
Vol.:(0123456789)

Empirical Software Engineering (2023) 28:114
https://doi.org/10.1007/s10664-023-10349-0

1 3

Responding to change over time: A longitudinal case study
on changes in coordination mechanisms in large‑scale agile

Marthe Berntzen1 · Viktoria Stray1,2 · Nils Brede Moe2 · Rashina Hoda3

Accepted: 30 May 2023
© The Author(s) 2023

Abstract
Context Responding to change and continuously improving processes, practices, and prod-
ucts are core to agile software development. It is no different in large-scale agile, where
multiple software development teams need to respond both to changes in their external
environments and to changes within the organization.
Objective With this study, we aim to advance knowledge on coordination in large-scale
agile by developing a model of the types of organizational changes that influence coordina-
tion mechanisms.
Method We conducted a longitudinal case study in a growing large-scale agile organiza-
tion, focusing on how external and internal changes impact coordination over time. We
collected our data through 62 days of fieldwork across one and a half years. We conducted
37 interviews, observed 118 meetings at all organizational levels, collected supplementary
material such as chat logs and presentations, and analyzed the data using thematic analysis.
Results Our findings demonstrate how external events, such as onboarding new clients,
and internal events, such as changes in the team organization, influence coordination mech-
anisms in the large-scale software development program. We find that external and internal
change events lead to the introduction of new coordination mechanisms, or the adjustment
of existing ones. Further, we find that continuous scaling requires continuous change and
adjustment. Finally, we find that having the right mechanisms in place at the right time
strengthens resilience and the ability to cope with change in coordination needs in complex
large-scale environments.
Conclusions Our findings are summarized in an empirically based model that provides a
practical approach to analyzing change, aimed at supporting both researchers and practi-
tioners dealing with change in coordination mechanisms in large-scale agile development
contexts.

Keywords Large-scale agile · Software development · Coordination · Organizational
change · Continuous improvement · Longitudinal case study

Communicated by: Christoph Treude

Extended author information available on the last page of the article

http://orcid.org/0000-0003-1455-2562
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10349-0&domain=pdf

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 2 of 40

1 Introduction

Agile software development welcomes change (Fowler and Highsmith 2001), and large-
scale agile is abundant with changes, for example, in customer requirements, technical
dependencies, team composition, and tool use. In large-scale agile, defined as software
development involving more than six teams or more than 50 developers1 (Dikert et al.
2016), multiple teams join efforts in developing an overall software system. Large-scale
organizations must cope with rapid external disruptions, such as technological innova-
tion, economic and political destabilization, and re-negotiation of workplace arrangements
while continuously improving their software engineering practices. Additionally, depend-
encies between teams represent further challenges to efficient software delivery. Therefore,
understanding how change impacts coordination may make the difference between suc-
cessful and non-successful software development in a large-scale context.

Coordination, often defined as the management of dependencies (Malone and Crowston
1994), is central to agile software development because of dependencies that may impact
software delivery efficiency (Strode 2016). Dependencies occur "when the progress of one
action relies on the timely output of a previous action or on the presence of a specific thing,
where a thing can be an artifact, a person, or a piece of information" that "can be managed
well, poorly, or not at all" (Strode 2016, p. 24). Coordination is needed because if depend-
encies are insufficiently managed, they can cause blockages and bottlenecks that delay the
development progress and, ultimately, software delivery (Cataldo and Herbsleb 2012).

When multiple teams work together to develop software, several coordination chal-
lenges arise (Dingsøyr et al. 2018a). For example, interfacing between teams becomes
problematic because dependencies in one team may delay or hinder the work of other
teams (Bick et al. 2018), and achieving and maintaining technical consistency becomes
difficult (Dikert et al. 2016). Such challenges require that agile practices are adapted to the
large-scale level (Dingsøyr et al. 2018a). However, the self-organizing teams model central
to agile can become problematic because of the need to align and coordinate interdepend-
ent teams’ work practices and outputs (Moe et al. 2021). These challenges must be solved
within an ever-changing context, making it essential to use the most effective coordination
mechanisms, which we define as organizational processes, entities, or arrangements used to
manage dependencies between activities to realize a collective performance (Okhuysen and
Bechky 2009). Selecting the most suitable mechanisms at any given time and modifying or
replacing them in response to change is also a challenge.

Change in coordination is a topic in need of further exploration, especially in the con-
text of large-scale agile, because changes bring new and different coordination require-
ments that, if insufficiently managed, can cause delays and bottlenecks, and even project
breakdown (Cataldo and Herbsleb 2012; Dikert et al. 2016; Bick et al. 2018). In this
study, we consider two forms of change relevant to coordination in large-scale agile. On
the one hand, change can be understood as event-based, that is, as "something specific

1 There is no agreed-upon definition of what exactly constitutes ‘large-scale’ in the research community
(Edison et al. 2022). In line with Dikert et al. (2016), we define large-scale agile as more than six teams or
involving more than 50 developers. Our case organization, Entur, eventually had 17 teams and could, there-
fore, also have been classified as ‘very large-scale’ according to a much-used definition (Dingsøyr et al.
2014). However, because the size of the program over time grew from ‘large-scale’ to ‘very large-scale’
(Dingsøyr et al. 2014), we keep with the general term ‘large-scale’ to better relate to the literature on large-
scale agile overall (Edison et al. 2022; Uludağ et al. 2022).

Empirical Software Engineering (2023) 28:114

1 3

Page 3 of 40 114

that happens" through disruptive events or patterns of events (Jarzabkowski et al. 2012).
Software engineering studies have focused on ’a change’ either by studying the ’before
and after’ a large-scale agile transformation or while following what happens during
the implementation of a large-scale agile framework (e.g., Paasivaara et al. 2018; Russo
2021; Gustavsson et al. 2022). On the other hand, change can be understood as a con-
tinuous process or flow of activities that are harder to pinpoint but easily observable
in retrospect (Van de Ven and Poole 2005; Langley et al. 2013). We believe that both
perspectives of change can inform the analysis of how organizational changes influence
coordination mechanisms and how the mechanisms themselves change over time.

As research on coordination in agile software development and large-scale agile is
maturing (Dingsøyr et al. 2012; Hoda et al. 2018; Berntzen et al. 2022), we believe it
is important to focus on understanding how and why coordination practices and mecha-
nisms change over time. In this paper, we aim to explore the relationship between organ-
izational changes and changes in coordination mechanisms in the context of large-scale
agile software development. We do this by investigating the following research question:

What type of organizational changes influence coordination mechanisms in large-
scale agile, and how do these mechanisms change over time?

We report on findings from a longitudinal case study conducted over one and a half
years in a large-scale organization called Entur. The time frame enabled us to follow the
case organization as changes were taking place. We spent a total of 62 days at the field
site, and observed 118 meetings, such as retrospective and stand-up meetings, client
meetings, and board meetings, conducted 37 interviews with practitioners in roles such
as team leaders, product owners, and program managers, and collected supplementary
material from resources, such as chat logs and documentation pages as the development
program continued to scale. The data were analyzed using thematic analysis (Braun and
Clarke 2006, 2012) in light of the theoretical framework of Jarzabkowski et al. (2012),
who proposed a process theory of how coordination mechanisms are created in light of
organizational change. As longitudinal studies of such scope and detail are rare within
software engineering (Sharp et al. 2016) this study represents a unique contribution to
the literature on large-scale agile coordination over time. Further, in comparison to other
studies dealing with change in coordination mechanisms in large-scale agile (Moe et al.
2018; Gustavsson 2019; Dingsøyr et al. 2022), this study also focuses on change itself
as opposed to the result of a change.

Our study offers the following contributions to software engineering research and
practice:

• We advance research on change in coordination mechanisms over time in large-scale
agile software development, which is called for in previous works (Moe et al. 2018;
Dingsøyr et al. 2022).

• We provide a rich empirical description with a unique level of depth in the data col-
lection.

• We build on existing theoretical work to propose a model of change in coordination
mechanisms in large-scale agile (Fig. 7).

• We provide an actionable approach to analyzing change for practitioners who want
to deep-dive into understanding and responding to change in coordination mecha-
nisms (Table 4).

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 4 of 40

The paper is organized as follows. In Section 2, we review some of the existing research
on coordination and change in large-scale agile. Section 3 presents the case organization
and provides detailed information about our research methodology. Section 4 presents our
research findings, which are discussed in Section 5, where we also discuss the practical and
theoretical implications of the study. Section 6 concludes the paper.

2 Background

In presenting the background literature informing our study, we first consider different
approaches to change in large-scale agile. Next, we present background on coordination
and coordination mechanisms before presenting a process theoretical approach to studying
change in coordination mechanisms.

2.1 Change in Large‑Scale Agile Software Development

Change is central to agile software development. “Responding to change” is part of the
agile manifesto (Fowler and Highsmith 2001) and core to agile. Traditionally, studies have
focused on how software development teams respond to change (Hoda and Noble 2017;
Spiegler et al. 2021). Further, changes are typically understood as “things that happen,”
that is, events that are more or less beyond the individual developer’s or team’s control, for
example, changes in requirements (Aldave et al. 2019; Madampe et al. 2022), re-organizing
of the team (Spiegler et al. 2021) or company structure (Gustavsson et al. 2022; Carroll
et al. 2023), or technical issues (Kwan et al. 2011; Cataldo and Herbsleb 2012). In large-
scale agile, such events can be even more complex and challenging because of the depend-
encies that exist between teams that develop an overall product with inter-dependent com-
ponents or several inter-dependent products.

The notion of continuous improvement is also core to agile because agile teams con-
stantly strive to find better ways of solving their day-to-day challenges (Fitzgerald and
Stol 2017). In large-scale settings, where inter-team coordination is needed, continuous
improvement of coordination practices is vital for teams to successfully keep up with each
other (Kalenda et al. 2018; Paasivaara et al. 2018; Dingsøyr et al. 2022). Using an effi-
cient mix of coordination mechanisms appears essential to respond to changes and continu-
ously improve (Strode 2016). However, what constitutes an optimal mix of mechanisms
may change over time (Moe et al. 2018; Dingsøyr et al. 2022). This is particularly true
in uncertain situations, such as technological organizations, where hierarchies and rules-
based systems are less useful (Jarzabkowski et al. 2012). Continuous improvement means
continuously making changes. Accordingly, change can be understood as a continuous flow
of activities. From this perspective, it is difficult to pinpoint precisely when such changes
occur, but they are easily observable retrospectively (Van de Ven and Poole 2005; Langley
et al. 2013).

As research and practice are maturing, different terms are used to describe variations
of large-scale agile approaches. A recent study separates first- and second-generation
large-scale agile development methods (Dingsøyr et al. 2022). First-generation methods
are described as development methods that combine agile and traditional methods, typi-
cally using agile at the team level and traditional project management practices used at the
inter-team, project, or organizational level (e.g., Batra et al. 2010; Bick et al. 2018). Many
organizations use this type of mix between agile practices and other project management

Empirical Software Engineering (2023) 28:114

1 3

Page 5 of 40 114

practices because large-scale organizations (need to) have other governance structures sur-
rounding the development and other agile business activities (Kalenda et al. 2018; Edison
et al. 2022). Second-generation methods use ideas from the agile and lean communities,
focusing on the product, collaboration, informal communication, and flexible and evolu-
tionary delivery models and organizations (Dingsøyr et al. 2022). The commercial large-
scale agile development frameworks, including SAFe, Large-Scale Scrum (LeSS), and the
Spotify model, are examples of second-generation agile development methods (Dingsøyr
et al. 2022). These and other scaling frameworks are widely used by practitioners in large-
scale agile because they propose specific processes and mechanisms to manage the chal-
lenges with dependencies in large-scale software development (Dikert et al. 2016; Edison
et al. 2022). Much existing research on large-scale agile transformation, including the stud-
ies referenced in the coming section, are case studies of companies implementing one of
the large-scale agile frameworks.

However, not all large-scale development projects and programs use large-scale frame-
works or methods. Some research critiques against large-scale frameworks are that they
are not flexible enough to handle changing coordination needs (Gustavsson et al. 2022). In
practice, many organizations take a less rigorous methodological approach to large-scale
development. The comprehensive literature review by (Edison et al. 2022) shows that most
organizations adapt agile methods to fit their specific contextual needs, regardless of adopt-
ing a large-scale framework. Irrespective of the approach taken, both researchers and prac-
titioners agree that coordination is a crucial challenge to the success of large-scale agile
development (Dikert et al. 2016; Edison et al. 2022; Uludağ et al. 2022).

2.2 Coordination and Coordination Mechanisms in Large‑Scale Agile

Coordination has been studied across a wide range of research fields, including manage-
ment, organization studies, information systems management, and software engineering
(Espinosa et al. 2007; Okhuysen and Bechky 2009). Early studies on management and
organization (e.g., March and Simon 1966; Thompson 1967) recognized the need to coor-
dinate interdependent processes and activities, and the topic is still widely studied today
(Castañer and Oliveira 2020). Within large-scale agile, research on coordination has dealt
specifically with dependency management, as this represents a key challenge to the suc-
cess of large-scale development (Stray et al. 2022a, b). An analysis of agile teams resulted
in three dependency groups: knowledge, resource, and process dependencies (Strode
2016). Knowledge dependencies relate to information required for progress, including his-
torical knowledge and task allocation knowledge. Process dependencies include activities
and business processes that must be in place for tasks to proceed, while resource depend-
encies include technical dependencies and dependencies related to the availability of some
resource (i.e., a person, a place, or a thing) (Strode 2016). These dependency categories
form a taxonomy of dependencies for agile teams, which has also been applied at the large-
scale level by focusing on dependencies between teams (Berntzen et al. 2021).

Dependencies are managed using coordination mechanisms, which we define as
organizational processes, entities, or arrangements used to manage dependencies
between activities to realize a collective performance (Okhuysen and Bechky 2009).
Coordination mechanisms have been operationalized differently across fields. Early
conceptualizations include work standardization, outputs, skills, and norms as central
coordination mechanisms (Mintzberg 1989). Malone and Crowston (1994) propose
coordination mechanisms such as priority orders, budgets, sequencing, tracking, and

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 6 of 40

standardization. Another approach is the three modes of coordination mechanisms intro-
duced by Van de Ven and colleagues (1976), which includes a group mode (i.e., mech-
anisms based on mutual adjustment through feedback), a personal mode (i.e., mutual
adjustment based on feedback between two people), and the impersonal mode (i.e., the
use of plans, schedules, and standardized information). Much research on agile develop-
ment and coordination in software engineering relies on Van de Ven’s (1976) coordi-
nation modes and Malone and Crowston’s (1994) coordination definition. In addition,
Strode and colleagues (2012) have developed a theory of coordination in agile devel-
opment teams, which has recently been applied at the inter-team level (Berntzen et al.
2021; Stray et al. 2022a).

In large-scale agile, teams working on different parts of the overall system need to coor-
dinate, for example, merging of code, testing, and releases. In such situations, teams rely
on mechanisms adapted to be used across teams, which we refer to as inter-team coordi-
nation mechanisms. In recent work, we presented a taxonomy of inter-team coordination
mechanisms specific to large-scale agile (Berntzen et al. 2022) consisting of meetings, such
as stand-up meetings, retrospectives, and communities of practice (Moe et al. 2018); roles,
such as product owners (Bass 2015); and tools and artifacts, including communication and
documentation platforms, such as Slack, JIRA, and Confluence (Lin et al. 2016), and goal
management tools such as Objectives and Key Results (OKRs) (Niven and Lamorte 2016;
Stray et al. 2022b). As changes in the development process, such as changing requirements
or change in tool use, team or role composition, or system architecture, for example, are
likely to have a multi-team impact with often far-reaching consequences (Cataldo and
Herbsleb 2012; Dikert et al. 2016), understanding change in relation to coordination is of
great importance.

There are few studies of change in coordination in large-scale agile, but the topic is
gaining traction. For example, Gustavsson and colleagues (Gustavsson 2019; Gustavsson
et al. 2022) investigated how inter-team coordination and team autonomy change when
a large-scale framework (such as SAFe) is implemented. Moe et al. (2018) investigated
how meetings changed over time, using Van de Ven’s (1976) classification of coordination
meetings, i.e., the group mode. Their study showed that scheduled meetings were impor-
tant coordination mechanisms early in the development process but that more unscheduled
meetings could replace these arenas over time. Similar findings were reported by Dingsøyr
et al. (2018b), who, in addition to the change in meeting formats, found more use of hori-
zontal coordination and change in tool use early versus late in the development program as
the case organization matured. Paasivaara et al. (2018) found that in addition to a change in
tools and practices (i.e., coordination mechanisms), a shift in mindset was important when
conducting a large-scale agile transformation. In a recent study, Dingsøyr et al. (2022)
describe changes in inter-team coordination in a large-scale development program that
transitioned from using a combination of traditional and agile development practices (i.e.,
first-generation development methods) to using cross-functional autonomous teams and
continuous delivery (i.e., second-generation development methods). Their research showed
that the number of coordination mechanisms went down from 27 to 14 when the program
started using a second-generation development method and that coordination effectiveness
was perceived as higher by interview participants.

Common to these previous studies is the focus on one specific change (i.e., how was
coordination before/after implementing a framework (Gustavsson et al. 2022; Carroll et al.
2023) or agile transformation (Paasivaara et al. 2018), transitioning from one phase to
another (Dingsøyr et al. 2022) or focus on one type of coordination mechanism (such as
group mode coordination mechanisms (Dingsøyr et al. 2018b; Moe et al. 2018)).

Empirical Software Engineering (2023) 28:114

1 3

Page 7 of 40 114

2.3 A Process‑theoretical Approach to Change in Large‑scale Agile

In this study, we focus on the phenomenon of change in relation to coordination in
large-scale agile, using a process-theoretical lens. Organizational researchers have
studied change for decades, often using process theories to capture the complexities of
change and evolution over time (Pettigrew 1990; Langley 1999; Van de Ven and Poole
2005). A process theory aims at explaining and understanding how an entity changes
and develops over time (Langley et al. 2013). Process theories are suitable for dealing
with change and with time (Van de Ven and Poole 2005) through their ability to explain
the temporal order of events based on historical narratives (Gregor 2006; Langley et al.
2013) and have been applied in research on software development and on coordina-
tion in several ways to explain how changes in organizations may unfold. For instance,
Allison and Merali (2007) proposed a theory of software process improvement, where
the interplay between software development and software process improvement contin-
uously informed each other and where both process and product were changing each
other, and were changed by their surrounding context over time. In a recent paper, Car-
roll et al. (2023) applied normalization process theory (Murray et al. 2010) to examine
how agile practices were embedded and sustained in a large international company that
implemented the Spotify model during a large-scale agile transformation. They found
that a failure to normalize new practices led to the unraveling of the transformation
within 18 months.

In a longitudinal case study of coordination in a large-scale technology company
that underwent an organizational restructuring, Jarzabkowski et al. (2012) proposed a
process-theoretical framework to explain how coordination mechanisms are created in
practice through five cycles. The process starts with some disruptive event, such as a
reorganization, restructuring or transformation, that disrupts existing ways of coordi-
nating. In the second cycle, actors are trying and failing to coordinate effectively and
thereby orients to absences in coordinating. Third, new efforts to coordinate are made to
fill the absences, which creates new elements of coordinating. In the fourth cycle, new
patterns of coordinating are formed as links are created between elements of the new
coordination mechanism. In the fifth and final cycle, the new coordination patterns are
stabilized as new mechanisms are formalized (Jarzabkowski et al. 2012).

In our analysis and results, presented in the coming sections, we draw on the theo-
retical framework by Jarzabkowski et al. (2012). This framework is suitable because it
explicitly recognizes that coordination mechanisms are not stable entities but are cre-
ated over time in response to changes (i.e., disruptions). Such a view of coordination
mechanisms appears highly compatible with large-scale agile software development,
where responding to change is vital to succeeding. However, this study focuses specifi-
cally on disruptive events, which we understand as events of a certain magnitude, such
as shutting down organizational departments, mergers and acquisitions, or changing an
organization’s technological platform (Jarzabkowski et al. 2012). Additionally, similar
to the examples from large-scale agile literature cited in the previous section, Jarzab-
kowski et al. (2012) also focused on one specific event. Because continuous improve-
ment is core to agile, we wanted to capture how the many events, large and small, as
well as the more subtle, ongoing changes, shape coordination practices over time. More-
over, Jarzabkowski et al. (2012) limit their discussion to how coordination mechanisms
are created. Because changes are omnipresent in large-scale software development, we
wanted to understand not only how mechanisms are created but also how they change in

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 8 of 40

response to internal and external changes, and whether the five-cyclical model can also
apply to ongoing changes in coordination mechanisms. To this end, we also draw on the
notion of continuous improvement (Fitzgerald and Stol 2017) and an understanding of
change as a continuous process of activities (Langley and Truax 1994; Langley 1999)
introduced in the above sections.

3 Research Methods

In this study, we explore what types of organizational changes influence coordination
mechanisms over time through a case study conducted over 1.5 years in a large-scale agile
program in an organization called Entur. The case study approach allowed for a deep, situ-
ational understanding of the research topic (Flyvbjerg 2006), and the longitudinal format
provided the opportunity to investigate research questions of temporal character ((Van de
Ven and Poole 2005; Langley et al. 2013). In software engineering, case studies are valu-
able for understanding software development activities in context (Runeson and Höst 2008;
Wohlin and Aurum 2015). We chose a single case to investigate our research question
because we had the opportunity to conduct longitudinal fieldwork in an interesting organi-
zation where we were given access to many and varied data sources, as described below.
Single-case studies should be motivated by opportunities for learning about a phenome-
non of interest (Flyvbjerg 2006), and the case needs to be relevant enough to provide such
opportunities. Flyvbjerg (2006) defines a critical case as a case that has “strategic impor-
tance in relation to a general problem” (p. 229), in our case, coordination in large-scale
agile software development. Entur can be considered a critical case because of their size
and number of teams with varying levels of interdependence, making them likely to experi-
ence many of the coordination challenges outlined in Section 2. The features described in
the following are, however, not unique to this organization. Therefore, it can be argued that
what is valid (or not) for this case would also be valid (or not) for many cases (Flyvbjerg
2006). Single-case studies are further suitable for process-theoretical research because of
the level of detail required for understanding the intricacies of processual change in organi-
zations that are not easily captured using formal variance theories with higher levels of
abstraction (Van de Ven and Poole 2005; Ralph 2018).

In the following, we rely on two sensemaking strategies to present the case and our find-
ings. We use a narrative strategy (Pettigrew 1990) to convey the rich textual information
and to highlight the identified change themes. Additionally, we rely on the visual mapping
strategy (Langley and Truax 1994; Langley 1999), as presented in Fig. 4, to visually repre-
sent the findings.

3.1 Case Description

Our case, Entur, is a public sector IT organization established in 2016 in response to a
public transportation reform initiated by the Norwegian Ministry of Public Transportation.
Entur aims to make public transportation an easier and more viable option for the Norwe-
gian public. To fill this mandate, Entur develops several products related to public trans-
port in Norway. One central product is a multi-platform travel planner that aims to allow
travelers to plan and manage their entire trip within one single application. Another is a

Empirical Software Engineering (2023) 28:114

1 3

Page 9 of 40 114

new sales platform and API that railway operators and other public transportation operators
can use to distribute their products to the public through the Entur app or their own chan-
nels. Finally, they collect, refine, and share public transportation data through open APIs.2
Because they used agile methods right from the beginning, Entur can be considered a
mature agile development program. They have also experienced substantial organizational
growth within few years and have, at the same time, been successful in delivering on the
goals of the public transportation reform. The company is recognized within its national
context, for example, by the Digitalization Council of Norway.3

The Large‑Scale Agile Team Environment Entur started working with agile methods
from day one and, therefore, never underwent an agile transformation as part of their
organizational scaling journey. Since the outset in 2016, the development organization has
grown rapidly, from five teams in 2016 to 17 in January 2020, and the growth has con-
tinued. Figure 1 displays the team organization in 2018 when we started our fieldwork.
Despite being a large-scale agile organization from the outset, Entur has chosen not to
adopt any scaling framework (such as SAFe or LeSS). Instead, they use software develop-
ment best practices and gain inspiration from companies such as Spotify and Google, and
tailor any new approach to their specific needs. For example, they established a biweekly
tech lead forum modeled from Spotify’s guilds and experimented with using OKRs (used
and popularized by Google from around 2016 (Niven and Lamorte 2016)).

The development teams were cross-functional but focused on different parts of the over-
all deliveries, such as sales, ticketing, pricing, and web and app. Team size and compo-
sition varied slightly over time; the largest team had more than 16 members, while the
smallest had about five. All teams had a team leader and a product owner, and a tech lead
after this role emerged during 2019. All additional team members were developers that
in principle could work on any part of their teams’ code through shared repositories and

Fig. 1 The team organization of the development program in 2018

2 2 See www. entur. org for more information.
3 3 www. digdir. no.

http://www.entur.org
http://www.digdir.no

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 10 of 40

documentation. In addition, a dedicated test team worked with the different teams to ensure
appropriate testing of the different parts of the system. Some teams, such as the sales and
product teams worked primarily with backend, whereas web and app teams worked with
front-end and UX. Because all teams were connected at some level in delivering the overall
product, all teams needed to coordinate. However, some teams had more dependencies to
other teams than others. For example, almost all other teams had dependencies to the team
that wrote the tickets and on-board products, and the UX and web team were dependent on
almost all other teams, in that they needed the output of other teams to be ready in order to
deliver visual output to travelers using the Entur app. The teams were autonomous in the
choice of development methods, and most teams used practices from Scrum and Kanban.
As sƒat thiuch, there was a culture of testing new approaches, both within teams and at the
inter-team level. At the same time, the need for inter-team coordination and some level of
alignment across teams was high as they grew from five to 17 teams. The size and com-
plexity of both the technology and the large-scale organization came with the consequence
of many and complex knowledge, technology, and process dependencies. As such, coordi-
nation was an ongoing and evolving challenge. More details on the evolution and scaling of
the organization and the coordination practices and mechanisms are provided in Section 4.

3.2 Data Collection

Data was collected from August 2018 to January 2020. During the one and a half years
of fieldwork, the first author conducted observations and interviews and collected sup-
plementary material such as meeting minutes, Slack (a collaborative communication tool)
logs, e-mails, and Confluence (a software documentation tool) pages. The second and third
authors participated in some of the data collection. Figure 2 displays a timeline of the data
collection. Data collection ended in January 2020, when the pre-planned fieldwork period
of the first author had come to an end. We chose an ethnographic approach to data col-
lection (Sharp et al. 2016), which includes researcher immersion in the case context and
longer periods of fieldwork with detailed observation and extensive notetaking following
an observational protocol (Crang and Cook 2007). In software engineering, ethnographic
approaches provide opportunities for a detailed understanding of the development practice,
including both social and technical aspects of the development process (Sharp et al. 2016).
Our ethnographic approach included long-term non-participant observation, conducted
in face-to-face settings, undertaken to understand and capture coordination in large-scale
agile, and conducted with process theoretical underpinnings (Sharp et al. 2016).

Fig. 2 Data collection timeline. Short, blue bars represent unique observation days on-site, while long,
green lines indicate that interviews were conducted that day

Empirical Software Engineering (2023) 28:114

1 3

Page 11 of 40 114

This study extends our previous research, and parts of the data material have been
analyzed for other studies. Specifically, we analyzed 12 interviews and observations
from 17 meetings from September – November 2018 in Berntzen et al. (2019). In
another study (Berntzen et al. 2021), we used data from August 2019 to January 2020,
including 12 interviews and observations from 26 meetings. Finally, 31 interviews,
observation notes from 94 meetings, and supplemental material such as Slack logs were
analyzed in developing the taxonomy of inter-team coordination mechanisms and the
TOPS framework (Berntzen et al. 2022). The study presented in this paper adds to pre-
vious studies with new analyses that shed light on previously unreported change-related
processes and events, with a unique focus on studying them over time. In approach-
ing the research question for this study, new data was added, including the full range

Table 1. Data collection details by type of data material

Observations Type of observation Number
Internal meetings:

 Prioritization meetings 10
 Tech lead forum (Community of practice) 7
 Weekly program demos 7
 Product owner weekly meetings 6
 Inter-team stand-up meetings 6
 Inter-team retrospectives 4
 OKR workshops 2
 Ad hoc inter-team meetings 26
 Intra-team meetings 26

External meetings:
 ‘Change workshop’ 5
 Client meetings 6
 Other meetings 3
 Total number of meetings observed 118
 Unique days on-site 62

Interviews Roles interviewed (Gender/Mean tenure IT/Mean tenure company)
 Product owners (5 male, 4 female, IT tenure 11.5 years, company 1.8 years) 9
 Program managers (4 male, 1 female, IT tenure 18 years, company tenure

1.6 years
5*

 Program architects (4 male, IT tenure 19 years, company tenure 1.4 years) 4*
 Tech leads (3 male, 1 female, IT tenure 7 years, company tenure 2.4 years) 4
 Team leaders (2 male, IT tenure 9 years, company tenure 1.5 years) 2
 Agile methods specialist (male, IT tenure 15 years, company tenure

4 years)
1**

Unique individuals 25
 *Six participants were interviewed twice or more (4 managers and 2

architects
6

 **Recurring interviews with the agile methods specialist 6
Total number of interviews 37

Supplementary
documentation

 Slack logs, JIRA and Confluence documentation, e-mails, internal and
external documents (e.g., presentations, reports, minutes)

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 12 of 40

of observation notes from 62 days on-site and 14 new meetings, including six client
meetings, five ‘change workshops’ where organizational and structural changes were
discussed with internal and external representatives and three other meetings includ-
ing two external client preparation meetings and a board meeting. We also included six
additional interviews conducted with Entur’s agile methods specialist. While confidenti-
ality clauses prevent us from sharing original data material, we share examples from all
data sources throughout the manuscript. Table 1 provides details of the underlying data
material supporting the study.

Observations Observations were conducted on a regular basis, as shown by the short bars
in Fig. 2. The first author conducted all observations. Additionally, the third author was pre-
sent on a few occasions, for example, during the ‘change workshops’. Because we wanted a
broad and detailed data material, we observed both meetings and the everyday work at the
office. The observation days varied somewhat across the weekdays during the 1.5 years. Our
presence varied as we wanted to observe the broad range of inter-team meetings conducted
across the week. For example, we could be present one week on Monday and Thursday, the
next on a Wednesday, and yet another week we could be absent. For the meeting observa-
tions, we observed meetings on all organizational levels, primarily inter-team meetings such
as the product owner prioritization meeting and the tech lead forum, and team-level meet-
ings such as team retrospectives and daily stand-up meetings. We were also able to observe
client meetings and a board meeting. Because of our ongoing presence, we were able to join
in on spontaneous ad hoc meetings as well as planned meetings. We used an observation
protocol detailing, for example, the physical setting, people present, and tools and artifacts
used. These observations left us with a rich data material with detailed descriptions of the
observation setting, including, but not limited to, a focus on the coordination of develop-
ment activities (see Table 1). The protocol template is included in Appendix 1.

Interviews In addition to the field observations, we conducted 37 interviews to gain
a deeper understanding of the case. Some interviews were conducted on the same day.
Interview days are illustrated by the long bars in Fig. 2. Interviews were held as open con-
versations in a semi-structured format. We used the same interview guide throughout the
data collection (see Appendix 2). The interview guide was slightly modified to focus on
the disciplinary area of each role (for example, product owners were asked more about cli-
ents and products, whereas architects were asked more about technical architecture). Con-
cerning our focus on change and coordination, the questions remained the same. Example
questions include: “What challenges do you see now and in the future in the development
program?”, “How has your role changed over time?” and “What do you think have been
the biggest developments here in relation to coordination across teams?” We interviewed
25 individuals in total. Six participants, four program managers, and two architects, were
interviewed twice. One person, the agile methods specialist, was interviewed six times.
These follow-up interviews, held approximately bi-monthly, were more conversational
and did not follow the same interview guide as the other interviews. We included these
interviews as they contributed to understanding change and coordination over time in the
program. The interviews lasted 50 min on average. The first author conducted 29 inter-
views, the second author conducted two interviews, and the six interviews with the agile
method specialist were group interviews conducted by the first, second, and third authors.
The first author translated interview quotes from Norwegian to English, and all authors
checked the quality of the translation.

Empirical Software Engineering (2023) 28:114

1 3

Page 13 of 40 114

Supplementary Material During the fieldwork, we were given access to Entur’s internal
digital communication tool, Slack, and much of the development process documentation
through JIRA and Confluence. The supplemental material allowed us to follow the use of
these coordination mechanisms in real-time and record particularly interesting written con-
versations or documentation pages and provided the ability to search in past conversations
and records. For example, we were able to follow in detail the introduction of the new
Slack guidelines described in Section 4.3, not only through interviews and observations but
also to see the actual implementations in the Slack channels as they took place. In addition
to these major sources of information, we collected company presentations, and meeting
invitations and agendas sent to us via e-mail.

3.3 Data Analysis

We used thematic analysis (Braun and Clarke 2006, 2012) to analyze the data. We chose
this analytical approach because it is a flexible method that allows the researcher to handle
a large data set like ours. Thematic analysis is also well-suited for interpretive research
because it recognizes the active role of the researcher in shaping the analysis and the find-
ings (Braun and Clarke 2012). Thematic analysis allows researchers to work systematically
to identify and analyze commonalities across large and varied project data. The method
is flexible because the six phases are iteratively conducted. This means the data can be
analyzed while new material is added, which was suitable for our longitudinal fieldwork.
Typically conducted following a six-phased, iterative process, the method allows for a deep
analysis where results are grounded in the data (Braun and Clarke 2012). Within software
engineering, the method is widely used to provide a deeper understanding of the content
and meaning of data (e.g., Wohlin and Aurum 2015; Munir et al. 2016; Berntzen et al.
2022; Hussain et al. 2022; Ågren et al. 2022). The following sections provide more infor-
mation about how we conducted the analysis. Figure 3 illustrates the thematic analysis
process.

A thematic analysis is ideally both inductively and deductively guided, thereby ensuring
strong links to the data material and the existing literature on the subject. In practice, the
analysis is often more strongly guided by one of the approaches (Braun and Clarke 2006,
2012). In our case, while we ensured covering both approaches across the phases of the
analysis by using Jarzabkowski et al. (2012)’s model of how coordination mechanisms are
created from disruptive events, it was our data that most strongly guided the analysis and

Fig. 3 Illustration of the Thematic Analysis

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 14 of 40

the resulting themes in that we did not limit our analysis to only look for themes related to
this model. Instead, we kept an open mind as to what other change aspects were present in
the data. This made us look beyond change events only to notice how continuous change
over time influenced the coordination mechanisms in the case.

Phases 1 and 2: (Re‑)Familiarizing with the Data and Generating Initial Codes During these
phases, we reviewed the complete data material from the perspective of change, transition, and
evolution of the program and its coordination mechanisms over time. Because the data had been
used previously for other studies, we already had a collection of existing coordination mechanisms
used in the case. The first author re-read the interview transcripts, field notes, meeting observa-
tions, and supplementary material and made analytical notes along the way. These were shared
and discussed with the rest of the author team. Specifically, the first three authors discussed the
opportunity to describe change in coordination over time during the fieldwork. Following this,
the first and fourth authors coined the idea to describe and analyse how coordination mechanisms
evolved over time during in-person analysis workshops. Following these initial activities, we pro-
ceeded to generating initial codes. As illustrated in the left-hand side of Fig. 3, at this stage, we
used broad, descriptive codes. For example, a Slack log containing the discussion of the office
moving was assigned the code ‘moving offices’. The initial coding phases ended when we had
assigned relevant codes to all data items.

Phases 3 and 4: Searching for Themes and Reviewing Themes During the third phase, we
shifted from generating codes to searching for themes. Themes are defined as prevalent pat-
terns within the data, that is, recurring instances of similar types (Braun and Clarke 2006), for
example, types of changes that happen outside the organization. We searched for such patterns
by grouping and re-grouping the codes from the first and second phases. We identified sev-
eral lower-level change themes, including changes related to public tenders and clients, changes
in the organization of the product, changes in the internal team structures, changes in meeting
practices, roles, and tools and artifacts (i.e., coordination mechanisms), changes in the phys-
ical location, and much more. Shifting to the fourth phase, we examined the change themes
in detail and combined themes that could be grouped under larger themes in light of the data
and the definitions of change presented in Section 2 (Jarzabkowski et al. 2012; Langley et al.
2013). We ended up with three high-level change themes, namely external and internal change
events and continuous change (see Table 2), as well as changes in coordination mecha-
nisms (see Table 3). Here, we used the categories from the taxonomy of inter-team coordination
mechanisms (Berntzen et al. 2022), that is, meetings, roles, and tools and artifacts, but focused
this analysis on changes in the mechanisms. The middle part of Fig. 3 provides a simple repre-
sentation of how we arranged codes into themes.

Phases 5 and 6: Defining and Naming Themes and Producing the Report The final two
phases of a thematic analysis tend to intertwine as findings are often put to scrutiny through writ-
ing up the final report (Braun and Clarke 2012), which was also the case in our analysis. We
selected interview quotes, field note passages, and supplemental material for presentation and
related the findings back to the research question. Themes were refined during the writing pro-
cess as all authors wrote, read, and discussed the material. As illustrated by the right-hand side
of Fig. 3, we organized the results using a visual mapping strategy (Langley 1999) (see Fig. 4),
which helped us further refine the presentation of our findings. At this point in the analysis, we
conducted member checks by providing Entur representatives with the draft to receive their input
to ensure that the findings also held practical relevance.

Empirical Software Engineering (2023) 28:114

1 3

Page 15 of 40 114

4 Findings

In presenting our findings, we first describe change events identified from the longitudi-
nal data. Next, we provide detailed examples of changes in the coordination mechanisms
used in the program over 1.5 years. We explain how each example relates to the disruption
of existing ways of coordinating, orienting to absences in coordinating and making new
efforts to coordinate, which creates new patterns of coordinating (Jarzabkowski et al.
2012). Tables 2 and 3 summarizes the change events and changes in coordination mecha-
nisms. Figure 4 presents a process flowchart consisting of five lanes. The first lane rep-
resents the organization’s external environment, and the second and third lanes represent
the product and the internal organizational environment. To illustrate the organization’s
growth, we have included a representation of the number of teams between the second and
third lanes. The fourth lane shows the coordination mechanisms used at Entur that changed
over time in relation to changes identified from the analysis and showcased in the above
lanes. Finally, the fifth lane, ’time,’ displays the timeline for the changes. In Fig. 4, each
change event is indicated by a circle containing a letter and a number (e.g., E1, I2) cor-
responding to the sub-sections in Sections 4.1 and 4.2. In addition, the arrows with dotted
lines that run alongside the lanes represent continuous or ongoing changes in the product
or the organization, described in Section 4.3. Arrows are drawn from each box to the rel-
evant mechanisms to symbolize the relationship between a change event and a coordination
mechanism. In a large-scale development program like Entur, there are more changes than
can be described in a report or presented in a flowchart. We, therefore, selected the most
compelling examples related to our research questions.

4.1 External Change Events

The first theme is related to changes that took place in Entur’s external environment. We
consider them ‘events’ because they happened at a specific point in time. These are pre-
sented in the upper lane of Fig. 4. One of the product owners explained the importance
of context surrounding the organization: “Our whole external context, with the public
reform and all it entails, moving from one software system to another, it has all been
decided by external circumstances. Our maneuverability is shaped by it” [I01, Product
Owner]. In the following, we present three notable external change events.

External Change Event 1 (E1): New Client When Entur was established in 2016,
“Client A” was the only railway operator in Norway. Therefore, much of the devel-
opment of the new software system during Entur’s early development phases were
based on Client A’s needs and prioritizations. The situation changed in October
2018 when an international railway operator, “Client B,” won a public tender fol-
lowing the public transportation reform. Client B would now establish in Nor-
way and use Entur’s sales system. Following the announcement was a period of
preparation before Entur started working with Client B’s requirements in early
2019. These requirements were added on top of other priorities. “There will cer-
tainly be tough deadlines towards Client B, too! Not preparing for that would be
naïve” [I03, Program Manager].

Adding a new client disrupted existing ways of coordinating in that more dependen-
cies was added, and the need for overview across the teams increased. In relation to the
onboarding of Client B, new coordination mechanisms were introduced as a response to

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 16 of 40

orienting to the new coordination needs, and new patterns of coordinating were formed by
the introduction of new coordination mechanisms. These included a new customer man-
ager role to complement the customer manager of Client A and two artifacts, an inter-team
backlog, and an inter-team delivery plan to track which teams worked on what deliveries.
The new role and artifacts can be seen in the ‘Coordination mechanisms’ lane at the bottom
of Fig. 4, following the lines from the upper lane.

External Change Event 2 (E2): Client Name Change and Rebranding Another impor-
tant change event occurred in March 2019, when Client A announced that they intended
to rebrand, changing their name, logo, and visual appearance. This strategic rebranding
was a huge change event for Client A, who had had their previous name for almost two
centuries. It also directly impacted Entur, who had to adapt both the old and the new sys-
tems, as the old name was hardcoded in the legacy code throughout the old system. During
a team leader stand-up meeting in late March 2019, the agile method specialist informed
the team leaders of the change: “In a month, Client A’s web pages will close, and a new
web page with the new brand will launch. To us, this means that everything that is visible
externally needs to be renamed and visually appear as Client A’s new name. […] the teams
need to implement changes in the code. For example, the names of all product IDs in the
system must be updated.” [Meeting observation, March 2019]. The event is presented in
the middle of the ‘external’ and ‘product’ lanes of Fig. 4. This change event illustrates
how an uncontrollable external environment had implications for the teams and the sys-
tem development. While no new coordination mechanisms were added, we observed how
existing mechanisms were updated to accommodate the change in coordination needs and
the extra work associated with the name change. For instance, we observed that new lanes
were added to delivery plans and roadmaps (see Fig. 6 for an example of a physical road-
map) and that the name change was discussed regularly at inter-team stand-up meetings.

Exernal Change Event 3 (E3): Another New Client A third change event took place
in mid-2019, when “Client C” won another public tender, resulting in a change process
in late 2019 similar to that of Client B’s entrance. The onboarding of Client C started in
early 2020, about at the time when our data collection period ended. Concerning changes
in coordination mechanisms, a new customer manager was added to support Client C.
Existing inter-team backlogs and delivery plans were updated to make room for incoming
requirements and deadlines from Client C, and in January 2020, a workshop was held look-
ing back at lessons learned from onboarding Client B to further adjust practices in prepara-
tion for the third major client.

4.2 Internal Change Events

The second change theme is what we refer to as internal change events. As opposed to the
external change events, these changes originated within the boundaries of the organization.
In Fig. 4, these change events can be seen in the ‘Organization’ lane. We present four nota-
ble internal change events.

Internal Change Event 1 (I1): Changes in Team Organization When Entur was estab-
lished in 2016, there were five sequentially organized teams. Each team worked on devel-
oping their own part of the system, and there was little to no communication between
the teams. “It was truly bad! But we have worked our way forward little by little. First,

Empirical Software Engineering (2023) 28:114

1 3

Page 17 of 40 114

we got the priority boards, and then that didn’t work so well. To begin with. But then we
started to do something, and things got a little better. Also… the [software] modules were
maturing, so we had to start talking across teams, and so we have also moved forward in
an agile way, sort of” [I13, team leader]. In 2017, a new team matrix-based team organi-
zation was established, with nine teams organized according to product delivery areas
and inter-team roles [Company presentation, November 2017]. By September 2018, there
were thirteen development teams organized under nine delivery areas; examples include
Pricing, Sales, Ticketing, and On-board services. This new organization was designed to
allow for more and better inter-team coordination in response to the coordination needs

Table 3 Changes in coordination mechanisms. Categories based on Berntzen et al. (2022)

Coordination mechanism
category

Description Examples of changes

Coordination roles Roles are coordination mechanisms
performed by people coordinating
with other people that contribute to
managing dependencies within or
across teams

-Introducing the product owner role
-Discontinuing project manager
-Introducing tech lead role
-Introducing chief architect role
-Adding customer managers

Coordination meetings Time-boxed or ad hoc arrangements
where dependencies are managed
by enabling people to discuss,
share knowledge and negotiate
shared understandings

-Shortening meetings
-Changing meeting scope
-Removing meetings
-Adjusting meeting focus
-Increasing unscheduled meetings

Coordination tools and
artifacts

Tools manage dependencies by sup-
porting the development process,
while artifacts are by-products of
the development process

-New Slack communication guidelines
-Adjusting meeting agendas
-Adding Inter-team backlog
-Adding inter-team delivery plan

Table 2 The major change themes, based on Jarzabkowski et al. (2012) and Langley et al. (2013)

Description Examples

External change event Time-specific changes taking
place in the company’s
external environment, and
the control of which are
beyond the organizational
boundaries but has implica-
tions for actions within the
organization

-Transportation reforms leading to the onboard-
ing of new operators/clients (E1, E3)

-Client makes name change and rebrands which
impacts the development (E2)

Internal change event Time-specific changes initi-
ated within the organization,
controlled by the organiza-
tion, and based on pre-
planned assessments. Has
implications for inter-team
and team-level coordination

-Reorganization of team or organization struc-
ture (I1, I2)

-Moving offices (I3)
-Implementing shared delivery routines (I4)

Continuous changes These changes have no set
dates but occur on an
ongoing and ad hoc basis.
Can be both internally and
externally driven

-Adjusting meeting practices based on retrospec-
tives (internal)

-Picking up “best practices” such as new tech-
nology and development methods (external)

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 18 of 40

Fi
g.

 4

Ch
an

ge
 ev

en
ts

an
d

ch
an

ge
s i

n
co

or
di

na
tio

n
m

ec
ha

ni
sm

s r
ep

re
se

nt
ed

 th
ro

ug
h

a
vi

su
al

 m
ap

pi
ng

 st
ra

te
gy

 (L
an

gl
ey

 1
99

9)
. T

he
 re

d
ci

rc
le

s c
on

ta
in

in
g

le
tte

rs
 a

nd
 n

um
be

rs
 (e

.g
.,

E1
, I

2,
 e

tc
.)

co
rr

es
po

nd
 to

 th
e

su
b-

se
ct

io
ns

 in
 S

ec
tio

ns
 4

.1
 a

nd
 4

.2
. N

ew
 c

oo
rd

in
at

io
n

m
ec

ha
ni

sm
s a

re
 in

di
ca

te
d

w
ith

 a
 p

lu
s s

ig
n

(+
),

di
sc

on
tin

ue
d

m
ec

ha
ni

sm
s w

ith
 a

 c
ro

ss
 (✗

),
w

hi
le

 ch
an

ge
s t

o
ex

ist
in

g
m

ec
ha

ni
sm

s a
re

 in
di

ca
te

d
w

ith
 a

 d
el

ta
 (∆

)

Empirical Software Engineering (2023) 28:114

1 3

Page 19 of 40 114

following the current size of the program. This also led to the introduction of more coor-
dination mechanisms, as the existing ways of coordinating were no longer efficient. The
product owner role was implemented for each of the nine delivery areas, and inter-team
roles such as agile method specialist, customer manager, and development manager were
formally implemented in the organization matrix. After we concluded our data collec-
tion, as Entur continued to scale, there was a need to consider yet another change in the
team organization. Rather than being organized according to delivery areas, they would
gradually organize according to product areas from 2020 onwards.

Internal Change Event 2 (I2): From ‘Project’ to ‘Program’ Initially, the software develop-
ment at Entur was organized in a development project referred to as the Leap Project. This
project was directly linked to the political reform and primarily focused on building the
new software, which was done in parallel with running services on the old sales system
inherited from Client A. However, because of the scope and magnitude of work associated
with developing a new sales platform while running and maintaining the old system and
because new clients were added, the project was expanded into an ongoing development
program with no end date rather than running many different projects. However, while the
Leap project officially ended by the end of 2018, traces of the project organization remained
for some time as the program members oriented to new ways of coordinating, both in terms
of coordination mechanisms and way of thinking. A product owner explained:”We have
simplified how and how much the teams report, but all the mechanisms are still there” [I20,
Product Owner]. For example, as shown in Fig. 4 and discussed in Section 4.3, the Project
Manager role remained until April 2019. This example illustrates that coordination mecha-
nisms are not only created in response to change events and that new patterns of coordinat-
ing can include the discontinuation of a mechanism.

Internal Change Event 3 (I3): Moving Offices In April 2019, a third internal change event
occurred when Entur moved offices to a new building. When we began our data collection
in August 2018, Entur was located on a single floor in a larger office complex. As they
continued to grow, the office space became too small to support the program’s need for
inter-team coordination. This was reflected in our observations during 2018. Task boards
hung wherever they fitted in, and there were few open spaces for informal meetings and
socializing. Stand-up and prioritization meetings took place in corridors and were con-
stantly interrupted by people passing. The meeting rooms were too small for any inter-team
meeting and too small for many of the development teams (of which the largest counted
16 members). Moreover, due to the lack of space, several of the development teams had to
sit off-site, which was an obstacle to efficient inter-team communication and coordination.

The office move was a big change event that took time and effort, but it was necessary
for successful unscheduled coordination and communication across teams as the program
continued to scale. “Communication might get better now that all teams are in the same
building. Because before, we couldn’t walk over to each other, but now we can” [I13, Team
leader]. The new offices spanned two floors, connected by a large open staircase that could
be used for informal seating and presentations. They had several large meeting rooms and
two large open spaces that allowed for more efficient use of existing coordination mecha-
nisms. For instance, task boards could be displayed in the open space, and inter-team meet-
ings could now be held in well-suited areas (see Figs. 5 and 6 in Section 4.3). Despite this
upgrade, the new offices were also at the risk of becoming too small as the program con-
tinued to scale. “We just keep growing. We moved to get more space. Now, new desks are

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 20 of 40

constantly being added, and we no longer have a dedicated stand-up room as we need the
space for workstations” [I24, Tech lead].

Internal Change Event 4 (I4): Inter‑Team Delivery Routines In the large-scale program,
teams often worked on the same deliveries or on inter-dependent deliveries. Accordingly,
as Entur continued to scale, there was a growing need to align the delivery process across
teams. In October 2019, measures were taken to establish an inter-team delivery process
with common delivery routines. This was done to improve predictability in deliveries
across teams to the clients. However, to keep with an agile way of thinking, these new
processes were not implemented overnight but piloted and tested in one central team before
scaling further. “We try it out with a smaller group to see ‘do we see the value of doing
this?’ We start off narrow, and if people think it gives value, then it is a good model for test-
ing before we go full scale” [I19, Program Architect]. We observed the piloting phase con-
ducted in October-December 2019. As part of this phase, several new coordination mecha-
nisms changed. As seen in the lower right corner of Fig. 4, new coordination mechanisms
included a process specialist role and shared routines for using JIRA and Confluence.

4.3 Continuous Changes in Coordination Mechanisms

In addition to the changes in coordination mechanisms following the change events, there
were continuous changes in coordination mechanisms that reflected the continuous growth
and evolution of the program. Often, these were ongoing changes that went unnoticed. “You
don’t put down in writing that ‘this is how we do things here,’ and then people know what
it’s like. It’s more like… it flows a bit. And suddenly, things have changed a little. You just
notice, like, ‘oh yes, things have changed’ [laughs]” [I04, Product Owner]. Table 3 and the
bottom lane in Fig. 4 illustrate these changes. In the following, we provide examples for
each of the coordination mechanisms categories, roles, meetings, and tools and artifacts.

Coordination roles are coordination mechanisms performed by people coordinat-
ing with other people that contribute to managing knowledge dependencies within or
across teams. Entur had several coordination roles, including team-level roles, such as
product owners and team leaders, and inter-team roles, such as customer managers and
architects. More coordination roles were added as the program scaled, and some roles
changed in response to the program’s growth. As mentioned in Section 4.1, the project
manager role was discontinued after Entur changed from ‘project’ to ‘program’. The
person who filled this role, an external consultant, left in April 2019. However, it took
some time for the developers to adjust to this change. “The project has long been shut
down, and our focus is now on product development. But we notice that the project
way of thinking remains, and the idea of the project manager role also remains. After
a stand-up last week, a team leader asked: ‘Who’s our project manager now? Who will
follow up on us?’” [I20, Product Owner].

As Entur grew in response to the scaling and development of the new software prod-
uct, at the same time as the old system was kept in use, the number of technical depend-
encies increased. This led to an increased need to focus on the software architecture
both within and across teams. As a result, the tech lead role was established in all devel-
opment teams in January 2019. “The role is about technical coordination and in a way
be a person within the team that has the knowledge and insight about the team archi-
tecture that can discuss and be part of making technical decisions, within the team, and
also outside the team” [I21, Tech Lead]. Additionally, a chief architect role was added

Empirical Software Engineering (2023) 28:114

1 3

Page 21 of 40 114

in June 2019 “responsible for coordinating the architects and be part of deciding the
scope of the architecture function at Entur” [I14, Program Architect].

The product owner role was a central role at Entur associated with many changes. As
explained in Section 4.2, the role was established during the reorganization in 2017 to
correspond with the nine delivery areas. Among the product owners’ primary responsi-
bilities was coordinating priorities towards the overall product deliveries and commu-
nicating the needs and prioritizations of each development team at an inter-team level.
At first, there was a 1:1 correspondence between the delivery areas and development
teams. “What’s interesting about the product owner role here is that it’s influenced by
the situation we’re in. Now and in the future. When we implemented the role, the thought
was that the product owners themselves would be part of shaping the role. To own their
delivery area and be the CEO of their own product, so to speak” [I06, Program Man-
ager]. However, as the program scaled, this quickly changed such that some product
owners became responsible for more than one team.

Importantly, at Entur, the product owners were considered as part of the develop-
ment teams and not an inter-team role. Even the two product owners who had more than
one team each (see Fig. 1) were primarily affiliated with the teams rather than with the
product owner group. This primary affiliation with the teams represented a challenge
for inter-team coordination and prioritization of deliveries across teams. “They all have
the same role. But they perform it very differently. That’s the problem” [I12, Program
Manager]. Another manager explained: “They have no sense of group affiliation. But
it’s a point to make coordination across the teams work. And if we say coordination
across teams is one of our challenges, that includes the product owners. They don’t
seem to talk enough to each other”. [I03, Program Manager]. During our fieldwork, we
witnessed several adjustments of the coordination mechanisms surrounding the product
owners in order to manage inter-team dependencies more efficiently. They held quar-
terly retrospectives where inter-team coordination issues were addressed, and changes
and adjustments to improve inter-team coordination was made. Most notably, the prior-
itization meeting (to be introduced below) but also changes in how they communicated
on Slack, what to discuss in their weekly meetings and how they could improve inter-
team coordination on an ad hoc basis. All along, there was a promise of change attached
to the role. “I do not believe the product owner role is the same now as next year or the
year after. How many product owners do we need today, tomorrow, or in the long run? I
think that number will vary [I03, Program Manager].

Coordination meetings are coordination mechanisms where dependencies are managed
by enabling people to discuss, share knowledge, and negotiate shared understandings. At
Entur, both scheduled and ad hoc, unscheduled meetings were frequently used to manage
dependencies within and across teams. During our data collection, we observed the ongo-
ing adjustment and improvement of coordination meetings. The program members had the
autonomy to adjust these mechanisms, which often happened during inter-team retrospec-
tives. For example, the product owner prioritization meeting was adjusted in November
2018 based on input received in a retrospective meeting for the product owners. After this,
the product owners kept experimenting with the meeting format, and in November 2019,
they decided to discontinue the meeting. “The last few weeks, the product owners have
had stand-up meetings instead. I asked them if using the [prioritization] task board still
made sense, and most said they did not want to use it anymore” [I03, Program Manager].
Similarly, the team leader stand-up meeting was adjusted in early 2019 following a team
leader retrospective. During the retrospective, held in February 2019, some team leaders

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 22 of 40

complained that the stand-ups had become time-consuming reporting meetings. “In the
retro, we decided to only focus on issues relevant across teams, which has saved us some
time. So, the stand-up improved, for now at least” [I13, Team Leader].

Coordination meetings were also added during the study to fit the program’s needs. For
instance, an inter-team Program Demo, where teams showcased parts of their development
work every week, was established in September 2018. This demo contributed to coordi-
nation by enabling shared knowledge across teams. In March 2019, following the imple-
mentation of the tech lead role earlier in the year, the first “tech lead forum” was held.
This was a bi-weekly meeting for the tech leads and the program architects aimed at shar-
ing knowledge and coordinating technical dependencies across teams. After the forum was
established, it took some time to adjust and find the right format. When the forum had been
running for some months, a program manager explained: “In the beginning, not everyone
understood their role or wanted to speak up and share their opinion. We wanted to be
careful with telling the tech leads what to do, want them to figure it out, and take respon-
sibility themselves. They’re starting to adjust, now we start to see discussions and the type
of knowledge sharing that we wanted” [I12, Program Manager]. The tech lead forum was
modeled after the ideal of communities of practice and was planned to establish several
such inter-team fora for other inter-team coordination areas, such as software quality and
testing and DevOps. “We wanted to start off with one such forum, not all at once, and see
what we more we wanted over time” [I06, Program Manager].

In addition to these scheduled meetings, unscheduled coordination meetings improved
following the office move in April 2019, as there was more open space available and more
meeting rooms that enabled spontaneous meetings (see Fig. 5). Additionally, the open
staircase was used to display inter-team coordination mechanisms (see Fig. 6) and enabled
easy access to members of other teams. This open staircase was also designed with seating
and was used for informal lunches, company presentations, and hangouts.

Coordination Tools and Artifacts Coordination tools are coordination mechanisms that
manage dependencies by supporting the development process, for example, a chat tool,
while coordination artifacts are considered by-products of the development process, for
example, documentation. At Entur, coordination tools and artifacts were used widely, both
at the team and inter-team levels. Over time, more inter-team tools and artifacts were added
to align inter-team coordination. In the past, the teams had their own backlogs and delivery
plans, which the product owners reported on during their prioritization meeting. However,
as the program scaled, additional mechanisms were needed. In January 2019, an inter-team
backlog was added, and in March, an inter-team delivery plan was put together in response
to client growth, as described in Section 4.1. In May/June 2019, Entur started experiment-
ing with OKRs, a goal management framework that Entur used as a coordination tool.
They first tested OKRs with the product owners, and as that gave promising results, it was
decided to expand the use of OKRs to involve the team leaders, the architects, and the
management group. The goal was that all Entur were to use OKRs by 2020. “The goal is
to gain an overview and to give insights to the organization. And to be able to say, ‘this
is where we’re at,’ right. And use this insight to evaluate if something works or not and
act [I21, Program Architect].

In addition to the introduction of new coordination tools and artifacts, existing coor-
dination tools were adjusted as needed. The digital communication tool Slack had been
used since the outset in 2016. Slack is built up of channels, which users can create and
name within certain boundaries set by the software. Many of the channel names were quite

Empirical Software Engineering (2023) 28:114

1 3

Page 23 of 40 114

similar. For example, there could be a channel called “ClientA_deliveries” and another
called Client_deliveries,” and so forth. By early 2019 the number of channels and various,
often similar, names for inter-team and inter-organizational channels became confusing and
misleading for Entur employees. This also represented a risk of information being shared
with the wrong clients. Accordingly, the need to align communication on Slack resulted in
new guidelines for creating and naming Slack channels. During April and May 2019, the
new Slack guidelines were introduced. The development teams were encouraged to con-
tribute with input before and during the implementation phase. After the new guidelines
were introduced, there was a period of improving the new Slack practices. This example
illustrates how the need for more alignment in the coordination process initiated new Slack
guidelines, resulting in changes in how the coordination mechanism Slack was used and
how the change led to a need to adjust further and improve the use of the coordination
mechanism.

As a whole, continuous change and improvement were a part of the program’s core cul-
ture and practiced at all organizational levels, from the ‘change workshops’ where man-
agerial-level employees discussed structural and organizational changes to the team-level
‘coffee and architecture’-meetings that some tech leads held to get their team members’
input to the tech lead forum. The latter is an example of employee-driven changes resulting

Fig. 6 The open office space
was used to display coordina-
tion mechanisms, such as this
delivery plan

Fig. 5 The new offices brought
new coordination arenas like this
multi-purpose room

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 24 of 40

from knowledge sharing of “best practices” across teams. For example, a tech lead told us:
“‘Coffee and architecture’ is a 15-min meeting I initiated with the team. I picked it up from
one of the other tech leads during a tech lead forum. I use it to gain input and involve the
team” [I21, Tech Lead].

The examples presented in this section demonstrate that at Entur, responding to change
was part of everyday work. However, there was also a risk that introducing many initiatives
at once could be counter-productive, as employees could perceive that there were too many
changes: “There’s always a lot going on. And that’s a factor: How much do we adjust at the
same time? It might actually become stressful to have to get familiar with new things all the
time. People might lose interest.” [I20, Product Owner]. Further, despite the always ongo-
ing changes in coordination mechanisms and Entur’s ability to continuously improve, inter-
team coordination remained a challenge in the large-scale program. “The greatest coordi-
nation challenge is synchronization across [teams] in the overall deliveries. If there’s one
thing that haunts us, this is it [I03, Program manager].

5 Discussion

Large-scale agile development projects and programs are often long-term and filled
with changes, which has consequences for coordination. Change is often understood
either in the form of events or patterns of events (Jarzabkowski et al. 2012) or as a
continuous process or flow of activities (Langley et al. 2013). In this study, we took
an explorative approach to both views of change. Using the theoretical lens of Jarzab-
kowski et al. (2012) explaining how coordination mechanisms are created in practice,
we sought to better understand change and coordination in large-scale agile by investi-
gating the research question: What types of organizational changes influence coordina-
tion mechanisms in large-scale agile, and how do these mechanisms change over time?

Through thematic analysis, we identified three themes covering the organizational
changes that influence coordination mechanisms, namely external and internal change
events, and continuous changes (Table 2). Further, we illustrated how coordination
roles, meetings, and tools and artifacts changed over time (Table 3 and Fig. 3). The
themes were derived partly based on our conceptual understanding of how coordina-
tion mechanisms are formed from disruptive events (Jarzabkowski et al. 2012) and our
understanding of the importance of continuous improvement in software engineering
(Fitzgerald and Stol 2017). However, through our close and detailed engagement with
the data material during the analysis, the findings were strongly linked to the empiri-
cal material (Braun and Clarke 2012), and it became clear that our theoretical lens did
not cover all aspects of coordination observed in the data. As an outcome, we present
a model for understanding change in coordination mechanisms over time in large-scale
agile, illustrated in Fig. 7. This model extends Jarzabkowski et al. (2012)’s theoreti-
cal framework and forms the basis for a model of change coordination mechanisms in
large-scale agile. We now discuss the implications of our findings.

5.1 External and Internal Drivers of Change in Coordination Mechanisms

First, our findings show that changes in the external and internal environment lead to
changes in the coordination mechanisms used to manage dependencies. Both inter-
nal and external change events can be compared with the disruptive events that cause

Empirical Software Engineering (2023) 28:114

1 3

Page 25 of 40 114

coordination mechanisms to break down. However, Jarzabkowski et al. (2012) focused
on one large disruptive event (i.e., the organizational restructuring). We find that events
do not need to be of such a magnitude or disruptive level to lead to a change in coordi-
nation mechanisms. Moreover, contrary to Jarzabkowski et al. (2012)’s model, we find
that the coordination mechanisms themselves do not necessarily have to ‘break down’
to change. Often, small adjustments or what we term continuous change were sufficient
to cause a substantial change in how dependencies were managed. As illustrated by the
example with the product owners’ prioritization meeting described in Section 4.3, input
received during retrospectives can lead to the adjustment of coordination mechanisms.
This focus on continuous adjustment and improvement was a key strength at Entur and
a core feature of agile that is not captured by the model of Jarzabkowski et al. (2012).

With respect to the external change events, these were initiated and controlled
beyond the organization’s boundaries. The upper left corner of Fig. 7 shows how exter-
nal changes drive change in two ways. First, external change events may contribute to
the scaling of the development program (upper middle box of Fig. 7), thus indirectly
contributing to changes in coordination needs as the dependencies increase in number
and complexity. The external changes caused by the public transportation reform and
the addition of clients due to the public tenders can be seen as major drivers of change.
These external change events contributed to the continued scaling and growth of the
program and, as such, an increase in different types of dependencies (Strode 2016).
From scaling follows a change in coordination needs and, subsequently, a change in
coordination mechanisms. For example, technical dependencies increased with the size
and complexity of the software, but also with the number of teams developing features.
Entur established the tech lead role and the tech lead forum in response to the need
to coordinate the continuously growing technical dependencies across teams. Addition-
ally, external change events could directly lead to changes in coordination needs without
impacting program growth, as with the name change of Client A (see the arrow that
leads directly from the upper-left corner to the box in the middle of Fig. 7).

Internal change events, such as reorganizing the team structure, or moving to a new
office, were also drivers of change in coordination mechanisms. Internal change events

Fig. 7 A model of change in coordination mechanisms over time

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 26 of 40

can be understood as ways of adapting to the growth in the client base and the size
of the development program. For example, as illustrated by the arrows running from
the upper middle to the upper-right corner of Fig. 7, the increased number of teams
increased the need for inter-team coordination due to more knowledge dependencies
across teams. Adding new coordination meetings, such as the Friday Demo, and adjust-
ing existing meetings, such as the team-leader stand-up meeting, were ways of manag-
ing inter-team knowledge dependencies. Also, introducing new Slack guidelines was an
important way to manage knowledge dependencies when the lack of channel naming
conventions caused confusion and the potential risk of information getting out of hand.
These findings relate to a study of coordination in global software engineering (Stray
and Moe 2020), where the findings showed that the lack of formalized coordination pro-
cedures on Slack constituted a challenge to effective dependency management. Addi-
tionally, the increase in resource and process dependencies at Entur, caused by more
teams needing to coordinate deliveries, was managed by introducing new coordination
tools and artifacts, such as inter-team delivery plans and new inter-team coordination
roles, such as the process specialist.

We found that changes in coordination mechanisms not only happened reactively
because of a disruption or a breakdown in coordination (Cataldo and Herbsleb 2012; Jar-
zabkowski et al. 2012) but also as a result of Entur’s wish to continuously improve their
development process (Fitzgerald and Stol 2017). This is in line with Edison et al.’s (2022,
p. 14) review, who points out that when organizations seek to improve, “constant change
is inevitable” across team structures, processes, tools, and tools metrics. Further, we found
that changes were initiated both top-down and bottom-up. In the ‘change workshops,’ the
managers and key inter-team roles discussed organizational and structural issues such as
team organization and the establishment of communities of practice (e.g., the tech lead
forum), gaining input on “best practice” from research and practice outside the organiza-
tion. These workshops were examples of top-down drivers of change. From the bottom-up,
retrospectives and the tech lead forum were arenas where team representatives could initi-
ate change by discussing and identifying changed coordination needs and how to adapt
to them. This is in line with findings from two other large-scale programs in the telecom
industry where both top-down and bottom-up approaches to decision-making were used
(Moe et al. 2021).

Understanding the dynamics of change in large-scale agile is not easy, as change is not
clear-cut. It is difficult to pinpoint, for example, when a “decision” turns into “implemen-
tation” and exactly when something changes (Van de Ven and Poole 2005). These issues
also pertain to the changes observed in our case study. Although we chose to arrange the
themes in terms of change events, there were many instances where it was difficult to see
the clear boundaries of the changes. In our results, this is perhaps most clearly illustrated
by the change from ‘project’ to ‘program’ described in Section 4.1. and Section 4.3. Even
though the change was an event that occurred on a specific date, the traces of the project
organization remained for some time. In line with the process theoretical perspective (Pet-
tigrew 1990; Langley et al. 2013; Ralph 2018), our findings show that scaling is a constant
process that unfolds over time, shaping both organizations and the mechanisms used to
manage dependencies. Our study underlines the importance for practitioners in large-scale
agile to be mindful of both these aspects and to avoid deciding on a fixed coordination
strategy upfront but recognizing the ongoing need to sense and respond to the situation and
continuously improve coordination practices in growing organizations.

Empirical Software Engineering (2023) 28:114

1 3

Page 27 of 40 114

5.2 Continuous Growth Requires Continuous Change and Improvement

Second, our findings show that over time, the continuous scaling of the program leads to
“more of everything.” This is illustrated by the arrow running across the bottom of Fig. 7.
This continuous scaling was largely fueled by external events that led to the increase in
clients. As the number of clients grows, so does the number of teams needed to develop the
system. The more teams, the more dependencies. As such, at Entur, it seemed that change
events and the program’s growth were closely associated and that both led to a continu-
ous change in coordination needs. In this sense, our findings underscore the importance of
dependency awareness in the face of change (Bick et al. 2018), as the ability to sense and
respond to changing coordination needs requires understanding how dependencies change.

Our analyses have shown how coordination mechanisms were added, modified, and
removed over time in response to changing external and internal environments. The strong-
est tendency was that the number of coordination mechanisms increased over time. Fig-
ure 4 shows that 13 new mechanisms were added, and four mechanisms were adjusted,
in relation to the change events described, whereas only two were removed. This finding
is interesting in comparison to a recent study where Dingsøyr et al. (2022) identified 27
mechanisms while the case program used a mix of traditional and agile project manage-
ment techniques. After transitioning to autonomous cross-functional teams, 14 coordi-
nation mechanisms were used. In another study, Moe et al. (2018) found that their case
started out with many scheduled meetings but that over time, unscheduled meetings were
used more. This was explained by the maturing that happened over time. We, on the other
hand, found that although some mechanisms were removed, overall, more coordination
mechanisms were added over time. We explain this by the continuous growth of the pro-
gram. Initially, Entur only had one railway client and five teams with low coordination
needs, as the number of dependencies between teams was perceived as relatively low. Over
time, however, the number of dependencies increased as Entur continued to scale, which
required the introduction of more coordination mechanisms.

Our findings can further be related to Fuchs and Hess (2018)’s model, where large-scale
agile transformation is understood as episodic phases where each phase is characterized
by a radical change followed by a period of incremental changes, and to the lean concepts
of kaikaku and kaizen (radical and incremental change, respectively) (Fitzgerald and Stol
2017). Jarzabkowski et al. (2012) describe phases of destabilization following a change
event, during which mechanisms are abandoned, re-formed, or changed before they sta-
bilize. In Entur, however, due to the continuous growth and the unpredictable external
environment (i.e., new clients following public tenders and the political backdrop of the
transportation reform), such a stabilization period never really seemed to occur. Instead,
they needed to rely on sensing and responding to the situation at hand and adapt their use
of coordination mechanisms to manage the relevant dependencies at any given time, which
often meant adding new mechanisms in response to the continued growth. If the situation
stabilizes when the software goes into a maintenance phase and no more clients are added,
the need to continue to scale should vanish, a situation in which they might be able to
reduce the number of coordination mechanisms in use.

5.3 Responding to Change by Using the Right Mechanisms at the Right Time

Third, our findings illustrate how having the right coordination mechanisms in place builds
resilience to change. As seen in the example of the renaming of Client A (E2), although

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 28 of 40

the event was a significant external change that impacted the coordination needs associ-
ated with implementing the name change in the system, Entur was able to handle the event
quite smoothly using the mechanisms that were already in place. Information about the
event was efficiently distributed to the teams via inter-team coordination mechanisms (e.g.,
Slack and meetings), and existing inter-team coordination mechanisms, such as task boards
and delivery plans, were adjusted as needed to meet the change. This example supports the
notion that some coordination mechanisms may be more effective than others in managing
certain dependencies (Strode et al. 2012; Stray et al. 2022a).

Our study also provides examples of how to adapt when existing coordination mecha-
nisms do not work effectively (Strode et al. 2012; Strode 2016; Bick et al. 2018). Both
the example of adjusting the product owners’ prioritization meeting and the need to pay
attention to keeping the team-leader stand-up meeting relevant across teams illustrate this.
It is already well established in practice that inter-team meetings should focus on shar-
ing relevant information across teams (for example, the Scrum-of-Scrums meeting in the
LeSS framework (Larman and Vodde 2016)). Most, if not all, of the meeting participants
in Entur’s inter-team coordination meetings were knowledgeable and experienced software
engineering practitioners who were aware of this. However, in practice, it is difficult to
keep this level of discipline and focus and not bring in other information relevant to one’s
own or one’s team’s prioritizations. Similar findings have been reported at the team level,
where developers have perceived the daily stand-up meeting as too long and not relevant
enough (Stray et al. 2016). Using other mechanisms, such as inter-team retrospectives to
adjust and adapt regularly, has been found efficient for re-adjusting coordination practices,
both at the team level (Strode et al. 2012) and the inter-team level (Edison et al. 2022).

Sometimes the challenging mechanism cannot easily be replaced or modified. In such
cases, another way of adapting can be to improve the surrounding coordination mecha-
nisms instead. At Entur, this was most notable with the product owners, where the large
and varied group had such different perceptions on how and when to coordinate that it
represented an ongoing challenge to the group. This can be explained partly by the team
affiliation and partly by the diversity in the group in terms of work background and person-
alities (Berntzen et al. 2019), but also that the role was given great autonomy in managing
their product area. Some studies recommend that inter-team roles, such as product own-
ers, form teams to strengthen inter-team coordination (Bass 2015; Paasivaara et al. 2018).
Other studies point to the tension between a strong team focus and a strong inter-team
focus in large-scale agile (Gustavsson et al. 2022), where the need for team autonomy must
be balanced with the need for inter-team alignment (Dikert et al. 2016; Bick et al. 2018).
At Entur, when product owner coordination was challenged, the short-term solution was to
adjust the product owner meetings and use of communication tools, and in the long-term,
plan to change or even remove the role as a whole.

5.4 Implications for Theory and Research and Practice

The findings of this study contribute to calls for more research on how coordination mech-
anisms emerge, change, and terminate (Jarzabkowski et al. 2012; Moe et al. 2018), as well
as expanding research on dependency management at the inter-team and large-scale lev-
els (Strode 2016; Berntzen et al. 2021). This study also raises several arenas for future
research, including further development of an emerging theoretical framework for coordi-
nation mechanisms in large-scale agile.

Empirical Software Engineering (2023) 28:114

1 3

Page 29 of 40 114

Software engineering researchers have been encouraged to adopt a more engaged rela-
tionship with theories (Sjøberg et al. 2008; Stol and Fitzgerald 2015). In this study, we
adopted a process-theoretical lens, seeking to generate knowledge about how changes in
coordination mechanisms unfold in a large-scale agile setting (Langley 1999; Ralph 2018).
We analyzed our data building on the theoretical framework proposed by Jarzabkowski
et al. (2012) that explains how coordination mechanisms are created in practice in response
to a disruptive event. We extended this work by including a broader set of change events as
our findings show that changes in coordination mechanisms occur not only in response to
so-called disruptive events but also in response to internal and external change events, large
and small. Moreover, our findings show that not only are coordination mechanisms cre-
ated in response to such changes, but they may also be adjusted or removed altogether.

The model presented in Fig. 7 forms the basis for explaining changes in coordination
mechanisms in large-scale agile. However, the model needs further theoretical develop-
ment and empirical investigation (Stol and Fitzgerald 2015), which is an arena for future
research. Additionally, future research could build on our findings and do a more thorough
mapping of which types of dependencies and coordination mechanisms can be related to
which types of change events using existing frameworks (e.g., Strode 2016; Berntzen et al.
2022). Future research can also use insights from this study and our previous work (Bern-
tzen et al. 2022) to study how coordination mechanisms’ social, technical, organizational,
and physical characteristics change over time in response to changing dependencies. We
encourage future work that can contribute to strengthen our findings, for instance by con-
ducting follow-up case studies, or by collecting and analyzing survey data.

5.5 Implications for Practice

Our findings also generate several practical implications that are particularly relevant to
large-scale agile programs characterized by high levels of complexity:

• While preparing for all external change events is impossible, having the right coordina-
tion mechanisms in place builds resilience to change over time.

• What constitutes an optimal combination of coordination mechanisms will vary over
time, as coordination needs are not static.

• When scaling, we recommend using collaboration tools, such as Slack (preferably with
communication guidelines), for swift and timely coordination, as face-to-face coordina-
tion is not always efficient or even possible.

• Having an overview of the current mix of coordination mechanisms enables companies
to sense and respond in a timely and effective manner when coordination needs change.

• Having an explicit and clear focus on continuous improvement of coordination prac-
tices (for example, through retrospectives and change-focused workshops) facilitates a
flexible way of changing coordination mechanisms in response to change events.

Above all, managers of large-scale agile programs that wish to improve coordination, or
manage dependencies effectively in the face of change, should adopt an active and engaged
relationship to coordination mechanisms. Agile development welcomes change, recogniz-
ing and embracing that it is impossible to avoid change, be it external or internal. At the
same time, accurately predicting future coordination needs is nearly impossible. However,
it is possible to increase dependency awareness (Bick et al. 2018) through an active and
ongoing focus on which coordination mechanisms best address the coordination needs

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 30 of 40

at any given time. This can be achieved by using existing dependency and coordination
mechanisms taxonomies (e.g., Strode 2016; Berntzen et al. 2022) to analyze and gain an
overview of the coordination situation at hand. Further, awareness of the past, present, and
possibly, future changes can be raised by reflecting on how the organization responds to
change and how changes have influenced coordination in the past. Table 4 provides practi-
cal guidance for conducting such an activity. The questions are based on the analysis for
this study and are meant to serve as inspiration for practitioners who wish to deep-dive into
understanding change in coordination in their specific organizations.

5.6 Evaluation of Limitations

This study is a qualitative, interpretive case study. We now review limitations of this study
by evaluating its credibility, confirmability, and transferability (Guba 1981). These qual-
ity criteria are applicable for assessing the trustworthiness of research and are often used
within software engineering (e.g., Russo 2021; Hussain et al. 2022).

Credibility Because this study is interpretive, conducted by humans, and involves
human participants, the question of credibility can be raised (Guba 1981; Walsham
2002). We used a range of procedures to make our findings as trustworthy and credible
as possible. The ethnographic approach ensured a rich and varied data material (Sharp
et al. 2016). The first author conducted the main part of the data collection, which was
inevitably subject to her own interpretations and understandings of the case. This is
explicitly recognized in interpretive studies; however, it is essential to take measures to
safeguard the credibility and trustworthiness of the reporting. To this end, we used an
observation protocol and interview guides to sort and systematize our data during col-
lection. We later carefully analyzed the data following established analytical methods
(i.e., thematic analysis). Moreover, the three other researchers contributed to the trian-
gulation of the interpretations and the reported findings through ongoing discussions
during the fieldwork (authors two and three) and throughout the analytical process (all
authors). In longitudinal field studies like ours, the researcher and the participants will,
over time, get acquainted with one another, which will influence the research process
(Walsham 2002; Crang and Cook 2007). For example, it is impossible to ensure that
respondents answer interview questions in an unbiased manner. Here, relying on several
data sources and many data points was essential to get as nuanced impressions as pos-
sible. Data triangulation was ensured by collecting several data sources. The ongoing
and iterative discussions among the authors further contribute to the credibility of our
findings. Finally, regular member checks with Entur representatives provide additional
trustworthiness (Crang and Cook 2007).

Confirmability The presented results stem from rich process case data (Langley
1999), where the analysis is based on researcher interpretations. We have gone to
lengths preventing that we oversimplified our interpretations of the instances and pro-
cesses described in this study. By following the six phases of thematic analysis (Braun
and Clarke 2006, 2012), we have ensured a rigorous analytical process. However, the
interpretive research approach makes it difficult for others to repeat the process to con-
firm our findings, which is not the goal of such approaches (Walsham 2006). Despite
this limitation, it is possible to continue this line of study of change, for example, by

Empirical Software Engineering (2023) 28:114

1 3

Page 31 of 40 114

Ta
bl

e
4

 A
 p

ra
ct

ic
al

 a
pp

ro
ac

h
to

 a
na

ly
zi

ng
 c

ha
ng

e
in

 c
oo

rd
in

at
io

n
m

ec
ha

ni
sm

s

Su
gg

es
te

d
pa

rti
ci

pa
nt

s a
re

 te
am

 re
pr

es
en

ta
tiv

es
 a

nd
 in

te
r-t

ea
m

 c
oo

rd
in

at
io

n
ro

le
s.

Th
e

an
al

ys
is

 c
an

 b
e

ru
n

in
 o

ne
 se

tti
ng

 o
r i

n
se

pa
ra

te
 st

ep
s,

de
pe

nd
in

g
on

 th
e

tim
e

av
ai

la
bl

e
an

d
th

e
co

m
pl

ex
ity

 o
f t

he
 si

tu
at

io
n

St
ep

G
oa

l
Q

ue
sti

on
s

St
ep

 1
. U

nd
er

st
an

di
ng

 c
oo

rd
in

at
io

n
m

ec
ha

ni
sm

s
G

ai
ni

ng
 o

ve
rv

ie
w

 o
f w

hi
ch

 c
oo

rd
in

at
io

n
m

ec
ha

ni
sm

s a
re

cu

rr
en

tly
 in

 u
se

. A
sk

 q
ue

sti
on

s t
o

id
en

tif
y

m
ec

ha
ni

sm
s

•
W

hi
ch

 m
ee

tin
gs

 to
 w

e
us

e
to

 c
oo

rd
in

at
e

(b
et

w
ee

n
te

am
s)

?
•

W
hi

ch
 ro

le
s d

ea
ls

 p
rim

ar
ily

 w
ith

 c
oo

rd
in

at
io

n
w

ith
 o

th
er

s?
•

W
hi

ch
 to

ol
s a

nd
 a

rti
fa

ct
s e

na
bl

e
co

or
di

na
tio

n
(b

et
w

ee
n

te
am

s?
)

•
W

hi
ch

 d
ep

en
de

nc
ie

s a
re

 m
an

ag
ed

 b
y

th
es

e
m

ec
ha

ni
sm

s?
•

A
re

 th
e

m
ec

ha
ni

sm
s p

er
ce

iv
ed

 a
s e

ffe
ct

iv
e?

St
ep

 2
. U

nd
er

st
an

di
ng

 p
as

t c
ha

ng
es

B
ec

om
in

g
aw

ar
e

of
 p

as
t c

ha
ng

e
ev

en
ts

 a
nd

 c
on

tin
uo

us

ch
an

ge
s a

nd
 h

ow
 th

ey
 h

av
e

in
flu

en
ce

d
co

or
di

na
tio

n.
 A

sk

qu
es

tio
ns

 to
 e

xp
lo

re
 a

nd
 u

nd
er

st
an

d

•
W

ha
t c

ha
ng

es
 h

av
e

w
e

de
al

t w
ith

 in
 th

e
pa

st
[in

se
rt

re
l-

ev
an

t t
im

e
pe

rio
d]

?
Fo

cu
s o

n
bo

th
 sp

ec
ifi

c
ev

en
ts

, a
s w

el
l

as
 c

ha
ng

es
 th

at
 h

av
e

oc
cu

rr
ed

 m
or

e
su

bt
ly

 o
ve

r t
im

e
(i.

e.
,

co
nt

in
uo

us
 c

ha
ng

es
)

•
H

ow
 h

av
e

th
es

e
ch

an
ge

s i
nfl

ue
nc

ed
 h

ow
 w

e
co

or
di

na
te

?
•

H
ow

 lo
ng

 h
av

e
w

e
us

ed
 o

ur
 c

ur
re

nt
 c

oo
rd

in
at

io
n

m
ec

ha
-

ni
sm

s?
 W

he
n

di
d

th
ey

 a
pp

ea
r?

 H
av

e
th

ey
 c

ha
ng

ed
?

St
ep

 3
. U

nd
er

st
an

di
ng

 p
re

se
nt

 a
nd

 fu
tu

re
 c

ha
ng

es
G

ai
ni

ng
 aw

ar
en

es
s o

f o
ng

oi
ng

 a
nd

 fu
tu

re
 c

ha
ng

es
 to

 p
ot

en
-

tia
lly

 b
e

ah
ea

d
of

 m
aj

or
 c

ha
ng

es
 in

 c
oo

rd
in

at
io

n
ne

ed
s

•
D

o
w

e
kn

ow
 a

bo
ut

 a
ny

 u
pc

om
in

g
in

te
rn

al
 o

r e
xt

er
na

l
ch

an
ge

 e
ve

nt
s t

ha
t w

ill
 in

flu
en

ce
 o

ur
 c

oo
rd

in
at

io
n

ne
ed

s?
•

W
ha

t c
ha

ng
es

 c
an

 w
e

do
 to

 e
xi

sti
ng

 c
oo

rd
in

at
io

n
m

ec
ha

-
ni

sm
s t

o
m

ee
t t

he
se

 n
ee

ds
?

W
ill

 a
ny

 m
ec

ha
ni

sm
s n

ee
d

to

be
 a

dj
us

te
d,

 re
m

ov
ed

, o
r r

ep
la

ce
d?

•
Is

 th
er

e
a

ne
ed

 fo
r o

th
er

 m
ec

ha
ni

sm
s?

•
H

ow
 w

ill
 w

e
te

st
an

y
ne

w
 o

r a
dj

us
te

d
m

ec
ha

ni
sm

s a
nd

w

ha
t d

o
w

e
ai

m
 to

 le
ar

n?

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 32 of 40

using existing dependency (Strode 2016) and coordination mechanism (Berntzen et al.
2022) frameworks to analyze the coordination situation and use a visual mapping strat-
egy as we did to map the developments over time. Future research should aim to repro-
duce and improve the method and analytical procedures in this study, not to directly
replicate the findings but to test the confirmability of the research method.

Transferability A third limitation relates to the transferability of our findings. This
research was conducted within a single organization, and we have focused much on the
context-specificity of our case. Other large-scale agile organizations will have a different
external and internal context and are, therefore, likely to have a different mix of coordi-
nation mechanisms. While we do not claim that our findings are directly transferable to
other organizations, the key implications of our findings are likely transferable to other
high-complexity large-scale agile settings. Although the emerging theoretical framework
needs further development (Eisenhardt and Graebner 2007; Stol and Fitzgerald 2015),
the practical insights from our study provide an empirically based approach to analyzing
coordination and change that can aid practitioners in managing dependencies in large-scale
agile over time. Even though our case organization did not use any of the large-scale agile
frameworks, we believe the findings apply also in companies that have implemented SAFe
or any of the other frameworks, because Entur can be considered a ‘critical case’ for coor-
dination in large-scale agile software development. According to Flyvbjerg (2006, p. 230),
the generalization characteristic of critical cases can be summed up as “If it is valid for this
case, it is valid for all (or many) cases.” In its negative form, the generalization would be,
“If it is not valid for this case, then it is not valid for any (or only few) cases.” As such, our
findings are theoretically generalizable (Crang and Cook 2007) because other large-scale
organizations using agile methods are likely to experience similar coordination challenges
and use similar agile practices (Edison et al. 2022).

6 Conclusions

In large-scale software development, change is inevitable because of the complexity and
long-term duration of such projects or programs (Edison et al. 2022). Agile practices and
the use of coordination mechanisms help navigate the complex dependencies associated
with software development at scale. Yet, understanding how change impacts coordination
appears important to successful large-scale development (Dingsøyr et al. 2018b, 2022).
In this study, we addressed the research question, “What types of organizational changes
influence coordination mechanisms in large-scale agile, and how do these mechanisms
change over time?” In previous research, change has been understood either as disruptive
events or patterns of events that influence the formation, destabilization discontinuation of
coordination mechanisms (Jarzabkowski et al. 2012) or as a continuous process or flow of
activities (Langley et al. 2013; Fitzgerald and Stol 2017). In this study, both approaches
informed our research question and our analysis.

To investigate changes in coordination mechanisms over time, we analyzed data from
1.5 years of fieldwork using thematic analysis (Braun and Clarke 2006, 2012). We built
on the theoretical framework for creating coordination mechanisms in practice proposed
by Jarzabkowski et al. (2012) but considered not only disruptive change events and
how coordination mechanisms are created, but also how they are adjusted or removed

Empirical Software Engineering (2023) 28:114

1 3

Page 33 of 40 114

in response to changes in the internal and external organizational environment. Overall,
our findings show that external and internal change events were related to changes in
coordination needs and, subsequently, changes in coordination mechanisms. Based on
our findings, we presented a model of change in coordination mechanisms over time,
which we hope will make way for future research on change in coordination over time
in large-scale agile. Further, we find that continuous growth requires a constant focus on
improvement, which is also related to the continuous change and adjustment of coordina-
tion mechanisms. Our findings illustrate that having the right coordination mechanisms
in place can contribute to building resilience to change. We suggest that large-scale agile
practitioners should actively and continuously focus on coordination mechanisms. This
makes it possible to continuously respond to changes in coordination needs, thereby effi-
ciently managing dependencies.

Finally, our research shows that it is possible to change and adapt in response
to challenges brought by scaling without relying on a set of mechanisms provided
by commercial scaling frameworks. Rather, our research demonstrates that having
an organizational mindset of continuous improvement is key to being truly agile
in the face of changing external and internal environments in large-scale software
development.

Appendix 1

Observation protocol. Template based on Crang and Cook (2007)

* Field notes to be taken in a handwritten notebook to be always brought around. Fieldnotes to
be written up digitally at the end of each day of fieldwork, or as soon as possible after.

*If any photos taken, either add to this document, or give similar name as this file with a
brief description of caption in the document.

Title, date

What is this record about? Meeting, observation of daily work, lunch etc.

Description of activity

– who, what, when, where, why, how? Stick to the facts & descriptions, no analysis-related
here.

Direct quotes, snippets of conversation, any textual (SMS, email).
Recognize these are a glimpse of a point in time from a particular perspective.

Reflections

How did fieldwork go today?
Did I influence events in any way?
Did anything go wrong?
Can anything be done differently next time?
How do I feel about it?

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 34 of 40

Emerging questions/analysis

Any emerging analytical questions?
Any potential lines of inquiry?
Potential theories that might be useful?

Future action

Anything to follow up?
Any particular people to talk to?
Any new information to obtain?

Appendix 2

Interview guide

Background/about the role.

1. What is your role and how long have you had the role?
2. Please tell me about your educational background and previous work experiences
3. How would you describe your role. What are the most important tasks?
4. Has your role changed over time? How?

About the development program

5. Please tell me about the program.
6. Tell me about the use of agile here. Which methods and practices are used? Within

teams, across teams?
7. Can you illustrate the team organization and tell me about how you see it? < Draw on a

board or blank sheets. >

a. What’s going on here? Why did it happen?
b. Where are the dependencies? (Now, in the past, in the future)
c. How do the teams coordinate with each other?
d. With stakeholders outside the team?

8. Has there been any changes to the program organization or team organization?
9. What challenges do you see now and in the future in the development program?

About coordination

 10. In your role, who do you coordinate with on a regular basis?
 11. Which coordination practices do you use here? Can you list specific coordination

arenas and provide some examples?
 12. How is coordination between the teams / developers?
 13. What do you think are the most important challenges for coordination across teams?

Why?

Empirical Software Engineering (2023) 28:114

1 3

Page 35 of 40 114

 14. What do you think have been the biggest developments here in relation to coordination
across teams?

 15. Is there anything else you want to tell that I have not asked about, or do you have any
questions?

Follow‑up questions for recurring interviews

a. Since last time, has there been any changes to the program organization or team organi-
zation?

b. What challenges do you see now and in the future in the development program

Acknowledgements We wish to extend our thanks to Entur and the informants for opening their workplace
to us. This research would not have been possible without their willingness to share their experiences. This
research was partly supported by the Research Council of Norway through the Transformit project, Grant
Number 321477.

Funding Open access funding provided by University of Oslo (incl Oslo University Hospital)

Data Availability The data material is unavailable due to non-disclosure agreements.

Code Availability N/A.

Declarations

Ethics approval Study reported to the Norwegian Centre for Research Data.

Conflicts of interests/Competing interests The authors report no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aldave A, Vara JM, Granada D, Marcos E (2019) Leveraging creativity in requirements elicitation within
agile software development: a systematic literature review. J Syst Softw 110396. https:// doi. org/ 10.
1016/j. jss. 2019. 110396

Allison I, Merali Y (2007) Software process improvement as emergent change: A structurational analysis. Inf
Softw Technol 49:668–681

Bass JM (2015) How product owner teams scale agile methods to large distributed enterprises. Empir Softw
Eng 20:1525–1557

Batra D, Xia W, VanderMeer DE, Dutta K (2010) Balancing agile and structured development approaches
to successfully manage large distributed software projects: A case study from the cruise line industry.
CAIS 27:21

Berntzen M, Moe NB, Stray V (2019) The Product Owner in Large-Scale Agile: An Empirical Study
Through the Lens of Relational Coordination Theory. In: Kruchten P, Fraser S, Coallier F (eds) Agile

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2019.110396
https://doi.org/10.1016/j.jss.2019.110396

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 36 of 40

Processes in Software Engineering and Extreme Programming. Springer International Publishing,
Cham, pp 121–136

Berntzen M, Stray V, Moe NB (2021) Coordination Strategies: Managing Inter-team Coordination Challenges in
Large-Scale Agile. In: Gregory P, Lassenius C, Wang X, Kruchten P (eds) Agile Processes in Software Engi-
neering and Extreme Programming. Springer International Publishing, Cham, pp 140–156

Berntzen M, Hoda R, Moe NB, Stray V (2022) A taxonomy of inter-team coordination mechanisms in large-
scale agile. IEEE Trans Software Eng 49:699–718. https:// doi. org/ 10. 1109/ TSE. 2022. 31608 73

Bick S, Spohrer K, Hoda R et al (2018) Coordination challenges in large-scale software development: a case
study of planning misalignment in hybrid settings. IEEE Trans Software Eng 44:932–950

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qual Res Psychol 3:77–101
Braun V, Clarke V (2012) Thematic analysis. APA handbook of research methods in psychology, Vol 2:

Research designs: Quantitative, qualitative, neuropsychological, and biological. American Psychologi-
cal Association, Washington, DC, pp 57–71

Carroll N, Conboy K, Wang X (2023) From Transformation to Normalisation: An Exploratory Study of a
Large-Scale Agile Transformation. J Inf Technol 02683962231164428. https:// doi. org/ 10. 1177/ 02683
96223 11644 28

Castañer X, Oliveira N (2020) Collaboration, coordination, and cooperation among organizations: Establish-
ing the distinctive meanings of these terms through a systematic literature review. J Manag 46:965–1001

Cataldo M, Herbsleb JD (2012) Coordination breakdowns and their impact on development productivity and
software failures. IEEE Trans Software Eng 39:343–360

Crang M, Cook I (2007) Doing ethnographies. Sage
Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for large-scale agile transforma-

tions: A systematic literature review. J Syst Softw 119:87–108
Dingsøyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of agile methodologies: Towards explaining

agile software development. J Syst Softw 85:1213–1221. https:// doi. org/ 10. 1016/j. jss. 2012. 02. 033
Dingsøyr T, Fægri TE, Itkonen J (2014) What is large in large-scale? A taxonomy of scale for agile software

development. International Conference on Product-Focused Software Process Improvement. Springer,
Cham, pp 273–276

Dingsøyr T, Moe NB, Fægri TE, Seim EA (2018a) Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method adaptation. Empir Softw Eng 1–31

Dingsøyr T, Moe NB, Seim EA (2018b) Coordinating Knowledge Work in Multi-Team Programs: Findings
from a Large-Scale Agile Development Program. Proj Manag J 49:64–77

Dingsøyr T, Bjørnson FO, Schrof J, Sporsem T (2022) A longitudinal explanatory case study of coordi-
nation in a very large development programme: the impact of transitioning from a first- to a second-
generation large-scale agile development method. Empir Softw Eng 28:1. https:// doi. org/ 10. 1007/
s10664- 022- 10230-6

Edison H, Wang X, Conboy K (2022) Comparing Methods for Large-Scale Agile Software Development: A
Systematic Literature Review. IEEE Trans Software Eng 48:2709–2731. https:// doi. org/ 10. 1109/ TSE.
2021. 30690 39

Eisenhardt KM, Graebner ME (2007) Theory building from cases: Opportunities and challenges. Acad
Manag J 50:25–32

Espinosa JA, Slaughter SA, Kraut RE, Herbsleb JD (2007) Team knowledge and coordination in geographi-
cally distributed software development. J Manag Inf Syst 24:135–169

Fitzgerald B, Stol K-J (2017) Continuous software engineering: A roadmap and agenda. J Syst Softw
123:176–189

Flyvbjerg B (2006) Five misunderstandings about case-study research. Qual Inq 12:219–245
Fowler M, Highsmith J (2001) The Agile Manifesto. http:// agile manif esto. org/. Accessed 23 Mar 2023
Fuchs C, Hess T (2018) Becoming agile in the digital transformation: The process of a large-scale agile trans-

formation. In: Proceedings of the 39th International Conference on Information Systems (ICIS 2018)
Gregor S (2006) The Nature of Theory in Information Systems. MIS Q 30:611–642. https:// doi. org/ 10. 2307/

25148 742
Guba EG (1981) Criteria for assessing the trustworthiness of naturalistic inquiries. Ectj 29:75–91
Gustavsson T, Berntzen M, Stray V (2022) Changes to team autonomy in large-scale software development:

a multiple case study of Scaled Agile Framework (SAFe) implementations. Int J Inf Syst Proj Manag
10:29–46

Gustavsson T (2019) Dynamics of Inter-Team Coordination Routines in Large-Scale Agile Software Develop-
ment. In: Proceedings of the 27th European Conference on Information Systems (ECIS). Uppsala, pp 1–16

Hoda R, Salleh N, Grundy J (2018) The rise and evolution of agile software development. IEEE Softw
35:58–63

https://doi.org/10.1109/TSE.2022.3160873
https://doi.org/10.1177/02683962231164428
https://doi.org/10.1177/02683962231164428
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1007/s10664-022-10230-6
https://doi.org/10.1007/s10664-022-10230-6
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.1109/TSE.2021.3069039
http://agilemanifesto.org/
https://doi.org/10.2307/25148742
https://doi.org/10.2307/25148742

Empirical Software Engineering (2023) 28:114

1 3

Page 37 of 40 114

Hoda R, Noble J (2017) Becoming agile: a grounded theory of agile transitions in practice. IEEE Press, pp
141–151

Hussain W, Perera H, Whittle J et al (2022) Human Values in Software Engineering: Contrasting Case Stud-
ies of Practice. IEEE Trans Software Eng 48:1818–1833. https:// doi. org/ 10. 1109/ TSE. 2020. 30388 02

Jarzabkowski PA, Lê JK, Feldman MS (2012) Toward a Theory of Coordinating: Creating Coordinating
Mechanisms in Practice. Organ Sci 23:907–927

Kalenda M, Hyna P, Rossi B (2018) Scaling agile in large organizations: Practices, challenges, and success
factors. J Softw Evol Process 30:e1954

Kwan I, Schroter A, Damian D (2011) Does socio-technical congruence have an effect on software build suc-
cess? a study of coordination in a software project. IEEE Trans Software Eng 37:307–324

Langley A (1999) Strategies for theorizing from process data. Acad Manag Rev 24:691–710
Langley A, Truax J (1994) A process study of new technology adoption in smaller manufacturing firms. J

Manage Stud 31:619–652
Langley A, Smallman C, Tsoukas H, Van de Ven AH (2013) Process studies of change in organization and

management: Unveiling temporality, activity, and flow. Acad Manag J 56:1–13
Larman C, Vodde B (2016) Large-scale scrum: More with LeSS. Addison-Wesley Professional
Lin B, Zagalsky A, Storey M-A, Serebrenik A (2016) Why Developers Are Slacking Off: Understanding

How Software Teams Use Slack. In: Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion. ACM, New York, NY, USA, pp 333–336

Madampe K, Hoda R, Grundy J (2022) The Emotional Roller Coaster of Responding to Requirements Changes
in Software Engineering. IEEE Trans Softw Eng 1–1. https:// doi. org/ 10. 1109/ TSE. 2022. 31729 25

Malone TW, Crowston K (1994) The interdisciplinary study of coordination. ACM Comput Surv (CSUR)
26:87–119

March JG, Simon HA (1966) Organizations. John Wiley & Sons, New York
Mintzberg H (1989) Mintzberg on management: Inside our strange world of organizations. Simon and Schuster,

New York
Moe NB, Dingsøyr T, Rolland K (2018) To schedule or not to schedule? An investigation of meetings as an inter-

team coordination mechanism in large-scale agile software development. Int J Inf Syst Proj Manag 6:45–59
Moe NB, Šmite D, Paasivaara M, Lassenius C (2021) Finding the sweet spot for organizational control and team

autonomy in large-scale agile software development. Empir Softw Eng 26:101. https:// doi. org/ 10. 1007/
s10664- 021- 09967-3

Munir H, Wnuk K, Runeson P (2016) Open innovation in software engineering: a systematic mapping study.
Empir Softw Eng 21:684–723. https:// doi. org/ 10. 1007/ s10664- 015- 9380-x

Murray E, Treweek S, Pope C et al (2010) Normalisation process theory: a framework for developing, evaluating
and implementing complex interventions. BMC Med 8:1–11

Niven PR, Lamorte B (2016) Objectives and key results: driving focus, alignment, and engagement with OKRs.
John Wiley & Sons, Hoboken, New Jersey

Okhuysen GA, Bechky BA (2009) 10 coordination in organizations: An integrative perspective. Acad Manag
Ann 3:463–502

Paasivaara M, Behm B, Lassenius C, Hallikainen M (2018) Large-scale agile transformation at Ericsson: a case
study. Empir Softw Eng 1–47

Pettigrew AM (1990) Longitudinal field research on change: Theory and practice. Organ Sci 1:267–292
Ralph P (2018) Toward methodological guidelines for process theories and taxonomies in software engineering.

IEEE Trans Software Eng 45:712–735
Runeson P, Höst M (2008) Guidelines for conducting and reporting case study research in software engineering.

Empir Softw Eng 14:131. https:// doi. org/ 10. 1007/ s10664- 008- 9102-8
Russo D (2021) The Agile Success Model: A Mixed-methods Study of a Large-scale Agile Transformation.

ACM Trans Softw Eng Methodol (TOSEM) 30:1–46
Sharp H, Dittrich Y, de Souza CRB (2016) The Role of Ethnographic Studies in Empirical Software Engineer-

ing. IEEE Trans Software Eng 42:786–804
Sjøberg DI, Dybå T, Anda BC, Hannay JE (2008) Building theories in software engineering. In: Shull F, Singer

J, Sjøberg DIK (eds) Guide to advanced empirical software engineering. Springer, London, pp 312–336
Spiegler SV, Heinecke C, Wagner S (2021) An empirical study on changing leadership in agile teams. Empir

Softw Eng 26:1–35
Stol K-J, Fitzgerald B (2015) Theory-oriented software engineering. Sci Comput Program 101:79–98
Stray V, Sjøberg DI, Dybå T (2016) The daily stand-up meeting: a grounded theory study. J Syst Softw 114:101–

124. https:// doi. org/ 10. 1016/j. jss. 2016. 01. 004
Stray V, Moe NB, Strode D, Mæhlum E (2022a) Coordination Value in Agile Software Development: A Mul-

tiple Case Study of Coordination Mechanisms Managing Dependencies. In: Proceedings of the 15th

https://doi.org/10.1109/TSE.2020.3038802
https://doi.org/10.1109/TSE.2022.3172925
https://doi.org/10.1007/s10664-021-09967-3
https://doi.org/10.1007/s10664-021-09967-3
https://doi.org/10.1007/s10664-015-9380-x
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1016/j.jss.2016.01.004

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 38 of 40

International Conference on Cooperative and Human Aspects of Software Engineering. Association for
Computing Machinery, New York, NY, USA, pp 11–20

Stray V, Moe NB, Vedal H, Berntzen M (2022b) Using Objectives and Key Results (OKRs) and Slack: A Case
Study of Coordination in Large-Scale Distributed Agile. https:// doi. org/ 10. 36227/ techr xiv. 16892 161. v1

Stray V, Moe NB (2020) Understanding coordination in global software engineering: A mixed-methods study on
the use of meetings and Slack. J Syst Softw 170:110717. https:// doi. org/ 10. 1016/j. jss. 2020. 110717

Strode DE (2016) A dependency taxonomy for agile software development projects. Inf Syst Front 18:23–46
Strode DE, Huff SL, Hope B, Link S (2012) Coordination in co-located agile software development projects. J

Syst Softw 85:1222–1238
Thompson JD (1967) Organizations in action: Social science bases of administrative theory. McGraw-Hill, New York
Uludağ Ö, Philipp P, Putta A, et al (2022) Revealing the state of the art of large-scale agile development research:

A systematic mapping study. J Syst Softw 111473
Van de Ven AH, Delbecq AL, Koenig Jr R (1976) Determinants of coordination modes within organizations.

American sociological review 322–338
Van de Ven AH, Poole MS (2005) Alternative approaches for studying organizational change. Organ Stud

26:1377–1404
Walsham G (2006) Doing interpretive research. Eur J Inf Syst 15:320–330. https:// doi. org/ 10. 1057/ palgr ave.

ejis. 30005 89
Walsham G (2002) Interpretive Case Study in IS Research: Nature and Method. In: Myers MD, Avison D

(eds) Qualitative Research in Information Systems. Sage Publications, London
Wohlin C, Aurum A (2015) Towards a decision-making structure for selecting a research design in empiri-

cal software engineering. Empir Softw Eng 20:1427–1455

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Marthe Berntzen is a Ph.D. candidate in Software Engineering at the
department of Informatics, University of Oslo. She holds an M.Sc.
degree from BI Norwegian Business School and has four years of
industry experience. Marthe’s Ph.D. research centers around inter-
team coordination in large-scale agile software development. Her
research focus on agile methods and practices, teamwork, leadership,
and coordination in large-scale and distributed settings. She presents
her work in journals and conferences within software engineering,
information systems and management.

Viktoria Stray is an Associate Professor at the University of Oslo’s
Department of Informatics. She also holds a senior research position
at SINTEF. Her research interests include agile methods, coordina-
tion, global software engineering, software testing, and large-scale
development. The focus of her research is to improve the productivity
of developers and testers and increase the success of software pro-
jects. Stray has a Ph.D. in Software Engineering and has worked sev-
eral years in the industry participating in some of the largest software
development projects in Norway.

https://doi.org/10.36227/techrxiv.16892161.v1
https://doi.org/10.1016/j.jss.2020.110717
https://doi.org/10.1057/palgrave.ejis.3000589
https://doi.org/10.1057/palgrave.ejis.3000589

Empirical Software Engineering (2023) 28:114

1 3

Page 39 of 40 114

Nils Brede Moe is a chief scientist at SINTEF. He works with soft-
ware process improvement, intellectual capital, autonomous teams,
and agile and global software development. He has led several nation-
ally funded software engineering research projects covering organiza-
tional, sociotechnical, and global/distributed aspects. Moe received a
Dr.Philos. in Computer Science from the Norwegian University of
Science and Technology and holds an adjunct position at the Blekinge
Institute of Technology in Sweden.

Rashina Hoda is an Associate Professor of Software Engineering at
Monash University, Melbourne. Rashina specializes in human-cen-
tered software engineering, including agile transformations, self-
organizing teams, agile project management, and large-scale agile,
and has introduced socio-technical grounded theory to software engi-
neering. She serves as an Associate Editor of the IEEE Transactions
on Software Engineering and as co-chair for ICSE-SEIS 2023, and
previously, on the advisory board of IEEE Software and as PC co-
Chair for CHASE2021. For more: www. rashi na. com.

http://www.rashina.com

 Empirical Software Engineering (2023) 28:114

1 3

 114 Page 40 of 40

Authors and Affiliations

Marthe Berntzen1 · Viktoria Stray1,2 · Nils Brede Moe2 · Rashina Hoda3

 * Marthe Berntzen
 marthenb@ifi.uio.no

 Viktoria Stray
 stray@ifi.uio.no

 Nils Brede Moe
 Nils.B.Moe@sintef.no

 Rashina Hoda
 Rashina.hoda@monash.edu

1 Department of Informatics, The University of Oslo, Gaustadalléen, 23B, 0373 Oslo, Norway
2 SINTEF Digital, Strindveien 4, 7645 Trondheim, Norway
3 Faculty of Information Technology, Monash University, Clayton, Melbourne, VIC 3800, Australia

http://orcid.org/0000-0003-1455-2562

	Responding to change over time: A longitudinal case study on changes in coordination mechanisms in large-scale agile
	Abstract
	Context
	Objective
	Method
	Results
	Conclusions

	1 Introduction
	2 Background
	2.1 Change in Large-Scale Agile Software Development
	2.2 Coordination and Coordination Mechanisms in Large-Scale Agile
	2.3 A Process-theoretical Approach to Change in Large-scale Agile

	3 Research Methods
	3.1 Case Description
	3.2 Data Collection
	3.3 Data Analysis

	4 Findings
	4.1 External Change Events
	4.2 Internal Change Events
	4.3 Continuous Changes in Coordination Mechanisms

	5 Discussion
	5.1 External and Internal Drivers of Change in Coordination Mechanisms
	5.2 Continuous Growth Requires Continuous Change and Improvement
	5.3 Responding to Change by Using the Right Mechanisms at the Right Time
	5.4 Implications for Theory and Research and Practice
	5.5 Implications for Practice
	5.6 Evaluation of Limitations

	6 Conclusions
	Appendix 1
	Observation protocol. Template based on Crang and Cook (2007)
	Title, date
	Description of activity
	Reflections
	Emerging questionsanalysis
	Future action

	Appendix 2
	Interview guide
	Backgroundabout the role.
	About the development program

	About coordination
	Follow-up questions for recurring interviews

	Acknowledgements
	References

