every pair of nodes are either none-connected or connected by an edge,
which is either undirected, X; — X, or directed X; — X;(or X; < X;). Some
particularly important attributes of a graph are listed below.



2.2. Graphs

o Parent/child: X; is parent to X; in the graph whenever we have
X; — X;. Analogously, X; is said to be the child of X;. We denote
all parents of X; by Pax,.

e Degree of a node: Number of nodes it is directly connected to through
an edge.

o degree of graph: The maximal of all node degrees.

e In-degree of a node: The number of parents the node has,that is
,|PaXi|.

In addition to these basic properties, there are additional properties that will
be of relevance to this work. These will be listed in the following and they are
taken from Koller and Friedman |[KF09|. Some of the definitions are slightly
modified.

Definition 2.2.1. [KF09, Definition 2.15] We say that X1, ..., X} form a path in
the graph K = (X, E) if, for every i = 1...,k — 1,we have either X; — X, or
X; — Xiy1. A path is directed if, for at least one i we have X; — X; 1.

Definition 2.2.2. [KF09, Definition 2.16] We say that X1, ..., X} form a trail in
the graph K = (X, E) if, for every i = 1,....,k — 1, we have X; = X;4.

Definition 2.2.3. [KF09| Definition 2.17]
A graph is connected if for every X;,X; there is a trail between X; and Xj.

Definition 2.2.4. Definition 2.18] We say that X is an ancestor of Y
in K = (X, F), and that Y is descendant of X, if there exist a direct path
X1, ..., X with X; = X and X, = Y.We use Deschendantsx to denote X's
descendants, Ancestetorsx to denote X's ancestor, and NoneDecsendantsx
to denote the set of node in X — Descendantsx .

The ancestors of a node X in a graph will be the parents of X plus the parents
of the parents of X and so on, while the descendants of X is all nodes that has
X as, ancestor.

Definition 2.2.5. [KF09, Definition 2.19]
Let G = (X, E) be a directed graph. An ordering of the nodes X3, ..., X,, is a
topological ordering relative to G if ¢ < j whenever X; — X; € E.

Definition 2.2.6. [KF09, Definition 2.20] A cycle in K is a directed path
Xq,..., X where X; = X;.A graph is acyclic if it contains no cycles.

We will in this work focus on directed acyclic graphs (DAGs). In Figure (2.1)
is an example of a directed graph that is not a DAG due to the existence of a
direct cycle.



2.3. Bayesian Networks

Figure 2.1

Definition 2.2.7. [KF09, Definition 2.21]
Let K be PDAG(partially directed acyclic graph) over X. Let Ky, ..., K; be a
disjoint partition of X such that:

e the induced subgraph over K; contains no directed edges;

o for any pair of nodes X € K; and Y € K for ¢ < j, an edge between X
and Y can only be a directed edge X — Y

Each component K; is called a chain component

Importantly, in graphical model framework, a graph is used to represent the
dependence structure over the involved variables. The correctness of the implied
independence statements with respect to some reference set is given by the
following definition.

Definition 2.2.8. [KF09| Definition 3.3] Let K be any graph object associated
with a set of independencies I(K). We say that K is an I-map for a set of
independencies I if I(K) C I

2.3 Bayesian Networks

Since we will work with Bayesian Networks we will call the DAG a BN structure.
In this work, we will focus on Bayesian networks, for which the dependence
structure is represented by a DAG. More specifically, the dependence structure
encoded by a DAG can be characterized by the local Markov property.



2.3. Bayesian Networks

Definition 2.3.1. Definition 3.1]

A BN structure is a DAG G whose nodes represent random variables
X1, ..., X,,.The structure G encodes the following set of conditional independency
assumptions:

X, L NoneDescx,

Pax, ,i=1,...,n
which are known as the local independencies in G and denoted by I,(G).

In addition to the local independencies there are additional independencies that
are implied by Iy (G) through the so called semi-graph axioms |[KF09].

®

©)

Figure 2.2

To explain the concept of using DAG as BN structure, we will use the example
DAG in Figure 2.2. There are two nodes in Figure 2.2 that has an empty
parent set. Here the local property still holds,Pax = Pag = () and the local
Marcov property implies marginal independence. We will now list up all the
independencies in I, (G):

X1S

S1X

L1 X ZY|K,S

K1 X,5|12,Y

Z 1LY|S, X

Y 1L Z|S, X

In addition to these independencies there are other so called global independence
structures that can’t be captured directly using definition 2.3.1. Global
independence defines the conditional independencies for a DAG more generally.
It is defined through the notion of d-seperation, which is a graph-theoretic
criterion for reading off independence statements directly from the graph.



2.3. Bayesian Networks

Definition 2.3.2. [KF09, Definition 3.6 |
Let G be an BN structure,and X; = .. = X, a trail in G.Let Z be a subset of

observed variables.The trial X; < .. = X, is active given Z if

e whenever we a v-structure X; 1 — X; < X;;1 then X, or one of its
descendants is in Z;

e 1o other node along the trail is in Z.

Definition 2.3.3. Definition 3.7]

Let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated
given Z, denoted dsepg(X;Y|Z), if there is no active trail between any node
X eXandY €Y given Z. We use I(G) to denote the set of independencies
that correspond to d-separation:

I(G) = {(X L Y|Z) : d - sepo(X: Y|Z)}

Theorem 2.3.4. [KF(09, Theorem 3.3] If a distribution P factorizes according
to G,then I(G) C I(P)

Theorem 2.3.4. ensures soundness of d-separation.

We denote the independencies not captured by local independency by
I,,(G).Definition 2.3.3 can be used both to find Ir,(G) and I,,(G). The union of
I (G) and I,(G) forms I(G). Some of the independencies in I,(G) for DAG G

are:

K1X|ZY

X 1 L|Z)Y,S

Z 1 LIK,S

Y LL|K,S

S 1 K|ZY
For two distinct DAGs GG; = G2 we might have that they encode the same
dependence structure,that is I(G7) = I(G2).This property is known as I-
equivalence(or Markov equivalence).

Definition 2.3.5. Definition 3.9]

Two graph structures K; and Ks over X are I-equivalent if I(K;) = I(K>).
The set of all graphs over X" is partitioned into a set of mutually exclusive and
exhaustive I-equivalence classes, which are the set of equivalence classes induced
by the I-equivalence relation.

Inspired by d-separation I-equivalence between two DAG’s can easily be tested
by a simple graph-based algorithm.

Definition 2.3.6. [KF'09, Definition 3.10]
The skeleton of a Bayesian network graph G over X is an undirected graph over
X that contains an edge {X,Y} for edge (X,Y) in G.

Definition 2.3.7. [KF09, Definition 3.11]
A v-structure X — Z < Y is an immorality if there is no direct edge between
X and Y if there is such an edge it is called a covering edge for the v-structure

7



2.3. Bayesian Networks

Based on the concepts of skeleton and immoralities, we can then characterize
I-equivalence as follows:

Theorem 2.3.8. [KF09, Theorem 3.8] Let G; and G2 be two graphs over X'.Then
G1 and G have the same skeleton and the same set of immoralities if and only
if they are I-equivalent

Figure 2.3 and figure 2.4 shows the two I-equivalence classes for three nodes
X,Y, Z that are connected as a chain.For the DAG’s in Figure 2.3, we have the
implied independency statement X 1| Y|Z while for DAG in Figure 2.4 we have
that X LY.

®

Figure 2.3

Figure 2.4

The I-equivalence class of the DAG’s in figure 2.3 can be seen as:

Figure 2.5

Figure 2.5 is the cPDAG of the I-equivalence class shown in Figure 2.3. A
cPDAG is a PDAG that illustrates I-equivalent DAGs.

A Bayesian network is a tuple containing a DAG structure and a set of
conditional probability distributions (CPDs) that define the joint distribution
under the associated DAG. Generally one can write any joint distribution over
a set of random variables X1, ..., X} as a product using the chain rule: .

P(Xy,...,Xy) = P(X1)P(X2|X1)P(X5| X1, X2)..P(Xg| X1, oo, Xpo—1)



2.3. Bayesian Networks

This decomposition holds for any factorization order. In the case of Bayesian
networks, we have a similar type of factorization, which is known as the chain
rule for Bayesian networks. There is a fundamental connection between the
view of a DAG as a dependence structure and a specification of how to factorize
a joint distribution.

Definition 2.3.9. Definition 3.4]

Let G be a BN structure (i.e DAG) over the variable X1, .., X,,. We say that
a distribution P over the same space factorizes according to G if P can be
expressed as a product

n

P(Xy,... X,) = [[ P(Xi|Pax,). (2.1)
i=1

is called a chain rule of Bayesian Network

Definition 2.3.10. [KF(09, Definition 3.5]
A Bayesian network BN is a pair B = (G, P) where P factorizes over G, and

where P is specified as a set of CPDs associated with the nodes in G.The
distribution P is often annotated Pp

Thus, by specifying the CPD of each node given its parents, we specify the joint
distribution under a specific DAG.

Theorem 2.3.11. Theorem 3.1]

Let G be a BN structure over a set of random variables X and P be a joint
distribution over the same space. If G is an I-map for P, then P factorizes
according to G

Theorem 2.3.12. Theorem 3.2]

Let G be a BN structure over a set of random variables X and let P be a joint
distribution over the same space. If G is an I-map for P, then P factorizes
according to G.

Theorem 1.3.13 and 1.3.14 looked at together ensures that I(G) C I(P) whenever
P factorizes over G.

Generally one assumes that a Bayesian network is an minimal I-map.
Definition 2.3.13. [KF09, Definition 3.13]

A graph K is a minimal I-map for a set of independencies [ if it is an I-map for
I,and if the removal of even a single from K renders it not an I-map.

A procedure for finding minimal I-maps given a variable ordering Xy, ..., X,,
is to use the definition of local independency iteratively by selecting minimal
parent-sets for the nodes that follow the definition of local independency.

e Pick a minimal subset U C (X7,...X;_1) for which

Xi 1 (Xla "'5Xi—1) \ U|U

o set Pax, to be U



2.3. Bayesian Networks

The standard way of representing the CPDs of Bayesian network with categorical
variables is to use conditional probability tables (CPD-tables or CPTs). A CPT
is a lists the conditional distributions for each configuration on the parental
variables. As an example consider a Bayesian network over the DAG in Figure
2.4 for the joint distribution factorizes as

P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)

Now, assuming binary variables, we have would represent the above CPDs
with CPTs in table 2.1-2.3,where every row represents a CPD under a parent
configuration.

condition 21 20

20, y" P 1—p
xO? yl P2 1- D2
al oyl Ps 1—ps
xla yO P4 1-— P4

Table 2.1: CPD table for P(Z|X,Y)

x! 20

D5 1—ps5

Table 2.2: CPD table for P(X)

xl 20

De 1—ps

Table 2.3: CPD table for P(Y)

An alternative way of representing CPDs of a variable is through CSI trees where
CSI stands for context specific independence. This representation is useful when
the certain CPDs within an CPT are identical. The main disadvantage with
CPT is the number of parameters that has to be defined increases exponentially
with the number of parents. Estimating the parameters accurately becomes
harder when the number of parameters are large compared to the available data.
This is one reason for the need to restrict the number of parameters. In many
real life situation the need for a reduction in parameter size comes naturally
and can be characterized through the notion of context-specific independence.
CSI-trees follows something called CSI independence.

Definition 2.3.14. Definition 5.1 |

Let X,Y,Z be pairwise disjoint set of variables,let C be a set of variables(that

might overlap with X UY UZ),and let ¢ € Val(C).We say that X and Y are

contextually independent given Z and the context ¢ denoted (X L. Y|Z,c) if
P(X|Y,Z,c) = P(X|Z,c) whenever P(Y,Z,c) > 0

10



2.3. Bayesian Networks

For probability distribution P(X,Y|Z = z) some joint events of Z might
be equal. If one uses a CPT to represent the CPDs one has to define all
conditional distributions regardless of them being equal or not. This motivates
the construction of other types of representations. One such representation is a
CSlI-tree. As an example the CSI-tree of Table 2.1 is:

1
p2 plpd p3

Figure 2.6

CSI can be seen as a generalization of conditional independence. If the CPD-
table for P(Z|X,Y) instead look like the one in Table 2.4 where we have identical
CPDs on the third and fourth row,we could represent it more compactly using
the CSI-tree in Figure 2.7.

condition 21 20

20, y" P1 1—p
JIO, yl P2 1- D2
al oyl p3 1—ps
371, yO P3 1- p3

Table 2.4: CPD table for P(Z|X,Y)

For table 2.4 the new CSI-look like:

Figure 2.7

In Figure 2.7 we have that P(Z|X = 1,Y) = P(Z|X = 1)yrepresenting
a CSI of the form (Z 1. Y|X = 1) that is, the context is specified by
X = 1.Each branch represents a joint conditional configuration. If some
variable is not included in a branch, it means that the value of that variable
does not influence the conditional distribution regardless if one includes it
or not. The leafs contains the parameters representing a CPD. In Figure
27p = P(Z =1X =0,Y =0)p = P(Z =1X =0Y =1) and
ps = P(Z = 1|X = 1).The reason for testing CSI-trees as an alternative

11



2.4. Bayesian networks as causal models

representation for the node-specific CPDs is to see if it is beneficial form a
causal discovery point of view. For example,we want to study if the additional
restrictions imposed by CSI can help in orientating additional edges within an
I-equivalence class.

2.4 Bayesian networks as causal models

A causal model has the same form as a BN:A tuple consisting a BN structure
and a set of CPD-tables grouping parameters on the basis of nodes conditioned
on there parents. Each CPD table is called a causal mechanism.The causal
mechanism has the same form as the CPD table but is the output of a stochastic
function which changes and it describes the functional relation between a
node and its parents.The difference between a BN and a causal model is the
interpretation of the edges. In a causal model we assume that the edges between
the node and its parents represent direct causal relationships with respect to
the observed variable. With this interpretation the causal mechanisms will
change when fixing specific values of the parental configurations and we will
see changes of the output of the stochastic function. This is not possible to do
with a standard BN,where the direction of the edges does not have a causal
interpretation.

For BN, X — Y, defined over two binary variables X,Y, we can answer
P(Y|X = 1) but we cannot reason about the effect that an intervention,where
we set a value,e.g, X = 1, will have on the distribution. To denote that we are
changing the CPD P(Y|X) by setting X = 1 we write to P(Y|do(X = 1)),
where do(X = 1) means that X takes the value 1 with probability 1. The action
of setting X = 1 we call an intervention on what value X takes. One cannot
distinguished two BN X — Y and X < Y based observing specific values of
the parent set. By interpreting X — Y as a causal model and setting X =1
we have that:

P(Y|do(X =1))=P(Y|X =1), (2.2)
while the output of P(X|do(Y = 1)) will be:
P(X|do(Y =1)) = P(X) (2.3)

This is because P(Y|X) is a causal mechanism,assuming X — Y, while the
CPD table P(X|Y) is not. While we can always change the parameters in the
CPT for a Bayesian network, this change those not have a causally interpretable
meaning,and at the same time it defines a new Bayesian network. In a causal
model, when the change in the CPD table(causal mechanism) happens, this has
the interpretable meaning of intervening on a value of a parental configuration
at the same time as the causal model remaining unchanged. More generally,as
stated in the following definition, given a causal Bayesian network,we can answer
intervention queries that involve any of the variables involved in the model.

Definition 2.4.1. [KF09, Definition 21.1] A causal model C over X is a Bayesian
network over X ,which, in addition to answering probability queries,can also
answer queries P(Y|do(z),x),as follows:

PeP(Y|do(z),x) = Pe,_,P(Y|2)

12



CHAPTER 3

Structure learning

Constraint-bases vs score based

Structure learning is the task of learning the DAG structure of a BN based on
some data that is assumed to have been generated by the model. Constraint
based learning and score based learning are the main categories of methods
used to learn Bayesian network structures. Constrained based methods utilize
a sequence of independency test to learn the structure. Score based learning
methods uses a scoring function together with a search algorithm to traverse
the graph space in order to find a high-scoring DAG.The space of DAGs grows
exponentially with the number of nodes. Therefore, one typically has to resort
to heuristic methods that are not guaranteed to find the global optimum.

We will focus on score based learning methods. The reason for our choice is
earlier experience in that constrained based methods tend to be less robust then
score based methods. Constrained based learning is more sensitive to error in
capture individual independency tests. Score based methods are more robust
in the sense that they capture the overall graph structure. In this work we will
consider two score based methods, one for standard CPD tables and one that
also learn CSI-trees for each considered network.

3.1 CPT based score

We define ©g = {exllpaxl,...,exn‘paxn} to be all CPD tables Pg which
factorizes over the BN structure G.That is,

9Xi|PaXi = (0X1|u1) U € Val(PaXi),

the CPD’s of X;,where 0x,,, specifies the conditional distribution of X; given
that the parents have taken on the configuration wu;. Our score will be the
log-joint distribution log P(D, G).

log P(D,G) = log P(D|G) + log P(G) (3.1)

This is also called the Bayesian score and it consists of the log marginal likelihood
given G (log P(D|G)) and a graph prior (log P(G)). For CPT scores we will use

13



3.1. CPT based score

a uniform prior P(G) o 1. Our goal is to approximate the posterior distribution

P(G|D).

P(DIG)P(G)

P(GID) = =5

) x P(D|G)P(G) (3.2)
Where P(D) is a constant for all G. The key component of the Bayesian score
is marginal likelihood

P(D|G) = /@ P(D|0cr, G)P(0c:|G)db (3.3)

which is the expected likelihood P(D|f¢, G), under some prior on the model
parameters P(0q|G).P(D|0g,G) is the likelihood given a Bayesian network
structure G. Under certain assumptions, the marginal likelihood for a BN
structure can be computed in closed form.

The likelihood can be written as:

=

LD:0¢) =[] Pz ,znlm] : 0), (3.4)

m=1

where (x1[m], ..., z,[m]) is the m’th joint instance of random variable X7, ..., X,
from a dataset generated with M instances. The product comes from the
assumption that each instance was generated independently. We can express
the likelihood under a BN structure as:

HPG z1[m), ...z, [m] : 0)
—HHP:Q llpax,[m] : 0) (3.5)
—Hnm Jlpax, m) : 0)

We can then express the likelihood as a product of node-wise likelihoods:
D) =[] Li(0x, pax, : D) (3.6)
i

This decomposition is called the global decomposition property of the likelihood.
This holds because of the assumption that the parameters 0y, p, «, are assumed
to be disjoint from Ox |p, ., for all j # i. The global decompos1t1on property
ensures that the factorlzatlon of the likelihood can be done with respect to
CPD-tables of the BN structure.

We can further decompose the likelihood by using the local decomposition

property:

i w;€Val(Pax,)

which makes it possible to look at each parameters of each row within a CPD-
table separately.
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3.1. CPT based score

Now the local likelihoods in Equation (3.6) will be in the form of Equation (3.8)
when we use categorical likelihood:

L(6|D) = HeM[’“] k=1,. (3.8)

where k£ = 1,...K represents the different categories, 6, denotes the probability
of observing category k, and M|[k]| denotes the number of times category k is
observed in the data.

By putting a Dirichlet prior on the model parameters:

(01, ...,0k) ~ Dirichlet(ay, ....., o) X 1_161-0“71 (3.9)

o = E .,
k

we can compute the posterior distribution, and consequently,marginal likelihood
in closed form.

Proposition 3.1.1. [KF09, Proposition 17.3]
If P(9) is Dirichlet(ay, ... ) then P(0|D) is Dirichlet(c; + MIE], ..., ax +
M([K]) where M[k] is the number of occurrences of z*

The Dirichlet prior is said to be a conjugate prior to the categorical
likelihood,meaning that the posterior is in the same family of distributions as
the prior. The general expression for the marginal likelihood with a categorical
likelihood and Dirichlet prior is given as:

P(D|G) =

HF Otk—‘rM ]) (3'10>

onrM .

We want the decomposition properties to hold for the marginal likelihood as
well. The same type of decomposition holds if the prior satisfies global and
local parameter independence in addition to the likelihood having global and
local decomposition property.

Proposition 3.1.2. Proposition 18.2]

Let G be a network structure,and let P(fs|G) be a parameter prior satisfying
global parameter independence.

Then,

P(D|G) = H/@ 1 P@ilmllpax,iml, 0x, pax,, G)P(Ox, Pax, |G)dOx, Pas,

XilPax, m

Moreover if the prior P(6¢|G) also satisfies local parameter independence

roe) =1 ]I [T Pimu,bx, . C)POx,u,

i weVal(Pag,) OXilui m,u;[m]=u;

G)dOx,|u,
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3.1. CPT based score

Under the assumptions of likelihood decomposition and parameter independence,
we can compute the marginal likelihood in closed form:

Oé ilpax; Fazipaw, M'r’ia Qg
P01 =TT T e ) [t ),

OéX |pax + M[an F(OéXL‘pan)

i Pax

(3.11)

where X, lpax, = sz Qzi|pax, and Pay, are the parent joint events of Xj;.
Note that the marginal likelihood is a product of node-wise factors, or a sum
when log is used. Assuming a similar factorization of the graph prior, the score
is thus a product(or sum) of node-wise scores.This property is particularly
important when traversing the space of DAGs in the search phase since local
modifications to a DAG will typically only change a few node-wise scores and
the remaining can be reused from the previous iteration.

In addition to this decomposability, we want all DAGs in the same I-equivalence
class have equal scores.

Definition 3.1.3. [KF09| Definition 18.4]

Let score(G : D) be some scoring rule.We say that it satisfies score equivalence
if for all I-equivalent networks G and G” we have score(G : D) = score(G' : D)
for all data set D.

This equality is important for us because the best output of our methods is the
I-equivalence class of the BN structure for the true underlying causal model.
For our prior, score equality within I-equivalence classes holds when one uses
a Dirichlet parameter prior from the BDE family. In this work we are using
such a prior. More specifically, we are using the BDEu prior for which the
hyper-parameters are set according to:

We are using BDEU prior.

N
GrilPexs = Val(X)][Val(Pax, )|

(3.12)

where Val() is the outcome space of input variables and |Val()| is simply the
number of outcomes.

Algorithm 1. CPD-algorithm

Input: data Xz,PaXn{Val( )}z 1
assign Val(Pax,)

assign ag, |par,, = Val(X) [ Val(Xray )l
Scoreyq =0 '
for each pa,, € Val(Pax,)
count occurrence of each configuration i.e all M[z;, pa,]
assign Mpa,,] = 3, Mlz;, pas,]
F(O‘Xilpaxi )

T(Qu, |pay, +M[zipasz,;])
COTeyal = Score e
Scorevar = Scoreval + o~ Tttax, ) Les — Tlax,pe)

An overview of the algorithm for computing the family scores is given in
Algorithm 1.
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3.2. CSl score

3.2 CSl score

A CSl-tree is a structure imposing a special kind of local parameter sharing.
To understand local parameter sharing, it might be helpful to first understand
global parameter sharing. Instead of structuring the parameters in Og in
terms of CPDs in a CPD table denoted by P(X;|Pax,,©¢) for nodes X; € X
given its parent-set Pax,, we will instead partition the set of all parameters
in O¢ into subsets 0!, ..., 0% where each 6* include parameters that are shared
across the CPD tables page 755]. For each of these subsets their is
an accommodating set of variables L* such that L', ..., L* form a partition of
X that is,L', ..., L* are disjoint and there union is equal to X'. This ensures
that one can then associate a disjoint set of parameters to a disjoint set of
nodes, where one can find all parameters related to any node in L* in the set
of parameters #*. We have the following implication:

P(X;|U;,0) = P(X,|U;, 0") (3.13)

U; are the parents of X;, we also have that any pair of nodes X and Y in L*.
Further, we will assume that the CPDs for all X,Y € L* are identical:

P(X|Ux,0%) = P(Y|Uy, 0%) (3.14)

Note that above equality can only hold for X,Y where Val(X) = Val(Y) at
the same time as Val(Ux) = Val(Uy).

For notational convenience ,for any X; € LF let s;, denote the values of X; and
fr denote the configurations of the parents Pax,which we here denote by U;.
Based on this, one can now decompose the probability distribution to factorize
over a specific network as:

P(Xy,..,X,|0) = [ P(Xi|Pax,.0) (3.15)

:ﬁ II Pxilv:,0) (3.16)

k=1X,eLk

K
= H H P(X,|U;, 0%) (3.17)

k=1 X,cLk

The first equality comes from chain rule of Bayesian network, the second equality
comes from the disjoint sets L* and third equality comes from independency of
the set of parameters for variables in L* to any other parameter set.

We assume now that every conditional distribution in the CPD-table follows
a multinomial distribution. We use 9§k| 5 to denote the specific conditional
probability P(X; = s3|U; = fx,0%) for some X; € L*. We can then express the
likelihood under global parameter sharing as:

K
son =TI 11 % a1
k=1sk fk X,eLk
= H H (gljk‘ k)Jka[Sk’fk] (3.19)
k=1 X,eLk
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3.2. CSl score

where

Mk[sk,fk] = Z I(I’l = Sk, U; = fk) (320)

X,ELk

Thus,in the above expression we add up the counts of multiple variables in the
network based on the parameter equality enforcement, due to global parameter
sharing.

The parameters can not only be shared globally, but also locally in a single CPD
table. One way of incorporating local parameter sharing is through the use of
CSI-trees. The branches encodes a specific configuration of the conditioning
set, where one is sharing parameters across different conditional distributions
within a CPD table. We will again focus on the case where we assume that
the CPDs of graph G defines a set of multinomial distributions. For each
variable in G, together with a parent joint event w; € Val(U;), we have a
multinomial distribution. We define the set D = UM {P(X;|u;) : u; € Val(U;)}
which contains all multinomial distribution in all CPDs of graph G.

We define a set of locally shared parameters 61, ..., 8% where each * is associated
with a set D¥ C D. Similar to before, we assume that D, ..., D* form a partition
of D and that all conditional distributions within D¥ share the same parameters
6%. Note that for this type of constraint we must have that all distributions in
the same class,D¥, must have the same set of values.

As an example, for CSI-tree in figure (2.7) we have the sets D', D? and D?.

D' = P(Z|2°,4°) (3.21)
D? = P(Z|z°,y") (3.22)
D* = P(Zlz',y"), P(Z]z',y°) (3.23)

where the CPDs in D? would be represented by the same parameters.Local
parameter sharing can be seen in an analogous way as global parameter sharing
by decomposing the likelihood.Starting with:

PDI0) = [T TT I P(wilui, 0)"tm), (3.24)

T U, T4

when local parameter sharing is introduced, one can aggregate inner term
according to the specific local parameter sharing set D* thereby getting:
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3.2. CSl score

P(DI0) = [ [] [ P(wilus, 0)" 1= (3.25)

T Ui T

=11 H I (%) bt (3.26)

i k=1 j
K

- HH 07) 2 gy M) (3.27)
k=1 j

For CSl-tree the set D* is restricted to only include local branches where the
set of parent configurations are generated from context involving a subset of
the parental variables.

With the introduction of local sharing in the form of introducing a CSI-trees
as, middle-step when computing the marginal-likelihood, the full CSI-tree
that represents all full configurations of the parents as individual branches
typically gets reduced such that shorter branches represent a set of CPDs. More
specifically D* is defined through branch k,and the parent configurations in DF
are identical for the variables specifying specific branch k.

Under local(and global) parameter sharing, we can still compute the marginal-
likelihood in closed form using a similar approach and assumptions as in the
standard case. The only difference is that instead of modelling each parent
configuration separately, we must now have classes of parent configurations that
result in the same CPD. Going back to our example D', D%, D? represents the
branches in the CSI-tree shown in Figure(2.7), the marginal likelihood becomes:

3

INCT) P e M2k, j] + e 5])
H (azk,s + MIk]) H F(Zje,] k) ’

where J is the set of configurations of parent variables that are not used to
specify the branch,that is, the variables Z is context-specifically independent of
given the context if the branch.

For this example we have three D* For D' | J = (.For D?, J = ().For D?3,
J = {y°,y'}. resulting in the counts:

(3.28)
k=1

M= Y Mzaz=0y=0] (3.29)
z€{0,1}

M2= Y Mzz=0y=1] (3.30)
z€{0,1}

M= Y > Mlzz=1y (3.31)

2€{0,1} ye{0,1}

= > Mlzaz=1] (3.32)

z€{0,1}
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3.2. CSl score

N
Cehd = Wal(Z)[Val(X, V)]

(3.33)

AZ|k,J = Z Z Az|k,j (3.34)

jeJ zeZ

Instead of now talking about DAGs in the same I-equivalence class having

equal score, one can now talk about the score function returning the same
score for DAGs in the same CSl-equivalence class. For a formal definition of

CSI-equivalence we will refer to [Pen+13|.

Figure 3.1: BN structure H

To illustrate the difference between I-equivalence and CSI-equivalence, we will
first list all DAGs in the I-equivalence class for BN Network H in Figure 3.1,
then we will put a label on one of the edges,representing a CSI, and see how
the parameter constraint creates a CSIl-equivalence class. All variable in H are
binary.

NN
NN

Figure 3.2: I-equivalence-class for BN H

/1

Starting with the standard case the six I-equivalent DAGs are shown in Figure
3.2. Next, in Figure 3.3(a) we set X =1 as a label on the edge going from Y to
Z indicating that this edge is removed if X = 1, thus representing a CSI of the
form (Z L Y|X =1). The corresponding CSI-tree in Figure 3.3(b) shows how
the same CSI is captured by through the CPD structure of Z.

20



3.2. CSl score

Figure 3.3: BN structure with label X =1

Figure 3.4: The CSI-equivalence class for the labeled DAG in 3.3(a) and csi-tree
when the edge between Y and Z has label X =1

When the edge between Y and Z is labelled according some value of X, one has
to look at BN structures where X influences the probability relation between Y
and Z. This means that X has to be a parent of at least Z or Y. The CSI-tree
for Z and Y in BN structures where X is a descendant of both Y and Z does
not include X. These structures can not capture the conditional edge existence
between Y and Z based on a value of X.

From Figure 3.2 and Figure 3.4 we see that the DAGs in the CSl-equivalence
class is a subset of these in the I-equivalence class. Furthermore,the orientation
of the existing edges is half the times in either direction in the I-equivalence
class.In the CSl-equivalence class we have the same thing for the edges between
Y and Z, however,there is slightly higher support for X — Y and X — Z than
Y — X and Z — X, respectively. This way, a CSI can provide some additional
information regarding orientation of some of the edges.

Graph Prior

When computing the scores for the CSI-method,we will use the sparsity-
promoting graph prior from reference |[Pen+15|:

d
log(P(G)) = — Z (14 t)lPal 1o n, (3.35)

j=1
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3.2. CSl score

where t > 0 is a tuning parameter of how much edges in G will be penalized.
The factor logn is used to adapt the effect of penalization to the number of
data samples.

The reason is that the marginal-likelihood alone has a tendency to overfit the
data, resulting in overly complex models that include many none-true edges,that
is,false positives, which again leads to BN structures learned by a CSl-score
is of type of LDAG. gives a detailed explanation of the overfitting
problem. Rather then using prior of 7 we will instead go with the
approach taken in [Pen+15],where the prior does not penalize the CSI-trees
directly,but rather penalize the density of the global DAG structure.

CSl-Algorithm

The space of CSI-tree quickly becomes large as the number of parents is increased.
For this reason the algorithm implemented for the construction of CSI-trees
will be based on greedy hill climb, which tries to maximize the log marginal
likelihood.The family score is then given by the log-marginal likelihood of the
identified CSI-tree with the graph prior added. To further represent the search
space we set an upper limit to the number of parents, K ;such that,Zf:O (”;1)
possible parent sets are considered for each node. With a greedy hill climb on
the space of CSI-tree one want to find the important joint configurations of the
conditioning set that defines the unique CPDs within a CPD-table.

Our goal is to find the I-equivalence class of the underlying true BN structure.
We are trying to find this based on a data set of limited sample size that will
contain a considerable amount of noise. Therefore, we do not want our method
to overfit on the data. One reason that CSI-scores might do better than CPT-
scores is that it does not necessarily consider full parental configurations, but
instead it tries to capture the most relevant CPDs through partially specified
parental configurations. This counteract the exponential blowup og the parental
outcome space, which is the main reason why it might be beneficial in terms of
identifying the true global graph structure. Our algorithm works by reducing
the parent set configurations of each node through choosing the nodes that
noticeably outperform the others in every step of the CSI-tree building process.
This is done by comparing the score of the current CSI-tree to a CSI-tree where
all nodes that have not yet been added to a branch are added as a test of
whether they increase the score or not.This procedure is done to all branches
of the current CSlI-tree state.The node resulting in the biggest improvement is
selected.

The construction starts with the root. The root is selected based on computing
all scores of parent set size 1, where the score is the sum of the log-marginal
likelihood and the prior. After the root node has been added, the branch of the
CSI-tree are iteratively extended,or grown, by splitting on parents that are not
yet included in the considered branch. Each branch has its own score which is
a sum of the log-marginal-likelihoods one gets by iterating the values for the
node the tree is being built for, when the configuration of the parent set is held
fixed. For the root selection, the scores one gets by iterating over the parent
configurations is compared with the score that is calculated when no parent
is included,.i.e instead of M|z;, pas,] in expression (3.11) one uses the count
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3.2. CSl score

M][z;],and instead of M[Pax,], M is used.We compare these score by taking
the score difference between a sum and the score for when no parent is included.
This is done for all joint configuration and for all potentially addable parents.
The greatest one that is greater then 0 gets added as root. Each component
of its sum is the score for a branch. Once the first split has happened, the
only configurations considered in the next iteration are those that include both
the root and all the potentially addable parents that do not exist in a branch,
for all branches.Again, the scores in the next iteration is compared with the
previous values of the branches. The procedure of growing the branches of the
tree is continued until no improvement is possible or the three is of full depth,
meaning that each branch include all the parents.

A disadvantage with such an approach is that the algorithm only looks one step
ahead comparing the current score against the new score obtained after a single
split, even if the split that gives the biggest improvement now might lead to a
suboptimal tree further ahead. However our goal is not to necessarily find the
optimal CSI-tree. We mainly want to test whether the CSI-tree-score learned
from a greedy hill climb result in an improvement over the standard CPT-score.
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3.3. MCMC over structures

Algorithm 2. CSI-tree-algorithm

Input:data,X;,Xpay, ,{Val(X;)}iy
assign Val(X;) '
while TRUE
assign init =0
for each X; in Xani do
for each branch £ do
if X; notin branch k
assign values of X, Val(Xj)
count occurrence of each configuration ,i.e all Mlx;, k, x;]

ASSIgN Qg |y k = |Val(Xi)\-J\\(/al(k,Xj)\
assign QX |kyx; = sz gz .k
for cach z; € Val(X;) do

assign M[k,x;] =3, Mz;, k, x;]

Score(k/mj) _ F(O‘Xilk,zj) ]) HT7 F(azi\k,mj +]\/I[$1k7wj])

D(ox, ko, +Mk,z; [NCERP)
end for

dif fscore = ij Score(ky,) — Score(k)

if dif fscore > init

it = dif fscore

Xchoise = Xj
kchoice =k
end if
end if
end for
end for

if init still is 0
BREAK while
end if
else
add X poice to branch kepoice in tree
end else
end while

Algorithm.2 shows the pseudo-code of the function used to calculate CSI-log-
marginal likelihood.

3.3 MCMC over structures

If the goal is prediction and the sample size is large enough choosing one of
the models that have a high score could give acceptable accuracy. Our goal
is structure discovery and selecting out one high scoring DAG is less useful.
It then make sense to consider averaging over multiple high scoring models
to approximate the underlying BN structure. One way of doing this is using
Markov Chain Monte Carlo (MCMC),more specifically Metropolis Hastings over
structures to get samples from posterior distribution before averaging over these
samples. Running the MCMC until convergence to the stationary distribution
P(G|D) and estimating the true DAG through averaging over the samples
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3.3. MCMC over structures

DAGSs, we get an approximation of the posterior probability of the existence
of a causal path from X to Y .This procedure is called Bayesian model averaging.

We define a Markov chain over the space of DAGs,restricting the max parent
set size to some upper limit. This Markov chain converges to the posterior
distribution P(G|D) if its designed carefully to be equal to the stationary
distribution for the chain. This is ensured by the chain being irreducible,
aperiodic, positively recurrent and the choice of the proposal distribution has to
satisfy the detailed balance. Condition,which is satisfied when the probability
of going from one DAG z to another DAG z’ is equal to going from z’ to
x.The characteristic of the chain is ensured by the construction of a satisfactory
proposal distribution, proposal distribution should not have the possibility of
jumping to far from the current accepted value because such a proposal will
fail to locate the correct neighbourhood depending on how big the jumps are.

In this article the proposal distribution 7'() is defined based on the neigh-
bourhood of the current BN structure which is constructed by adding,deleting
or reversing a single edge in the considered DAG, ensuring that acyclicity is
maintained.The proposal distribution for a given DAG is then defined as the
uniform distribution over the neighbourhood:

1 - /
T(G|G") = { FPPHICE if G' € nbhd(Q) (3.36)
0 else
The acceptance probability then becomes:
. T(G|G") - P(G'|D)
= 1 3.37
p=min(L, ey PGID) (8:37)
T(GIG) - P(D|G")P(G")
= min(1, ( |/ ) P(jl(é?)i)(c))) (3.38)
T(G'G) - =5y
T ") P(D|G"P(G’
— min(1 (GIG") - P(D|G")P(G) (3.39)

T(GIG) - PDIG)IP(G)

For the CPD-scores the graph prior is uniform over all graphs.The acceptance
probability gets reduced to:

T(G|&") - P(DIG"))
T(G'G) - P(D|G)

) (3.40)

p = min(1,

If the proposed state is accepted the current state is set to G’, otherwise it is
set to G.

For CPD-scores, when convergence is reached we can hope to sample from
the I-equivalence class of the underlying BN structure that the data has been
generated from. The DAGs in the class will have the same scores, and the chain
would ideally circle around the neighbourhood of the equivalence class.
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The deletes in the neighbourhoods ensures that there always is a probability for
the proposed DAG being simpler than the current DAG. The reverse operator
is there to make it easy to move back when the trajectory diverges from good
paths towards convergence. Since our BN structure scores are decomposable this
allows for only adding or subtracting one score from the currently accepted DAG
score to attain the score of the proposed DAG, when the difference between
the two DAGs is an add or delete. Reverse move has a delete and add but the
same logic requires the update of two scores. We will start the chain with a
"burn-in" period which is not only important for the trajectory to hit the target
neighbourhood but also because every sample is correlated with the starting
value. This correlation will never entirely disappear, but a long enough burn-in
is necessary for this correlation to be small enough so that it does not influence
the sample values to much. Once the samples are saved, one can compute
approximate posterior probabilities of various DAG features by averaging over
the sampled DAGs. In this case, we would like to find if there exist a directed
path between a variable and another. By first transforming each DAG in the
sample from G to (I — G)~! which the geometric series Y.~ | G™ converges
to, one can find how many ways one could go from node j to node i, where 4
is row in an adjacency matrix representing a DAG and j is column. Here the
interest is the existence of any such path. Therefore the next transformation
needed is to convert all positive matrix elements of (I — G)~! to 1. Now by
summing element-wise all the matrices and dividing by the number of samples,
this information is attained. Each element in this matrix is approximated
posterior probability of there existing a directed path from node(row) j to node
(column) i.

The matrix we where referring to is known as the adjacency matrix. An
Adjacency matrix is a representation used both for directed and undirected
graphs. It is a one-zero matrix where each element represents the existence or
non-existence of an edge between two nodes. Depending on preference, either
one can interpret 1 in position (4, j) as the existence of an edge from i to j or
an edge from j to i. Here one choose the first,since the exact algorithm being
used to compare with uses this notation. A zero in place (4, j) of course means
the none-existence of an edge from i to j.

Order MCMC has been shown to be superior when it comes to convergence
and mixing compared to structure MCMC , the disadvantage being
each DAG has multiple orders. The MCMC chain could therefore deviate
substantially depending on the the chosen order in each iteration. The reason
for this is using order as DAG representation fails to determine the prior of a
DAG. Since one is sampling orders the prior is specified over orders. This is not
a problem when one has a lot of available data. We will focus on testing our
methods on relative small sample size and focus on implementing MCMC over
structures. Empirically, structure MCMC seem to be slow in mixing. Since
the moves in the space of DAGs is small,the sampler tends to get trapped in
local maxima more easily. There are ways to mitigate such issues and one way
is proposed in , where a new reversal move is introduced. The reason
is that the conventional reversal move does not take into consideration if the
reverse is useful or not in combination with the current parent set. For this
reason, Grzegorczyk and Husmeier proposed a new move called the REV move.
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3.3. MCMC over structures

However this will not be implemented here.The reason for bringing up this
article is because it highlights some of the problems when implementing MCMC
both over orders and over structures.

Score search

The MCMC implemented for this work takes in a scorefile where all scores are
computed up to a max parent size. Each row in the scorefile includes the score
followed by the size of the parent-set and the specific parentset. The scores are
ordered and one can therefore find each score algorithmically.

This is the general pattern of score-file is illustrated in Figure 3.5.

20

1 1160
-301.5662490
-301.671816
-306.835110
-307.910868
-315.266436
-304.565529
-303.612785
-387.730928
-307.658723
-304.792872
-314.790757
-301.798769
-304.627631
-306.891906
-304.493545
-301.110241
-303.878562
-306.715035
-307.364934
-302.212114
-313.147388
-314.959522
-328.981339
-3087.976013
-307.363080
-314.481221
-314.703958
-308.491617
-329.907423
-319.686926
-308.371863
-313.611713
-308.026359
-310.772196
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Figure 3.5: Example of scorefile

The pattern repeats for every node. The first row gives the node and number
of values calculated for that node. After that, the scores are listed in the first
column. The second column contains how many parents the score in a specific
row is based on.The rest of every row contains the specific parent set.Every
parent set is an ordered set such that 1 comes before 2 and so on. All parent
sets for a specific node is ordered so that looking at any column in the columns
containing parents they also have this order when the parent set size is fixed.
One can find the index of each score by expressing the index as a sum of
binomial coefficients, plus the node index, plus the index of the first value with
a specific parent size. The nodes can be found by observing that in the first
column only natural numbers excluding zero in the column are the nodes. The
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next column represents the parent size. This includes only positive integers.
Since all nodes have an equal number of parent set combinations, these indexes
are the same no matter if we are searching for parent set of specific size for
node 1, 5 or 14 and so on.

In addition, one needs a way to find the right index for a node within the set
of all same size parent sets. Here one can utilize the fact that we can express
the indexes as a sum of binomial coefficients. We use this method to find the
correct parents up until the last one where we can map the last parent to an
index between 1 to n i.e the number of nodes in the network. Since we exclude
the last parent, our parent combination has become reduced by one. The total
number of elements being chosen from has also been reduced by one because
the node that we are searching for can not be included in its own parent set.

It will be helpful to define some variables like ,cardinality of parent-set subtracted
by one Pax. Number of elements to choose from n subtracting one here as
well. To find first parent we have to iterate j in expression:

()

|Pax |

j will give us the number of elements that have to be excluded in every step.Let
say the first parent is 4 for node X = 1. The cardinality of the parent set is 5
so |Pax| = 4. To find the first element in the scorefile with this specification,

we know that we have to jump over first parent being 2 or 3.
therefore we have to jump over :

(n - 1) N (n - 2)

|Pax| |Pax|

when jumping over 2 we have to remember that since we are finding parent
set for 1, 1 is not part of the parent set.When jumping over 3 we also have to
remember that 1 and 2 can’t be part of the any combination that starts with 3.
When we have found 4, the number of elements to chose from n has been
reduced by 2 for the next parent in the parent set and the size of the elements
we pick out has been reduced by 1. Now n =n — 2 and |Pax| = |Pax]| — 1.
We continue like this until the next to last element in the parent set. For the
last element we know the lower bound and the upper-bound of the elements
that we have to search from. The upper bound is the number of nodes in the
network. The lower bound is the next to last element in the parent-set plus
1. The sequence we get is the natural numbers between those bounds. By
extracting the index of these elements in this interval,we have the last index.
Finally we can sum all of these components up.This method seemed to be much
more efficient then our function using general row search functions in R.
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3.3. MCMC over structures

MCMC Algorithm

Algorithm 5. MCMC algorithm

G1 = inital BN Structure
Calculate initial P(G1,D)
X, = P(G1,D)
Calculate initial neighbourhood N B(G1)
fort=2toT do
Save samples Gy for t after burn — in with thinning
Calculate initial neighbourhood N B(G")
Choose one G’ uniformly from NB(G')
if: X — Y in G but not in G’
Divide P(X — Y, D) to P(G, D)
Multiply P(# — Y, D) to P(G, D)
Set result equal to P(G’, D)
if: X - Y in G’ but not in G
Multiply P(X — Y, D) to P(G, D)
Divide P() — Y, D) to P(G, D)
Set result equal to P(G’, D)
if: X >YinGand X+ Y in G
Divide P(X — Y, D) to P(G, D)
multiply P(X < Y, D) to P(G, D)
Set result equal to P(G’, D)
AssignP(G'|D)
p = min(l, q:;((cc:;l/?c,:))i‘l;((g”g)))
g = sample uniform number from (0,1)
if g < p then
X, = P(G', D)
Gt = G/
T(G'|G) =T(G|G")
end if

else:
X=X
end for
return samples

Algorithm.5 shows the pseudo-code of the MCMC algorithm.
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3.3. MCMC over structures

Algorithm 3. scoremapfunction

Input:VEC(node,cardinality of parent set,parent set)
assign setl 1 to first parent in parent set excluding node.
assign set2, first node in parent set to last parent in parent set
assign set3 , 1 to first parent in parent set.
assign nr of parents except last 1= |parent set|-1.
assign nr:nodes=nr of nodes except the node the score belongs to.
assign step=0.
assign n=1.
assign count=1.
while n!=0
if n==cardinality of parent set
BREAK
end if
if n=1
if node in set3
assign useset = setl
end if
else
assign useset = set3
end else
end if
else
assign useset = set2
end else
if n>=2
reduce useset by excluding the node in set2 from 1 to count
end if
assign count:2 = 0
for j in 1 to |useset|
if n>=2
count = count+1
end if
update count:2 = count:2+1
if useset[j] == VEC][(3+n-1)]
nr:nodes = nr:nodes-count:2

BREAK
end if
step: step + (nr:nozies—j)
end for
n=n+1
1=1-1
end while

assign vector of elements from next to last node pluss one in parentset to
nr of nodes in DAG and find which index of last element.

if parentset only contains one element the While loop will not be
used. Therefore assign last parent index to index where parent is.
return nodeindex+ parentset size index+step-+last parent index
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3.4. Exact algorithm

Algorithm.3 shows the pseudo-code of the function that maps the parentsets
to the corresponding indexs in the scorefile

Algorithm 4. neighborhoodfunction

Input:adjacency-matrix,max parent size
assign index set H for add indexes, indexes where adjacency matrix is 0
assign index set K for reverse, indexes where adjacency matrix is 1
assign index set S for delete, indexes of where adjacency matrix is 1
remove indexes from H and K that would create parentset larger then
max parent size
assign D = {|H], K], IS}
forkin1to 3
for a in 1 to DIk]
if D[k] == |H]|
add 1 to each element H[a] and check if the resulting graph
is a DAG using topological sort
if D[k] == |K]
reverse an element K[a] check if the resulting graph is a
DAG using topological sort.
if D[k] ==|S|
delete edge setting 1 to 0 for S[a).
end for
end for
save all element-wise changes to adjacency matrix

Algorithm.4 shows the pseudo-code of the function for calculating the
neighbourhood of a DAG.

The basic idea of topological sort is to find an order containing all nodes in the
DAG. This order must abide by the principal of "ancestor before descendants".
Any node that is a descendant of some other node must come after this node. If
this is not possible, the graph is not a DAG,.i.e, it contains one or more cycles.
The algorithm ensures this by always marking the ancestors before descendants.
If a cycle exist then a node that is already marked will be visited and thus
failing the order principal.

3.4 Exact algorithm

The simulation study in this work will not only, compare the MCMC
approximation of the two methods, but it will also compare the MCMC algorithm
to the exact algorithm presented in the paper . More specifically we
will use the part of the algorithm that computes exact posterior probabilities of
all pairwise ancestor relations, which corresponds to the existence of a causal
relationship. Our interest is not to quantify how strong these effects are,only
the existence. This algorithm can be applied up to a network of 20 variables.
We are using it as a ground truth. This algorithm estimates the best result of
our approach. In the following, we will give a brief overview of how it works.
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3.4. Exact algorithm

We define V = {1,...,n} as the nodes in a BN structure G.We will used Pa;
to denote the parents of node i € V. The algorithm calculates the posterior
probability of a DAG G; given some data, under standard assumptions ,by the
formula:

P(Pa;|D) = P(D)™" Y ] wu(Pay)

G:Pa; veV

wy(Pay,) stands for :

wy(Pay) = P(Dy|Dpa,, Pay)q,(Pay)

wy (Pay) is the weight of node v when Pa, is parent set of node v. q,(Pay,) is

the node-wise contribution of node v to the prior P(G) . Since P(G) is modular,
P(G) can be decomposed into a product where each element in the product is
qv(Pay). Each term of the product of P(G;|D) is a weight contribution of node
v to the posterior.

We define:

WZ(S) = Z H wv(Pav)v

G:Pa;=SveV

to be the un-normalized posteriors for two distinct nodes 7,5 € V. The set S is
defined as S C V' \ i for any fixed 1.

By rearranging the sums in the expression,one can divide the problem of
computing the whole expression into smaller expressions, which is easier to
handle.One can re-express W;(S) by partitioning the the sum product of weights
into three sum-product of weights, and at the end multiply all of them together.
The algorithm takes the advantage of this by re-expressing W;(5) as:

Wi(S) = Y fOwi(S)hi(V\i\U)

SCUCV\i

where f(U) is the total weights of all DAGs of the non descendants of node 4
“forward weights”, b;(V \ i\ U) is the total weights of all combinations of the
parent-sets Pa, C V' \ v “backward weights”, where v refers to all nodes that in
addition to being a parent to some other node, also is the descendant of ¢ and at
the same time does not contribute in creating a cycle. By combining the set in
Pa, with a specific non-descendant set U, one can construct all possible DAG’s,
having U as the non-descendants of . One can do this for all possible U. The
decomposition is done by the intuitive fact that for every 4 the nodes can either
be a non-descendants of ¢ or descendant, and if they are a descendant, they
might be a parent of some node within the set of descendants which the nodes
are part of,and this again can create different paths from ¢ to some descendant
j. For every none-descendant set U, of varying size, one sums out these nodes
as they do not influence the path between i to j directly. By summing them
out one has detached that part of the DAG which does not contribute directly
to the path from ¢ to j. One can write this mathematically as:

f(U) = Z HwU(PaU),

GeG(U) vel
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3.4. Exact algorithm

bl(T) = Z H wv(PaU)7

GeG(U)veU

where G(U) being all DAG’s generated by U.We define the set T'=V \ {i} \ U
containing the descendants of node i under the conditions that:

e Pa, CV\wvforeachveTl,

e The directed graph (T,Uyeruv : u € Pa, NT) is acyclic,

e Every Pa, intersect T'U i ,.i.e, is a descendant of i.

The details will be skipped.The key idea is that f(U) and b;(T") can be computed
efficiently through recursive recurrence relations |[TH12|.

An analogous formula exist when one wants to calculate direct ancestral path
between any node i and j in the DAG G.

P(i~j|D) =p(D)"" Y ] we(Pay)

GiivsjveV

Some of this bears resemblance to what we will do. We are also interested in
p(i ~ j|D). The weights is our un-logged family scores where each un-logged
family score is multiplied together to attain the posterior of DAG’s given data.
However,our approach is different in the sense that we try to approximate the
same posterior target using MCMC.
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CHAPTER 4

Simulation Study

4.1 Simulation setup

In this simulation study we will use the BNs Survey,Asia,Sachs and Child from
the BNlearn repository. Our first task will be to calculate CPT-scores and
CSI-scores before adding the chosen prior for each score type. The number of
parent sets increases rapidly with the number of nodes at the same time as
the growth in parameters is due to an increase in the value that every variable
take. Therefore, it is not feasible to calculate the scores for all parent sets
of the nodes when number of nodes in the network when it is large enough
and we will restrict the parent sets the max parent-size to 4 for the Sachs
and 3 for the Child network. The Sachs network has 11 variables and its
distribution consists 178 parameters and for an 11 variable network one can
create 11264 unique parent set combinations, while the Child network has 20
variables, 10485760 unique parent sets combinations and the distribution for this
network has 230 parameters. The rapid increase of the number of parent sets
and parameters is especially a problem when building the CSI-tree. Secondly,

we run MCMC and the exact algorithm based on the scores. We sample 20
data-sets of the same sample size for data samples sizes ns = 200, 500, 1000
for networks Asia,Sachs and Child. For Survey network the data sample size
will range over ns = 200, 500, 1000, 5000, 10000, 100000. This is because both
methods had problem in determining the underlying graph structure on sample
sizes ns = 200, 500, 1000 and gave nearly identical results for the two different
score types. The underlying graph structure for this network is the only member
of its I-equivalence class.

For each MCMC estimation and Exact algorithm estimation of the ancestral
paths an AUC will be calculated using the true direct ancestral paths as
benchmark. AUC is the area under the ROC-curve. Each point in this curve
arise from to coordinates (x=FPR,y=TPR).

TP
TPR = ——— 4.1
i TP+ FN (41)
FP
FPR= ———. 4.2
R FP+TP (42)

FPR is a ratio between the number of false positives compared to the number
of positives that is predicted to be positive by the method i.e the sum of actual
positives that the method correctly determined to be positive and the positives
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4.1. Simulation setup

that the method defined to be positive but actually is negative based on the
threshold used to distinguish between positives and negatives. TPR is a ratio
between, the number of true positives that was captured compared to how
many that actually exist in reality based on the threshold used to distinguish
between positives and negatives. If both x and y is equal it means that the
ratios TPR and FPR are equal varying the threshold. One can denote this by
drawing the line y=x. If this is the output of the method it is not goodﬂ In
contrast,perfect accuracy would result in a ROC curve that goes through the
points (0,0),(0,1),(1,1),which also would result in an area of 1.

The way we can generate the points of the ROC curve is by first flattening
our estimate,which is in the form of a matrix, before sorting the elements
in decreasing order. The true underlying ancestral path matrix is flattened
and sorted in the same order. The flattened sorted estimate now provide the
thresholds. For each posterior probability we count how many 0’s exist above
and including this probability in the true underlying ancestral path vector
divide by total number of elements above an including the probability in the
true vector. This is also called FPR. For the TPR we count how many 1’s
above the probability exist and divide by total number of 1’s in the vector.
The AUC is then calculated using a package in R called CARROT, using the
flattened sorted matrices as input the AUC function. An example of a few ROC
curves is shown in Figure 4.1.

1.0

04 0.6
1

0.2

ROC-Curve
W MCMCost M MCMCS! O Exact_cat M Exact_csi

T T T T T T
0.0 0.2 0.4 06 08 1.0

0.0
1

Figure 4.1: The following picture shows four ROC-curves on top of each other
for one CSI-score and one CPT-score calculated for the Asia network when
MCMC and the exact method is run on both scoretypes.The x-axis shows the
FPR and the y-axis shows the TPR

LOur experiments are done on a ASUS TUF GAMING F15 computer

35



4.2. Results

We use a uniform prior on the CPT scores because this prior has been shown to
work well for these types of scores. We will use the prior mentioned in section
3.2 for the CSl-scores. The graph prior hyper-parameter will be varied between
the values t = 0,t = 0.5,¢ = 2 for networks Asia,Survey and Sachs. One of the
hyper-parameter values will be used when running the MCMC. For network
Asia and Survey, t = 0 will be used to compare the MCMC AUC with the exact
algorithm AUC, while for the Sachs network ¢t = 2 will be used. The rest of the
hyper-parameters will be tested on the networks with the exact algorithm. The
exact algorithm is slow when applied on the scores for the Child network which
contains 20 nodes. Therefore, we only run MCMC on this network together with
hyper-parameter for the graph prior fixed to t = 0.5. empirically found
that ¢ = 0.5 works well in the context of density estimation.We will run MCMC
on Survey,Asia and Child networks with a burn-in of 150000. Every 10’th
sample after that will be gathered until 200000 iterations. The Sachs network
MCMC will be run with a burn-in of 250000.Every 10’th sample after that
will be gathered until 300000 iterations. For larger networks it can sometimes
take longer for the MCMC to converge. However due to computational cost of
topological sort used in the computation of the neighbourhood of the proposed
DAG for larger networks the MCMC,we fix the number of iterations with this
in mind.

The ¢cPDAGs will be shown for each network to illustrate the complexity of
learning the correct edges in the networks illustrated in Figure 4.2,4.6,4.10 and
4.16.

4.2 Results

The following section will be dedicated for illustrating the results from the
simulation study mostly in the form of box-plots. A small experimental error
was made when running the MCMC for networks Asia and Survey. The CPT-
score and CSl-score was tested on different data-sets. For these networks the
2X2 grid plot in Figure 4.3,4.7, have to be looked at column-wise only. Each
of the columns shows how close the MCMC results are compared to the exact
algorithm. An additional box-plot is included using only the exact algorithm
on both CPT-scores and CSI-scores on the same datasets in order to compare
the result of the two scoring methods for these networks, shown in Figure 4.4
and 4.8. This is done for computational reasons.

Further Figure 4.5(Survey network) ,4.9(Asia network) shows plots using the
exact algorithm with CSI-score tested on the hyper-parameters not used when
comparing the CPT-score and CSl-score in Figure 4.4 for Survey network, and
Figure 4.7 for the Asia network .

Figure 4.11 , 4.12 and 4.13 shows AUC results for the Sachs network. In
Figure 4.11 the small error was corrected. The grid plot can be compared both
column-wise and row-wise when comparing AUC for ancestral paths.Figure 4.12
show AUC for direct causal relations for the Sachs network, while Figure 4.13
shows the results of the AUC with CSl-score for the rest of the hyper-paramters
not used in Figure 4.11. No Figure like Figure 4.12 is added for the Survey
Network and Asia network because of the small error made. Figure 4.12 is still
added for illustration. Figure 4.14 shows a convergence plot of the MCMC when
compared to the exact algorithm for network Survey,Asia,Sachs network both
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4.2. Results

for CSI-score and CPT score.Figure 4.17 shows the AUC for ancestral paths
of the Child network both when using CSI-scores and CPT-score with MCMC
with the same datasets. Figure 4.18 shows the AUC for direct causal relations
of the Child network both when using CSI-scores and CPT-score with MCMC.
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4.2. Results

(b) Figure illustrates the CPDAG for Sur-
vey Network

Figure 4.2

(a) Survey Network
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Figure 4.3: This plot is for the Survey network. The box-plot in upper left
corner shows AUC ancestral path directions using MCMC with CSI-score.The
box-plot on lower left corner shows AUC using the exact-algorithm with CSI-
score.The sample sizes for these vary with ns=500,1000,2500,5000,10000.The
box-plot in upper right corner shows AUC using MCMC with CPT-
score.The box-plot in lower right corner shows AUC estimates using
exact algorithm with CPT-score.The sample sizes for these vary with
ns=500,1000,2500,5000,10000,100000.The CPT scores are calculated on dif-
ferent data-sets then the CSI-score.The comparison is done column-wise.
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Figure 4.4: This plot is for the Survey network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset using the exact algorithm.This is done using the exact-algorithm.Upper
box-plot shows the result for the CSI-score.The CSl-scores are calculated with
the hyper-parameter of the prior set to t=0
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Figure 4.5: This plot is for the Surevy network.The plot on the right shows
AUC for prediction of ancestral paths for the Survey network using prior hyper-
parameter t=0.5.0n the left, The hyperparameter was set to t=2.This plot is
generated using the exact algorithm with CSI-score.
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Figure 4.7: This plot is for the Asia network.The box-plot in upper left corner
shows AUC for prediction of ancestral paths using MCMC with CSI-score.The
box-plot on lower left corner shows AUC using the exact-algorithm on CSI-
score. The sample sizes for these vary with ns=200,500,1000.The box-plot in
upper right corner shows AUC using MCMC with CPT-score.The box-plot
in lower right corner shows AUC using exact algorithm with CPT-score.The
sample sizes for these vary with ns=200,500,1000.The CPT scores are calculated
on different data-sets then the CSI-score.The comparison is done column-wise.
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Figure 4.8: This plot is for the Asia network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset.This is done using the exact-algorithm.Upper box-plot shows the result
for CSI-score.The CSl-scores are calculated with the hyper-parameter of the
prior set to t=0
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Figure 4.9: This plot is for the Asia network.Figure to the right shows AUC
for prediction of ancestral paths prior hyper-parameter t=0.5.0On the left,the
hyper-parameter was set to t=2.This plot is generated using the exact algorithm.
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(b) Figure illustrates the CPDAG for Sachs Network
Figure 4.10
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Figure 4.11: This plot is for the Sachs network.The box-plot in upper left
corner shows AUC for prediction of ancestral paths using MCMC with CSI-
score.The box-plot on lower left corner shows AUC using exact-algorithm with
CSI-score.The sample sizes for these vary with ns=200,500,1000.The box-plot
in upper right corner shows AUC using MCMC with CPT-score.The box-plot
in lower right corner shows AUC estimates using exact algorithm with CPT-
score.The sample sizes for these vary with ns=200,500,1000.The CPT scores
were calculated on the same data-sets as the CSl-score.The CSl-scores were

calculated with the hyper-parameter of the prior set to t=2.
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Figure 4.12: This plot is for the Sachs network.Figure to the right shows AUC
for prediction of ancestral paths with the prior hyper-parameter t=0.0On the
left,the hyper-parameter was set to t=0.5.This plot was generated using the

exact algorithm with the CSI-score.

47



4.2. Results

0.80- ‘
ns
0as5- 1000
o 800
2
e G500
0.80- 400
‘ ‘ 200
0.75-
]
200 500 1000
ns
0.85-
-
ns
1000
0.80-
o | 800
2
< G600
0.85-
400
.
[} 200
0.80-
-
-
075-
200 500 1000
ns

Figure 4.13: This plot is for the Sachs network.Box plots showing AUC for
predicting direct causal relations using CSI-score and CPT-scores on the same
data-set.This is done using MCMC. The upper box-plot shows the result for
CSI-score which was calculated with t=2.
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Figure 4.14: Convergence plot for network Asia,Survey and Sachs.In each plot
the upper figures compares the result of 20 MCMC runs compared to the
exact algorithm for CSI-score while the plot below shows the comparison for
CPT-scores
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Figure 4.15: Child network

Figure 4.16: Figure illustrates the CPDAG for Survey Network
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Figure 4.17: This plot is for the Child network.Box plots showing AUC for
prediction of ancestral paths using CSI-score and CPT-scores on the same
dataset.This is done using the MCMC.Upper box-plot shows the result for
CSI-score.The CSl-scores are calculated with the hyper-parameter of the prior
set to t=0.5.
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Figure 4.18: This plot is for the Child network.Box plots showing AUC for
predicting direct causal relations using CSI-score and CPT-scores on the same
data-set.This is done using MCMC. The upper box-plot shows the result for

CSI-score which was calculated with t=0.5.
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4.3 Discussion of results

From the plots comparing the AUC results of the MCMC compared to the
exact method one see that they look similar, but there is a bit more variance
for MCMC results. The convergence plots in Figure 3.16 of the Sachs network
and the Survey network shows some tendency of bad mixing. This is apparent
in the plot for the Sachs network to a much larger extent. The structure
MCMC implemented is known for having this problem.One reason for this is the
preposed moves in the space of DAGs being small. The convergence therefore
can be expected to be slow especially for larger networks. The AUC plot shows
that this problem is not a hinder for good AUC accuracy.

One see that the prior hyper-parameter has a big influence on the result for the
CSI-scores. For each dataset and BN structure there is some optimal parameter.
This hyper-parameter is not possible to find when the underlying BN structure
is not known. We are testing our method on known structures in order to
see which method performs better when applied to data-sets where the true
BN structure is not known. Our method of comparing the methods require
that the true BN is known. Therefore we do not try to pinpoint the optimal
hyper-parameter through some iterative method. We choose the approach of
testing a few values for the hyper-parameter in order to see whether the result
changes.

One can see from the box-plot of the Asia network and the Survey network
that t=0 (a uniform prior) in Figures 4.4 and Figures 4.8 does better then
enforcing sparsity on the structures by increasing the value of t (Figure 4.5 and
4.9). The Sachs network is kind of the outlier here because the improvement is
big when setting t=2 in Figure 4.11 compared to when t=0 or t=0.5(Figure
4.12 ).However, even when t=2, the CSI-score still does worse compared to
the CPT scores when looking at sample sizes 500 and 1000. This observation
can indicate that for some networks and for some dataset sizes it is best to
treat more parameters as different instead of putting them equal.In a certain
dataset the parameters might seem similar to each other.One should therefore
be cautious. Depending on if the methods perform equally well or poorly the
reasons are different. When the dataset is able to capture important parameter
equalities that exist in the true distribution,this might lead to the result being
improved or staying equal.The equality might come from that the direction of
the edges implied by the data are irrelevant in the CSIl-equivalence class when
using CSl-score and I-equivalence class when using CPT-score.It can also mean
that the CSI trees grows fully giving full CPD representations.For the case
where the methods perform equally poorly, if the true parameters are almost
equal, then in the empirical distribution they might become more equal when
the data sample size is small. Parameter reduction in this case will not help
to determine which parameters actually is equal within the set of parameters
that seems to be equal from the data.In addition, when the dataset is to small
it is hard to compute any of the parameters accurately. The CPD tables of
the Survey network could be explained by this logic. The parameters that
involve node E' when F is both part of the parent set and when the parameter
is a probability of a value E given its parent set, are almost equal in the true
distribution, and 4 out of 7 edges in the BN network are attached to E.For
ns = 200, 500, 1000, the two methods perform equally poorly which can be seen
in Figure 4.4.
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4.3. Discussion of results

How close to equal some parameters within the CPTs for the true distribution
are will determine the result of setting them explicitly equal based on the dataset
generated from this distribution and at the same time determine how close the
estimate of the two methods are. If the dataset make the parameters seem
more equal then they are,the csi-method will underperform because it might set
parameters equal when the minor difference in the empirical distribution is based
on actual inequality in the true distribution. At some point the distribution
starts being captured by the data-set when the sample size is increased. On
these datasets setting equality when the parameters seem to be equal in the
empirical distribution has the advantage of resulting in more data for each
parameter estimation without having the downside of ignoring the parameters
that are not equal in the true distribution. We are using a greedy algorithm
which means that we will not be able to find the optimal parameter reduction.
What the greedy algorithm does for us is ranking the parents in the parent set
of a node through putting equality on some of the parameters based on the data
while ignoring others. If the data reflect the distribution, one should be able to
find some of the important parents.If all the parameter equalities given that the
dataset reflect the true distribution had been found one would be able to find
more important parents. By finding important parents, one has determined
the edge direction of certain edges in global structure thus hopefully making it
easier to find the edge directions of the true underlying BN structure.

When the data is large enough, the edge direction becomes apparent
automatically at least for these networks where the underlying true distribution
is known.We can see that for the network Asia and Child network for sample
size ns=1000, there is a variance reduction and a small increase in mean value
for the CSI based scores compared to the CPT based scores. For the Survey
network, an improvement is made when ns = 5000. The Sachs network might
show what is illuded to above,where the data-set does not reflect the distribution
well enough, so that parameter equality does not have a positive effect. This is
the case for all sample sizes. Setting parameter equal in this situation might be
giving a disproportionate probability to the wrong edges. Here it seems that
enforcing full CPD representations work better then estimating some of them
more accurately.
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CHAPTER 5

Conclusion

In this work we have considered the problem of inferring causal relationships
from data. For this purpose, we presented the framework Bayesian networks
in order to define the problem of doing causal discovery given data into a
structure learning problem. We defined the concept of conditional independence
seen through the graph structure of the framework together with how the
independencies in an accommodating family of distributions (CPD Tables) can
be captured by the graph structure.We then defined the relationship between a
BN and a causal model, which is mainly that the edged of the BN entails a causal
relation.In addition, we defined the concept of context-specific independence
for CPD Tables in form of a CSI-tree, which is a more general way of looking
at conditional independence.

We introduced the Bayesian score illustrated its decomposability properties,
which we used further in order to be able to compute the score more efficiently, by
computing its components scores separately before later putting them together.
More specifically,we illustrated that the components scores are the node-wise
contributions condition on its parents joint configurations. We defined the
standard methodology of computing the Bayesian score, under standard CPT-
tables, before defining our methodology of computing the score under CSI-trees
learned with the help of greedy hill climb.

In order to take into account the uncertainty that exist in learning causal
models, we considered two algorithms Marcov Chain Monte Carlo(MCMC)
over structures and a state-of-the-art dynamic programming algorithm used
together with Bayesian model averaging in order to estimate the models posterior
distribution given data. We applied the considered approach in a simulation
study.

The procedures was compared by generating data from known BNs, applying
the different procedures and illustrating the comparisons with box-plots of
AUC.Finally, we ended with some discussion of the results. A comparison
between CPTs and CSI-trees show that no significant improvement was made
on the tested networks .However for some data sizes some improvement could
be seen. One reason might be that no exact CSI-tree representation of the
conditional distribution exist for these networks, since the true distributions are
defined through CPD tables. Another reason might be that it was necessary to
regulate the model fit with a model structure prior to avoid overfitting in the
learning process. The prior used in this work might have been suboptimal. A
comparison between MCMC and state-the-art dynamic programming algorithm
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shows that the result under AUC are similar, however the convergence of the
MCMC over structure for some networks tested was slow.
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APPENDIX

A

R code

A.1 Main File

library(bnlearn)
library(MASS)
library(tidyverse)
library(CARRoT)
library(data.table)
library(gRbase)

source("runfile_apply.R")
source("run_apply_csi.R")
source("neede_functions_MCMC.R")

load("asia.rda")
load("survey.rda")
load("sachs.rda")
load("child.rda")
load("earthquake.rda")
load("alarm.rda")

d=cpdag(bn)

library(graph)

library(ggraph)
plot(as_graphnel(as.igraph(d)))

detach("package:gRbase", unload=TRUE)
detach("package:igraph", unload=TRUE)

true matrix=amat(bn)

true matrix l=solve(diag(1ll)-(true _matrix))
true_matrix_1=1+apply(true_matrix_1, 2, function(x) x>=1)

nr_nodes=11

max_parent_size=4

data <- rbn(x = bn, n = 100000)

data_set_large=as.data.frame(map_df(data, as.numeric))

p=lapply(1l:nr_nodes, function(x){unique(data set large[,x])})
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A.1. Main File

70 #

71 #Function:write_func

= S b e L L L
73 #Input:

;g #read_this: path of scorefile containing P(D|G).

Zg #nr_nodes:how many nodes in network.

;g #paramter:how many parentcombinations for each node.

80 #name:what name should be given to new scorefile containing P(G,D).
81 #t:tuning paramter for prior.
82 #nr_data:how many data samples is scorefile based on

84 #Output:scorefile containing scores P(G,D)

87 #This function adds prior for graph G added on the P(D|G) contained in scorefile , in
order to estimate P(G,

89 write func=function(read this,nr_nodes,parameter,name,t,nr _data){

91 # These rows in scorefile are excluded sinse these rows contains node together with how
many parent-combination of that node.
92 seqq=c(seq(l,nr_nodes*parameter,parameter)+1l:nr_nodes,1)

94 #Add prior on rest of the rows.

95 for(i in setdiff(l:nrow(read this),seqq)){
96 component=as.numeric(strsplit(read this[i,], ) [
97 component[1]=component[1]-(1+t)~(length(component

N I111)
)-2)*log(nr_data)
99 read_this[i,]=gsub(",","",toString(component))

101}

103 #convert scorefile back to type .score
104 colnames(read_this)=NULL

108 read_this_name=pasteO(’'C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_
sachs/n200/t05/',"temp.",name," .score")

109 #write new scorefile

110 write.matrix(read this,sep=" , ",file=read_this name)

119 #

120 #Function:run_write
#

122 #Input:
123 #nr_of:how many scorefiles should be made.

125 #nr_nodes:how many nodes in network.

127 #paramter:how many parentcombinations for each node.
129 #t:tuning paramter for prior.

131 #nr_data:how many data samples is scorefile based on
133 #Output:scorefiles containing scores P(G,D)

136 #This Eynctio? adds prior for multiple scorefiles where how many scorefiles are specified
y nr_of.

138
139
140 run_write=function(nr_of,parameter,nr nodes,t,nr data){

142 for(j in l:nr_of){

143 add=samp[j]

144 pas_string=toString(add)

145 if(k==1){

146 score_type=pasteQ("cat","type",pas_string)}

147 if(k==2){

148 score_type=paste0("csi","type",pas_string)

149

150 # define path of scorefiles

151 read_this=paste@(’'C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_sachs/
n200/","temp.",score_type,".score"

igg read_this=read.csv(file = read_this, header = FALSE)

154 #calling write_func
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Main File

%gg write_func(read_this,nr_nodes,parameter,score type,t,nr_data )
157 }
158
159
160
161 }
162
163 # Input variables for prior function write_func.
164 #Index names for score files.
165 samp=3:22
166 tI{ k=1 scorefile name is of cattype if k=2 scorefile name is of csitype.
167 k=
168 #Number of parent combinations for each node.
169 parameter=386
170 #nr_nodes assigns how many nodes in network.
171 nr_nodes=11
172
173 #Tuning paramter of prior.
174 t=0.5
175 #Size of the data the scores are calculated from.
176 nr_data=200
177 #Add prior on 20 score files.
%;g run_write(20,parameter,nr_nodes,t,nr _data)
180
181 #
182 #Function:run_func_1
183 #
184 #Input:
%gg #max_parent_size:max parent size for scorefile.
%gg #nr_nodes:how many nodes in network.
}Sg #paramter:how many parentcombinations for each node.
}8% #j:iterator index.
%82 #p:contains a list of lists where each list contains the values of a node in the network
195 #k:is a vector used to set name on scorefile depending on if the scorefile is CSI type or
CPT type.
196
197
198 #Output:scorefiles containing scores P(D]|G).
200
201 ﬁThis function calculates the scorefiles cotaining all P(D]|G).
202
203
204 . X X
582 run_func_l=function(max_parent_size,nr_nodes,j,p,k){
207 #generate data of size ns from loaded network
208 data <- rbn(x = bn, n = ns)
209 #convert variables from factor to numeric
210 data_set=as.data.frame(map_df(data, as.numeric))
211 #convert to data.table
212 setDT(data_set)
213
214
215 add=j+samp
%%9 pas_string=toString(add)
218 #Set name of scorefile.based on k scorefile name changes
219  if(k[1]==1){
220 score type l=paste0("cat","type",pas string)}
221 if(k[2]==2){ .
222 }score,type,2=paste0(“c51",“type",pas,string)
223
224
225 #calulates and writes CPT based log-marginal likelihood to scorefile
226 csitree,calcjparent,score,to,file,Z(data,set,score,type,l , max_parent_size, file out="
temp",p
227 #calulates and writes CSI based log-marginal likelihood to scorefile
228 csitree,ca1c3parent,score,to,file,B(data,set,score,type,z , max_parent_size, file_ out="
temp",
229 PP
230 }
231
232
233 #
234 ﬁFunction:run,func,Z
235
S T L L e L L L L L L L
236 #Input:
%gg #max_parent_size:max parent size for scorefile.
%ig #nr_nodes:how many nodes in network.
%i% #true_matrix:some transformation of the adjacency matrix of the network
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A.1. Main File

#j:iterator index.

#p:contains a list of lists where each list contains the values of a node in the network

#cpt_or_csi:which scoretype to run MCMC on.
#0utput:AUC

iThis runs MCMC over a scorefile

run_func_2=function(max_parent size,nr_nodes,j,p,true matrix,cpt or csi){

add=j+samp

pas_string=toString(add)

if(cpt_or_csi==1){

score type=pasteQ("cat","type",pas string)}
if(cpt_or_csi==
score_type=paste0("csi","type",pas_string)

#read scorefiles

read_ thls pasteO( C: /Users/rasyd/Documents/gltrepo/master/score folder/scores/csi_sachs/

,"temp.",score_type,".score")
read_this=read. csv(flle ="read_ this, header = FALSE)
#run MCMC
MCMC_AUC=func_MCMC(read_this,true matrix,max_parent_size,j,nr_nodes,ns,cpt_or_csi)

)return(MCMC,AUC)

#Adding length of previous run.
samp=20

#Set data size.
ns=1000

#How many data files.
n=20

#Which score type.
k=c(1,2)

cpt_or_csi=1

#Run in parallel.
#Import packages needed for parallel runs.

library(parallel)

Llibrary(doSNOW)

#D1v1de rocessor into smaller clusters

cl <- makeCluster(6,type = "SOCK",outfile="log.txt")
registerDoSNOW(cl)

#Feed clusters functlons the input variables needed.

clusterExport(cl,c("func","func_2","samp","bn","k","cpt_or_csi","p","run_func_1","run_func

cat_calc. parent score_to fil 3. plane“,“CSI tree_apply_ 1m€ 3_mat_B_3", "csitree_
calc. parent_score_to_file_3","csitree_calc_parent_score_to_file_2","func_ MCMC" "ns
"max,parent,size“,“nr,nodes",“true,matrix,l“,“n“),envir = env1ronment())

#import libraries for each cluster.

clusterEvalQ(cl, c(library(data.table),library(MASS)
,library(tidyverse)

,Library(CARRoT), library(bnlearn),library(gRbase)))

#calculate scorefiles.
parLapply(cl,1:n,function(x){run_func 1l(max parent size,nr _nodes,x,p,k)})

#Run MCMC on them and return AUC vector of all runs either for csi-score or for cpt sco

re.

AUC _vec=unlist(parLapply(cl,l:n,function(x){run_func_2(max_parent_size,nr_nodes,x,p,true_

matrix 1,cpt or csi)}))

# Stog cluster on master
stopCluster(cl)

#All plots are generated with a similar construction to_the following code.

#Make an empty list where every element in the list will be a matrix.There will be four
matrices each one containing the AUC of CSI score results using MCMC,

#CSI score AUC using exact algortihm,CPT score AUC using MCMC and CPT score AUC using
exact algortihm.

#Ever{ column in the matrices represents the result for a specific data sample size

Plot list=list()

#we will generate 20 AUC for every data sample size

#set k=1
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A.1. Main File

k=1
#set m=20
m=20
# ns defines the domain of data sample sizes
ns=c(1000,500,200)
#define empty AUC vector
AUC_calc=matrix(0,20,1)
#for 4 different methods of computing AUC
for(j in 1:4){
#for all sample sizes
for(i in 1:length(ns)){
#%E CSI)?core posterior ansectral path matrices using MCMC
if(j==1
#eitract names of all matrices
matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score
folder/matrix/csi sachs/direct cause/joint", pattern=NULL, all.files=FALSE,
full.names=FALSE)
match sring=grep(toString(ns[i]),matrix name extract)
matrix_name extract=matrix name extract[match sring]

matrix_name extract=sort(matrix name_extract,decreasing = TRUE)
paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/cat_
sachs/direct_cause/joint/",matrix_name_extract)

paste)to each=lapply(1l:length(paste to each),function(x)gsub(" ", "", paste to_each[x])

}
#1f CPT score posterior ansectral path matrices using MCMC
if(j==2){

#extract names of files containing matrices
matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/cat _sachs/direct _cause/joint", pattern=NULL, all.files=FALSE,
full.names=FALSE)

match sring=grep(toString(ns[i]),matrix name extract)
matrix_name_extract=matrix_name_extract[match_sring]

matrix_name_extract=sort(matrix_name_extract,decreasing = TRUE)

paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/cat_
sachs/direct_cause/joint/",matrix_name_extract

pastejto,each=lapply(1:length(paste,to,each),function(x)gsub(“ ", "", paste_to_each[x])
}
#%E CSI)?core posterior ansectral path matrices wusing exact algorithm

if(j==3

#extract names of files containing matrices
matrix_name_extract=1list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_

folder/matrix/exact csi sachs/t0", pattern=NULL, all.files=FALSE,
full.names=FALSE)

paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/exact_
csi _sachs/t0/",matrix_name_extract)

paste_to_each=paste_to_each[order(as.numeric(gsub("["0-9]+", "", paste_to_each)))]

pastejﬁ%,e?ch=lapply(1:length(paste,to,each),function(x)gsub( , , paste_to_each[x])
im

}

#1{ CPT)?core posterior ansectral path matrices wusing exact algorithm
if(j==
#extract names of files containing matrices
matrix_name_extract=list.files(path="C:/Users/rasyd/Documents/gitrepo/master/score_
folder/matrix/exact cat survey", pattern=NULL, all.files=FALSE,
full.names=FALSE)

paste_to_each=paste("C:/Users/rasyd/Documents/gitrepo/master/score_folder/matrix/exact_
cat_survey/",matrix_name_extract)

paste_to_each=paste to_each[order(as.numeric(gsub("["0-9]+", "", paste_to_each)))]

paste3ﬁ$;eﬁch=lapply(1:1ength(paste,to,each),function(x)gsub( , , paste_to_each[x])
m
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}

#Extract matrices
Matrix vec=lapply(1l:length(paste_to_ each) functlon(x)unname(as matrix(read.csv(file =
paste to each[[x]], header = FALSE))))

#1f matrices is from exact algorithm elements becomes strings.We have to convert them
to numeric matrices

if(3>2){

Matrix vec=lapply(l:length(paste to each),function(x)Matrix vec[[x]]1[-1,])

Matrix vec=lapply(1l:length(paste _to_each),function(x){matrix(as.numeric(Matrix vec[[x
),ncol = ncol(Matrix vec[[x]1))})

}

#use class_prob to get matrix of two columns.First column reprsents estimated ancestral
path probabilities sorted in a decending way.Second column

#represents true ancestral vector matrix sorted in the same order as estimated
probabilities.

AUC_input=lapply(1l:length(Matrix vec),function(x)class_prob(Matrix vec[[x]]))

#concatinate zero vector with AUC vector of every estimated matrix for ns[i]
AUC_calc=chind(AUC calc,do.call(rbind, lapply(1l:length(Matrix vec),function(x)AUC(AUC
input[[x]11,11, AUC inputi(x]11,21))))

k=k+20
m=m+20

#Fill in matrices into list
ilgt,list[[j]]=AUC,ca1c

m=20
#redefine zero vector for each j
AUC_calc=matrix(0,20,1)

#remove zero vector from all matrices
Plot list=lapply(1l:length(Plot list),function(x) as.matrix(Plot list[[x]][,-11))

#import ggplot2
library(ggplot2)

#Rechape every matrix in Plot_list to a vector and concatinate it with an indicator vector
of which column in belonged to
box_ matrlx—lappl{(1:4 function(z){Reduce("rbind",
Reduce("rbind" appl{(l ncol(Plot_list[[z]]), functlon(y){La ply(l nrow(Plot_list[[z]]),
functlon(x){cblnd(P ot list[[z]][x,y],y*as. numerlc(x>0))}) )N}
#give name to every element in box matrix
lapply(1l:length(box_matrix),function(x)colnames(box_matrix[[x]])<<-c("AUC","ns"))

#if sorting was done wrong reshuffle an the scale x axis correctely
for(i in 1:4){

if(i==1){

ns=c(1000,500,200)

apply(matrix(1l:nrow(box_matrix[[i]]), ,nrow(box,matrix[[i]])),2,function(x){box,matrix[[
111[x,2]<<-ns[box_ matrlx[[l]][x 211}

}
1f(i==2){
ns=c(1000,500,200)

apply(matrix(1l:nrow(box_matrix[[i]]), ,nrow(box,matrix[[i]])),2,function(x){box,matrix[[
i11[x,2]<<-ns[box_ matrlx[[l]][x 211}

if(i==3){

ns=c(1000,500,200)

apply(matrix(l:nrow(box_ matrlx[[l]]) ,nrow(box,matrix[[i]])),2,function(x){box,matrix[[
1]1[x,2]<<-ns[box matrix[[1i]][x,2]11})

if(i==4){
ns=c(500,200,1000)

apply(matrix(l:nrow(box_matrix[[i]]),1,nrow(box_matrix[[i]])),2,function(x){box_matrix[[
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A.1. Main File

1]1[x,2]<<-ns[box_matrix[[i]][x,2]11})

}
}
#assign each plot to a variable and generate boxplot for each variable

for(i in 1:length(box_matrix) ){
token seq=paste("token_",i,"")

a551gn(token se ggplot(as data frame(box matrlx[[l]]), aes(x=(samples=factor(ns)), y=AUC
,color= ns)% + labs( { uc", x = "ns")
}+geom boxplot(outller co or-“black“))

library(gridExtra)
#plot a grid-plot of all box-plots
grid.arrange(‘token_ 1 ‘,‘token_ 2 ‘,‘token_ 3 ‘,‘token_ 4 )

#

#Function:compute_roc
#

#Input:
#compare:estimated ancestral path matrix

#i:depending on i the color of the plot changes.

#0utput:Roc curve

#This function for generating Roc curves
#

compute_roc=function(compare,i){
#list of colors of plot
color=c("red","blue","yellow", "brown")

#flatten matrix to vector

rechape_compare=c(compare)

#attain order of rechape_compare
rechape_compare_order=order(rechape_compare,decreasing = TRUE)

#order rechape_compare in descending order
order_MCMC=rechape compare[rechape compare order]

#flatten true ancestral path matrix

rechape true=c(true matrix)

#sort it in the same oder as rechape_compare
order_true=rechape true[rechape compare order]

#concatinate vectors

compare_true with _mcmc=cbind(order_MCMC,order_true)
#count how many 1’s and 0’s in order_true

how_many total=table(order_true)

#count how many 1’s and 0’s exist every time one adds an element of order_true
houLm%ny,one,zero=1apply(1:nrow(compare,true,with,mcmc),function(x)table(order,true[l:x])

#how_many_one_zero is a list, transforming it into a matrix
how_many one zero_rbind=do.call(rbind, how_many one zero)

#how many ones are in order_true
how_many_total=matrix(how_many_ total)[,1]

#when number of 0's is 0 in first rows in how_many_one_zero_rbind .0n these rows in how_
many_one_zero_rbind number of 1’s get duplicated

#therefore one had to manually set 0@ on these rows.

#In addition how_many_one_zero_rbind changes the placement of what is count of zero and
what is count of 1 for these rows.The rest of the rows that has a sum smaller then
how_many_total[2] stays unchanged.

how_many _one zero_rbind=t(apply(how_many one zero rbind, 1, function(x)if(sum(x)<= how_
many_total[2]){ sort(replace(x, duplicated(x), 0))}else{x}))

#calculate TPR and FPR

how_many one zero rbind_ transform=apply(matrix(1'ncol(how many_one zero rbind),1,ncol(how
_many_one zero_rbind)),

function(x) how_many one zero_ rblnd[ x]/how_many_total[x])

#create Roc curve
lines(how_many one zero rbind transform[,1],how many one zero rbind transform[,2],type =
"1",col=color[i])

#import matrices
call_on_al_matrix=read.csv("C:/Users/rasyd/Documents/gitrepo/master/BIDA/matrix1l.txt",sep=
",",header = TRUE)
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call_on_al _matrix 2=read.csv("C:/Users/rasyd/Documents/gitrepo/master/BIDA/matrix.txt",sep

=",",header = TRUE)
#plot empty plot
plot(NA, type="n", xlab="", ylab="", xlim=c(0, 1), ylim=c(0, 1))
par(new=TRUE)
#draw Roc curves
compute roc(edge matrix 1 cat,1)
compute_roc(edge matrix 1,2)
compute_roc(as.matrix(call_on_al matrix),3)
compute roc(as.matrix(call_on al matrix 2),4)
legend("bottomright", cex=0.5, title="ROC-Curve",
c("MCMCcat", "MCMCSI", "Exact_cat","Exact_csi"), fill=c("red","blue","yellow","brown"),
horiz=TRUE)
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A.2. Log-marginal likelihood computation for CPT based score

A.2 Log-marginal likelihood computation for CPT based
score

#

#Function:cat_calc_parent_score_to_fil_3_plane
#

#Input:
#data:data used.

#node:which node to calculate log-marginal likelihood from.

#parent_comb:Specific parent combination
#p:contains a list of lists where each list contains the values of a node in the network

#0utput:Return log-marginal-likelihood

#This function calculates the CPT based log-marginal-likelihood
#

cat_calc_parent score to fil 3 plane <- function(data,node,parent_comb,p){

# N in the BDEU prior is set to 1
N <-1

#Function for counting specific configuration in data
M,xi,parent,count:functlon(data,col,Zg{

M_xi_parent=datal, .(n = .N), by = col 2]
return(M_xi_parent)

#function for comparing vector with row in matrix
comparetorow=function(x,y){
nbr=nrow(x)
nbc=ncol(x)
ret=!vector("logical",nbr)
for(i in 1l:nbr)
for(k in 1l:nbc){
if(x[i,k]!=y[k]){
ret[i]=FALSE
break

}
}

}
return(ret)

#List of unique values of node
unig Xi value=matrix(p[[nodel])

#nr of unique values for node
nr_uniq_Xi_valuel=nrow(uniq_Xi_value)

#parents of node
par=parent_comb

#columnname of node and nodes parents in dataset
col_2=names(datal,.SD,.SDcols=c(node,par)])

#part of data with nodes parents as columnname
parent set entries=datal[,.SD,.SDcols=c(par)]

#unique configurations in dataset for parent_set_entries
uniqg par_value=as.matrix(unique(parent_set_entries))

#number of unique parent_set_enteries in dataset
nr_uniq par_value=nrow(unique(parent set entries))
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#list of values of parents to node
parent_set_entries to_alpha=p[c(par)]

#multiplication of length of all element in list parent_set_entries_to_alpha

in,between,move=lappl{(1:1en th(parent_set _entries to_alpha),function(x){length(parent_
set_entries to_alphal[[x]])})

nr_uniq par_value to alpha=Reduce(’'*’,in _between move)

#calculate BDEU prior
alpha_node_parnode=N/(nr_uniq_Xi_valuel+nr_uniq par_value_to_alpha)

#Vector containing BDEU prior for all values of node
alpha node parnode vec=rep(alpha node parnode,nr_unig Xi valuel)

#Sum of all element in alpha_node_parnode_vec
alpha_sum_parnode=sum(alpha_node_parnode_vec)

#count how many times every configuration in data set reduced to entries for columnnames
col_2
a=unname(as.matrix(M_xi_parent_count(data,col_2)))

# CPT score set to 0
src=0

#For every parent configuration of node
for(parent in 1l:nr_uniq_par_value){

#extract part of matrix
if(nrow(a)==1){

a" that contain the parent configurations of node

b=matrix(al,-c(1,ncol(a))],nrow = 1)

}else{
if(is.null(nrow(al,-c(1l,ncol(a))]))
b=matrix(al,-c(1,ncol(a))],ncol =
}b=(a[.-C(1,ncol(a))])

){
1)}else{

}

#find index in matrix "a" that matches specific parent configuration.This returns a
logical vector for indexes of counts where values of node appear

#for the specific parent confi

w=a[comparetorow(b,uniq,par,va%ue[parent,] ), 1

#if w contains only one row and is a vector
if(is.null(nrow(w))){

#make zero vector
fill=rep(0,nr_unig Xi_valuel)

#collect counts from w

M X split=(w[c(ncol(a))])

# collect values of node in data from w

con=w[c(1)]

#code below is written to have fixed length on count vector no matter how many counts
exist for node

#match with theoretical values of node

where in_ total=match(uniq Xi value,con)

#remove NA from match

where_in_total=which(where_in_total>0)

#put counts in zero matrix

fill[where_ in_ totall=M X split

#rename zero vector

M X split=fill

#sun all elements in M_X_split

M_parent_count=sum( M_X_split)

}else{

#Else if w contains more then one row and is a matrix.Same procedure is done as when w
is a vector

M X split=(w[,c(ncol(a))])

con=w[,c(1)]

fill=rep(0,nr_unigq Xi valuel)
where_in_total=match(uniq Xi value,con)
where_in_total=which(where_ in_total>0)

fill[where in total]=M X split
M X split=fill
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A.3. CSl based log-marginal likelihood computation

M_parent_count=sum(M_X_split)
}

#1f some counts are different from zero exist in zero vector fill
if(sum( M_X_split)!=0){
#add to CPT log-marginal likelihood

src=src+(Llgamma(alpha sum parnode) - Lgamma(alpha sum parnode+M parent count)+sum(lgamma
alpha node parnode vec+(M X split))-lgamma(alpha_node parnode vec)))

}
}

#return CPT log-marginal likelihood
return(src)

A.3 CSI based log-marginal likelihood computation

#

zFunctlon:CSI,tree,apply,imp,3,mat,8,3

#Input:
#data:data used.

#idented_for:which node to calculate log-marginal likelihood from.

#parent_comb:Specific parent combination

#p:contains a list of lists where each list contains the values of a node in the network

#0utput:Return log-marginal-likelihood

ﬁThlS function calculates the CSI-log-marginal-likelihood

CSI tree apply imp 3 mat B 3 <- function(data, parent_set,intended for,p){
#set N in BDEU prior to 1
N <-1

#set containing node=intended_for together with its parentset
#set <- c(parent_set,intended_for)

#function for counting number of time configurations occure in dataset
M_xi_parent_count=function(data,cols_2){

M xi_parent=datal, .(n = .N), by = cols_2]
return(M_xi_parent)

#function for comparing vector with row in matrix
comparetorow=function(x,y){
nbr=nrow(x)
nbc=ncol(x)
ret=!vector("logical",nbr)
for(i in 1l:nbr %
for(k in 1:nbc){
if(x[1i,k]!=y[k]){
ret[i]=FALSE
}break

}

}
return(ret)

#this function is used when selecting the root
indicator function_ 2=function(row,ma,a){
row_ma=mal[ row, ]
row_config=row ma[!is.na(row_ma)]

#This part is same as CPT based log-marginal-computation

if(nrow(a)==1){
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A.3. CSl based log-marginal likelihood computation

b=matrix(al[,-c(1l,ncol(a))]l,nrow = 1)

}else{
if(is.null(nrow(al,-c(1l,ncol(a))l]
b=matrix(al[,-c(1l,ncol(a))],ncol
b=(al,-c(1,ncol(a))])

))){
= 1)}else{

}

w=a[comparetorow(b, row_config ),]
M X split=0

if(is.null(nrow(w))){
fill=rep(0,length(val_intended for))

M X split= (w[c(ncol(a))])

con=w[c(1)]
where_in_total=match(val_intended_ for,con)
where_in_total=which(where_in_total>0)
fill[where in total]=M X split

M X split=fill

}else{

M X split=(w[,c(ncol(a))])
con=w[,c(1)]
fill=rep(0,length(val_intended for))
where_in_total=match(val_ intended for,con)

where in total=which(where in_ total>0)
fill[where in total]=M X split

M_X_split=fill

}return( M X split)

indicator_function_3=function(row,ma,a,next_element_con){
row_ma=ma[row,-1]

row_config=row ma[!is.na(row ma)]
row_config=as.numeric(c(row_config,next_element_con))

if(nrow(a)==1){
b=matrix(al[,-c(1,ncol(a))],nrow = 1)

}else{
if(is.null(nrow(al,-c(1l,ncol(a))l]
b=matrix(al[,-c(1,ncol(a))],ncol
}b=(a[,-C(1.ncol(a))])

))){
= 1)}else{

w=a[comparetorow(b, row config),]

M X split=0

if(is.null(nrow(w))){
fill=rep(0,length(val_intended for))

M_X_ spllt (w[c(ncol(a))])

con=w[c(1l

where_in_ total match(val_intended for,con)
where _in_total=which(where in total>0)
fill[where in total]=M X split

M_X_split=fill
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}else{

M_X_split=(w[,c(ncol(a))])
con=w[,c(1)]

fill=rep(0, length(val intended for))
where_in_total=match(val_intended for,con)

where in_ total=which(where in total>0)
fill[where in total]=M X split

M_X_split=fill

}return(M,X,split)

indicator=0

n=0
sco=0

val _intended for=p[[intended for]]

len_val_intended_for=length(val_intended_for)

while (n<1 ) {

if(indicator==0){

elements=parent_set
no_split_unig=len_val_intended_for

M X no_split=table(data[,.SD,.SDcols=c(intended for)])

con=as.numeric(names(M X no_split))

fill=rep(0,length(val_intended for))

where_in_total=match(val_intended for,con)
where_in_total=where_in_total[!is.na(where_ in_total)]
fill[where in_ total]=as.numeric(M X no_split)

M X no split=fill

alpha_no_split= N/(no_split_uniq)
alpha_no_split_vec=rep(alpha_no_split,len_val intended for)
aplha sum no split=sum(alpha no split vec)

M_sum_no_split= sum(M X no_split)
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src_no_split=Llgamma(aplha_sum no split)-lgamma(aplha sum_no split+M sum no_split)+sum(
lgamma(alpha_ no_split_vec+M X no_split)-lgamma(alpha no_split vec))

#1if input parentset is empty break whileloop return CSI-score
if(is.null(parent_set)){
sco=src_no split

break

#Set comparing value to 0
split_t=0

#Set CSI-score to O
scores=0

#for each element(parent node) in parentset of node
for(element in (elements)){

# list of columnnames for node=intended_for and element in dataset
cols=names(datal,.SD,.SDcols=c(intended for,c(element))])

#Compute how many theoretical values does element have
parent_set_entries to_alpha=p[c(element)]

#calculate number of unique values for element

in_between move=lapply(l:length(parent set entries to alpha),function(x){length(parent
_set_entries to alpha[[x]])})

nr_uniq_par_value_to_alpha=Reduce(’*",in_between_move)

# unique values of element in dataset

split_uniqg par_val=unname(as.matrix(unique(datal,.SD,.SDcols=c(element)])))
#number of unique values of element in dataset

split_uniqg_parent=nrow(_ split_uniq_par_val)

con_2=split _uniqg par_val

#initialize empty score vector

src_split=rep(0,split uniqg parent)

#count how many instances of different configurations for node intended_for and
element that exist in dataset

c=unname(as.matrix(M_xi_parent_count(data,cols)))

#for each value of element

for(row in l:nrow(split_uniq_par_val)){

#element value held fixed vary values of nodes,put each count into a vector M_X_split
M X split=indicator function 2(row,split uniq par_val,c

#1if at least one configuration exist
if (sum(M,X,spIit)!:O)%

alpha_split=N/(len_val_intended_ for*nr_uniq_par_value_to_alpha)
alpha split vec=rep(alpha split,len val intended for)

alpha_sum_split=sum(aleha_split_vec)

M_sum_split=sum(M_X_split)

#calculate log marginal likelihood for node when element’s value is held fixed

src,split[row?=lgamma(alpha,sum,split)-lgamma(alpha,sum,split+M,sum,split)+sum(
lgamma(alpha split vec+M X split)-lgamma(alpha split vec))

#if at least one log marginal likelihood exist
if(sum(src_split)!=0){
#1f the sum of log-marginal likelihood is greater then split_t
if((sum(src,split?—sum(src,no,split))>split,t ){
#save element
choice=element

#Which value of element has log-marginal likelihood 0
w_zeo=which(src_split==0)
if(length(w_zeo)!=0){
#exclude this score
scores=src_split[-c(w_zeo)]
#Exclude the value related to that score
con_3=c(con_2[-c(w_zeo),])
}else{

#else all values has a score
scores=src_split

con_3=c(con_2)

#set positive difference to be new comparing value
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split_t=(sum(src_split)-sum(src_no split))

}
}
}

#if all element and there values have been looked at and score still is zero no root
if(sum(;%g}es)==0){

sco=src_no_split

break

}else{

#Else root is found define tree

#chosen elements value in data
choise unig=con_3

#number of values of element in data
choise unique_nr=length(choise uniq)

#matrix containing score for every branch(value)
mat=matrix(c(scores,choise_uniq),ncol = 2)

#element corresponding value in mat

al matrix:matrix(rep(cgoice,choise unique_nr),ncol = 1)

#set indicator to 1
indicator=1

}
Yelse{

#continue building tree in the same way
scores=0

split_t=0

#for element in parentset

for(element in e%ements){

#for every row in mat
for(row in l:nrow(mat)){

#go through every row in al_matrix
parent_elements row=al matrix[row,]

parent_elements_row= (parent_elements_ row[!is.na( parent_elements row)])

#add element in branch(row)
cols=names(data[,.SD,.SDcols=c(intended for,parent elements row,element)])

#1f element is not in row of al_matrix continue

‘%lin%‘’ <- Negate(‘%sin%‘)

if(element%!in%parent _elements row){

#do the same procedure as described above to calculate log-marginal-likelihood of

branches adding element to each row in al_matrix on every branch(row)
#that does not contain element(parent node) look for which element added to which

is

branch gives the greatest improvement.Grow mat(tree ) with the values of that

element
parent_set _entries to_alpha=p[c(parent_elements row,element)]
in_between move=lapply(1l:length(parent_set entries to_alpha), function(x){length(

parent_set entries to alpha[[x]])})
nr_unig par_value to alpha=Reduce(’*’",1in _between move)

Split)ﬁq%q parent_config=nrow(unique(datal,.SD,.SDcols=c(parent_elements_ row,element

c=unname(as.matrix(M_xi_parent_count(data,cols)))
next_el=unname(as.matrix(unique(datal[,.SD,.SDcols=element])))
con_2=next_e

s_vec=rep(0,nrow(next_el))

for(s in 1:length(s_vec)){

M X split=indicator function 3(row,mat,c,next el[s])

if(sum(M X split)!=0){

M_sum_split=sum(M_X_split)
alpha_split= N/(len_val_intended_ for* nr_uniq_par_value_ to_alpha)
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alpha split vec=rep(alpha split,len val intended for)
alpha_sum_split=sum(alpha split vec)

s_vec[s]=1lgamma(alpha_sum_split)-lgamma(alpha_sum_split+M_sum_split)+sum(lgamma
alpha split vec+M X split)-lgamma(alpha_split_vec))

}
if(sum(s_vec)!=0){
src_no_split=mat[row,1]

diff=sum(s_vec)-src_no split

if(diff>split_t){
w_zeo=which(s vec==0)
if(length(w_zeo)!=0){
scores=s_vec[-c(w_zeo)]
con_3=c(con_2[-c(w_zeo),])
}else{
scores=s_vec

con_3=c(con_2)

which_element_choosen=element
which_row_branch=row

split_t=diff

if(all(scores==0)){

break
}else{
choosen_element_uniq_val=con_3

choosen _element uniq val nr=length(choosen element uniqg val)

if(length(con_3)>1){
v=rep(1l,length(mat[, (ncol(mat))]1))
v[which_ row_branch]=choosen element unig val nr

mat=(mat[rep(l:nrow(mat), times = v),])

al_matrix=al matrix[rep(l:nrow(al matrix), times = v),]

}

new_node value=matrix(rep(NA,nrow(mat)),ncol=1)
new_node_value[which_row_branch: (which_row_branch+choosen_element unig val nr-1),1=

choosen_element_uniqg_val

newunode,to,al=matrix(rep(NA,nro@(mat)),ncol=1)

new,node,to,al[which,row,brancﬁ:(which,row,branch+choosen,element,uniq,val,nr—1),]=
which_element_choosen

mat=cbind(mat,new_node value)
al matrix=cbind(al matrix,new_node to_ al)

(
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mat[which_row_branch: (which_row_branch+choosen element uniq val nr-1),1l]=scores

if(sco==0){
sco=sum(as.numeric(mat[,1]))

return(sco)

578 }
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A.4 Function for computing and writing
marginal-likelihoods multiple parentsets

source("csi_tree_imp_2.R")
func=function(data,node, k,fid,set_of _intrest,p){

if(k==0){

N=1

writeLines(paste(node, nps), con = fid, sep = "\n")
unig Xi_ value=matrix(p[[node]])
nr_unigq Xi valuel=nrow( unig Xi value)

alpha node parnodel=N/(nr_uniq Xi valuel)

alpha_node parnodel=rep(alpha_node parnodel,nr_uniq Xi valuel)
alpha_sum_parnodel=sum( alpha_node_parnodel)

M_X_ i=table(datal,..node])

con=as.numeric(names(M_X 1))
fill=rep(0,nrow(uniq_Xi_value))

where_in_total=match( uniq_Xi_value,con)
where_in_total=which(where_in_total>0)

fill[where_ in_ totall=as.numeric(M X i)
M X i=fill

M_sum_count=sum(M_X_1i)
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src=(lgamma(alpha_sum parnodel)-lgamma(alpha sum parnodel+M sum_ count)+sum(lgamma(alpha_
node_parnodel+M X i)-lgamma(alpha_node_parnodel)))

writeLinesSpaste(trimws(format(round(src, 6), nsmall=6)),k, sep = " "), con = fid, sep =
o

src=0
}else{

#Else for all parentsets of node with cardinality k

parent set=setdiff(set of intrest,node)

parent_comb=combn(parent_set,k)

#calculate all CSI-log-marginal-likelihoods

lapply(l:ncol(parent_comb),function(x){ writeLines(paste(trimws(format(round(CSI tree_

apply_imp_3_mat_B_3(data,c(parent_comb[,x]),node,p),6), nsmall=6)),k,paste(parent_
comb[,x],collapse = " "), sep =" "), con = fid, sep = "\n")})

#csitree_calc_parent_score_to_file_ 2 is simlar to csitree_calc_parent_score_to_file_3

#

#Function:csitree_calc_parent_score_to_file_3
#

#Input:

#data:data used.
#score_type: type of score.
#file_out:Name of score file

#max_parent_size:bound on parentsize

#p:contains a list of lists where each list contains the values of a node in the network

#0utput:Writes score for all combinations of set_of_intrest for all parentsets for all
parentsizes up to the bound max_parent_size.

csitree calc_parent_score to file 3 <- function(data, score_type, max_parent_size, file_
out,p){

#N=1
#number of nodes
numcol= ncol(data)

#list of nodes
set_of intrest=1:numcol

#calculate and write to file scores of all parent combinations of all parentsets for all
nodes for all parent cardinalities smaller or euqal to max_parent_size

fid <- file(paste@("C:/Users/rasyd/Documents/gitrepo/master/score_folder/scores/csi_
survey/n5000/",file_out, ".", score type, ".score", sep = ""),"wt")

writeLines(toString(numcol), con = fid, sep = "\n")

#call on func and iterate over all nodes in network and all parent sizes

apply(matrix(set_of intrest,1,length(set of intrest)),2,function(x)apply(matrix(0@:max_
g?;ent,size,l,(max,parent,size+1)),2,function(y) func(data,x,y, fid,set_of intrest,p

#close file
close(fid)
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A.5 MCMC algorithm

#

#Function:run_func_2
#

#Input:

#read_this:path of scorefile
#max_parent_size:how many scorefiles should be made.

#nr_nodes:how many nodes in network.
#true_matrix_2:some transformation of the adjacency matrix of the network

#j:iterator index.

#ns_i:data sample size.
#khh:which score type, CSI or CPT

#0Output:AUC

zThis runs MCMC over a scorefile

func_MCMC=function(read data,true matrix_ 2,max parent_size,j,nr _nodes,ns i,khh){
#change .score file to .txt file

func_score=function(read_data){

library("MASS")

add=paste@("Score_csi_ ",toString(j),".txt")
write.matrix(read_data,sep=" , ",file=add)
score_csi 2=read.csv(file = add, header = FALSE,sep=" ")

return(score_csi 2)

#run func_score on score-file

score csi 2=(func_score(read data))

# remove 2 first rows containing only NA values

score csi 2=score csi 2[-c(1,2),]

#list of nodes

nodes=1:nr_nodes

#index of nodes

integer=(as.numeric(score_csi 2[,1]) - abs(floor(as.numeric(score_csi 2[,1])))) ==

integer_true=which(integer==TRUE)

#index of first occurrence of parentset with specific parentset cardinality.These indexes
are the same for all nodes in list nodes

seq_3=rep(0,max_parent_size)

for(i in 1l:max parent_size){

}seq,3[i]=choose(nr,nodes-1,i)

#Function for finding score with empty parentset
integer_zero=function(score csi 2,int,node){

index=int[node]+1
return(as.numeric(score_csi_2[index,1]))

#Function for finding score of parentset of a specific node
integer,map=function%score,csi,z,input,row,integer,nodes,seq,3,nr,nodes){
#node is in first place in input_row

node=input row[1]

#parentset cardinality of parentset of node is in third place in input_row
nr,parent=input,row[3¥

#set_1 is a set of node from 1 to first parent in parentset excluding node
set l=setdiff(l:input row[4],node)

#set_3 is a set of node from 1 to first parent in parentset
set_3=1:input_row[4]

#set_2 is a set of node from first parent to last parent excluding node
set 2=setdiff(input_row[4]:nodes[length(nodes)],node)

#step will be used as the number of indexes that has to be jumped over
step=0
#Count for while loop

n=1
#count will be used to denote how many times one is in the for loop after n>=2
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count=1

#number of parents excluding last parent
node_1 len=nr_parent-1

#number of nodes excluding node
nr_nodes_1l=nr_nodes-1

#while true

while(n!=0){

#1if n=number of parents
if(n==length(input_row[4: (length(input_row))1)){

break

#if n is 1

if(n==1){

#1f node is between 1 to first parent
if(node%in%set 3){
#use set_1

set_4=set_1

}else{

#else use set_3
}set,4=set,3
}else{
# for n>1 use set_2
set_4=set 2

#if n>=2 reduce set_4 by indexes 1 to how many times in forloop after n>=2

if(n>=2){
set 4=set 4[-c(1:(count))]

#count for how many times in forloop
count_4=0

#for j from 1 to length of set_4
for(j in 1:(length(set_4))){

#if n>=2 find number of elements to exclude from first element in constant set set_2

if(n>=2){
count=count+1

#number of times in forloop
count_4=count_4+1

#1if element j in set_4 equal parentset element n-1 in input_row
if(set_4[jl==input_row[(4+n-1)1){

#subtract number of parent with how many times inside forloop before the if statement

is activated denoted by count_4
nr_nodes_ 1= nr_nodes 1-count 4
#break forloop
break

}
#Add how many rows to jump over in scorefile
step=step+choose((nr_nodes 1-j),node 1 len)

#subtract element from number of elements
node 1 len=node 1 len-1

# update n
n=n+1

}

#find last parent in parentset.If parentset contains one element then the whileloop will

not be used else last
#parent will be between next to last parent+l and nr_nodes
if(nr_parent==1){

#define seq_4
seq 4=setdiff((1l:nr_nodes),node)

Yelse{

#else we have to find the last element based on next to last element

what=input row[(length(input row)-1)]
seq 4=setdiff((what+1l):nr_nodes,node)

}

#find index of last parent in parentset
add=which(seq_4==input_row[length(input_row)])
#add to step

step=step+add-1

#calculate index of node parent combination

extract row=integer[node]+sum(seq 3[1l:(nr_parent-1)])+step+2
if(nr,parent==1)%

extract_row=integer[node]+step+2
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#return score of node parent combination
return(as.numeric(score_csi 2[extract_row,1]))

#Function for calculating neighbourhood of a DAG
func_nabour_imp_large B _2=function(adj){

#index how manK potential adds
index_add=which(adj==0,arr.ind = TRUE)
# how many 1’'s in every column
nr_of_par_each=apply(adj,2,sum)

#remove edge from node to itself
index_add=index_add[index_add[,1] '=index_add[,2],]

#number of deletes
index_delete_rev_l=which(adj==1,arr.ind = TRUE)

#number potential reverse
index_delete_rev_2=which(adj==1,arr.ind = TRUE)

#if any column has more then max_parent_size 1's

if(any(nr_of _par_each>=(max_parent _size))){

#find which column

which_add greater then=which(nr_of par_each>=(max parent size))
#match these elements with column vector in index_add matrix
match_val=match(index_add[,2],which_add_greater_then)

#remove NA

match_val=which(match_val>0)

#delete indexes corresponding to element in second column in index_add being equal to

match_val
if(length(match_val)!=0){
index_add=index_add[-match_val,]

}

#If potential reverse index matrix is none empty
if(length(index_delete_rev_2 )!=0){

# column 1 represents rows in adjecency matrix.If a reverse happens these elements will

represent columns in the adjecency matrix
current_switch=index_delete_rev_2[,1]
# sort first column in reverse index matrix
which_true=sort(unique(current _switch))

#how many 1's exist in the columns in the adjecency matrix that will get an extra 1 by

reversing

larger_then max=apply(matrix(adj[,c(which_true)],ncol=length(which_true)),2,function(x)

sum(x))

#if any of these columns already have more then max_parent_size 1's
if(any( larger_then_max>=(max_parent_size))){

#which index in which_true has this characteristic

which_reverse greater then=which(larger then max>=max parent size)
# find which column in which_true

which_true= which_true[which_reverse greater_then]
what_to=match(l:nr_nodes,which_true)

mmacth=which(what_to>0)

match_val=match(index delete rev_2[,1],mmacth )

match_val=which(match_val>0)

#exclude the adjacency matrix indexes contained in first column in index_delete_rev_2

that matches match_val
if(length(match val)!=0){
index_delete_rev_2=index_delete_rev_2[-match_val,]

}
}

#Set bounds for number of add,delete and reverse

if(length(index_add)==0){
index_add=c(1,2)

u=0
Yelse{
u=nrow(index_add)

if(length(index_delete_rev_1)==0){
%ngex,delete,rev,1=c(1,2)

}eIse{
l=nrow(index_delete_rev_1)
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if(length(index_delete_rev_2)==0){
index_delete_rev_2=c(1,2)

P?=0
Yelse{
}pp=nrow(index,delete,rev,Z)

#define a zero matrix
zero_matrix=array(0,c(nrow(adj),ncol(adj)))

#Define a two dimentional storing matrix
B,matrix=array(0,c(nrow(adj)*(u+%+pp),ncol=ncol(adj)))

#every k:m row is a matrix in B_matrix
=1
m=ncol(adj)
#for j=1 add, j=2 delete and j=3 reverse
for(j in 1:3){

if(3==1){

iset bound for number add checks

=u

}

if(j==2){

#set bound for number delete checks

Yo
1f(j==3){

#set bound for number reverse checks
f=pp

%or(i in 1:1){

#if add
if(3==1{

if(is.null(nrow(index_add))){
next
#set 1 on index index_add[i,] in adj(adjacency matrix)

zero_matrix=adj )
zero_matrix[array(index_add[i,],c(1,2))]=1

}
#if delete
if(j==2){

if(is.null(nrow(index_delete_rev_1))){
next

#set 0 on index index_add[i,] in adj(adjacency matrix)
zero_matrix=adj
zero_matrix[array(index_delete_rev_1[i,],c(1,2))]=0

#if reverse
if(j==3){ )
if(is.null(nrow(index_delete_rev_2))){

next

#set reverse index_add[i,] in adj(adjacency matrix)
zero_matrix=adj

rev=array(index_delete_rev_2[i,],c(1,2))

zero_matrix=reverse oper_adjacent(zero_matrix,rev[1],rev[2])

#check whether the change made adj cyclic
ind=is dag(zero matrix)

#1f not
if(ind==TRUE){

#1if add
if(j==1){

#add to B_matrix
B_matrix[k:m,1l:ncol(adj)]=zero_matrix
#change k and m

k=k+ncol(adj)

m=k+ncol(adj)-1

#if delete

if(j==2){ )

#add to B_matrix

B matrix[k:m,1l:ncol(adj)]=zero_matrix

#change k and m
k=k+ncol(adj)
m=k+ncol(adj)-1
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}
#if reverse
if(j==3){

#add to B_matrix
B matrix[k:m,1l:ncol(adj)]l=zero _matrix

#change k and m
k=k+ncol(adj)
m=k+ncol(adj)-1

}

#remove zero rows in last portion of B_matrix
B matrix=B_matrix[1:(k-1),

return(B_matrix)

#Function for reversing edge of adj
reverse oper_adjacent=function(adj,i,node){
#make copy of adj
adj,cop{=adj
#set value of matrix on index node,i to value of matrix on index i,node
adj[node,i]= adj[i,node]

#set value of matrix on index i,node to value of matrix on index node,i
adj[i,node]=adj_copy[node,i]

return(adj)

#Function for indexing B_matrix in neighbourhood function into matrices of adj size
sec,func=function(stack,matrix,adj,row?{

k=1

m=adj_row )

nr_matrix=nrow(stack matrix)/adj_row

seq_mat=array(0,c(nr_matrix,2))
seq _mat[1l,]=c(k,m)
if(nr_matrix>1){
for(i in 2:nr_matrix){
k=k+adj_ row
m=k+adj_row-1
seg_mat[i,1l]=k
seq-mat[i,2]=m

}

return(seq_mat)

#Function returning columns where adj_1 is different from adj_2 together with the columns

of both adj_1 and adj_2 where they differ
diff adj=function(adj 1,adj 2){
ind=which(adj 1!=adj 2,arr.ind = TRUE)
}return(list(a:ind[,z],b=adj,1[,ind[,2]],c=adj,2[,ind[,2]]))

#Function for converting node,parentsize, parentset represented by 0 1 vector into
parentset represented with natural numbers and finding the score for this vector
from_adjecency row 2=function(input diffl,input diff2){
matr_desing node=input_diffl

nr_parent=sum(input_diff2)

parent=which(input diff2==1)

if(nr_parent>0){
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score=integer map(score csi 2,c( matr_desing node,123,nr _parent,parent),integer_true,
nodes,seq_3,nr_nodes)

Yelse{

score=integer_zero(score csi 2,integer_true,matr_desing node)

return(score)

}

from_adjecency to matrx=function(adj){

matr_desing=matrix(0,ncol(adj),ncol(adj)+3)
matr_desing[,1]=1:ncol(adj)
matr_desing[,2]=1
matr_desing[,3]=apply(adj,2,sum)

v=apply(adj,2, function(x) which(x==1))

for(j in l:nrow(matr_desing)){
if(m?tr,desing[j,3]==0){
nex

parent=v[j1[[1]]
len_par=length(parent)
}matr,desing[j,4:(4+len,par—1)]=sort(parent)

for(i in l:nrow(matr desing)){
if(matr_desing[i,3]==0){

matr_desing[i,2]= integer_zero(score csi 2,integer_true,matr _desing[i,1])
}else{

none_zero=match(0,matr desing[i,])-1
matr_desing[i,2]= integer _map(score csi 2,matr desing[i,1l:none zero],integer_ true,
nodes, seq_3,nr_nodes)
}
}

return(matr_desing[,2])

}

N=600000
lag=10
m=1

start=550000

stop=600000

save every=seq(start,stop,lag)

inital value_adj=matrix(@,m+nr_nodes,nr_nodes)
slice_intial=sec_func(inital_value_adj,nr_nodes)

inital value scores=matrix(0,nr_nodes,m)
for(i in 1l:dim(slice_intial)[1]){

inital _value scores[,i]

=(from adjecency to matrx(inital value adj[slice intial[i,1]:
slice intial[i,2],1))

}

inital value score=colSums(inital value scores)
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579 #define storage matrix for traversal of chain in score space
580 X_t matrix=matrix(@,m,N)

581 #put initial score as first column in storage matrix X_t_matrix
582 X_t_matrix[,1l]=inital_value_score

585 #matrix for saving samples
586 save array=array(0,c(nr_nodesx(length(save every)),nr_nodes,m))

588 #slice save matrix
589 slice save array=sec func(save array,nr_nodes)

591 #iterator for slice_save_array
592 acc_vec=rep(0,m)

595  w=0

597 #Save currently accepted matrix in matr_current
598 matr_current=array(0,c(m+nr_nodes,nr_nodes))
599 #Save currently proposed matrix in matr_prop
600 matr_prop=array(0,c(m+nr_nodes,nr_nodes))

602 start=Sys.time()

604 #for 2 to N

605 for(i in 2:(N)){
606 #for 1 to m chains
607 for(k in 1:m ){

608

609 # set initial DAG to matr_current for chain k and calculate neighbourhood of inital DAG

610 if(w==0){

611 matr_current[slice intial[k,1]:slice intial[k,2],]=inital value adj[slice intiallk,1]
slice intial[k,2],]

612 neighbour_candate=func_nabour_imp_large B_2(matr_current[slice intial[k,1]:slice_
intiallk,2],1)

613

614 }

615

616 #slice neighbour_candidate

617 neighboors_cand slice=sec_func(neighbour_candate,nr_nodes)

618 #number nelghbours in neighbour_candidate

g%g nr_of_neighboors=nrow(neighboors_cand slice)

621 #sample uniform one DAG from neighbour_candidate

g%g matr_prop_nr=sample.int(nrow(neighboors_cand slice),1)

624 #put it equal to matr_prop

625 matr,prop?slice,intial[k,1]:slice,intial[k,Z],]=neighbour,candate[neighboors,cand,slice

626 [matr_prop_nr,1]:neighboors_cand slice[matr_prop_nr,2],]

627 #Collect matr_current at state i

g%g if(i%in% save every){

630 #go to next index in slice_save_array

631 acc_vec[k] = acc vec[k]+1

632 # save matr_current in state i in position acc_vec[k],1]:slice_save_array[acc_vec[k
1,21,,k in save_array

633 save array[slice save arraylacc vec[k],1]:slice save arrayl[acc vec[k],2],,k]l=matr

634 current[slice intial[k,1]:slice intial[k,2],

635 }

636

637 #calculate neighbourhood of current state of prop_matr

638 prop_neighbor=func_nabour_imp_large B 2(matr_prop[slice intial[k,1]:slice intial[k

639 e

640 #number of neighbours in prop_neighbor

gi% prop_neighbor_nr=nrow(sec_func(prop_neighbor,nr_nodes))

643 #find difference between current state of matr_current and current matr_prop

644 diff c p=diff_adj(matr current[slice intial[k,1]:slice intial[k,2],]1,matr prop[slice_
intiallk,1]:slice intial[k,2]1,1)

645

646 #If one column is returned it means the difference is an add or delete

gig if(length(unlist(diff_c_p$a))==1){

649 #Define which column differ

650 extract_l=as.numeric(diff_c_p$a)

651 #column in matr_current

652 extract _2=diff_c_p$b

653 #column in matr_prop

654 extract_3=diff_c_p$c

655 #score of column in matr_current

656 what to delete=from adjecency row 2(extract 1,extract 2)

657 #score of this column 1n matr_prop

ggg what to_add=from_adjecency row 2(extract_ 1,extract 3)

660 #compute score of matr_prop by subtracting score of column in matr_current and adding
score of this column in matr_prop

gg% prop_score=X_t _matrix[k, (i-1)]+what to_add-what to_delete }else{

ggi #else the difference is an reverse if the neigbourhood function is correct.

665 #Define which column differ

666 extract_1l=t(diff_c_p$a)

667

668 #column in matr_current
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extract _5=diff_c_p$b
#column in matr_prop
extract_6=diff_c_p$c

#score of column in matr_current

what to delete=apply(matrix(c(1,2),1,2),2,function(x) from adjecency row 2(extract 1[,
x],extract 5[,x]))

#score of this column in matr_ prop

what to add= a%ﬁly(matrlx(c(l 2) 1, 2) 2,function(x) from adjecency row 2(extract 1[,x],
extract

#compute score of matr_prop by subtracting score of column in matr_current and adding
score of this column in matr_prop

prop_score=X_t_matrix[k, (i- 1)]+sum(what to_add) -sum(what_to_delete)

}

#calculate acceptance ratio
R = min(1,exp((prop_score+log(1l/prop_neighbor nr))-(X t matrix[k, (i-1)]+log(1/nr_of
neighboors))))

#Sample random uniform number and check if its smaller or equal to acceptance rate
if(runif(1)<=R)

#if this is the case add matr_prop score to X_t_matrix

X_t matrix[k, (i)]=prop_score

#Change matr_current to matr_pro

matr current[slice intial[k,l]:s%ice intiall[k,2],]=matr prop[slice intial[k,1]:slice
intial[k,2],

#calculate neighbourhood of matr_current

neighbour_candate=func_nabour_imp_large B 2(matr_current[slice intial[k,1]:slice_
intiallk,2],1)

#increase w
w=w+1

}else{
#else do not change matr_current and set score t equal to score t-1
X tomatrix[k, (i)]=X_t matrix[k, (i-1)]

}

#transform the samples matrixes where each element in the matrix represent how many ways
irrelevant of path length one can go from parent(column) to node(row)

gemetric_s sum=lapply(l:nrow(slice _save_array),function(x)solve(diag(nr_nodes)-save_ array
[slice save array[x,1l]:slice save array[x,2],,1]))

#transform matrices in gemetric_s_sum into 1 @ matrices indicating if there is at least 1
way to go from parent(column) to node(row).
one_path=lapply(1l:length(gemetric_s sum), function(x) gemetric_s_sum[[x]]>=1)

#take an average of matrices in one_path.
edge matrix_ sum=Reduce(’'+’, one path)

edge _matrix=edge _matrix_sum/length(one_path)
edge _matrix[row(edge _matrix)==col(edge matrix)]=1

#take an average of the samples.This average shows the estimate for direct causal
relation between parent(column) to node(row).

direct_cause=lapply(l:nrow(slice save array),function(x)save array[slice save array[x,1]
slice save array[x,2],,1

direct_mat=Reduce(’+’, direct_cause)

direct mat=direct mat/length(one_path)

#this function returns random string based on vector vec
randstr <- function(vec) {

characters=vec[1]

numbers=vec[2]

lowercase=vec[3]
uppercase=vec[4]
ASCII <- NULL

if(numbers>0) ASCII <- c(ASCII, sample(48:57, numbers,replace = TRUE))
if(uppercase>0) ASCII <- c(ASCII, sample(65:90, u€perCase,replace = TRUE))
if(lowercase>0) ASCII <- c(ASCII, sample(97:122, lowerCase,replace = TRUE))
if(characters>0) ASCII <- c(ASCII, sample(c(65:90, 97:122), characters,replace = TRUE))

string=rawToChar(as.raw(sample(ASCII, length(ASCII))))
return( string )
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}

samp_l=sample(4:6,1,replace = TRUE)
samp_2=sample(l:samp_1,4,replace = TRUE)
uniq=randstr(samp,2)

if(khh==
keeﬁ addlng—"cat”}
if (khh==2)

}keep addlng-“csi“
string to add=pasteO("C: /Users/rasyd/Documents/gltrepo/master/score folder/matrix/csi_
sachs/causal_mechanism/plot2/",toString(j)," t")

write.matrix(edge matrix,sep=" , ",file=string to_add)

samp_l=sample(4:6,1,replace = TRUE)
samp_2=sample(l:samp_1,4,replace = TRUE)

unig=randString(samp_2)

if (khh==1){
keep_adding="cat"}
if (khh==2){
keep_adding="csi"
_to_ / / / / / / - / /
/ . / / _

class_prob=function(compare){
rechape_compare=c(compare) )
rechape_compare_order=order(rechape_compare,decreasing = TRUE)

order_MCMC=rechape compare|[rechape compare order]

rechape true=c(true matrix 2)
order_true=rechape true[rechape compare order]

compare_true with mcmc=cbind(order_MCMC,order_true)

return(compare true with mcmc)

}
r=c("edge_matrix")

AUC calc=AUC(class prob(get(r))[,1],class prob(get(r))[,2])

return(AUC_calc)
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