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Abstract 

With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnol-
ogy has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial 
activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment 
around implants before and after surgery, these surface nanomodifications are designed to respond to different 
stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials 
related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their 
compounds, polymer materials and other materials. In addition, the mechanism of different response types is intro-
duced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic 
stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications 
and developing prospect were discussion.
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Introduction
Titanium (Ti) and its alloys are the most widely used 
metallic implantable materials for orthopedic defects 
treatment, on account of the excellent biocompatibility, 
low elasticity and great corrosion resistance [1]. However, 
in recent years, several drawbacks have been recognized 
in Ti-based implantable materials like insufficient osteo-
genic and antibacterial capabilities related with inher-
ently bio-inert Ti surface [2]. Therefore, advanced surface 
characteristics related to physical, chemical and biologi-
cal functions are crucial for improving the clinical perfor-
mance of Ti implantable materials.

Surface properties modifications by biochemical coat-
ings and morphological alterations on Ti-based materials 
have received enormous attention and became research 
hotpot over the last few decades [3]. The morphological 
modification technologies including chemical methods 
(e.g., acid/alkali etching, EA. etc.) and physical meth-
ods (e.g. ion implantation, physical vapor deposition, 
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thermal spraying [4], etc.) provide different micro/nano 
surface structures on Ti and its alloys [5–7]. The absorp-
tion lacunae with diameters scales from 30 to 100  μm 
are formed by the acid secreted by osteoclasts to acid 
corrode the mineralized matrix and dissolve calcium 
phosphate crystals [8]. Microscale topographic modifica-
tion mimicking these absorption lacunae dimensionally 
entails the cells containing these microscale grooves con-
tact guidance physically for the sizes are similar to cells. 
Besides, nanoscale surface morphology is more attractive 
to actin cytoskeletal alignment and filopodia extensions 
of cells. Regarding to the in vivo environment where cells 
live inside extracellular matrix (ECM), cells are able to 
respond to environmental nanostructures via the interac-
tion between their surface nanostructures (e.g. Receptors 
and filopodia, etc.) and nanoelements of ECM compo-
nents (e.g. collagen fibrils, etc.) [9, 10]. The influence of 
such surface morphology on the process of bone inte-
gration has been reviewed in detail [11]. Nevertheless, 
these micro/nano-scale modifications mimicking bone 
structures and substrates applied on implant surfaces 
still have some limitations [12]. First, these modifications 
showed single function without the ability to respond to 
different physical environment changes like bone pro-
genitor cells and immunocytes are constantly chang-
ing environments. In addition, drug release capabilities 
cannot be adequately synchronized or sequentially con-
trolled, and their target-delivery of drug is also not ideal. 
For instance, non-directional drug release can lead to 
antimicrobe resistance of bacteria, and the change of the 
therapeutic dose cannot be controlled. These limitations 
would influence therapeutic effects, and even elicit other 
complications.

Stimuli-responsive nanomaterials have been widely 
investigated for their unique and intriguing properties 
have shown unique stimuli-responsive properties by 
adjusting the physical, chemical and biological properties 
of the materials to cause changes in properties or mor-
phology for promoting implant bone integration ulteri-
orly. These materials can response the external stimuli 
effectively, including magnetic field [13–18], ultrasonic 
wave (USW) [19, 20], light [21–32], electric field [33–35], 
radiofrequency, pH [36–42], enzyme stimulus [43–47], 
or multiple stimuli [16, 27, 48]. After receiving the stimu-
lating signals, the materials realize the on-demand con-
trolled release of drugs, or produce photothermal (PTT), 
photodynamic (PDT), magnetothermal and other effects 
to achieve anti-infection, thereby promoting osteogenesis 
and other purposes.

In recent years, the stimuli-responsive nanotech-
nology of titanium implants has been reviewed. Hong 
et  al. reviewed smart nanomaterials applied to bio-
films formed/accumulated on orthopedic implants 

[10]. Ahmed et  al. reviewed stimuli-responsive adaptive 
antibacterial implant biomaterials [49]. Montoya et  al. 
reviewed antimicrobial applications of bioresponsive 
dental implant materials [50]. Zhang et al. reviewed trig-
gered therapies from anodized nano-engineered titanium 
implants [51]. Similarly, Cai et  al. reviewed stimuli-
responsive  TiO2 Nanotubes (TNT) drug delivery systems 
have been reviewed [52]. Jayaree et  al. reviewed mag-
netic responsive materials in bone tissue engineering [53] 
etc. The existing reviews mostly concern single stimulus 
type or drug release mechanism with certain one-sided-
ness and limitations. At the beginning of this review, we 
described the commonly properties and applications of 
the commonly used stimuli-responsive nanomaterials, 
including elements and their compounds, polymer com-
plex materials and other materials. Then, we firstly sum-
marized different stimuli-responsive types and described 
the transformation principles of response related to tita-
nium implant. Moreover, the biological effects applied 
on titanium surface were emphasized after the classifica-
tions, including antibacterial property and osteointegra-
tion. In the end, we spotlighted the potential research 
hotpot to provide a systematical reference for the devel-
opment and translation in future research.

Search strategy
Articles were identified to be included according to elec-
tronic search via, Embase, and Web of Science by using 
specific search strings revolving around stimuli-respon-
sive titanium implant materials. The search yielded a 
total of 939 articles (PubMed 254; Embase 232; Web of 
Science 421; Additional records identified through other 
resources 32). After removing duplicates, 740 articles 
were retrieved. After reading the titles and abstracts, 63 
records were retrieved. The full-text articles were further 
assessed for eligibility and a total of 59 studies could be 
included in this review.

Types of nanomaterials
Stimuli-responsive nanomaterials on the Ti implant sur-
face include metal materials, high polymer materials and 
other materials. Metal materials mainly include Ag, Fe, 
Au, Zn, Cu, Mo, Ti and their compounds. Polymer com-
plex materials include modifiable liposomes, chitosan 
(CHI), micelles, hydroxyapatite, etc. mainly react as shell 
of nanoparticles with drugs or other materials inside.

Metal and metal alloy
Metal nanomaterials on titanium implant surface attract 
lots of attention in the biomedical field for their inert 
nature and intrinsic characteristics. Noble metal nano-
particles (such as gold and silver, etc.) have unique sur-
face isoionization resonance phenomenon, which can 
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enhance their radioactive absorption and scattering 
properties. Researchers changed these features by alter-
ing attributes such as size/shape of their basic unit, and 
functionalization properties [54]. Despite ideal stability, 
metal materials exhibit relative high cytotoxicity and are 
easy to accumulate in organs, eliciting adverse effects in 
host tissue [55]. Therefore, biocompatibility and metabo-
lism should be considered in the experimental design.

Ti
TiO2 Nanotubes (TNT) are widely used on Ti implant 
surface study, which could be simply fabricated by elec-
trochemical anodization (EA) on regular or irregular 
pure titanium surface [51, 56]. The dimension of TNT 
can be controlled by EA voltage/time. Adjustable one-
end closed tubular structures are beneficial for loading 
medicine inside to establish drug sustained-release sys-
tem [57]. Besides,  TiO2 also has unique light and ultra-
sonic responsive properties, which can be used to design 
antibacterial and promote bone experimental studies 
[58].

Regarding to that TNT is an ideal platform and drug 
carrier for drug storage and release, several studies have 
applied various stimuli-responsive coatings (biological, 
chemical, electrical, magnetic) to TNT-based drug deliv-
ery systems (DDS) which is the widely used in titanium 
implant research [59]. Magnetite hybrid nanocomposite-
loaded TNT is used to treat infection [13]. Au nanoparti-
cles (AuNPs)-loaded-TNT response radiofrequency (RF) 
is used to control drug release [60]. Indomethacin (Ind) 
micelle loaded-TNT response USW controls local drug 
release [19], etc.

The crystal structures of  TiO2 have important effects 
on the photocatalytic performance, mainly divide into 
anatase and rutile crystal form. It is generally believed 
that the former has higher photocatalytic activity which 
has been used as photosensitive coating [61]. The differ-
ence is reflected in the degree of distortion of the octa-
hedron and the way of interconnection between the 
octahedrons. In addition, ultrasonic can assist the pho-
tocatalytic ability [48]. Ultrasonic vibration and micro-
jet can improve the effect of mass transfer between solid 
photocatalyst and liquid interface. Therefore,  TiO2 can 
produce electron–hole effect under the action of light or 
ultrasonic assisted photocatalysis under light irradiation 
and USW stimulation, which can generate highly reactive 
free radicals and produce reactive oxygen species (ROS) 
to kill bacteria. The ROS can destroy a variety of impor-
tant biological polymers and membranes in the cell, but 
also can form other active oxidation substances, which 
is very averse to the continued growth and reproduc-
tion of bacteria, so as to play an antibacterial role. But the 
photocatalytic activity is limited by the band gap of  TiO2 

entails that  TiO2 can only accept the light whose wave-
length ranges in the ultraviolet spectrum [26]. Several 
elements have been doped in  TiO2 to solve this problem. 
For example, Zhang et al. [62] reported that, incorporat-
ing F, Yb, and Ho to  TiO2 nanorods could improve the 
photocatalytic ability and eradicate single species bio-
films like Staphylococcus aureus (S.aureus) and Escheri-
chia coli (E. coli) through a combined mechanism of PTT 
effects, PDT effects, and physical destruction. Moon et al. 
[25] deposited the Au and Pt nanoparticles on anodized 
100 nm TNT by ion plasma sputtering which extend the 
limited photocatalytic effect of  TiO2 in the ultraviolet to 
visible light region.

Fe
Ferric oxide is the most widely used magnetic-responsive 
material. It’s a simple and effective way to give materials 
high magnetic properties by introducing ferric oxide into 
biological substrates, and it’s easy to control the magnetic 
strength related to ferric oxide content [53]. Researchers 
combine magnetic ferric oxide with different nanoparti-
cles or implant surface coatings to achieve the purpose 
of targeted antibacterial and osteogenic stimulation by 
using its unique magnetic response properties. Surface 
modifications, such as polyethylene glycol (PEG) [15, 63], 
dopamine (DOP) [64], hydroxyapatite [65] and hydro-
gels [63], can improve the biocompatibility, bioactivity, 
hydrophilicity/hydrophobicity and drug loading stabil-
ity of ferric oxide nanoparticles. In addition, ferric oxide 
nanoparticles have PTT properties and magneto-thermal 
effect are important aspects of its anti-infection applica-
tions [66, 67].

Ag
With the great progress of nanomaterials and nano-
technology, the effect of Ag nanoparticles (AgNPs) 
against broad-spectrum infections has been significantly 
improved in the stimuli-responsive nanomaterials [68]. 
AgNPs have high reactivity due to their quantum size 
effect and high specific surface area and have very strong 
antibacterial effect by irradiating AgNPs at resonant 
wavelengths to lead to local temperature rise and PTT. By 
surface functionalization (e.g., biomolecular and ligand 
binding), nanoparticles can selectively target specific 
abnormal cells and produce an effective thermal gradi-
ent on the cell, thereby affecting cell activity and integrity 
[31]. The surface plasmon resonance of AgNPs can also 
be influenced by size, shape, surface coating, and solution 
chemistry. These changes can affect the PDT antibacte-
rial efficacy. [31]

However, AgNPs might accumulate in the reticuloen-
dothelial system and induce the genotoxic and cytotoxic 
damage of human lung fibroblasts and glioblastoma cells 
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by disrupting the cell membranes lead to hepatic and 
renal injuries [56, 68–70]. High concentrations of AgNPs 
may inhibit osteoblast proliferation and decrease implant 
survival [71]. Therefore, AgNPs often combine with other 
nanomaterials to produce synergistic and complemen-
tary effects in the stimuli-responsive system [31]. It is 
necessary to ensure its safety use in further bone-related 
applications.

Zn
Zinc is an important trace element of many enzymes 
and proteins with good chemical stability and low toxic-
ity to human cells. Zinc maintains cell membrane struc-
ture and plays an important role in normal biological 
activities tracellularly, such as DNA synthesis, enzyme 
activity control, and cell apoptosis control [72–74]. Zinc 
oxide nanoparticles (ZnO-NPs) are commonly used due 
to their low toxicity, good biocompatibility, and chemi-
cal stability [73]. In neutral to acidic environment, ZnO 
NPs exert their antibacterial functions mainly via the 
release of ROS and  Zn2+ [75]. The pH-sensitivity of ZnO 
quantum dots (QD) and ROS production have also been 
applied in the research field of stimuli-responsive nano-
engineering [39]. It is worth noting that excess ZnO-NPs 
can alter cell morphology, damage DNA induce geno-
toxic effects and destroy cellular defense systems, lead-
ing to cell apoptosis or necrosis finally [75, 76]. Hence, 
ZnO-NPs are often combined with other biomaterials to 
obtain a variety of biofunctions and corrosion resistance.

Cu
Cu is the basic mineral of many proteins and enzymes 
with excellent biological activity and antibacterial ability 
and [77]. Similar to AgNPs, the antibacterial ability of Cu 
nanoparticles (CuNPs) is interrelated to the production 
of ROS and  Cu2+. In stimuli-responsive nano systems, 
after being modified by ammonia, CuNPs could be estab-
lished as pH-responsive nanomaterials on TNT to pro-
mote vascularization and osteogenesis [36]. In addition, 
pH responsive CuNPs can also be used on PEEK implant 
[38]. In addition, Cu promote collagen maturation and 
further induce osteogenic differentiation of mesenchy-
mal stem cells through lysine oxidase crosslinking [78]. 
CuNPs have the optical properties of plasmon resonance 
and the optical response ability of absorbing fluores-
cence. Its ability of producing optical effects can be con-
sidered in future studies [82].

Mo
Molybdenum alloy coatings have been widely used for 
their photoresponsive performance. As a transition 
metal dihalide similar to graphene,  MoS2 has significant 
antibacterial properties and shows high PTT conversion 

efficiency for two-dimensional ultra-thin atomic layer 
structure and high specific surface area [79].  MoS2 is 
always formed as nano-coatings combined with polydo-
pamine (PDA)–arginine–glycine–aspartic acid (RGD) 
[80] and CHI-modified  MoS2 coating on the surface of 
titanium implants [81]. These coatings all showed good 
bactericidal and osteointegration promotion effects 
under 808 nm NIR. Besides,  MoSe2 has also been incor-
porate into studies in recent years which can improve the 
light-responsive capability of  TiO2 prepared by micro-
arc oxidation to be activated under NIR [21]. As a metal 
substance with high cytotoxicity, Mo has been com-
bined with CHI, protein and other substances to improve 
biocompatibility.

Au
With the advantages of simple synthesis, robustness, 
inertia, good biocompatibility, controllable geometric 
and optical properties [82], AuNPs could be modified 
to carry drugs, peptides, proteins, DNA, RNA and other 
materials to achieve better functionality [83]. In stimuli-
responsive studies, RF energy [60] and NIR [32] could 
be efficiently absorbed by AuNPs. The generated heat 
is released to the tissue surrounding to boost new bone 
formation efficiently and [84, 85]. The optical response 
of AuNPs has also been applied to remove the biofilm on 
implant surface [86]. However, AuNPs can be phagocy-
tosed by cells, leading to apoptosis or necrosis, and even 
accumulate in organs [83].

The metal particles of the implant surfaces will be 
released due to controlled releasing, wear and tear, chem-
ical degradation, etc. [87]. High concentrations of local 
or systemic metal particles can lead to some adverse 
effects, such as metal autoimmunity, disintegration or 
bioaccumulation in the body, and systemic toxicity [88]. 
After the metal particles are endocytosed into the acidic 
and enzyme-rich cytoplasm, they will be degraded and 
release overdosed metal ions [89]. High concentration 
metal ions can modify subcellular organelles and physi-
ological functions through various mechanisms like 
affect gene/protein expression, damage cell membrane, 
disrupt electron transport in mitochondrial intima, and 
then produce endogenous reactive oxygen species, and 
so on [88, 90–92]. Additionally, metals and their oxides 
can stimulate major signaling pathways nuclear factor 
(NF)-κB, and mitogen-activated protein kinase (MAPK), 
and then generate proinflammatory effects through inter-
actions with the immune system cells [93]. The toxic 
effect of metal particles may be closely related to the 
shape, size, dose, and some other physical properties of 
the particles [94, 95]. For example, larger metal parti-
cles are not easily metabolized, while smaller particles 
are easily degraded but also enhance their cytotoxicity. 
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The stimuli-responsive properties of metal materials can 
effectively realize the drug-controlled release effect, pho-
tothermal effect, photodynamic effect, magnetodynamic 
effect, magnetothermal effect, acoustic dynamic effect 
etc. [31, 32, 60, 65]. In orthopedic implants can achieve 
good antibacterial (overcome bacterial resistance to anti-
biotics), promote vascular neural network regeneration, 
promote bone regeneration and other capabilities [71, 96, 
97]. Based on the properties, exposure pathways, uptake 
and metabolism, and toxic effects of the metal materials, 
the strategies to reduce or eliminate the adverse health 
effects of metals/NPs should be taken.

Polymer materials
Liposome
Liposome is a kind of molecular ordered multilayer vesi-
cle structure assembly formed spontaneously in water 
by association of phospholipid and water. Each layer is a 
lipid bilayer composed of phospholipid and cholesterol 
which is similar to the biological characteristics of cell 
membrane [98]. It can used as drugs (water-soluble and 
fat-soluble drugs) delivery which can prolong the half-life 
of drugs [99]. In stimuli-response nanotechnology field, 
it can be modified by different molecules on the surface 
to respond to pH, enzyme, NIR, USW and some other 
stimuli. After receiving these stimuli, the liposomes dis-
integrate and release the encapsulated drugs, so that/
achieve well-controlled drug release. However, there are 
still some limitations during the use of liposomes, short 
time circulation in  vivo, weak active targeting and poor 
stability [100].

Micelle
Micelles consist of a core of hydrophobic groups and 
an outer layer of hydrophilic groups. The hydrophobic 
parts of many surfactant molecules attract each other 
and associate together to form micelles and form vari-
ous shapes, such as spherical, layered, rod. Micelles have 
high drug loading efficiency, wide drug loading range, 
good stability, long retention in vivo, and can be modified 
to respond to environmental changes sufficiently [101]. 
In the stimuli-response nanotechnology of Ti implant 
surface, micelles can be applied to respond pH [37] and 
enzyme [102] response ability to achieve ideal drug tar-
geting and specific release property. Besides, micelles are 
also designed to respond to other types of stimuli, such 
as optical [103], temperature [104], enzyme, USW, oxida-
tion, etc. [105].

Chitosan
Chitosan is an aminopolysaccharide from the exoskel-
eton of crustaceans and can be commercialized by dea-
cetylation. The degree of deacetylation (D.D) determines 

the content of amine group  (NH2) in the macromolecular 
chain. Moreover, the increase of D.D leads to the charged 
groups increase of CHI in dilute acid solution and the 
charge density increase of polyelectrolyte due to the 
decentralization of amine matrix. Its chemical structure 
is a cationic polymer alkaline polysaccharide polymer 
with unique physical and chemical properties and bio-
logical activation function. It is a carrier material that is 
biodegradable, safe, biocompatible, easy to modify and 
obtain, cheap, hydrophilic, pH reactivity etc. [106]. Sur-
face modification can make it have good stimuli-response 
performance, such as magnetic [107] and electrical [34]. 
These properties make CHI an ideal carrier for adding 
antibiotics on titanium surface and have great research 
prospects for stimulus-responsive nanotechnology. CHI 
can achieve well controlled drug release by modifying its 
surface. CHI has a stable structure, and it is difficult to 
accept stimulative signal to release of internal drugs with-
out modification.

Hydrogel
Hydrogel is a polymer network system formed by sta-
ble chemical or physical crosslinking of hydrophilic 
polymers. Physical crosslinked hydrogels are hydrogels 
formed by electrostatic force, hydrogen bond, hydropho-
bic interaction and other intermolecular force crosslink-
ing. This kind of hydrogel has low mechanical strength 
and will change into sol when the temperature rises. 
Chemical crosslinked hydrogels refer to gels that cross-
link polymers into networks via covalent bonds. Among 
them, the covalent bond is generated by the “click” reac-
tion, such as mercaptan–ene/friend central addition, 
mercaptan–epoxy reaction, azide-acetylene cycloaddi-
tion, Schiff base reaction, epoxy-amine reaction, mer-
captan–disulfide exchange reaction. Many advantages 
like swelling, flexibility, property of easy to be modified, 
good biocompatibility entail the hydrogel widely used 
in carrier materials in drug delivery system. Hydro-
gel can load a variety of bioactive compounds, such as 
hydrophilic and hydrophobic drugs, proteins, peptides, 
fluorescent molecules, etc. [108]. Hydrogels stabilize 
in vivo without pretreatment. Drug release rates can be 
appropriately controlled by changing the composition 
of hydrogels [109]. After modification they can response 
different stimuli like temperature [110], light, electric, 
pH, enzyme, USW, etc. in tumor and orthopedic diseases 
fields [111]. Under the action of external stimulation, the 
internal molecules of the hydrogel open crosslinking and 
the hydrogel gradually degrades to achieve the drug slow-
release effect, which can be designed to match implant 
bone integration with long healing time.
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Other materials
P
Phosphorus is an important element in bone tissue and 
accounts for 1% of body weight, high PTT capacity. The 
degradation products are phosphate and phosphate 
esters with good biocompatibility [112]. Red phospho-
rus is used to modify the surface coating of titanium 
implants, which produces PTT effect under NIR and 
can eradicate the biofilm on the implant surface. Tan 
et al. [29] prepared a P coating on Ti which responses the 
NIR to produce PTT effect, and then achieve good anti-
bacterial and osteogenic effect finally. However, as light-
responsive material, the problems of burning normal 
tissues and structural instability should be considered 
carefully in the clinical application [113].

GO
Graphene oxide (GO) has attracted much attention due 
to its large percentage of surface area, good water solu-
bility and biocompatibility. Due to the conjugated sp [2] 
structure, GO is prone to fluorescence resonance energy 
transfer effect with fluorescent molecules, resulting in 
fluorescence quenching [114, 115]. In addition, GO can 
interact with osteoblasts and stem cells to promote vas-
cularized bone fusion. Some studies utilized GO as the 
carrier of AgNPs for GO is favorable for the adsorption 
and distribution of AgNPs [116]. Xie et  al. reported a 
GO/Ag/collagen coating on Ti which responses 660 nm 
visible light to produce ROS to achieve antibacterial 
effect [31]. However, the preparation procedure of GO is 
complex, requiring expensive equipment and harsh prep-
aration conditions [117].

Composition of nanomaterials
Different types of nanomaterials can be composed to 
exploit their advantages and cover defects to achieve 
multifunctional effects. Stimuli-responsive nanostruc-
tures on Ti implant can be classified as composite nano-
particles and composite nano-coatings.

Composite nanoparticles
Most stimuli-responsive nanoparticles are core–shell 
structures with surface modifications of different mol-
ecules to improve biological properties. The commonly 
used shell materials for titanium implants include CHI, 
hydrogel, micelle, liposome, and mesoporous silicon. Dif-
ferent drugs or stimuli-responsive materials are loaded as 
cores inside. Stimuli-responsive points can be designed 
in any part of core–shell structures, including the shells, 
the cores, the bonds, and even the molecules (Fig. 1). The 
core which could always accept the stimuli like magnetic 
field and RF which achieve the purpose of targeting and 
active aim [60, 118]. After accepting the USW, the shell 

break to release the drug inside [98]. PH-responsive 
chemical bond break or convert to release the drugs 
inside in infected acidic tissue [41]. The enzyme-respon-
sive molecules could combine with enzyme from bacteria 
or osteoclast which can be used for targeted therapy and 
controlled drug release [47]. Hydrogels can be expanded 
and released at high temperatures, or they can be 
designed to concentrate at high temperatures and split at 
room temperature [110]. Micelles can release internally 
loaded drugs in response to pH [37]. Mesoporous silicon 
surfaces can be modified with disulfide bonds in response 
to acidic pH to release of internal loaded drugs. Nano-
particles with iron oxide as the core can respond to the 
external magnetic field to achieve targeted drug delivery 
[119]. Chi-Ag-MoS2 nanoparticles can perform targeted 
and rapid removal of biofilms under light stimulation and 
have good biocompatibility [81]. Stimuli-responsive drug 
delivery system is widely used in the field of biomedicine, 
and its application in titanium implants is still promising.

Composite coatings
The most widely used method for surface modification of 
Ti implants at present, refers to coating with non-single 
component on Ti by layer-by-layer (LBL) self-assembly 
[43], micro-arc oxidation (MAO) [57], element doping 
[26], preparation of hydrophobic surfaces [20], succes-
sive ion layer adsorption and reaction (SILAR) [120], 
magnesiothermic reduction process [35] and other 
methods. Tan et al. replaced O atoms in  TiO2 with S to 
prepare S-doped Ti–S–TiO2-x coating with ultrasonic 
response and catalytic PTT properties [48]. Yu et al. pre-
pared TNT-DFO-HA-Gen coating with HAase enzyme 
response ability by LBL, showing extremely high enzyme 
sensitivity and specificity to kill bacteria and remove bio-
films [44]. (Fig. 2).

Types of stimuli‑responsive strategies
Magnetic responsive strategy
Magnetic-responsive nanotechnology refers to the mag-
netic field influences directly or indirectly on the tissues 
around the magnetic materials and affect the biologi-
cal behavior. In addition, magnetic-responsive materials 
can response to the external magnetic field to achieve 
targeting effects and magnetocaloric effects. Magnetic 
response nanotechnology has been widely used in the 
research of anti-infection and osteogenesis of implants 
due to its high magnetic response performance and bio-
logical properties of magnetic field [53, 119, 121].

Magnetic field can promote bone-implant integration, 
accelerate healing of bone fractures and increase cal-
cium content [122] by providing the mechanical stimuli 
which could be sensed and responded by the cells [123]. 
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Bariana et al. [66] showed that the significant cell behav-
iors changes like alteration of cell membrane and extra-
cellular matrix proteins under the externally applied 
magnetic fields including the static magnetic fields (SMF) 
and pulsed magnetic fields (PMF) [63].

SMF accelerate osteogenic differentiation of rat oste-
oblasts [124], human osteoblast-like MG63 cells [125], 
adipose-derived mesenchymal stromal cells (ASCs), 
adipose-derived stem cells (ADSCs) [126], human bone 
marrow-derived mesenchymal stem cells (BMSCs) 
[127], mouse embryo osteoblast precursor  cells 
(MC3T3-E1) [128], pre-osteoblast cells [129], and 
stromal vascular fraction cells (SVFs). These cells are 
potent primary cell sources to produce highly vascular-
ized bone graft substitutes [63]. In addition, the adhe-
sion and differentiation of osteoblastic cells and the 
bone formation could be increased by adding magnetic 
nanoparticles (MNPs) to biopolymer scaffolds [130]. 
PMF also show a positive effect on the differentiation 
of cartilage cell [131], Chondrocytes, osteoblasts [132], 
BMSCs and ADSCs [132, 133] etc. Compared with the 
low frequency PMF, most studies proved that the high 

frequency PMF inhibit cell proliferation and destroy the 
related genes [134]. Different from SMF, PMF regulate 
cell cycle and secretion of cytokines affect the signal 
transmission on the cell membrane [135]. The magnetic 
field can also improve the synthesis of bone morpho-
genetic protein-2 (BMP-2) which is one of the main 
endogenous growth factors to induce osteogenic differ-
entiation and promote calcification [136]. Additionally, 
studies show that the magnetism can be utilized to cells 
according to magnetic scaffolding materials without 
applying the external magnetic [137, 138]. Yang et  al. 
presents that the paramagnetic implants can enhance 
the osteogenic response of pre-osteoblast cells [17]. The 
magnetic nanoparticles acting as magnetic actuation 
can facilitate osteoblast differentiation and promote 
mineral deposits of stem cells.

The external magnetic field can penetrate human 
tissue and control the magnetic nanomaterials. This 
unique response capability is the basis for the applica-
tion of magnetic-responsive nanomaterials in the bio-
medical field, which allows them to reach the target site 
for targeted delivery and control drug release under the 

Fig. 1 Nanoparticle preparation and drug release. a The process of nanoparticle preparation: (1) the core of the NPs could be drugs or other metal 
materials like Fe, Au, Ag, etc. (2) the shell of the NPs could be hydrogel, chitosan, micelle, liposome, CHI, etc. (3) the chemical bond on the shell could 
be disulfide, hydrazone bond or other bonds which connect the shell and molecules outsides. (4) the molecule which modify the NPs can improve 
the performance typically. b Stimuli could be designed on any part of NPs: (1) after accepting the USW or light, the shell break to release the drug 
inside. (2) After receiving the signal of pH change, the bond break or convert to release the drugs inside. (3) The molecules combining with enzyme 
from bacteria or osteoclast release drugs inside. c The NPs could accept the stimuli like MF, RF and light which achieve the purpose of targeting, 
active, or NPs releasing aim
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magnetic field [14]. The targeting modes of magnetic-
responsive nanomaterials mainly shows in two ways. 
Firstly, in the presence of an external magnetic field, 
the drug-loaded nanoparticles are delivery to the target 
position. Secondly, magnetic drug-carrying nanopar-
ticles were preloaded on the implant and their release 
was controlled by magnetic field.

In recent years, magnetic targeting on Ti has been 
studied as follows. Li et  al. [139] aiming at the weak 
integration of titanium and skin, prepared  Fe3O4 nano-
particles superparamagnetic  TiO2 coating by micro-
arc oxidation method which can effectively prevent 
soft tissue decay and inflammatory reaction. Janßen 
et  al. [14, 15] synthesized super-paramagnetic CHI 
core–shell nanoparticles and modified them with fluo-
rine carriers (fluor thiocyanate/FITC or rhodamine B 
isothiocyanate/RITC) and PEG. Combined with mag-
netic metal plates in  vivo and magnetic fields in  vitro, 
showed super-paramagnetic high porosity and good 

biocompatibility, which is an ideal magnetic drug tar-
geting model. Yang et al. [17] aimed at the problems of 
AgNPs loss and cytotoxicity on the surface of dental 
implants, designed magnetic nanosystem. Ag–Fe3O4 
nanoparticles were coated in TNT and permanent 
magnet was loaded in implant to adsorb nanoparticles, 
which showed good antibacterial activity.

Some studies also applied the magnetic nanoparticles 
response principle to TNT drug delivery system, but 
only used in  vitro. Aw et  al. encapsulated  Fe3O4 nano-
particles modified by dopamine at the bottom of TNT, 
with polymer micelles as the carrier above to wrap Ind 
[13]. In this study, three amphiphilic polymer micelles 
with different properties and sizes, d-α-tocopherol suc-
cinate 1000 (TPGS), Pluronic F127 and PEO-PPO-PEO, 
were selected to demonstrate good magnetic drive drug 
release system. Shrestha et al. embedded magnetic mate-
rials into TNT which can not only decompose organic 
matter by magnetically guided thermal catalyst, but also 

Fig. 2 Stimuli-responsive nanotechnologies on TNT. a Preparation of TNT by EA, which could only accept the light which wavelength ranges 
in the ultraviolet spectrum [26]. According to mg-heat treatment,  TiO2 nanotubes were converted into Ti nanotubes to response electric stimulus 
and release the drug inside [35]; b loading coatings on nanotubes and drugs or nanoparticles inside is the most common application of TNT. 
There are different coatings to seal the nozzles, like which could response pH [39] and enzyme [43], after receiving the stimuli, the coatings open 
and contents flow out (1); and loading nanoparticles above the drugs, and release or break after receive the stimuli, for example liposome-rhBMP-2 
nanocomplexes which respond USW, and then the liposome break to release the rhBMP-2 (2) [19]; the strategy that nanoparticles loaded 
on the bottom of TNT with drugs loaded above is another drug delivery way, in which the active nanoparticles could push the drugs out of the TNT 
(3) [60]; c elements doping such as S, N, metal, etc. could improve the photoresponsive ability of TNT
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release active drug model by using  TiO2 photocatalytic 
effect (Table 1).

Although magnetic-responsive materials have been 
widely studied in Ti implant, there are still some unavoid-
able problems. Firstly, magnetic nanoparticles have small 
size, poor stability, and low magnetism, so that agglom-
eration always occur in the synthesis and use process, 
which affect the function. Secondly, due to the complex 
physiological environment in  vivo, the cumulative safe 
dose threshold and side effects in  vivo are still unclear 
[140]. Moreover, specific duration and strength of mag-
netic field stimulation can inhibit.cytokine secretion, 
proliferation and differentiation [53]. Compared with 
pH, enzyme response and other stimulation responses, 
external magnetic field instruments may be needed. Fur-
thermore, many experiments and clinical practices have 
shown that the influence of magnetic field on the body is 
related to the intensity of magnetic field, type of magnetic 
field, direction of magnetic field and time of action [53]. 
But there are lots of controversies about the most suita-
ble physicochemical properties of the magnetic response 
materials for human body, such as surface charge.

Photoresponsive strategy
Photoresponsive nanotechnology is the process of apply-
ing specific wavelengths of light (such as visible light, 
ultraviolet light, infrared light) to illuminate nanomateri-
als TNT [32], P [29],  MoS2 [81], etc. respond to the light 

to produce effects, so as to achieve antibacterial thera-
peutic or promote osteogenesis. Photoresponsive nano-
technology has the advantages of small tissue invasion, 
deep tissue penetration, immediate treatment effect, 
and improvement of bacterial drug resistance [23–41]. 
The effects of photoresponsive nanotechnology mainly 
involves PTT and PDT effects [29].

PTT effect refers to PTT agent kills bacteria and eradi-
cates biofilms by thermally induced therapy under light, 
which is the most common effect in photoresponse 
research (Fig.  3) [141]. PDT effect refers to  O2 is pro-
duced in the process of PDT, which improves the thermal 
sensitivity of biofilm by increasing the permeability of 
bacterial cell membrane and cell wall [142]. In addition, 
PTT and PDT effects can be synergistic. Photoresponsive 
materials exist at nanometer scale, and have enhanced 
surface area and interaction, which significantly enhance 
the PTT conversion capacity and  O2 production, thus 
improving antibacterial efficacy [24].

Researchers prepared NIR responsive coatings, the 
most widely used light-responsive type to promote osteo-
genesis and prevent infection. All these coatings [23, 26, 
30, 31, 33–37, 39, 41] (Table 2) have the NIR-responsive 
ability to produce the PTT effect. For example, Yang et al. 
reported Au nanorods possess a strong long-wavelength 
longitudinal plasmon resonance under the range of 
light from the visible to NIR region. LSPR effects entail 
Au nanorods have a high light-to-heat conversion abil-
ity. Immobilizing Au nanorods as heating source on Ti 

Fig. 3 Schematic illustration of synergistic photocatalytic antibacterial and osseointegration via coupling CuS@BSA NPs and rGO without biologics. 
Copyright 2017, Biomaterials



Page 11 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277  

Ta
bl

e 
2 

Ph
ot

or
es

po
ns

iv
e 

na
no

te
ch

no
lo

gy
 d

es
ig

ns

Re
sp

on
se

 s
ys

te
m

Re
sp

on
se

 p
oi

nt
Li

gh
t

M
ec

ha
ni

sm
Co

nd
iti

on
Pr

ep
ar

at
io

ns
 p

ro
ce

ss
Re

su
lts

Ba
ct

er
ia

l s
tr

ai
ns

Ti
O

2/
M

oS
e 2/

C
H

I (
C

ha
i2

02
1 

[2
1]

)
Ti

O
2

N
IR

, 8
08

 n
m

, 0
.6

 W
/c

m
2

PD
T,

 P
TT

15
 m

in
1.

 P
re

pa
ra

tio
n 

of
  T

iO
2 

by
 M

A
O

2.
 P

re
pa

ra
tio

n 
of

  T
iO

2/
M

oS
e 2 c

oa
tin

g
3.

 P
re

pa
ra

tio
n 

of
  T

iO
2/

M
oS

e 2/
C

H
I

Th
e 

co
at

in
g 

sh
ow

s 
an

ti-
ba

ct
er

ia
l a

nd
 o

st
eo

ge
ni

c 
ca

pa
bi

lit
y

S.
 m

ut
an

s

Ti
/P

ht
ha

lo
cy

an
in

es
/li

po
-

so
m

e,
 n

an
oe

m
ul

si
on

 
(F

ar
ia

20
14

 [2
2]

)

Ph
th

al
oc

ya
ni

ne
s

In
fra

re
d 

lig
ht

: 8
30

 n
m

, 1
.5

 J,
 

60
 m

W
Vi

si
bl

e 
lig

ht
: 6

33
 n

m
, 3

 J,
 

58
 m

W

PD
T

In
fra

re
d 

lig
ht

 2
 m

in
Vi

si
bl

e 
lig

ht
 3

 m
in

 4
5 

s
1.

 L
ip

os
om

e 
pr

ep
ar

at
io

n
2.

 P
re

pa
ra

tio
n 

of
 O

il 
in

 W
at

er
 n

an
oe

m
ul

si
on

 
fo

r c
on

tr
ol

le
d 

re
le

as
e 

of
 c

hl
or

in
e 

an
d 

al
um

in
iu

m
 

ph
th

al
oc

ya
ni

ne
3.

 A
ni

m
al

 s
ur

ge
ry

: (
a)

 
cr

ea
te

 d
ef

ec
ts

. (
b)

 In
st

al
l 

th
e 

im
pl

an
t. 

(c
) L

ip
os

om
e/

bo
ne

 g
ra

ft
/B

C
/n

an
oe

ul
-

si
on

 fi
ll

4.
 T

re
at

m
en

t w
ith

 v
is

ib
le

 
an

d 
in

fra
re

d 
lig

ht

Th
e 

us
e 

of
 p

ho
to

se
ns

iti
vi

ty
 

ph
th

al
oc

ya
ni

ne
s 

ac
tiv

at
ed

 
by

 L
ED

 d
em

on
st

ra
te

d 
a 

te
nd

en
cy

 to
 s

tim
ul

at
e 

bo
ne

 fo
rm

at
io

n

–

Bi
2S

3@
A

g 3P
O

4/
Ti

 
(H

on
g2

01
9 

[2
4]

)
Bi

2S
3

N
IR

, 8
08

 n
m

PT
T,

 P
D

T
15

 m
in

1.
 P

re
pa

ra
tio

n 
of

 4
-M

BA
-

tr
ea

te
d 

Ti
 p

la
te

 b
y 

al
ka

li 
he

at
2.

 P
re

pa
ra

tio
n 

of
  B

i 2S
3/

Ti
3.

 P
re

pa
ra

tio
n 

of
  B

i 2S
3@

A
g 3P

O
4/

Ti

PT
T 

an
d 

PD
T 

eff
ec

ts
 b

re
ak

 
th

e 
bi

ofi
lm

S.
 a

ur
eu

s, 
E.

 c
ol

i

A
u/

Pt
/T

iO
2 (

M
oo

n2
02

1 
[2

5]
)

TN
T

Vi
si

bl
e 

lig
ht

: 4
70

 n
m

, 
66

0 
nm

, 5
.5

 m
W

/c
m

2
15

 m
in

1.
 P

re
pa

ra
tio

n 
of

  T
iO

2 b
y 

EA
2.

 P
re

pa
ra

tio
n 

by
 A

u/
Pt

-
Ti

O
2 n

an
ot

ub
es

 a
nd

 P
t/

A
u 

 Ti
O

2 n
an

ot
ub

es

A
u/

Pt
 c

an
 e

xt
en

d 
th

e 
lim

-
ite

d 
U

V 
an

tib
ac

te
ria

l e
ffe

ct
 

an
d 

im
pr

ov
e 

th
e 

os
te

o-
ge

ni
c 

pe
rf

oo
rm

an
ce

S.
 a

ur
eu

s

N
-d

op
ed

 T
N

T 
(O

h2
01

3 
[2

6]
)

N
-T

N
T

Vi
si

bl
e 

lig
ht

: 4
70

 n
m

, 
10

00
 m

W
/c

m
2

1.
 F

ab
ro

ca
tio

n 
of

 T
N

T 
th

ro
ug

h 
EA

2.
 F

ab
ro

ca
tio

n 
of

 N
-d

op
ed

 
TN

T

PD
A

-N
P-

Ti
 (R

en
20

20
 [2

8]
)

PD
A

N
IR

/8
08

 n
m

, 1
 W

/c
m

2
PT

T
10

 m
in

1.
 P

re
pa

ra
tio

n 
of

 P
D

A
-N

Ps
2.

 P
D

A
-N

Ps
 lo

ad
ed

 o
n 

Ti
Th

e 
ph

ot
ot

he
rm

al
 P

D
A

-
N

Ps
 c

oa
tin

g 
sh

ow
s 

ki
lli

ng
 

of
 b

ac
te

ria
 a

nd
 c

ha
lle

ng
-

in
g 

th
e 

pr
ot

ec
tiv

e 
tis

su
e 

de
pe

nd
s 

on
 th

e 
im

m
er

-
si

on
 a

nd
 a

ct
in

g 
tim

e

S.
 a

ur
eu

s



Page 12 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Re
sp

on
se

 s
ys

te
m

Re
sp

on
se

 p
oi

nt
Li

gh
t

M
ec

ha
ni

sm
Co

nd
iti

on
Pr

ep
ar

at
io

ns
 p

ro
ce

ss
Re

su
lts

Ba
ct

er
ia

l s
tr

ai
ns

RP
-IR

78
0-

RG
D

C
 (T

an
20

18
 

[2
9]

)
RP

, I
R7

80
N

IR
/8

08
 n

m
PT

T/
PD

T
50

 °C
/1

0 
m

in
RP

 fi
lm

 w
as

 p
re

pa
re

d 
on

 T
i 

su
rf

ac
e 

by
 C

VD
PD

A
 m

od
ifi

ed
 R

P 
co

at
in

g
RG

D
G

 a
nd

 P
D

A
 a

re
 

lo
ad

ed
 o

n 
RP

 m
em

br
an

e 
by

 M
ic

ha
el

 a
dd

iti
on

 re
ac

-
tio

n

PP
T/

PD
T 

eff
ec

ts
 re

m
ov

e 
th

e 
bi

ofi
lm

RG
D

G
 im

pr
ov

e 
ce

ll 
ad

he
si

on
, p

ro
lif

er
at

io
n 

an
d 

os
te

og
en

ic
 d

iff
er

en
-

tia
tio

n

S.
 a

ur
eu

s

A
g/

C
H

I@
M

nO
2–

Ti
 

(W
an

g2
01

9 
[3

0]
)

M
nO

2
N

IR
/8

08
 n

m
PT

T
20

 m
in

1.
  M

nO
2-

na
no

sh
ee

ts
 w

er
e 

hy
dr

ot
he

rm
al

ly
 p

re
pa

re
d 

on
 T

i p
la

te
s

2.
 P

re
pa

ra
tio

n 
of

 C
H

I/A
g 

co
m

po
si

te
s 

w
ith

 d
iff

er
en

t 
co

nt
en

ts
 o

f A
gN

Ps
3.

 A
g/

C
H

I@
M

nO
2–

Ti
 

ob
ta

in
in

g 
th

ro
ug

h 
el

ec
tr

o-
st

at
ic

 a
ds

or
pt

io
n

Th
e 

co
at

in
g 

ex
hi

bi
t 

po
te

nt
ia

l i
n 

de
ep

 s
ite

 
di

si
nf

ec
tio

n 
of

 T
i i

m
pl

an
t 

th
ro

ug
h 

th
e 

sy
ne

rg
y 

of
 p

re
-r

el
ea

se
s 

A
g 

io
ns

 
an

d 
ph

ot
ot

he
rm

al
 e

ffe
ct

 
w

ith
in

 a
 s

ho
rt

 ti
m

e

S.
 a

ur
eu

s, 
E.

 c
ol

i

G
O

-A
g-

co
lla

ge
n 

(X
ie

20
17

 
[3

1]
)

G
O

, A
g

Vi
si

bl
e 

lig
ht

/6
60

 n
m

PD
T

20
 m

in
1.

 P
re

pa
ra

tio
n 

of
 G

O
/

A
gN

Ps
 c

om
po

si
te

s
2.

 P
re

pa
ra

tio
n 

of
 G

O
/

A
gN

Ps
/c

ol
la

ge
n 

hy
br

id
 

co
at

in
g 

on
 T

i

RO
S 

pr
od

uc
tio

n 
an

d 
 A

g+
 

re
le

as
e 

sh
ow

s 
an

tib
ac

te
ria

l 
eff

ec
t

S.
 a

ur
eu

s, 
E.

 c
ol

i

A
u-

SP
R/

Ti
O

2 (
Xu

20
15

 [3
2]

)
A

u-
SP

R
Xe

no
n 

lig
ht

 λ
 >

 4
20

 n
m

, 
50

  m
W

cm
−

2
Th

e 
hy

dr
op

ho
-

bi
c 

an
d 

al
ky

l 
ch

ai
ns

10
 m

in
1.

 T
N

T 
w

as
 p

re
pa

re
d 

th
ro

ug
h 

EA
A

uN
Ps

 lo
ad

ed
 in

 T
N

T
O

D
PA

 w
as

 a
tt

ac
he

d 
to

 th
e 

tu
be

 w
al

ls
A

M
P 

lo
ad

ed
 in

 b
ot

to
m

 
of

 T
N

T

Vi
si

bl
e 

lig
ht

 a
ct

s 
as

 a
 to

uc
h 

sw
itc

h 
w

hi
ch

 re
le

as
e 

dr
ug

 
in

 T
N

T 
to

 k
ill

 b
ac

te
ria

E.
 c

ol
i

β-
Fe

O
O

H
/T

iO
2 c

oa
tin

gs
 

(X
ue

20
21

 [6
6]

)
Fe

O
O

H
/F

e 2O
3

N
IR

/8
08

 n
m

, 0
.5

  W
cm

−
2

PT
T

7 
m

in
β-

Fe
O

O
H

/T
iO

2 c
oa

tin
gs

 
pr

ep
ar

at
io

n 
by

 m
ic

ro
-a

rc
 

ox
id

at
io

n

PP
T 

eff
ec

ts
 re

m
ov

e 
th

e 
bi

ofi
lm

S.
 a

ur
eu

s

A
u 

na
no

ro
ds

 c
oa

tin
g 

(Y
an

g2
01

9 
[1

44
])

A
u

N
IR

/8
08

 n
m

, 0
.5

 W
/c

m
2

PT
T

20
 m

in
Pr

ep
ar

at
io

n 
of

 A
u 

na
no

ro
ds

 c
oa

tin
g 

on
 T

i 
ac

co
rd

in
g 

to
 e

le
ct

ro
st

at
ic

 
su

rf
ac

e 
se

lf-
as

se
m

bl
y 

te
ch

ni
qu

e

Th
e 

co
at

in
g 

sh
ow

s 
re

pe
at

ed
 p

ho
to

th
er

m
al

 
an

tib
ac

te
ria

l a
bi

lit
y

E.
 c

ol
i, 

P. 
ae

ru
gi

no
sa

, 
S.

 a
ur

eu
s, 

S.
 e

pi
de

r-
m

id
is

M
oS

2/
PD

A
-R

G
D

 (Y
ua

n2
01

9 
[8

0]
)

M
oS

2
N

IR
/8

08
 n

m
, 0

.5
  W

cm
−

2
PT

T
8 

m
in

M
oS

2 +
 P

D
A

 +
 R

G
D

 c
oa

tin
g 

on
 T

i
1.

 Im
pr

ov
ed

 th
e 

os
te

o-
ge

ni
c 

ab
ili

ty
 o

f B
M

SC
s

2.
 E

ffe
ct

iv
e 

an
tib

ac
te

ria
l 

ab
ili

ty
 u

nd
er

 N
IR

 ra
di

at
io

n

S.
 a

ur
eu

s, 
E.

 c
ol

i



Page 13 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277  

Ta
bl

e 
2 

(c
on

tin
ue

d)

Re
sp

on
se

 s
ys

te
m

Re
sp

on
se

 p
oi

nt
Li

gh
t

M
ec

ha
ni

sm
Co

nd
iti

on
Pr

ep
ar

at
io

ns
 p

ro
ce

ss
Re

su
lts

Ba
ct

er
ia

l s
tr

ai
ns

Ti
-M

-I-
RG

D
 (Y

ua
n2

01
9 

[1
93

])
M

PD
A

 N
Ps

N
IR

/8
08

 n
m

, 0
.5

–
1.

0 
 W

cm
−

2
PD

T/
PT

T
50

 °C
/0

–1
0 

m
in

Pr
ep

ar
at

io
n 

of
 M

PD
A

 N
Ps

 
vi

a 
a 

on
e-

po
ts

yn
th

es
is

 
m

et
ho

d
O

bt
ai

ng
 a

m
in

o-
m

od
ifi

ed
 

tit
an

iu
m

 n
am

ed
 a

s T
i–

N
H

2
M

PD
A

 lo
ad

ed
 o

n 
Ti

–N
H

2 
na

m
ed

 a
s T

i-M
Co

va
le

nt
ly

 fi
xe

d 
RG

D
 

on
 T

i-M
 n

am
ed

 a
s T

i-M
/

RG
D

IC
G

 lo
ad

ed
 o

n 
Ti

-M
/R

G
D

 
by

 π
–π

 s
ta

ki
ng

 re
ac

tio
n 

na
m

ed
 a

s T
i-M

-I-
RG

D

PT
T/

PD
T 

eff
ec

ts
 k

ill
 

th
e 

ba
ct

er
ia

S.
 a

ur
eu

s

FY
H

/C
ur

/H
A

d/
BM

P-
2 

N
Rs

 
(Z

ha
ng

20
21

 [6
2]

)
N

Rs
N

IR
/1

06
0 

nm
PT

T
45
℃

/1
5 

m
in

Pr
ep

ar
at

io
n 

of
  T

iO
2 N

Rs
Pr

ep
ar

at
io

n 
of

  T
iO

2: 
FY

H
 

N
Rs

 b
y 

lo
ad

 H
o 

an
d 

Yb
Pr

ep
ar

at
io

n 
of

  T
iO

2: 
FY

H
/

Cu
r/

BM
P-

2 
N

Rs
 b

y 
fu

nc
-

tio
na

liz
e 

 Ti
O

2: 
FY

H
 N

Rs
 

w
ith

 C
ur

, H
A

, B
M

P-
2

El
im

in
at

e 
bi

ofi
lm

s 
on

 T
i

Cu
r m

iti
ga

te
s 

th
e 

im
m

un
e 

re
sp

on
se

. B
M

P-
2 

im
pr

ov
es

 
os

te
og

en
ic

 d
iff

er
en

tia
tio

n,
 

ac
ce

le
ra

tin
g 

ne
w

 b
on

e 
fo

rm
at

io
n

S.
 a

ur
eu

s

Cu
S-

N
P-

rG
O

/T
N

T 
co

at
in

gs
 

(Z
ha

ng
20

21
 [1

76
])

Cu
S,

 rG
O

N
IR

/8
08

 n
m

, 2
  W

cm
−

2
PT

T
10

 m
in

1.
 T

N
T 

pr
ep

ar
at

io
n 

by
 e

le
ct

ro
ch

em
ic

al
 a

no
di

c 
ox

id
at

io
n 

on
 p

ur
e 

Ti
2.

 C
uS

@
BS

A
 c

oa
tin

gs
 

pr
ep

ar
at

io
n 

on
 T

N
T 

by
 L

BL
3.

 C
uS

@
BS

A
/r

G
O

-P
D

A
 

co
at

in
gs

 p
re

pa
ra

tio
n

PP
T 

eff
ec

ts
 re

m
ov

e 
th

e 
bi

ofl
im

S.
 a

ur
eu

s, 
E.

 c
ol

i

C
S/

A
g/

M
oS

2 T
i (

Zh
u2

02
0 

[8
1]

)
A

g/
M

oS
2

Vi
si

bl
e 

lig
ht

: 6
60

 n
m

, 
0.

89
8 

W
/c

m
2

PD
T

20
 m

in
1.

  M
oS

2 w
er

e 
hy

dr
ot

he
r-

m
al

ly
 p

re
pa

re
d 

on
 T

i p
la

te
s

2.
 A

g 
lo

ad
ed

 o
n 

 M
oS

2–
Ti

3.
 C

S 
lo

ad
ed

 o
n 

A
g/

M
oS

2–
Ti

1.
  A

g+
 re

du
ce

d 
th

e 
re

co
m

-
bi

na
tio

n 
ra

tio
 o

f e
le

ct
ro

n–
ho

le
 p

ai
rs

, w
hi

ch
 e

nh
an

ce
 

th
e 

ph
ot

oc
at

al
yt

ic
 a

ct
iv

ity
 

of
 th

e 
sy

st
em

2.
 C

S 
re

du
ce

d 
th

e 
cy

to
to

x-
ic

ity
 to

 c
el

ls
 a

nd
 im

pr
ov

e 
th

e 
an

tib
ac

te
ria

l a
bi

lit
y

S.
 a

ur
eu

s, 
E.

 c
ol

i

Ta
bl

e 
2 

is
 u

se
d 

to
 s

ho
w

 th
e 

ph
ot

or
es

po
ns

iv
e 

na
no

te
ch

no
lo

gy
 d

es
ig

ns
 w

hi
ch

 s
ho

ul
d 

be
 p

la
ce

d 
in

 2
.2

 p
ho

to
re

sp
on

si
ve

 s
tr

at
eg

y 
pa

rt



Page 14 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277 

surface shows a potential application in long-term anti-
bacterial system. Zhang et  al. [62] applied curcumin 
(Cur)/hyaluronic acid (HA)/BMP-2 to the internal TNT 
doping, which could remove the pathogenic biofilm 
under NIR irradiation, and Cur reduced the immune 
response. BMP-2 improves osteogenic differentiation, 
which accelerated new bone forming. This multifunc-
tional design shows antibacterial and osteogenic func-
tions. Mao et  al. [143] reported calcium titanate (CTO) 
fibrous red phosphorus (RP) on titanium implant sur-
face (Ti‐CTO/RP) and established the P–N heterojunc-
tion and internal electric field at the heterointerface to 
improve the efficiency of charge separation and transfer. 
NIR excited electron–hole pairs boosts the photocata-
lytic eradication of MRSA biofilms by ROS. Ti‐CTO/
RP can upregulate the expression of bone related genes 
including lkaline phosphatase (ALP), collagen type I 
(COL I), osteocalcin (OCN), osteopontin (OPN), osterix 
(OSX), and Runx-2 to enhance proliferation and differen-
tiation of BMSCs.

In addition, the visible light responsive strategy has 
also been studied in recent years. Faria et  al. [22] pre-
pared the liposome complex containing photosensitive 
phthalocyanines which could stimulate bone formation 
after activated by light-emitting diode. Besides, Gian-
nelli et al. [23] proved that diode laser (808 nm) can treat 
peri-implantitis effectively. Oh et  al. fabricated nitro-
gen-doped TNT which showed excellent photocatalytic 
activity by visible light irradiation [26]. Xie et al. coated 
photocatalytic AgNPs on rGO nanosheets, coated with 
proteins to reduce biological toxicity, and irradiated 
with visible light at 660  nm, showing strong antibacte-
rial properties [31]. Shuang et al. designed Au and Pt NPs 
coatings on the surface of  TiO2 nanopillar arrays through 
SILAR method which improved the photocatalytic per-
formance of  TiO2 in the visible wavelength region [120].

Photoresponsive agents widely used include noble 
metal nanostructures (such as silver nanospheres, gold 
nanorods, etc.) [144], red or black phosphorus [29], 
carbon-based nanocomposites (such as graphene oxide) 
[31], sulfide [81], TNT [32], etc. These materials have 
good photoresponsive effect, but the possibility of burn-
ing normal tissues is necessary to be considered in appli-
cation. The stability of phosphorus needs to be solved, 
the preparation process of carbon matrix composite 
coating is complex, the biocompatibility of metal sulfide 
needs to be paid attention to.

PH responsive strategy
PH response refers to the application of pH-sensitive 
materials which can respond the pH changes of the 
surrounding environment quickly and realize drug on-
demand release, which has important application value 

in biomedical field. PH varies in specific physiological 
or pathological states. The pH decreases from 7.4 to 5.5 
gradually of environment surrounding implant when bac-
terial infection exists [10]. This change has been applied 
to design a switch to control the release of antibacterial 
drugs on different pH-responsive materials. At present, 
pH-responsive materials include hydrazone bond [42], 
acetal connector (AL) [41], silk protein [145], etc.

Combining the pH-sensitive molecules with drug-load-
ing nanoparticles or TNT can realize the drugs release 
in pathological acidic environment, such as triclosan, 
ibuprofen, vancomycin, antibacterial metal ions, etc. Liu 
et  al. [146] prepared a mixed-shell-polymeric-micelles 
(MSPM) composed of a hydrophilic PEG shell and a pH-
responsive β-amino ester (PAE), loaded with a hydropho-
bic antibacterial agent triclosan. The MSPM coordination 
bond is sensitive to low pH environment. Wang et al. [40] 
combined 1,4-bis (imidazol-1-ylmethyl) benzene (1,4-
BIS (Imidazol-1-ylmethyl) benzene, BIX) and metal ions 
 (Zn2+ and  Ag+) to form CPs nanoparticles, which also 
have pH-responsive coordination bonds. Zhang et  al. 
[36] coated polylysine (PLL) and  Cu2+ on the surface of 
TNT loaded with alendronate drugs. Amino modified 
 Cu2+ can response pH varying and release drugs. Xiang 
et al. [39] encapsulated vancomycin (VAN) in TNT, and 
coated pH sensitive ZnO QD bound with folic acid (FA) 
on the surface. And drugs can be released at low pH in 
infectious environment. Dong et al. [41] developed a pH-
sensitive AgNPs delivery system by using low pH-sensi-
tive AL and TNTs. Drug release in acidic environments 
is about 2.5 times higher than in neutral environments. 
At the same time, the experiment was further discussed. 
In clinical conditions, the change of pH was not sudden, 
but gradually occurred with the increase of microbe. 
This experiment evaluated the release dynamics in the 
pH 7 range which showed that pH 4–5.5 was more rep-
resentative of the pH of the infectious environment in 
clinical conditions. Sang et al. [145] reported gentamicin-
silk protein (GS-Silk) coatings which can load drugs on 
Ti effectively and can achieve intelligent drug release in 
acidic environment.

Additionally, researchers designed materials sensi-
tive to alkaline environment to prevent sudden release 
of drugs in acidic environment [37]. Zhou et  al. [37] 
implanted polymer micelles into pH responsive LBL 
membranes, embedded negatively charged tobramycin 
(TOB) and positively charged CHI. The micelles loaded 
with TOB showed rapid release below pH 7.4 and slow 
release under weakly acidic conditions. It can effectively 
inhibit initial adhesion and destroy biofilm formation and 
show a long-term release pattern under acidic conditions 
to achieve long-term resistance to infection.
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In addition to anti-infection studies, some scholars 
also applied pH-responsive technology to promote bone 
regeneration around implants. Cheng et  al. [42] pre-
pared double-layer nanoparticles which is composed of 
polylactic acid inner layer and CHI outer layer with pH-
sensitive function. Osteoprotegerin (OPG) binds to the 
CHI skeleton by pH-sensitive hydrazone bond. With the 
decrease of pH in pathological environment, the cumu-
lative release of OPG increased significantly, which can 
inhibit the formation of osteoclasts, recruit BMSCs, and 
promote them differentiate to osteoblasts. At the same 
time, the inhibitory effect on osteoclasts increased with 
the decrease of pH (Table 3).

PH-sensitive materials can achieve high mobility 
and flexibility, but sudden release of drugs is difficult to 
achieve long-term effects under the condition of limited 
drug dosage.

Enzyme responsive strategy
At different stages of biofilm formation, pathogens 
secrete different enzymes that can degrade different 
natural or synthetic polymer molecules. Because of the 
specific biological binding properties, the incorpora-
tion of these polymers into nanocarriers can trigger 
the drug release reaction at the initial stage of infection 
and achieve the early control of infection [10]. In addi-
tion to anti-infection, some scholars have applied this 
enzyme response principle to the study of promoting 
osteogenesis.

At present, bacterial secretase mainly used include 
hyaluronidase (HAase) [44], Glutamyl endonuclease (V8 
enzyme) [46] and chymotrypsin. HAase degrades HA, 
V8 degrades polyglutamate (PG). Loading these degra-
dable molecules onto TNT nanotubes or nanoparticles 
is the most widely used design strategy. These effects are 
applied to design modified implant surfaces with differ-
ent enzyme-responsive DDS. Including preparation of 
PG-CHI-Ag-PDOP [46], CHI-Hac-Van [43], Ha-Gen-Chi 
[44] and Cl13K-MMP9-CP [45] coatings on TNT sur-
face, to achieve accurate specific response ability of anti-
bacterial and osteogenic ability. In addition to coatings, 
enzyme-responsive nanoparticles are also designed to 
achieve these functions. Bourgat et al. [47] proposed an 
enzyme-reacted nano-gel, which combined ciprofloxacin 
(CIP) with enzyme digestion peptide sequence PLL to 
form nanoparticles. Under the action of trypsin, the nan-
oparticles lysed, and CIP released to achieve antibacterial 
effect (Table 4).

Electric‑responsive
The application of electric-responsive technology on Ti 
implant surface mainly forces on electrically controlled 
drug eluting coatings. With the conductive polymers, 

such as polyaniline, polypyrrole (PPY), TNT eta. can 
realize drug-controlled release by electrical signals [33–
35, 147].

Shi et al. embedded Van in CHI gel. Under the biasing 
positive voltage to the CHI coated titanium, the CHI gel 
disintegrates and liberates Van [34]. The deposition time 
and the applied voltage can influence the amount of drug 
loading and the rate of drug-elution. TNT has been found 
to be weak in conductivity, limiting the combination of 
drug release function and electrical stimulation therapy. 
In the study of Gulati et al. [35],  TiO2 formed by anodic 
oxidation of Ti was converted to titanium nanotubes 
etaining the tubular structure of  TiO2 by magnesium 
heat. Taking Rhodamine B (RhB) as drug model, the drug 
loading and drug release of Ti NTs showed no significant 
difference compared with TNT. Bare Ti and nanotube 
modified Ti implants can be used as electrodes to accept 
electrical stimulation showing a potential use of enhanc-
ing osteoblast and antibacterial functions. Sirivisoot 
et  al. [33] deposited antibiotics and anti-inflammatory 
drugs dexamethasone (Dex) into PPY (used in corro-
sion protection, electrochemical biosensors, electrode 
coatings and bioelectronics as a thin film on conductive 
materials) on titanium surface, which could release drugs 
under electric stimulation and potentially lead to allevi-
ate inflammation, promote bone formation, and restrict 
fibroblasts invasion.

All these experiments confirmed the feasibility of Ti 
implant surface electrical stimulation responsive drug 
delivery system. However, no experimental study has 
been carried out in  vivo. The applicational conditions 
need to be verified. In addition, electric stimulation has 
good performance on bone tissue healing and regen-
eration and has been widely used in clinical treatment. 
However, the limitations like cell damage and poor tis-
sue penetration should be considered in future investiga-
tion. Experimental research in vivo based on Ti implant 
electric-responsive nanotechnology also needs further 
exploration.

USW responsive strategy
USW refers to mechanical waves with a wavelength of 
less than 2  cm, which can penetrate human tissue and 
focus into a target region. USW could act on the USW-
responsive materials as target site and break them, 
including the polymer micelles, liposomes, hydrophobic 
air layer etc. Based on the above properties, the ultra-
sonic-responsive local drug release systems could be built 
efficiently.

Aw et  al. [19] creatively proposed an ultrasonic-trig-
gering drug release system on TNT. TPGS micelles load-
ing indometsin loaded into TNT/titanium implant and 
placed in phosphate buffered saline solution of pH 7.2 



Page 16 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277 

Ta
bl

e 
3 

PH
 re

sp
on

si
ve

 n
an

ot
ec

hn
ol

og
y 

de
si

gn
s

Re
sp

on
se

 s
ys

te
m

St
im

ul
us

 ty
pe

Pr
ep

ar
at

io
n 

pr
oc

es
s

Re
sp

on
se

 p
oi

nt
D

ru
g 

re
le

as
e

Ba
ct

er
ia

l s
tr

ai
ns

A
nt

ib
ac

te
ri

al
 p

ri
nc

ip
le

M
SP

M
-T

C
S 

(L
iu

20
16

) [
14

6]
A

ci
d

En
zy

m
e

M
SP

M
 is

 c
om

po
se

d 
of

 h
yd

ro
ph

ili
c 

PE
G

 a
nd

 β
-a

m
in

o 
es

te
r P

A
E

PA
E

Lo
w

 p
H

 s
en

si
tiv

ity
, t

ar
ge

te
d 

to
 b

ac
te

ria
l s

ur
fa

ce
s

Ba
ct

er
ia

 s
ec

re
te

 li
pa

se
 to

 d
eg

ra
de

 
PA

E 
an

d 
ac

hi
ev

e 
co

nt
ro

lle
d 

dr
ug

 
re

le
as

e

S.
 a

ur
eu

s
En

ha
nc

ed
 p

hy
si

ca
l p

en
et

ra
tio

n
Ta

rg
et

in
g 

in
 a

ci
di

c 
en

vi
ro

nm
en

ts
A

nt
im

ic
ro

bi
al

 a
ct

iv
ity

TN
T-

A
L-

A
gN

Ps
 (D

on
g2

01
7 

[4
1]

)
A

ci
d

1.
 P

re
pa

ra
tio

n 
of

 T
N

T 
by

 a
no

di
c 

ox
id

at
io

n 
of

 T
i, 

CO
O

H
-fu

nc
tio

na
l-

iz
ed

 T
N

T
2.

 A
L 

co
nn

ec
tio

n 
of

 T
N

T
3.

 T
he

 A
gN

Ps
 lo

ad
ed

A
L

A
L 

w
as

 s
en

si
tiv

e 
to

 lo
w

 p
H

 a
nd

 d
is

-
so

ci
at

es
 a

t l
ow

 p
H

 a
nd

 re
le

as
es

 
A

gN
Ps

 in
si

de
 T

N
T

S.
 a

ur
eu

s
E.

 c
ol

i
A

nt
im

ic
ro

bi
al

 a
ct

iv
ity

Ti
O

2-
PL

L-
Cu

-N
aA

L 
(Z

ha
ng

20
18

 
[3

6]
)

A
ci

d
1.

 P
re

pa
ra

tio
n 

of
 T

N
Ts

 b
y 

an
od

ic
 

ox
id

at
io

n 
of

 T
i

2.
 M

od
ifi

ed
 P

LL
 a

nd
 a

m
in

o 
m

od
ifi

ed
  C

u2+
 w

er
e 

lo
ad

ed
 o

n 
TN

T 
to

 p
re

pa
re

 th
e 

co
or

di
na

tio
n 

sy
st

em
3.

 N
aA

L 
lo

ad
 o

f T
N

T

Co
or

di
na

te
 b

on
d

U
nd

er
 lo

w
 p

H
 o

r a
ci

di
c 

co
nd

iti
on

s, 
th

e 
sy

st
em

 c
oo

rd
in

at
io

n 
bo

nd
 

is
 b

ro
ke

n,
 re

le
as

in
g 

TN
T 

in
te

rn
al

 
dr

ug
s

–
–

TN
T-

C
Ps

 (W
an

g2
01

7 
[4

0]
)

A
ci

d
1.

 C
Ps

 w
as

 p
re

pa
re

d 
by

 B
IX

 
co

m
bi

ni
ng

 w
ith

 m
et

al
 io

ns
  (Z

n2+
 

an
d 

A
g+

)
2.

 T
N

T 
w

as
 p

re
pa

re
d 

by
 a

no
di

c 
ox

id
at

io
n 

of
 T

i
3.

 A
m

in
o 

fu
nc

tio
na

liz
ed

 T
N

T 
in

to
 T

N
Ts

4.
 IB

U
, V

A
N

 a
nd

 s
ilv

er
 n

itr
at

e 
ar

e 
lo

ad
ed

 in
to

 T
N

Ts
5.

 T
he

 C
Ps

 T
N

Ts
 s

ea
lin

g 
si

de

Co
or

di
na

te
 b

on
d

U
nd

er
 lo

w
 p

H
 o

r a
ci

di
c 

co
nd

iti
on

s, 
th

e 
sy

st
em

 c
oo

rd
in

at
io

n 
bo

nd
 

cl
ea

va
ge

, C
PS

 d
es

tr
uc

tio
n,

 re
le

as
e 

TN
T 

in
te

rn
al

 d
ru

gs

S.
 a

ur
eu

s
E.

 c
ol

i
A

nt
im

ic
ro

bi
al

 a
ct

iv
ity

Ti
-P

D
-(H

ET
/C

H
T)

 (Z
ho

u2
01

8 
[3

7]
)

A
lc

al
i

1.
 P

re
pa

ra
tio

n 
of

 T
ob

 s
up

po
rt

ed
 

m
ic

el
le

s
2.

 P
D

 c
oa

tin
g 

Ti
 s

ur
fa

ce
3.

 H
ET

/C
H

T 
la

ye
r b

y 
la

ye
r a

ss
em

bl
y 

to
 T

i-P
D

M
ic

el
le

In
 a

lk
al

in
e 

en
vi

ro
nm

en
t, 

th
e 

am
in

o 
To

b 
is

 d
ep

ro
to

na
te

d,
 th

e 
el

ec
tr

o-
st

at
ic

 in
te

ra
ct

io
n 

be
tw

ee
n 

To
b 

an
d 

he
pa

rin
 is

 re
du

ce
d,

 
an

d 
th

e 
dr

ug
 is

 re
le

as
ed

S.
 a

ur
eu

s
E.

 c
ol

i
A

nt
im

ic
ro

bi
al

 a
ct

iv
ity

In
hi

bi
tio

n 
of

 in
iti

al
 a

dh
es

io
n

TN
T-

Zn
O

 Q
D

-F
A

-V
an

 (X
ia

ng
20

18
 

[3
9]

A
ci

d
1.

 T
N

T 
w

as
 p

re
pa

re
d 

by
 a

no
di

c 
ox

id
at

io
n 

of
 T

i
2.

 M
od

ifi
ed

 Z
nO

 Q
D

 b
y 

FA
3.

 V
an

 T
N

T 
lo

ad
4.

 Z
nO

 Q
D

-F
A

 e
nc

ap
su

la
te

d 
TN

T

Zn
O

Zn
O

 Q
D

 w
as

 s
en

si
tiv

e 
to

 lo
w

 
pH

, a
nd

 th
e 

Zn
O

 Q
D

-F
A

 e
nv

e-
lo

pe
 w

as
 o

pe
ne

d 
an

d 
th

e 
dr

ug
 

w
as

 re
le

as
ed

 in
 a

ci
di

c 
en

vi
ro

n-
m

en
t

S.
 a

ur
eu

s
A

nt
im

ic
ro

bi
al

 a
ct

iv
ity



Page 17 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277  

Ta
bl

e 
4 

En
zy

m
e 

re
sp

on
si

ve
 n

an
ot

ec
hn

ol
og

y 
de

si
gn

s

Re
sp

on
se

 s
ys

te
m

A
ct

in
g 

si
te

Pr
ep

ar
at

io
n 

pr
oc

es
s

D
ru

g 
re

le
as

e
Ba

ct
er

ia
l s

tr
ai

ns
Re

su
lt

TN
T-

D
FO

-H
A

-G
en

 c
oa

tin
g 

(Y
u2

02
0)

 
[4

4]
H

A
as

e-
H

A
 e

nz
ym

e
1.

 E
le

ct
ro

ch
em

ic
al

 tr
ea

tm
en

t o
f T

i 
to

 fo
rm

 T
N

T
2.

 C
on

ne
ct

 H
A

 to
 G

en
3.

 A
ss

em
bl

y 
of

 H
A

-G
en

 a
nd

 C
hi

4.
 D

FO
 is

 lo
ad

ed
 o

n 
TN

T
5.

 H
a-

ge
n-

ch
i s

ea
l D

FO
-T

i s
ur

fa
ce

H
A

 o
n 

TN
T 

su
rf

ac
e 

re
co

gn
iz

es
 

H
A

as
e 

en
zy

m
e 

se
cr

et
ed

 b
y 

ba
ct

er
ia

l 
to

 a
ch

ie
ve

 s
pe

ci
fic

 to
uc

h 
re

le
as

e

S.
 a

ur
eu

s
E.

 c
ol

i
1.

 In
hi

bi
t b

ac
te

ria
l a

dh
es

io
n

2.
 A

nt
ib

ac
te

ria
l d

ru
g 

re
le

as
e

3.
 P

ro
m

ot
e 

os
se

oi
nt

eg
ra

tio
n

TN
T-

Va
n-

C
hi

c-
H

A
c 

co
at

in
g 

(Y
ua

n2
01

8)
 

[4
3]

H
A

as
e-

H
A

 e
nz

ym
e

1.
 E

le
ct

ro
ch

em
ic

al
 tr

ea
tm

en
t o

f T
i 

to
 fo

rm
 T

N
T

2.
 T

N
T 

co
at

ed
 V

an
3.

 D
op

 m
od

ifi
ed

 H
A

-C
 a

nd
 C

hi
-C

4.
 L

BL
 a

ss
em

bl
y 

of
 H

A
-C

 a
nd

 C
hi

-C
5.

 D
op

-h
ac

-C
hi

c 
fil

m
 is

 a
tt

ac
he

d 
to

 th
e 

su
rf

ac
e 

of
 T

N
TS

-V
A

N

H
A

-c
 o

n 
TN

T 
su

rf
ac

e 
re

co
gn

iz
es

 
H

A
as

e 
en

zy
m

e 
se

cr
et

ed
 b

y 
ba

ct
er

ia
l 

to
 a

ch
ie

ve
 s

pe
ci

fic
 to

uc
h 

re
le

as
e

S.
 a

ur
eu

s
1.

 In
hi

bi
t b

ac
te

ria
l a

dh
es

io
n

2.
 A

nt
ib

ac
te

ria
l d

ru
g 

re
le

as
e

3.
 P

ro
m

ot
e 

os
se

oi
nt

eg
ra

tio
n

PG
-P

A
H

 L
BL

@
C

H
I-A

g 
co

at
in

g 
(D

in
g2

01
9)

 [4
6]

V8
 e

nz
ym

e-
PG

1.
 A

gN
Ps

 w
er

e 
w

ra
pp

ed
 in

 C
H

I
2.

 P
G

 a
nd

 P
A

H
 w

er
e 

as
se

m
bl

ed
 o

n 
C

H
I-

A
g 

su
rf

ac
e 

by
 L

BL
3.

 L
BL

@
C

H
I-A

g 
w

as
 d

ep
os

ite
d 

on
 th

e 
su

rf
ac

e 
of

 T
i m

at
rix

 m
od

ifi
ed

 
w

ith
 P

D
O

P

PG
 o

n 
TN

T 
su

rf
ac

e 
re

co
gn

iz
es

 
V8

 e
nz

ym
e 

se
cr

et
ed

 b
y 

ba
ct

er
ia

l 
to

 a
ch

ie
ve

 s
pe

ci
fic

 to
uc

h 
re

le
as

e

S.
 a

ur
eu

s
1.

 In
hi

bi
t b

ac
te

ria
l a

dh
es

io
n

2.
 A

nt
ib

ac
te

ria
l d

ru
g 

re
le

as
e

3.
 P

ro
m

ot
e 

os
te

og
en

si
s

Ti
-G

L1
3K

-M
M

P-
9 

co
at

in
g 

(F
is

ch
er

20
21

) 
[4

5]
M

M
P9

-C
P 

en
zy

m
e-

M
M

P-
9

G
L1

3K
 a

nt
im

ic
ro

bi
al

 p
ep

tid
e 

an
d 

M
M

P9
-C

P 
w

er
e 

co
-fi

xe
d 

on
 th

e 
su

rf
ac

e 
of

 T
i

M
M

P-
9 

on
 T

N
T 

su
rf

ac
e 

re
co

gn
iz

es
 

M
M

P-
C

P 
en

zy
m

e 
se

cr
et

ed
 b

y 
ba

ct
er

ia
l 

to
 a

ch
ie

ve
 s

pe
ci

fic
 to

uc
h 

re
le

as
e

S.
 g

or
do

ni
i

1.
 G

L1
3K

 a
nt

im
ic

ro
bi

al
 

pe
pt

id
es

 a
nt

ib
ac

te
ria

l
2.

 P
ro

m
ot

es
 b

on
e 

fo
rm

at
io

n

Ti
-C

IP
-P

LL
-A

lg
 c

oa
tin

g 
(B

ou
rg

at
20

21
) 

[4
7]

Tr
yp

si
n-

PL
L

1.
 C

IP
 c

om
bi

ne
 P

LL
2.

 C
IP

-P
LL

 m
ix

ed
 w

ith
 A

lg
 to

 fo
rm

 
na

no
ge

l
3.

 N
an

op
ar

tic
le

s 
ar

e 
co

at
ed

 o
n 

TI
 

su
rf

ac
e

PL
L 

on
 T

N
T 

su
rf

ac
e 

re
co

gn
iz

es
 

tr
yp

si
n 

en
zy

m
e 

se
cr

et
ed

 b
y 

ba
ct

er
ia

l 
to

 a
ch

ie
ve

 s
pe

ci
fic

 to
uc

h 
re

le
as

e

S.
 a

ur
eu

s
A

nt
ib

ac
te

ria
l d

ru
g 

re
le

as
e



Page 18 of 29Han et al. Journal of Nanobiotechnology          (2023) 21:277 

with a sonar probe inserted into the medium, and then 
USW-mediated drug-micelles release. The USW trig-
gers enhance the penetration of drug complexes into 
adjacent tissues which are critical for drug delivery to 
lesion or trauma tissues. Zhou et  al. [20] developed a 
local drug delivery system consisting of superhydropho-
bic TNT arrays and ultrasonic controlled release triggers. 
The hydrophilic TNT array is transformed into superhy-
drophobic array according to treated by 1H,1H,2H,2H-
perfluorooctyl-triethoxysilane. The surface of the air 
trapping layer formed in the liquid environment, which 
showed good isolation effect without additional seal-
ing treatment. Drugs loaded internal can be dissolved 
by after the trapped air layer was selectively removed by 
USW (Table 5).

The current application of USW in the stimuli-respon-
sive nanoengineering on Ti implant mainly lies in the 
drug delivery system. In addition, USW can also cause 
the movement of substances in tissues and cells, and the 
energy generated by USW can also be absorbed by tis-
sues and then converted into heat [148]. These effects can 
trigger physicochemical changes in tissues [149]. There-
fore, there is still a great prospect to study the mechanical 
and thermal effects induced by USW in the anti-infection 
and osteogenic ability of implants.

RF responsive strategy
RF is non-ionizing electromagnetic radiation in the range 
of 3 kHz to 300 GHz, which can penetrate human tissue 
deeply. The thermal effect in tissues is permeable uni-
form and lasts for a long time, which can overcome the 
problems of excessive heat of other waves concentrated 
in skin, subcutaneous tissues, and adipose tissues [150]. 
These advantages make it an ideal choice for non-inva-
sive drug delivery. Bariana et  al. [60] prepared micelles 
(tocopherol PEG succinic acid)-indometacin nanopar-
ticles which loaded in the upper part of TNT. AuNPs 
placed at the blind end of TNT as a trans-inducer of RF 
energy to develop a RF-triggered drug release system. 
After receiving the RF, the active AuNPs can trance drug 
release rapidly. In addition, RF is widely used in the treat-
ment of tumors [151], nerve injuries [152] and other dis-
eases [153] due to its tissue penetration ability. However, 
there are few research on the Ti implants, which still has 
further research and analysis. significances.

Composite responsive strategy
During the complex and dynamic environment present in 
pathological tissues, single stimulus-responsive strategy 
shows limitations. Double or multiple stimuli-responsive 
nanomaterials can respond to various stimuli in internal 
or external environment. It can combine the ability of 

different stimuli-responsive materials to achieve better 
drug delivery and promote osteogenic function.

USW/light
Both USW and light stimulation are highly penetrating 
and non-invasive to tissues. The researchers coated the 
titanium substrate surface with materials with both ultra-
sonic and light response, and received stimulation to pro-
duce PTT effect, hole effect, or controlled drug release to 
achieve therapeutic purposes.

Su et  al. [48] prepared a layer of hypoxic S-doped 
 TiO2-x coating (Ti–S–TiO2-x) on the surface of titanium 
implants (Fig.  4). The abilities to response ultrasonic 
and catalytic PTT properties entail the coating showed 
high antibacterial ability both in vivo and in vitro under 
the combined treatment of 808  nm laser and USW. 
Pourhajibagher et al. [27] targeted sonodynamic antimi-
crobial chemotherapy (SACT) can bypass the limitations 
of aPDT and inhibit the characteristics of multimicrobial 
biofilms. Chitosan nanoparticles (CNPs) indocyanine 
green (CNPS-ICG) was used as a photoacoustic sensi-
tizer to inhibit the biofilm of pathogens surrounding the 
surface of titanium implants using antimicrobial photo-
dynamic therapy and SACT, or photoacoustic dynamic 
antimicrobial chemotherapy (PSACT).

pH/enzyme
PH and enzyme-responsive nanosystems can respond 
directly to the changing physio pathological environment 
without the need for external stimulation. Therefore, the 
combination of these two stimulation methods is also 
widely used in the treatment of tumor and orthopedic 
diseases.

Liu et  al. [146] developed a surface adaptive and pH-
responsive nanosystem, which consisting of MSPM, 
whose coordination bond is sensitive to acidic environ-
ment. At physiological pH, the nanoparticles completely 
penetrate and accumulate in bacterial biofilms due to the 
stealth properties and negative charge. At low pH near 
the bacterial cell surface, the nanoparticles become posi-
tively charged, thus target themselves with the negatively 
charged bacterial cell surface, keeping itself in the biofilm 
and preventing flushing. Once interact with the bacterial 
cell surface, it is hydrolyzed by bacterial lipase, resulting 
in the release of the drug.

Therapeutic applications
Stimuli-responsive nanotechnologies on Ti implants 
mainly to obtain better antibacterial and bacteriostasis 
effects and promote the growth of soft and hard tissues, 
etc. (Fig. 5). which overcome the limitations and single-
ness of traditional nanomodifications and can respond 
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to changing physiological or pathological environments 
flexibly.

Enhanced antibacterial property
Bacterial infection is the second largest cause of human 
fatalities which accounts for 17 million patient mortali-
ties every year [154]. Infection is a serious complication 
of implant-related surgery and is thought to be mainly 
due to the growth of biofilms on the surface of the 
implant [155]. Currently, most research has focused on 
bacterial species which can invade the host and cause 
various infectious diseases such as Staphylococcus 
aureus, Helicobacter pylori, Pseudomonas aeruginosa, 
and Escherichia coli. Aseptic technology and systemic 

antibiotics therapy are mainly traditional methods to 
prevent infections include but the latter does not often 
have a very satisfactory outcome [156]. The low effec-
tive success rate of systemic antibiotic therapies may 
be caused by cytotoxicity and side effects to surround-
ing tissues [157, 158]. Besides, bacterial drug resistance 
can always be led to by this therapy strategy, but new 
classes of antibiotic development have been slow [159]. 
At the same time, with the biofilms gradually formed, 
antibiotics is often inefficient [160, 161].Therefore, 
developing efficient antibacterial technology can com-
plete elimination of biofilms without causing bacterial 
resistance has become important research nowadays.

Fig. 4 Preparation and morphology of an oxygen-deficient S-doped  TiO2 layer on the surface of Ti implant (Ti–S–TiO2-x) with enhanced 
sonocatalytic-photothermal properties which exhibits highly effective antibacterial ability and accelerates the osseointegration in vivo. Copyright 
2017, ACS Nano
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Stimuli-responsive antibacterial strategy has become 
a hot spot in the treatment and inhibition of antimicro-
bial infection in recent years. Stimuli-responsive mate-
rials can respond to the changing physical and chemical 
environment timely and can also be designed for any 
stage in the formation of biofilms. Stimuli-responsive 
antibacterial methods are generally classified into two 
types: (1) preventing bacteria initial adhesion; (2) elimi-
nating the formed biofilms.

The former strategy is mainly used on pH-responsive 
and enzyme-responsive antifouling surfaces may because 
pH and enzyme-responsive nanomaterials can respond 
to the changing physio pathological environment directly 
and quickly. Molecules like AL, HA, PG, PEG etc. on 
TNT can occupy sites of implant surface to resist ini-
tial bacterial adhesion or kill bacteria by contacting. As 
far the formed biofilms, it is necessary to eliminate them 
according to physical and chemical strategies.

The physical strategies contain magnetically mechani-
cal strategy by using magnetic materials pierce the bac-
teria quickly under a magnetic and high temperature 
sterilization. All the bacteria cannot resistant the high 
strength mechanical clear. Cheeseman et al. reported the 
magneto-responsive gallium based liquid metal (GLM-
Fe) nanoparticles formed by Cabrera-Mott oxidation 
process [162, 163]. In the presence of a rotating mag-
netic field, the GLM-Fe nanoparticles could be actuated 
to form different nanoscale-sharp nanoparticles like jag-
ged spheres, nanorods, and nanostars, which average 
thickness value of edge extending from the sharp GLM-
Fe particles is 22.08 ± 17.71 nm [164]. At the same time, 

under the action of the magnetic field, these magnetic 
particles rotate at high speed and use their sharp edges to 
penetrate the biofilm. In addition, heat sterilizations have 
demonstrated modest antibacterial effects using appli-
cations of light pulsing, USW, electric fields, magnetic 
fields etc. PTT effect and magnetocaloric effect are the 
most widely used heat production ways. When exposed 
to light, photon energy interacts with the lattice of PTT 
sensitive materials. Then the vibration increases, and the 
temperature increases later causing cell membrane rup-
ture or protein/enzyme denaturation through thermal 
effects. Based on this effect, the research of PTT anti-
bacterial based on different PTT sensitive materials are 
also surging. Magnetic nanoparticles around biofilms can 
generate heat by converting the magnetic loss into heat 
under the alternating magnetic field [67, 118].

The chemical strategies mainly based on DDS, which 
can target to the aim tissue or be preloaded on implant. 
Stimuli-responsive DDS can show flexible controlled 
release modes, including thermal, magnetic, light, ultra-
sonic, enzyme, pH, and other types. Including TNT 
drug delivery system and implant surface coated with 
drug nanoparticles, and most are local drug DDS. These 
kinds of DDS deliver drugs at or near the target, with the 
advantages like improving drug efficiency, reducing the 
dose required, and reducing toxicity to healthy tissue 
compared to systematic drug delivery. Drugs like doxy-
cycline, tetracycline, penicillin, cephalexin, gentamicin, 
chlorhexidine, berberine, daptomycin, levofloxacin, 
vancomycin, rifampicin, and ions like  Ag+,  Cu2+,  Zn2+, 
hiding in TNT or nanoparticles can be released and 
kill bacteria once the infected environment or external 
stimuli occurred which can avoid a certain extent drug 
resistance. TNT and nanoparticles are modified with 
molecules like targeted molecules [51], hydrophilic/
hydrophobic molecules [18], biocompatible molecules 
[149], etc. that respond to different stimuli or improve 
other properties of nanoparticles according to differ-
ent materials with drug-carrying properties, such as 
mesoporous silica [150] and hydrogel [151]. At the same 
time, complete drug-loaded nanoparticles were prepared 
by wrapping drugs. These nanoparticles can respond to 
different stimuli according to the modified components, 
including light, magnetic, ultrasonic, enzyme, pH, etc. 
For example, hydrogel-coated gold nanoparticles can 
respond to light and promote the bone differentiation of 
human ADSCs [152].

Antibiotics usually inhibit the synthesis of proteins, cell 
walls and nucleic acids to achieve antimicrobial purpose. 
Such as doxycycline, tetracycline, gentamicin can inhibit 
bacterial protein synthesis. Penicillin, cephalexin, and 
VAN can inhibit cell wall synthesis to achieve antimi-
crobial effects. Levofloxacin and rifampicine can inhibit 

Fig. 5 Therapeutic applications of stimuli-response nanosystems
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bacterial nucleic acid synthesis or function. Chlorhex-
idine breaks the permeation barrier of cell membranes. 
In addition to antibiotics, many metal ions also have 
antibacterial effects on bacteria. Calcium, magnesium 
and sodium ions can change pH and osmotic pressure 
to achieve antibacterial effect [75, 165]. Silver, TNT, zinc 
and copper ions can induce ROS production and damage 
cell membrane [35, 96, 166]. Additionally, ROS can also 
be produced by PDT and void effect. At the same time, 
zinc, zirconium and other metal ions can inhibit the rep-
lication of nucleic acid or the interaction between nucleic 
acid and protein to achieve antibacterial. Gold, on the 
other hand, can directly destroy the cell wall without pro-
ducing ROS [167].

Although antibacterial technologies have progressed 
rapidly, there are still signific issues should be considered 
of the new antibacterial strategies [168]. The bacterial 
resistance should be avoided, and biocompatibility and 
toxicity must be considered carefully [169]. Additionally, 
targeting capabilities and bacterial responsiveness are 
promising for the design of antimicrobial materials.

Improved osseointegration
Scientific research and clinical experience suggest that 
osseointegration is one of the most important factors 
to achieve good planting effect [170]. The implant osse-
ointegration could be defined into multiple biological 
processes including protein adsorption on titanium, 
inflammatory cell adhesion/inflammatory response, 
additional relevant cells adhesion, and angiogenesis/
osteogenesis [171]. In the processes of osseointegration, 
the cells around the implantation site secrete various 
cytokines to promote the recruitment of osteoblasts and 
induce osteogenic differentiation to achieve bone forma-
tion. However, due to lack of good biological activity, the 
adhesion of osteoblasts on titanium implant materials is 
poor, and could even result in foreign body reaction, poor 
local bone quality and slow heal [172]. So, enhancing the 
bioactivity of implant surface to promote osseointegra-
tion is the main strategy to solve these problems. Implant 
surface topography and composition can affect bioac-
tivity of titanium implant surface. Traditional surface 
topography improvement methods include sandblasting, 
acid etching, anodic oxidation and so on [173]. In addi-
tion, the performance of extracellular matrix proteins, 
growth factors and chemokines in improving biocom-
patibility and promoting bone integration has been con-
firmed. However, bone progenitor cells and immune cells 
are in a constantly changing environment. The ability 
traditional modification to promote bone integration is 
limited for showing a single function and without ability 
to respond to changes in different physiological environ-
ment. Stimuli-responsive nanotechnology can achieve a 

good bone-binding effect by improving mechanical prop-
erties [174], preventing bacterial infection [175], promot-
ing vascular proliferation, promoting osteogenic behavior 
of cells and inhibiting the growth of fibroblasts [176] in 
the changing environments.

According to the response pathways, the surface 
stimuli-responsive nanotechnologies of Ti implants can 
be divided into two ways: (1) Stimulation has a benign 
osteogenic effect to promote osteogenesis in a specific 
degree by the control of time, strength or other special 
thresholds [177]. (2) Stimulation triggers drug release or 
molecular action to indirectly promote osseointegration 
[178]. Such as anti-inflammatory drugs in responding to 
stimulation and controlled release of antibacterial prop-
erties enhance bone integration.

It has been reported that the moderate external physi-
cal stimuli can promote bone integration. Kim et  al. 
[127] reported that moderate intensity SMF can improve 
osseointegration according to promote proliferation 
and osteoblastic differentiation of BMSCs, upregulate 
expression of osteogenic marker genes and increase cell 
proliferation, ALP activity, calcium release, and miner-
alized nodule formation. PMF can also accelerate osse-
ointegration by enhance soluble adenylyl cyclase, cyclic 
adenosine monophosphate (cAMP), protein kinase A, 
cAMP response element-binding protein signaling and 
Wingless-related integration site pathway activation 
[179–181]. According to active the pathways and induce 
the gene expression, PMF can indirect active of osteo-
blastic differentiation, proliferation, and activity, antago-
nize osteoclastic differentiation and activity and enhance 
osteoblastic differentiation etc. Laser technology has 
been reported that can enhance osteoblast adhesion and 
vessel migration towards the implant surface and will not 
influence implant stability [182, 183]. In electric-respon-
sive technology, conducting polymer can enhance direct 
electron transfer to promote redox reactions of pro-
teins synthesized by osteoblasts during bone formation 
[33, 184]. However, most of the studies based on these 
physical stimuli to promote osseointegration of titanium 
implants have been conducted in vitro. The clinical out-
come still needs more precise design on the types, time, 
degree of stimuli, and the physical and chemical state of 
the body.

Research on osteointegration-based stimuli-respon-
sive nanotechnology focuses on local delivery systems. 
Biological or chemical substances that can promote 
osteogenesis are encapsulated in nanoparticles or inte-
grated in the implant or scaffolding like TNT, calcium 
and phosphorus coating, hydroxyapatite, gelatin, CHI, 
etc. through different methods such as electrospin-
ning, simple coating, physical adsorption, silanization, 
layer self-assembly technology, etc. are used as carriers. 
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These substances including metal ion, proteins, peptides, 
growth factors, polysaccharides, and nucleotides. Metal 
ions like  Zn2+ and  Mg2+ can upregulate integrin α1 and 
integrin β1 gene expression to promote the initial adhe-
sion and spread of rat bone marrow mesenchymal stem 
cells. Also, they can enhance transcription of Runx2 and 
expression of ALP and OCN. Upregulation of MagT1 
transporter expression in human umbilical vein endothe-
lial cells then stimulates vascular endothelial growth 
factor and kinase inhibitor transcription through acti-
vation of hypoxia-inducible factor-1α, thereby inducing 
angiogenesis [185–187].  Cu2+ can also improve vascular-
ized bone regeneration, bone marrow stromal cell adhe-
sion and proliferation, and subsequent differentiation 
to osteoblast. The biomolecules like proteins, peptides, 
growth factors, and nucleotides can involve in biologi-
cal processes directly. The type I collagen can increase 
the titanium implant surface bioactivity and accelerate 
the early osteogenesis [176]. Fibronectin can induce good 
cellular responses and mediate many cellular processes 
[188]. Osteogenic growth peptide is a soluble, short and 
linear growth factor peptide fragment that can directly 
regulate cell proliferation, osteoblast differentiation and 
matrix mineralization [189]. Gene fragments like siRNA, 
miRNA and circRNA have been reported with abilities 
of improving the surface biocompatibility of titanium 
implants by promoting the proliferation, differentiation, 
and adhesion of osteoblasts [190–192]. The stimulation is 
applied in response to the release of internal biochemi-
cals to achieve good osseointegration.

Conclusion and prospect
Compared with traditional nanotechnology, stimuli-
responsive nanotechnology shows brilliant flexibility, 
controllability, and specificity, which always combine 
multiple effects or functions. Both in the application of 
response types and materials, the research on stimulus 
response in the field of nanomedicine has made a break-
through. However, the application of these materials and 
response types on the surface of orthopedic titanium 
implants is relatively rare, such as genetic material has 
received widespread attention which still not be used 
of the study of titanium implant. In addition, complex 
stimulus response system is also a research direction 
should be developed, which has a broad research pros-
pect. Undoubtedly, the goal of various research on sur-
face nanotechnology of titanium implants is to achieve 
good clinical results, however, most of the studies are 
in vitro, and more in vivo studies are needed to actively 
consider clinical outcomes. Currently, most studies con-
centrate on controlled release drugs by external stimula-
tion, while the stimulating effect of stimulation on soft 

and hard tissues around Ti remains to be studied like 
magnetic field, electric field, USW, RF, light and other 
external stimulation could promote angiogenesis, osteo-
genesis and osteointegration. These stimulations have 
made extensive progress in the treatment of tumors and 
bone defects and have broad application prospects in 
orthopedic titanium implants. Combining these effects 
with stimulus-responsive drug delivery system could be a 
prominent application field in the future.

However, almost none of these smart strategies have 
reached the commercial market. First, most of the 
research about stimuli-responsive technologies on tita-
nium implant has been at the in  vitro level. Due to the 
huge differences between in vitro and in vivo experimen-
tal studies, and different complex physiological environ-
ments between human body and animal models, a lot of 
in  vivo/clinical data is still needed. Secondly, the most 
appropriate parameters and types of stimuli-responsive 
materials are still debated. In addition, the nanostructure 
of the implant surface is very fragile, and the selection of 
appropriate sterilization, preservation, transportation, 
and long-term maintenance of material activity are also 
issues that need to be considered. Lastly, the biggest chal-
lenges for the translation market are the clinical trials and 
their commercial approval by the responsible entities. 
The commercial translation of implant stimuli-respon-
sive nanotechnologies still has a long way to go.
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