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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The study has been approved
by the Regional Committee for Medical and Healthcare Research Ethics (ref.
2015/1344). The work was carried out partially at my different home offices, the
University of Oslo, the Cancer Registry of Norway (CRN) and SimulaMet. The
thesis is a collection of three papers, presented in chronological order of writing.
The common theme to them is the development and evaluation of data-driven
methods predicting cervical cancer development from routinely collected exam
history data, made available through the CRN.
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Chapter 1

Introduction

1.1 Motivation – more personalized cervical cancer
screening recommendations

Despite being one of the most common types of female cancer worldwide [Sun+21],
cervical cancer is a preventable disease [Gaf+18]. Cervical cancer gradually
develops from precursor lesions in a process that may take several years and is
preventable if the lesions are detected at a sufficiently early stage and managed
with existing methods for clinical intervention [Sch+07b]. For the so-called early
detection of cervical lesions, national screening programs have been established
in developed countries. These programs recommend that each woman from
the target population undergo repeated screening at regular intervals, thereby
contributing to reducing cervical cancer prevalence and mortality [Vac+14].

Existing programs for cervical cancer prevention recommend repeated
screening with time intervals between consecutive exams being homogeneous
across the target population. For instance, the guidelines for the Norwegian
Cervical Cancer Screening Program (NCCSP) currently recommend routine
screening every third year for women from 25 to 33 years and every fifth year
for women from 34 to 69 years [Bir22]. However, the risk of developing cervical
cancer varies both with age and amongst individuals [SW13a], and the current
guidelines and recommendations do not fully capture the heterogeneity of the
individual risk. Studying the exam results of the NCCSP participants shows
that over 65% of the women have never had abnormal results. The risk of this
sub-population developing cervical cancer is thus regarded as lower than for
women with several abnormal results.

Considering that the risk of developing cervical cancer varies amongst
individuals, practicing fixed time intervals for regular screening causes excessive
exams as this cancer only develops in a smaller segment of the target
population. Differentiating recommendations based on individual risk estimates
may thus improve the current mass screening strategy. The more personalized
recommendations would offer, for instance, less frequent screening of middle-aged
women with a series of only normal results, as they may be at considerably lower
risk than adolescent women with a history of several abnormal results [SW13a].
However, one of the challenges in enabling more personalized prevention is
identifying the women that may be recommended less frequent screening without
compromising their protection [Sch+16a].

The maturity of the screening programs for cervical cancer prevention in
Scandinavian countries creates an opportunity to study approaches to more
personalized cervical cancer screening. Since the introduction of organized
screening in Norway, the Cancer Registry of Norway (CRN) routinely collects
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1. Introduction

data from each examination to administer the screening program according to the
national guidelines. The collected information includes the exam date, test types
and corresponding test results. This data is centralized in a database containing
the complete exam histories of the NCCSP population. In addition, previous
studies have produced data that contains more detailed medical information
about each individual but, unlike the exam history data, is not routinely collected
by the CRN [Bir22]. This more detailed data include lifestyle and risk factors
linked to cervical cancer development but covers only a fraction of the screening
population. One approach to developing more personalized guidelines and
recommendations is thus to utilize the existing databases to derive a data-driven
framework for personalized cervical cancer risk assessment.

1.2 The DeCipher project for more personalized cancer
screening

The DeCipher project began in 2019, funded by the Research Council of
Norway and coordinated by SimulaMet in collaboration with the CRN, Lawrence
Livermore National Laboratory, and Karolinska Institutet. The project promotes
the idea of using data-driven methods to develop more personalized strategies in
population-level cervical cancer screening. One of the primary goals of DeCipher
is to explore the potential for deriving algorithms for personalized cervical cancer
risk prediction.

Novelty The DeCipher follows two complementary approaches to algorithm
development based on different data material. One approach combines lifestyle
and risk factor information with the exam history data from the NCCSP to
uncover phenotypes linked with cervical cancer development. Novel algorithms
are designed to couple the static lifestyle information with the longitudinal exam
histories for mining cervical cancer risk groups. The alternative direction is using
only the exam history data to derive prediction algorithms for the individual
risk. An assumption here is that the exam history data is sufficiently informative
about the individual risk for the algorithms to distinguish between clinically
different outcomes. While existing algorithms for predicting cervical cancer use
more extensive data material [He+21], focusing on only the routinely collected
exam history data presents a novel approach to algorithm development.

1.3 Thesis scope and research objectives

The present thesis is focusing on the direction in the DeCipher project aiming
to devise algorithms that can predict the individual risk of cervical cancer
development. Specifically, the scope is to prototype and evaluate data-driven
prediction algorithms for cervical cancer development using only exam history
data available from the CRN.
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Thesis scope and research objectives

The NCCSP database includes more than 1.8 million exam histories, placing
a premium on computationally efficient1 methods. Typically, the number of
exams per history is less than seven (i.e., scarce data), and the time intervals
between subsequent exams are irregular. Thus, methods designed for continuous
time-series data must be adapted or abandoned.

A common approach to handle scarce and irregular data is to use methods
from matrix factorization (MF). These techniques have been used to extract
latent features from longitudinal electronic medical records for downstream
prediction tasks [Zho+14]. To derive prediction algorithms designed specifically
for the Norwegian exam history data, this thesis leverage approaches from MF
and develop methods to incorporate domain-specific aspects of the data into the
latent features.

Using MF methods for latent feature extraction has also been explored within
the framework of geometric deep learning (GDL) [Bro+17]. Here, machine
learning algorithms are applied to data organized on similarity graphs connecting
entities with similar traits, revealing structural relationships in the data [MBB17].
Via these graphs, the GDL approach incorporates structural information from
the data into the latent features. Developing a GDL algorithm for the
Norwegian exam history data thus necessitates similarity graphs representing
the relationships between exam histories.

Considering an alternative to the MF-based methods, a recent study presented
a hidden Markov model (HMM) derived from the Norwegian exam histories to
simulate the transition rates between different risk categories encoded from
the original exam results [Sop+20]. The HMM captures the time-varying
trends observed in the exam histories in a set of parameters. Based on these
parameters, an algorithm can be derived to predict cervical cancer development
from individual exam histories.

However, as more than 65% of the CRN exam histories contain only normal
results, the inherent data imbalance requires methods for adjusting the prediction
algorithms to recognize the rare outcomes. Moreover, additional prediction
difficulties may be embedded in the data, requiring specific methods to be
designed for prediction accuracy.

Objectives As the scope of this thesis is to conduct an exploratory study, no
formal hypotheses are assumed. To guide algorithm development and evaluation,
the following research objectives are set.

1. Develop novel prediction algorithms designed for the Norwegian exam
history data.

2. Evaluate the different prediction algorithms (e.g., MF, GDL and HMM)
by comparing their ability to reflect the time-varying risk trends derived
from data.

1Efficiency is understood in terms of time and memory requirements and the required
number of training samples.
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1. Introduction

3. Study the accuracy of single risk estimates and unravel potential prediction
difficulties embedded in the data.

This thesis encompasses three manuscripts for scientific papers addressing
research objectives 1 to 3. The first manuscript focuses on objective 1, using
methods from MF to develop prediction algorithms. Manuscript 2 presents
prediction algorithms based on MF, HMM and GDL and uses numerical
experiments to address objective 2. Finally, manuscript 3 considers objective 3.

1.4 Thesis outline

The structure of the thesis is as follows. Chapter 2 introduces background
information and central concepts for the papers included in this thesis. The main
topics in Chapter 2 revolve around cervical cancer development and existing
prevention methods and basic concepts in machine learning. The chapter
elaborates on challenges related to learning from the exam history data and
how to address some of these challenges with MF techniques for latent feature
extraction. Key assumptions and limitations in existing methods to consider
in designing novel MF methods for the NCCSP histories are also explained.
Chapter 3 delineates the narrative connecting the individual papers and their
contributions, while Chapter 4 discusses the significance and impact of these
papers. The terms indicated with italic are explained in the glossary.
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Chapter 2

Background

2.1 Development of cervical cancer

The cervix uteri The lower third of the uterus in connection with the vagina
is called the cervix uteri, from hereon referred to only as the cervix. The surface
of the cervix is covered mainly by two types of epithelial cells; glandular cells
situated in the part of the cervix leading to the uterus and squamous cells covering
the mucosa in the vagina and the exterior of the cervix. The region where the
glandular and squamous cells meet in the cervix is called the transformation
zone. It is from the cells in this zone that the majority of cervical cancers
develop [Bha+18].

Cervical carcinogenesis and risk factors Virtually all1 incidences of cervical
cancer are initiated after infection with human papillomavirus (HPV) [Wal+99].
While there are several types of HPV, estimates indicate that HPV16 and HPV18
are involved with 70% of cervical cancers [Sch+07b]. The current consensus is
that persistent infection with such high-risk HPV types constitutes a necessary
condition for cervical carcinogenesis.

Cervical carcinogenesis concerns the formation of cervical cancer from normal
cells, a process which may be described by four steps: 1) HPV infection; 2)
persistence of the HPV infection (development of low-grade lesion); 3) progression
from a low-grade to a high-grade lesion; 4) invasive cancer. These four steps
present a model for the course from persistent infection with high-risk HPV via
intermediate precancerous stages to cervical cancer.

As HPV can be sexually transmitted, most individuals acquire an HPV
infection over their lifetime, and the prevalence culminates in adolescence
and early adulthood [SW13b]. However, most HPV infections are transient
and resolve without clinical intervention. For instance, estimates suggest that
67% of HPV infections clear within one year and over 90% clear within two
years [Rod+08; Sch+07a]. A malignant transformation is thus rare compared
with the infection rate, indicating that HPV alone is not the cause of cervical
carcinoma. On the other hand, sexual habits, long-term smoking, multi-parity
and long-term use of hormonal contraceptives are potential risk factors promoting
the acquisition, persistence and progression of an HPV infection [Zha+20].

Classifications Two widely established techniques for detecting cervical cancer
and precursor lesions are the cervical cytology based on exfoliated cells and the
histology based on a tissue sample (biopsy). The cell samples from these tests
are analyzed manually in a microscope. Cytology examines individual cells

1More than 99% of all cervical cancers are claimed attributable to HPV infection [Wal+99]
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2. Background

or clusters of cells, while histology considers up to multiple cell types in the
biopsy. Several terminologies and classification systems exist to report the results
from these tests. Two commonly used reporting systems are the Bethesda and
the cervical intraepithelial neoplasia (CIN) [Hea+06]. These systems provide
consistent terminology to convey and compare results.

The Bethesda system classifies cytology results into levels of squamous
intraepithelial lesion (SIL). Classifications of abnormal results include low-grade
SIL (LSIL) and high-grade SIL (HSIL), indicating different levels of cell changes.
Other classifications are atypical squamous cells of undetermined significance
(ASCUS), atypical glandular cells of undetermined significance (AGUS), atypical
squamous cells where HSIL cannot be excluded (ASC-H) and adenocarcinoma in
situ (ACIS). An ASC-US result corresponds to low-grade changes, while AGUS,
ASC-H and ACIS are used to denote high-grade changes [Hea+06].

For histology exams, the CIN system distinguishes between degrees of cellular
changes on a scale from 1 to 3. At CIN1, the cell changes are mild (i.e., low
grade) and typically regress without clinical intervention. The CIN2 changes
are moderate and could require clinical action, while the CIN3 changes are
severely abnormal and usually require immediate action to prevent cancer
development [Hea+06]. However, regressing from the CIN2 and CIN3 stages may
also occur [Ost93]. In the Bethesda system, the CIN2 and CIN3 are combined
into a single group (HSIL) due to the difficulties of distinguishing these degrees
of cellular changes with cytology.

Treatment and prognosis Cervical cancer can be treated through surgery,
radiation, chemotherapy, or a combination of these therapies. The treatment
choice depends on the cancer stage (I–IV) used to grade the extent and severity
of abnormal cell changes. Detecting earlier stages of cervical cancer, followed by
effective clinical management, makes it one of the most treatable forms of cancer.
While treatment at an early stage can prevent cancer development, cancers
detected in later stages can also be controlled with appropriate treatment and
palliative care [Bha+18]. The trends from 2016 to 2020 in five-year survival
of cervical cancer in Norway for women diagnosed in early stages (stage I and
II) range from 80–95%. However, for more developed cancers (stage III), the
five-year survival rate decreases to 54% and 20% for late-stage cancers (stage
IV) [Nor21]. The high treatment success rate in the earlier stages demonstrates
a potential to prevent cervical cancer with methods for early detection of disease
precursors.

2.2 Cervical cancer prevention

Improved understanding of the role of HPV in the initiation and development of
cervical cancer has led to various prevention methods [Gaf+18]. The two primary
methods for cervical cancer prevention are HPV vaccination and routine screening.
Arriving at the consensus that chronic infection with HPV causes virtually all
cervical cancers, effective primary prevention relies on HPV vaccination [Chr+18].
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However, the presently administered vaccines are type-specific and protect only
against a few types of HPV [HD17]. Thus, vaccination against HPV provides
only partial immunity and does not obviate the need for secondary prevention
methods like routine screening [Fra+06].

Screening for cervical cancer prevention Cervical cancer screening aims
to detect disease precursors in time for adequate treatment to prevent cancer
development. The screening process generally involves a repeated examination of
the target population to help determine the likely presence of cancer in possibly
asymptomatic individuals. Following an HPV infection, it may take several
years to develop cervical cancer. The period between infection and until the
infected cells have become cancerous creates an opportunity to detect lesions
early enough to prevent cancer development. Effective cervical cancer screening
requires thus regular and repeated examinations to avoid late-stage treatment
where the outcome is generally poorer [Bed+20].

Cervical cancer screening in Scandinavia By 1996, national programs for
organized screening were implemented in the Scandinavian countries Denmark,
Norway and Sweden. In the organized programs, healthcare authorities invite
women from the target population to undergo routine screening according to the
national guidelines [Ped+18]. One of the indicators for the success of organized
cancer screening is to what extent the target population adheres to the national
guidelines and is active in screening, defined as the screening coverage. In
2018, the population coverage for cervical cancer screening in the Scandinavian
countries was upwards of 80% [Par+19].

The effect of national cervical cancer screening The established consensus
across multiple studies is that organised cervical cancer screening in developed
countries has reduced cervical cancer mortality [Jan+20]. Audits of the Swedish
and Norwegian cervical cancer screening programs showed that the participating
women had a reduced risk of developing cancer [And+08; NST02] and improved
prognosis [And+12]. Lifestyle changes over the years have increased the exposure
to HPV infections, and the prevalence and mortality of cervical cancer in Norway
would most likely have been higher in the absence of screening. For instance,
it has been estimated that the Norwegian program has prevented up to 68% of
cervical cancers [Lön+15].

2.3 The Norwegian cervical cancer screening program

In 1995, the NCCSP was established as a central unit for nationwide screening to
prevent cervical cancer in Norway. Annual reports made publicly available
documents the status and development of the program. The NCCSP is
administered by the CRN, aiming to reduce cervical cancer incidence and
mortality in Norway. The central unit encompasses the participating women,
clinicians conducting the exams, laboratories analyzing the results and the
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2. Background

administrative unit at the CRN. To adhere to the national guidelines, the
NCCSP uses a centralized invitation procedure and issues different types of
reminders to women, physicians and laboratories based on individual exam
results [Bir21].

Guidelines and recommendations Since establishing the NCCSP and until
2014, all women from 25 to 69 years of age were recommended triennial screening
with cytology. Testing for HPV infections was introduced in 2005 to improve
follow-up on low-grade abnormalities and was incorporated into the revised
guidelines in 2014. In 2018, the guidelines were further modified to account for
type-specific HPV infections. A gradual transition from cytology to HPV in
primary screening of 34–69 year old women began in 2019 and in 2022 this was
implemented in nearly all Norwegian counties [Bir21].

As of 2022, the national guidelines in Norway recommend the women aged
25 to 33 years with a negative cytology to follow the triennial routine screening,
while 34–69 year old women with a negative HPV should attend routine screening
every five years. Triennial cytology is maintained for the age group 25–33 due
to the high prevalence of transient HPV infections. Women detected on their
primary screen with high-grade cervical lesions are advised immediate follow-
up (colposcopy). Women with low-grade cervical lesions and a positive HPV
test are invited to repeat the cytology and HPV test in 6–12 months, while a
negative HPV test qualifies for returning to routine screening. If the repeated
cytology remains low-grade and the HPV is persistently positive, the woman is
recommended colposcopy, otherwise she may return to routine screening [Bir21].

Data registries Data from all cervical exams are reported to the CRN by
legal obligation in the Cancer Registry Regulations. However, women with only
normal results can request to be excluded from these records, which applies to 3%
of the NCCSP population. To disclose the data reported to the CRN, databases
for cytology, histology and HPV results were established respectively in 1991,
2002 and 2005. The CIN registry was established in 1997 and contains the data
on assessment and possibly treatment of precursor lesion, while the incidence
registry maintains the information about detected cancers. The NCCSP database
encompasses the cytology, histology, CIN and HPV registries. By 2020, this
database contained the exam histories of more than 1.8 million women attending
cervical cancer screening in Norway [Bir21].

More personalized prevention Only a minority of women contracting an
HPV infection will develop cervical cancer, and the risk of cancer development
varies considerably among the individuals exposed to this ubiquitous infection.
Utilizing information from the exam histories to estimate the prognosis for
each woman can improve the risk stratification of the heterogeneous screening
population. Specifically, machine learning technology developed for individual
risk estimation provides information to support decisions on subsequent clinical
actions. The existence and availability of NCCSP database create opportunities
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for developing such technologies for more personalized clinical decision support
in cervical cancer screening and improving early detection.

2.4 Concepts in machine learning

The field of machine learning has been rapidly growing in recent years, and several
resources provide a comprehensive overview of how the field has evolved [Cho21;
Ras15]. Machine learning commonly refers to algorithms leveraging data to
perform computational tasks. Some tasks where these algorithms are used
include treatment outcome prediction [Par+15], fraud detection [AAO17], speech
recognition [Amo+16], and autonomous driving [Son+21]. The benefits of
adopting a machine learning strategy are that larger volumes of information can
be processed faster and more accurately than with manual methods. However,
the accuracy of these methods relies heavily on the data used to derive the system.
Particularly paramount to accurate machine learning is sufficient amounts of
representative examples for how a system responds to given inputs [Sam+21].

Learning from data Machine learning may be divided into different branches
distinguished by the learning strategies and applications. One of these branches
is unsupervised learning, where algorithms extract latent information based
on various assumptions about the data. These assumptions could be about
the dependency structure between measurements arriving in sequence or the
distribution of the measurements, whether it is balanced or skewed towards one
specific outcome.

Another branch is called supervised learning and entails algorithms designed
to learn a mapping from specific inputs to predict target outputs. For example,
the goal may be to predict movie ratings from input information about personal
preferences. Here, the input to the algorithm is descriptive information about
the movies, often called features, organized in the form of a vector or matrix
for each individual. These features are typically engineered from the data or
extracted with an unsupervised method.

When learning from data in the unsupervised and supervised settings, the
algorithm derives discriminative rules from the inputs through some optimization
procedure, described as training or fitting. During training, the algorithm learns
the appropriate rules through feedback from an objective function designed to
adjust the algorithm to improve on the task. A key element in developing a
machine learning algorithm is designing objective functions that capture the
inherent nature of specific tasks.

Generalization When training machine learning algorithms, a cardinal
objective is to derive discriminative rules that generalize across different datasets.
However, a fundamental assumption in most applications is that all data
presented to the algorithm originate from the same distribution. A common way
to assess generalization performance in the supervised setting is to divide the
available data into one set used for training and another subset for (internal)

9



2. Background

validation. The training set is used to learn the relationships between possible
inputs and corresponding examples of target outputs, and the validation set is
used to assess the generalization performance during training and determine
when the training should stop. Moreover, a third separate dataset may be
available to test the final algorithm after training is complete. While evaluating
an unsupervised algorithm can be more challenging, one approach is to combine
it with an downstream supervised algorithm to assess the quality of the
unsupervised solution.

Overfitting and underfitting An undesirable development that may occur
during training is that the algorithm continues to improve on the training set
while the performance on the validation set is decreasing. This development
is referred to as overfitting and may occur in the supervised and unsupervised
settings. Here, the algorithm may be fitting spurious relationships only found in
the training data and do not generalize to other data. Possible explanations for
overfitting is that there are too few examples of certain outcomes in the dataset,
producing in a weaker signal, or that the algorithm is so complex that it has the
capacity to model measurement noise as intrinsic information. Common methods
to overcome overfitting is to impose constraints on the objective function to
reduce the flexibility of the algorithm and emphasize specific aspects of the
data [Ras15].

Moreover, underfitting is when the algorithm performs poorly on the training
data as well as the validation data. Underfitting may occur if there is a low
amount of data available for training and validation or if the algorithm is too
simplistic to capture the main components of information [Ras15]. A potential
cause for underfitting is that the objective function lacks elements to capture
essential concepts within the data, such as time-dependencies. Depending on the
task and available data, some algorithms may thus be more eligible than others.
The aphorism “all models are wrong, but some are useful” acknowledges that
prediction algorithms fall short of the complexities of reality but can nevertheless
be applicable, and several different machine learning algorithms have been
developed over the years; each with inherent biases [Mah20].

No free lunch An insight derived from the “no free lunch theorems” is that no
single prediction algorithm is unequivocally optimal in every application [WM97].
Essential in machine learning is thus to compare different algorithms to determine
which one is the more appropriate for the task. This process is often referred to
as algorithm selection [Ras15]. The following briefly describes different prediction
algorithms commonly used in biomedical applications.

Logistic regression Logistic regression (LR) is a supervised learning
algorithm often used in classification tasks [Cox58]. To classify an input feature
vector, the algorithm creates a linear combination of the features with the learned
model parameters. The linear combination is then passed through an activation
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function, creating the class probabilities. Usually, the input is assigned to the
class corresponding to the highest probability.

Decision tree In machine learning, a decision tree (DT) is a prediction
algorithm built from discriminative rules organized in a hierarchical struc-
ture[Bre+17]. Like LR, this algorithm belongs to the branch of supervised
learning. The DT algorithm classifies an input by recursively querying the
features according to the learned rules. The discriminative rules are inferred
from the training data by optimizing the partitioning according to some metric.

Random forest The random forest (RF) algorithm consists of several DTs
built separately from random subsets of the training data and organized in a
parallel structure [Bre01]. The individual DTs are usually restricted to having
relatively few rules. Given input data, the algorithm aggregates the output
from the individual trees to determine a classification. Compared to a single
decision tree, the RF can improve prediction accuracy and reduce variance in
the estimates.

Gradient boosting trees Like the RF, the gradient boosting trees (GBT)
algorithm builds on a collection of DTs [Fri01]. However, rather than organizing
the trees in a parallel structure, GBT arranges the individual trees in a sequence.
Here, the objective for each tree within the sequence is to correct the prediction
errors of the predecessor tree. By combining the estimates from the individual
trees as a weighted sum, the algorithm can produce a more accurate estimate
than the individual trees.

Neural networks Rather than a single algorithm, neural networks describe
a class of algorithms defined by a series of composite transformations of the
input data [Bis94]. The transformations aim to extract discriminating features
directly from the input data useful for, e.g., classification tasks. The different
transformation steps refer to layers in the network, and the ordered collection
of layers defines the network architecture. Different layers and architectures
exist for different input formats and tasks. Like LR and DT, the multilayer
Perceptron [Hay94] is suited for tabular data, while recurrent [RHW85] networks
model sequential measurements, such as time series. Variants of the recurrent
networks have become popular in modelling regularly sampled sequences, but
these can be slow to train on large datasets and struggle to handle irregularly
sampled data.

Geometric deep learning Geometric deep learning (GDL) entails neural
networks applicable to data organized on structures such as similarity graphs.
One of the main differences between GDL and the more traditional neural
networks is thus the format of the input data. The similarity graphs organize
data in a domain that is not defined by a regularly spaced grid, such as vectors and
matrices, and provide more flexibility in defining the geometric properties of the
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data. Examples of similarity graphs are the so-called social networks modelling
social media activity or sensor networks used in communication systems. An
essential step in using GDL techniques is thus to quantify the relationships in
the data to define the graph structure [Bro+17].

Hidden Markov models A hidden Markov model (HMM) models a series
of observations where measurements are usually restricted to depend only on the
previous observation (i.e. a first-order Markov process) [BP66]. The algorithm
uses a set of latent states to represent the unique elements observed in the data
and a set of state transition probabilities to capture the dynamics in the observed
sequences. There are several versions of the HMM, where some extend to model
processes where time is not represented explicitly in discrete steps [Liu+15].
These algorithms are thus eligible for modelling longitudinal data where the
measurements are irregular and sometimes scarce. While HMMs are typically
unsupervised algorithms used in stochastic simulation, they can be adapted to
prediction tasks.

2.5 Challenges with learning from exam history data

Canonical prediction algorithms like the LR and tree-based methods described
in Section 2.4 expect sufficiently sampled and organized data. However, raw
data rarely comes in the form and shape required for analysis [Tay+21]. In
several situations, measurements are few and infrequent, which results in
scarce and irregular datasets. Scarce data increases the chance of underfitting
due to few examples to guide the learning process. Moreover, organizing
irregular measurements in a uniform array for input to algorithms can dispose
of important information about intrinsic structures in the data and promote
underfitting [Sar21]. The combination of scarce and irregular data yields few
and arbitrarily separated measurements, where essential structural information
may be missing between observations.

In practice, it is also not unusual that one type of measurement occurs
far more often than the others. In this case, the dataset is realized with a
skewed distribution. Considering the implicit assumption of a balanced outcome
representation in most prediction algorithms, highly imbalanced data can make
the learning process overfit the majority outcome [Kra16].

Scarce, irregular and imbalanced exam results Throughout the NCCSP,
the recommendation to commence screening at the age of 25 and cease screening
at the age of 69 has remained unchanged. During these 44 years, adhering to
triennial screening amounts to relatively few measurements with only 15 exams
per woman [Bir22]. In practice, however, the median number of exam results
per history in the population is seven.

In addition to the scarcity of results, the exams occur at erratic time
intervals. While the time between consecutive exams is partially driven by
the recommendations, screening occurs at the discretion of each individual.
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It has been found that less than half of the NCCSP participants attended a
screening at the recommended repeated intervals [Ped+17]. In combination with
individual variations in the onset of an HPV infection prompting more frequent
exams to follow up on abnormal results, the exam histories become irregular.

Although more than 65% of the NCCSP participants have never had an
abnormal exam result, the current recommendation is a regular examination
of the whole population to protect the sub-population of high-risk individuals.
Consequently, the number of normal results exceeds the number of abnormal
results. Specifically, more than 90% of the total results are normal, and less than
3% of the results are high-grade, materializing in a skewed distribution of exam
results. This level of imbalance in the results can be detrimental to prediction
performance [Jap00].

Accuracy in exam results The exam history data contained in the NCCSP
database include only the results from conventional tests (i.e., cytology, histology
and HPV) [Bir22]. Each test type associates some level of uncertainty to correctly
indicating an abnormal (sensitivity) or a normal (specificity) result. Poor test
sensitivity will lead to false negatives, while poor specificity yields false positives.

Estimates on the sensitivity and specificity of the tests used in cervical cancer
screening vary considerably between studies. A review study summarized that
the sensitivity and specificity reported for cervical cytology varied from 30 to 87%
and 86 to 100%, respectively [Nan+00]. Compared to cytology, the HPV test
typically has higher sensitivity [May+07], although the specificity can suffer from
false positives caused by the frequently occurring transient infections [Cuz+06].

The phrase “garbage in, garbage out” is a classic saying in computer science
relating errors in the input data to errors in the algorithm outputs. Besides
limited accuracy in cervical exam tests, inadequate sampling, sample preparation,
and the interpretation of findings may also bias the results. The effect of these
distortions is noisy and ambiguous data that can degrade algorithm accuracy.

2.6 Feature learning from scarce, irregular and imbalanced
data with matrix factorization

A principal consideration when selecting an algorithm for a practical application
is whether it accommodates the input format of the data. A popular class of
algorithms for scarce and irregular data is MF methods. These algorithms create
lower dimensional embeddings of the data for dimension reduction and latent
feature representations. The features can be utilized in downstream prediction
tasks [Zho+14] and to derive recommender systems [KBV09]. Techniques from
recommender systems became especially popular for movie rating prediction
during the Netflix Prize competition. The challenge in this competition was to
improve the current recommendation system using data on the movie ratings
provided by different users [BL+07]. In this data, each user had typically rated
only a few different movies, resulting in scarce and irregular measurements.
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Representing scarce and irregular data One popular way to represent the
Netflix data is as a matrix X ∈ RN×M . Here, the 1 ≤ n ≤ N rows indicate
different users and the 1 ≤ m ≤M movies are on the columns. A movie rating
is a numerical value Xn,m > 0 in the matrix entries (n,m), while zero entries
indicate unrated movies. As each user n provides only a few ratings for different
movies, most entries of the individual rating profiles Xn are zero, with arbitrary
numbers of unrated movies between the ratings. By representing X as a low-
rank factor model, a complete set of latent features can be derived from the
scarce data matrix and utilized in downstream prediction tasks. However, an
underlying premise for the low-rank factor model is that the lower dimensional
representation suffices to capture the main aspects of the data [BK07].

A low-rank factor model In the Netflix data, different users are found to share
movie preferences and exhibit similar rating behaviour. This observation implies
that the rating profiles Xn are correlated and that the variability in X may
be well described by only a few, i.e., r � min {N,M} elementary components
rather than in the original dimensions of X. An alternative representation of
X is thus as a low-rank factor model where X is decomposed into two factors
U ∈ RN×r and V ∈ RM×r. Here, each movie rating is modelled as a linear
combination Xn,m ≈ UnV >m, where Un are the user-specific coefficients and
V m is a linear predictor for the columns of X (i.e., the different movies).

The latent features Assuming r elementary components in X translates
to r latent features in the factor matrices. In the context of the Netflix data,
each row of U indicates the preferences of a user with a weight vector for the
latent features. The features can have interpretations such as movie genre, the
actors involved and the time of the release, and the weights reflect their relative
importance to each user. The interpretation of V is the information about the
latent features shared between the users.

In big-data paradigms, a low-rank factor model is more memory-efficient
since U and V consume less computer disk space than X due to their
lower dimensionality. Determining the size of the factor dimension is usually
approached with heuristic methods to optimize the model to the data. Moreover,
the choice of r impacts the complexity of the data model. Increasing r leads to
more latent features and is more prone to overfitting while choosing r too small
can result in underfitting.

Estimating factor matrices from imbalanced data By employing techniques
from matrix completion, the factor matrices U and V can be estimated from the
rated entries in X. A typical approach is to minimize the overall discrepancy
X −UV > between the known X and the estimated UV > entries, as quantified
by the Frobenius norm ‖·‖F [NKS19]. When X is scarce, the relevant entries
to minimize over in the residual matrix can be specified by element-wise
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multiplication with an indicator matrix W . This yields the optimization objective

min
U ,V

1
2

∥∥∥W � (X −UV >)
∥∥∥2

F
. (2.1)

In the indicator matrix matrix, Wn,m = 1 if Xn,m holds a non-zero value and
otherwise is zero. To account for the data imbalance due to some values occurring
far more often than others, the indicator matrix may be replaced by a weighting
matrix [SJ03].

In the weight matrix, Wn,m̃ �Wn,m if the entity m is more common than
entity m̃. This technique has the effect of emphasizing the signal from rare entries
that may otherwise be suppressed by the more frequently occurring entries. On
the contrary, entries that should not be emphasized due to high uncertainty tied
to the underlying measurement can be down-weighted to reduce the influence of
this observation in training. In general, the design of weight matrix W depends
on the data and the specific application [Sch+16b].

Using methods of alternating minimization, problems like (2.1) can be solved
efficiently in both time and memory requirements [JNS13]. These algorithms
achieve an approximate solution to the original problem by alternating between
minimizing with respect to U and V . Central to matrix completion is deriving
factor estimates that captures the intrinsic structures in X. To potentially
improve the generalization of the solution and reduce overfitting, constraints can
be added to (2.1). Constraints may also be used to encourage specific properties
of the factor matrices to prevent underfitting.

Improving factor estimates with regularisation Constraining the factor ma-
trices by incorporating domain-specific properties can improve their general-
ization abilities as downstream features and their fit to the data. One way to
implement a wide range of constraints is by adding regularization terms to the
objective formulation [KM10]. Although the choice of regularisers is problem-
specific, some techniques are widely used across applications. For instance, L2
regularisation on the factor matrices can prevent overfitting by controlling the
complexity of the factors [MS07]. Including L2 regularisation, the objective
in (2.1) extends to

min
U ,V

{
1
2

∥∥∥W � (X −UV >)
∥∥∥2

F
+ α1 ‖U‖2

F + α2 ‖V ‖2
F )

}
(2.2)

Larger α > 0 in (2.2) will reduce the chance of overfitting to the non-zero entries
in X by penalizing large elements of the factor matrices.

Interlude: Time-varying measurements In some applications, the
columns of the data matrix X may not be representing independent entities
such as movies but rather a structural relationship like time dependencies. Con-
sidering scarce measurements that are collected irregularly over time, these may
still be fitted into a matrix Y ∈ RN×T . Here, each row Y n ∈ RT represents a
longitudinal vector with measurements organized over 1 ≤ t ≤ T time points.
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This data representation preserves information about the temporal ordering of
the measurements. Assuming Y is of low-rank factor, each profile vector can
be decomposed into a set of vector-specific coefficients U ∈ RN×r and shared
time-varying basic profiles V ∈ RT×r.

Modelling longitudinal data Applications of MF to time-dependent data
remain scarce, possibly due to the added difficulty of inferring and fitting the
temporal dynamics from only a few available measurements. In densely sampled
time series data, dependencies have been encoded using similarity graphs, linking
together data points in time [YRD16]. However, in longitudinal data where
measurements are more scarce, the accuracy of the similarity graphs may suffer
from difficulties in quantifying profile similarities.

As an alternative to graph-based approaches, the temporal structure from
scarcely sampled data can be encoded as regularizers. One strategy is to assume
temporal smoothness in the longitudinal basic profiles V and apply a finite
difference matrix D ∈ {−1, 0, 1}T×T to reveal the smoothness over adjacent
time points [Zho+11]. Taking the Frobenius norm over the matrix product
DV quantifies the overall level of irregularity, which can be minimized with the
objective

min
U ,V

{
1
2

∥∥∥W � (Y −UV >)
∥∥∥2

F
+ α1 ‖U‖2

F + α2 ‖V ‖2
F + α3 ‖DV ‖F

}
(2.3)

Here, the term ‖DV ‖F will promote smoothness in V , making the basic profiles
vary more slowly. The regularization induced by DV is uniform across the
measurements in time, penalizing all deviations at neighboring time points
equally much. However, a more flexible algorithm may be required to prevent
underfitting in applications where the temporal dynamics varies at a non-uniform
rate.

2.7 Summary

Cervical cancer is a disease that gradually develops over time from a region
in the lower third of the uterus. Developing abnormal cervical cells follows
from a persistent infection with high-risk HPV, progressing via pre-cancerous
lesions to invasive cancer. Existing methods for detecting cervical cancer and
the pre-cancerous states are based on cytology, histology and HPV tests. These
methods are widely adopted in national programs for cervical cancer screening in
Scandinavian countries. These screening programs recommend that individuals
from the target population undergo regular and repeated examination to detect
disease precursors in time for adequate treatment and cancer prevention.

The cervical cancer screening program in Norway (NCCSP) recommends
regular screening every three to five years for women from 25 to 69 years of
age. The program has been demonstrated to reduce cervical cancer incidence
and mortality in the NCCSP population. Data from all the cervical exams are
registered in the NCCSP database at the Cancer Registry of Norway (CRN),
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containing the complete exam histories of more than 1.8 million women. The
CRN uses information from the exam history data to administer the NCCSP
according to the national guidelines. The existence and availability of the NCCSP
data create opportunities for devising machine learning technologies to develop
more personalized guidelines, adapting the recommendations to the individual
risk for more targeted screening.

Machine learning entails algorithms that can learn a mapping from input data
to specific target outputs to predict future events. Several prediction algorithms
have been developed for sufficiently sampled and organized data. However, the
NCCSP exam histories are scarce and irregular in the sense that they contain
relatively few measurements at irregular time intervals. Applying standard
machine learning methods to this data increase the chance of underfitting due to
lack of examples. Moreover, as the vast majority of exam results are normal and
cervical cancer only develops in a smaller segment of the screening population,
this create a data imbalance that promotes overfitting. Additional learning
difficulties may arise from the less than perfect sensitivity and specificity in the
exam tests, potentially biasing the results.

Popular algorithms for scarce and irregular data are based on techniques
from matrix factorization. These algorithms are commonly used to learn a
latent feature representation by creating lower dimensional embeddings of the
original data. The basic assumption for this approach is that the information
from different entities are correlated such that the main aspects of the data
can be captured with a lower dimensional representation. Intrinsic structures
observed in the Norwegian exam history data include local variability about
abnormal results and temporal shifts in the times when these results are first
detected. To properly encode this information in the latent features used for
downstream prediction tasks calls for development of novel algorithms designed
for the NCCSP exam history data.
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Chapter 3

Summary of Papers

This thesis draws on three original manuscripts for scientific papers that have
been submitted to or published in peer-reviewed journals. The papers aim to
address the research objectives in Section 1.3 and are presented here in the
order of writing. The first paper presents prediction algorithms based on MF
methods designed to capture the intrinsic structures in the Norwegian exam
history data; the second paper compares the calibration accuracy in different
prediction algorithms to the the time-varying absolute risk of cervical cancer
derived from data; whereas the third and final paper studies confidence and
correctness in single predictions to elucidate on potential difficulties embedded
in the data.

Paper I Matrix factorization for the reconstruction of cervical cancer
screening histories and prediction of future screening results
Developing a prediction algorithm for the Norwegian exam history data
presents several technical challenges to algorithm design. Methods based
on MF can accommodate scarcity and irregularity in the data but needs
further development to capture the intrinsic structures in the NCCSP exam
history data. For instance, longer time intervals with normal results are
typically followed by shorter intervals with repeated exams after detecting
an abnormal result. Sequences like this are found in several histories and
reveal correlations in the data, but the onset of these sequences varies
by different time delays. The developed algorithm should therefore allow
for larger local variability and temporal shifts between correlated exam
histories.

This paper presents prediction algorithms based on techniques from MF
designed for the NCCSP data. The developed MF techniques extract
structural information from the exam histories to derive two factor matrices
for downstream prediction of cervical cancer development. Specifically,
a regularization term is introduced to model the local variability in the
temporal structure observed around abnormal exam results. Moreover, a
discrepancy term is proposed to adjust the shared basic profiles to the delay
in each history, increasing the correlation between shifted histories. The
discrepancy term also includes a weight matrix designed to accommodate
the imbalance and uncertainty in exam results. The weights incorporate
estimates for the uncertainty in the cervical exam types and the importance
of the individual exam results. In the downstream task of classifying exam
results, a method is presented to adjust the classification threshold to the
imbalance in the data.
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The paper studies the proposed algorithms in numerical experiments on
synthetic data and NCCSP exam histories. By generating synthetic data
resembling the exam histories, ground truths are available and used to
evaluate the accuracy of the factor estimates and indicate useful regularisers
and discrepancy terms for fitting the data. In experiments on NCCSP
data, the ability of the algorithms to predict exam results is demonstrated
by measuring the similarity between Kaplan-Meier curves derived from
hold-out data and predictions.

Paper II Towards a data-driven system for personalized cervical cancer
risk stratification

An interpretation of the “no free lunch theorems” in machine learning
is that no single prediction algorithm is superior in every application.
Comparing different algorithms will thus underline which category of
methods is more suited to a specific problem. Besides MF, algorithms
predicting the future risk and exam results in the Norwegian exam history
data can also be derived with GDL and a HMM. However, the imbalance
in the data may drive the prediction estimates towards a normal result
(majority outcome) and make the algorithm fail to detect the rare high-risk
outcomes. Moreover, changes in the screening guidelines and lifestyle
habits over time have potentially altered this distribution, resulting in a
non-stationary environment.

This paper studies the calibration accuracy in different prediction
algorithms by comparing their output estimates against exam results from
the data over time. Algorithms based on MF, GDL and HMM are adapted
to incremental learning by efficiently updating their current beliefs using all
data up to the previous prediction step, making more informed predictions
over time. To avoid overfitting, the algorithm outputs are adjusted to
the imbalance in the exam results. However, analyzing the distribution
of results in the NCCSP data shows that it is also non-stationary, as the
proportion of exam results changes over time. Adapting to the observed
drift and imbalance, a time-inhomogeneous classifier is created to predict
the next results over segments of age intervals.

In numerical experiments, prediction algorithms for time-varying data
based on MF, GDL and HMM are studied together with LR, RF and
GBT algorithms designed for static data. Evaluating the impact of data
imbalance on algorithm inference shows that the skew in the exam results
drive predictions towards normal. Compared to using a time-homogeneous
classifier, the proposed time-inhomogeneous strategy for predicting non-
stationary and imbalanced data improves the prediction accuracy. Finally,
the calibration accuracy is evaluated by comparing absolute risk curves
derived from algorithm predictions and hold-out data. The risk curves
derived from the MF algorithm show the closest resemblance to the hold-out
data. A close resemblance between these curves indicates that prediction
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algorithms can accurately reflect the estimated event rates for a group of
Norwegian women.

Paper III A weighted loss function for treating imbalanced, overlap-
ping and noisy data in cervical cancer risk prediction
Absolute risk curves derived from aggregated statistics give limited insights
into the accuracy of prediction algorithms. That is, promising prediction
performance at the cohort level does not necessarily translate to high
accuracy for individual predictions. Visual inspection of exam histories in
the NCCSP data reveals a close resemblance between histories of contrasting
clinical significance. Together with the imbalance and the less than perfect
accuracy in exam results, this overlap in the historical information leading
up to differently defined endpoints adds to the challenge of deriving accurate
personalized prediction algorithms.
This paper introduces a probabilistic margin score to measure the
confidence and correctness of individual probabilistic algorithm predictions.
The information from this score is utilized in a weighted loss function,
maximizing prediction margins to improve generalization when training
machine learning algorithms in overlapping data. Moreover, incorporating
adaptive weights into this loss adjusts the optimization to focus on the
challenging data. However, as these weights are typically based on the
perceived prediction difficulty, the accuracy of the estimates may suffer
from noisy data. Smooth adjustment to the weights is therefore introduced
to constrain the updates by aggregating information over the iterates.
Results from numerical experiments on synthetic data and exam history
data from the NCCSP indicate that smooth weights are more robust
towards the perturbation of the target label and can improve prediction
accuracy on noisy data. Furthermore, results suggest that losses based
on margin maximization can improve generalization in overlapping data.
Studying prediction confidence and correctness via the coverage profiles
introduced in this paper suggests that the majority of prediction difficulties
arise from resembling histories moving into different outcomes.
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Chapter 4

Discussion

This thesis explores the potential for deriving accurate machine learning methods
to estimate cervical cancer development by prototyping and evaluating prediction
algorithms using only the exam history data from the NCCSP database. Previous
studies on developing cervical cancer prediction algorithms have used more
extensive data with lifestyle and risk factor information, going beyond the
data routinely collected by the CRN [He+21]. Currently, this information is
unavailable for all individuals in the NCCSP population and algorithms derived
from only the exam history data may thus be more easily integrated into the
existing screening program than algorithms derived from more comprehensive
data material. However, central to this approach is that the Norwegian exam
history data is sufficiently informative for individual prediction. Moreover,
to extract predictive information from the scarce and irregular longitudinal
measurements of noisy and imbalanced exam results, novel algorithms must be
designed for the NCCSP exam histories.

4.1 Re-visiting the research objectives

This thesis comprises three research objectives to guide the steps in algorithm
development. The first objective is to derive novel prediction algorithms designed
for the Norwegian exam history data; the second objective is to compare the
calibration of different prediction algorithms against the time-varying risk of
cervical cancer as derived from data; and the third and final objective is to
study the accuracy in single risk estimates and potential prediction difficulties
embedded in the data to guide further algorithm development.

Prediction algorithms based on MF methods designed for the Norwegian
exam history data are presented in Paper I to address the first research objective.
These methods extract latent features that, together with input information from
a specific history, are used for predictions. The paper introduces a regularization
term for the time-varying basic profiles capturing the shared trends in the data
to incorporate temporal structure information in the latent features. In line with
the approach of [Zho+14], the regularization assumes that the basic profiles are
smooth in time but allows for more local variability, as observed from the history
data. The specific regularization model is chosen to reduce the penalization of
the profiles at faster scales, but the approach generalizes to other applications of
non-uniform smoothness constraints.

Furthermore, Paper I introduces a discrepancy term to enhance the correlation
between structurally similar exam histories having different time delays prior to
the first abnormal result. The observed delays may be explained by variations in
the onset of a persistent HPV infection, resulting in variable time intervals before
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detecting the abnormalities. The discrepancy term aligns the basic profiles
to each history to increase emphasis on the common structures in the data.
This alignment strategy can be used to enhance correlations in data from other
applications subject to local shifts.

Using techniques from MF is not the only way to derive prediction algorithms
designed for the NCCSP exam histories. Comparing the prediction accuracy of
alternative approaches will highlight promising directions for further development.
The second research objective is considered in Paper II, comparing time-varying
absolute risk estimates derived from hold-out data and different prediction
algorithms, including MF, GDL and HMM. Predicting results from the Norwegian
exam history data over time requires adapting these algorithms to incremental
learning. On the other hand, the underlying temporal dependencies between
exam results may be obscured by measurement scarcity. Thus, prediction
algorithms not typically used with longitudinal data (i.e., LR, GTB and RF)
are also included in the comparison. This latter group of algorithms is used
to investigate if time-invariant methods underfit compared to time-dependent
algorithms.

Using absolute risk curves in Paper II to represent prediction accuracy over
time show that the different prediction algorithms can reflect the trends observed
from data. This result demonstrates a potential for using data-driven methods
to predict individual cervical cancer development from only the current exam
history. The main body of existing works on developing prediction algorithms for
cervical cancer development is focused on classifying the risk of cervical cancer
development, using measurements from only a single point in time as input[Cur21;
Rot+18]. However, results from Paper II suggest that utilizing information about
the longitudinal trends in the data can be beneficial to prediction accuracy. Here
the algorithms designed for time-varying data (MF, GDL and HMM) gave more
accurate absolute risk estimates than the alternative group of methods expecting
static input data (LR, GTB and RF). Moreover, amongst the time-varying
algorithms, the MF and HMM were found to be superior to the GDL.

The third and final research objective related to the accuracy of single
predictions and potential prediction difficulties in the exam history data is
studied in Paper III. A basic assumption in Paper I and Paper II is that the
main reason for prediction difficulties is the imbalance in exam results. However,
even with a significant disproportion in prediction targets, canonical algorithms
may still give accurate estimates if the data distributions are separable [BPM05].
On the other hand, a class overlap is not uncommon in imbalanced data and
can lead to severe learning difficulties [BPM04]. In contrast to the strategies for
alleviating only the class imbalance in Paper I and Paper II, this paper presents
methodology that anticipates both information overlap and imbalance in the
data.

The results from numerical experiments in Paper III indicate that the
proposed strategy can correctly detect high-grade cervical lesions (minority
outcome) in several different exam histories. However, supplementary analyses
show that the majority of prediction errors come from high-grade histories with
a strong resemblance to normal histories. Identifying this overlap expands the
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understanding of the prediction difficulties embedded in the Norwegian exam
history data. Addressing this challenge is considered a topic for future work.

4.2 Limitations and future work

Numerical results from Paper II and Paper III presented in this thesis
demonstrate a potential for using data-driven algorithms to predict cervical
cancer development from individual exam histories. The similarity in cervical
cancer screening guidelines and data collection practices within Nordic countries
creates opportunities to assess whether the prediction algorithms can generalize
beyond the Norwegian population. However, the algorithms presented in this
thesis have not been evaluated in external populations due to limited data
availability.

Previous studies on cervical cancer prediction algorithms may have suffered
from scarce data [MRA+21] and uneven proportions of the target variable
outcome [Yan+19]. Although the MF algorithm introduced in Paper I can
fit the scarce, irregular and imbalanced exam results, the latent features may
be improved by addressing some of the current limitations to the technical
algorithm specifications. For instance, the algorithm considers only one exam
result per visit, while there may occasionally be multiple results from the same
date. One direction for future work is thus to extend the MF framework to
utilize information from all the results in an exam history.

The HMM algorithm in Paper II improves technically on this aspect of
the MF by accounting for an arbitrary number of exam results per visit as
well as considering the exam types. However, both the HMM and MF are
by design focused on the more holistic trends in the data, while capturing
more of the local structures may important to improve discrimination. For
instance, the top performing methods in the Netflix Prize competition utilized a
complimentary set of algorithms, combining MF with techniques from nearest
neighbour approaches [Tak+08]. In combination, these algorithms can be
used to merge information from different levels of structure in the data as
MF uncovers the more global trends and neighbourhood algorithms find more
localized relationships. Extracting more localized structures can help differentiate
between histories sharing several similarities, as described in Paper III. However,
a challenge relating to the neighbour approaches is quantifying the similarity
between the exam histories due to the measurement scarcity and irregularity.

Quantitatively comparing exam histories is also a challenge encountered
with the GDL algorithm in Paper II. The GDL algorithm combines principles
from MF with similarity graphs derived from neighbourhood methods to
facilitate constraints on the latent features. In these graphs, the connected
nodes represent resembling histories as estimated by some similarity measure.
Methods to accurately quantify their resemblance can reveal minor differences in
overlapping histories leading to clinically different endpoints. However, applying
standard measures like the Euclidean distance to the scarce and irregular exam
histories may yield inaccurate results and degrade performance [Gog+21]. Thus,
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developing a measure for the affinity between histories will enable using more
localized methods.

Re-visiting the HMM approach, a hierarchical HMM was recently proposed to
model cervical cancer development, assuming only some portion of the screening
population were at risk of cancer development [Men+22]. Recall that in the
NCCSP data, the majority of the women have only normal results, while a
smaller portion of the population develop low-grade lesions and only a few of
these progress to high-grade where some might develop cancer. The proposed
hierarchical HMM distinguishes between women susceptible to processing from
a persistent HPV infection and where the infection will resolve without any
clinical intervention. Rather than using one set of parameters as in [Sop+20],
this algorithm has increased modelling capacity by using separate parameters
for each category. The hierarchical HMM thus present another direction to
potentially remedy the information overlap in the exam histories by addressing
different level of structure in the data.

Other approaches to handle problems of information overlap co-occurring with
data imbalance may involve algorithms for synthetic data generation [VEP21].
Combining empirical data with synthetic examples can increase the visibility of
rare and challenging samples, creating a more balanced and informative dataset
for algorithm training. Here, the existing HMMs from [Sop+20] and [Men+22]
can be used as stochastic simulators to produce synthetic data resembling the
NCCSP exam histories and augment the original training data.

While approaches to address the issues of information overlap may rely
on continued algorithm development and synthetic data generation, another
direction is to derive an alternative representation of the encoding of results to
enhance the dissimilarity between histories. Throughout the papers presented in
this thesis, the original results reported based on the Bethesda and CIN systems
are compressed into four categories, similar to [Sop+20]. The simplified results
are aligned with the four-stage model for cervical carcinogenesis to represent the
state of each woman. Compressing the original results can reduce inaccuracies
and noise in individual results but may also dispose of discriminative information
about individual risk. Using too few categories can therefore make the exam
histories seem more alike. On the other hand, using too many categories may
increase the scarcity per category and potentially increase the noise. Directions
for future work thus involve exploring the number of categories and alternative
data representations to enhance the predictive information in the data.

4.3 Summary and conclusions

The availability of population-level data on cervical exams routinely collected
and centrally stored in a national cancer registry create opportunities to derive
prediction algorithms for the individual risk of cervical cancer development.
Such algorithms can be used to develop more personalized screening guidelines
and recommendations for more targeted cervical cancer prevention. Here, a
pivotal question is if the NCCSP exam history data is sufficiently informative
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for deriving algorithms with satisfactory accuracy in individual predictions.
Moreover, algorithms need to be designed specifically to accommodate the
intrinsic structures of this data. This methodology may also be applicable to
data from other cancer types, such as colorectal, breast and prostate cancer.

This thesis presents novel approaches to predicting cervical cancer devel-
opment from individual exam histories by exposing methodology developed
specifically for the NCCSP data. The ability of the algorithms to predict cervical
cancer development from only the exam history data is demonstrated through
numerical experiments. The results indicate a potential for using data-driven
algorithms to derive guidelines differentiating according to the individual risk
for more personalized recommendations. Moreover, comparing several different
algorithms suggest that approaches based on MF and HMM are promising
directions for personalized risk prediction.

However, to improve the accuracy of algorithm predictions, difficulties arising
from an information overlap within the data must be overcome. The overlap
appears as similarities between exam histories leading to endpoints of different
clinical relevance, and recognizing it improves the understanding of the complexity
within the NCCSP data. Approaches to remedy overlapping data may involve
further algorithmic development to focus on more localized structures in the data
besides the more holistic perspective. Alternatively, supplementing the training
data with synthetic data or adopting a different representation of the exam
results may increase the separability of the exam histories. Aligning approaches
to increase the predictive information in the data with the algorithms presented
in this thesis is expected to improve their prediction accuracy.
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Abstract

Background:
Mass screening programs for cervical cancer prevention in the Nordic countries

have strongly reduced cancer incidence and mortality at the population level. An
alternative to the current mass screening is a more personalised screening
strategy adapting the recommendations to each individual. However, this
necessitates reliable risk prediction models accounting for disease dynamics and
individual data.

Herein we propose a novel matrix factorisation framework to classify females by
the time-varying risk of being diagnosed with cervical cancer. We cast the
problem as a time-series prediction model where the data from females in the
Norwegian screening population are represented as sparse vectors in time and
then combined into a single matrix. Using novel temporal regularisation and
discrepancy terms for the cervical cancer screening context, we reconstruct
complete screening profiles from this scarce matrix and use these to predict the
next exam results indicating the risk of cervical cancer. The algorithm is validated
on both synthetic and registry screening data by measuring the probability of
agreement (PoA) between Kaplan-Meier estimates.

Results:
In numerical experiments on synthetic data, we demonstrate that the novel

regularisation and discrepancy term can improve the data reconstruction ability as
well as prediction performance over varying data scarcity. Using a hold-out set of
screening data, we compare several numerical models and find that the proposed
framework attains the strongest PoA. We observe strong correlations between the
empirical survival curves from our method and the hold-out data, and evaluate
the ability of our framework to predict the females’ next results for up to five
years ahead in time using only their current screening histories as input.

Conclusions:
We have proposed a matrix factorization model for predicting future screening

results and evaluated its performance in a female cohort to demonstrate the
potential for developing prediction models for more personalized cervical cancer
screening.

Keywords: cervical cancer; cancer screening; population-level cancer prevention;
matrix completion; matrix factorization
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Background
The mass screening programs against cervical cancer established in the Nordic coun-

tries may have prevented up to 80% of malignancies [1]. Persistent Human papil-

lomavirus (HPV) infection is the primary causes of cervical cancer – as well as

several other cancer types – initiating a process of cellular changes from low-grade

to high-grade (pre-cancerous) lesions to invasive cancer [2]. Early detection of pre-

cancerous lesions, e.g. with cytology, histology, or HPV tests, could prevent cancer

development if it is treated [3] and motivates the need for screening.

A key factor in the success of the cancer screening programs is repeated screening

at regular intervals. However, the risk of being infected with HPV and the risk

of progressing to cancer vary significantly between females [4]. Thus, too frequent

screening may lead to over-treatment of clinically insignificant pre-cancers, while

too infrequent screening risks missing pre-cancers warranting treatment.

An alternative to the current mass-screening is a more personalized strategy

adapting the screening frequency to the individual risk of disease initiation. For

instance, vaccination of adolescent females has shown to improve protection against

HPV infection [5], in which case the cancer screening programs may benefit from

more flexible guidelines for the individual risk [6]. A step towards guidelines for

more personalized recommendations is developing prediction models for the time-

varying risk of cervical cancer using existing screening data from centrally organized

population-level registries. In this paper, we present a novel matrix factorisation

framework for time-dependent risk assessment of cervical cancer. We use population-

based data from the Norwegian Cervical Cancer Screening Program (NCCSP) and

evaluate our method by comparing Kaplan-Meier estimators from model predictions

and a hold-out set.

The NCCSP database contains only the information needed by the Cancer Reg-

istry of Norway to administer the screening program. There are test results from 3

types of medical exams (cytology, histology, and HPV) but no further clinical infor-

mation about the NCCSP participants. Following [7] we process these results into

four states, reflecting the risk of cervical cancer and clinical consequences: A normal

state indicates an accepted baseline risk; a low-risk state indicating an early stage

of carcinogenesis (low-grade lesion) warranting more frequent screening to catch

a potential progression to high-risk, requiring immediate treatment, and a cancer

state, which can be seen as a failure of the screening program and a potentially

lethal state for the woman.

In our approach we use NCCSP data collected between 1991–2015. During this

time period, females aged 25–69 with a prior normal result were invited to a routine

screening every 3rd year. According to those guidelines, triennial screening amounts

to about 15 results in total and thus the state of the cervix is only observed at a

few time points (scarce data). Moreover, since the recommendations are not strictly

adhered to in practice the individual screening histories become irregular over time.

Lastly, the majority of exam results are normal, making the data highly imbalanced.

Specifically, in the NCCSP more than 90 % of test results are normal, 4–5 % low-risk

and around 1 % are high-risk or cancer [8].

In Figure 1, we illustrate screening histories represented by sparse time series

vectors fitted into a matrix. Our goal is to estimate complete state profiles by filling
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the missing entries of these vectors and then use the completed state profiles in

predicting the future state. Assuming correlation between subgroups of screening

histories, we estimate the complete profiles using low-rank matrix factorisation (MF)

and matrix completion (MC) techniques.

Time

Fe
m
al
es

TimeNormal/low-risk:

Females

High-risk/cancer:

x

x

x

Figure 1 Matrix representation of cervical cancer screening histories. Individual cervical cancer
screening histories as sparse time series fitted into a matrix Y. A green/yellow square indicates
normal/low-risk state, and an orange cross denotes a high-risk/cancer state. The matrix columns
corresponds to female age intervals of 3 months.

Existing methods applying MF to temporal data use similarity networks encoding

temporal dependencies to facilitate constraints on the solution [9]. However, in our

case the explicit temporal structure is not easily inferred from the data. Some

recent work [10] extends the geometric deep learning (GDL) framework [11] to the

matrix completion problem. Similarly to the temporal MF approaches, geometric

deep learning methods also encode the structure of the data matrix using similarity

graphs. The PACIFIER framework is a MF approach [12] specifically targeting the

healthcare domain and the analysis of Electronic Medical Records, which can also

be very sparse and noisy similar to the screening data. The PACIFIER performs

MC by imposing sparsity and smoothness constraints on the temporal evolution of

the latent factors.

In this paper, we adapt the PACIFIER framework to the cervical cancer screen-

ing setting and reconstruct complete state profiles from the scarce histories. We

present a regulariser for the temporal dependencies between the results in histories

and propose a discrepancy term for utilizing correlations between different histories.

We evaluate our method on both synthetic data and registry data by measuring the

probability of agreement [13] between Kaplan-Meier estimates from model predic-

tions and a hold-out set.

Results
In our experiments we consider five matrix factorization methods. The first method,

referred to only as matrix factorization (MF), is our implementation of the PACI-

FIER. The second method, convolutional MF (CMF), extends the PACIFIER with

more flexibility to model the variability observed in the cancer screening data.

Furthermore, we introduce time shifts into the CMF to better exploit correlations
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between screening histories and name this shifted CMF (SCMF). We also con-

sider versions of the CMF and SCMF where the errors in the discrepancy term are

weighted to emphasize particular exam results. These models are referred to in our

experiments as weighted CMF (WCMF) and weighted SCMF (WSCMF).

Moreover, we compare the matrix factorization models to the GDL approach for

matrix completion (GDL) as in [10]. We studied different ways of constructing

similarity graphs capturing the structure on the rows and columns of our matrix

representation of screening histories, Y, as input to GDL. Our strongest results over

various distance metrics, including Euclidean and Wasserstein distance, came with

a 10-NN sequential column graph for temporal smoothness and a 10-NN row graph

based on the cosine distance to connect similar screening histories. Both graphs are

weighted by exp(−d(i, j)) with d(i, j) being the distance between two connected

nodes i and j.

Synthetic data experiments

We generated synthetic data resembling the scarcity, irregularity and imbalance

of the registry screening data. Latent state profiles were synthesized from linear

combinations of five basic profiles of the form Vt,k = exp(−10−3(t − µk)2) and

female-specific coefficients Un,k ∼ Exp(1). We mapped each of the entries in the

latent state matrix M ∈ RN×T to an integer 1–4 with model (2) at θ = 2.5. Entries

were randomly removed from the resulting integer matrix using empirical probabil-

ities of observing an entry conditioned on the previous state. Figure 2 compares the

synthetic data and the cancer screening registry data.

To measure the reconstruction error between the model estimate M̂ and the

ground truth M over the unobserved entries, we use

D ,

∥∥∥PΩc

(
M− M̂

)∥∥∥
2

F

N T |Ωc|
. (1)

The operator PΩc : RN×T → RN×T projects onto unobserved entries and |Ωc| is

the fraction of entries from Y in Ωc. Figure 3 shows the reconstruction error for

factorization models MF, CMF and SCMF over varying data density |Ω| given as

the fraction of observed entries.

Figure 3 indicates that the temporal regularisation used in CMF produces more

accurate data reconstructions than the regularisation used in MF as reconstruction

error is consistently smaller for CMF than for MF. Moreover, the shift mechanism

in SCMF, exploiting correlations between screening histories, gives even smaller

reconstruction errors.

In Figure 4 we compare performance scores, Φs (Eq. (8)) for different models,

indicating the probability of agreement [13] between hold-out data and predictions.

Predicting based on Eq. (5), we required at least two results to be observed prior

to the prediction time and in addition we used a moving window to ensure that no

result was observed within two years from the time to predict.

The PoA-based scores in Figure 4 shows that SCMF typically achieves the

strongest performance, followed by CMF, mostly outperforming MF. Especially

in classifying normal and low-risk, where the number of cases is higher than for

high-risk and cancer, the SCMF and CMF attain the highest scores.
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Figure 2 Comparing synthetic data to screening data. Randomly selected histories from
synthetic data and data from the Norwegian Cervical Cancer Screening Programme (NCCSP).
Green/yellow squares correspond to normal/low-risk results, and an orange cross signify either
high-risk or cancer results.
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Figure 3 Reconstruction error on synthetic data. Comparing the reconstruction error (D by (1))

from different factorization models specified in Table 3 over varying data density (|Ω|). The
factorization models are Matrix Factorization (MF), Convolutional MF (CMF) and Shifted CMF
(SCMF).

Screening data experiments

We randomly sampled two sets of 15K screening histories (training and test) with at

least 3 results between 1991–2015 from the NCCSP data including over 1.7 million

female participants. Each selected female was born between 1965–1970 and had
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Figure 4 Probability of agreement on synthetic data. Classification performance on synthetic

data of varying data density |Ω|. Model performance is given as the probability of agreement [13]
score (Φs from (8)) with 95% CI. Higher Φs ∈ [0, 1] signifies better model fit. The prediction
models are Matrix Factorization (MF), Convolutional MF (CMF) and Shifted CMF (SCMF).

her first screening at age 25 (the recommended age to start screening by NCCSP

guidelines) to minimize left-censoring. Organizing the histories as sparse time series

and combining them produced training and test matrices, each with about 8%

observed entries.

The training histories were used to estimate latent state profiles with the models

from Table 3 and a GDL based on [10]. Classification thresholds were obtained

by solving (6). The test histories were used for model performance evaluation by

comparing observed and predicted results over time, like in experiments on synthetic

data. Table 1 gives the normalized PoA score (Φs; Eq. (8)) per prediction model.

Table 1 Classification performance on registry screening data. Model performance is given as the
probability of agreement [13] score (Φs) with 95% CI. Higher Φs ∈ [0, 1] signifies better model fit.

Φs

Model Normal Low-risk High-risk Cancer
∑

Φs

GDL 0.35 [0.32, 0.43] 0.087 [0.077, 0.094] 0.15 [0.13, 0.17] 0.47 [0.44, 0.51] 1.1
MF 0.28 [0.22, 0.35] 0.022 [0.00, 0.063] 0.21 [0.19, 0.24] 0.46 [0.33, 0.54] 0.98

CMF 0.31 [0.23, 0.39] 0.11 [0.063, 0.12] 0.29 [0.27, 0.32] 0.77 [0.72, 0.83] 1.5
WCMF 0.31 [0.26, 0.35] 0.25 [0.23, 0.27] 0.27 [0.24, 0.31] 0.78 [0.73, 0.87] 1.6
SCMF 0.33 [0.27, 0.39] 0.59 [0.57,0.62] 0.35 [0.32,0.37] 0.63 [0.55, 0.71] 1.9

SWCMF 0.36 [0.29,0.41] 0.50 [0.47, 0.51] 0.33 [0.24, 0.41] 0.86 [0.80,0.90] 2.1

The overall PoA score in Table 1 was highest for SWCMF from being the most

accurate model to predict normal (Φs = 0.36) and cancer (Φs = 0.86). High-risk

and low-risk was best predicted by SCMF (Φs = 0.35 and Φs = 0.59). Note that

CMF improves on MF and both shifted models (SWCMF and SCMF) mostly out-

performed their non-shifted variants.

Based on achieving the highest overall PoA score, we study SWCMF in classifying

with a forecast horizon ranging from 0.5–5 years. The SWCMF performances from
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predicting with all data within a given time from the target being removed are given

in Table 2.

Table 2 Classification performance for Shifted Weighted Convolutional Matrix Factorization over
varying forecast horizon as the probability of agreement [13] score (Φs from 8) with 95% CI. Higher
Φs ∈ [0, 1] signifies better model fit.

Φs

Forecast
(years)

Normal Low-risk High-risk Cancer
∑

Φs

0.5 0.35 [0.26, 0.40] 0.61 [0.52, 0.63] 0.21 [0.18, 0.24] 0.91 [0.86, 0.95] 2.1
1 0.32 [0.25, 0.36] 0.59 [0.56, 0.62] 0.45 [0.35, 0.52] 0.90 [0.83, 0.96] 2.3
2 0.36 [0.29, 0.41] 0.50 [0.47, 0.51] 0.33 [0.24, 0.41] 0.86 [0.80, 0.90] 2.1
3 0.38 [0.33, 0.43] 0.40 [0.38, 0.41] 0.24 [0.21, 0.26] 0.79 [0.70, 0.85] 1.8
5 0.20 [0.086, 0.29] 0.024 [0.020, 0.025] 0.20 [0.10, 0.28] 0.68 [0.66, 0.73] 1.1

Table 2 shows that the SWCMF performance is relatively stable up to 3 year fore-

casts, which is the longest recommended exam interval. However, the performance

drops noticeably at the 5 year forecast.

Plotting the Kaplan-Meier estimates for the hold-out set and the 2 year SWCMF

predictions in Figure 5 indicates a good overall fit as model predictions clearly

correlate with the observed data. Note that the y-axis scale differs between the

plots.
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Figure 5 Kaplan-Meier estimates. Comparing Kaplan-Meier estimates from 2 year predictions
with Shifted Weighted Convolutional Matrix Factorization (SWCMF) and a hold-out set of
registry data from the Norwegian Cervical Cancer Screening Programme (NCCSP).

In Figure 5, the normal rate is slightly underestimated over ages 34–42, as well as

the low-risk rate for younger (ages 30–36) and older (ages 44–50) females. These 3

regions correspond well to the times when high-risk is overestimated, which is likely

the result of our method for setting the probability thresholds by solving (6). Using

time-varying probability thresholds could potentially improve the results here.

The PoA curves from Kaplan-Meier estimates in Figure 5 are plotted in Figure 6

to evaluate their agreement.

According to Figure 6 there is a strong agreement between the cancer estimates,

especially after around age 40. As observed in Figure 5, the drop in PoA for high-risk
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Figure 6 Probability of agreement. The probability of agreement ((PoA); φ(t) from (7)) between
the Kaplan-Meier estimates in Figure 5. Higher φ(t) ∈ [0, 1] means stronger agreement. The range
of equivalence margins is given as δ(t) ∈ [a, b].

is complementary to the PoA for normal and low-risk, in which case overestimating

high-risk leads to underestimating low-risk and normal in our classification model.

Discussion and conclusions
Deriving risk prediction models from existing cancer screening registries is a step

towards more personalized screening. Here we present a matrix factorization frame-

work that, to our knowledge, is the first approach to use this method for classifying

females by the time-varying risk of being diagnosed with cervical cancer from only

their current screening histories.

Here we used screening histories from females participating in the Norwegian

Cervical Cancer Screening Programme (NCCSP) between 1991–2015, and represent

these as sparse time-series vectors fitted into a single matrix. Comparing different

algorithms for estimating complete screening profiles for each female we found that

the proposed framework, accounting for temporal dependencies within histories and

correlations between samples, gave the most accurate estimates.

To illustrate the potential for developing risk prediction models for more per-

sonalized screening recommendations, we validated the framework on the NCCSP

registry data using Kaplan-Meier (K-M) estimates from model predictions and a

hold-out set. The K-M curves showed a strong correlation and a corresponding high

probability of agreement (PoA) [13] using an equivalence margin (−δ(t), δ(t)) based

the time-varying standard deviation of the ground truth K-M curve.

A typical choice to check if two quantities are within q% of each other is δ = q/100,

but this fixed margin does not permit potential temporal variation in the similarity

measure depending on the uncertainty in the reference data. Using the time-varying

standard deviation for margin, as in our case, gives a more strict measure if the

uncertainty in the ground truth K-M estimate is small but may potentially increase

the PoA if this estimate has high variance As the choice for δ greatly affects the PoA
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measure, methods for selecting this parameter in cervical cancer screening contexts

should be addressed in future work.

Adapting screening recommendations to females at reduced or elevated risk may

improve efficiency and precision of cancer screening programs. Prediction models for

the individual risk can assist screening programs in adapting to such personalized

strategies. The framework presented herein demonstrates the potential for using

matrix factorization to derive prediction models for personalized risk estimation

based on individual screening data. We also believe that our approach could be

applied to data from other types of mass-screening programmes such as breast,

colorectal and prostate cancer, which we plan to investigate in future work.

Methods
We represent the cervical cancer screening data as a partially observed matrix Y ∈
NN×T . Each row in Y is a one-dimensional time series for a single screening history

and each column represents a 3 months time interval. Based on recommendations

of 3 years screening intervals for healthy females, and 3 to 6 months for females at

elevated risk, choosing 3 months for the time discretisation of the data provides thus

a reasonable compromise between temporal resolution and sparsity of the data. In

the following, we denote the set of indices where observations in Y are available

by Ω ⊂ {n}Nn=1 × {t}
T
t=1. Moreover, each observed entry Yn,t ∈ Y, representing a

normal, low-risk, high-risk or a cancer state, is numerically encoded with integer

values s ∈ {1, 2, 3, 4} where 1 is normal and 4 is cancer, as in [7].

A latent state model for cervical cancer screening data

Our basic assumption is that the discrete observed states Yn,t are possibly inaccurate

measurements of a continuous latent state Mn,t that evolves slowly over time for

each female. We take each state Yn,t to be observed with probability based on a

Gaussian distribution of mean Mn,t and variance 1/2θ. The parameter θ > 0 models

the reliability of the estimate. Thus,

p(Yn,t = s |Mn,t) , CMn,t exp(−θ(s−Mn,t)
2) (2)

for some normalization constant CMn,t
. With this model we have the maximum

likelihood estimate

θ? =
|Ω|

2
∑

(n,t)∈Ω (Yn,t −Mn,t)
2 ,

where |Ω| is the number of observations in Ω.

Furthermore, we assume that each latent state profile is a linear combination of

a small number of basic profiles v1, . . . ,vr with r � min{N,T}. Then the matrix

M of all such profiles can be approximately decomposed as M ≈ UV> with V ∈
RT×r being the collection of basic profiles and U ∈ RN×r being the female-specific

coefficients. Figure 7 illustrates the latent state model.

For the simultaneous reconstruction of U and V, we propose the variational

method of solving

min
U,V

{∥∥W �
(
Y −UV>

)∥∥2

F
+ α1 ‖U‖2F + α2 ‖V‖2F + α3 ‖RV‖2F

}
. (3)
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Figure 7 Latent state model for cervical cancer screening data. The matrix M ∈ RN×T of
latent state profiles decomposed into female-specific coefficients U ∈ RN×r and a small number
(r � min {N,T}) of basic profiles V ∈ RT×r.

Here, W ∈ RN×T sets all matrix entries (ñ, t̃) /∈ Ω to 0 and multiplies the error over

the predicted values at the observed entries (n, t) ∈ Ω with some weights Wn,t > 0.

These weights provide a flexible way to incorporate additional information such as

uncertainties in exam results and adjusting for entries Yn,t not missing at random

with inverse propensity weighting [14]. The matrix R ∈ RN×N is used to enforce

some time-regularity on the basic profiles v1, · · · ,vr. We consider two choices of

R, the first being the forward difference matrix R = D. This has the effect of

enforcing a high temporal smoothness and is in line with the approach of [12]. As

an alternative, we propose R = KD with the forward difference matrix D and

K being the Toeplitz matrix with entries Kij = exp(−γ |i − j|). This leads to a

weaker penalisation of the profiles at faster scales and consequently allows for a

larger local variability. The same variability is also observed in the NCCSP data

as long intervals with normal results followed by rapid recurrent exams after an

abnormal result is detected.

In the NCCSP data we also observe strong correlations between screening histories

although as slightly shifted in time. To better exploit these correlations, we extend

(3) with female-specific shift matrices Zn ∈ {0, 1}T×T containing ones in the zn-th

diagonal and zeros everywhere else. Now V>Zn shifts the basic profiles zn ∈ Z time

points either forward (zn > 0) or backward (zn < 0) to improve alignment with

screening history Yn. We limit zn to at most 3 years shift forward or backward in

time. To simultaneously optimize U, V and the vector z of N offset values, we solve

min
U,V,z

{
N∑

n=1

∥∥Wn �
(
Yn −UnV

>Zn
)∥∥2

F
+β1

N∑

n=1

‖Un‖22

+β2 ‖V‖2F + β3 ‖RV‖2F
}
.

(4)

Here Wn, Yn and Un are vectors from the n-th row of each matrix.

Following [12], we optimize (3) by alternating between solving for U at fixed V,

and solving for V at fixed U. To optimize z in (4) we add an exhaustive search

over candidate zn. In numerical experiments, we initialize the iterations with Vt,k ∼
N (0, 1) and z as a vector of zeros. The iterations abort once the relative difference

between consecutive estimates M̂(i+1) and M̂(i) is less than 10−6.
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Based on the models (3) and (4), we define five factorization models used in

numerical experiments. Table 3 characterizes the factorization models by temporal

smoothness model R, discrepancy weights Wn,t ∈W and female-specific shifts zn.

Table 3 Matrix factorization models ((3) and (4)) used in numerical experiments.

Model name R Wn,t : (n, t) ∈ Ω max zn (years)

Matrix Factorization (MF) D 1 -
Convolutional MF (CMF) KD 1 -

Shifted CMF (SCMF) KD 1 3
Weighted CMF (WCMF) KD p̂(s | ε) / p̂((n, t) ∈ Ω) -
Shifted WCMF (SWCMF) KD p̂(s | ε) / p̂((n, t) ∈ Ω) 3

As specified in Table 3, the weights in WCMF and SWCMF incorporate in-

verse propensity weighting. for our experiments, we derived propensity estimates

p̂((n, t) ∈ Ω) using the method in [15] and uncertainties in the medical the exam

types (i.e., cytology or histology) from [16].

Predicting the next screening result

To evaluate the proposed framework, we compare here Kaplan-Meier estimates from

model predictions with a hold-out set. In future work we plan to evaluate our method

for the prediction of individual results.

To predict the future state of a single female, we assume that we are given her

current screening record x ∈ NT with observations at times t0 ≤ tp, . . . , tq < T , and

that m ∈M is the latent state profile underlying x. To predict a future state s at

tq+1 > tq, we consider the conditional probability

p(xtq+1
= s | x) ∝

∫
p(xtq+1

= s |m) p(m | x) dm.

Here p(xtq+1 = s | m) corresponds to model (2) and p(m | x) ∝ p(x | m)π(m)

requires a prior π(m) for profile m. In our approach, we use the samples in M̂ as a

proxy for p(m | x). This yields the estimated conditional probabilities

p̂(xtq+1
= s | x) ∝

N∑

n=1

C
M̂n,tq+1

exp(−θ(s− M̂n,tq+1
)2)

×
q∏

j=p

C
M̂n,tj

exp(−θ(xtj − M̂n,tj )2).

(5)

Applying estimator 5 to each value s ∈ {1, 2, 3, 4} gives a comprehensive prob-

abilistic overview of a female’s risk. To classify a female into a state from these

risk estimates, we consider probability thresholds τ = {τs ∈ (0, 1)}4s=2 as a way to

alleviate the impact of data imbalance. Recall that in the registry data, the states

are heavily skewed towards normal, which dominates the risk inference and bias

predictions towards the normal state. For each state s, we check if the condition

p̂(xtq+1
= s | x) ≥ τs holds – in which case we predict xtq+1

= s. The states are

evaluated in order from xtq+1
= 4 down to xtq+1

= 2. This means that if the con-

dition is satisfied for cancer (s = 4), we classify the female into a cancer state and
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ignore the probabilities of high-risk and low-risk. If neither of the conditions are

satisfied we predict normal (xtq+1 = 1).

To select probability thresholds we first construct Kaplan-Meier estimates Ŝs for

each state from model predictions and the corresponding estimates Ss from the

ground truths. An event in the Kaplan-Meier estimate is taken to be the first en-

counter of a specific state in the screening history of a female; if there are several

events, we only record the first one. In the second step we solve

min
τ

∑

s

∫ T

t0

|Ss(t)− Ŝs(t)| dt (6)

to obtain the threshold values. Here we use the differential evolution algorithm

[17] to search for threshold values although an exhaustive search could improve

performance at the cost of higher computational complexity. The choice to minimize

|Ss(t)− Ŝs(t)| comes from our measure of model performance specified in the next

section.

Model performance evaluation

As a way to assess the potential for developing prediction models for more per-

sonalized cervical cancer screening, we validate numerical models over a female

cohort. We measure model performance as the probability of agreement (PoA) [13]

between Kaplan-Meier estimates derived from model predictions and a holdout-set

of screening data. This method relies on an appropriate choice of an indifference

region (−δ, δ) to determine the similarity between the two estimates.

At time t ∈ [t0, T ] the PoA evaluates to

φs(t) , p
(
|Ss(t)− Ŝs(t)| ≤ δs(t)

)
. (7)

Here φs(t) is the probability that the distribution of Ss(t)−Ŝ(t)s is contained within

±δ to support a conclusion about the similarity of the true survival functions. A

higher φs(t) implies that Ss and Ŝs are more similar. Currently lacking scientific

support for an indifference region eligible in cervical cancer screening, we simply let

δ(t) = 2 σ̂(Ss(t)) estimated from 1000 bootstrap samples.

To quantify model performance in a single number, we estimate the normalized

area under the PoA curve

Φs ,
1

T − t0

∫ T

t0

φs(t) dt. (8)

Here Φs ∈ [0, 1] where Φs = 1 indicates perfect model fit. We use the estimate in

(8) to compare different models in numerical experiments.

List of abbreviations
• CI: Confidence interval

• CMF: Convolutional matrix factorization

• GDL: Geometric Deep Learning

• K-M: Kaplan-Meier
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• MC: Matrix completion

• MF: Matrix factorization

• NCCSP: Norwegian Cervical Cancer screening Program

• NN: Nearest neighbour

• PoA: Probability of agreement

• SCMF Shifted convolutional matrix factorization

• SWCMF: Shifted weighted convolutional matrix factorization

• WCMF Weighted convolutional matrix factorization
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Towards a data‑driven system 
for personalized cervical cancer risk 
stratification
Geir Severin R. E. Langberg1*, Jan F. Nygård2, Vinay Chakravarthi Gogineni3, Mari Nygård1, 
Markus Grasmair4 & Valeriya Naumova5

Mass‑screening programs for cervical cancer prevention in the Nordic countries have been effective 
in reducing cancer incidence and mortality at the population level. Women who have been regularly 
diagnosed with normal screening exams represent a sub‑population with a low risk of disease and 
distinctive screening strategies which avoid over‑screening while identifying those with high‑grade 
lesions are needed to improve the existing one‑size‑fits‑all approach. Machine learning methods 
for more personalized cervical cancer risk estimation may be of great utility to screening programs 
shifting to more targeted screening. However, deriving personalized risk prediction models is 
challenging as effective screening has made cervical cancer rare and the exam results are strongly 
skewed towards normal. Moreover, changes in female lifestyle and screening habits over time can 
cause a non‑stationary data distribution. In this paper, we treat cervical cancer risk prediction as 
a longitudinal forecasting problem. We define risk estimators by extending existing frameworks 
developed on cervical cancer screening data to incremental learning for longitudinal risk predictions 
and compare these estimators to machine learning methods popular in biomedical applications. As 
input to the prediction models, we utilize all the available data from the individual screening histories.
Using data from the Cancer Registry of Norway, we find in numerical experiments that the models 
are strongly biased towards normal results due to imbalanced data. To identify females at risk of 
cancer development, we adapt an imbalanced classification strategy to non‑stationary data. Using 
this strategy, we estimate the absolute risk from longitudinal model predictions and a hold‑out set of 
screening data. Comparing absolute risk curves demonstrate that prediction models can closely reflect 
the absolute risk observed in the hold‑out set. Such models have great potential for improving cervical 
cancer risk stratification for more personalized screening recommendations.

Nation-wide cervical cancer screening programs in the Nordic countries have shown to be an effective cancer 
prevention strategy. These programs recommend repeated screening at regular intervals to detect precancerous 
 lesions1. Although the screening recommendations have become more accurate and efficient over the years, they 
are based on only the most recent screening results and are standardised across the whole screening population. 
Specifically, the Norwegian Cervical Cancer Screening Program (NCCSP) currently recommends a routine screen-
ing every 3 or 5 years for females aged 25–33 years and 34–69 years, provided their last screening was normal. 
An alternative strategy would be to adapt the recommendations to the individual risk of disease initiation as 
inferred from the full screening history. For instance, a more personalized approach could be to recommend a 
longer screening interval to a female older than 45 who had only negative results in the past, as she may be at 
considerably lower risk than a 30 year old female with several past abnormalities. More personalized recom-
mendations in cervical cancer screening may reduce the large number of unnecessary screenings of females 
unlikely to develop the disease, while simultaneously preventing more cancer  cases2.

A step towards more individualized recommendations is utilizing data from existing cancer screening reg-
istries to derive prediction models for the individual risk of cervical cancer development. However, the data 
available from these registries contain only a few variables about previous exam results, necessary to organize 
and run the screening programs but no information about female lifestyle or habits. Moreover, due to most 
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females having only normal results, the distribution of results is heavily skewed towards disease-free cases, and 
this distribution may also be changing over time due to temporal variations in female screening and lifestyle 
habits. In this paper, we use data from the NCCSP to evaluate the impact of data imbalance and data drift on 
model performance. We adapt machine learning methods to predict the individual time-varying risk of cervical 
cancer and compare their performances in numerical experiments.

Data. Our approach is based on data from the 1.7 million females in the NCCSP screening population 
between 1991–2015. As this data covers the Norwegian cervical cancer screening population, the prediction 
models derived herein can only be evaluated internally using hold-out methods. External model validation 
require data from a different country but differences in screening  recommendations3 and data collection prac-
tices make it challenging to align information for comparability. However, synergy projects with Baltic countries 
and Sweden are being developed to investigate the potential to extending predictors to other countries.

In this paper we considered only histories with at least 3 exam results for hold-out model validation. In the 
NCCSP data, more than 75 % of the females have only normal results in their history. To have more variation 
in the training data we sampled training histories with probabilities proportional to the most severe result in 
each history, making it more likely to select females with at least one abnormal result. For the test set we used 
only histories where the first exam was taken no later than year 2000 and at the ages 20–30 (± 5 years from the 
recommended youngest age for the first exam). This sampling give more recent and complete test data for a 
comprehensive model evaluation. As our dataset ends before 2015, selecting test histories with the first exam 
from year 2000 gave female age range 20–53 in the test data, while the results in the training set were from female 
ages 20–72. The final training set included 10K histories and the test set included 50K histories.

The NCCSP data contains only the information necessary for the Cancer Registry of Norway to organize 
and run the screening program. Although previous  works4,5 deriving prediction models for cervical cancer risk 
stratification leverage personal lifestyle information, this information is in general unavailable for the whole 
screening population. It is also typically collected only once for each female, and thus does not capture temporal 
variations in the data. Therefore, there is large potential and benefits in providing prediction models based on the 
data routinely collected by the registries, as these may be integrated directly into the cancer screening programs. 
Specifically, the NCCSP data consists of timestamps, three types of medical exams (cytology, histology and human 
papillomavirus (HPV)) and the corresponding results. The HPV exams were introduced around 2005 to follow up 
on abnormal cytology, and as our dataset ends before 2015 it contains only a few HPV results. Due to the scarcity 
of HPV results in our data sample, we exclude all HPV data in this study and use only cytology and histology 
results. However, we plan to include more recent registry data with detailed HPV information in future work.

The primary cause for cervical cancer is persistent infection with HPV. This infection may lead to the devel-
opment of low-grade lesions, progressing via high-grade precursor lesions (pre-cancer) to invasive  cancer6,7. 
Exposure to HPV occurs mainly via sexual contact which, together with individual lifestyle variations, makes 
the risk of cervical cancer both time-varying and in-homogeneous across the screening  population7. To represent 
the risk of cervical cancer development, we consider three clinically actionable states, reflecting stages in disease 
initiation and progression. We label these states normal, low-grade and high-grade.

A normal state requires no additional exams before the next routine screening, while progression from normal 
to low-grade calls for closer follow-up – although low-grade lesions may spontaneously regress back to  normal8. 
Progression from low-grade to high-grade requires immediate clinical action to prevent cancer. Each state is 
determined by the outcome of medical exams and corresponds to different risk-levels of disease development.

The NCCSP data is strongly skewed towards disease-free cases with more than 85 % of the individual results 
being normal and fewer than 5 % high-grade results. Due to the screening recommendations not being strictly 
adhered to in practice, the histories are irregular in time. This irregularity poses a significant challenge in pre-
diction tasks if the time between the last examination and the time to predict amounts to several years (e.g. > 
4 years). The panel in Fig. 1, illustrates these characteristics of the NCCSP data by showing to the left a Lexis 
diagram depicting screening histories, a histogram of screening intervals in the middle and a histogram of the 
proportion of female states in three age intervals to the right.

The Lexis diagram in Fig. 1 illustrates the scarcity in screening histories sampled from the NCCSP data, where 
the median number of exams is 6. The histogram of screening intervals shows that the time between exams varies 
from just over 1 month and up to almost 20 years, illustrating data irregularity. Finally, the proportion of states 
is changing with female age, containing about 0.87 normal results for females younger than 36 and up to 0.93 
normals for 46–69+ year old females. This drift in the state distribution could be attributed to changes in female 
lifestyle and screening habits.

State of the art. Popular prediction models in biomedical applications include logistic regression9 (LR), 
random forest10 (RF) and gradient tree boosting11 (GTB). Ensemble methods such as RF and GTB may be strong 
performers on imbalanced  data12 but neither of these models is typically used with time-dependent data. Popu-
lar models in time-series prediction tasks such as long short-term memory13 (LSTM) networks expect regular 
and sufficiently sampled data. However, this is not the case with the NCCSP data, as described in the previous 
section.

An alternative to the LSTM, also capable of modelling cervical cancer data, is a continuous-time hidden 
Markov model (HMM) developed in a recent  study14 for the disease dynamics observed in cervical cancer screen-
ing data. The model was learned from a subset of NCCSP data and validated against a hold-out set by using the 
HMM as a stochastic simulator to derive Kaplan-Meier estimates. However, the study did not evaluate the HMM 
on risk prediction tasks or presented a method for generating such predictions from the model.
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A later  work15 introduced a matrix factorization (MF) framework using historical data for cervical cancer 
risk prediction along with a method for classifying the female state from the risk estimate. The MF has become a 
popular approach to dealing with scarce and irregular data. The proposed framework was compared to a geomet-
ric deep learning (GDL) model based  on16, and validated by the probability of agreement17 between Kaplan-Meier 
estimates derived from model predictions and a hold-out set. Despite highlighting a heavy class imbalance in 
their data sample, the authors did not evaluate model calibration or state drift – factors that may explain and 
affect model performance.

In18 the GDL approach was further adapted to handle the scarcity in the cervical cancer screening data. The 
method was evaluated in numerical experiments by predicting the future risk for individual females at a single 
randomly chosen time point. To extend methods for personalized risk prediction even further, incremental learn-
ing may be incorporated, allowing the models to update risk estimate after more data is available in the future.

Contribution. This is the first paper comparing several different machine learning methods for cervical 
cancer risk estimation, focusing on methods for incremental learning from longitudinal data, the impact of data 
imbalance on model estimates and classification with a time-varying state distribution. Specifically, we compare 
methods based on HMM, MF and GDL, as well as LR, RF and GTB. Our motivation for including the HMM, 
GDL and MF is that they were developed to handle scarce and irregular data for cervical cancer screening appli-
cations, and we further adapt these herein to incremental learning for longitudinal risk estimation. Moreover, to 
handle problems with both imbalance and temporal changes in the state distribution, we extend the classifica-
tion method  from15 to separate classifiers over different female age intervals. To evaluate their ability to predict 
the next exam results over time, we compare absolute risk curves derived from model predictions and a hold-out 
set of screening data to assess model calibration against the trend in the time-varying risk.

The rest of this paper is organized as follows. In “Predicting the risk of cervical cancer development” we 
outline the risk estimators that are based on extensions to HMM, MF and GDL. “Numerical experiments” sec-
tion describes the numerical experiments and discuss the results on NCCSP data, followed by a conclusion and 
outline of future work in “Conclusions and future work”.

Predicting the risk of cervical cancer development
We represent a cervical cancer screening history with data recorded at times t0 < t1 < · · · < tj as a set of tuples 
ytj =

{
(ti , ρti , xti )

}j
i=0

 . The history includes time points ti representing the female age at visit i when she was 
measured with medical exam ρti to be in state xti = s . The potential female states s ∈ S are numerically encoded 
with s = 1 for normal, s = 2 for low-grade and s = 3 for high-grade.

To estimate the individual future risk of cervical cancer, we assume that we know her screening history up to 
some time tj . The predicted risk at a later time point t̂ > tj is expressed as the triple of conditional probabilities 
p(xt̂ = s

∣∣ytj ) , s = 1, 2, 3.
In the following sections we provide a detailed description of how we extend existing frameworks based on 

MF, GDL and HMM to incremental learning for longitudinal predictions. For the LR, RF and GTB predictors 
we use the implementations from publicly available  software19.

Matrix factorization. The matrix factorization (MF) risk estimate as we define it herein is based on the 
Shifted Weighted Convolutional Matrix Factorization (SWCMF)  from15. The SWCMF assumes that the discrete 
observed states are possibly inaccurate measurements of a continuous latent state, evolving slowly with time 
for each female. The MF risk estimator requires that we derive such latent state profiles from a hold-out set of 
screening histories before we can use it for predictions.

Figure 1.  Cervical cancer screening data characteristics. Left: A Lexis diagram illustrating screening histories. 
Each history is depicted as a gray line spanning from the first to the last visit. Visits are indicated by a marker 
for the exam type (histology and cytology) and colored by the exam result. Middle: A histogram of the time 
between visits. Right: The proportion of female states (normal in blue, low-grade in orange and high-grade in 
red) in three age intervals.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12083  | https://doi.org/10.1038/s41598-022-16361-6

www.nature.com/scientificreports/

By organizing all the states xti from a screening history according to female age ti we obtain a scarce longitu-
dinal vector z spanning T ≥ tj years. Here T is the maximum female age in the data and the times t0 ≤ ti ≤ T for 
when the female state was measured correspond to the observed entries in z . Combining N such state vectors 
gives a partially observed matrix Z.

With the SWCMF model  from15, we estimate a complete matrix M̂ ∈ RN×T of latent state profiles using the 
observed states in Z and the medical exam type data. Each row M̂n in M̂ corresponds to a continuous latent 
profile estimated from Zn , and these profiles are used to construct the MF risk estimator.

As  in15, we assume the probability of observing a female in state xti = s at time ti given the latent state mti is 
given by

where C = C(mti ) is a normalizing factor. Here we estimate σ using the same MLE procedure as  in15. To esti-
mate the risk of some female with screening history ytj being in state s at time t̂ > tj , we consider the posterior 
predictive distribution

In (2) we assume yt̂ is conditionally independent from yt0 , . . . , ytj so the probability of observing state s when 
given history y and latent profile m becomes p(xt̂ = s

∣∣m) . Using Bayes’ rule p(m
∣∣ytj ) ∝ p(ytj

∣∣m)p(m) we get

In (3) the latent risk prior p(m) is unknown so p(m
∣∣ytj ) is really intractable but following the variational 

approximation approach we may use M̂ to approximate p(m
∣∣ytj ) . Thus, we can approximate (3) with

In (4) we compute p(xt̂ = s
∣∣M̂n,t̂) from (1) and the data likelihood as

Moreover, assuming data from a visit at time tj+1 > tj is added to history ytj , we can recursively update the 
data likelihood by

This recursive update was not described  in15 and allows us to do efficient adaptive learning by re-estimating 
the risk when more data is available.

Geometric deep learning. An alternative to using the SWCMF  model15 for estimating latent state profiles 
is to use a geometric deep learning (GDL) approach based  on16. We define the GDL risk estimate based on latent 
profiles derived with GDL and using (4) for risk predictions. To estimate latent profiles, the GDL leverages two 
similarity graphs where one encode similarities between screening histories and the other represents the tem-
poral dependency of results. When estimating the latent state profiles, GDL use these graphs to determine the 
structure of the profiles.

In15 the authors used a k-nearest neighbour (NN) graph linking together similar histories in addition to a 
sequential graph for the temporal dependencies. In the k-NN graph, each node represents a screening history 
that is connected to k other most similar histories, where the similarity between histories is determined by some 
pre-defined measure. A potential drawback of the k-NN graph is that it each node has to have exactly k connec-
tions – even if one node is quite dissimilar from the others.

In this paper, we  follow18 in constructing a graph with a variable number of connections for each node. This 
graph is learned directly from the data under a smoothness constraint where we assume that certain screening 
histories exhibit strong similarities to each other. The resulting graph will then contain nodes connecting together 
histories that are alike in the results and time of visits. Moreover, we assume that the risk of cancer development 
does not change rapidly within a year and use this to construct the second graph for the temporal dependency of 
results. Using these two graphs with the GDL we obtain latent state profiles that are changing slowly in time and 
reflect the similarities between screening histories in the data. The GDL approach is similar to the MF estimate 
except that they use different constraints to characterize the latent state profiles.

(1)p(xti = s|mti ) = C exp
(
(mti − s)2

/
2σ 2

)

(2)
p(xt̂ = s

∣∣ytj ) ∝
∫

p(xt̂ = s
∣∣m, ytj )p(m

∣∣ytj ) dm

=

∫
p(xt̂ = s

∣∣m)p(m
∣∣ytj ) dm.

(3)p(xt̂ = s
∣∣ytj ) ∝

∫
p(xt̂ = s

∣∣m)p(ytj

∣∣m)p(m) dm

(4)p̂(xt̂ = s
∣∣ytj ) ∝

N∑

n=1

p(xt̂ = s
∣∣M̂n,t̂)p̂(ytj

∣∣M̂n).

p̂(ytj

∣∣M̂n) =

j∏

i=0

C(M̂n,ti ) exp

(
(M̂n,ti − xti )

2

2σ 2

)
,

p̂(ytj+1

∣∣M̂n) ∝ p̂(M̂n

∣∣ytj )C(M̂n,tj+1 ) exp

(
(M̂n,tj+1 − xtj+1 )

2

2σ 2

)
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Hidden Markov model. The HMM risk estimate that we compare to the MF and GDL estimates is based 
on an extension of the HMM described  in14 with a prediction module. In the HMM, each observed state is taken 
to originate from a discrete hidden state indicating the latent risk of cervical cancer development. Here we take 
the observed states to originate from some hidden states, labelled normal, low-risk and high-risk as  in14. To define 
the HMM risk estimate, we first consider the probability

of a female being in hidden state htj at time tj , conditioned on her screening history ytj . We use this probability 
estimate to predict the risk at time t̂ > tj . To compute α(htj ) we initialize

Here, p(h
∣∣t0) is a prior over the hidden state at the time of the initial exam, and p(xt0

∣∣ht0 , ρt0) is the prob-
ability of the observed state conditioned on the medical exam and hidden state. The estimates for p(h

∣∣t0) and 
p(xt0

∣∣ht0 , ρt0) are available from the parameters of the HMM  in14. To reach α(hti ) for ti > t0 , we use our previous 
estimate α(hti−1) to compute the recursion

The transition probabilities between hidden states p(hti
∣∣hti−1 ) are also given by the HMM  parameters14.

Having used (5) to obtain our estimate for the hidden state probabilities at time tj , we predict the future risk 
at time t̂ > tj by approximating

The probabilities p(ρt̂
∣∣ht̂) we derive from the Poisson intensity estimates presented  in14. To incorporate more 

data and update the HMM risk estimate, like we do with MF and GDL, we first update the α estimate with (5) 
and then estimate the risk with (6).

Predicting the next state. Using any model to predict the risk of some female being in each state s ∈ S 
gives a comprehensive overview of her risk. Predicting the exam result by classifying the female state from these 
risk estimates amounts to a multi-class classification problem. One approach to this task is to select the most 
probable state

However, this method often fails to predict the minority states because data imbalance shifts the risk inference 
and classification towards normal. We refer to this classification rule as the default strategy as it selects the most 
probable state without considering data imbalance.

An alternative to the default strategy is to consider state-specific probability thresholds {δs ∈ (0, 1)}s∈S adapted 
to the skewed state distribution. To perform multi-class classification using these thresholds, we can construct 
a classification rule similar  to15 where for each state we evaluate

If condition (7) holds we predict x̂t̂ = s . We first evaluate (7) for s being the high-grade state and then the 
low-grade state. If the condition is not satisfied for either of these states, we predict normal. This means that we 
prioritize predicting high-grade over low-grade, and low-grade over and normal as we in our application is more 
tolerant towards false positives than false negatives.

Furthermore, taking δs = δs(t) , we can adapt  (7) to the label drift observed in our data by training a sepa-
rate classifier for different female age intervals. Since the risk of HPV infection peaks in adolescence and early 
adulthood, and the risk of cervical cancer peaks in middle aged  females7, we choose three age intervals: 20–35, 
36–45 and 46–69+ for our experiments. Moreover, choosing only three age intervals we aim to avoid overfitting 
as increasing the number of intervals would also increase the risk of overfitting the classifier in each interval. 
We refer to using (7) with time-dependent thresholds as the adaptive strategy.

To derive the probability thresholds δ(Tk) for each female age interval Tk , we maximize the K-category Mat-
thews correlation coefficient (MCC)20. The MCC summarizes the confusion matrix in a single score

to measure the quality of multi-class classifications. Here n is the total number of test samples, n+ is the number 
of correct classifications, and ns and n̂s are the number of times where state s was the ground truth and was cor-
rectly predicted, respectively. Higher RK ∈ [−1, 1] means a more accurate classification. The thresholds δ(Tj) for 
age interval Tj are obtained by computing

α(htj ) = p(htj
∣∣ytj )

α(ht0) = p(h
∣∣t0)p(xt0

∣∣ht0 , ρt0)

(5)
α(hti ) = p(xti

∣∣hti , ρti )
∑

hti−1

p(hti
∣∣hti−1)α(hti−1 ).

(6)p(xt̂ = s
∣∣ytj ) ∝

∫

ρt̂

∫

ht̂

∫

htj

p(xt̂ = s
∣∣ht̂ , ρt̂)p(ρt̂

∣∣ht̂)p(ht̂
∣∣htj )α(htj ) dhtj dht̂dρt̂ .

x̂t̂ = argmax
s∈S

p̂(xt̂ = s
∣∣yt).

(7)p̂(xt̂ = s
∣∣yt) ≥ δs =⇒ x̂t̂ = s.

RK =
n+ × n−

∑
s∈S n̂s × ns√

(n2 −
∑

s∈S n̂
2
s )× (n2 −

∑
s∈S n

2
s )
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This maximization problem is solved by using the differential evolution algorithm21.

Numerical experiments
The research for this study is approved by the South East Norway Regional Committee for Medical and Health 
Research Ethics (application ID: 11752). The health registry data used in this study does not originate from 
clinical trails and therefore the ethical committee granted this study with an exception from obtaining informed 
consent. All the research conducted herein accommodate the relevant guidelines and regulations.

In numerical experiments we study machine learning methods taking the individual screening history as 
input for cervical cancer risk prediction. The methods are based on: hidden Markov model14 (HMM), matrix 
factorization15 (MF), geometric deep learning16 (GDL), logistic regression9 (LR), random forest10 (RF) and gradient 
tree boosting11 (GTB). To predict the individual risk of cervical cancer development we use (6) for the HMM 
estimate, and (4) for MF and GDL. Although LR, GTB and RF treat each exam result as independent we facilitate 
adaptive learning by re-fitting the models with additional data, using the current estimate for model parameters 
as initialization.

As input to the HMM, MF and GDL predictors we provide all the data up to six months prior to the result 
we want to predict. For MF and GDL, the input data consist of female states and the corresponding time stamps, 
while the HMM also utilize exam type information. The input features to LR, RF and GTB combine the cumula-
tive counts of each state conditioned on the exam type over time, together with the corresponding time stamps. 
For LR we used Z-scoring with parameters estimated from a hold-out set to normalize the features. To derive the 
latent state profiles used by the MF and GDL estimators, we leverage the exam results and the time stamps from 
the 10K histories sampled for our training set to construct the input matrix. Moreover, data from the training 
set is also used to fit LR, RF and GTB.

To simulate an environment for doing longitudinal adaptive learning with MF, HMM and GDL, we masked 
parts of the screening histories in the test set with a moving window. This way we mimic histories growing over 
time as a female has more exams. We start by revealing only the first 2 results to fit the estimators, and move 
forward in time to predict the 3rd result. For any history with more than 3 results, we repeatedly update the 
model by including the previous data point before we move to predict at the next result.

The impact of data imbalance on risk estimation. After fitting the models, we assess how well their 
risk estimates are calibrated using the Brier score. This score measures the agreement between the predicted risk 
p̂ and an indicator on,̂t(xn,̂t = s) for whether the result was actually xn,̂t = s . We compute the Brier score over 
N cases as

In Table 1, we present Brier scores to evaluate the impact of class imbalance on model estimates. The scores 
were derived from model predictions aggregated over time and stratified by each ground truth state.

From Table 1 we see that we have lower Brier scores for normal states and higher scores for low-grade and 
high-grade states, which indicates that the prediction models are strongly biased towards the normal state. Thus, 
the model estimates are clearly affected by the skew in the state distribution. The GDL is especially poor at high-
grade predictions but improves on low-grade, while MF is the best calibrated on high-grade followed by HMM.

Probability thresholding for risk classification. One way to alleviate biased probability estimates in 
classification tasks is to use a classification rule adapted to the data imbalance when converting probabilities into 
class labels. Using the adaptive thresholding technique from “Predicting the risk of cervical cancer development”, 
we may also relax the effect of temporal drift in the state distribution by having a different classifier over female 
age intervals. In Fig. 2 we give the multi-class classification performance as RK scores achieved with the adaptive 
and the default classification strategies.

(8)max
δ(Tk)∈(0,1)S

RK (x, x̂).

B =
1

N

N∑

n=1

(
p̂(xn,̂t = s

∣∣yn)− on,̂t(xn,̂t = s)
)2
.

Table 1.  Brier scores stratified by female states. The prediction models are matrix factorization (MF), hidden 
Markov model (HMM), geometric deep learning (GDL) gradient tree boosting (GTB), logistic regression (LR), 
and random forest (RF). Significant values are in bold.

Model Normal Low-grade High-grade

MF 0.0830 0.644 0.700

HMM 0.0410 0.680 0.734

GDL 0.0430 0.683 0.863

GTB 0.0220 0.780 0.766

LR 0.0240 0.795 0.777

RF 0.0330 0.790 0.793
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Comparing the RK scores in Fig. 2 indicates that classification thresholds adjusted to class imbalance improves 
model performance and is the favourable method over the default strategy, especially with older females. The MF 
and HMM attains the strongest prediction performance. which is consistent with the model calibration estimates 
in Table 1, while the GDL, GTB, LR and RF performances decreases more over the age intervals.

Evaluating classifier performance. To assess how well the classifiers reflect the trends in the observed 
data, we compare absolute risk curves from hold-out data and longitudinal model predictions, using the strat-
egy (either default or adaptive probability thresholds) improving on the classification scores in Fig. 2. Here we 
give absolute risk as the proportion of each state measured over some small time interval of about 10 months. 
In Fig. 3, we plot risk curves derived from test data and from model predictions. Each row in the panel figure 
corresponds to a different prediction model and there is one column for each state to more easily distinguish 
between the curves visually. Stippled vertical lines indicate the age intervals 20–35, 36–45 and 46–69+. Note that 
the scale on the y-axis differs between the normal/low-grade and high-grade plots to better illustrate the model 
fit. The colored regions illustrate the difference between the observed (r(t)) and predicted absolute risk ( ̂r(t) ) at 
time t. To quantify the relative deviation between the absolute risk curves, we define a performance indicator

Ideally, η = 0 , implying perfect classification, while miss-classifications cause the predicted curve to deviate 
from the test curve, giving η > 0.

The results in Fig. 3 indicate that the MF model is overall the most accurately calibrated against the trend in 
the reference curve from the hold-out registry screening data. The predictions from HMM and GDL improve 
over time, which may be attributed to an increasing amount of training data as older females have typically had 
more exams. The GTB, RF and LR estimates closely follow the reference curve for normal and low-grade but 
shows a large deviation in younger females which improves with older females.

(9)η =

∫ ∣∣r(t)− r̂(t)
∣∣ dt∫

r(t) dt
.

Figure 2.  Classification performance as Matthews correlation coefficient ( RK ) over female age intervals. The 
prediction models are matrix factorization (MF), hidden Markov model (HMM), geometric deep learning 
(GDL) gradient tree boosting (GTB), logistic regression (LR), and random forest (RF), combined with either the 
adapted or default probability threshold method from “Predicting the risk of cervical cancer development”.
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Figure 3.  Absolute risk estimated from observed data and model predictions. The η score computed with 
(9) indicates model performance over female age intervals. The prediction models are matrix factorization 
(MF), hidden Markov model (HMM), geometric deep learning (GDL) gradient tree boosting (GTB), logistic 
regression (LR), and random forest (RF).
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Conclusions and future work
Machine learning methods for more targeted risk stratification can have a high utility to existing cervical cancer 
screening programs shifting to more personalized screening recommendations. However, deriving such methods 
from cancer registry data is challenging due to strong class imbalance and a non-stationary data distribution. 
In this paper, we compare machine learning models based on matrix factorization (MF), hidden Markov model 
(HMM), geometric deep learning (GDL), logistic regression (LR), random forest (RF) and gradient tree boost-
ing (GTB) in cervical cancer risk estimation, using population-level data from the Cancer Registry of Norway.

To define the risk estimators based on HMM, MF and GDL, we extend existing methods with incremental 
learning mechanisms for longitudinal risk prediction. Results from numerical experiments showed that all the 
models studied herein suffered from data skewness and were strongly biased towards disease-free results. To 
predict the individual risk of cancer development we trained separate classifiers adapted to data imbalance over 
separate female age intervals. Comparing absolute risk curves derived from model predictions and hold-out data 
showed promising results for matrix factorization to capture the time-varying trend in the observed risk from 
the data. This methods may thus be useful to improve cervical cancer risk stratification for more personalized 
screening. We are currently working to elucidate the ability of predictions models to correctly predict individual 
females using a different representation of model performance.

The methods used in this paper may also be applied to data from other types of mass-screening programs 
such as breast, colorectal and prostate cancer. In this paper, we focus on using only the routinely collected cervical 
cancer registry data as we see this to currently have more societal impact and utility for improving healthcare 
delivery. Expanding the models to include data from more recent screening technology with additional biomark-
ers and, eventually, individual HPV vaccination status has the potential to improve model performance. In future 
work we will combine female lifestyle information with registry screening data, believing that including more 
detailed information about each individual can improve the risk prediction accuracy.

Data availability
Due to individual privacy and ethical restrictions, the data used in this study are not publicly available. However, 
the data can be made available from the Cancer Registry of Norway pursuant the legal requirements mandated 
by the European GDPR.
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