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Abstract

This master’s thesis primarily focuses on the decomposition of graphs into
bipartite subgraphs. Prior to an exploratory section, the thesis begins with
concepts and relevant graph theory, as well as network flow theory and some
examples of the use of decomposition in flow algorithms. Furthermore, it
presents applications for graphs and network flows. As an introduction to the
exploratory part of the thesis, the Graham-Pollak Theorem is introduced.
This section of the thesis is based on this theorem and examines what happens
when changes are made to the conditions of the theorem. We investigate
the number of bipartite subgraphs required to decompose a complete graph
with n nodes, and we examine the number of complete bipartite subgraphs
necessary to decompose different types of graphs.
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Chapter 1

Introduction

1.1 Background

Graph theory and network flows have useful applications across a wide range of sciences.
Decompositions are an important part in graph theory and network flows, and can be
used to break down complex graphs into simpler components. This thesis mainly deals
with bipartite decompositions of diffentert classes of graphs.

The exploratory research in this thesis is based on the Graham-Pollak Theorem,

Theorem 1.1.1 (The Graham-Pollak Theorem, [AZ18, p. 79]). If the complete graph Kn is
decomposed into complete bipartite subgraphs H1, H2, ... , Hm, then m ≥ n− 1.

We will explore several possible adjustments of the conditions in the theorem, and see if
it is possible to find a minimum number of decompositions of a given class graph with
the new conditions.

1.2 Outline

The first part is relevant and basic theory about graphs and network flows, as well as the
Graham-Pollak Theorem which is the starting point for my independent research.

In Chapter 6, the γ-problem is introduced. We look at what would happen if the
decomposition of the complete graph Kn is decomposed into bipartite subgraphs instead
of complete bipartite subgraphs. It is presented a pattern that gives a minimal
decomposition, with an associated proposition. We start by proving the proposition for
complete graphs on 4 and 5 vertices before we look at the general case for the complete
graph on n vertices.

In Chapter 7, the κ-problem is introduced. We look at what would happen if we
do not decompose the complete graph Kn, but we instead look at complete bipartite
decomposition of different classes of graphs. The classes taken into consideration are
paths, cycles, wheels, generalised stars, and bipartite graphs. For each of the four first
classes of graphs, it is presented a proposition with a following proof. For the bipartite
graphs, we find an algorithm to find a complete bipartite decomposition.
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Chapter 2

Graph Theory

A graph G consists of vertices and edges and can be expressed as the ordered pair
(V (G), E(G)). V (G) is the set of vertices, and E(G) is the set of edges. This, together
with an incidence function, ψG, which associates each edge in E(G) to an unordered pair
of vertices in V (G), is an unambiguous graph. If both the set of edges and vertices are
finite, we have a finite graph. In this master thesis we will only look at finite graphs
[BM08].

The order of a graph G is the defined by the number of edges of G and is denoted by
e(G). The size of a graph G is denoted by v(G) and is defined by the number of vertices.
A graph can also be graphically represented. A graph may be drawn in many ways, as
long as the relation between the edges and vertices is preserved. Each edge is represented
by a line, and each vertex by a point [BM08]. Here follows an example with

G = (V (G), E(G))

where
V (G) = {v1, v2, v3, v4, v5}
E(G) = {e1, e2, e3, e4, e5, e6, e7, e8}

(2.1)

and the incidence function ψG is defined by

ψG(e1) = v1v2, ψG(e2) = v2v3, ψG(e3) = v3v4,

ψG(e4) = v1v5, ψG(e5) = v2v5, ψG(e6) = v4v5.
(2.2)

with the belonging drawing of the graph,

Figure 2.1: Drawing of a graph described with (2.1) and (2.2).
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Chapter 2. Graph Theory

It is needed some more concepts to describe a graph. Two vertices are adjacent if there is
an edge connecting them, and they are incident with any edge that are connecting them
to another vertex. Two adjacent vertices are called neighbours. The edges of a graph can
be either a link or a loop. If each of the ends of an edge is the same, we have a loop. If
an edge have two distinct ends, we have a link. Two edges that are incident to the same
pair of vertices are called parallell edges [BM08]. In Figure 2.2 it is demonstrated the
different types of edges. The edge e4 is a loop, e1, e2 are parallel edges and e1, e2, e3, e5
are links.

e5

e1e2
e3

e4

v1

v2

v3

Figure 2.2: Example of parallel edges, links and loops.

Different types of graphs

A simple graph consists of no loops or parallel edges, an example is shown in Figure 2.3.
If in addition every vertex is adjacent we have a complete graph. The complete graph on
n vertices are denoted Kn. In Figure 2.4 there is an example of K5. When working with
simple graphs, there is no need for an incidence function ψG, we can instead denote each
edge connecting the vertices u and v as uv or (u, v). [BM08]

v1

v2 v3

v5

v4

Figure 2.3: Example of a simple graph.

v1

v2 v3

v5

v4

Figure 2.4: Example of a complete simple graph.

A bipartite graph G is a graph where the set of vertices V (G) can be divided into
disjoint subsets X and Y such that every edge has one vertex in X and one vertex in
Y . If every vertex in X has an edge adjacent to every vertex in Y , we have a complete
bipartite graph [BM08]. An example of a complete bipartite graph and a bipartite grah
is respectively shown in Figure 2.6 and Figure 2.5.

A path is a simple graph with a sequence of vertices and edges (v0, e1, v1, e2, v2, ...) such
that you can move along each of the edges and not cross any vertex more than once. A
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Figure 2.5: Example of a bipartite graph. Figure 2.6: Example of a complete bipartite
graph.

cycle is a simple graph such that if you arrange the vertices in a cyclic sequence, each
consecutive pair of vertices are adjacent and if the pair of vertices are not consecutive,
they are not adjacent. The length of a path or a cycle equals the number of edges. Hence,
in Figure 2.7 we have a cycle of length 4 and in Figure 2.8 we have a path of length 3. A
cycle is odd if the length is odd, and even if the length is even. A graph containing a
cycle is called a cyclic graph, and acyclic if it contains no cycles [BM08].

v1

v2 v3

v4

Figure 2.7: Example of a cycle.

v1

v2 v3

v4

Figure 2.8: Example of a path.

A graph with a cycle on n vertices and an extra vertex that are adjacent to each vertex
in the cycle, is called a wheel. A wheel on n+ 1 vertices is denoted Wn [Wei23]. The
wheel W6 is shown in Figure 2.9.

Figure 2.9: Example of a wheel on six vertices.

A graph is said to be connected if for each par of vertices we can find a path between
them, see Figure 2.10. If you cannot find a path between any pair of vertices, the graph
is disconnected, as in Figure 2.11 [BM08].
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Chapter 2. Graph Theory

v1

v2

v3

v4 v6

v5

Figure 2.10: Example of a connected graph.

v1

v2

v3

v4 v6

v5

Figure 2.11: Example of a disconnected graph.

Matrix representation of graphs

Drawings of graphs is a good visual presentation, but it is not a great way to store
information in a computer. Instead, it can be stored as either an adjacency or incidence
matrix. An incidence matrix is an m×n-matrix, M := (mve) where m = |V (G)| and
n = |E(G)|. Each element mve tells us how many times a vertex v and an edge e are
incident. 0 if they are not incident, 1 if they are only incident once, and 2 if e is a
loop. An adjacency matrix is an m×m-matrix M := (auv) where auv tells us how many
times two vertices are adjacent. A loop counts as two edges. This matrix is naturally
symmetric. In Figure 2.12 there is the graph G and its belonging incidence and adjacency
matrices. When working with simple graphs there exists an easier and more compact
way to describe a graph. This is a list such that for each vertex v, the neighbours are
listed. A list of all these lists are (N(v) : v ∈ V ) and are called the adjacency list. Since
this is a more efficient way to store information in a computer, simple graphs are usually
stored as adjacency lists in computers [BM08].

e5

e1e2
e3

e4

v1

v2

v3

(a)

e1 e2 e3 e4 e5
v1 1 1 0 0 1
v2 1 1 1 0 1
v3 0 0 1 2 1

(b)

v1 v2 v3
v1 0 2 1
v2 2 0 1
v3 1 1 2

(c)

Figure 2.12: (a) A graph G, with its associated (b) incidence and (c) adjacency matrix.

The number of edges that are incident with a vertex v is called the degree of the vertex
v, denoted by dG(v) [BM08]. For instance, in Figure 2.1, dG(v1) = 3.

Trees

If an acyclic graph is connected, it is called a tree.

Proposition 2.0.1 ([BM08, p. 99]). In a tree, any two vertices are connected by exactly one
path.

Thus, there is no obvious way to draw a graph if only the number of vertices and edges
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are known. Figure 2.13 shows three different ways to draw a tree with five vertices and
four edges.

(a) (b) (c)

Figure 2.13: Three different types of trees on five vertices.

Theorem 2.0.2 ([BM08, p. 41]). Let G be a graph in which all vertices have degree at least
two. Then G contains a cycle.

From Theorem 2.0.2 it is known that any graph where all vertices are of degree at least
2, we do have a cycle. It follows that a tree must have at least one vertex of degree at
most 1. This type of vertex is called a leaf [BM08].

Proposition 2.0.3 ([BM08, p. 100]). Every nontrivial tree has at least two leaves.

Theorem 2.0.4 ([BM08, p. 100]). If T is a tree, then e(T ) = v(T ) − 1.

A star is a tree S where only one of the vertices has dS(v) > 2, while every other vertex
has dS(v) = 1. In Figure 2.13c we a star on five vertices. A star on n + 1 vertices is
denoted Sn. Hence, in Figure 2.13c we have S4 [Wik23c].

Subgraphs

From every graph there is possible to find a subgraph by either deleting one or more
edges, deleting one or more vertices, or a combination of deleting edges and vertices. The
subgraphs should indeed be graphs, that means if a vertex is deleted, then every edge
incident to that vertex must be deleted as well [BM08].

(a) (b) (c)

Figure 2.14: (a) A graph G with examples of subgraphs made from (b) vertex- and (c) edge-
deletion.

7



Chapter 2. Graph Theory

Examples of subgraphs by vertex-deletion and edge-deletion can be seen in Figure 2.14b
and Figure 2.14c respectively. The different types of subgraphs can be denoted as G \ e
if we have an edge-deleting subgraph of G, and G− v if we have a vertex-deleting graph.
Every graph is a subgraph of itself. All other subgraphs is called proper subgraphs of G
[BM08].

Spanning Trees

If a subgraph of a graph is also a tree, we have a subtree. If the subgraph is in addition
obtained by only deleting edges, it is a spanning subgraph [BM08].

Figure 2.15: Example of spanning trees of a graph.

Theorem 2.0.5 ([BM08], p. 106). A graph is connected if and only if it has a spanning
tree.

Theorem 2.0.6 ([BM08], p. 106). A graph is bipartite if and only if it contains no odd
cycle.

A proof of this theorem follows from [BM08, p. 106].

Proof. Firstly, we need to show that if we have a bipartite graph, it contains no odd
cycles. Start by letting G = (I, J) be a connected bipartite graph. Because we have a
bipartite graph we know that any path in G has vertices alternately belonging to the set
I and the set J . This means that all paths connecting vertices in different sets are of odd
length, and the paths connecting vertices in the same sets are of even length. Because
we have defined G to be a bipartite graph, we know that each edge has one end in I and
one end in J . Hence, every cycle of G is of even length.

Secondly, we need to show that if a graph contains no odd cycle, it is indeed bipartite.
Now we start by letting G = (I, J) be a connected graph with no odd cycles, and V be
the vertex set of G. From Theorem 2.0.5 we know that G has a spanning tree T , and
from Proposition 2.0.1 that any two vertices in T are connected by a unique path in
T . We then choose a vertex x as a starting point, and every vertex v that has en even
path connecting x and v is in the set I, and J := V \ I. We then have that (I, J) is
a bipartition of T . We need to show that this is also a bipartition of G. We have an
edge e = uv of E(G) \ E(T ), and P := uTv is the unique uv-path in T . Because G only
consists of even cycles, we know that P + e is even, and e is obviously odd, then P is
also odd. Hence, the edges of P and e belong to distinct sets. Therefore, (I, J) is also a
bipartition of G. ■

8



Decomposition of graphs

A decomposition of a graph G is a set F of subgraphs that all are pairwise edge-disjoint
and fulfil the following equation,

⋃
F ∈F

E(F ) = E(G). (2.3)

There are different ways to decompose a graph. In this thesis, we will focus on
decompositions of different types of graphs into bipartite subgraphs. If a graph G
can be decomposed into only bipartite subgraphs or complete bipartite subgraphs, it is
respectively a bipartite-decomposition or complete bipartite decomposition of G [BM08].

Two ordinary decompositions to look at are cycle decompositions and path
decompositions. In a cycle-decomposition every subgraph itself is a cycle. Similarly, a
path-decompositon consists of subgraphs that are all paths. Every graph that contains
no loops can be decomposed into a trivial path decomposition where each path is of
length 1, but not every graph can be decomposed into a cycle decomposition. Because a
decomposition should be edge-disjoint and dC(v) = 2 for every vertex in a cycle, each
vertex must be twice the number of cycles it is contained in. A graph is even if every
vertex is of an even degree. Hence, if a graph have a cycle decomposition, if it is even
[BM08].

Theorem 2.0.7 (Veblen’s theorem [BM08, p. 56]). A graph admits a cycle decomposition if
and only if it is even.

A proof of the theorem follows from [BM08, p. 58].

Proof. Assume we have a cycle that admits a cycle decomposition. In a cycle Cn with
vertices v1, ..., vn we know that degC(vi) = 2 for i = 1, ..., n. Thus, if we have a cycle
decomposition of a graph G, we know that each vertex has twice the degree of the number
of cycles it is included in. Hence, every vertex is of even degree and we have an even
graph.

Suppose the graph G is even. If G is containing no edges then E(G) is decomposed by
the empty family of cycles. If not, consider the subgraph F of G that are induced by
every vertex in F that are of positive order. Hence, if G is even, F is also even, and we
know that for every vertex v ∈ V (F ) degF (v) ≥ 2. Using Theorem 2.0.2 we know that
F contains a cycle, C. This gives rise to a new subgraph G′ = G \ E(C) which also are
even and consists of fewer edges than G. By the induction hypothesis, G′ has a cycle
decomposition C ′ and therefore G has a cycle decomposition C = C ′ ∪ {C}. ■

A related concept to decompositions is coverings. A covering is a set of subgraphs that
fulfil (2.3), but the subgraphs does not need to be edge-disjoint. Hence, an edge can be
covered multiple times. If each edge is covered k times, it is called a k-cover and it is a
uniform covering. Similarly to decompositions of graphs, if a cover exclusively consists
of paths of cycles, it is respectively a path-covering or a cycle-covering [BM08].

9



Chapter 2. Graph Theory

Matching

A matching in a graph G = (V,E) is a set of edges where each vertex is incident to a
maximum of one edge. If two vertices are adjacent in a matching M , it is said that the
vertices are matched under M . If a vertex is incident with an edge of M is said to be
covered by M . A perfect matching covers every vertex of a graph, while a maximum
matching covers as many vertices as possible, this is shown in Figure 2.16b. If a perfect
matching exists, the graph is matchable. The number of edges in a maximum matching
is called the matching number. A maximal matching, see Figure 2.16a, is a matching
that can not be extended [BM08].

(a) A maximal matching (b) A perfect and maximum matching

Figure 2.16: Example of (a) a maximal matching and (b) a perfect and maximum matching.

Directed Graphs

A graph may not be sufficient to describe a problem. Every so often the orientation of an
edge is useful to know. If the orientation of edges is known, it is a directed graph, also
called a digraph. A digraph D is an ordered pair (V (D), A(D)), where V (D) is a set of
vertices and A(D) is a set of the directed edges, also called arcs. This, together with
an incidence function ψD, describes a digraph. If a is an arc and with the incidence
function ψD(a) = uv, u is the tail and v is the head of the arc a and that u dominates v.
For each vertex v, it can be distinguished between which vertices dominate v and which
vertices are dominated by v. The vertices that dominates v is called its in-neighbours
and can be denoted by N−

D (v), while the vertices that are dominated by v are called its
out-neighbours and can be denoted by N+

D (v) [BM08].

e1 e2

e3

e6

e8

e9

e4
e7

e5v1

v2

v3

v4 v6

v5

Figure 2.17: Example of a directed graph
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Any digraph has an underlying graph, denoted G(D), that is the same set of vertices,
but with edges instead of arcs. Similarly, an associated digraph of G, denoted D(G),
has the same vertex set as in D, but arcs instead of edges. As with graphs, a digraph
can be visually represented, where the arcs are edges that have arrows from the tail to
the head of the edge [BM08]. An example is given in Figure 2.17.

The concept of degrees of a vertex in a digraph is very similar to the degrees in an
undirected graphs, but now it is also distinguished between the in- and outdegree, which
are respectively denoted by d−

D(v) and d+
D(v). It can also be separated between the

maximum and minimum in- and outdegree of a digraph, D. The minimum in- and
outdegree can be denoted by

δ+(v) = min
{
d+

D(v), v ∈ D
}

δ−(v) = min
{
d−

D(v), v ∈ D
}
.

The maximum in- and outdegree can be denoted by,

∆+(v) = max
{
d+

D(v), v ∈ D
}

∆−(v) = max
{
d−

D(v), v ∈ D
}
.

A source is a vertex v with d−
D(v) = 0 and a sink is a vertex v with d+

D(v) = 0. It is a
directed path or cycle if every vertex dominates the succeeding vertex in the sequence
[BM08].
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Chapter 3

Network Flow

In this chapter we will look at network flows, which is a continuation of the directed
graphs that were presented in Chapter 2. A network flow is a concept used to describe
the movement of a resource through a network of interconnected vertices and edges. In
a network flow, each edge and vertex is assigned a value. This value can describe the
requirement at each vertex and the possible flow on each edge [Dah13]. Figure 3.1 shows
an example of a network flow.

Figure 3.1: Example of a network.

3.1 Network flow theory

This section, Section 3.1, is based on theory from Geir Dahl’s note "Network flows and
combinatorial matrix theory" [Dah13].

In a network flow, some special sets are of extra interest.

δ+(v) = {e ∈ E : e = (u,w) for some vertex w ∈ V } : the set of edges leaving v.

δ−(v) = {e ∈ E : e = (u,w) for some vertex w ∈ V } : the set of edges entering v.

The flow between vertices can be described with the function

x : E → R.

13



Chapter 3. Network Flow

Hence, x assigns a value x(e) to each edge e, which is the flow in the given edge. The
divergence of a flow is the difference between the total inflow and outflow at each edge.
This can be described with the following equation,

divx(v) =
∑

e∈δ+(v)
x(e) −

∑
e∈δ−(v)

x(e).

In general it is ∑
v∈V

divx(v) = 0.

The most interesting network flow is when the divergence is given

b : V → R,

hence b = divx and ∑v∈V b(v) = 0 and it satisfies

b(v) =
∑

e∈δ+(v)
x(e) −

∑
e∈δ−(v)

x(e).

This is called the flow balance equation.

If divx = O, where O is the zero vector, it is a circulation, and in every vertex, the total
inflow equals the total outflow. This is called flow conservation.

In a network flow, there exists a capacity function along with the divergence function.
The capacity function c, like the divergence function, assigns a value to each of the
network’s directed edges. As the name suggests, the capacity function describes the
capacity at each edge,

c : E → R.

Thus, it can be looked upon as how many units of flow it is possible to get through each
edge. This naturally gives rise to a capacity constraint. It is obviously not possible to
send more units of flow through a given edge than there is capacity for at that edge. A
flow is said to be feasible if the following inequality is satisfied

0 ≤ x(e) ≤ c(e) for all e ∈ E.

In a digraph, a directed path is a sequence alternating between distinct vertices and
edges,

P : v0, e1, v1, ..., et, vt

where ei = (vi−1, vi) and 1 ≤ i ≤ t. P can also be called v0vt-path or a path from v0 to
vt.

14



3.1. Network flow theory

Figure 3.2: A network flow with capacity constraints assigned to each edge, shown with bold font.

3.1.1 Existence of circulations and flows

The boundary of a subset S ⊆ V can be described with the following properties

δ+(S) = {e ∈ E : e = (u,w), v ∈ S,w /∈ S} : the set of edges leaving S,

δ−(S) = {e ∈ E : e = (u,w), v /∈ S,w ∈ S} : the set of edges entering S.

It is also needed an auxiliary graph Dx = (V,Ex) associated with the flow x where

Ex = {e ∈ E : x(e) < u(e)} ∪ {e−1 ∈ E : l(e) < x(e)}

and e−1 = (v, u), "the inverse edge" of e = (u, v).

Theorem 3.1.1 (Hoffman’s circulation theorem, [Dah13, p. 4]). Let l, u : E → R be edge
functions satisfying l ≤ u. Then there exists a circulation x in D such that

l ≤ x ≤ u

if and only if ∑
e∈δ−(S)

l(e) =
∑

e∈δ+(S)
u(e) (S ⊆ V ).

Moreover, if l and u are integral (the function values are integral), then x can be taken to
be integral.

The proof can be found in [Dah13, p. 4].

3.1.2 Maximum flow and minimum cut

In this subsection, the maximum flow problem and the minimum cut problem will be
presented.

Let D = (V,E) be a directed graph with nonnegative edge capacity function c : E → R+.
There is a source s and a sink t. An st-flow is a flow x, satisfying∑

e∈δ+(v)
x(e) =

∑
e∈δ−(v)

x(e) (v ∈ V \ {s, t})

O ≤ x ≤ c.
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Chapter 3. Network Flow

The value of an st-flow is the total outflow from the source,

val(x) =
∑

e∈δ+(v)
x(e).

In an st-flow there will be no edge entering the vertex s and therefore val(x) = divx(s).
This gives rise to one of the two problems presented in this chapter, the maximum flow
problem. The problem is to find an st-flow x that maximises the value of the flow, hence,
a maximum flow.

The other optimisation problem is to find an st-cut. This is a subset of edges K = δ+(S)
for a vertex set S ⊆ V with s ∈ S and t /∈ S. The capacity of each edge can be described
with c : E → R+, and the capacity of the st-cut K is

capc(K) =
∑
e∈K

c(e).

This gives rise to the other optimisation problem presented in this chapter, the minimum
cut problem. The problem is to find an st-cut K with as small capacity as possible. This
cut K is called a minimum cut.

Lemma 3.1.2 ([Dah13, p. 7]). The following inequality holds

max{val(x) : x is st-flow} ≤ min{capc(x) : K is st-cut}.

The inequality in Lemma 3.1.2 is actually an equality and was proven by Dantzing
and Fulkerson. This gives the max-flow min-cut theorem, an important result in
combinatorics and combinatorial optimisation.

Theorem 3.1.3 (Max-flow min-cut theorem, [Dah13, p. 8]). For any directed graph D, edge
capacity function c, and distinct vertices s, t, the value of a maximum st-flow equals the
minimum st-cut capacity, i.e.,

max{val(x) : x is st-flow} = min{capc(x) : K is st-cut}. (3.1)

The following proof is based on Dahl’s proof from [Dah13].

Proof. It is already known from Lemma 3.1.2 that there is a maximum st-flow less than
or equal to the minimum st-cut. Hence, it is only needed to show that there in fact exists
an st-flow that is equal to the minimum cut capacity M . The graph D does not contain
the edge (t, s). The graph D′ = D ∪ (t, s). Define l(t, s) = u(t, s) = M and l(e) = 0,
u(e) = c(e) for each e ∈ E. In order to continue the proof, Hoffman’s circulation theorem
Theorem 3.1.1, is used. Look at the case where s ∈ S, t /∈ S. Hoffman’s theorem then
gives ∑

e∈δ−(S)
l(e) = M + 0 = M

and ∑
e∈δ+(S)

u(e) =
∑

e∈δ+(S)
c(e) = capc(δ+(S)).
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3.1. Network flow theory

This gives

capc(δ+(S)) ≥ M (S ⊆ V, s ∈ S, v /∈ S).

Because M is the minimum cut capacity this condition is satisfied. From Hoffman’s
circulation theorem Theorem 3.1.1 it is clear that there is a circulation x in D′ with
l ≤ x ≤ u. Hence, x(t, s) = l(t, s) = u(t, s) = M , and therefore the flow x is an st-flow
with val(x) = M. ■

3.1.3 The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm is a common algorithm for finding a maximum st-flow
in a network. There exists other algorithms that compute this and even though they
might be more efficient, the Ford-Fulkerson is common because it is neat and simple.

The conditions are the same as earlier. There is a digraph D, vertices s and t, a
nonnegative capacity function c and assume that D contains an st-path. If x is an st-flow
it can be constructed an auxiliary graph Dx = (V,Ex) where

Ex = {e ∈ E : x(e) < c(e)} ∪ {e−1 : e ∈ E, x(e) > 0}. (3.2)

In the auxiliary graph Dx every st-path P is called an x-augmenting path. The P -edges
that also lie in E are called forward edges and are in the set P+, the rest of the edges
from E corresponds to backward edges in D and are in the set P−. The auxiliary graph
to the graph in Figure 3.2 is presented in Figure 3.2.

Figure 3.3: The associated auxiliary graph to Figure 3.2.

Theorem 3.1.4 ([Dah13, p. 9]). Let x be an st-flow. Then x is a maximum flow if and only
if Dx contains no x-augmenting path.

The following proof is based on Dahl’s proof in [Dah13].

Proof. Start by assuming there is an augmenting path P in Dx. Let ϵ be the minimum
of the following numbers

(i) c(e) - x(e) for each e ∈ P+

(ii) x(e) for each e ∈ P−.

17



Chapter 3. Network Flow

Hence, ϵ > 0. Then it can be made a greater st-flow by adding ϵ to the flow in each edge
e ∈ P+ and subtracting ϵ for each edge in P−. This gives a new flow called x′, which is
also an st-flow because the difference between the total outflow and total inflow in every
vertex v ̸= s, t is zero. In addition val(x′) = val(x) + ϵ. Since ϵ > 0, val(x′) > val(x).
Hence, if Dx contains an augmenting path, there will always be possible to find a greater
value for the st-flow.

Assume now that Dx contains no x-augmenting path. S(x) is the set of vertices to
which we can find an augmenting sv-path in Dx, and define the cut K = δ+ (S(x)).
Then x(u, v) = c(u, v) for each edge e = (u, v) ∈ K, otherwise v ∈ S(x). Also note that
x(u, v) = 0 for each edge e = (u, v), u /∈ S(x), v ∈ S(x). The flow in each edge in the
cut K is as great as possible while the flow in the reverse cut δ−(S(x)) is zero. Hence,
val(x) = capc(K). From Lemma 3.1.2 we then get that x is a maximum st-flow and
K = δ+(S(X)) is a minimum st-cut. ■

Ford-Fulkerson max-flow algorithm

The Ford-Fulkerson algorithm to find a maximum flow is described as follows in [Dah13,
p. 10].

1. Start with the zero flow x = O.

2. Look for an x-augmenting path P in Dx.

(a) If such path P exists, then find the maximum possible increase ϵ of flow in D
along the path corresponding to P . Augment the flow x accordingly.

(b) If no such P exists, then the present x is a maximum flow. Moreover, a
minimum st-cut if δ+(S(x)) where S(x) denote the set of vertices to which
we can find an augmenting sv-path in Dx.

In order to find an x-augmenting path in Dx let V0 = {s}. Then, iteratively, let Vi+1 be
the vertices V \ (V0, ..., Vi) that can be reached by only one edge from a vertex in Vi.

The value of the flow is increased by at least one unit in each of the flow augmentations.
This means that the Ford-Fulkerson algorithm requires at most the same iterations as
the value of the maximum flow M .

Example 3.1.5. Find the maximum flow through the network shown in Figure 3.4. The
bold typing along the arcs are the capacities, while the not bold typing is the flow, which
initially is 0 at every arc.

Figure 3.4: A network to find a maximum flow through.
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1. The first x-augmenting path P1 can be P1 : S −A−B −C − T . The maximum possible
increase is ϵ = 2 along this path. This results with the auxiliary graph in Figure 3.5a.

2. The next x-augmenting path P2 can be P2 : S − A − D − T . The maximum possible
increase is ϵ = 6 along this path. This results with the auxiliary graph in Figure 3.5b.

3. The next x-augmenting path P3 can be P3 : S − B − C − T . The maximum possible
increase is ϵ = 6 along this path. This results with the auxiliary graph in Figure 3.5c.

4. It is not possible to find any x-augmenting path Figure 3.5c, and we have a maximum
flow, as shown in Figure 3.5d.

(a) (b)

(c) (d)

Figure 3.5: (a) The auxiliary graph after increasing the flow with ϵ = 2 on the path S−A−B−C−T .
(b) The auxiliary graph after increasing the flow with ϵ = 6 on the path S −A−D − T . (c) The
auxiliary graph after increasing the flow with ϵ = 6 on the path S −B −C − T . (d) A maximum
flow through the original graph.

3.2 The Flow Decomposition Theorem

This section, Section 3.2, is based on theory from "Network flows. Theory, algorithms,
and application" [AMO93].

In this section the Flow Decomposition Theorem is presented. This theorem is important
because it breaks down a complicated flow problem into smaller problems that can be
solved more easily. The theorem identifies which elements of the network are contributing
to the flow by decomposing the flow into pathways and cycles, and we can focus on
optimising the flow along each path and cycle independently. Before presenting the
theorem and the algorithm obtained from the proof, there is a need for some more
definitions than what is already presented in Section 3.1.
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Chapter 3. Network Flow

The flow of each arc can be described with the linear system∑
j:(i,j)∈A

xij −
∑

j:(i,j)∈A

xij = −e(i) ∀i ∈ N

0 ≤ xij ≤ uij ∀i ∈ N

where
n∑

i=1
e(i) = 0

(3.3)

The integer e(i) tells the difference in inflow and outflow of each vertex and e(i) is the
imbalance in the vertex i [AMO93, p. 80].

• e(i) > 0: excess vertex

• e(i) < 0: deficit vertex

• e(i) = 0: balanced vertex

It is needed notation to distinguish between flows on a path P and a cycle W .

P : collection of all directed paths
W : collection of all directed cycles

For every directed path P ∈ P and every directed cycle W ∈ W there is the following
variables

f(P ) : the flow on path P
f(W ) : the flow on path W

A flow xij can be described by summing the flows f(P ) and f(W ) for the paths and
cycles that are contained within the given arc (i, j). To describe the flow xij it can be
introduced some new variables as in [AMO93, p. 80],

xij =
∑
P ∈P

δij(P )f(P ) +
∑

W ∈W
δij(W )f(W ),

where

δij(P ) = 1; if arc (i, j) is contained in P

δij(P ) = 0; if arc (i, j) is not contained in P

δij(W ) = 1; if arc (i, j) is contained in W

δij(W ) = 0; if arc (i, j) is not contained in W

This shows that each path and cycle flow determines arc flows uniquely.

Theorem 3.2.1 (Flow Decomposition Theorem [AMO93, p. 80]). Every path and cycle
flow has a unique representation as nonnegative arc flows. Conversely, every nonnegative
arc flow x can be represented as a path and cycle flow (though not necessarily uniquely)
with the following properties:

• Every directed path with positive flow connects a deficit vertex to an excess vertex.
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3.2. The Flow Decomposition Theorem

• At most n + m paths and cycles have nonzero flow; out of these, at most m cycles
have nonzero flow.

The following proof is obtained from [AMO93].

Proof. We have already observed that each path and cycle flow determines arc flows
uniquely, but we need to show the contrary. The proof of this is an algorithm that shows
that any arc flow, x, can be decomposed into a path and cycle flow.

Suppose i0 is a deficit vertex, then we have an arc (i0, i1) with positive flow. If i1 is an
excess vertex, we stop. If this is not the case, (3.3) implies that we have some other arc
(i1, i2) that carries a positive flow. Repeat this until we either encounter an excess vertex
or we revisit a vertex. If we encounter an excess vertex we obtain a directed path from
the deficit vertex i0 to an excess vertex ik. If we revisit a vertex we obtain a directed
cycle. If we obtain a directed path we let

f(P ) = min{−e(i0), e(ik),min{xij : (i, j) ∈ P}}

and redefine

e(i0) = e(i0) + f(P )
e(ik) = e(ik) − f(P )

and for every arc (i, j) ∈ P

xij = xij − f(P ).

If we obtain a directed cycle we let

f(W ) = min{xij : (i, j) ∈ W}

and for every arc (i, j) ∈ W

xij = xij − f(W ).

Repeat this until all vertex imbalances are zero. Then choose any vertex with a least one
outgoing arc with a positive flow as the new i0 and repeat the procedure, which in this
case must find a directed cycle. Terminate when the arc flow, x = 0 for the redefined
problem. The original flow is now the sum of flows on the paths and cycles identified by
this method.

Each time we identify a directed path we reduce that excess/deficit of some vertex to
zero or the flow on some arc to zero, and each time we identify a directed cycle we reduce
the flow on some arc to zero. This means that the path and cycle representation of the
given flow x contains at most n+m directed paths and cycles, and at most m of these
are directed cycles.

■
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Chapter 3. Network Flow

Example 3.2.2. The proof of Theorem 3.2.1 gives a flow decomposition algorithm. The
algorithm can be demonstrated on the network flow shown in Figure 3.1.

Figure 3.1: Example of a network.

1. We start with the deficit vertex A. We then obtain the directed path P1 : A−D−C −T
with a flow of 1 unit. See Figure 3.6a.

2. We then choose S as the next deficit vertex. We then obtain the directed path
P2 : S −A−D − C with a flow of 2 units. See Figure 3.6b.

3. S is still a deficit vertex and starting with S we obtain the directed path P3 : S−A−B−T
with a flow of 1 unit. See Figure 3.6c.

4. Now there are no more deficit vertices, and we have a complete decomposition of the
network in Figure 3.1, made up by P1, P2 and P3.

(a) (b)

(c)

Figure 3.6: A decomposition of Figure 3.1 using the flow decomposition algorithm. (a) In yellow,
the path P1 : A−D−C−T (b) The flow without P1 and, in yellow, the path P2 : S−A−D−C
(c) The flow without P1, P2 and, in yellow, the path P3 : S −A−B − T .
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Chapter 4

Practical use of graphs and network flows

Graphs have a great number of real-life applications. The different types of graphs can
be used to describe different types of problems. Graphs may not only be relevant in
the natural sciences, but for instance also in linguistics and social sciences [Fou12]. The
following sections describe some examples of the use of graphs.

4.1 Graphs in chemistry

Every molecule can be described with a structural formula, which again can be represented
by a graph. Each atom is a vertex and the bonds are the edges. If there are some atoms
with more than one binding connecting them, this is shown with parallel edges between
the given atoms [Fou12]. An example of this is the formula of acetic acid, CH3COOH, as
shown in Figure 4.1.

CH

H

H

C

O

O H

Figure 4.1: Acetic acid CH3COOH represented as a graph.

4.2 Graphs in civil engineering

Graphs are commonly used to model problems that civil engineers encounter. Problems
such as traffic flow through a city or problems where mass needs to be transported from
a construction site where it has been excavated to another area that might be in need of
the mass [Fou12].

4.2.1 Earthwork problems

Earthwork problems are a common example of something that can be shown using a
graph. For instance, in smaller cities around Oslo, there is a fast development of the areas
including building of a great amount of apartment buildings. Such work may require
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Chapter 4. Practical use of graphs and network flows

earth fillings. This earth fillings need to be dug from suitable places, borrow pits, and
transported to the construction site. Each borrow pit has a known amount of fillings, the
construction site require a known amount of filling at several spots, and it is a known
cost to transport the fillings from the borrow pit to the different spots with requirements.
This gives rise to a problem of finding the minimum cost of this transportation [Fou12].

This is a problem that can be modelled with a complete bipartite graph, G, with the
partitions I and J such that I ∪ J = G. I is the borrow pits, with belonging values of
how much filling is available. J is the spots where the filling is required, with belonging
values of the requirements at each spot. The value along an edge vivj if the cost of
transporting from vi to vj . An example is shown in Figure 4.2, with I = {A,B,C} as
the borrow pits and J = {D,E, F ;G} as the areas needing filling [Fou12].
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Figure 4.2: A model of a earthwork project.

4.3 Social science

Graphs are a very aesthetically pleasing and easily understandable way to present
connections between people. Whether it is used to describe a person’s connections in
social media or who has collaborated with whom in a group of mathematicians.

4.3.1 Connections in social media

A trivial example of a possible use of graphs, that most are familiar with, is
friends/connections on social media. Everyone can, in theory, connect with anyone, no
one can connect with oneself (a loop), and you can only connect with someone once (no
parallel edges). In Figure 4.3 you can see an example of a social network. Taking Anne
as a starting point, the graph can describe the connection between her friends on a social
platform, and again show which of her connections that are connected.
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Anne

Bernt Caroline

Dina

EirikFrede

Figure 4.3: Example of a graph used to describe social connections.

4.3.2 Co-authorship graps and Erdős number

In science research collaboration between scientists can be an important part of the work.
An example from physics is the detection of elementary particles, where it is needed a
lot of people to run accelerators. This means that many physicists have collaborated
and are in some way connected to each other. Hence, it can be presented as a graph.
Collaboration in mathematics may not be as common as in other fields of science, but
it may nevertheless be interesting to look at the connection between mathematicians
[Fou12].

When using the words scientists/mathematicians in this section, it is important to note
that they are indeed published scientists/mathematicians.

Co-authorship graphs

Graphs can be used to describe the relation between scientists who have collaborated
and not, with a co-authorship graph. A co-authorship graph is a graph where the set of
vertices is a given set of scientists, and if two scientists have collaborated at any given
time, there should be an edge connecting their vertices. This type of graphs can be made
from scientists in the same field of study, or across fields of studies [BK02].

Erdős number

The Hungarian mathematician Paul Erdős was well known for being very productive
with his publishing and he did collaborate with a lot of scientists. This gave rise to the
Erdős number (EN). A person who has collaborated with Erdős would have EN = 1,
while a person who has collaborated with someone who has collaborated with Erdős
would have EN = 2, and so on. Paul Erdős himself has EN = 0. This phenomenon can
be described with a co-authorship graph centering around Paul Erdős. Every scientist
who had collaborated with him would be given the Erdős number 1 and would be one
edge away from Erdős in the graph [Wik23a].

There exist calculators that compute the collaboration distance between any two published
scientists, and hence also the Erdős number. My supervisor, Geir Dahl, has collaborated
with Richard A. Buraldi, who has collaborated with Noga Alon, who has collaborated
with Paul Erdős. This means that Geir Dahl has the Erdős number EN = 3 [Bar23].
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Chapter 5

The Graham-Pollak Theorem

From Chapter 2 it is known that there exists several ways to decompose a graph. In this
section, we want to look at a special type of decomposition, namely complete bipartite
decomposition. What is the smallest possible number of subgraphs needed to decompose
the complete graph Kn into complete bipartite subgraphs? The Graham-Pollak theorem
states that the complete graph Kn needs at least n− 1 subgraphs for the decomposition
to be complete bipartite. The Graham-Pollak theorem was first published by Ronald
Graham and Henry O. Pollak in 1971 and 1972 and gives a beautiful result in graph
theory [Wik23b].

We start by restating the Graham-Pollak theorem.

Theorem 1.1.1 (The Graham-Pollak Theorem, [AZ18, p. 79]). If the complete graph Kn is
decomposed into complete bipartite subgraphs H1, H2, ... , Hm, then m ≥ n− 1.

The easiest way to obtain the optimal decomposition is by ordering the vertices, and
for every vertex make a star such that the vertex is adjacent to every latter vertex in
the ordering. If this is done with the n− 1 first vertices, it is obtained as few complete
bipartite subgraphs as possible. There are other ways to also make n−1 complete bipartite
subgraphs, but this way will always make sure the fewest subgraphs is obtained[Wik23b].

Example 5.0.1. An example of a decomposition of the complete graph K4 into complete
bipartite subgraphs, using the approach described in the paragraph above.

Figure 5.1: The complete graph K4.

Figure 5.2: A complete bipartite decomposition of K4.
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5.1 The Proof by Tverberg of the Graham-Pollak Theorem

The Graham-Pollak theorem, Theorem 1.1.1, has an elegant proof made by the Norwegian
mathematician Helge Tverberg, using linear algebra.

Tverberg’s proof, [AZ18, p. 80]. Let the vertex set of Kn be {1, ..., n}, and let Lj , Rj

be the defining vertex sets of the complete bipartite graph Hj , j = 1, ...,m. To every
vertex i we associate a variable xi. Since H1, ...,Hm decompose Kn, we find

∑
i<j

xixj =
m∑

k=1
(
∑

a∈Lk

xa ·
∑

b∈Rk

xb) (5.1)

Now suppose the theorem is false, m < n− 1. Then the system of linear equations

x1 + ...+ xn = 0,∑
a∈Lk

xa = 0 (k = 1, ...,m)

has fewer equations than variables, hence there exists a nontrivial solution c1, ..., cn.
From (5.1) we infer ∑

i<j

cicj = 0.

But this implies

0 = (c1 + ...+ cn)2 =
n∑

i=1
c2

i + 2
∑
i<j

cicj =
n∑

i=1
c2

i > 0,

we have a contradiction, and the proof is complete. ■
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The γ-problem

The Graham-Pollak theorem states that the least possible number of complete bipartite
graphs that the complete graph Kn can be decomposed into is n− 1. But what happens
if the subgraphs do not need to be complete bipartite, but we are satisfied with bipartite
subgraphs? We want to explore this change in the conditions of the theorem. What is
the smallest possible number of bipartite subgraphs needed to decompose the complete
graph Kn?

6.1 What is the γ-problem?

To approach this problem, we need to introduce some new definitions.

Definition 6.1.1. The size of a decomposition is the number of subgraphs in the
decomposition.

Definition 6.1.2. γn is the smallest possible number of bipartite subgraphs needed to
decompose a complete graph Kn for n ∈ N.

The problem is to find the smallest possible number of bipartite subgraphs needed to
decompose the complete graph Kn. In comparison to the problem in the Graham-
Pollak theorem, it is now open for less strict decompositions. Hence, there will be more
possible ways to decompose Kn. Because we now have more freedom when making
the decomposition it is conceivable that the number of decomposition needed when the
subgraphs are complete bipartite is greater than if the subgraphs need only be bipartite.
Hence,

γn ≤ n− 1. (6.1)

When trying to solve this problem it is natural to start by checking what will happen
to the decomposition of Kn when n is small. We have tried out what will happen for
n = 3, ..., 10 and possibly found a pattern that gives us γn. The complete graph is not of
great interest if n < 3. K2 is by definition a complete bipartite graph, so it can clearly
be decomposed into only one subgraph, while K1 only consists of one vertex.
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n n− 1 γn

3 2 2
4 3 2
5 4 3
6 5 3
7 6 4
8 7 4
9 8 5
10 9 5
...

...
...

n n− 1 ⌈n
2 ⌉ ?

Table 6.1: A comparison of the number of bipartite subgraphs need to decompose a complete
graph, depending on whether or not the subgraphs are complete bipartite.

Table 6.1 presents a comparison of the number of subgraphs necessary to decompose the
complete graph Kn, when the subgraphs need to be complete bipartite, n− 1, and only
bipartite, γn. To find these numbers we have made an algorithm where as many vertices
as possible are split in each subgraph. If n is an even number, I find as many unique
partitions of the edges such that |I| = |J | = n/2. If n is an odd number, it is obviously
not possible to make partitions of equal size if all vertices should be included. Instead one
can make as many unique partitions with |I| = ⌈n/2⌉ and |J | = ⌊n/2⌋ as possible. For
each subgraph, every edge not covered in any former subgraphs is included. This makes
sure that each vertex is in different sets at least once and that every edge is included.

Conjecture 6.1.3. The smallest size of a complete bipartite decomposition of the complete
graph Kn is n divided by 2 and rounded up to the nearest whole number, hence

γn =
⌈
n

2

⌉
. (6.2)

In a decomposition, it is required that each edge only appear once. Each subgraph can
be described with

Si = (Ii, Ji, Fi) i = 1, ..., s, (6.3)

where I, J is the disjoint sets of vertices, s is the number of subgraphs and F tells which
edges is contained in the subgraph. Each subgraph contains only edges between vertices
in I and J .

In the following sections, Conjecture 6.1.3 is proven for n = 4 and n = 5 and it is made
an outline of a proof for the general complete graph Kn.
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6.2 The γ-problem on K4

We start by proving that Conjecture 6.1.3 holds for n = 4. In Figure 6.2 the complete
graph K4 is decomposed into as few bipartite subgraphs that we can manage. But is
this indeed the smallest number of subgraphs in this type of decomposition? We want to
show that this is true and hence γ4 = 2.

We start with an example showing a possible complete bipartite decomposition of K4.

v1

v2 v3

v4

Figure 6.1: The complete graph K4.

A bipartite decomposition of K4 from Figure 6.1 is shown in Figure 6.2.

(a) (b)

Figure 6.2: Decomposition of K4 into bipartite subgraphs, (a) S1 and (b) S2.

Using the notation from (6.3) we can describe the two subgraphs of K4 seen in Figure 6.2
with

S1 : I1 = {v1, v4}, J1 = {v2, v3}, F1 = {v1v2, v1v3, db, dc}
S2 : I2 = {v1, v2}, J2 = {v4, v3}, F2 = {v1v4, v2v3}.

Because Figure 6.2 shows that there is possible to decompose K4 into as little as two
bipartite subgraphs, we know that γ4 ≤ 2. We already know from The Graham-Pollak
theorem that n− 1 = 4 − 1 = 3. Hence, γ4 ≤ 3. This is consistent with (6.1).

6.2.1 Proof that γ4 = 2

In Figure 6.2 K4 is successfully decomposed into two bipartite subgraphs. I need to show
that is not possible to decompose K4 into only one bipartite subgraph.

Proposition 6.2.1. The smallest size of a complete bipartite decomposition of K4 is 2,
hence

γ4 =
⌈4

2

⌉
= 2.
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Observation 6.2.2. When trying to make only one bipartite subgraph of K4, we can
disregard bipartitions where I ∪ J ̸= V (K4). This is because we want to decompose K4
into only one subgraph and for that one subgraph to be K4 we need to include all vertices
in V (K4).

Proof. If we want to decompose a graph on four vertices into only one subgraph, we can
make bipartitions such that we have either |I|= 2 and |J |= 2, or |I|= 1 and |J |= 3.

With these sets of vertices, we can make the following complete bipartite graphs.

S1 : I1 = {v1, v2}, J1 = {v3, v4}, F1 = {v1v3, v1v4, v2v3, v2v4} (6.4)

Here the edges {v1v2, v3v4} are not included, and therefore it is not a decomposition of
K4. The other possible distribution is as follows,

S1 : I1 = {v1}, J1 = {v2, v3, v4}, F1 = {v1v2, v1v3, v1v4} (6.5)

Here the edges {v2v3, v2v4, v3v4} are not included, and therefore it is not a decomposition
of K4.

Hence, it will not be possible to decompose K4 into less than two bipartite subgraphs
and we have γ4 = 2.

■

6.3 The γ-problem on K5

We continue to show that Conjecture 6.1.3 holds for K5 also. In Figure 6.4 the complete
graph K5 is decomposed into as few bipartite subgraphs that we can manage. But is
this indeed the smallest number of subgraphs in this type of decomposition? We want to
show that this is true, hence γ5 = 3.

We start by showing an example of a complete bipartite decomposition of K5.

Figure 6.3: The complete graph K5.

A complete bipartite decomposition of K5, in Figure 6.3 is shown in Figure 6.4.
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Figure 6.4: A bipartite decomposition of K5.

Because Figure 6.4 shows that there is possible to decompose K4 into as little as two
bipartite subgraphs, we know that γ4 ≤ 2. We already know from The Graham-Pollak
theorem that n− 1 = 5 − 1 = 4. Hence, γ5 ≤ 4. This is still consistent with (6.1).

There are many ways to split the vertices in K5 into distinct sets. We choose to always
have I ∪J = V (K5). This is because the important part is which edges, not vertices, that
are included in the bipartite subgraphs. Hence, a subgraph with |I| = 1 and |J | = 1, 2, 3
can give rise to the same subgraphs as if |I| = 1 and |J | = 4. Similarly, we get the same
possible subgraphs if |I| = 2 and |J | = 3, as if |I| = 2 and |J | = 1, 2. It only depends on
which edges we include in the subgraph.

Hence, there are two different ways to split the set of vertices of K5, if we want
I ∪ J = V (K5),

• |I| = 1, |J | = 4

• |I| = 2, |J | = 3.

Thus, we can decompose K5 into two subgraphs with the following size of partitions,

• S1: |I1| = 1, |J1| = 4 and S2: |I2| = 1, |J2| = 4

• S1: |I1| = 1, |J1| = 4 and S2: |I2| = 2, |J2| = 3

• S1: |I1| = 2, |J1| = 3 and S2: |I2| = 2, |J2| = 3.

6.3.1 Proof that γ5 = 3

In Figure 6.4 we have successfully decomposed K5 into three bipartite subgraphs. We
need to show that it is not possible to decompose K5 into any less than three bipartite
subgraph.

Proposition 6.3.1. The smallest size of a complete bipartite decomposition of K5 is 3,
hence

γ5 =
⌈5

2

⌉
= 3.
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Proof. To prove this we start by parting the first subgraph, S1 into the sets

I1 = {v1}, J1 = {v2, v3, v4, v5}, F1 = {v1v2, v1v3, v1v4, v1v5} (6.6)

We then have two options when making the bipartite subgraph S2.

I2 = {v2}, J2 = {v1, v3, v4, v5}, F2 = {v2v3, v2v4, v2v5} (6.7)

By using this distribution of vertices it will never be possible to separate the vertices
{v3, v4, v5} and there will not be possible to include the edges {v3v4, v3v5, v4v5}. Hence,
we do not get a decomposition of K5.

But what happens if S2 has the distribution |I2| = 2 and |J2| = 3 instead? We have to
look at what happens if vn ∈ I1 is in either vn ∈ I2 or vn ∈ J2.

First, vn ∈ I2, in this case, v1 ∈ I2.

I2 = {v1, v2}, J2 = {v3, v4, v5}, F2 = {v2v3, v2v4, v2v5}. (6.8)

As in (6.7) we will never get the edges {v2v3, v2v4, v2v5} and we will not get a
decomposition of K5.

Then, vn ∈ J2, in this case, v1 ∈ J2,

I2 = {v4, v5}, J2 = {v1, v2, v3}, F2 = {v2v4, v2v5, v3v5, v3v5}. (6.9)

In (6.9) the edges {v2v3, v4v5} will never be included and it will not be a decomposition
of K5.

Hence, we will not get a decomposition of K5 with only two subgraphs that are bipartite
if one of the subgraphs has the distribution |I1| = 1 and |J1| = 4.

The last possible option is for both of the subgraphs to have the distribution |I| = 2 and
|J | = 3.

I1 = {v1, v2}, J1 = {v3, v4, v5}, F1 = {v1v3, v1v4, v1v5, v2v3, v2v2, v2v5}. (6.10)

for it to be a decomposition of K5 into bipartite subgraphs we need to separate the
elements in I1 and J2 respectively, as shown in 6.11,

v1/v2, v3/v4, v3/v5, v4/v5 (6.11)

If v3 needs to be separated from both v4 and v5, we must, for instance, have v3 ∈ I2 and
v4, v5 ∈ J2. But we need also separate v4 and v5, which means that we must have v4 ∈ I2
and v5 ∈ J2. Hence, it is impossible to fulfil all the requirements from 6.11.

Hence, it is not possible to decompose K5 into less than three bipartite subgraphs.
■
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6.4 The γ-problem on Kn

In the previous chapter Conjecture 6.1.3 is proven for n = 4 and n = 5. The natural next
step is to try and prove it for every n ∈ N. This is a rather difficult problem to solve. It
will therefore in this section be presented some explanations of why the algorithm used
to find the values in Table 6.1 is an efficient way to find the smallest possible bipartite
decomposition of the complete graph Kn.

6.4.1 Ideas for a proof of Conjecture 6.1.3

To make a decomposition of Kn where every subgraph is a bipartite graph, we need to
make sure that each pair of vertices (vi, vj) is in separate sets at least once. If this is not
the case, we will never get to include the edge vivj , and if one edge is missing we do not
have a decomposition. For each subgraph, we can make sure that at least two distinct
pairs of vertices are in each set of vertices. I want also to always include every edge, not
included in any former subgraphs, in each subgraph.

The optimal size of sets of each subgraph

If we want to have as few decompositions as possible, we want to include as many edges
as possible in each subgraph. We can start by making a subgraph where each subset has
as similar size as possible, hence |I| = |J |, or |I| = |J | − 1. This gives the most possible
edges. We can prove this with some short calculations. The number of possible edges in
the cut is the size of the sets multiplied. We need to look at separate cases, one where n
is even, and one where n is odd.

If n is even, we can split the graphs into equal sized sets, |I| = |J |. Then we get

|I| · |J | > (|I| + 1) · (|J | − 1) > (|I| + 2) · (|J | − 2)...

Hence, the sets of equal size give rise to more possible edges than sets of not equal size.

If n instead is odd, we can split the sets such that |I| = |J | − 1. Then we get

(|J |) · (|J | − 1) > (|J | + 1) · (|J | − 2) > (|J | + 2) · (|J | − 3)...

Hence, the smaller the difference in the size of the sets, the more edges can be included in
the subgraph. This holds when n is both even and odd.

As mentioned earlier, we need every pair of vertices to be in different sets at least once
to get every edge included somehow in the decomposition. If every subgraph has a
distribution where |I| and |J | are as similar as possible, we get the greatest possible
number of edges to choose from in each subgraph, and also the greatest possible number
of edges to choose from in total. Though it is important that two subgraphs do not have
the same distribution, then we will only achieve the same subgraph. To split every pair
of vertices at least once, we need to find how many unique ways we can split the vertices
in the best possible way. Hence, how many times can we divide n by 2?
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Visual explanation of Conjecture 6.1.3

My initial idea is to draw the graph Kn and then use the visual representation of complete
graphs to explain why the number of subgraphs is ⌈n/2⌉. Any graph can be drawn in a
way such that the vertices are arranged in a circle, as in Figure 6.5. Using this way to
draw a graph can be used to show how we should make subgraphs. Each straight red
line splits the vertices in two sets. If this is done such that we get as many uniquq equal
(or as equal as possible) subgraphs. It is a very intuitive way to explain that we have
to have at least ⌈n/2⌉ subgraphs to decompose Kn into bipartite subgraphs. This way
makes sure that every pair of vertices is in different sets at least once, and hence every
edge can be included and we have a decomposition.

Figure 6.5: An example of how to make subgraph distributions to have each pair of vertices in
different sets at least once.
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The κ-problem

There are many decomposistions of graphs to explore. In the previous chapter we
introduced the γ-problem, where we adjusted the problem from the Graham-Pollak
theorem by looking at what would happen if the subgraphs no longer were complete
bipartite, but the only condition was that the subgraphs were bipartite. What would
happen if we wanted a complete bipartite decomposition of a graph, but the graph does
not need to be the complete graph Kn?

7.1 What is the κ-problem?

It is difficult to find a general pattern for the number of subgraphs in a decomposition of
an arbitrary graph. We can instead explore what would happen if we look at different
classes of graphs. To do this we need to introduce a new definition.

Definition 7.1.1. κ(G) is the smallest possible number of subgraphs needed to make a
complete bipartite decomposition of the graph G.

We also repeat the definiton of the size of decomposition from Chapter 6.

Definition 6.1.1. The size of a decomposition is the number of subgraphs in the
decomposition.

Greedy Algorithms

A rather intuitive way to solve an optimisation problem is by using what we call a greedy
algorithm. A greedy algorithm will try to find the optimal solution at each step in the
algorithm. This will not necessarily result in the overall optimal solution for the problem.
When trying to decompose a graph into as few subgraphs as possible, a greedy algorithm
will always start by finding the largest possible subgraph [MKR16].

Example 7.1.2. Find the maximum sum in Figure 7.1 by choosing a path on two edges
staring with the vertex 5. The greedy algorithm will try to find the best solution in each
step, this will give us the red path and the sum 5 + 9 + 11 = 25. That is clearly not the
best possible solution, the blue path will give the sum 5 + 7 + 17 = 29.
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Figure 7.1: An example where a greedy algorithm does not find the optimal solution.

7.2 The κ-problem on paths

The first class of graphs to prove the κ-problem for is paths. We start by looking at a
path and a possible complete bipartite decomposition.

Example 7.2.1. A complete bipartite decomposition of a path on four vertices.

v1 v2 v3 v4

Figure 7.2: A path on four vertices, P4.

The path on four vertices shown in Figure 7.2 can be decomposed into the following
complete bipartite subgraphs.

v1

v2

v3

(a) A complete bipartite subgraph.

v3 v4

(b) A complete bipartite subgraph.

Figure 7.3: A complete bipartite decomposition of the path in Figure 7.2.

Hence, we have the subgraphs

S1 : I1 = {v1, v3}, J1 = {v2}
S2 : I2 = {v3}, J2 = {v4}.

Observation 7.2.2. We need only take into account bipartite subgraphs that are connected.
If the bipartite subgraph is not connected, there will always be missing an edge between a
vertex in the partition sets, and the subgraph will clearly not be complete bipartite.

Proposition 7.2.3. A path on n vertices Pn can always be decomposed into ⌈(n− 1)/2⌉ =
⌈e/2⌉ complete bipartite subgraphs. Hence,

κ(Pn) =
⌈
n− 1

2

⌉
.
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Proof. A connected subgraph of a path will always be a path, so to prove Equation (7.7)
we need only show that it holds for any path.

A path on n vertices (v1, v2, ...., vn) is such that any two vertices in a path are adjacent if
and only if they are consecutive. Any path is bipartite, every other vertex is not adjacent
and can be put in different bipartition sets. Hence, we have a bipartite graph.

A path on four vertices (v1, v2, v3, v4) is not complete bipartite, because v1 and v4 are in
opposite sets, but are not adjacent. For any path of length > 4, there will be ≥ 3 vertices
in either I or J , or both. In a path the degree of any vertex is ≤ 2, and can not possibly
be adjacent to more than two vertices in its opposite set.

Hence, for a path to be complete bipartite we need to have no more than three vertices
and two edges. In Figure 7.3a and Figure 7.11b we see the two different types of complete
bipartite graphs possible to obtain in a complete bipartite decomposition of a path. We
can only have subgraphs such that |I| + |J | ≤ 3.

We know from Theorem 2.0.4 that any path on v vertices has e = v−1 edges. In addition,
we know that a path can only be complete bipartite if it has no more than three vertices
and two edges. Hence, the number of complete bipartite subgraphs is dependent on the
number of edges and vertices.

To get the smallest possible number of subgraphs, we need as many graphs as possible
with three vertices and two edges, as in Figure 7.3a. Therefore, we can check how many
times two add up in the number of edges. If the number of edges is odd, we will get a
remainder of one half, and therefore the decomposition will include one subgraph with
only one edge.

Hence, the smallest possible number of subgraphs needed to decompose a path into
complete bipartite subgraphs can be expressed as

⌈
e
2
⌉

=
⌈

n−1
2

⌉
,

κ(Pn) =
⌈
n− 1

2

⌉
(7.1)

■

Observation 7.2.4. It follows that a path with an odd number of edges will give the same
minimal number of subgraphs as the path on the following even number of vertices.

7.3 The κ-problem on cycles

When trying to find a complete bipartite decomposition of a cycle Cn, it is soon discovered
that this is quite similar to what happens when the graph we want to decompose is a
path. We start with an example of a complete bipartite decomposition of C5 and the
special case C4 before we proceed with a proposition and a proof.

Example 7.3.1. A cycle C5, can have the following complete bipartite decomposition
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Figure 7.4: A complete bipartite decomposition of C5.

This gives the following subgraphs, using the same notation as before

(a) S1 : I1 = {v2}, J1 = {v1, v3},
(b) S2 : I2 = {v4}, J2 = {v3, v5}
(c) S3 : I3 = {v1}, J3 = {v5}.

Example 7.3.2. A cycle C4 is indeed complete bipartite, as shown Figure 7.5.

Figure 7.5: C4 as an bipartite graph.

This is clearly complete bipartite with the partitions I = {v2, v4} and J = {v1, v3}.

Proposition 7.3.3. A cycle with n > 4 vertices Cn has a complete bipartite decomposition
of size ⌈n/2⌉ = ⌈e/2⌉. Hence,

κ(Cn) =
⌈
n

2

⌉
.

A cycle on n vertices (v1, v2, ..., vn) is such that any two vertices are adjacent if and only
if they are consecutive. The vertices are arranged in a cyclic sequence, hence, vn and v1
are also consecutive and adjacent.

Observation 7.2.2 holds for this case also. This means that to decompose we need only
take into account connected subgraphs. A connected subgraph of a cycle is either the
whole cycle itself, or it is a path. Hence, we need only take into consideration subgraphs
that are either paths or cycles.

Proof. From Theorem 2.0.6 we know that no cycle of odd length is bipartite. Hence,
a cycle of length 3 is not complete bipartite. A cycle of length 4 is indeed complete
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bipartite, as shown in Figure 7.5 and Proposition 7.3.3 does clearly not hold for the cycle
in ??.

For a cycle of length > 4, there will be ≥ 3 vertices in either I or J , or both. In a cycle,
the degree of any vertex is 2, and can not possibly be adjacent to more than two vertices
in its opposite set. Hence, no cycle of length ≥ 5 is complete bipartite.

To find the smallest complete bipartite decomposition, we can proceed similarly as with
paths. We can always decompose a cycle into paths of length ≤ 2, and this is guaranteed
complete bipartite. Thus, we can once more check how many times two adds up in the
number of edges. If the number of edges is odd, we will get a remainder of one half, and
therefore the decomposition will consist of one subgraph with only one edge.

Hence, the smallest possible number of subgraphs needed to decompose a cycle on n > 4
vertices into complete bipartite subgraphs is indeed

⌈
n
2
⌉

=
⌈

e
2
⌉

and hence,

κ(Cn) =
⌈
n

2

⌉
.

■

7.4 The κ-problem on wheels

It is possible to expand the κ-problem even further and look at what happens if the
graph we want to decompose is a wheel. This is a natural extension of the κ-problem on
cycles.

In a wheel each edge vivn+1 is called a spoke and the cycle made up by the n first vertices
is called the outer cycle of the wheel.

To decompose the wheel Wn it is tempting to use greedy a star-decomposition and
start by choosing the vertex with dW (v) ≥ 3. This gives a star with I = {vn+1} and
I = {v1, v2, ..., vn}. We are then left with a cycle that we know from Proposition 7.3.3
can be decomposed into ⌈n/2⌉ complete bipartite subgraphs. Hence, using this star-
decomposition we will get ⌈n/2⌉ + 1 complete bipartite subgraphs.

Proposition 7.4.1. A wheel on n+1 vertices Wn can be decomposed into ⌈n/2⌉+1 complete
bipartite subgraphs. Hence,

κ(Wn) =
⌈
n

2

⌉
+ 1. (7.2)

But is this indeed the least possible subgraphs needed to decompose a wheel Wn into
complete bipartite subgraphs? We begin by looking at an example of a complete bipartite
decomposition of W5 and W6.

Example 7.4.2. If we use a decomposition where we start by making a subgraph using
the star in the wheel, and then decompose the outer cycle as in Proposition 7.3.3 to find
a complete bipartite decomposition of the wheel W5, we get
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Figure 7.6: A complete bipartite decomposition of the wheel W5.

A complete bipartite decomposition of the wheel W6, using the same type of
decomposition, gives us

Figure 7.7: A complete bipartite decomposition of the wheel W6.

Hence, both W5 and W6 can at least be decomposed into four complete bipartite
subgraphs. This results in κ(W5) ≤ 4 and κ(W6) ≤ 4, which is consistent with
Proposition 7.4.1.

7.4.1 Background for proof

Observation 7.2.2 is still valid for this case. Thus, to decompose the wheel into complete
bipartite subgraphs, we need only consider connected subgraphs.

Possible complete bipartite subgraphs of a wheel

In a wheel Wn, n > 2, we know that every vertex vi, i = 1, ..., n, has the property
dW (vi) = 3, and they are adjacent to {vi−1, vi+1, vn+1}, while the vertex vn+1 has the
property dW (vn+1) ≥ 3 and it is adjacent to every vertex vi. This means that no two
vertices vi are adjacent to the exact same set of vertices. Hence, to get a complete
bipartite subgraph we can never have two vertices vi in the same partition J , unless
I = {vn+1}. If we want the decomposition to consist of only complete bipartite subgraph,
the following subgraphs are the possible options

• Figure 7.8a: A path on two vertices is complete bipartite.

• Figure 7.8b, Figure 7.8c: A path on three vertices is complete bipartite.

• Figure 7.8d: A cycle C4 is complete bipartite with the sets I = {vi, vn+1} and
J = {vi−1, vi+1}.
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• Figure 7.8e: The graph T3 is complete bipartite with I = {vi} and J =
{vi−1, vi+1, vn+1}.

• Figure 7.8f: A star with I = {vn+1} is complete bipartite with either J = {v1, ..., vn}
or if J consists only of the vertices not already adjacent to vn+1 in another subgraph.

(a) (b) (c)

(d) (e) (f)

Figure 7.8: The possible complete bipartite subgraphs of the wheel Wn.

7.4.2 Proof κ(Wn) = ⌈n/2⌉

Proof. Every possible complete bipartite subgraph has a maximum of two edges in the
outer cycle of the wheel. To cover every edge in the outer cycle with as few subgraphs as
possible, we need to have as many subgraphs as possible with two edges in the cycle. If
we want to cover these as efficiently as possible this is done with the same amount of
complete bipartite subgraphs as with a cycle, ⌈n/2⌉ subgraphs.

Unless there is possible to find a decomposition of size ⌈n/2⌉ that decomposes the
wheel in such a way that each spoke and each edge in the outer cycle is covered, the
star-decomposition will give us as few subgraphs as possible.

The subgraphs P1 will only cover one edge in the outer cycle and no spokes. So if this
subgraph is included, it needs a star, and it needs as many of P21 as possible. This will
require at least ⌈n/2⌉ + 1 subgraphs.

The subgraph P22 will cover every spoke, but only one edge in the outer cycle. That will
result in n subgraphs, which are greater than ⌈n/2⌉ + 1 as long as n > 2.

The subgraph C4 has the subsets I = {vi, vn+1} and J = {vi−1, vi+1}. It will not contain
the spoke vivn+1, and only two edges in the outer circle will be covered. Hence, if C4 is
one subgraph, we will always have at least one spoke left to cover, and the decomposition
will at least be of size ⌈n/2⌉ + 1.
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The subgraph T3 will always consist of one spoke and two edges in the outer cycle. If T3
is included in the decomposition, there must be one or two graphs to cover up the spokes
vn+1vi−1 and vn+1vi+1. This can be done with either a star or the graph P22 . The star
will have subsets I = {vn+1} and J = {vi−1, vi+1}. This will make sure that we get at
least ⌈n/2⌉ + 1 complete bipartite subgraphs. If P22 is used, the spokes will be covered,
but this will also include two extra subgraphs in the outer cycle. This will result in at
least ⌈n/2⌉ + 1 complete bipartite subgraphs.

Hence, a wheel Wn can never be decomposed into less than ⌈n/2⌉ + 1 complete bipartite
subgraphs and

κ(Wn) =
⌈
n

2

⌉
+ 1.

■

7.5 The κ-problem on a generalised star

An extension to this problem is to see what happens if we look at a new type of star
we can call a generalised star. The vertex with dS(v) > 2 we will call the star center,
while the connected edges are called star arms. A generalised star will still have only
one vertex of dS(v) > 2, but each star arm does not need to be of length 1. Each star arm
can be a path of arbitrary length. An even generalised star consists only of star arms
of even length, and an odd generalised star consists only of star arms of odd length.

It is reasonable to think that one should always start the decomposition by choosing
the vertex of degree > 1, the star centre, and make a complete bipartite graph. Hence,
a greedy algorithm would immediately look like an effective way to find the smallest
possible number of complete bipartite subgraphs.

There are a few things to notice when starting this problem. Because we want the
subgraphs to be complete bipartite, vertices in different star arms will never be adjacent,
and it is never possible to have any vertices from different star arms in the same subgraph.
This is clearly not true for the vertices one edge away from the star centre. There are also
two different methods for decomposing the star into subgraphs. We can either start with
the star centre and then proceed by decomposing each star arm, or we can decompose
each star arm for themselves as paths.

7.5.1 Notation for generalised star

To approach this problem we can start by finding a notation for each arm of the generalised
star.

V1(G) = {S, v11, ..., v1k1}
V2(G) = {S, v21, ..., v2k2}

...
Vn(G) = {S, vn1, ..., vnkn}

(7.3)

where n is the number of star arms, kn is the number of vertices in each star arm
respectively, in addition to the star centre S. Because each star arm is a path, and we
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only take into account connected graphs, it is obvious which edges that are included in
each star arm. Hence, we can write the whole star as

V (G) =
n⋃

i=1
Vi(G) (7.4)

To find the optimal way to find a complete bipartite decomposition of a generalised star
that is as small as possible, it is needed some more parts of the star.

A central star is a star, hence also bipartite, where the star centre is in a set I, and
every vertex adjacent to S in J , this gives the following subgraph,

Central star: I = {S}, J = {v11, v21, ..., vn1}. (7.5)

If the central star is used in a decomposition, the part of the star arms that is left is
paths one edge shorter than the original star arms. These can be called reduced star
arms and are denoted as follows

R1(G) = V1(G) \ {S} = {v11 , ..., v1k1},
R2(G) = V2(G) \ {S} = {v21 , ..., v2k2},

...
Rn(G) = Vn(G) \ {S} = {vn1 , ..., vnkn}.

Hence, |Ri(G)| = |Vi(G)| − 1. If |Vi(G)|, was even, then |Ri(G)| is odd, and vice versa.

7.5.2 Comparison of star- and path-decomposition

As stated in the introduction to this chapter, there are two ways to begin a complete
bipartite decomposition of a generalised star. We can distinguish between a greedy and a
non-greedy algorithm. The star-algorithm starts greedy and chooses the biggest possible
subgraph, which is the central star. Then it decomposes the reduced star arms as paths.
The path-algorithm is non-greedy and decomposes each star arm as a path. Using the
proof from Section 7.2 it is possible to find how many complete bipartite subgraphs each
of the algorithms gives. Further follows the total number of subgraphs we get from using
both algorithms.

Star-decomposition

Each reduced star arm, Ri(G), is a path on kn vertices, and

κ(Ri(G)) =
⌈
ki − 1

2

⌉
as proven in Section 7.2. It follows that if we decompose using the star-decomposition,
we get the total number of complete bipartite subgraphs to be

κ

(
n∑

i=1
Ri(G)

)
+ 1 =

n∑
i=1

⌈
ki − 1

2

⌉
+ 1. (7.6)
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This is the sum of the decompositions on each reduced star arm plus the one extra
subgraphs we get from the central star. Hence,

κstar(Gn) =
n∑

i=1

⌈
ki − 1

2

⌉
+ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Path-decomposition

Each star arm, Vi(G), is a path on kn + 1 vertices, and can always give rise to

κ(Vi(G)) =
⌈(ki + 1) − 1

2

⌉
=
⌈
ki

2

⌉
complete bipartite subgraphs, as proven in Section 7.2. This means that if we decompose
each star arm as a path, the total number of complete bipartite subgraphs will be

κ

(
n∑

i=1
Vi(G)

)
=

n∑
i=1

⌈
ki

2

⌉
. (7.7)

and hence,

κpath(Gn) =
n∑

i=1

⌈
ki

2

⌉
. (7.8)

We need to compare (7.7) and (7.6) to get closer to solving the κ-problem for generalised
stars. Which of the decompositions gives us the fewest complete bipartite subgraphs?
Both of the expressions, (7.7) and (7.6) are obviously dependent on whether ki is an
even or odd number. There are three different types of generalised stars. Every star arm
can be of even length, as in Figure 7.9b, though not necessarily of equal length, every
star arm can be of odd length, as in Figure 7.9a, though still not necessarily of equal
length, or we can have a combination of star arms that are of even and odd length, as in
Figure 7.9c. We look at each case individually and decide which decomposition is the
best to use when.

(a) (b) (c)

Figure 7.9: The three different types of generalised stars, (a) odd generalised star, (b) even
generalised star, (c) general generalised star.
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7.5. The κ-problem on a generalised star

Every ki is even

We can start by assuming every ki is even, then

⌈
ki

2

⌉
=
⌈
ki − 1

2

⌉
.

This means that

κpath(Gn) =
n∑

i=1

⌈
ki

2

⌉
=

n∑
i=1

⌈
ki − 1

2

⌉
. (7.9)

If we now compare (7.9) and (7.6) we see that

κpath(Gn) < κstar(Gn)

Hence, it will pay off to use the non-greedy path-decomposition if every path is of even
length.

Proposition 7.5.1. The optimal solution will be the path-decomposition if every ki is even,
hence

κ(Gn) =
n∑

i=1

⌈
ki

2

⌉
.

Every ki is odd

If we instead assume that every ki is odd, then

⌈
ki

2

⌉
=
⌈
ki − 1

2

⌉
+ 1.

This means that

κpath(Gn) =
n∑

i=1

⌈
ki

2

⌉
=

n∑
i=1

(⌈
ki − 1

2

⌉
+ 1

)
=

n∑
i=1

⌈
ki − 1

2

⌉
+ n. (7.10)

If we now compare (7.10) and (7.6) we see that as long as n > 1,

κpath(Gn) > κstar(Gn)

Hence, it will pay off to use the greedy star-decomposition if every path is of odd length.
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Proposition 7.5.2. The optimal solution will be the star-decomposition if every ki is odd,
hence

κ(Gn) =
n∑

i=1

⌈
ki − 1

2

⌉
+ 1.

We see clearly that which decomposition to use is dependent on whether the star arms
are of even or odd lengths. The final possible generalised star has a combination of even
and odd lengths of the star arms.

Combination of even and odd ki’s

If there is a combination of even and odd length arms the problem is a bit more complicated.
To approach this problem we need to distinguish between the star arms of respectively
odd and even length. In a generalised star, we have n arms, with m arms of odd length
and l arms of even length, such that m+ l = n and l = m+ 1, ..., n.

If we want to decompose the graph using the non-greedy path-decomposition, we know
from (7.10) and (7.9) how many subgraphs the m odd arms and l even arms can be
decomposed into. This results in the following

κpath(G) =
m∑

i=1

⌈
ki − 1

2

⌉
+m︸ ︷︷ ︸

odd star arms

+
n∑

j=m+1

⌈
kj − 1

2

⌉
.

︸ ︷︷ ︸
even star arms

(7.11)

If we instead use the greedy star-decomposition, we can use what we found in (7.6). We
can decompose each reduced star arm in addition to the extra subgraph that is the central
star. We know from (7.7) how many subgraphs we get when we decompose the reduced
star arms. This results in the following:

κstar(G) =
m∑

i=1

⌈
ki − 1

2

⌉
︸ ︷︷ ︸

odd reduced star arms

+
n∑

j=m+1

⌈
kj − 1

2

⌉
︸ ︷︷ ︸

even reduced star arms

+ 1.︸︷︷︸
central star

(7.12)

Hence, when m ≥ 1 it will pay off to use the greedy star-decomposition.

Proposition 7.5.3. The optimal solution will be the star-decomposition if m ≥ 1, hence

κ(Gn) =
m∑

i=1

⌈
ki − 1

2

⌉
+

n∑
j=m+1

⌈
kj − 1

2

⌉
+ 1.

Thus, as long as the generalised star has at least one star arm of odd length, the star-
algorithm will always make the smallest decomposition. The path-algorithm is only
efficient if there is an even generalised star.
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7.6 The κ-problem on bipartite graphs

To find a possible complete bipartite decomposition of an arbitrary bipartite graph we
can systematically work our way through each vertex in one of the sets of vertices.

In a bipartite graph we can partition the vertices in the sets I and J ,

I = {vi1 , ..., vin}
J = {vj1 , ..., vjm}

where |I| = n and |J | = m.

We want to find complete bipartite subgraph and using the same notation as earlier we
have

Si = (Ii, Ji)

where there is still no need for a set of edges, it is obvious which edges that are in each
subgraph, because the subgraphs always are complete bipartite.

7.6.1 An algorithm to find a complete bipartite decompsiton of a bipartite graph

The following algorithm can be used to find a complete bipartite decomposition of an
arbitrary bipartite subgraph.

1. Choose vi1 ∈ I. We make a complete bipartite subgraph

S1 = (I1, J1)

where vi1 ∈ I1 and vja ∈ J1, vja is every vertex adjacent to vi1 .

2. Choose vi2 ∈ I and find all vja2
∈ J that are adjacent to vi2 .

(a) If vi2 is adjacent to the exact same set as vi1 , then vi2 ∈ I1, and we still have
only one subgraph.

(b) If vi2 is not adjacent to the exact same set as vi1 , then we get a new subgraph

S2 = (I2, J2)

where vi2 ∈ I2 and vja ∈ J2, vja is every vertex adjacent to vi2 .

3. In general, choose vik
∈ I, 1 ≤ k ≤ n.

(a) If vik
is adjacent to the exact same set as one of J1, ..., Jp, where p is the

number of former subgraphs, then vik
∈ Ip

(b) If vik
is not adjacent to the exact same set as J1, ..., Jp, the former subgraphs,

then vik
∈ Ip+1 and vjk

∈ Jp+1

For each step we get maximum one new subgraph. This means that the maximum
number of complete bipartite graphs we can get using this algorithm is |I|.
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Example 7.6.1. The algorithm can be demonstrated on the bipartite graph

Figure 7.10: Example of a bipartite graph.

This results in the following complete bipartite subgraphs.

(a) (b) (c)

Figure 7.11: A complete bipartite decomposition of Figure 7.10.

7.6.2 Implementing the algorithm in Python

Using this algorithm to find a possible decomposition of a bipartite graph may be time
consuming if given large bipartite graphs. I have therefore implemented this algorithm
in Python using a part of the adjacency matrix of the graph.

In an adjacency matrix of a bipartite graph, there will always be lots of zeros, as it is
never any edges connecting the vertices in the same set. This means that the upper
left |I| × |I|-matrix and the lower right |J | × |J |-matrix will both be the null matrix
with corresponding dimensions. Thus, the interesting parts of an adjacency matrix of a
bipartite graph is the upper right |I| × |J |-matrix or the lower left |J | × |I|-matrix. They
will both sufficiently describe a bipartite graph and are the transposed matrix of the
other.

Using Figure 7.10 as an example, we have the adjacency matrix in Figure 7.12. The
interesting parts of the matrix in Figure 7.12 is, as mentioned, the upper right 4×5-
matrix and lower left 5×4-matrix, shown with the dashed lines. Both of the matrices in
Figure 7.13 are bipartite adjacency matrices and sufficiently describe the bipartite graph.
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7.6. The κ-problem on bipartite graphs

vi1 vi2 vi3 vi4 vj1 vj2 vj3 vj4 vj5

vi1 0 0 0 0 1 1 1 0 1
vi2 0 0 0 0 1 1 1 0 1
vi3 0 0 0 0 0 0 1 1 0
vi4 0 0 0 0 0 0 0 1 1
vj1 1 1 0 0 0 0 0 0 0
vj2 1 1 0 0 0 0 0 0 0
vj3 1 1 1 0 0 0 0 0 0
vj4 0 0 1 1 0 0 0 0 0
vj5 1 1 0 1 0 0 0 0 0

Figure 7.12: The adjacency matrix of the bipartite graph in Figure 7.10.

vj1 vj2 vj3 vj4 vj5

vi1 1 1 1 0 1
vi2 1 1 1 0 1
vi3 0 0 1 1 0
vi4 0 0 0 1 1

(a) A matrix showing the edges connecting the
vertices in I and J .

vi1 vi2 vi3 vi4

vj1 1 1 0 0
vj2 1 1 0 0
vj3 1 1 1 0
vj4 0 0 1 1
vj5 1 1 0 1

(b) Another matrix showing the edges connect-
ing the vertices in I and J .

Figure 7.13: Two different ways to describe Figure 7.10 using matrices.

It is possible to use either of Figure 7.13a and Figure 7.13b to find a possible decomposition
of the bipartite graph. A complete bipartite graph can be represented by a row in either
of the matrices, where vi ∈ I or vj ∈ I the columns containing 1 are the set of vertices J.
Similarly, each column in either of the matrices can also describe a complete bipartite
graph, where vi ∈ I or vj ∈ I and the rows containing 1 is the set of vertices J . For
instance, I = {vi3} and J = {vj3 , vj4}, also shown in Figure 7.11b.

The Python code finds a possible decomposition of a bipartite subgraph by using a
bipartite adjacency matrix, given by the user. It then finds the number of unique rows in
the matrix and then draws every complete bipartite subgraph, see Appendix A for the
complete code.

(a) (b) (c)

Figure 7.14: The subgraphs found using the algorithm in Python.
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Appendix A

Decomposition of bipartite graphs into
complete bipartite subgraphs

import networkx as nx
import matplotlib.pyplot as plt
from networkx.algorithms import bipartite
import numpy as np

row = int(input("Enter the number of rows:"))
column = int(input("Enter the number of columns:"))

matrix = []
print("Enter the entries rowwise:")

for i in range(row):
list = []
for j in range(column):

list.append(int(input()))
matrix.append(list)

subs = []

for i in matrix:
sub = []
for j in matrix:

if i==j:
sub.append(i)

else:
sub.append([0]*len(matrix[0]))

subs.append(sub)

unique_sub = []

for i in subs:
if i not in unique_sub:

unique_sub .append(i)
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Appendix A. Decomposition of bipartite graphs into complete bipartite subgraphs

for i in unique_sub:
print (np.matrix(i))

print("unique_sub = ", unique_sub)

for k in unique_sub:

kant = []
vertex_i = []
vertex_j = []
print(k)
for i in range(len(k)):

vertex_i.append(i)
vertex_j.append(len(k) + i)
for j in range(len(k[i])):

if k[i][j] == 1:
kant.append((i,len(k) +j))

B = nx.Graph()

B.add_nodes_from(vertex_i, bipartite=0)
B.add_nodes_from(vertex_j, bipartite=1)
B.add_edges_from(kant)

colour = []

for vertex in B:
if vertex < len(k):

colour.append('red')
else:

colour.append('green')

nx.draw_networkx(B, node_color = colour, pos =
nx.drawing.layout.bipartite_layout(B, vertex_i), width = 2)↪→

plt.show()
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