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THE COPULA INFORMATION CRITERIA

STEFFEN GRØNNEBERG AND NILS LID HJORT

Abstract. When estimating parametric copula models by the semiparametric pseudo maximum

likelihood procedure (MPLE), many practitioners have used the Akaike Information Criterion

(AIC) for model selection in spite of the fact that the AIC formula has no theoretical basis in

this setting. We adapt the arguments leading to the original AIC formula in the fully parametric

case to the MPLE. This gives a significantly different formula than the AIC, which we name

the Copula Information Criterion (CIC). However, we also show that such a model-selection

procedure cannot exist for a large class of commonly used copula models.

We note that this research report is a revision of a research report dated June 2008. The

current version encorporates corrections of the proof of Theorem 1. The conclusions of the

previous manuscript are still valid, however.

1. Introduction and summary

Suppose given independent, identically distributed d-dimensional observations X1, X2, . . . , Xn

with density f◦(x) and distribution function

F ◦(x) = P (Xi,1 ≤ x1, Xi,2 ≤ x2, . . . Xi,d ≤ xd) = C◦(F ◦⊥(x)).

Here, C◦ is the copula of F ◦ and F ◦⊥ is the vector of marginal distributions of F ◦, that is,

F ◦⊥(x) := (F ◦1 (x1), . . . , F ◦d (xd)), Fi(xj) = P (Xi,j ≤ xj).

Given a parametric copula model expressed through a set of densities c(u, θ) for Θ ⊆ Rp and
u ∈ [0, 1]d, the maximum pseudo likelihood estimator θ̂n, also called the MPLE, is defined as the
minimizer of the pseudo likelihood

`n(θ) :=
n∑
i=1

log c(Fn,⊥(Xi), θ).

The pseudo likelihood is expressed in terms of the so-called pseudo-observations Fn,⊥(Xi) ∈ [0, 1]d,
in which Fn,⊥ is the vector of re-normalized marginal empirical distribution functions

Fn,⊥(x) := (Fn,1(x1), . . . , Fn,d(xd)), where Fn,j(xj) :=
1

n+ 1

n∑
i=1

I{Xi,j ≤ xj}.

The non-standard normalization constant 1/(n + 1) – instead of the classical 1/n – is to avoid
evaluating u 7→ log c(u, θ) at the boundary u ∈ ∂[0, 1]d where most copula models of interest are
infinite.

Many investigations, such as Chen & Fan (2005), use

(1) AIC? = 2`n,max − 2length(θ)
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as a model selection criterion for the MPLE, with `n,max = `n(θ̂) being the maximum pseudo
likelihood. This is inspired from the traditional Akaike information criterion AIC = 2`#n,max −
2length(θ), where `#n,max is the usual maximum likelihood for a fully parametric model. One
computes this AIC? score for each candidate model and in the end chooses the model with highest
score.

This cannot be quite correct, however, as the arguments underlying the derivations of the
traditional AIC do not apply here – since `n(·) at work here is not a proper log-likelihood function
for a model, but a pseudo likelihood, based on the multivariate rank statistics Fn,⊥. In other
words, the AIC? formula above ignores the noise inherent in the transformation step that takes
Xi to Fn,⊥(Xi). Such a formula would be appropriate only if we could use F ◦k (Xi,k) instead of
the pseudo-observations, or if we would model the marginals by a parametric model Fk,γ(k) that
would lead to the classical AIC formula 2`n,max# − 2length(θ)− 2

∑d
k=1 length(γ(k)) where `#n,max

is the standard maximized likelihood.
This paper reconsider the steps leading to the original AIC-formula in the MPLE setting and

derive the appropriate modifications. This leads to the Copula Information Criterion presented
in Section 2. However, we will see that the formula yields infinite values when the copula model
has extreme behaviour near the edge of the unit cube. Such copulae are overwhelmingly more
popular than copulae which are smoother near the edge, making the Copula Information Criterion
of limited applicability.

We find that the cause of the typical non-existence of the CIC is that the MPLE can be perceived
as a two-stage estimator, where the marginals are estimated non-parametrically. This two-stage
procedure introduces a certain bias, which becomes highly significant at the OP (n−1)-scale that
we will see is the scale defined as low-level noise in the classical AIC-formula.

We will consistently apply the perpendicular subscript to indicate vectors of marginal distri-
butions, such as Fn,⊥. Note that we will sometimes use the multivariate empirical distribution
function Fn, which is defined with the standard scaling 1/n in contrast to our marginal empirical
distrubtions that are scaled according to 1/(n + 1). We will also use the circle superscript to
denote any size related to F ◦. Hats will denote estimators, generic elements of [0, 1]d or [0, 1] will
be denoted by u or v, while elements of Rd not constrained to [0, 1]d will be denoted by x or y.
For a general introduction to copula models, see Joe (1997), and for a general introduction to the
model selection problem, see Claeskens & Hjort (2008).

2. The Copula Information Criterion

Like the AIC, the copula information criterion is based on asymptotic likelihood theory. The
maximum pseudo likelihood estimator can be written as

θ̂n = argmax
θ∈Θ

1
n
`n(θ) = argmax

θ∈Θ

∫
u∈[0,1]d

log c(u, θ) dCn(u)

where Cn is the empirical copula

Cn(u) :=
1
n

n∑
i=1

I{Fn,⊥(Xi) ≤ u}.

We typically have

θ̂n
P−−−−→

n→∞
argmax
θ∈Θ

∫
u∈[0,1]d

log c(u, θ) dC◦(u) =: θ◦,
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in which θ◦ is the least false parameter according to the relative entropy – also known as the
Kullback–Leibler divergence – between c◦(u) and {c(u, θ) : θ ∈ Θ}. That is,

(2) θ◦ = argmin
θ∈Θ

KL[c◦(u), c(u, θ)] = argmin
θ∈Θ

∫
u∈[0,1]d

log
c◦(u)
c(u, θ)

c◦(u) du.

Central to our investigation is the behavior of the pseudo-log-likelihood normalized by sample size

An(θ) :=
1
n
`n(θ) =

∫
[0,1]d

log c(u; θ) dCn(u)

for which we have

An(θ) P−−−−→
n→∞

A(θ) :=
∫

[0,1]d
log c(u; θ) dC◦ =

∫
[0,1]d

c◦(v) log c(v; θ) dv

for each θ under regularity conditions.
The basic idea of model selection in the style of the AIC is to choose the model with the least

attained Kullback–Leibler divergence to the true model c◦. According to eq. (2), we only need
to find the model with the largest value of A(θ̂). As the function θ 7→ A(θ) is unknown, we will
use An(θ̂) to approximate A(θ̂), and then study the difference An(θ̂)−A(θ̂) to make small-sample
corrections to the estimator An(θ̂). We will follow the AIC formula in providing bias-correction
terms specifically on the oP (n−1)-level.

For simplicity and directness, we will follow the classical score-based likelihood theory of Genest
et al. (1995). Let

Un :=
∂An(θ0)
∂θ

=
1
n

∂`n(θ0)
∂θ

be the normalized pseudo-score function, evaluated at θ0.

Lemma 1. Given the regularity assumptions on {cθ : θ ∈ Θ} of Genest et al. (1995), or if

v 7→ log c(v, θ) is of bounded Hardy–Krause-variation, then

√
nUn

W−−−−→
n→∞

U ∼ Np(0,Σ)

where Σ := I +W in which I is the Information matrix

I = Eφ(ξ, θ0)φ(ξ, θ0)t

and W = VarZ accounts for the fact that we are dealing with a pseudo-likelihood. Here

Z :=
d∑
k=1

∫
[0,1]d

∂φ(v, θ0)
∂vk

(I{ξk ≤ vk} − vk) dC◦(v)

in which ξ is a random vector distributed according to C◦ and φ(u, θ) := (∂/∂θ) log c(u; θ).

Proof. Theorem 6 of Fermanian et al. (2004) proves the statement of bounded variation, but seems
to omit that they require Hardy–Krause-variation (and not some other multivariate variational
concept). �

We shall also need the symmetric matrix

J = −A′′(θ0) = −
∫

[0,1]d
c◦(v)

∂2 log c(v; θ0)
∂θ∂θt

dv,

assumed to be of full rank. A useful random process is now the localized and centred likelihood
process

Hn(s) = n{An(θ0 + s/
√
n)−An(θ0)}.

It is defined for those s ∈ Rp for which θ0 + s/
√
n is inside the parameter region Θ; in particular,

for any s ∈ Rp, Hn(s) is defined for all large n.
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A Taylor expansion demonstrate that for each s

Hn(s) = st
√
nUn −

1
2
stJns+ oP (1),

where

Jn := −
∫

[0,1]d

∂2 log c(v; θ0)
∂θ∂θt

dCn(u) P−−−−→
n→∞

J.

This is close to showing the process convergence

Hn(s) W−−−−→
n→∞

H(s) = stU − 1
2
stJs

in the Skorokhod spaces D[−a, a]p for each a > 0. The first consequence of note is the limiting
distribution of the maximum pseudo-likelihood estimator. Under appropriate conditions (See e.g.
van der Vaart & Wellner, 1996), we may use the continuity of the argmax functional to conclude
that

Mn = argmax(Hn) W−−−−→
n→∞

M = argmax(H),

but this is the same as

(3)
√
n(θ̂ − θ0) W−−−−→

n→∞
J−1U ∼ Np(0, J−1ΣJ−1).

We will avoid making such an argmax-continuity argument mathematically rigorous, it would
require some mathematical sophistication and we will only need the basic convergence of eq. (3) in
the following. Such convergence is proved in Genest et al. (1995) under classical conditions on the
parametrization of the model. We use this notation to show that our developments are completely
parallel to the derivation of the classical AIC formula given in e.g. Claeskens & Hjort (2008).

Secondly, we investigate the actual Kullback–Leibler distance from the true model to that used
for fitting the parametric family given by

KL(c◦(u), c(u, θ̂)) =
∫

[0,1]d
c◦(u) log c◦(u) dv −

∫
[0,1]d

c◦(u) log c(u, θ̂) du.

It is rather difficult (but possible) to estimate the first term from data, but we may ignore it, since
it is common to all parametric families. For the purposes of model selection it therefore suffices to
estimate the second term, which is A(θ̂).

We now examine

estimator An(θ̂) =
1
n
`n,max vis-á-vis target A(θ̂).

In the fully parametric ML case, the estimator An(θ̂) (defined mutatis mutandis) always overshoots
its target A(θ̂) (again defined mutatis mutandis), and the AIC is simply a renormalization of An(θ̂),
minus a penalization for model complexity. This penalty term serves is roughly a first order bias-
correction term. In the present, semiparametric case, we will shortly see that An(θ̂) can both
overshoot and undershoot its target. Let

Zn = n{An(θ̂)−An(θ0)} − n{A(θ̂)−A(θ0)}.

Some re-arrangement shows that

(4) An(θ̂)−A(θ̂) =
1
n
Zn +An(θ0)−A(θ0).

Also,

Zn = Hn(Mn) +
1
2
n(θ̂ − θ0)tJ(θ̂ − θ0) + oP (1),

in which we define the stochastically significant part as pn, giving rise to

pn := Hn(Mn) +
1
2
n(θ̂ − θ0)tJ(θ̂ − θ0) W−−−−→

n→∞
H(M) +

1
2
U tJ−1U = U tJ−1U =: P.
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We have

p∗ = EP = EU tJ−1U = Tr(J−1Σ) = Tr
(
J−1I

)
+ Tr

[
J−1W

]
.

Note that similarly to the fully parametric case, we have p∗ ≥ 0 since all matrices involved are
positive definite, and the trace of positive definite matrices are positive.

The standard argument leading to the AIC formula ends at this point. When working with a
fully parametric model estimated through Maximum Likelihood, the only work left is providing
estimators for p∗. However, as we are to provide bias-correction terms at the oP (n−1)-level, careful
examination of An(θ0)−A(θ0) is required.

2.1. The study of An(θ0)−A(θ0). Although
√
n[An(θ0)−A(θ0)] is typically asymptotically mean

zero normal, it does not have zero mean for finite n. This is in sharp contrast to the AIC-case, where
the analogous term in its derivation leads to a difference of the form

∫
[0,1]d

log c(x, θ0) d[Fn−F ◦](x).
As E

∫
[0,1]d

log c(x, θ0) dFn(x) =
∫

[0,1]d
log c(x, θ0) dF ◦(x), this difference has precisely zero mean –

and not merely asymptotically zero mean. If we are to derive a model selection formula in the vein
of the AIC formula, further study of the difference

An(θ0)−A(θ0) =
1
n

n∑
i=1

log c(Fn,⊥(Xi); θ0)−
∫
c◦(u) log c(u; θ0) du

is required. If v 7→ log c(v; θ0) is two times continuously differentiable, a two-term Taylor-expansion
of each term in An(θ0) around Fn,⊥(Xi)− F ◦⊥(Xi) gives the fundamental relation

(5) An(θ0)−A(θ0) =
∫

log c(F ◦⊥(x), θ0) d[Fn − F ◦] +Qn +Rn +Bn

where

Qn =
1
n

n∑
i=1

ζ ′(F ◦⊥(Xi), θ0)t(Fn,⊥(Xi)− F ◦⊥(Xi)),

Rn =
1

2n

n∑
i=1

(Fn,⊥(Xi)− F ◦⊥(Xi))tζ ′′(F ◦⊥(Xi), θ0)(Fn,⊥(Xi)− F ◦⊥(Xi))

in which

ζ ′(v, θ) =
∂ log c(v, θ)

∂v
and ζ ′′(v, θ) =

∂2 log c(v, θ)
∂v∂vt

and

Bn =
1

2n

n∑
i=1

(Fn,⊥(Xi)− F ◦⊥(Xi))t [ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(Xi), θ0)] (Fn,⊥(Xi)− F ◦⊥(Xi))

where Hn is a vector function with entries Hn,i(x) = F ◦i (xi) + τn,i(x)[Fn,i(xi) − Fi(xi)] for some
stochastic vector τn(x) = (τn,1, . . . , τn,d) ∈ (0, 1)d.

Theorem 1 will give conditions for when Bn is op(n−1), and thus considered low-level noise.
Clearly, the first term of eq. (5) has zero mean, and it remains to find the expectation of the
stochastically significant parts of Qn and Rn. This is described by following two lemmas, proved
in the Appendix.

Lemma 2. We have the decomposition Qn = 1
nqn + ZQ,n where EZQ,n = 0 and

qn =
n

n+ 1

∫
ζ ′(F ◦⊥(x), θ0)t (1− F ◦⊥(x)) dFn = Op(1),

Eqn =
n

n+ 1

∫
[0,1]d

ζ ′(v, θ0)t (1− v) dC◦(v)
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Lemma 3. Let Ca,b be the cumulative copula of (X1,a, X1,b). We have nERn → 1tΥ1 where

Υ = (Υa,b)1≤a,b≤d is the symmetric matrix with

Υa,a =
1
2

∫
[0,1]d

ζ ′′a,a(u; θ0)ua(1− ua) dC◦,

Υa,b =
1
2

∫
[0,1]d

ζ ′′a,b(u; θ0) [Ca,b(ua, ub)− uaub] dC◦ (when a 6= b),

and ERn is finite only if Υ is.

This leads to the following result.

Theorem 1. If v 7→ log c(v, θ) is two times continuously differentiable on (0, 1)d and if ζ ′′ and

C◦ follow the conditions of Proposition 2 in the Appendix, then

(6) An(θ0)−A(θ0) =
1
n

(qn + rn) + Z̃n + oP (n−1),

in which EZ̃n = 0 and

q∗ := lim
n→∞

Eqn =
∫

[0,1]d
ζ ′(v, θ0)t (1− v) dC◦(v)

r∗ := lim
n→∞

Ern = 1tΥ1

where Ern and Eqn is infinite only if r∗ and q∗ respectively is infinite.

Proof. This is a direct consequence of Lemma 2, Lemma 3 and Proposition 2 in the Appendix. �

While Eqn is usually finite, Υ is not. To illustrate this problem, let d = 2 and assume that the
model is correctly specified, so that c◦(v) = c(v; θ0). We then have

ζ ′′i,j(u, θ0) = ∂j
∂ic
◦(u)

c◦(u)
=
∂i,jc

◦(u)
c◦(u)

− ∂ic
◦(u)∂jc◦(u)
c◦(u)2

,

yielding

Υ1,2 =
∫

[0,1]2

[
c◦(u)− ∂1c

◦(u)∂2c
◦(u)

c◦(u)

]
[C◦(u, v)− uv] dC◦(u, v),

Υ1,1 =
∫

[0,1]2

[
c◦(u)− ∂1c

◦(u)∂1c
◦(u)

c◦(u)

]
u(1− u) dC◦(u, v),

Υ2,2 =
∫

[0,1]2

[
c◦(u)− ∂2c

◦(u)∂2c
◦(u)

c◦(u)

]
v(1− v) dC◦(u, v).

Example 1. Consider the bivariate Kimeldorf & Sampson family of copulae with density

c(u, v; δ) =
1 + δ

(uv)δ+1

(
1/uδ + 1/vδ − 1

)2+1/δ
,

which is copula B4 in Joe (1997). The B4 density is simply a rational polynomial when δ = 1. This
enables us to give closed form expressions for Υa,b with the help of a computer algebra system.
This shows that

Υ1,2 =
∫ 1

0

[
1
5
v−1 − 3

10
v +

1
10

]
dv,

Υ1,1 =
∫ 1

0

[
v−1 +

1
2
v−2 +

3
2

]
v(1− v) dv,

Υ2,2 =
∫ 1

0

1
2
v−1 dv.

As
∫ 1

0
v−1 dv =∞, we get that Υ, and hence also ERn, is infinite.
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In fact, the B4 copula is not a pathology. Although it is typical that Rn = OP (1), it is also
typical that ERn is infinite. Almost all of the copula models categorized in Joe (1997) has infinite
Υ-values, i.e. the distribution of Rn has very heavy tails.

Although this infinitude is somewhat surprising, it is not a paradox and is another example of
why expectation is not the same as a typical value of a random variable. The most basic example
of this phenomenon is an iid sequence ξ1, ξ2, . . . of Cauchy variables. The expectation EX̄n is
infinite, while X̄n is again Cauchy distributed for each n – and hence trivially OP (1). However,
the implication and interpretation of the infinite expectation of the bias-correction term is that it
is fundamentally impossible to complete the AIC programme as defined above for the MPLE, even
under enough regularity to secure the validity of the above Taylor-expansions. This is a second
order effect of estimating the marginals non-parametrically.

Grønneberg (2010) argues that the MPLE can be seen as a natural estimator of the copula
parameter under symmetry conditions. Its well-known lack of semiparametric efficiency is not a
crucial deficiency in the context of model selection as semiparametric efficiency in the sense of Bickel
et al. (1993) assumes that the model is correctly specified. In this case, symmetry considerations
provide natural motivation for using the MPLE compared to other semiparametrically efficient
estimators. However, the lack of an AIC-like model selection formula is a more serious limitation
of the MPLE.

2.2. Empirical estimates. The CIC formulae now follows when empirical estimates of the as-
ymptotic expectation of qn and rn are found. Just as for the fully parametric case, significant
simplifications can be made when the model is assumed correct. This leads to a CIC-formula that
we call the AIC-like CIC formula, derived in Section 2.2.1. If the model is not assumed correct,
nonparametric estimates are required and we get the so-called TIC-like CIC formula, given in
Section 2.2.2.

2.2.1. AIC-like formula. This section works under the assumption of a correct super-model, as was
the case for the original AIC formula. This assumption leads to several simplifications, as shown
by the following result whose proof is deferred to the Appendix.

Proposition 1. If the parametric model is correctly specified, we have q∗ = 0 and p∗ =
length(θ) + Tr[I−1W].

This motivates the AIC-like Copula Information Criterion

(7) CIC = 2`n,max − 2(p̂∗ + r̂∗),

where p̂∗ and r̂∗ estimates p∗ and r∗ respectively.
A natural estimator of r∗ is r̂∗ = 1tΥ̂1, defined in terms of the plug-in estimators

Υ̂a,a =
1
2

∫
[0,1]d

c(v; θ̂)ζ ′′a,a(v; θ̂)va(1− va) dv,

Υ̂a,b =
1
2

∫
[0,1]d

c(v; θ̂)ζ ′′a,b(v; θ̂)
[
Ca,b(va, vb; θ̂)− vavb

]
dv

where Ca,b(va, vb; θ) is the cumulative copula of (Ya, Yb) where (Y1, Y2, . . . , Yd) ∼ C(v; θ). A natural
estimation procedure for p∗ is to use

p̂∗ = length(θ) + Tr
(
Î−Ŵ

)
denoting the generalized inverse of Î by Î− and where Î is the pseudo-empirical information matrix

(8) Î = Eθ̂φ(ξ̃, θ̂)φ(ξ̃, θ̂)t
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and

(9) Ŵ = Var θ̂

{∫
[0,1]d

(
∂2

∂θ∂vt
log c(v, θ̂)

)t
(I{ξ ≤ v}⊥ − v) dC(v, θ̂)

}
where ξ̃ ∼ C(v; θ̂). These integrals can easily be evaluated through numerical integration routines
such as Monte-Carlo simulation. Note, however, that in contrast to the classical AIC formula,
which has exactly zero small-sample bias, the AIC-like CIC formula requires that both Tr

(
I−1W

)
and r∗ is estimated from data.

We note that these estimators are somewhat different from the ones suggested by Genest et al.
(1995), which are based on using the empirical copula as plug-in estimates of the expectation
operator Eθ̂. This would give

Î? =
∫
u∈[0,1]d

φ(u, θ̂)φ(u, θ̂)t dĈ(u) =
1
n

n∑
k=1

φ(ξ̂(k), θ̂)φ(ξ̂(k), θ̂)t

and Ŵ ? as the empirical variance of∫
[0,1]d

(
∂2

∂θ∂vt
log c(v, θ̂)

)t
(I{ξ̂(k) ≤ v}⊥ − v) dCn(v)

for ξ̂(k) = Fn,⊥(Xk) together with analogues for r̂∗. These estimates are valid also when the copula
model is incorrectly specified, and has the further advantage of being very simple to calculate by
avoiding the need for numerical integration.

2.2.2. TIC-like formula. We now have to rely on nonparametric estimates. A natural estimator
for q∗ is the plug-in estimators

q̂∗ =
∫

[0,1]d
ζ ′(v; θ̂)t

(
1− v

)
dĈ(v)

while for r∗ is r̂∗ = 1tΥ̂1 where now

Υ̂a,a =
1
2

∫
[0,1]d

ζ ′′a,a(v; θ̂)va(1− va) dĈn,

Υ̂a,b =
1
2

∫
[0,1]d

ζ ′′a,b(v; θ̂)
[
Ĉn,a,b(va, vb)− vavb

]
dĈn

where Cn,a,b is the empirical copula based on (X1,a, X1,b), (X2,a, X2,b), . . . , (Xn,a, Xn,b). As for the
estimation of p∗, we use p̂∗ = Tr Ĵ−1

n Σ̂ where

Σ̂ =
1
n

n∑
i=1

{
φ(ξ̂(i); θ̂) + Ẑi

}{
φ(ξ̂(i); θ̂) + Ẑi

}t
with

Ẑi =
d∑
j=1

1
n

n∑
s=1,s6=i

∂φ(v; θ̂)
∂vj

∣∣∣∣
v=ξ̂(s)

(
I
{
ξ̂

(i)
j ≤ ξ̂

(s)
j

}
− ξ̂(s)

j

)
using ξ̂(k) = Fn,⊥(Xk).

Appendix A. Technical proofs

This appendix gathers technical proofs needed for the above results. In addition to the already
introduced notation, we will work with the empirical processes

Gn,k(xk) =
√
n [Fn,k(xk)− F ◦k (xk)] , Gn,⊥(x) =

√
n [Fn,⊥(x)− F ◦⊥(x)] ,

Gn(x) =
√
n [Fn(x)− F ◦(x)] , Cn(u) =

√
n [Cn(u)− C◦(u)] .
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A.1. Proofs for Expectation Structure.

Proof of Lemma 2. Define

Gn,⊥,−i =
√
n

n+ 1

∑
1≤k≤n,k 6=i

[I{Xk ≤ x} − F ◦⊥(x)]

so that Gn,⊥(x) = Gn,⊥,−i(x)−
√
n/(n+ 1) [I{Xi ≤ x}⊥ − F⊥(x)]. This shows

Qn =
1√
n

∫
ζ ′(F ◦⊥(x); θ0)tGn,⊥(x) dFn(x) =

1
n
√
n

n∑
i=1

ζ ′(F ◦⊥(Xi); θ0)tGn,⊥,−i(Xi)

1
n2

n

n+ 1

n∑
i=1

ζ ′(F ◦⊥(Xi); θ0)t [I{Xi ≤ Xi}⊥ − F⊥(Xi)] .

The second term is qn/n. By independence, we have

Eζ ′(F ◦⊥(Xi); θ0)tGn,⊥,−i,+1(Xi) = EE
[
ζ ′(F ◦⊥(Xi); θ0)tGn,⊥,−i,+1(Xi)

∣∣Xi

]
= 0.

�

Proof of Lemma 3. Notice that

Rn =
1

2n2

n∑
i=1

Gn,⊥(Xi)tζ ′′(F ◦⊥(Xi), θ0)Gn,⊥(Xi)

=
1

2n2

n∑
i=1

Gn,⊥,−i(Xi)tζ ′′(F ◦⊥(Xi), θ0)Gn,⊥,−i(Xi)

+
1

2n2

√
n

n+ 1

n∑
i=1

Gn,⊥,−i(Xi)tζ ′′(F ◦⊥(Xi), θ0) [I{Xi ≤ Xi}⊥ − F⊥(Xi)]

+
1

2n2

√
n

n+ 1

n∑
i=1

[I{Xi ≤ Xi}⊥ − F⊥(Xi)]
t
ζ ′′(F ◦⊥(Xi), θ0)Gn,⊥,−i(Xi)

+
1

2n2

( √
n

n+ 1

)2 n∑
i=1

[I{Xi ≤ Xi}⊥ − F⊥(Xi)]
t
ζ ′′(F ◦⊥(Xi), θ0) [I{Xi ≤ Xi}⊥ − F⊥(Xi)] .

After multiplying with n, only the first term will have an effect on the expectation as n→∞. By
independence, its expectation is given by

1
2n

E
∫

Rd
Gn−1,⊥(x)tζ ′′(F ◦⊥(x); θ0)Gn−1,⊥(x) dF ◦(x)

=
1
n

∫
Rd

E
[
Gn−1,⊥(x)tζ ′′(F ◦⊥(x); θ0)Gn−1,⊥(x)

]
dF ◦(x)

=
1
n

∑
1≤a,b≤d

∫
Rd
ζ ′′a,b(F

◦
⊥(x); θ0)E

[
G(k)
n−1,a(xa)Gn−1,b(xb)

]
dF ◦(x).

Let ρn = n2/(n+ 1)2. We have

EGn,a(xa)Gn,b(xb) = ρn
1
n

E

[
n∑
i=1

I{Xi,k ≤ xk} − F ◦k (xk)

] n∑
j=1

I{Xj,l ≤ xl} − F ◦l (xl)


= ρn

1
n

n∑
i=1

E [I{Xi,l ≤ xl} − F ◦l (xl)] [I{Xi,k ≤ xk} − F ◦k (xk)]

+ ρn
1
n

E
∑

1≤i,j≤n,i 6=j

[I{Xi,k ≤ xk} − F ◦k (xk)] [I{Xj,l ≤ xl} − F ◦l (xl)] .
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The second term vanishes by independence, yielding

EGn,a(xa)Gn,b(xb) = ρn
1
n

n∑
i=1

{
E [I{Xi,l ≤ xl} − F ◦l (xl)] I{Xi,k ≤ xk}

+ E [I{Xi,l ≤ xl} − F ◦l (xl)]F ◦k (xk)
}

= ρn
1
n

n∑
i=1

E [I{Xi,l ≤ xl}I{Xi,k ≤ xk} − F ◦k (xk)F ◦l (xl)] ,

which is equal to xa(1−xa) if a = b and P{X1,l ≤ xl, X1,k ≤ xk}−F ◦k (xk)F ◦l (xl) otherwise. Thus,

1
2n

E
∫

Rd
Gn−1,⊥(x)tζ ′′(F ◦⊥(x); θ0)Gn−1,⊥(x) dF ◦(x)

=ρn
1

2n

∑
1≤a,b≤d,a6=b

∫
Rd
ζ ′′a,b(F

◦
⊥(x); θ0) [P{X1,a ≤ xa, X1, ≤ xb} − F ◦a (xa)F ◦b (xb)] dF ◦(x)

+ ρn
1

2n

∑
1≤a≤d

∫
Rd
ζ ′′a,a(F ◦⊥(x); θ0)xa(1− xa) dF ◦(x).

A change of variables shows that this is equal to

ρn
1

2n

∑
1≤a,b≤d,a6=b

∫
[0,1]d

ζ ′′a,b(u; θ0) [Ca,b(ua, ub)− uaub] dC◦(u)

+ ρn
1

2n

∑
1≤a≤d

∫
[0,1]d

ζ ′′a,a(u; θ0)ua(1− ua) dC◦(u),

which approaches Υ once multiplied by n. �

Proof of Proposition 1. The assumption c◦(u) = c(u, θ0) validates the information matrix equality
J = I, which gives the reduced formula for p∗. As for q∗, let us first notice that the fundamental
theorem of calculus shows that

c(v; θ0)
∣∣∣∣
vk=x

=
d

dx

∫ x

0

c(v; θ0) dvk =
d

dx

∫ 1

0

c(v; θ0)I{0 ≤ vk ≤ x} dvk.

As c(v; θ0)I{0 ≤ vk ≤ x} is dominated by c(v; θ0) which is integrable, dominated convergence
allows us to move the differential sign in and out of integrals. As c(v; θ0) has uniform marginals,
this shows

(10)
∫ 1

0

∫ 1

0

· · ·
∫ 1

0

c(v; θ0)
∣∣∣∣
vk=x

∏
i 6=k

dvi =
d

dx

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ x

0

c(v; θ0) dvk
∏
i 6=k

dvi =
d

dx
x = 1.

We have

q∗ =
∫

[0,1]d
ζ ′(v; θ0)t

(
1− v

)
dC(v; θ0)

=
d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

c(v; θ0)
∂ log c(v; θ0)

∂vk
(1− vk) dvk

∏
i 6=k

dvi

=
d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∂c(v; θ0)
∂vk

(1− vk) dvk
∏
i 6=k

dvi.

Let ε > 0, and write∫ 1

0

∂c(v; θ0)
∂vk

(1− vk) dvk =
∫ 1−ε

ε

∂c(v; θ0)
∂vk

(1− vk) dvk +
∫

[0,1]\(ε,1−ε)

∂c(v; θ0)
∂vk

(1− vk) dvk
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The first term can be written as

c(v; θ0)(1− vk)
∣∣∣∣1−ε
vk=ε

+
∫ 1−ε

ε

c(v; θ0) dvk = c(v; θ0)
∣∣∣∣
vk=1−ε

ε− c(v; θ0)
∣∣∣∣
vk=ε

(1− ε)

+
∫ 1−ε

ε

c(v; θ0) dvk

= c(v; θ0)
∣∣∣∣
vk=1−ε

ε+ c(v; θ0)
∣∣∣∣
vk=ε

ε− c(v; θ0)
∣∣∣∣
vk=ε

+
∫ 1−ε

ε

c(v; θ0) dvk

through partial integration. By eq. (10), we get

q∗ =
d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫
[0,1]\(ε,1−ε)

∂c(v; θ0)
∂vk

(1− vk) dvk
∏
i 6=k

dvi

+ 2εd− d+
d∑
k=1

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ 1−ε

ε

c(v; θ0) dvk
∏
i 6=k

dvi

which can be made arbitrarily close to zero by choosing ε sufficiently small. Thus q∗ = 0. �

A.2. Sufficient conditions for Bn = oP (n−1). We follow Genest et al. (1995) and Tsukahara
(2005) by applying the techniques of Ruymgaart et al. (1972) and Ruymgaart (1974).

Definition 1. (1) Let Q be the set of continuous functions q on [0, 1], which are positive

on (0, 1), symmetric about 1/2, decreasing on [0, 1/2] and satisfy
∫ 1

0
{q(t)}2 dt <∞.

(2) A function r : (0, 1) 7→ (0,∞) is called u-shaped if it is symmetric about 1/2 and decreasing

on (0, 1/2].
(3) For 0 < β < 1 and a u-shaped function r, we define

rβ(t) =

{
r(βt), if 0 < t ≤ 1/2;

r (1− β[1− t]) , if 1/2 < t ≤ 1

If for every β > 0 in a neighbourhood of 0, there exists a constant Mβ , such that rβ ≤Mβr

on (0, 1), then r is called a reproducing u-shaped function. We denote by R the set of

reproducing u-shaped functions.

The importance of Q and R comes from the following two Lemmas, proved in Pyke & Shorack
(1968) and Ruymgaart (1974) respectively.

Lemma 4. Suppose qk ∈ Q, then ‖Gn,k/qk‖ = OP (1) where Gn,k is the k’th univariate

empirical process.

Lemma 5. Suppose Hn,k satisfies

min

(
F ◦k (xk),

1
n+ 1

n∑
i=1

I{Xi,k ≤ xk}

)
≤ Hn,k(xk) ≤ max

(
F ◦k (xk),

1
n+ 1

n∑
i=1

I{Xi,k ≤ xk}

)
for all xk and let Λn,k = [min1≤i≤nXi,k,max1≤i≤nXi,k] ⊂ R. Let r ∈ R. Then

sup
xk∈Λn,k

r(Hn,k(xk))
r(F ◦k (xk))

= OP (1)

uniformly in n.
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For simplicity, let us assume thatX1, X2, . . . ∼ C◦ so that F ◦⊥(x) = x. By Lemma 1 of Fermanian
et al. (2004) this does not entail any loss of generality.

Proposition 2. Assume that u 7→ ζ ′′(u, θ0) is continuous on (0, 1)d and that for each 1 ≤ k ≤ d
and 1 ≤ a, b ≤ d there exists functions rk, r̃k,l,1, r̃k,l,2 ∈ R, and qk ∈ Q such that

(11) |ζ ′′a,b(u, θ0)| ≤ r̃a,b,1(ua)r̃a,b,2(ub)
∏

1≤k≤d,k 6=a,b

rk(uk)

and

(12)
∫

[0,1]d
qa(ua)qb(ub)r̃a,b,1(ua)r̃a,b,2(ub)

∏
1≤k≤d,k 6=a,b

rk(uk) dC◦(u) <∞.

Then Bn = oP (n−1).

Proof. Note that

Bn =
1

2n2

n∑
i=1

Gn,⊥(Xi)t [ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)] Gn,⊥(Xi).

For each 0 < γ < 1, let Sγ = [γ, 1− γ]d and Scγ = [0, 1]d \ Sγ . Write

2nBn =
∫
Sγ

Gn,⊥(x)t [ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)] Gn,⊥(x) dFn(x)

+
∫
Scγ

Gn,⊥(x)t [ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)] Gn,⊥(x) dFn(x),

and denote these integrals by Dn,1,γ and Dn,2,γ . The absolute value of Dn,1,γ is bounded by

d sup
1≤k,l≤d

[
‖Gn,k‖[γ,1−γ]

]
× ‖Gn,l‖[γ,1−γ] × ‖ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)‖Sγ

where ‖ · ‖E is the appropriate sup-norm constrained to the set E. As

‖Hn − F ◦⊥‖ = ‖τn[Fn,⊥ − F ◦⊥]‖ ≤ max
1≤k≤d

‖τn,k‖‖Fn,⊥ − F ◦⊥‖ ≤ ‖Fn,⊥ − F ◦⊥‖ = oP (1)

by the Glivenko-Cantelli theorem, the assumed continuity of ζ ′′ on (0, 1)d implies that ζ ′′ is uni-
formly continuous on Sγ . Hence, ‖ζ ′′(Hn(Xi), θ0)− ζ ′′(F ◦⊥(x), θ0)‖ = oP (1). As ‖Gn,k‖ = OP (1),
this shows Dn,1,γ = oP (1). As for Dn,2,γ , its absolute value is bounded by∥∥∥∥Gn,a

qa

∥∥∥∥∥∥∥∥Gn,b

qb

∥∥∥∥ [∫
Scγ

∣∣qa(xa)ζ ′′a,b(Hn(x), θ0)qb(xb)
∣∣ dFn(x)+

∫
Scγ

∣∣qa(xa)ζ ′′a,b(F
◦
⊥(x), θ0)qb(xb)

∣∣ dFn(x)
]
,

which by eq. (11) is bounded by∥∥∥∥Gn,a

qa

∥∥∥∥∥∥∥∥Gn,b

qb

∥∥∥∥ [∫
Scγ

qa(xa)qb(xb)r̃a,b,1(x̃a)r̃a,b,2(x̃b)
∏

1≤k≤d,k 6=a,b

rk(x̃k) dFn(x)

−
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dFn(x)
]

where x̃k = Fn,⊥(1, . . . , 1, xk, 1, . . . , 1). By Lemma 4, we have ‖Gn,a/qa‖‖Gn,b/qb‖ = OP (1). It
thus suffices to bound

Dn,2,γ(a, b, k, l) :=
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(x̃a)r̃a,b,2(x̃b)
∏

1≤k≤d,k 6=a,b

rk(x̃k) dFn(x)

D̃n,2,γ(a, b, k, l) :=
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dFn(x)
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By Lemma 5, there exists a constant Mε > 0 such that

Ω̃ε =
{
r̃a,b,1(x̃a)r̃a,b,2(x̃b)

∏
1≤k≤d,k 6=a,b

rk(x̃k) ≤Mεr̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk)
}

with P (Ω̃ε) > 1 − ε for all n. On Ω̃ε, we have Dn,2,γ(a, b, k, l) ≤ MεD̃n,2,γ(a, b, k, l). As ε is
arbitrary, it suffices to bound D̃n,2,γ(a, b, k, l). We have

E
[
|D̃n,2,γ |

]
≤
∫
Scγ

qa(xa)qb(xb)r̃a,b,1(xa)r̃a,b,2(xb)
∏

1≤k≤d,k 6=a,b

rk(xk) dF ◦(x).

By the integrability assumption in eq. (12), this expectation converges to zero by the Dominated
Convergence Theorem. �
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