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LOGNORMAL MOMENT MATCHING AND PRICING OF BASKET

OPTIONS

PÅL NICOLAI HENRIKSEN

Abstract. In this paper we will approximate the sum of the margins from a two dimen-
sional lognormal variable by moment matching with a one dimensional lognormal variable.
We will look at different cases of correlation and volatility in the two dimensional vari-
able to analyse the accuracy of the approximation. Basket options will be valuated based
on the sum of two coupled lognormal assets and a univariate approximation to detect
situations where the moment matching may be successfully applied in a financial market.

1. Introduction

Since there exists no closed form distribution function or characteristic function for the
sum of two lognormal variables, extensive work has been done in the literature to approx-
imate this. Examples are Zacks and Tsokos [8], Turnbull and Wakeman [7], Asmussen
and Rojas-Nandayapa [2] and Hoedemakers [6]. One possible approximation is by moment
matching, which will be the approach used in this document. Moment matching means
that we will match the mean and variance of the bivariate lognormal variables Y1 + Y2

with the mean and variance of the univariate lognormal variable Y . An empirical analysis
will be done based on the probability distributions of Y1 + Y2 and Y for different cases of
volatility and correlation to assess the approximation.

We will see that moment matching is a good approximation in certain situations and
quite bad in other. This makes an upper bound on the moment matching approximation
error attractive. This error bound will be derived and displayed for the lognormal case
based on work done by Akhiezer [1] and Berggren [3]. We will also use Taylor expansion
to understand why the approximation fails in certain situations.

One important motivation for the moment matching approximation is valuation of op-
tions based on several underlying assets. Pricing options based on the approximated one
dimensional asset can be done by closed form formulas, e.g. Black and Scholes, which can
be calculated instantly. Pricing basket options based on two coupled underlying assets
must as of date be done by time consuming simulations. We will look at situations where
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the approximation works well and less well, and we will also have focus on whether the
option pricing approximation is acceptable even if the distributional approximation is not.

Section 2 will give a short introduction to the univariate and bivariate lognormal models,
and in Section 3 we will illustrate how one may simulate from the models. In Section 4
we will derive formulas for the moment matching, and look at the moment matching
approximation through numerical examples and give a short analysis of the approximation
error. In Section 5 we will price basket options of European call type based on simulations
for the bivariate case and Black and Scholes formula for the approximated univariate case.
In Section 6 we conclude.

2. The Lognormal Model

Most practical finance mathematics is based on the lognormal model given by

(2.1) Y (t) = Y (0) · e(r− 1

2
σ2)t+σW (t),

where Y (t) represents the risk neutral asset price, r the risk free interest rate and σ the
asset volatility. W (t) represents the Brownian motion stochastic term, which in this case
is normally distributed N(0, t). There are several advantages with this model; one is that
the normal distribution gives a good fit to logreturn data, the lognormal model has given
arise to closed form expressions of option prices through the Black and Scholes formula,
the model is easily extended to higher dimensions.

Certain financial derivatives such as basket options and spread options are based on sev-
eral underlying assets. Here we will study the case of two underlying correlated lognormal
assets,

Y1(t) = Y1(0) · e(r− 1

2
σ2

1
)t+σ1W1(t),(2.2)

Y2(t) = Y2(0) · e(r− 1

2
σ2

2
)t+ρσ2W1(t)+

√
1−ρ2σ2W2(t),(2.3)

where ρ is the correlation coefficient between the logreturns of Y1(t) and Y2(t), while σ1

and σ2 are the volatility of the assets. W1(t) and W2(t) are two i.i.d. Brownian motions
with probability distribution N(0, t). From (2.2) and (2.3) it is easily seen that:

ln Y1(t) ∼ N(ln Y1(0) + (r − 1

2
σ2

1)t, σ
2
1t),

ln Y2(t) ∼ N(ln Y2(0) + (r − 1

2
σ2

2)t, σ
2
2t),

which are the lognormal marginal distributions of the bivariate lognormal distribution for
(Y1, Y2). Using this model, all parameters are estimated through the covariance matrix of
the asset logreturns.

3. Simulating lognormal variables

A straight forward Monte Carlo method is applied to simulate the univariate lognormal
asset (2.1) at time t. The correlated bivariate lognormal assets (2.2) and (2.3) may be
simulated in the same manner. The ease of simulating a bivariate lognormal variable is
due to the fact that a bivariate normal distribution consists of two normally distributed
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margins coupled by a correlation coefficient ρ. I.e. by fixing Y1(0), Y2(0), r, ρ, σ1 and
σ2 and drawing i.i.d. ǫ1, ǫ2 and ǫ3 from a standard normal distribution, the lognormal
variables are simulated by:

Y (t) = Y (0) · e(r− 1

2
σ2)t+σ

√
tǫ1(3.1)

Y1(t) = Y1(0) · e(r− 1

2
σ2

1
)t+σ1

√
tǫ1,(3.2)

Y2(t) = Y2(0) · e(r− 1

2
σ2

2
)t+ρσ2

√
tǫ1+

√
1−ρ2σ2

√
tǫ2.(3.3)

These formulaes make the simulation of lognormal asset values at time t easy and efficient.
If one would like to simulate a higher dimensional lognormal variable, this could be done
just as easy by Cholesky decomposition of the covariance matrix of the logreturns.

4. Moment matching

Similar work to that presented here for the lognormal case can be found in the literature,
e.g. Zacks and Tsokos [8] or Borovkova, Permana and Weide [4].

The goal of the moment matching is to approximate the sum of the lognormal assets
Y1(t) + Y2(t) at time t:

(4.1) Y (t) = (Y1(0) + Y2(0)) · eaY t+σY W (t),

where W (t) ∼ N(0, t) is independent of W1(t) and W2(t). Expressions for aY and µY are
found by matching mean and variance of the variables. That is, by solving:

E(Y (t)) = E(Y1(t) + Y2(t)),(4.2)

Var(Y (t)) = Var(Y1(t) + Y2(t)).(4.3)

By using the facts that for lnX ∼ N(µ, σ), the mean and variance is given by:

E(X) = eµ+ 1

2
σ2

Var(X) = e2µ+σ2

(eσ2 − 1)

and keeping in mind that E(Y1 + Y2) = E(Y1) + E(Y2) and Var(Y1 + Y2) = Var(Y1) +
Var(Y2) + 2Cov(Y1, Y2), the parameters in (4.1) are found to be:

aY = r − 1

2
σ2

Y

σ2
Y =

1

t
· ln
(

Y1(0)2eσ2

1
t + Y2(0)2eσ2

2
t + 2Y1(0)Y2(0)eρσ1σ2t

(Y1(0) + Y2(0))2

)

We immediately see that (4.1) is equivalent to (2.1) with σ replaced by σY . This form on
Y (t) is risk-neutral, which is a basis for option pricing. However, (4.1) is not a risk neutral
process in the sense that the moment matching is only valid at time t. Thus, we can not
simulate risk neutral asset paths of Y (t) based on aY and σY , but only a moment matched
lognormal variable at time t.

We have now established the framework where we can start simulating Y1(t) + Y2(t) to
compare the probability distribution of the sum with the probability distribution of Y (t).
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4.1. Numerical examples. A good way of comparing Y1 + Y2 with Y , is to simulate
the probability density function of Y1 + Y2 and compare this with the analytic probability
density function of Y . This comparison can be found in Figure 1 for different choices of
ρ, σ1 and σ2. All the simulations use r = 0.04, t = 1 and Y1(0) = Y2(0) = 100. The
number of simulations in each case is 107. This huge number of simulations has been used
to minimize simulation error.

From Figure 1 it can be seen that for ρ = −0.95 the probability densities are nowhere
close to each other. This result coincide with results from Zacks and Tsokos [8] where it
is derived that the moment matching approximation works better for non-negative than
negative correlations. Also for major differences in volatility between Y1 and Y2 the ap-
proximative distribution differs from the true one. The density of Y1 +Y2 is greater than Y
at the peak of the distributions. Because of the variance matching, this means that the tail
of Y1 + Y2 is somewhat heavier than the tail of Y . This is confirmed in Figure 2 where we
have taken the logarithm of the densities to highlight the details in the distribution tails.
It is clear that as σ1 increases the probability densities become more and more similar for
ρ ≥ 0. For σ1 = σ2 the densities seem to be almost equal in our examples.

4.2. Analysis of approximation error. In Turnbull and Wakeman [7] the moment
matching approximation error is studied through an Edgeworth expansion. In this section
we will find an error bound of the moment matching approximation based on corollary
2.5.4 in Akhiezer [1] and Berggren [3]. In this report we will not discuss possible Monte
Carlo simulation errors.

For the convenience of the reader, corollary 2.5.4 in Akhizer [1] is restated in the appen-
dix. Based on the notation in the appendix, we let F (x) be the cumulative distribution
of Y (t) and G(x) the cumulative distribution of Y1(t) + Y2(t). Further, we know from
the moment matching that M0, M1 and M2 are equal for F (x) and G(x). The following
expression for the error bound may be derived based on the corollary:

(4.4)

∣

∣

∣

∣

∫ κ

−∞

dF (x) −
∫ κ

−∞

dG(x)

∣

∣

∣

∣

≤
(

1

M2 − M2
1

(κ2 − 2M1κ + M2)

)

where M1 and M2 are given by:

M1 = ert(Y1(0) + Y2(0))

M2 = e2rt(Y1(0)2eσ2

1
t + Y2(0)2eσ2

2
t + 2Y1(0)Y2(0)eσ1σ2ρt)

An example of the error bound is given in Figure 3. From the figure and expression (4.4) it
is clear that the error bound is not very tight. As we see, around E(Y1+Y2), where Figure 3
peaks, the error bound is without information. However, in the tails expression (4.4) does
indeed give us information about maximum possible error one makes when approximating
the sum of two lognormal variables by matching the first two moments of one lognormal
variable. This information is relevant for e.g. far out of the money options.

The error bound does not explicitly deal with the issue of different correlations and
difference in volatility between Y1 and Y2. As seen from Figure 1 and 2, negative correlation
results in significantly worse approximations than non-negative correlations, and the same
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Figure 1. The distribution of Y1 + Y2 in red and Y in green for different
choices of ρ, σ1 and σ2.
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Figure 2. The logarithm of the Y1 +Y2 distribution as circles and Y as the
whole line for different choices of ρ, σ1 and σ2.
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Figure 3. The error bound generated by expression (4.4).

is the case for a big difference in volatilities. For a better understanding of this, we will
look at the following Taylor expansion:

ln(eX + eY ) =
1

2
X +

1

2
Y +

1

2
ln(1 + eY −X) +

1

2
ln(1 + eX−Y )

≈ 1

2
X +

1

2
Y +

1

4
(cosh(X − Y ) − 1) + ln(2) + O((X − Y )4)(4.5)

Since we are studying the case where we are approximating exp(X) + exp(Y ), (X, Y )
bivariate normally distributed, by exp(Z), Z normally distributed, the right hand side of
(4.5) should be approximately normal. Since the margins of a bivariate normal distribution
are normally distributed, it is clear that X + Y is normal. Hence, one would want the rest
of the terms on the right hand side to be as small as possible for the approximation to
be good. Both the cosh-term and the rest-term of order 4 can be expected to be small
when X and Y can be expected to be close to each other. This is clearly the case when
the correlation is non-negative, and it is also the case, in a risk neutral setting, when the
volatilities are similar.

5. Pricing of basket options

In this section we will price European call basket options based on two correlated assets
to study the relationship between the moment matching approximation errors and the
option prices. We wish to study if there is a smoothing in the pricing calculation that
makes option prices similar even though the moment matching gives a not to good fit.

One great attribute when approximating Y1 + Y2 by Y is the simplification of option
pricing. For European options this is particularly obvious as we can use the Black and
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pY pY1+Y2

K σ1, σ2 \ ρ -0.95 0 0.95 -0.95 0 0.95
0.01,0.3 55.999 56.028 56.061 55.883 55.887 55.929

150 0.1,0.3 55.889 56.087 56.587 55.885 55.975 56.448
0.3,0.3 55.882 56.879 59.266 55.886 56.869 59.271
0.01,0.3 15.907 16.255 16.594 15.412 15.789 16.181

200 0.1,0.3 13.028 16.840 19.795 12.137 16.500 19.617
0.3,0.3 10.810 20.958 27.218 9.974 20.947 27.221
0.01,0.3 1.681 1.873 2.068 2.133 2.292 2.472

250 0.1,0.3 0.463 2.214 4.223 1.032 2.523 4.409
0.3,0.3 0.055 5.117 10.567 0.387 5.132 10.566
0.01,0.3 0.078 0.101 0.128 0.231 0.256 0.290

300 0.1,0.3 0.003 0.150 0.624 0.082 0.289 0.767
0.3,0.3 5.3 · 10−6 0.929 3.694 0.026 0.944 3.689

Table 1. Option prices found from simulations of Y1(t) + Y2(t) and from
Black-Scholes formula based on the moment matched Y .

Scholes formula for the option price based on Y , whilst we need to use simulation for the
option price based on Y1 + Y2. However, assuming no simulation error, we must keep in
mind that the simulated option price based on Y1 + Y2 is the correct one.

In this document, we will compare European call option prices based on the fixed pa-
rameters r = 0.04, Y1(0) = Y2(0) = 100, exercise time t = 1 and varying ρ, σ1 and σ2

equivalent to the comparison of probability densities in Figure 1 and 2. Option prices are
found at four different strikes; K1 = 150, K2 = 200, K3 = 250 and K4 = 300. Black and
Scholes formula is applied for the option price pY based on Y :

pY = (Y1(0) + Y2(0))Φ(u1) − Ke−rtΦ(u2)

where Φ represents the cumulative distribution function of a standard normal distribution,
and

u1 =
ln((Y1(0) + Y2(0))/K) + (r + 1

2
σ2

Y )t

σY

√
t

,

u2 =
ln((Y1(0) + Y2(0))/K) + (r − 1

2
σ2

Y )t

σY

√
t

.

We find the call price pY1+Y2
based on Y1 + Y2 by simulating Y1 and Y2 according to (3.2)

and (3.3) and plugging this into:

(5.1) pY1+Y2
= e−rtEQ[max(Y1(t) + Y2(t) − K, 0)]

The Q represents the risk-neutral probability which corresponds to Y1 and Y2 being on the
form (2.2) and (2.3). The options prices found are displayed in Table 1. From this table
we see that for deep in the money options with strike K = 150 the moment matching
approximation works well - even in the cases where the distributions in Figure 1 diverge.
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This is not surprising when taking into account that very few of the simulation outcomes
are below the strike, hence zero is hardly ever maximum in (5.1), and the first moment
have been matched in equation (4.2). As the options go less and less deep into the money
for strikes K = 200 and K = 250, the approximated option prices become less accurate.
For K = 200 and non-negative correlation the approximation error is < 3%. For negative
correlation the approximation error is significant for this strike. An interesting point is
that the approximative price, pY , overestimates the true price, pY1+Y2

, for K = 200 while it
underestimates the price for K = 250. Thus, for some strike 200 < K < 250 the matching
in the tails and the tail heaviness of the distributions start to dominate. This is clearly
reflected in the option prices with strike K = 300. Here the option price approximation is
very bad - except in the cases where the moment matched distribution tail coincides with
the simulated distribution tail for σ1 = σ2 and ρ ≥ 0. The accuracy of the approximative
option price corresponds very well to the accuracy of the distribution in the tail plots of
Figure 2 for the fare out of the money options. One important result is that the worst
approximation is for negative correlation and similar volatilities on Y1 and Y2. This empha-
sizes the risk of moment matching approximations when the logreturns of the underlying
assets are negatively correlated.

6. Conclusions and further work

In this paper we have seen a method for approximating a sum of two coupled lognor-
mal variables by matching the mean and the variance with a one dimensional lognormal
variable. We have seen that this approximation may be done with ease by closed form
formulas, and that the approximated variable preserves a risk neutral form, but is not in
it self a risk neutral process. Through empirical analysis and analysis of approximation
errors we have seen that the moment matching approximation works quite well as long as
the correlation between logreturns of the two coupled lognormal variables is non-negative
and the volatilities are relatively close to each other. For negative correlations the moment
matching approximation is a less attractive method and should therefore be applied with
care. In the pricing of European call basket options we saw that the moment matching
approximation gave good results for in the money options - even in cases where the dis-
tribution of the approximated variable diverge significantly with the distribution based on
the sum of the two coupled assets. Thus, there is some smoothing effect in the option
pricing mechanism. On the other hand, the approximated prices had huge errors for out of
the money options. The reason for this is that the approximated variable does not have a
heavy enough tail. Improving this would be a good subject for further work, for instance
by introducing variables that can pick up skewness and kurtosis in the financial market. In
this paper, we have by construction moment matched variables. It could also be possible
to restructure the moment matching to approximate a process, that is generalising it such
that the approximation i valid for all times t. Other interesting further work could be to
try to evaluate basket options by a totally different approach, e.g. by expanding the work
done by Dempster and Hong [5] on transform based option pricing.
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7. Appendix

Corollary 2.5.4 in Akhiezer says: If two nondecreasing functions F (x) and G(x) satisfy
the relations

Mk =

∫ ∞

−∞

xkdF (x)

=

∫ ∞

−∞

xkdG(x) k = 0, 1, 2, ..., 2n− 2

where {Mk}2n−1
0 is a positive sequence, then we have for arbitrary real κ

(7.1)

∣

∣

∣

∣

∫ κ

−∞

dF (x) −
∫ κ

−∞

dG(x)

∣

∣

∣

∣

≤ Υn−1(κ)

Here Υn(κ) may be derived from the following:
For n = 1, 2, ... define the matrix

Mn =









M0 M1 · · · Mn

M1 M2 · · · Mn+1
...

...
...

...
Mn Mn+1 · · · M2n









,

where Mn is the nth common moment of F (x) and G(x). Further, let

Sn(κ) =













M0 M1 · · · Mn−1 1
M1 M2 · · · Mn κ
M2 M3 · · · mn+1 κ2

...
...

...
...

...
Mn Mn+1 · · · M2n−1 κn













.

From these matrices, define

P0(κ) = 1

Pk(κ) =
detSk(κ)

√

detMk−1 · detMk

k ≥ 1

from where we end up with

Υn(κ) =

(

n
∑

k=0

|Pk(κ)|2
)−1



LOGNORMAL MOMENT MATCHING 11

References

[1] Akhiezer N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis, Oliver
Boyd: London

[2] Asmussen, S., and Rojas-Nandayapa, L. (2006). Sums of dependent lognormal random variables:
asymptotics and simulation. Research Report, Thiele Centre, University of Aarhus

[3] Berggren, F. (2005). An error bound for moment matching methods of lognormal sum distributions.
Europ. Trans. Telecom., 16, pp. 573-577

[4] Borovkova, S., Permana, F. and Weide, H.(2006). A closed form approach to the valuation and hedging
of basket and spread options. Presentation at the Bachelier Finance Society Congress.

[5] Dempster, M. A. H., and Hong, S. S. G. (2000). Spread option valuation and the fast Fourier transform.
Working paper 26, University of Cambridge.

[6] Hoedemakers, T. (2005). Modern Reserving Techniques for the Insurance Business.PhD Thesis,
Katholieke Universiteit Leuven.

[7] Turnbull, S. M. and Wakeman, L. M. (1991). A Quick Algorithm for Pricing European Average
Options Journal of Financial and Quantitative Analysis, 26, pp. 377-389.

[8] Zacks, S. and Tsokos, C. P. (1978). The distribution of sums of dependent log-normal variables.
Technical Report No 31, Defense Technical Information Center.

(P̊al Nicolai Henriksen), Department of Mathematics, University of Oslo, P.O. Box 1053,

Blindern, N–0316 Oslo, Norway

E-mail address : paalnhe@math.uio.no


