
.

Master’s thesis

Localized Mixed States
A Characterization of Strictly Localized Mixed States
with Examples in Quantum Optics

Sigurd Sørlie Rustad

Theoretical Physics
60 ECTS study points

Department of Physics
Faculty of Mathematics and Natural Sciences

Spring 2023





Sigurd Sørlie Rustad

Localized Mixed States

A Characterization of Strictly Localized
Mixed States with Examples in Quantum

Optics

Supervisor:
Johannes Skaar





Abstract

When states are generated on-demand in a laboratory, we expect that the
states are confined to that laboratory immediately after they are generated.
Mathematically, we represent the confined states through strictly localized
states. We introduce and use algebraic quantum field theory (QFT) to define
and characterize strictly localized mixed states, with specific examples in
quantum optics.

In experiments, classical uncertainties or environmental interactions are
present. Hence, a suitable representation of a state in an experiment is a
mixed state. We present a notion of strict locality for mixed states and
characterize the quantum operations that generate strictly localized mixed
states from the vacuum. We show that the generalization from pure states is
non-trivial by demonstrating that the set of all strictly localized mixed states
is larger than the set of states generated by mixes of strictly localized pure
states. Additionally, we find a criterion for when strictly localized mixed are
expressible as a mixture of strictly localized pure states.

The results mentioned above hold for any QFT that satisfies the usual
postulates of a local field theory. One such theory is the quantum optics
field theory. After demonstrating this fact, we present two examples of strict
locality for mixed states. The first is an explicit example of a strictly localized
mixed state that cannot be expressed as a mixture of strictly localized pure
states. In the second application, we attempted to create a strictly localized
mixed state close to a photon. We get a maximum fidelity of ∼ 0.2 between
the strictly localized mixed state and photon. In contrast, J. Gulla and J.
Skaar [GS21a] achieved a fidelity of ∼ 1 using strictly localized pure states.

As an introductory example, we present negative energy density in QFT
to generate a state strictly localized with respect to energy density. In
particular, we created a state that is a mixture of a photon and squeezed
vacuum state to yield a vanishing energy density for negative times.
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Chapter 1

Introduction

1.1 Quantum Physics

Quantum physics is an umbrella term for all physical processes at the
atomic scale. The term “quantum” stems from nature tending to operate
in discrete quantities — or quanta — at small scales. The study of quantum
physics started in the 1900s when Max Planck developed a correct model
of black-body radiation by quantizing light. This was the beginning of
what many refer to as the first quantization. Further work by Albert
Einstein on the photoelectric effect, and Niels Bohr on energy levels of
atoms, further supported the quantization of matter. This work sparked
significant innovation in the description of quantum physics, with Erwin
Schödinger formulating his famous wave equation in 1925. His equation
allowed us to describe matter through wave functions and probability.
However, the equation was not compatible with Einstein’s theory of special
relativity. Paul Dirac tried to resolve this in 1928 when he wrote down
his relativistic wave equation, which described massive spin-1/2 particles.
Following experimental observations, there was a needed have a description
of matter with a dynamic number of particles. That led to what many refer
to as the second quantization, where we quantize relativistic fields. We call
the quantization of relativistic fields quantum field theory (QFT).

Within QFT, we say that there are many different QFTs, each with its
purpose. Many of this thesis’ results will apply to any QFT defined on a
separable Hilbert space. However, when we investigate specific examples,
we will work with a QFT associated with quantum optics, in which the
electromagnetic field is quantized. This formalism is convenient, as it deals
with free and non-charged fields. In addition, we can effectively ignore the
polarization in some applications, which makes the formalism effectively
scalar. Furthermore, it is well-defined in the sense that operators and the
resulting Hilbert space can be mathematically defined. The simple and
rigorous nature of this formalism has been beneficial when coming up with
examples and applications. Quantum optics is also a highly researched topic
with many real-world applications, for instance, within measurement and
information technology [GK04].

1



CHAPTER 1. INTRODUCTION

1.2 Strict Locality

Classical field theory is an example of a local theory, because field
configurations at one point are only directly influenced by the immediate
surroundings. This behavior contrasts Newtonian mechanics, where objects
separated in space can interact instantaneously. Most modern theories are
local because they satisfy causality. The common characteristic of causal
theories is that information cannot travel faster than the speed of light in a
vacuum. In particular, causality means that two spacetime regions that are
space-like separated cannot interact.

Imagine we have a causal theory and some on-demand source that
generates a state. This source could for instance generate light. If somebody
turns the source on, then the state generated should not be measurable
outside its light cone. Otherwise, we would violate causality. Such states are
what we call strictly localized. In other words, we argue that any on-demand
generated state should be strictly localized. Several experiments involve
generating states on-demand, which is why it is important to characterize
such states in a local theory.

Quantum field theory is another local theory, and the local structure is
often captured through an equal-time commutator relation. The commutator
relation guarantees that space-like separated field configurations commute.
Usually, one treats the field operators as building blocks of the theory. Hence,
it might seem intuitive that this would manifest as a local structure. We will
explicitly demonstrate this by defining what we mean by local operations
and measurements.

Fields are local; however, they are not valid operators on a Hilbert space
before we integrate them against a suitable test function. Strictly speaking,
this means that the field operators are neither observable nor represent
operations which an experimentalist can perform. That is why the first part
of this thesis aims to introduce QFT formulated in terms of local operators
and observables, sometimes referred to as algebraic QFT.

With local operators and observables defined, we can define what one
means by strict locality in QFT. For now, view a strictly localized state as
something that looks like vacuum outside its localization region. In other
words, one cannot distinguish the strictly localized state from vacuum with
local measurements outside the localization region. Our mission is to describe
the structure of such states and develop examples which help concretize the
formalism. Finding examples is also relevant for experimental verification.
Although people have done this for pure states [Kni61][Lic63][GS21a], we
will extend the formalism to mixed states.

When we first started to investigate strict locality for mixed states, we
wondered if one could generate localized mixes that consist of non-local
states. To capture this idea, we wanted to see if having a localized mixed
state with respect to one observable is possible, even though it is a mix
of non-localized states with respect to the same observable. We chose the
observable associated with energy density. This choice is because energy
density is an observable often used in quantum optics. In addition, since
the associated operator is normal-ordered, we can make the energy density
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CHAPTER 1. INTRODUCTION

negative. The hypothesis was that we could have some state with positive
energy density and compensate by mixing in a state with negative energy
density.

1.3 Structure

This thesis contains four main chapters:

• Chapter 2: Background. Here we cover preliminary material, often not
taught in master-level courses. We define our units and some relevant
notation (Section 2.1). Following this, we address the quantization
process, define operators and operator-valued distributions, and use
this formalism to generate local operators and algebras (Section 2.2).
Last, we briefly introduce mixed states and characterize operations on
such states (Section 2.3).

• Chapter 3: Negative Energy Density. This chapter explores negative
energy density in quantum optics (Section 3.1) and mixed states
localized with respect to energy density (Section 3.2).

• Chapter 4: Strict Localization. In this chapter, we give a brief
introduction on strict localization for pure states (Section 4.1) and
discuss more in-depth the importance of the formalism (Section 4.2).
Following this, we extend the formalism to mixed states (Section 4.3)
and briefly address the overlap with existing literature. Last but not
least, we present two example states in the quantum optics formalism
(Section 4.4 and 4.5).

• Chapter 5: Epilogue. The purpose of this chapter is to give a summary
of the results and their importance (Section 5.1) and list some avenues
for further work (Section 5.2).
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Chapter 2

Background

In this chapter, we introduce the theory used throughout the thesis. We have
focused on topics not commonly taught in master-level courses. In particular,
the local algebra formulation of QFT was unfamiliar to the author before
this project began. The literature on the said topic is highly mathematical,
so this chapter aims to introduce the topic to someone with rudimentary
analysis knowledge. To better understand this formalism, we found it helpful
to concretize the space of states and the corresponding operators. Hence,
the section on quantization and operators is quite detailed.

First, we briefly define the basic conventions and notation. Following this,
we have a section on quantization. Specifically, we construct the bosonic Fock
space, define operators, operator-valued distributions, field operators and
local operator algebras. We conclude the background chapter by covering
mixed states and quantum operations for infinite dimensional Hilbert spaces.

2.1 Units and Notation

The following are some basic notations and conventions. In this project, we
use natural units:

c = ℏ = ϵ0 = µ0 = 1 and e =
√
4πα, (2.1)

where µ0 is the vacuum permeability, α the fine-structure constant, c the
speed of light in vacuum, ℏ the reduced Planck constant and ϵ0 the vacuum
permittivity. The following are common notation:

• H is a separable complex Hilbert space.

• H is the Fock space generated from H.

• If a ∈ C, then a∗ is its complex conjugate.

• O denotes a bounded open region in Minkowski spacetime.

• We will make use of the Dirac notation. In this formalism, states and
the inner products are denoted as |ψ⟩ and ⟨ψ|ϕ⟩ respectively.
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CHAPTER 2. BACKGROUND

• The Fourier transform of a function f is defined as

F [f ](ω) =

∫ ∞

−∞
f(t)eiωtdt, (2.2)

and the factor 1/2π appears in the inverse Fourier transform.

2.2 Quantization, Operators and States

There are many ways of constructing quantum field theories. Introductory
textbooks usually quantize through canonical quantization. Roughly
speaking, this involves imposing a commutation relation on the classical
fields, promoting them to operator-valued distributions and demanding that
they create “particles” when acting on some arbitrary vacuum state. This
section aims to demystify many of these notions. Specifically, we want to
address what space our particles live in, operator-valued distributions and
how this relates to the formalism used in quantum optics, where one treats
free massless spin-1 bosons, namely photons.1 We will also define what we
mean by local operations, which will be helpful when we define strict locality.

The structure will be as follows: First, we construct the bosonic Fock
space using single-particle Hilbert spaces. Second, we define operators on
Fock space and use them to interpret operator-valued distributions. We base
these subsections on the book [Tal22] by Michel Talagrand, and one can find
all the proofs there.2 Third, we impose the canonical commutation relation
to promote the electric- and magnetic field to operator-valued distributions.
Last but not least, we will briefly cover local operators and operator algebras,
and describe their connection to local operations.

2.2.1 Bosonic Fock Space

We need a theory that can handle a dynamic number of particles. The usual
way of doing this is through the procedure known as second quantization
to get the so-called Fock space. This Hilbert space allows us to create
and annihilate particles using ladder operators. Furthermore, because it
is a Hilbert space, we retain many of the properties that we enjoy in non-
relativistic quantum mechanics. Constructing the Fock space is technical;
however, in this subsection, we will do it more intuitively by omitting
mathematical subtleties that add unnecessary complexity.

We begin by constructing an n-particle Hilbert space, namely the n-fold
tensor product H⊗n. For |ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩ ∈ H, we want a multilinear
tensor product |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ ∈ H⊗n. By multilinear, we mean
that it is linear in each factor. This construction can be created in a

1Purists might argue that free theories are unphysical. However, free theories are used
to describe actual experiments. In addition, when evaluating scattering in interaction
theories, the asymptotic in- and out states behave as states in a free theory.

2The book by Talagrand is highly recommended for people who take issue with authors
“hiding” mathematical issues and subtleties. In the book, Talagrand points out what is
rigorous and not, and when we perform mathematical errors.
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CHAPTER 2. BACKGROUND

coordinate-independent way; however, we do this on a given basis.3 Let
{|ei⟩} be an orthonormal basis of H. We consider the set of all possible
linear combinations

∑

i1,...,in

αi1...in |ei1⟩ ⊗ · · · ⊗ |ein⟩ ,
∑

i1,...,in

|αi1...in |2 <∞. (2.3)

On these linear combinations, we define addition and multiplication in the
natural way. Moreover, we define an inner product

(∑
αi1...in |ei1⟩ ⊗ · · · ⊗ |ein⟩ ,

∑
βi1...in |ei1⟩ ⊗ · · · ⊗ |ein⟩

)

:=
∑

α∗
i1...inβi1...in .

(2.4)

The set of such states, with the inner product defined above, forms a Hilbert
space. Hence, the map (|ψ1⟩ , |ψ2⟩ , . . . , |ψn⟩) 7→ |ψ1⟩⊗|ψ2⟩⊗· · ·⊗|ψn⟩ ∈ H⊗n,
is well-defined.

Although there are two kinds of elementary particles — bosons and
fermions — we will only explicitly deal with bosons in this thesis. Bosons
follow Bose-Einstein statistics, so we need to symmetrize the space to get
rid of unphysical states. We denote the space H⊗n

sym to be all elements of the
form (2.3) such that

αi1...in = αiσ(1)...iσ(n)
, (2.5)

for all i1 . . . in and σ ∈ Sn. Here Sn is the group of all permutations of
1, . . . , n and the parenthesis denotes elements within σ.4 Physically, this
means that we do not distinguish particles, and thus not permutations of
said particles either. We have that H⊗n

sym is a closed subspace of H⊗n and
therefore also a Hilbert space.

For later convenience, we can define a basis of H⊗n
sym. Let {|ei⟩} be a basis

of H and m1,m2, . . . ,mn a sequence of numbers between one and n, with
the possibility of repeating numbers. Also, define ni as the number mjs that
are equal to i (this gives

∑
i ni = n). Then, the set of all states of the form:

|n1, n2, . . .⟩ := C(n)
∑

σ∈Sn

∣∣∣emσ(1)

〉
⊗ · · · ⊗

∣∣∣emσ(n)

〉
,
∑

i

ni = n, (2.6)

where C(n) is some normalization constant which one can find through
combinatorics — forms an orthonormal basis of H⊗n

sym.
So far, we have introduced abstract notation and concepts. To make

sense of this construction, let us give an example. Let H be a single-particle
Hilbert space, with some basis {|i⟩}.5 Then, the state |n1, n2, . . .⟩ ∈ H⊗n

sym
represents having n1 bosons in state |0⟩, n2 bosons in the state |1⟩ and so

3To show this in a coordinate-independent way, we can use isomorphisms between
Hilbert spaces. That is possible because all separable and infinite-dimensional Hilbert
spaces are isomorphic.

4For example σ = {1, 3, 2} is an element in S3 with σ(2) = 3.
5These states could for instance be photon pulses or energy eigenstates in regular non-

relativistic quantum mechanics.
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CHAPTER 2. BACKGROUND

forth. In other words, the numbers ni represent the number of particles, and
their position represents each particle’s state.

Now we are ready to define the bosonic Fock space. Let H be the set of
sequences (|ψn⟩)∞n=0 where for each n we have |ψn⟩ ∈ H⊗n

sym, and the sequence
satisfies

∑
n ∥|ψn⟩∥2 <∞. Moreover, define the inner product on H as

⟨ψ|ϕ⟩ :=
∑

n

⟨ψn|ϕn⟩ . (2.7)

This inner product makes H a Hilbert space and is what we refer to as
the bosonic Fock space. In this space we interpret ∥ψi∥2/

∑
n ∥ψn∥ as the

probability of having i particles. Additionally, since we have a basis for
each H⊗n

sym, this naturally induces a basis of H. We can denote those basis-
elements

|n1, n2, . . .⟩ ,
∞∑

i=1

ni <∞, (2.8)

with the natural understanding that

|n1, n2, . . .⟩ = (0, . . . , |n1, n2, . . .⟩︸ ︷︷ ︸
position Σini

, 0, . . . ). (2.9)

Note that this basis depends on an initial choice of basis for H. Also, different
Hilbert spaces H will induce a different Fock spaces H. This difference comes
up in Section 2.2.4 when we perform a choice of gauge.

Before defining operators on Fock space, we will quickly define the
vacuum state. Let H⊗0 := C be the zero-particle space with the number
one as the basis. Formally speaking, the vacuum in H then is (1, 0, 0, . . . );
however, we will just write |0⟩.

2.2.2 Operators on Fock Space

Now that we have the Fock space for bosons, we will define the corresponding
operators. First and foremost, since the operators are going to be unbounded,
we will define them on a dense subspace. This unboundedness is a subtle but
significant detail, as unbounded operators cannot be defined on the entire
Hilbert space.6 Let H0 be the dense subspace defined by

H0 := {(|ψn⟩)∞n=0 ∈ H : |ψn⟩ ≠ 0 for a finite number of n} . (2.10)

To define the operators on H0 it is sufficient to look at how they act on the
corresponding basis. H0 shares the same basis as H (2.9).

6This is not limited to QFT. Let H be the Hilbert space for the harmonic oscillator and
{|n⟩} its energy eigenstate basis. For a state |ψ⟩ =

∑
n cn |n⟩, if cn tends slowly enough

to zero, then the Hamiltonian will map |ψ⟩ outside H.

8
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Definition 2.2.1. Fix a basis for H and let H0 be defined by (2.10).
For each k ≥ 1 define the linear operators a†k : H0 → H and
ak : H0 → H by

a†k |n1, n2, . . .⟩ =
√
nk + 1 |n1, n2, . . . , nk + 1, . . .⟩ , (2.11a)

ak |n1, n2, . . .⟩ =
{√

nk |n1, n2, . . . , nk − 1, . . .⟩ if nk ≥ 1,

0 if nk = 0.
(2.11b)

The following theorem let us characterize the operators defined in
Definition 2.2.1:

Theorem 2.2.1. The operators a†k and ak satisfy

For n ≥ 0, a†k maps H⊗n
sym into H⊗n+1

sym . (2.12a)

For n ≥ 1, ak maps H⊗n
sym into H⊗n−1

sym . (2.12b)

For all |ψ⟩ , |ϕ⟩ ∈ H0, ⟨ψa†k|ϕ⟩ = ⟨ψ|akϕ⟩ (2.12c)

[ak, a
†
l ] = δkl (2.12d)

[ak, al] = 0 (2.12e)

Proof. See [Tal22].

In Theorem 2.2.1, the equations (2.12a) and (2.12b) indicate that a†k and
ak have the physical interpretation of creating and annihilating particles
respectively. Equation (2.12c) makes ak the adjoint of a†k, thus making sense
of the notation. Lastly, the commutation relations (2.12d) and (2.12e) are
similar to those of the harmonic oscillator, giving us the popular notion of
this being a space consisting of infinite harmonic oscillators.

2.2.3 Operator-Valued Distributions

Now we are ready to define operator-valued distributions. When integrated
against a suitable test function, operator-valued distributions yield a linear
operator on H0. Again, it is possible to do this for general Hilbert spaces
and in a coordinate-independent way; however, we will fix H as the space of
square-integrable functions (H = L2(R)).7 Let {ei} be an orthonormal basis
of H. For any square-integrable function f ∈ H, we can write it in terms of
the basis: f =

∑
i αiei. Define the linear operators

A(f) =

∞∑

i=1

α∗
i ai and A†(f) =

∞∑

i=1

αia
†
i . (2.13)

These operators satisfy Theorem 2.2.1, replacing ak with A(f), a†k with A†(f)
and [A(f), A†(g)] = ⟨f |g⟩. Note that for f = ek we recover A(f) = ak.

7Some readers might recognize this as the space of wave-functions — or states if you
will — used in non-relativistic quantum mechanics.
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Now we will define the operator-valued distributions a(k) and a†(k):
∫
dk f(k)∗a(k) := A(f) and

∫
dk f(k)a†(k) := A†(f). (2.14)

Strictly speaking, this means that it does not make sense to treat a(k) and
a†(k) as singular objects as one cannot separate them from their definition.
However, we still use them as notational devices, understanding that one
should integrate them later. Using the definition (2.14) and [A(f), A†(g)] =
⟨f |g⟩ we get

∫
dk f(k)∗g(k) =

∫
dk dk′ f(k)∗g(k′)[a(k), a†(k′)], (2.15)

re-discovering the popular notion that [a(k), a†(k′)] = δ(k − k′).

2.2.4 Quantizing the Fields

The solution of Maxwell’s equations in vacuum, using the Coulomb gauge is
(we derive this in Appendix A)

E(r, t) =

∫

all k-space
d3k E(ω)

2∑

l=1

[
al(k)el(k)e

i(k·r−ωt) + h.c.
]
, (2.16a)

B(r, t) =

∫

all k-space
d3k E(ω)

2∑

l=1

[
al(k)k̂× el(k)e

i(k·r−ωt) + h.c.
]

(2.16b)

Here E and B are the electric and magnetic fields respectively, E is for
normalization, ω the angular frequency, k the wave vector, el polarization
vectors and h.c. denotes the hermitian conjugate. Fixing the normalization
E(ω) = K

√
ω, where K > 0 is real, we can impose the canonical

commutation relation [CDG97]

[ai(k), a
†
j(k

′)] = δijδ
(3)(k− k′), (2.17a)

[ai(k), aj(k
′)] = [a†i (k), a

†
j(k

′)] = 0. (2.17b)

This promotes ai and a†i to operator-valued distributions as defined by (2.14).
Before continuing, we need to address the choice of gauge. The Coulomb

gauge does not leave our equations manifestly Lorentz invariant. We
accept this because optical experiments often are described using a single
reference frame. Furthermore, when choosing the Coulomb gauge, we set
the longitudinal components of the classical fields to zero. If we were to
choose another gauge — say Lorenz gauge — we would also get longitudinal
ladder operators. The consequence of this, is that the resulting Fock space
would contain more states and operators than in Coulomb gauge, and give us
a seemingly different physical theory. However, this goes against the notion
that choosing a gauge should not change the physics. It is possible to show
that observables are independent of said gauge transformations [LIS17].

The expressions in (2.16a) and (2.16b) are cumbersome. In optical
experiments, the states often travel in a fixed direction — say x-direction —

10
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and with a fixed polarization. This means that we do not expect the presence
of states moving in y- or z-direction, nor have any other polarization present
in the states. We say that modes not present in a state are in the vacuum
state.

When an operator is normal ordered (or Wick ordered), all creation
operators are to the left of all annihilation operators. The physical
interpretation is that normal ordering removes vacuum contribution. Hence,
modes that are in the vacuum state does not contribute to the expectation
value of a normal ordered operator. This means that although the
field operators are given by (2.16a) and (2.16b), we can effectively use
ones without any y- or z-dependence and remove one of the polarization
directions. We emphasize that this only works when the operators are normal
ordered, which removes all the vacuum contributions. Hence, for states
moving in positive x-direction and with a fixed polarization, the effective
operators become (splitting them into a positive- and negative frequency
part):

E = E+(x, t) + E−(x, t), B = B+(x, t) +B−(x, t), (2.18)

where

E+(x, t) =

∫ ∞

0
dω E(ω)a(ω)e−iω(t−x) and (2.19a)

B+(x, t) =

∫ ∞

0
dω E(ω)a(ω)e−iω(t−x). (2.19b)

Here we removed the vector notation, with the understanding that the E-field
is perpendicular to the B-field, and the integration is from zero to infinity
because we only allow positive frequencies and modes moving in positive
x-direction.

We can also fix an effective underlying Hilbert space. Let H = L2(0,∞)
and choose an orthonormal basis {ξi(ω)}i that satisfies [Blo+90]

∑

i

ξ∗i (ω)ξi(ω
′) = δ(ω − ω′). (2.20)

Then, we can introduce the operators A(ξk) ≡ ak and A†(ξk) ≡ a†k given
by equation (2.14); which also satisfy Theorem 2.2.1. We will refer to
this as pulse mode formalism. Note that in this formalism, the state
a†1 |0⟩ = |11⟩ denotes an arbitrary pulse. This is because we can choose
ξ1 to be any normalized function in L2, and iteratively find the basis by an
orthogonalization process. This formalism also allows us to write (2.19a) in
a much simpler form. If we fix x = 0, E+ becomes:

E+(t) =
∑

i

Ei(t)ai, (2.21)

where

Ei(t) =

∫ ∞

0
dω E(ω)ξi(ω)e−iωt. (2.22)

11
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2.2.5 Local Algebra of Operators

In this subsection, we define local operators and algebras thereof following
the convention in Haag’s book on local quantum physics [Haa96]. We also
state some mathematical properties of said algebras. For mathematicians,
since they have to deal with subtle details, this subject is complicated
and technical. However, for physicists it is relatively simple. We want a
mathematical structure where we can add and multiply operators together,
which is why we want an algebra. Also, we want those operators to be
associated with some local operation, hence local operators. Combining
those two properties, we get an algebra of local operators. The note [Wit18]
by Edward Witten provides an excellent introduction to this subject with
fewer mathematical details.

As mentioned, O will always denote a bounded open region in Minkowski
spacetime. The following defines what we mean by local operators:

Definition 2.2.2. Let Φ be an arbitrary field operator. We refer to
the smeared field,

Φf =

∫
d4x f(x)Φ(x), (2.23)

as a local operator — with localization region O — if f vanish whenever
x lies outside O. In other words, f has compact support in O.

The idea is that these operators represent local operations we can perform
inside the region O. It would be convenient to consider the algebra generated
by products and sums of local operators — this is called a polynomial
algebra. However, since the local operators can be unbounded, we run
into some technical problems. As we mentioned when defining operators
on Fock space, unbounded operators can only be defined on a dense subset.
Moreover, different operators need not be defined on the same subset. This
leads to issues when we want to find the domain after multiplying and
adding unbounded operators. Because of this, we want to consider bounded
operators instead.

We can restrict the spectrum of an operator using a bounded function.
Given an observable, mathematically represented by a self-adjoint operator
A, with a possibly unbounded spectrum σ(A), and with a decomposition

A =

∫

σ(A)
dλλ |λ⟩ ⟨λ| . (2.24)

The claim is that we can, without loss of generality, consider the bounded
version of the operator

f(A) :=

∫

σ(A)
dλ f(λ) |λ⟩ ⟨λ| , (2.25)

where f is some bounded function. The physical argument here is that this is
only a relabel of the possible measurement outcomes. Therefore, we should
not expect this to affect any physical theory. In fact, we do not expect to ever

12
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measure an unbounded quantity in practice; hence, this is not only practical,
but something we should demand from a physical theory.

With bounded versions of local operators, we are ready to define local
algebras:

Definition 2.2.3. Associated with any region O, there is a local
algebra A(O). This is the weakly closed polynomial algebra, generated
by the bounded versions of local operators. We say a sequence {Ai}
converge weakly if all matrix elements |⟨ψ|Ai |ϕ⟩| converge.

Remark. There are several ways of defining algebras consisting of bounded
operators on a Hilbert space. The choice of algebra also has physical
significance. The details are not important for our purposes, nor something
the writer is familiar with. Also, it is worth mentioning that this structure
forms a C*-algebra, and is a widely studied structure in mathematics.

We will discuss the physical intuition of the local algebras further when
we introduce the concept of strict locality. For now, we want to state some
properties of local algebras. First and foremost, from Definition 2.2.3 we
get isotony (O1 ⊆ O2 ⇒ A(O1) ⊆ A(O2)) and causality (O1 is space-like
separated from O2 ⇒ [A(O1),A(O2)] = 0). These properties are typical
postulates in an algebraic QFT. Also, the following two theorems state what
mathematicians call the cyclic and separating quality of the vacuum.

Theorem 2.2.2. [The Reeh-Schlieder theorem] The vacuum state |0⟩
is a cyclic vector for the local algebra A(O). In other words, the
subspace generated by using the entire algebra on the vacuum, A(O) |0⟩,
is dense in H.

Proof. This was originally proved by Reeh and Schlieder [RS61] using fields;
however, this has been extended by H. Araki [Ara99] to general QFTs that
satisfy the local algebra formulation.

Theorem 2.2.3. The vacuum state |0⟩ is separating for A(O). This
means that for L ∈ A(O), then L |0⟩ = 0 if and only if L = 0.

Proof. See [Ara99].

The non-local effects of Theorem 2.2.2 might seem paradoxical. The
fact that we can get arbitrarily close to any state by using operators in
a local algebra seems to violate causality. It turns out that this does not
violate causality, see e.g. [Wit18] for a discussion of the non-local effects of
Theorem 2.2.2.

13
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2.3 Mixed States and Quantum Operations

The main subject of the thesis will be strict localization for mixed
states. Mixed states represent classical uncertainties in quantum systems
or, equivalently, entanglement with an auxiliary system. Hence, we will
need some formalism related to quantum information theory. Although
this subject is vast, we will only touch on a few aspects in this section.
Specifically, we will define the space of mixed states, what they represent
physically and valid operations on said states. A lot of the literature on
this subject treats finite-dimensional Hilbert spaces. When one moves to
the infinite-dimensional case, one must be careful about the convergence of
limits. However, we will see that most of the results that we will use, extends
from finite- to infinite dimensions. The primary source for the following two
subsections is the book [NC00].

2.3.1 Mixed States

As mentioned above, mixed states describe systems whose state is not
entirely known. For example, assume a system could be in any number of
states {|ψi⟩}, and that it is possible to assign each state with a probability
pi. This would be a classical mixture of quantum states and is what we refer
to as mixed states. We represent such states through the density operator:

ρ =
∑

i

pi |ψi⟩ ⟨ψi| ,
∑

i

pi = 1. (2.26)

Hence, for each mixed state, there is a corresponding density operator
representation ρ. However, the representation {|ψi⟩} of ρ is not unique,
as we will demonstrate in Theorem 2.3.1.

The reason that this representation is convenient is that we can calculate
the expectation value of an operator using the trace. Given any orthonormal
basis {|n⟩}, we define the trace of an operator as

tr[A] :=
∑

n

⟨n|A |n⟩ . (2.27)

Then, given a system represented by a mixed state ρ, the expectation value
of an observable B is

⟨B⟩ =
∑

i

pi ⟨ψi|B |ψi⟩ = tr[ρB]. (2.28)

Mixed states are what we call trace class — i.e. they have a well-defined
trace — with a trace equal to one. The set of density operators is a subset
of bounded linear operators on H, closed under convex sums. That is, for
mixed states ρ1 and ρ2, then

aρ1 + bρ2, where a, b > 0 and a+ b = 1, (2.29)

is a mixed state. For those interested in the mathematical structure of trace
class operators on infinite-dimensional Hilbert spaces, we recommend Christa

14
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Hawthorne’s note “A brief introduction to trace class operators”, which can
be found on her website.8

As mentioned, a mixed state does not have a unique representation. In
finite dimensions, it is well known that we can relate any representation of a
mixed state through a unitary matrix. In infinite dimensions, one can relate
density operators through partial isometries.9 This is captured through the
following theorem:

Theorem 2.3.1. Let ρ =
∑

i pi |gi⟩ ⟨gi| be the spectral decomposition
of a mixed state. We have that ρ =

∑
i qi |fi⟩ ⟨fi| if and only if

√
qi |fi⟩ =

∑

j

u∗ij
√
pj |gj⟩ , u∗ij = ⟨gi|U |gj⟩∗ = ⟨gj |U † |gi⟩ , (2.30)

where U is a partial isometry such that the range of U †U contains the
range of ρ.

Remark. If the range of ρ is finite, one can choose U to be unitary. Also,
note that we do not require ⟨fi|fj⟩ = δij.

Proof. This is a rewrite of the result presented in [Had81].

2.3.2 Quantum Operations

The quantum operation formalism is a powerful tool used to describe general
transformations and evolution of mixed states. We will need quantum
operations to define specific maps of mixed states. Using the axiomatic
approach, we have that a quantum operation E satisfies the following
axioms:10

Axiom 1. E maps mixed states to trace-class operators, and satisfy
0 ≤ tr[E(ρ)] ≤ 1 for all mixed states ρ.

Axiom 2. E is a convex-linear map. That is, E acts linearly on convex
sums of mixed states:

E
(∑

i

piρi

)
=
∑

i

piE(ρi). (2.31)

Axiom 3. The map E is completely positive.

Remark. Complete positivity means that if we introduce a second, finite-
dimensional system R of arbitrary dimensionality, then the map 1R ⊗ E is
positive on the joint system R ⊗H, where 1R is the identity on R. A map
is called positive if it maps positive operators to positive operators.

8https://cdchawthorne.com/writings/
9We remind the reader that an operator U is a partial isometry if it is an isometry

(U†U = 1) on the orthogonal complement of its kernel (ker(U)⊥).
10We explain the physical interpretation below.
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In the first axiom we demand that 0 ≤ tr[E(ρ)] ≤ 1 rather than E being
trace-preserving (tr[E(ρ)] = 1). This axiom is convenient for several reasons.
For example, if we want E to represent some measurement, then tr[E(ρ)]
is interpreted as the probability of measurement outcome given the mixed
state ρ. By not normalizing the post-measurement state, the operation can
be linear.

Axiom 2 follows from classical probability theory. Suppose a mixed state
ρ is obtained by randomly selecting other mixed states. We can represent
such states through a convex sum: ρ =

∑
i piρi, where pi is the probability

that we picked state ρi. If we were to perform a quantum operation E on ρ
we expect to get the state E(ρi)/ tr[E(ρi)] with a corresponding probability
p(i|E). Here tr[E(ρi)] is due to normalization, and p(i|E) is the probability
that we are in state ρi given that we performed the quantum operation E .
In other words

E(ρ)
tr[E(ρ)] =

∑

i

p(i|E) E(ρi)
tr[E(ρi)]

. (2.32)

If we insert Bayes’ theorem for p(i|E),11 then eq. (2.32) reduces to

E(ρ) =
∑

i

piE(ρi). (2.33)

The condition of complete positivity also makes sense. First and
foremost, complete positivity implies positivity, which guarantees that E
maps mixed states to mixed states — up to normalization. Also, if one has
a combined system A⊗B and performs an operation on one of the systems,
then this yields a valid mixed state up to normalization. One can prove that
positivity on one of the systems is not sufficient to guarantee positivity on
the combined system [NC00].

The axiomatic definition of quantum operations is cumbersome, hence
we would like a more straightforward formulation. The following theorem
lets us relate the axioms to an operator-sum representation:

Theorem 2.3.2. The map E satisfies axioms 1-3 if and only if

E(ρ) =
∑

i

EiρE
†
i , (2.34)

for some set of operators {Ei} which map the input Hilbert space to
the output Hilbert space, and

∑
iE

†
iEi ≤ 1.

Proof. We begin by showing sufficiency. Let E(ρ) =
∑

iEiρE
†
i with∑

iE
†
iEi ≤ 1. Then E is obviously linear and satisfies 0 ≤ tr[E(ρ)] ≤ 1.

Hence, it remains to show complete positivity. Let A be any positive
operator, then for any state |ψ⟩ of the extended system R ⊗ H we have

11p(A|B) = p(B|A)p(A)/p(B)
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that

⟨ψ| (1R ⊗ E)(A) |ψ⟩ =
∑

i

⟨ψ| (1R ⊗ Ei)A(1R ⊗ E†
i ) |ψ⟩

=
∑

i

⟨ϕi|A |ϕi⟩ ≥ 0,
(2.35)

where |ϕ⟩i = (I ⊗ Ei) |ψ⟩ and the inequality follows from the positivity of
A. Hence, E is a quantum operation.

Necessity follows directly from Kraus’ representation theorem [Kra83].
Let E be any completely positive convex-linear map, and maps trace-class
operators onto themselves, and satisfies tr[E(ρ)] ≤ 1 for density operators.
Then, the theorem states that E can be represented by a finite or countably
infinite sequence of bounded operators {Ei}. The mapping is given by

E(ρ) =
∑

i

EiρE
†
i , (2.36)

and the operators satisfy
∑

i

E†
iEi ≤ 1, (2.37)

concluding the proof.
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Chapter 3

Negative Energy Density

The main topic for this thesis is strict locality for mixed states. We have
yet to define what we mean by strict locality. However, as will become clear
in Chapter 4, we may think of a strictly localized state as something that
looks like the vacuum outside its localization region.1 When we first studied
this topic, we wondered whether we could generate mixed states consisting
of non-localized states, that results in a localized mixed state. That is, does
there exist a mixed state

ρ =
∑

i

pi |ψi⟩ ⟨ψi| , (3.1)

and some local observable A, such that

tr(ρA) = ⟨0|A |0⟩ , but ⟨ψi|A |ψi⟩ ≠ ⟨0|A |0⟩ . (3.2)

We chose to look at the observable corresponding to normal-ordered
energy density. There is existing interest in localizing photon-states with
respect to energy density [Bia98]. However, there are practical reasons for
choosing normal ordered energy density as well. First, Epstein et al. [EGJ65]
have shown that a positive definite local energy density is incompatible with
any usual postulates of local field theory (in [Wit18] E. Witten argues that
this follows directly from Theorem 2.2.3). Second, this negative energy
density is not bounded, meaning it can be made arbitrarily negative. These
qualities indicate that one could create a state with positive energy density,
such as a single photon, and compensate by using a state with negative
energy density.

The concept of negative energy density might be unsettling, as it violates
classical energy conditions. An example is the weak energy condition,
which states that every observer corresponding to a time-like vector will
observe a non-negative energy density. Even still, experimentalists claim to
have detected effects explained by negative energy density [Lam04][Spa58],
through the Casimir effect [Cas48] — though some dispute that the Casimir
effect is explained by negative energy density [Jaf05]. The phrase “negative
energy” might also be misleading, as we can interpret it as a suppression of

1This means the vacuum-state itself is a strictly-localized state, strictly localized
outside any region.
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vacuum fluctuations. This is because the energy density operator is normal
ordered, which means that we have subtracted vacuum contributions.

These sub-vacuum effects can have macroscopic consequences if they
are unrestricted. L. H. Ford and T. A. Roman have written papers on
the potential consequences and restrictions of negative energy density in
different QFTs. The articles [For10] and [Rom06] give an excellent overview.
To summarize the articles, unrestricted negative energy densities indicate
the existence of traversable wormholes, warp drive, time travel and more.
Although interesting, some might find this unsettling. Luckily (or unluckily),
QFTs seem to put bounds on these effects through so-called quantum
inequalities (QIs), first introduced by Ford in [For78]. Specifically, QIs
limit the magnitude of negative energy one can measure in a given temporal
interval. These QIs have been calculated in different QFTs and spacetime
geometries. Given some smearing function g, we can define the average
energy measured as

U =

∫ ∞

−∞
dt ⟨u⟩g(t), where

∫ ∞

−∞
dt g(t) = 1, (3.3)

and ⟨u⟩ is the average energy density for some state. If g has the
characteristic width τ , then for a massless field we get [For10]:

U =

∫ ∞

−∞
dt g(t, τ)⟨u⟩ ≥ − C

τd
, (3.4)

where d is the spacetime dimension and C is a positive constant. This
equation tells us that although we, in theory, can measure arbitrarily negative
energy densities, it is only possible for short periods in time. In other words,
the more negative energy we want, the shorter the time window we have to
measure it. These conditions seriously restrict the macroscopic effects listed
above.

In a formalism similar to the pulse mode formalism (as defined in
Section 2.2.4), Korolov and Ford investigated the maximal possible sub-
vacuum effect one can achieve [KF18]. It turns out that the maximal
effect can be found in squeezed vacuum states [Sto70]. This is convenient,
as squeezed states are widely studied in quantum optics, and people have
produced such states in a laboratory [GK04][Lin+86]. Furthermore, it makes
squeezed states a natural candidate to compensate for a state with positive
energy density. Therefore, in the subsequent sections (Section 3.1 and 3.2),
we first demonstrate the presence of negative energy density in squeezed
vacuum states. After that, we create a mixed state, localized with respect
to energy density, even though it consists of non-local states.

3.1 Negative Energy Density in Squeezed Vacuum
States

In this section, we will demonstrate the presence of negative energy density
in squeezed vacuum states. They are defined in terms of a complex variable
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ζ = reiθ [Sto70]

|ζ⟩ = S(ζ) |0⟩ , (3.5)

where r is called the squeeze parameter and

S(ζ) = e
1
2
(ζ∗a2−ζa†

2
). (3.6)

Here we have used pulse mode formalism and put a1 = a. This operator
is unitary and satisfies S(−ζ) = S†(ζ) = S−1(ζ). The resulting state is an
excitation of all possible even number particle eigenstates [GK04]

|ζ⟩ = 1√
cosh(r)

∞∑

n=0

(−eiθ tanh(r))n
√

(2n)!

2nn!
|2n⟩ . (3.7)

The energy density for the electromagnetic field is

ρE =
1

2

(
E2 +B2

)
. (3.8)

Hence, we can let the energy density operator u be defined by the squared
electric field, normal-ordered:2

u =:E2:= E+(t)2 + E−(t)2 + 2E−(t)E+(t), (3.9)

with E− = (E+)† and E+ given by eq. (2.19a). Because we are working
with one pulse (the other modes are in the vacuum state) and u is normal
ordered, we can effectively reduce eq. (3.9) to

u = E(t)2a2 + E∗(t)2a†
2
+ 2|E(t)|2a†a, (3.10)

where E(t) = E1(t) is given by eq. (2.22).3 Using the identity [GK04]

S†aS = a cosh(r)− a†eiθ sinh(r), (3.11)

we can calculate

⟨ζ| a2 |ζ⟩ = ⟨0|Sa S†S︸︷︷︸
1

aS† |0⟩ = −eiθ sinh(r) cosh(r), (3.12)

and the mean number of particles

⟨ζ| a†a |ζ⟩ = ⟨0| (S†aS)†SaS† |0⟩ = sinh2(r). (3.13)

Moreover, with ⟨ζ| a†a† |ζ⟩ = ⟨ζ| aa |ζ⟩∗ we get the expected energy density

⟨u⟩ = sinh(r)
(
2|E(t)|2 sinh(r)− 2 cosh(r)Re[eiθE(t)2]

)
. (3.14)

2Here we use that the contribution from the magnetic field is equal to that of the
electric field.

3Here we drop the subindex for readability. The function E(t) should not be confused
with the field operator. It should be evident from the context whether E is a function or
operator.
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We have that cosh(r), sinh(r) > 0 for r > 0. Furthermore, since cosh(r) ≈ 1
and sinh ≈ 0 for small r, we get that ⟨u⟩ can be negative for small r.

If we let the squeeze parameter r be small, we can use the Taylor
expansion of tanh and cosh

tanh(r) = r +O(r3), cosh(r) = 1 +O(r2), (3.15)

to rewrite eq. (3.7) into

|ζ⟩ ≈ |0⟩+ r√
2
eiθ |2⟩ =: |ψ⟩ . (3.16)

Here we have absorbed the minus sign into eiθ. Using eq. (3.10) we can
calculate the expected energy density of |ψ⟩:

⟨ψ|u |ψ⟩ = 2rRe(eiθE(t)2) +O(r2). (3.17)

Re(z) denotes the real part of a complex number z. If we write E(t) =
Er(t) + iEi(t), keep only first-order terms in r and fix θ = 0 we get

⟨ψ|u |ψ⟩ = 2r(Er(t)
2 − Ei(t)

2). (3.18)

This energy density is negative for |Er(t)| < |Ei(t)|.

3.2 Creating Local Density Matrices from Non-
Local States

In this section, we create a strictly localized state with respect to energy
density. In particular, we want to create a mixed state localized to positive
times with respect to energy density. In addition, we want the mixed state
to consist of states that are not localized to positive times. The physical
system could, for instance, be an experimentalist pressing a button at t = 0,
generating the desired state on-demand.

Arguably, the simplest state with positive energy density is a single
photon (|1⟩ = a† |0⟩). Hence, define ρ as the mix of a single photon and
the state defined by a small squeeze parameter (3.16):

ρ = α |1⟩ ⟨1|+ β |ψ⟩ ⟨ψ| , α+ β = 1. (3.19)

Although one could in principle produce such a state, the practical
applications are not obvious. Therefore, we remind the reader that this
serves as a proof of concept rather than for practical applications.

We can calculate the expected energy density of ρ

⟨u⟩ = tr[ρu] = α ⟨1| :E2: |1⟩+ β ⟨ψ| :E2: |ψ⟩ . (3.20)

Here tr[·] denotes the trace. It is easy to show that ⟨1| :E2: |1⟩ = 2|E(t)|2;
moreover, if we fix θ = 0 and keep only first-order terms in r we can reuse
eq. (3.18) to get

⟨u⟩ = 2α|E(t)|2 + 2rβ(Er(t)
2 − Ei(t)

2)

= (2α+ 2rβ)Er(t)
2 + (2α− 2rβ)Ei(t)

2.
(3.21)
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We want this to be zero for negative times. One way of doing this is by
demanding Er = 0 for t < 0 and setting the coefficient in front of Ei to zero.
The latter is possible by demanding

2α− 2rβ = 0 ⇒ α = rβ. (3.22)

Inserting eq. (3.22) into (3.21) and using α+ β = 1 we get

⟨u⟩ = 4r

r + 1
Er(t)

2 = [4r +O(r2)]Er(t)
2. (3.23)

Now the question is if there exists a ξ ∈ L2(0,∞) such that

Er(t) = Re

[∫ ∞

0
dω

√
ωξ(ω)e−iωt

]
(3.24)

is zero for t < 0 and non-zero otherwise. The above expression is from
eq. (2.22) where we have absorbed K into ξ making it non-normalized.

We want the expressions that follow to be independent of frequency scale.
Usually this is done by introducing some arbitrary reference ω0 and demand
ω 7→ ω/ω0, making ω dimensionless.

We recognize eq. (3.24) as almost being a positive frequency inverse
Fourier transformation, as defined in eq. (2.2).4 Assuming ξ to be zero
for negative ω we can extend the integral to minus infinity and obtain

E = Er + iEi = 2πF−1
[√
ωξ
]

(3.25)

This implies that

ξ(ω) =
1

2π
√
ω
F [E](ω). (3.26)

Hence, the question is if we can find an E such that ξ and Er are zero for
negative ω and t respectively, and non-zero otherwise, keeping in mind that
ξ has to be in L2.

We can fix Er to be zero for negative times, so let us address ξ being zero
for negative ω. Titchmarsh theorem [Tit48] tells us that if a function f has an
imaginary part fi that is the Hilbert transforms the real part (fi = H(fr)),
then this is equivalent to the Fourier transform F [f ] vanishing for negative ω.
In fact, the Hilbert transform is a multiplier operator that satisfies [Gra14]

F [H(f)](ω) = −i sign(ω)F [f ](ω). (3.27)

Here sign(·) is the signum function, and returns the sign of the given
argument. Hence, if we choose Er to be any function that is zero for negative
times and demand that Ei = H(Er), then we get that

F [E](ω) = (1 + sign(ω))F [Er](ω). (3.28)

4Keeping with the convention that the Fourier transform is going from time- to
frequency domain.
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This means that ξ would be zero for negative ω, which is exactly what we
wanted.

As mentioned, we must demand that ξ ∈ L2. If Er ∈ L2, then
F [Er] ∈ L2. However, after dividing by

√
ω to get ξ, we may get a singularity

at ω = 0, which can push ξ out of L2. To eliminate this problem, we want a
well-behaved function that tends to zero as ω → 0 such that the singularity
at ω = 0 is regularized with respect to integration. For an ϵ > 0, we have
that 1/ωp is integrable from 0 to ϵ for any powers p < 1. From this we
see that |f(ω)|2/ω is integrable, if for small ω, |f(ω)| ∝ ωq for any positive
number q.5

Instead of searching for functions that are proportional to some power
of ω around the origin, for simplicity, we will just search for an F [Er] that
vanishes at ω = 0. Since Er is purely real, we have that if it is odd, then
F [Er] is purely imaginary and odd. This would imply F [Er](ω = 0) = 0.
However, the only function that is odd and zero for negative t is the zero
function. Luckily, we have that the Fourier transform is translation invariant
up to a local phase:

Proposition 3.2.1. Let f : R → C, F denote the Fourier transform
and Ta be the translation operator (defined by Taf(t) = f(t+a)). Then,
F [Taf ](ω) = e−iaωF [f ](ω).

Proof. See [Gra14].

Proposition 3.2.1 tells us that if Er is antisymmetric around some point
t = a, then

F [Er] = e−iaωF [TaEr] (3.29)

yields an F [TaEr] that is purely real and odd. Hence, F [Er](ω = 0) = 0 as
desired. An example of this is Er = χ[0,1] − χ[1,2], where χ is the indicator
function:

χA(t) =

{
1 if t ∈ A,

0 if t ∈ R \A.
(3.30)

The Fourier transform of χ[−1/2,1/2] is

F [χ[−1/2,1/2]](ω) =

∫ ∞

−∞
dt χ[−1/2,1/2](t)e

iωt = sinc
(ω
2

)
. (3.31)

Then, by the linearity of Fourier transforms and Proposition 3.2.1 we get
that

F [Er](ω) = sinc
(ω
2

)(
e

iω
2 − e

3iω
2

)

= iω +O(ω2).
(3.32)

5One could think that f continuously tending to zero (limx→0 f(x) = 0) is enough.
That can be shown not to be the case: Take f(x) = 1/ log(x) and an ϵ > 0. Then,
limx→0 f(x) = 0 and f ∈ L(0, ϵ), but f(x)/

√
x ̸∈ L2(0, ϵ).
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CHAPTER 3. NEGATIVE ENERGY DENSITY

The function above is proportional to ω around ω = 0, hence we have found
an example. Define

ξ(ω) =
1 + sign(ω)

2π
√
ω

sinc
(ω
2

) [
e

iω
2 − e

3iω
2

]
. (3.33)

This ξ is zero for ω < 0 and in L2. Furthermore, E = 2πF−1 [
√
ωξ] has a

real part that is zero for negative times, as desired.
In Figure 3.1, we have plotted the different spectra with squeeze-

parameter r = 0.1.6 In the bottom plot we have displayed the real and
imaginary part of ξ as a function of ω. In the plot we see that most of the
frequency spectrum is around ω = 1.

In the other plot we have displayed the energy density of |1⟩, |ψ⟩ and ρ
as a function of time. This plot clearly demonstrates that the mix of two
non-local states can give rise to local effects. In particular, we notice that
the energy density of |ψ⟩ and |1⟩ is non-zero everywhere, with the exception
of discrete points. However, the energy density of ρ is localized to positive
times. The singularities are not problematic as they are regularized with
respect to integration. If we were to go out and measure the energy, we
would have to integrate the spectrum against a suitable function, which
would yield a finite result.

6We remind the reader of the map ω 7→ ω/ω0.
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Figure 3.1: Here we have plotted different spectra associated with the mixed
state ρ (3.19), generated using the squeeze parameter r = 0.1 and the spectra
ξ defined by (3.33). The bottom plot shows the real (ξr) and imaginary
(ξi) part of ξ as a function of angular frequency ω. The top plot displays
the total energy density ⟨u⟩ (3.23) (using first-order terms in r). Also, we
have displayed the energy density (scaled using α and β defined by (3.22))
corresponding to the states |ψ⟩ and |1⟩ — as a function of time t .
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Chapter 4

Strict Localization

This chapter contains the lion’s share of the work done in this thesis.
Section 4.1 serves as a brief recapitulation on some work done by J. M.
Knight [Kni61] and A. L. Licht [Lic63] on strict locality for pure states.
The subsequent section (Section 4.2) attempts to explain why the formalism
related to strict locality is essential. In Section 4.3, we extend the formalism
set by Knight and Licht to mixed states. All the content in that section is
original work; however, we later discovered that there is overlap with existing
theory [Lic66]. Alas, we have a small subsection (Section 4.3.1) addressing
this.

Last but not least, we have two sections (Section 4.4 and 4.5) that contain
one example each in the quantum optics formalism. The first section has a
strictly localized state which cannot be written in terms of pure states that
are strictly localized. In the second section, we attempt to create a strictly
localized mixed state close to a single photon.

4.1 Strict Localization for Pure States

Before we motivate the formalism and delve into strict locality for mixed
states, we will briefly cover the existing formalism for pure states. This
section is based on the papers [Kni61] and [Lic63] from J. M. Knight and
A. L. Licht respectively. We denote O as any bounded and open region in
Minkowski spacetime. Also, A(O) is the associated local algebra, following
Definition 2.2.3.

From Knight, we have the definition of strict locality:

Definition 4.1.1. We say a state |ψ⟩ ∈ H is strictly localized outside
O if

⟨ψ|L |ψ⟩ = ⟨0|L |0⟩ , for all L ∈ A(O). (4.1)

Remark. Here we have modified Knight’s definition of strict localization
to be outside O instead of inside. It might be more intuitive to define it
in terms of the latter; however, it turns out that the mathematics is more
straightforward with the former definition.
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CHAPTER 4. STRICT LOCALIZATION

If A(O) contains all possible measurements in O, then Definition 4.1.1
says that strictly localized states are indistinguishable from the vacuum
outside the localization region. This definition is precisely the notion we
introduced in the introduction. Licht analyzed the formalism presented by
Knight and introduced what we will refer to as Licht operators:

Definition 4.1.2. A linear operator W , is called a Licht operator
localized outside O if

[W,L] = 0 for all L ∈ A(O) and W †W = 1. (4.2)

It turns out that Licht operators not only generate strictly localized states
from the vacuum, but that every strictly localized state can be generated
from the vacuum by using Licht operators:

Theorem 4.1.1. For any region O, the following holds:

• Let W be a Licht operator localized outside O, then the state
|ψ⟩ =W |0⟩ is strictly localized outside O.

• For very state |ψ⟩, strictly localized outside the region O, there
exists a unique Licht operator W such that W |0⟩ = |ψ⟩.

Licht also characterized when the superposition of strictly localized states
yields a strictly localized state:

Theorem 4.1.2. Let |ψ1⟩ and |ψ2⟩ be strictly localized outside O.
Furthermore, let W1 and W2 be the corresponding Licht operators that
generate |ψ1⟩ and |ψ2⟩ respectively. Then the superposition of |ψ1⟩
and |ψ2⟩ is also strictly localized outside O if and only if W †

2W1 is
proportional to the identity (W †

2W1 ∝ 1).

Remark. This means that the set of states strictly localized outside of O is
not a subspace of H.

4.2 Why Care About Strict Localization?

In order to address why we should care about strict localization, we first
have to discuss what types of states we can generate in a given region O.
Previously, we introduced A(O) as the set of possible operations in O. For
example, if the initial state is the vacuum, then the Reeh-Schlieder theorem
(Theorem 2.2.2) tells us that we can get arbitrarily close to any state.
However, not every operator in A(O) represent a reasonable physical process.
Some operations might require more energy than is present in our galaxy.
Therefore, the idea is that A(O) contains all possible local operations, not
that all operators in A(O) are physical operations.

In addition, strictly speaking we should only be able to perturb the
Hamiltonian and let time evolve [Wit18]. The mathematical representation
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of time evolution is unitary. Hence, we argue that the only operations we
can perform in O are represented through unitary operators in A(O). In
that case, any state generated would be strictly localized outside the causal
complement of O.1 However, in praxis, we work with simplified theories,
and therefore a suitable operator representation might not exist in the local
algebra. For instance, imagine we have an instrument that generates a
photon. We can describe the photon using pulse mode formalism; however,
photons are usually created by moving charges. Because of this — since the
pulse mode formalism contains no charges — we have no reason to expect
a unitary operator representation of the instrument to exist in the local
algebra. Hence, in the theories we use in practice, we cannot exclude any of
the operators in A(O).

So what role does strict locality make in practical applications? J. Gulla
and J. Skaar argue that if states can be generated on-demand, then the
resulting state should be strictly localized [GS21a]. They also demonstrated,
that one cannot necessarily approximate a given state using strictly localized
states. Mathematically, this means that the set of strictly localized states is
not dense in H. Physically, it means that we cannot create whichever state
we want if we have an on-demand source. This property applies in a general
theory:

Proposition 4.2.1. The set of strictly localized states outside O is
not dense in H.

Proof. It is sufficient to demonstrate this in the weak sense.2 Let L ∈ A(O)
and |ψ⟩ ∈ H be such that ⟨ψ|L |ψ⟩ ≠ ⟨0|L |0⟩. Also, let {|ϕn⟩} be any
sequence consisting of strictly localized states, localized outside O. Then

lim
n

⟨ϕn|L |ϕn⟩ = lim
n

⟨0|L |0⟩ = ⟨0|L |0⟩ ≠ ⟨ψ|L |ψ⟩ . (4.3)

In the algebraic formulation of quantum physics set by R. Haag, D.
Kastler and I. E. Segal [HK64][Seg47], states are statistical ensembles of
physical systems — or mixed states. Also in the conventional formulation
of quantum mechanics, the states of physical systems are mixed whenever
classical uncertainties or entanglement with the environment is present.
Because of this, we argue that — apart from generalization for its own sake
— there is a clear motivation to generalize the results in Section 4.1 to mixed
states.

4.3 Strict Locality for Mixed States

We begin by expanding the definition of strict locality for pure states
(Definition 4.1.1) to mixed states:

1The causal complement of O is the set of all points space-like separated from O.
2If something does not converge weakly, then it does not converge strongly.
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Definition 4.3.1. We say a mixed state ρ is strictly localized outside
O if

tr(Lρ) = ⟨0|L |0⟩ , for all L ∈ A(O). (4.4)

Remark. We immediately note that the set of strictly localized mixed states
is closed under convex superpositions. This is in contrast to strictly localized
pure states (Theorem 4.1.2).

Following Axioms 1 - 3, we extend the notion of a Licht operator to a
Licht map for mixed states.

Definition 4.3.2. A quantum operation W with corresponding
operators {Wi}, is called a Licht map localized outside O if
∑

i

W †
i Wi = 1 and [Wi, L] = 0 for all i and every L ∈ A(O). (4.5)

Remark. Note that this is a valid quantum operation as it satisfies
Theorem 2.3.2.

From Definition 4.3.2, we observe that W †
i Wi ∝ 1 implies that Wi is

a scaled Licht operator. Hence, Wi would generate non-normalized strictly
localized states from the vacuum. This means that we recover every mixed
state generated by an ensemble of strictly localized pure states. However, we
expect more strictly localized mixed states than the ones generated by mixes
of strictly localized pure states. This is because W †

i Wi does not need to be
proportional to the identity. We demonstrate this further down.

The following theorem gives us an equivalent description of Defini-
tion 4.3.2:

Theorem 4.3.1. A quantum operation W described by a sequence of
operators {Wi} is a Licht map localized outside O if and only if

∑

i

W †
i LWi = L, for all L ∈ A(O). (4.6)

Proof. The necessity follows readily. Let W be a Licht map with
corresponding operators {Wi}, then

∑
iW

†
i LWi =

∑
iW

†
i WiL = L. Next

we will prove the sufficiency. Let {Wi} be an ensemble of operators that
satisfy

∑
iW

†
i LWi = L. From L = 1 we recover

∑
iW

†
i Wi = 1. Therefore, it

remains to show that each Wi commutes with all L ∈ A(O). By assumption,
we get

∑

i

W †
i LWi =

∑

i

W †
i [L,Wi] + L =

∑

i

[W †
i , L]Wi + L = L, (4.7)
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which implies
∑

i

W †
i [L,Wi] =

∑

i

[W †
i , L]Wi = 0. (4.8)

Moreover, we can calculate
∑

i

W †
i L

†LWi

=
∑

i

(
[W †

i , L
†][L,Wi] + [W †

i , L
†]WiL+ L†W †

i [L,Wi]
)
+ L†L

=L†L

(4.9)

which by inserting (4.8) gives
∑

i

[L,Wi]
†[L,Wi] = 0. (4.10)

Since this is a sum of positive operators, we must demand that the
commutator is zero for all i, concluding the proof.

Similar to Licht operators, the Licht maps generate strictly localized
mixed states from the vacuum and is illustrated in the following theorem:

Theorem 4.3.2. Let W be a Licht map localized outside O. Then

ρ =W (|0⟩ ⟨0|) (4.11)

is strictly localized outside O.

Proof. For all L ∈ A(O), we have [L,Wi] = 0 by definition. Using this, the
proof is straightforward: Let ρ =W (|0⟩ ⟨0|), then

tr(Lρ) =
∑

i

tr
(
LWi |0⟩ ⟨0|W †

i

)
=
∑

i

tr
(
W †

i WiL |0⟩ ⟨0|
)

= tr

(∑

i

W †
i Wi

︸ ︷︷ ︸
1

L |0⟩ ⟨0|
)

= ⟨0|L |0⟩ . (4.12)

Hence, W generates a strictly localized mixed state from the vacuum.

We want to fully extend Theorem 4.1.1 and show that any strictly
localized mixed state can be generated by using a Licht map on the vacuum.
To do that, we will need the following theorem:

Theorem 4.3.3. Assume H0 is a dense subspace of H. Let L0 be a
bounded operator on H0. Then L0 extends uniquely to an operator L
on H. It satisfies ∥L0∥ = ∥L∥.
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Remark. The full proof requires a lot of mathematical details and can be
found for Banach spaces here [Ped89].3 However, it is worth mentioning how
one extends L0: Let |ψ⟩ ∈ H, and {|ψn⟩} be a sequence in H0 converging to
|ψ⟩. Then L is defined as L |ψ⟩ := limn L0 |ψn⟩. This definition works due
to the continuous nature of bounded operators.

With Theorem 4.3.3, we are ready to prove existence:

Theorem 4.3.4. For all mixed states ρ strictly localized outside O,
there exists a Licht map localized outside O that generates ρ from the
vacuum

W (|0⟩ ⟨0|) =
∑

i

Wi |0⟩ ⟨0|W †
i = ρ. (4.13)

Proof. Let ρ be strictly localized outside O, written in diagonal form:

ρ =
∑

i

pi |i⟩ ⟨i| . (4.14)

Define H0 := A(O) |0⟩. From the Reeh-Schlieder theorem (Theorem 2.2.2)
we have that H0 is dense in H. Let |ϕ⟩ be any state in H0 and Lϕ ∈ A(O)
such that Lϕ |0⟩ = |ϕ⟩. Define the map

Ψi(|ϕ⟩) =
√
piLϕ |i⟩ . (4.15)

We need to check that this map is well-defined. Let Ψ′
i be a different map

defined in terms of another L′
ϕ ∈ A(O):

∥∥Ψi(|ϕ⟩)−Ψ′
i(|ϕ⟩)

∥∥2 = pi
∥∥(Lϕ − L′

ϕ) |i⟩
∥∥2 = 0. (4.16)

The second equality follows from Theorem 2.2.3.4 Hence, we have that the
map is well-defined. Theorem 2.2.3 also implies linearity

Ψi(α |ϕ1⟩+ β |ϕ2⟩) =
√
piLαϕ1+βϕ2 |i⟩

=
√
pi(αLϕ1 + βLϕ2) |i⟩

= αΨi(|ϕ1⟩) + βΨi(|ϕ2⟩).
(4.17)

Hence, Ψi defines a unique operator W̃i on H0:

W̃i |ϕ⟩ := Ψi(|ϕ⟩). (4.18)

Using strict locality, we demonstrate that W̃i is bounded:
∥∥∥W̃i |ϕ⟩

∥∥∥
2
= ∥√piLϕ |i⟩∥2

= ∥Lϕ |0⟩∥2 −
∑

k ̸=i

∥√pkLϕ |k⟩∥2

≤ ∥Lϕ |0⟩∥2 = ∥|ϕ⟩∥2.

(4.19)

3A Hilbert space is a Banach space by definition.
4Specifically, Theorem 2.2.3 implies Lϕ = L′

ϕ.
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Since W̃i is bounded on a dense subspace, by Theorem 4.3.3, it extends
uniquely to a operator Wi defined on the entire Hilbert space H.

Next we check the sequence of operators {Wi} against condition (4.6).
We do this by calculating its matrix elements. Any dense subspace contains
at least one basis [Mer86]. Let {|j⟩} denote a basis of H, consisting of states
in H0. Then we get that

⟨j|
∑

i

W †
i LWi

∣∣j′
〉
=
∑

i

⟨j| W̃iLW̃i

∣∣j′
〉

=
∑

i

pi ⟨i|LjLLj′ |i⟩

= ⟨0|LjLLj′ |0⟩ = ⟨j|L
∣∣j′
〉
.

(4.20)

In other words, the sequence {Wi} defines a Licht map:

W (|0⟩ ⟨0|) =
∑

i

Wi |0⟩ ⟨0|W †
i = ρ, (4.21)

concluding the proof.

Introducing this new formalism would be unnecessary if mixes of strictly
localized pure states could generate the entire space of strictly localized
mixed states. However, that is not the case, and to demonstrate this we
will need a couple of results:

Proposition 4.3.1. Let W be a possibly unbounded operator on
A(O) |0⟩ satisfying [W,L] = 0 for all L ∈ A(O). Then W |0⟩ is strictly
localized outside O if and only if W †W = 1.

Remark. In other words, for an operator W that commutes with all
operators L ∈ A(O), we have that W |0⟩ is strictly localized outside O if
and only if W is a Licht operator.

Proof. Sufficiency follows readily. Let W be an isometry and commute with
all operators L ∈ A(O). Then W satisfies Theorem 4.1.1 and generates
a strictly localized state from the vacuum, localized outside O. Next we
prove necessity. Let W commute with all operators L ∈ A(O) and generate
a strictly localized state from the vacuum. We can calculate the matrix
elements of W †W using operators Li ∈ A(O),

(W †W )ij = ⟨0|L†
iW

†WLj |0⟩ . (4.22)

Since [Li,W ] = 0 for all i, we get that

[L†
i ,W

†] = [W,Li]
† = 0 for all i. (4.23)

Hence, eq. (4.22) reduces to

(W †W )ij = ⟨0|W †L†
iLjW |0⟩ = ⟨0|L†

iLj |0⟩ = δij . (4.24)

In the second equality we used that W generates strictly localized states
from the vacuum. However, this demonstrates W †W = 1, concluding the
proof.
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Proposition 4.3.2. Let ρ be strictly localized outside O. Furthermore,
let the Licht map defined by the operators {Wi} generate ρ from the
vacuum:

ρ =
∑

i

Wi |0⟩ ⟨0|W †
i =

∑

i

qi |gi⟩ ⟨gi| . (4.25)

Then ρ has a representation consisting of strictly localized states |ψi⟩

ρ =
∑

i

pi |ψi⟩ ⟨ψi| , (4.26)

if and only if there exists a partially isometric operator U such that

W̃i =
∑

j

u∗ijWi, where u∗ij = ⟨gi|U |gj⟩∗ , (4.27)

satisfies W̃ †
i W̃i ∝ 1.

Remark. Note that this is a criterion for when strictly localized mixed are
expressible as a mixture of strictly localized pure states.

Proof. From Theorem 2.3.1 we have that
∑

i

pi |ψi⟩ ⟨ψi| (4.28)

is an alternative representation of ρ if and only if there exists a partially
isometric operator U such that

√
pi |ψi⟩ =

∑

j

u∗ijWi |0⟩ , where u∗ij = ⟨gi|U |gj⟩∗ . (4.29)

First, we will demonstrate that

W̃i :=
∑

j

u∗ijWi (4.30)

is a valid operator. Let |ϕ⟩ ∈ H0 := A(O) |0⟩ and L ∈ A(O) such that
L |0⟩ = |ϕ⟩. Then

lim
N→∞

N∑

j=1

u∗ijWi |ϕ⟩ = L lim
N→∞

N∑

j=1

u∗ijWi |0⟩ =
√
piL |ψi⟩ , (4.31)

where L commutes with the limit because it is bounded [Ped89]. From
Theorem 2.2.3 we have that L is the only operator in A(O) that generates
|ϕ⟩ from vacuum, which implies well-definedness. Hence, the W̃i defined in
terms of eq. (4.30) is a valid operator on H0. Furthermore, W̃i commutes
with all L ∈ A(O) since the Wis do. From Proposition 4.3.1 W̃i generates
non-normalized strictly localized states if and only if it is a Licht operator,
concluding the proof.
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With the two previous results, we are ready to show that the extension
from strictly localized pure states is non-trivial. In particular, the following
theorem demonstrates that not every strictly localized mixed state can be
expressed as a mix of strictly localized pure states.

Theorem 4.3.5. Let ρ be a strictly localized mixed state, localized
outside O. Then there does not necessarily exist a representation
ρ =

∑
i pi |ψi⟩ ⟨ψi|, where for all i, |ψi⟩ is strictly localized outside

O.

Proof. We prove this with an example. Let W1 and W2 commute with all
operators L ∈ A(O), and satisfy

W †
1W1 +W †

2W2 = 1. (4.32)

Then the quantum operation defined by W1 and W2 is a valid Licht map,
and the mixed state

ρ =W1 |0⟩ ⟨0|W †
1 +W2 |0⟩ ⟨0|W †

2 (4.33)

is strictly localized outside O. Furthermore, since the range of ρ is finite, we
have from Theorem 2.3.1 that

ρ = W̃1 |0⟩ ⟨0| W̃ †
1 + W̃2 |0⟩ ⟨0| W̃ †

2 (4.34)

is another representation of ρ if and only if
(
W̃1

W̃2

)
=

(
a b

−eiϕb∗ eiϕa∗

)(
W1

W2

)
, |a|2 + |b|2 = 1. (4.35)

Here the matrix is just an arbitrary 2 × 2 unitary matrix. By Proposi-
tion 4.3.2, the decomposition (4.34) consists of strictly localized states if and
only if W̃ †

i W̃i is proportional to the identity. We note that if W̃ †
1W̃1 ∝ 1,

then we also have that W̃ †
2W̃2 ∝ 1. This follows from

W̃ †
1W̃1 + W̃ †

2W̃2 =W †
1W1 +W †

2W2 = 1. (4.36)

In other words, if W̃1 generates a non-normalized strictly local state, then
W̃2 also does.

To reiterate, we want to demonstrate that there exists two operators W1

and W2, such that the operator

W̃1 = aW1 + bW2 (4.37)

cannot generate non-normalized strictly local states from the vacuum. In
other words, it satisfies

W̃ †
1W̃1 = |a|2W †

1W1 + |b|2W †
2W2 + 2Re

{
a∗bW †

1W2

}
̸∝ 1, (4.38)
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for all a, b. Here Re(·) denotes the real part of an operator.5 If both W1

and W2 are hermitian, then we can readily set the term Re
{
a∗bW †

1W2

}
to

zero by making a∗b purely imaginary.6 Then we can easily make W̃ †
1W̃1 ∝ 1,

by setting |a|2 = |b|2 = 1/2. Hence, we need to evaluate a slightly more
complicated example. After having little success with complex polynomials
of hermitian operators, we found an example by using a normal operator.7

LetW1 be a normal operator that commutes with all operators L ∈ A(O),
and have the representation:

W1 =
∑

i

αi |i⟩ ⟨i| . (4.39)

Furthermore, let us assume W1 has at least four distinct eigenvalues |αi| ≤
1.8 We will explicitly create such an operator later in the proof. We can
define W2 as the self-adjoint operator:

W2 =
∑

i

√
1− |αi|2 |i⟩ ⟨i| . (4.40)

Then we have that

W †
1W1 +W †

2W2 =W †
1W1 +W 2

2 = 1, (4.41)

and the map defined by W1 and W2 is a valid Licht map. For W̃1 =
aW1 + bW2 we get that

W̃ †
1W̃1

= |a|2W †
1W1 + |b|2W †

2W2 + 2Re
{
a∗bW †

1W2

}

=
∑

i

[
|a|2|αi|2 + |b|2(1− |αi|2) + 2

√
1− |αi|2Re{a∗bα∗

i }
]
|i⟩ ⟨i| (4.42)

=
∑

i

[
|b|2 + (1− 2|b|2)|αi|2 + 2

√
1− |αi|2|b|

√
1− |b|2Re

{
eiγα∗

i

}]
|i⟩ ⟨i| .

In the last equality we used that |a|2 + |b|2 = 1 and defined γ as the relative
phase between a and b. Stating that W̃ †

1W̃1 ∝ 1 is equivalent to saying

|b|2 + (1− 2|b|2)|αi|2 + 2

√
1− |αi|2|b|

√
1− |b|2Re

{
eiγα∗

i

}
= C, (4.43)

for all i, where C is some constant.
Since we only have three degrees of freedom — the constant C, γ and |b|

— we cannot necessarily compensate for four unique αis. To illustrate this,
let us give an example. Without loss of generality, assume i = 1, 2, 3, 4 are

5For a bounded operator A, its real part is defined as Re{A} := (A+A†)/2.
6To see this, one also has to recognize that W1 and W2 being hermitian, implies that

they commute. This follows from W 2
1 +W 2

2 = 1.
7A normal operator commutes with its hermitian conjugate (A†A = AA†).
8This guarantees ∥W2∥ ≤ 1.
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the indices for which the αis are unique. Then α1 = 0 fixes the constant
C = |b|2, and α2 = 1 yields |b| = 1/

√
2. Inserting this back into eq. (4.43)

we get
√
1− |αi|2Re

{
eiγα∗

i

}
= 0, (4.44)

for all i. By fixing α3 = 1/2 and α4 = iα3 we see that this equation cannot
hold for a fixed γ. Hence, we have found an example.

It remains to demonstrate existence. In Section 4.4 we give an explicit
example in the quantum-optics formalism. However, we want to argue
that examples exist in an arbitrary QFT. To do that, we must make some
assumptions about the operators in local algebras. Arguably, the simplest
possible measurements are yes-no outcomes. Hence, we assume local algebras
contain non-trivial orthogonal projections.9 Also, we demand that someone
performing experiments in one spacetime region, is not equivalent to the
same experiment performed in another that is causally disjoint from the
original region.10 These assumptions are enough to create an example like
the above.

Without further ado, here is the argument: Choose O and three regions
Oi=1,2,3 such that they are all causally disjoint from each other. Then we
have that

[A(O),A(Oi)] = 0 for all i, and [A(Oi),A(Oj)] = 0 for i ̸= j. (4.45)

Take an observable in the theory represented by a non-trivial orthogonal
projection. This observable would represent some yes-no experiment. In
each region Oi, one has a projection operator Pi ∈ A(Oi) representing the
observable.11 Orthogonal projections are diagonalizable [Ped89]. Also, since
[Pi, Pj ] = 0 for all i and j implies compatibility, they can be diagonalized in
the same basis:

Pi =
∑

j

χAi(j) |j⟩ ⟨j| , (4.46)

where χ is the indicator function (3.30) and Ai is some subset of N. Define
the operator W ′ as:

W ′ =
3∑

i=1

qiPi =
∑

j

cj |j⟩ ⟨j| , qi ∈ [0,∞) and cj =
3∑

i=1

qiχAi(j). (4.47)

We argue that with proper choices of qis, W ′ will have at least four unique
cjs. To see this, we can evaluate what happens iteratively:

• q1χA1(j): This function has the domain {0, q1} and follows from P1

being non-trivial. If the domain was {q1} or {0}, then this would imply
χA1 = 1 or = 0 respectively, and make P1 = 1 or = 0 respectively.

9Orthogonal projections satisfy P † = P = P 2.
10We say two regions are causally disjoint if there is no light- or time-like path linking

them.
11Orthogonal projections do not generally commute. By introducing three space-like

separated regions, we guarantee that they commute.
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• q1χA1(j) + q2χA2(j): By assumption we have that P2 ̸= P1, 1 −
P1. Otherwise, P2 would be the same operator as P1, but with a
changed label of measurement outcome. This scenario contradicts the
assumption that measurements in space-like separated regions are not
equivalent. These assumptions are enough to generate at least three
unique outputs. To see this, one has to recognize that q2 has to appear
in the domain somehow. If we were to have two outputs, this could
happen in one of three ways: {0, q1 + q2}, {q2, q1} or {q2, q1 + q2}.
However, either scenario would imply A1 = A2, A1∪A2 = N or A2 = N
respectively, which contradicts our previous assumptions.

• cj = q1χA1(j) + q2χA2(j) + q3χA3(j): Similar to above, we have that
P3 cannot be equal any of the other projections, products/sums of the
other projections or the identity minus any of the possibilities listed.
Otherwise, this would mean that measuring in region three would be
equivalent to measuring in the two other regions. It turns out that
this is enough to guarantee that cj has at least four distinct values for
different js. To see this, we use a similar trick as above. The function
q1χA1(j) + q2χA2(j) has at least three different values in its domain,
say {a1, a2, a3}. We must demand that q3 appear in the domain of cj
somehow. If cj only has three distinct values in its domain, that can
happen in three non-equivalent ways:

1. {a1 + q3, a2, a3}
2. {a1 + q3, a2 + q3, a3}
3. {a1 + q3, a2 + q3, a3 + q3}

The third scenario would imply P3 = 1. Also, the first and second
scenario is equivalent in the sense that if P3 yields the first scenario,
then 1−P3 produces the second. Hence, it is sufficient to demonstrate
that the first or second scenario is impossible, given the assumptions.
Looking at the first scenario, we see that this would correspond to P3

being one of the possibilities {P1, P2, P1P2, 1 − P1, 1 − P2, 1 − P1 −
P2,±(P2 − P1)}. The easiest way to see this is by taking the case
where zero is and is not in the spectrum {a1, a2, a3}. All the scenarios
mentioned above are not allowed by assumption. Hence, we can make
the spectrum contain at least four unique cjs.

The rest of the proof follows from functional analysis. We observe that
W ′ is normal and an element in the local algebra A(∪iOi). This means
that W ′ commutes with all operators L ∈ A(O). We can use continuous
functional analysis for normal operators [Ped89]: Given a function f that is
continuous on the spectrum of W ′, we have that f(W ′) ∈ A(∪iOi). Hence,
let f be such that

f(W ′) =
∑

j

f(cj) |j⟩ ⟨j| =
∑

j

αj |j⟩ ⟨j| =W1. (4.48)

The function f could for example be a complex-valued polynomial that
interpolates the desired values, concluding the proof.
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Theorem 4.3.5 can have physical significance. Assume we have an on-
demand source that generates some mixed state. Since the source is on-
demand, the resulting state should be strictly localized. We can have two
perspectives:

1. Though the resulting state is unknown — whatever it is — we can
assume it to be pure and strictly localized.

2. We cannot make assumptions about the pure states, only that the
resulting mixed state is strictly localized.

The first perspective would correspond to a mix of strictly localized pure
states, while the second would be any strictly localized mixed state. By
Theorem 4.3.5, we know that the two perspectives are different.

Both perspectives can be correct and depend on the context. For
example, if there is no entanglement between the environment and the
instrument, then whatever state we generate should be pure and strictly
localized. Hence, a suitable representation would be a mix of strictly
localized pure states. On the other hand, assume there is entanglement
with the environment, then by doing a partial trace over the environment,
we would be left with a strictly localized mixed state — see, for instance,
this article [GS21b]. In this case, we cannot require that the mixed state
consists of strictly localized pure states, as we have an effective state and
not the “entire” state.

4.3.1 Notes on Licht’s result

As mentioned, there is an overlap between the work presented in Section 4.3
and this article [Lic66] by A. L. Licht.12 This subsection aims to point out
what Licht has already covered and briefly relate the different formalisms
used. Relating the formalisms is the most challenging part. In particular,
Licht did not formulate his findings through quantum operations. Also, he
did not express states as mixed states, but rather as sequences of operators
in a local algebra on a given background.13 In hindsight, these sequences of
operators — which he often refers to as states — are similar to what we call
quantum operations. Because of this, we argue that the overlap still brings
value, as it is an existing theory presented in a more modern formalism.
In addition, the proofs presented in the previous section are different from
Licht’s proofs.

Licht discusses the effects that different backgrounds have, which we
have not done. It seems that the different backgrounds could be encoded
into the initial state in our formalism. Hence, what he refers to as a uniform
background, is |0⟩ ⟨0| as the initial state in our formalism. Furthermore, he

12We would like to emphasize that the work done in Section 4.3 was completely
independent of Licht’s article. We derived and proved the formalism before we discovered
the content of Licht’s article. The reason we did not notice it before was because Licht
did not utilize the same formalism as us, namely mixed states and quantum operations.

13This might not be surprising, as the earliest source we could find on the quantum
operation formalism that resembles the one presented here, was introduced by Kraus and
Hellwig in 1969. That was after Licht published his results in 1966.
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has a notion of selective and non-selective states, which characterize how one
can average different experimental trials. Again, that seems to be encoded
in the quantum operation formalism. The quantum operation described by
{Ei} is called selective and non-selective if

∑
iE

†
iEi < 1 and = 1 respectively.

The primary overlap seems to be: The extension of strict locality to
mixed states (Definition 4.3.1), that Licht maps generate strictly localized
states (Theorem 4.3.2) and that one can generate the strictly localized states
by using Licht maps (Theorem 4.3.4). Specifically, Licht points out that non-
selective states on a uniform background will be strictly localized. This is
similar to Theorem 4.3.2, as he only treats states prepared by operators in
a local algebra. Following this, he has a theorem which characterizes how
strictly localized states can be generated from vacuum, which is similar to
Theorem 4.3.4.14 He also has a generalization of Theorem 4.3.4 to arbitrary
backgrounds; however, it does not seem related to strict locality.

4.4 Strictly Localized Mixed State Consisting of
Non-Local States

In this section, we will explicitly create an example of a strictly localized
mixed state that cannot be transformed to consist of strictly localized pure
states. In other words, we will demonstrate Theorem 4.3.5 in the quantum-
optics formalism. Specifically, we will show that there exist four commuting
projections that also commute with observables outside some localization
region. Using those projections, we can follow the proof of Theorem 4.3.5
to create a strictly localized mixed state that does not have a representation
consisting of strictly localized pure states.

Let O be an open and bounded region in time. Also, let f be a function
with compact support in another bounded open region O′ ⊂ OC .15 By
Definition 2.2.2, we can smear the field using f to create a local operator
with localization region O′:

Ef =

∫ ∞

−∞
dt f(t)

∫ ∞

0
dω E(ω)a(ω)e−iωt + h.c.

=

∫ ∞

0
dω F (−ω)E(ω)a(ω) + h.c. =: af + a†f ,

(4.49)

where F (ω) is the Fourier transform of f(t). Since Ef is unbounded, we must
bound the spectrum to make it a part of the local algebra A(O′). One way
of doing this is finding the spectral decomposition of Ef and then modifying
the spectrum using a bounded function. Finding the spectral decomposition
of Ef can be difficult; however, we can utilize a trick. The operator Ef is
proportional to one of the quadrature operators, which in turn is isomorphic

14We raise this opportunity to point out a mistake in Licht’s version of Theorem 4.3.4.
Specifically, one should replace the bounded linear operators with the local algebra
corresponding to the spacetime region causally disjoint from α.

15Here AC denotes the complement of A.
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to the position operator in the harmonic oscillator

Ef =
√
2Xf , Xf =

1√
2
(af + a†f ). (4.50)

Hence, following [SM13] we can write down the eigenstates of Xf :

|Xf ⟩ =
e−X2/2

π1/4
e

a
†
f

2

2
+
√
2Xa†f |0⟩ = e−X2/2

π1/4

∞∑

n=0

Hn(X)

2n/2n!
a†

n |0⟩ , (4.51)

whereHn(X) are the Hermite functions. Using the Rodrigues representation,
we can write down the Hermite functions [AW05]:

Hn(X) = (−1)neX
2 dn

dXn
e−X2

. (4.52)

We emphasize that the states |Xf ⟩ are neither physical nor elements in
H. Like operator-valued distributions, they are a practical notational device
which only makes sense under integration. Hence, the following expressions
and manipulations are purely formal.16 Analogous to the position eigenstates
in non-relativistic quantum mechanics, we demand completeness and Dirac
orthonormality:

∫
dX |Xf ⟩ ⟨Xf | = 1,

〈
Xf

∣∣X ′
f

〉
= δ(X −X ′). (4.53)

The states |Xf ⟩ are also eigenstates of Ef , with eigenvalues X ∈ R.
Because of this, the spectral decomposition of Ef is

Ef =
√
2

∫ ∞

−∞
dX X |Xf ⟩ ⟨Xf | . (4.54)

Using the Sigmoid function (σ), we can make the spectrum bounded

σ(Ef ) =

∫ ∞

−∞
dX σ(

√
2X) |Xf ⟩ ⟨Xf | . (4.55)

Since σ(R) = (−1, 1), we get that σ(Ef ) has operator norm equal to one
and from Definition 2.2.3, an element in A(O′). More importantly, σ(Ef )
commutes with all operators in A(O).

The next step is to create four unique orthogonal projections that
commute with each other and all L ∈ A(O). Using spectral theory with
Borel functional calculus [Ped89], this is easy. Take four Ai’s that are open
and disjoint subsets of (−1, 1). Furthermore, define

Pi := χAi(σ(Ef )), (4.56)

where χ is the indicator function (3.30). Although the Pis are not necessarily
in A(O′), Borel functional calculus guarantees that the Pis commute with

16This does not mean that the following treatment is not rigorous. By introducing
spectral measures, one can make the same arguments.
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all operators that commute with σ(Ef ).17 In other words, Pi commute with
all operators in A(O). The fact that the different Pis are unique follows
from the Ais being disjoint. Also, since their eigenvalues are real, they are
self-adjoint (P †

i = Pi). Hence, it remains to show that they are projections
(P 2

i = Pi) and that they commute. We begin by demonstrating that they
are projections:

P 2
i =

∫ ∞

−∞
dX

∫ ∞

−∞
dX ′ χAi(σ(

√
2X))χAi(σ(

√
2X ′))δ(X ′ −X) |Xf ⟩

〈
X ′

f

∣∣

=

∫ ∞

−∞
dX χAi(σ(

√
2X))2 |Xf ⟩ ⟨Xf | = Pi. (4.57)

In the last equality we used that χ2
A = χA. Last but not least, since the Ais

are disjoint, we have that χAiχAj = 0 for i ̸= j, which implies that PiPj = 0
for i ̸= j, hence [Pi, Pj ] = 0 for all i, j. As in the proof of Theorem 4.3.5 (the
part after eq. (4.43)), we can define the Licht map generated by

W1 = q1P1 + q2P2 + q3P3 + q4P4 and W2 =

√
1−W †

1W1, (4.58)

where q1 = 0, q2 = 1, q3 = 1/2 and q4 = iq3. This map generates a strictly
localized mixed state from the vacuum, localized outside of O, and cannot
be written in terms of strictly localized pure states.

We can determine the states generated by using W1 and W2 on the
vacuum. First, we have to simplify how we represent the projections. We
begin by observing that

Pi =

∫ ∞

−∞
dX χAi(σ(

√
2X)) |Xf ⟩ ⟨Xf |

=

∫

Bi

dX |Xf ⟩ ⟨Xf | ,
(4.59)

where

Bi := {x ∈ R : σ(
√
2x) ∈ Ai}. (4.60)

From eq. (4.51) we get that

⟨Xf |0⟩ =
e−X2/2

π1/4
. (4.61)

This gives us

Pi |0⟩ =
∫

Bi

dX
e−X2/2

π1/4
|Xf ⟩ . (4.62)

Because σ is injective — or more generally bijective — we have that the Bis
are disjoint. Hence, we get the following representation of W1 acting on the
vacuum:

W1 |0⟩ =
∫ ∞

−∞
g(X)

e−X2/2

π1/4
|Xf ⟩ , (4.63)

17This is because the indicator functions are non-continuous.
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where

g(X) =

{
qi for X ∈ Bi,

0 otherwise.
(4.64)

A similar calculation for W2 — using the completeness relation (4.53) —
yields

W2 |0⟩ =
∫ ∞

−∞
dX

√
1− |g(X)|2 e

−X2/2

π1/4
|Xf ⟩ . (4.65)

We have no physical interpretation of the states (4.63) and (4.65).
However, the reader might have better intuition, so we write them down.
Even still, we have demonstrated Theorem 4.3.5 with an explicit example in
quantum optics.

4.5 Strictly Localized Mixed State Close to Photon

This section will be a continuation of Section 3.2. In particular, we will
attempt to create a strictly localized mixed state close to a single photon.
As in Section 3.2, we will try to localize the state to positive times (t > 0),
and could be generated by some on-demand source at t = 0.

Let O denote any bounded open subset of t < 0, and O′ be a bounded
open subset of t > 0. Ideally, we want to construct a mixed state consisting
of a single photon and compensate by using some other state:18

ρ = α |1⟩ ⟨1|+ β |ψ⟩ ⟨ψ| . (4.66)

It is not evident that such a state exists. We would need an operator W1

that commutes with A(O) for all O, has operator norm less than or equal
to one, and satisfy W1 |0⟩ =

√
α |1⟩. From Theorem 2.2.2 we know that we

can get arbitrary close by using operators in A(O′).19 However, we want an
exact match.

We have not been able to create such an operator nor show that it exists.
Because of this, we will create something similar. For an f with compact
support in O′ we can create a local operator similar to eq. (4.49):

Ef = af + a†f =
√
2

∫ ∞

−∞
dX X |Xf ⟩ ⟨Xf | , (4.67)

where the second equality is from eq. (4.54). This will be a local operator —
localized to the region O′ — and creates a single photon from the vacuum.
We need this operator to satisfy ∥Ef∥ ≤ 1. We can easily make spectrum
bounded by using functional calculus (like we did in Section 4.4). The
following are the most obvious candidates:

Ef (b) =

∫ b

−b
dX

√
2X |Xf ⟩ ⟨Xf | and (4.68a)

σ(Ef ) =

∫ ∞

−∞
dX σ(

√
2X) |Xf ⟩ ⟨Xf | . (4.68b)

18In Section 3.2 we compensated by using a squeezed vacuum state.
19Although we might not have control over α.
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The operator Ef (b) will satisfy ∥Ef (b)∥ =
√
2b, and ∥σ(Ef )∥ = 1. In

addition, both will commute with A(O) for all O. However, since the
operators have a modified spectrum with respect to Ef , they will generate
non-normalized states. The idea is that the operators can still be used to
generate strictly localized mixed states close to the desired photon.

Let us start by investigating the Licht map we can generate from Ef (b) as
defined in eq. (4.68a). For the following, we will denote Ef (b) |0⟩ = |1f (b)⟩,
which is non-normalized. We can calculate how close |1f (b)⟩ is to the desired
photon Ef |0⟩ = |1f ⟩. To gauge closeness, we use the so-called fidelity
measure. The general definition is (following the convention in [NC00])

F (ρ, σ) = tr

[√
ρ1/2σρ1/2

]
, (4.69)

where ρ and σ are mixed states. We will only need to measure the closeness
between mixed and pure states. For σ = |ψ⟩ ⟨ψ|, we get that eq. (4.69)
reduces to

F (ρ, |ψ⟩) =
√

⟨ψ| ρ |ψ⟩. (4.70)

Hence, by eq. (4.70), the fidelity between |1f ⟩ and |1f (b)⟩ is

F (|1f (b)⟩ , |1f ⟩) = |⟨1f (b)|1f ⟩|

=

∣∣∣∣2
∫ b

−b

∫ ∞

−∞
dX dX ′XX ′ ⟨0|Xf ⟩

〈
Xf

∣∣X ′
f

〉 〈
X ′

f

∣∣0
〉∣∣∣∣

= 2

∫ b

−b
dX X2|⟨0|Xf ⟩|2

= ⟨1f (b)|1f (b)⟩ .

(4.71)

From eq. (4.71), we see that the fidelity between |1f ⟩ and the re-normalized
state |1f (b)⟩ /∥|1f (b)⟩∥ is

√
⟨1f (b)|1f (b)⟩, which we plot below.

We want to create a strictly localized mixed state containing |1f (b)⟩.
Define W1 = Ef (b) and

W2 =
√
1−W 2

1 . (4.72)

Then we have that

W †
1W1 +W †

2W2 =W 2
1 +W 2

2 = 1, (4.73)

and

[Wi,A(O)] = 0 for all O and i. (4.74)

The above implies that W1 and W2 defines a Licht map, and the mixed state

ρ =W1 |0⟩ ⟨0|W1 +W2 |0⟩ ⟨0|W2 (4.75)

defines a strictly localized state, localized outside t < 0.
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Now, we want to find the fidelity between ρ and |1f ⟩. By using the
completeness relation (4.53), we can give an explicit representation of W2:

W2 =

∫ ∞

−∞
dX

√
1− 2X2χ[−b,b](X) |Xf ⟩ ⟨Xf | , (4.76)

where χ is the indicator function (3.30). Inserting for eq. (4.70), we can
calculate the fidelity between ρ and |1f ⟩:

F (ρ, |1f ⟩) =
√
⟨1f | ρ |1f ⟩

=

√
|⟨1f |W1 |0⟩|2 + |⟨1f |W2 |0⟩|2.

(4.77)

If we use the representation defined by eq. (4.76), then it is easy to show
that the second addend is zero.20 Hence, inserting for eq. (4.71), we get that

F (ρ, |1f ⟩) = F (|1f (b)⟩ , |1f ⟩) = ⟨1f (b)|1f (b)⟩ . (4.78)

By using eq. (4.61) we can evaluate the inner product

⟨1f (b)|1f (b)⟩ = 2

∫ b

−b
dX X2 e

−X2

√
π

= erf(b)− 2b√
π
e−b2 .

(4.79)

Here erf(·) denotes the error function.
In Figure 4.1, we have plotted the different fidelities as a function of b.

The vertical line denotes the maximum possible b, as we have to demand
∥Wi∥ ≤ 1 for all i. We observe that the maximal fidelity between ρ and
|1f ⟩ is ∼ 0.2, even though the fidelity between the re-normalized state
|1f (b)⟩ /∥|1f (b)⟩∥ and |1f ⟩ can be made arbitrarily close to 1. By going
through the same procedure, with Ef (b) 7→ σ(Ef ) as defined by eq. (4.68b),
we end up with a the same fidelity, F (ρ, |1f ⟩) ≈ 0.2.

In [GS21a], J. Gulla and J. Skaar achieved a fidelity arbitrarily close to 1
for specific photon pulses by using strictly localized pure states. That is is a
much higher fidelity than what we achieved. The key to achieving a higher
fidelity might be to find strictly localized mixed states of the form (4.66).
Also, we could maybe get a higher fidelity if we were to compare ρ to other
photon pulses.

20The integrand will be odd.
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Figure 4.1: In this figure, we have plotted the different fidelities, with
different b-values on the x-axis and fidelity on the y-axis. The vertical line
represents the maximum b-value that satisfies ∥Ef (b)∥ ≤ 1. The blue graph
is the fidelity between the mixed state ρ that contains |1f (b)⟩ and the pure
state |1f ⟩. We have also plotted

√
⟨1f (b)|1f (b)⟩, which represent the fidelity

between the normalized state |1f (b)⟩ /∥|1f (b)⟩∥ and |1f ⟩.
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Chapter 5

Epilogue

In this chapter, we discuss some of the results and give some concluding
remarks (Section 5.1). In addition, we list some avenues for further work
that could be interesting (Section 5.2).

5.1 Discussion and Concluding Remarks

We have introduced the concept of strict locality for mixed states
(Definition 4.3.1) and shown that the formalism for strictly localized pure
states extends to strictly localized mixed states in a non-trivial way.
Specifically, we have demonstrated that Licht operators extend to Licht maps
defined by a sequence of operators (Theorem 4.3.4). The defining difference is
that the sequence of operators that define Licht maps need not be isometric.
This is enough to generate a larger set of strictly localized states that include
the set of strictly localized pure states (Theorem 4.3.5); which is why the
extension is non-trivial.

We have discussed, from an experimental point of view, why it is
important to characterize strict locality for mixed states (Section 4.2).
However, it can also be helpful in characterizing the set of strictly localized
pure states as well. In particular, relations could sometimes be easier to
prove in the Licht map formalism, which would reduce to Licht operators in
special cases. Hence, insight into the strictly localized mixed states could
give valuable insight into the set of strictly localized pure states.

The operators that generate the Licht map — and Licht operators — have
some sense of being local because they commute with all operators outside
the localization region. However, we have not determined if the operators
are associated with some algebra inside the localization region. In fact, the
operators do not necessarily belong to any local algebra. This is because
we do not necessarily have Haag duality. Haag duality states that the set
of all bounded operators that commute with A(O) is its own local algebra
associated with the causal complement of O. Duality has been demonstrated
for some QFTs and specific shapes of O. However, not for general QFTs, and
counterexamples can be found for specific shapes of O — see for instance
this note on Haag duality [GP22].

We have investigated explicit examples of the Licht map formalism
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(Section 4.4 and 4.5), but their practical applications still need clarification.
The examples, do however, illustrate how the local algebra formulation of
QFT can be implemented in a relatively simple QFT. More research is needed
to apply the formalism to other QFTs — e.g. charged spinor fields.1

We have characterized how one can generate strictly localized states from
the vacuum through the Licht map formalism. However, this has yet to
yield much insight into the set of strictly localized states themselves. We
demonstrated that the set of strictly localized states is not dense in H
(Proposition 4.2.1); hence there are many interesting questions related to
the structure of strictly localized states. We state some examples in the
subsequent section on further work.

Finally, our study of negative energy density has explicitly displayed how
mixed states can generate local effects (Section 3.2). While the resulting
state may not be strictly localized, we have observed how mixtures of non-
strictly localized states can yield strictly localized mixed states with respect
to certain observables. There might be some connection between negative
energy density and strict locality. As stated, the separating quality of
vacuum (Theorem 2.2.3) — which follows from the Reeh-Schlieder theorem
— implies the presence of negative energy density [Wit18] and is satisfied
by any local algebra formulation of QFT [Ara99]. Hence, there seems to be
some connection between negative energy density and localization; however,
we have yet to describe such a relation.

5.2 Further Work

There is plenty of interesting avenues for further work. The following are
some problems we would like to look at:

• There is a need to further characterize the strictly localized states to
better understand their properties. Although we know that specific
operators can generate strictly localized states from the vacuum, we
still know little about them. For instance, we want to know if
the neighborhood of a strictly localized state also consists of strictly
localized states, or if some strictly localized states are isolated points
in H. The set of strictly localized pure states introduced in [GS21a]
has a parametrization; however, that does not mean that it holds for
all strictly localized pure states.

• A more detailed characterization of strictly localized states can help
us answer other questions related to strict locality. For example, can
we determine the set of strictly localized states close to any single
photon? Also, if a strictly localized state is the superposition of two
states that are not strictly localized, is this superposition fine-tuned?
In other words, does a slight perturbation of the superposition yield a
non-strictly localized state?

1Nils Johannes Mikkelsen has been working on this in his thesis to be submitted to
https://www.duo.uio.no/.
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• We want to determine if the set of strictly localized pure states
forms a basis, which would imply that any state can be written as
a superposition of strictly localized states. This would allow us to
express any state as a sum of Licht operators acting on the vacuum.
To prove this, one could for instance start by looking at the set of
strictly localized coherent states.

• It would be interesting to investigate the set of mixed states generated
by quantum operations consisting of operators in a local algebra.
While a quantum operation can generate any mixed state, that is not
necessarily the case for quantum operations consisting of operators in a
local algebra. The first step here could be to extend Proposition 4.2.1
to the space of mixed states — the proof should extend pretty easily.
Also, since Theorem 4.3.2 implies that the resulting mixed states will
be strictly localized, answering this question would help characterize
the set of strictly localized mixed states.

• The previous item could also help us determine if it is possible to
create a strictly localized mixed state that consists of a single photon
and something else. Although we have tried to create such a state in
Section 4.5, it is unclear if we can obtain an exact match.

• We want to better understand the physical properties of states that we
cannot represent as a mix of strictly localized pure states. This could
help us understand the types of states that we can generate in quantum
field theories. Here, one could start out by exploring the properties of
the state we introduced in Section 4.4.

• Finally, we would like to find more applications of the Licht map
formalism and investigate its use in other QFTs.
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Appendix A

Solving the Free Maxwell’s
Equations in the Coulomb
Gauge

Here, we solve the free Maxwell’s equations in the Coulomb gauge. The
solutions are relevant when we quantize the electromagnetic field. We begin
by writing down Maxwell’s equations in the vacuum, using natural units:

∇ ·E(r, t) = 0, (A.1a)
∇ ·B(r, t) = 0, (A.1b)

∇×E(r, t) = −∂B(r, t)

∂t
, (A.1c)

∇×B(r, t) =
∂E(r, t)

∂t
. (A.1d)

Here E and B is the electric- and magnetic field, respectively.
We can represent the fields in terms of the electric scalar potential ϕ and

magnetic vector potential A through:

E(r, t) = −∇ϕ(r, t)− ∂A(r, t)

∂t
, (A.2a)

B(r, t) = ∇×A(r, t). (A.2b)

Note that these two equations have a gauge invariance. In particular, the
transformations

A → A+∇ψ and ϕ→ ϕ− ∂ψ

∂t
, (A.3)

leave the electric- and magnetic field unchanged.
Now we are ready to solve Maxwell’s equations in the vacuum. Using

the Helmholtz decomposition, we split A into a longitudinal- and transversal
component — in other words, a curl- and divergence-free part. Furthermore,
with the gauge freedom, we can fix ∇·A = 0 (the Coulomb gauge), which sets
the longitudinal component to zero. Since we are after vacuum solutions, we
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also have ϕ = 0. By taking the curl of eq. (A.2b) and inserting for eq. (A.2a)
and (A.1d), we get1

∇2A =
∂2A

∂t2
. (A.4)

This is the wave equation for a vector field, which has well-known solutions
[Tor16]

A(r, t) =

∫

all k-space
d3k E(k)

2∑

l=1

[
al(k)el(k)e

i(k·r−kt) + c.c.
]

(A.5)

Here k = |k|, E is for normalization, and we have used that A is transversal,
A · k = 0, to write it in terms of two orthonormal vectors el.

Inserting eq. (A.5) into eq. (A.2a) and (A.2b) we find expressions for the
E- and B-field:

E(r, t) =

∫

all k-space
d3k E(k)

2∑

l=1

[
al(k)el(k)(ik)e

i(k·r−kt) + c.c.
]
, (A.6)

B(r, t) =

∫

all k-space
d3k E(k)

2∑

l=1

[
al(k)ik× el(k)e

i(k·r−kt) + c.c.
]

(A.7)

Finally, we use the dispersion relation to write k in terms of angular frequency
(k = ω), absorb i into al and k into E to get the familiar form

E(r, t) =

∫

all k-space
d3k E(ω)

2∑

l=1

[
al(k)el(k)e

i(k·r−ωt) + c.c.
]
, (A.8)

B(r, t) =

∫

all k-space
d3k E(ω)

2∑

l=1

[
al(k)k̂× el(k)e

i(k·r−ωt) + c.c.
]

(A.9)

1Noting that ∇× (∇×V) = ∇(∇ ·V)−∇2V.
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