
.

Master’s thesis

Classification and feature
Regression for Multi-Phase
Flow Regimes
A novel application of Deep Learning methods on Acoustic Emissions
from cylindrical pipes

Daniel Johan Aarstein

60 ECTS study points

Department of Physics
Faculty of Mathematics and Natural Sciences

Spring 2023

Daniel Johan Aarstein

Classification and feature Regression
for Multi-Phase Flow Regimes

A novel application of Deep Learning methods on
Acoustic Emissions from cylindrical pipes

Supervisors:
Atle Jensen, prof. of Mechanics

Morten Hjort-Jensen, prof. of Physics
Anis Awal Ayati, Principal Flow Assurance

Researcher, Equinor

Abstract

Detection and classification of flow-regimes are needed for improvements in the oil
and gas sector, as well as in nuclear power plants. This thesis work presents a novel
combination of convolutional neural networks applied to acoustic emissions from pipes
containing multi-phase flow.

A novel dataset is constructed from experimental data, and automatically labeled
with video analysis.

The proposed model classifies four distinct classes as well as performing a re-
gression on the velocity and length of slugs appearing in the pipe. Both 2D and 1D
transformations are tested in combination with different scaling methods. In addition
the effectiveness of using a singular microphone is tested. The highest classification
accuracy obtained on previously unseen data was 98.5%. The highest R2 score for
slug velocity regression was 0.787 and the highest R2 score for slug length regression
was 0.428.

i

ii

Acknowledgements

I would like to thank Professor Atle Jensen for his patience this year. I dare say our
weekly meetings has taught me more about the scientific method and rigour than all
previous education combined.

I would like to thank Professor Morten Hjorth-Jensen for introducing me both to
the field of Computational Physics, as well as giving me the tools necessary for the
analysis performed in this thesis. The three courses you have lectured has laid the
foundation for a technical skill set I’m sure will be utilized for the rest of my life.

I would like to thank Dr. Anis Awal Ayati for first introducing me to Atle, and as
an extension, the interesting field of Multi-Phase Flow itself.

I would like to thank Olav Gundersen for his amazing work in constructing the
lab environment where all experiments took place. Without you expertice, none of
this would have been possible.

Finally I would like to thank everyone who has contributed to my five years at
the University of Oslo, be it friends, colleagues or family. Special thanks to my fellow
students at the Computational Science: Physics programme.

iii

iv

Contents

Abstract i

Acknowledgements iii

List of Figures xii

List of Tables xiv

I Introduction 1

1 Introduction 3
1.1 Turbulent pipe flow . 3
1.2 Flow Regime identification with Machine Learning 4

1.2.1 Acoustic Emission . 4
1.3 Contribution . 5
1.4 Thesis Structure . 5
1.5 Additional resources . 6

II Theory 7

2 Slug Flow 9
2.1 Flow Regimes . 9
2.2 Slugs . 9

2.2.1 Aerated slug . 10
2.2.2 Plug flow . 11

3 Machine Learning 13
3.1 The basics . 14
3.2 Feed-Forward Neural Networks . 15

v

vi CONTENTS

3.2.1 Activation Functions . 17
3.2.2 Mathematics behind the forward pass 18
3.2.3 Loss functions . 22
3.2.4 Update weights and biases; Gradient descent 25

3.3 Convolutional Neural Networks . 31
3.3.1 Convolution . 31
3.3.2 Trainable kernel . 32
3.3.3 Data stream . 33

III Methodology & Implementation 39

4 Laboratory setup 41
4.1 Layout . 41
4.2 Hardware . 41

5 Data 45
5.1 Data Treatment . 46

5.1.1 Audio . 46
5.1.2 Video and Automated Labeling 47

5.2 The Constructed Dataset . 56

6 Specific Application of the CNN 59
6.1 Architecture . 59

6.1.1 Custom loss function . 61
6.2 Data Pre-Processing . 61

6.2.1 Scaling . 62
6.2.2 Transformations . 62

6.3 Implementations . 62
6.3.1 1D . 62
6.3.2 2D . 63

6.4 Metrics . 64

IV Results & Discussions 65

7 Results & Discussion 67
7.1 Multi-channel . 67

7.1.1 2D . 67
7.1.2 1D . 71

7.2 Single Channel . 74

CONTENTS vii

8 Conclusion 79
8.1 Future Work . 80

A MNIST Audio Case Study 87

viii CONTENTS

List of Figures

2.1 Illustrated flow regimes in horizontal gas-liquid two-phase flow. The
arrow indicates the order from most liquid to least liquid. The illus-
tration is taken from Holland and Bragg [25]. 10

2.2 Examples of the nose and tail for an aerated slug. Note the diffused
light from the underlying LED light, as described in chapter 4. 11

2.3 Examples of the nose and tail for a plug slug. Note how there is
practically no diffusion of the light when compared with fig. 2.2. . . . 12

3.1 Illustration of a simple Feed-Forward Neural Network, containing two
hidden layers. 16

3.2 Crude categorization of Artificial Intelligence frameworks. Note that
the borders are somewhat blurred, this definition is in alignment with
Goodfellow et al. [30]. 17

3.3 Illustration of the softmax function applied to a rank 1 tensor. Note
how the elements of the tensor softmax(ŷ) sum to 1. 23

3.4 Illustration of how the Cross Entropy Loss function acts on a rank 1
tensor which has undergone a softmax transformation. 24

3.5 Example of a 2D convolution applied to an image in order to extract
some feature. In this case the Canny edge detection algorithm has
been performed, with the Sobel kernel. Note the lack of coffee present
in the mug. 32

3.6 Illustration of 2D convolution on a rank 2 tensor. The kernel is a 3x3
rank-2 tensor, such that the resulting tensor is a 3x3 rank-2 tensor. In
this example, the stride of the convolution kernel is equal to 1. 35

ix

x LIST OF FIGURES

3.7 Illustration of how the ReLU activation function first works on a 5x5
rank-2 tensor, and then how the MaxPool2d function extracts the max
value using a 2x2 kernel. In this example the stride of the MaxPool
kernel is equal to its size, that is stride equal to 2. If the kernel would
be out of bounds wrt. the tensor, the column or row in question is
omitted. This is chosen deliberately as to accurately mimic how these
funtions work by default in the PyTorch framework. 36

3.8 Illustration of how the dimensionality of a tensor changes when its
passed through multiple convolution layers. In this case, each convo-
lution has three kernels, such that the number of output channels is
equal to the number of input channels times three. 37

4.1 Schematics describing the experimental setup used for audio and video
sampling. The horizontally striped area by the inlet indicates the
honeycomb mechanism which reduces turbulence where the gas-liquid
boundary is formed. 42

5.1 5 minute data sample from run number 59. 46
5.2 Sample of a data segment which contains one event. This event in

particular corresponds to the eight peak in fig. 5.1. 47
5.3 First frame of the mp4 file for run number 59, with the marked pixel

column. 48
5.4 Illustration of how the values for a given column can be shown as an

image with time along the x-axis and the height in pixel along the
y-axis. In this example the column of pixel 1500 was chosen. 49

5.5 Time evolution at pixel column 1500 for the first event in run number
59. 50

5.6 Time evolution at pixel column 1500 for the first event in run number
59, with the row-wise mean subtracted from each row. 51

5.7 Intensity of the slug, used for further information extraction. Note
that the intensity is dimensionless. 52

5.8 Slug nose and tail estimation method for plug slugs. 53
5.9 Slug nose and tail estimation method for aerated slugs. 54
5.10 Examples of velocity and length estimations, both for the plug slug

and the aerated slug case. 55
5.11 Region of which the intensity was averaged over for aerated slug/breaking

wave classification. 56
5.12 Count of the different classes in the final data set. Note that the

number of noise events is equal to the number of aerated slug events
and number of breaking wave events combined. 58

LIST OF FIGURES xi

6.1 Sketch of the final convolutional neural network layout used in both
the 1D and 2D cases. The three final feed-forward neural networks
are independent from each other, such that the loss from one will not
affect the others. This is indicated by the disconnected blue regions.
In contrast, all convolution layers are connected, and are thus grouped
in the same region. 60

7.1 The accuracy score for the proposed model when the data has under-
gone a spectrogram transformation followed by normalization. 69

7.2 The R2 scores for the proposed model when the data has undergone a
spectrogram transformation followed by normalization. 70

7.3 The accuracy score for the proposed model when the data has under-
gone a spectrogram transformation followed by normalization. 71

7.4 The R2 scores for the proposed model when the data has undergone a
spectrogram transformation followed by normalization. 72

7.5 The accuracy score for the proposed model when the data has under-
gone a Fast Fourier Transformation followed by normalization. 73

7.6 The R2 scores for the proposed model when the data has undergone a
Fast Fourier Transformation followed by normalization. 74

7.7 The confusion matrices for the normalized Short-Time Fourier Trans-
form at epoch 7. 75

7.8 The confusion matrices for the normalized Fast Fourier Transform at
epoch 20. 76

7.9 The accuracy score for the proposed model when the data from mi-
crosphone 2 has undergone a Short Time Fourier Transform followed
by normalization. 77

7.10 The R2 scores for the proposed model when the data from micros-
phone 2 has undergone a Short Time Fourier Transform followed by
normalization. 77

7.11 The accuracy score for the proposed model when the data from mi-
crosphone 2 has undergone a Short Time Fourier Transform followed
by normalization. 78

7.12 The R2 scores for the proposed model when the data from micros-
phone 2 has undergone a Short Time Fourier Transform followed by
normalization. 78

A.1 Number of speakers for the AudioMNIST dataset, sorted by their coun-
try of origin. Note: The double category count (Spain/Spanien) is a
consequence of the meta data file provided by the Audio-source. . . . 88

xii LIST OF FIGURES

A.2 Example of data and its spectrogram transformation, file 7_20_23.wav
was used. 89

A.3 The accuracy of the model as a functions of epochs trained, given as
a fraction. Note that testing was done after each epoch, meaning that
even for epoch = 1 the model had seen every data point and updated
its weights and biases accordingly. 91

A.4 Confusion Matrix for True labels vs. Predicted labels for train and test
data in epoch 12. 91

A.5 Confusion Matrix for True labels vs. Predicted labels for train and test
data in epoch 22. 92

List of Tables

3.1 Definitions and derivatives for some of the most commonly used activ-
ation functions. 18

5.1 Overview of measurements used in the construction of the final data
set. Note that "Noise" is equivalent to stratified or stratified-wavy
flow, but no occurrences of slugs or breaking waves. 45

5.2 Chosen statistics about the events. Note that the runs 54, 55 and 58
contained noise data, thus no event is present. The count column for
these runs reflect the number of segments each run was split into. . . 57

6.1 Kernel sizes and number of kernels (channels out) for each convolution
layer. 61

6.2 Kernel sizes and number of kernels (channels out) for each convolution
layer. 61

7.1 Performance metrics for the proposed 2D model with different data
scaling, on multiple channels. The ∗ indicates that the scaling takes
place before a transformation, that is, on the raw audio data itself.
The boldface highlights the best metric for the given column. 68

7.2 Performance metrics with data subjected to channel-wise and full stand-
ardization after the spectrogram transformation. The boldface high-
lights the best metric for the given column. 68

7.3 Performance metrics with data subjected to channel-wise and full nor-
malization after the Short Time Fourier Transformation. The boldface
highlights the best metric for the given column. 70

7.4 Performance metrics for the proposed 1D model with different scaling.
The boldface highlights the best metric for the given column. 72

7.5 Performance metrics for the proposed 1D model with a Discrete Four-
ier Transform and different scaling. The boldface highlights the best
metric for the given column. 73

xiii

xiv LIST OF TABLES

7.6 Performance metrics for the proposed model when only subjected to
data from one microphone. The boldface highlights the best metric for
the given column. 75

A.1 Structure of the tested convolutional neural network, with layer-wise
explanations. 90

Part I

Introduction

1

Chapter 1

Introduction

1.1 Turbulent pipe flow

Instabilities in multi-phase flow in pipes can lead to a phenomena known as slugs,
which are intermittent regions of one phase occupying the cross-section of the pipe. In
horizontal pipes, it is proposed that this behaviour is explainable through the Kelvin-
Helmholtz instability [1], and the ceiling of the pipe in combination with the internal
wave amplitude. Knowing why slug flow occurs does not make the problem trivially
avoidable. Thus, slugs remain a headache in industrial purposes where multi-phase
fluids are transported through pipes. Most notably, this occurs in the oil and gas
sector and nuclear power plants.

Slug flow in oil and gas pipes are problematic for a multitude of reasons, the
most prominent of which is equipment damage. The sudden change in composition
is potentially damaging for the separators which receive the flow at the outlet of
the pipe. An incoming slug could not only result in poor separation of the fluids,
but, for severe enough slugging, could result in flooding [2, 3]. Moreover, severe
slugging could cause corrosion and further damage on other equipment [4], which in
turn leads to expensive maintenance and potential pauses in production. Both the
cost of maintenance and the opportunity cost of not extracting from the wells lead
to substantial economic losses. These losses in turn call for more efficient operations,
which is dependent on proper identification of flow regimes, a task which machine
learning models perform with an astonishing accuracy.

In the context of nuclear power plants, studies of multi-phase flow regimes through
pipes are relevant for a multitude of reasons. Slug flow can occur, most prominently,
in the steam generators, coolant transport pipes and within the liquid cooling itself.
If these systems were to fail, the nuclear power generation could become unstable,
which in turn could have devastating, long lasting effects. The accuracy of fluid

3

4 CHAPTER 1. INTRODUCTION

and heat-transport models depend heavily on flow-regimes, making these predictions
important within the field of nuclear thermal-hydralics[5].

1.2 Flow Regime identification with Machine Learn-
ing

Using machine learning and/or deep learning methods on data from pipelines in
order to classify flow regimes is not a novel idea, and machine learning is currently
the mainstream, state-of-the-art method for flow regime identification [5]. Starting
as early as 1991 Baba et al. applied artificial neural networks on data from flow-
rate meters [6]. At the time, this was considered a massive success with an accuracy
of 81%. Researchers were quick to perform similar experiments but with several
variations when it came to the flow regimes themselves, source of the experimental
data, and type of machine learning.

Measurement methods for gathering experimental data include, but are not limited
to, pressure sensors [7–10], ultrasonic doppler [11, 12], gamma rays [13–15], and not
surprisingly, cameras [16–19]. Recently the use of camera has increased in popularity,
which is evident from the studies done by, Yang et al. [16], Hobold and da Silva [17],
Du et al. [18] and Shen et al.[19], which all used cameras and were conducted within
the last five years. The reason for this shift to video analysis is the relative ease and
low operation cost of implementing a camera setup.

When it comes to machine learning, the earlier implementations relied more on the
basic architectures, such as the feed-forward neural network. Moving on from Baba et
al. with their 81%, Åbro et al. [13] managed in 1999 to classify horizontal gas-liquid
multi-phase flow, with an accuracy of 97% with three classes. Similarly, Wu et al. [9]
managed in 2001 an accuracy of 92.6% also for three distinct classes but this time
on an oil-water multi-phase flow. Progress continued, and in 2017 Yang et al. [16]
applied the convolutional neural network on data from a high speed camera. Yang’s
network had 7 convolution layers and classified experimental data from a pipe with
an internal diameter of 4mm. Four classes were classified all with an accuracy above
92%. In 2019, Du et al. [18] compared the three popular convolutional neural network
architectures LeNet-5 [20], AlexNet [21] and VGG-16 [22]. Again, the classification
was between three classes, and the results ranged from 57.7% to 99.4% depending on
the combination of network and flow regime.

1.2.1 Acoustic Emission

Acoustic emission is a promising candidate for analysis of multi-phase flow-regimes.
The method is non-intrusive, such that it could be applied to an existing system as

1.3. CONTRIBUTION 5

is, and removed without damage after necessary analysis has taken place. It is in
addition cheap, and could potentially be applied in circumstances which does not
allow for larger and/or more fragile equipment. All these factors combined makes the
use of acoustic emission interesting for the oil and gas sector as probes can be attached
to existing pipelines, without damaging or compromising any existing structures.

Despite the need for flow regime classification, few attempts have been made when
it comes to analysis by way of acoustic emissions. At least one study has previously
been conducted, in 2002 Yen and Lu [23] used a feed-forward neural network in order
to classify four different flow-regimes. It was in 2009 found by Al-lababidi et al. [24]
that the measurement of acoustic emission is sufficient in order to determine void
fraction. Despite these findings, analysis of acoustic emission is not the norm when
it comes to analysis of multi-phase flow-regimes.

1.3 Contribution

This thesis aims to expand the domain of machine learning applied to experimental
data from gas-liquid multi-phase flow. A novel combination of convolutional neural
networks and acoustic emission is studied. Furthermore, the proposed model does not
only classify multi-phase flow regimes, but provides predictions for the slug velocity
and slug length. The model is trained on a new, unique dataset with acoustic emis-
sions from a horizontal pipe with an inner diameter of 10cm. It is hypothesised that
machine learning techniques can be applied to acoustic emission from pipes in order
to extract characteristics of the internal multi-phase flow in a cost effective, efficient,
and non-intrusive manner.

1.4 Thesis Structure

The necessary definitions for different flow regimes are presented, but no mathemat-
ical framework is used, and hence omitted. The theory section on machine learning
aims to be self sufficient, and complete with respect to the tools used in this thesis
work. With the exception of deriving the back-propagation algorithm for the convolu-
tional kernels. The experimental setup used for gathering both audio and video data
is presented and explained, allowing for proper recreations of the experiments. The
data treatment process is described and discussed, and the final constructed data-
set is presented. The specific applications of the network are presented along with
justifications for which parameters were studied. The relevant metrics are briefly
presented before, finally, our results and findings are presented and discussed, and a
final conclusion is drawn.

6 CHAPTER 1. INTRODUCTION

1.5 Additional resources
The code used for this thesis work, and the constructed dataset, are available at the
github repositories danaars/MSc and danaars/Pipesound respectively.

https://github.com/danaars/MSc
https://github.com/danaars/Pipesound

Part II

Theory

7

Chapter 2

Slug Flow

By definition, a slug is an intermittent region in which the entire cross section of the
pipe consists of a single fluid. The slug is said to have a nose and a tail, corresponding
to the front and back of the slug, relative to the direction of travel. The length of
a slug is then the distance from the nose to the tail, and the velocity of the slug is
defined as equal to the velocity of the slug nose. Due to the evolution of both the
slug nose and tail throughout time, the characteristics of the gas-liquid boundary is
destined to change somewhat during the slugs lifetime. Difficulties arise in accurately
determining the lengths and velocities of slugs. The dynamic boarder introduces
ambiguity in the parameters needed for length and velocity calculations.

2.1 Flow Regimes
Even though a slug itself is defined, subcategories are distinct enough to motivate
further definitions. For horizontal pipes and a gas-liquid two-phase flow, the following
flow regimes are recognised by Holland and Bragg [25]; Bubbly, Plug, Stratified, Wavy,
Slug, Annular and Spray. The flow regimes are presented in descending order when
it comes to liquid volume, bubbly flow consisting of mostly liquid with bubbles of gas
intermittently throughout the pipe. In contrast, spray flow consisting of mostly gas
with either mist, or small, dispersed liquid regions present. Different flow regimes are
illustrated in fig. 2.1.

2.2 Slugs
By definition, and as can be seen from fig. 2.1, slug flow occurs when the gas-liquid
boundary reaches the ceiling of the pipe. From the slug’s inception it will continue
to travel as a continuum throughout the pipe. During the slugs journey, it may, or

9

10 CHAPTER 2. SLUG FLOW

Figure 2.1: Illustrated flow regimes in horizontal gas-liquid two-phase flow. The arrow
indicates the order from most liquid to least liquid. The illustration is taken from
Holland and Bragg [25].

may not disintegrate, depending on the surrounding pressures and the specific flow
regime experienced in the pipe.

2.2.1 Aerated slug

When a slug partly consists of dispersed air bubbles, it is said to be aerated. For this
to occur, not only must the conditions for slug formation be met, but in addition the
gas velocity must be sufficiently high. An aerated slug is shown in fig. 2.2, where
the aerated nature is evident from the light diffraction. Due to the generally higher
gas velocity, the aerated slugs tend to traverse faster through the pipes than the
non-aerated alternative; plug slugs. This could be problematic with regard to fluid
seperators, due to the difficulties in seperating mixed media, the incoming velocity,

2.2. SLUGS 11

and the contrast in composition from a temporal perspective.

(a) The nose of an aerated slug moving from left to right.

(b) The tail of an aerated slug moving from left to right.

Figure 2.2: Examples of the nose and tail for an aerated slug. Note the diffused light
from the underlying LED light, as described in chapter 4.

2.2.2 Plug flow

For lower gas-velocities, gas is not mixed into the liquid and thus the slug is almost
entirely liquid. In fig. 2.1 the plug flow illustrated shows the plug itself as a region
of gas encapsulated by liquid at the nose and tail, in addition to a thin film of liquid
between the gas plug and pipe boundary. Alternatively, the plug could consist of the
liquid fluid. Some minor caveats: In this case there is no film separating the plug from
the boundary, and dependent on the pipe dimensions, pressures and fluid velocities,
the region of gas between liquid plugs could be quite long. Hereby plug slug will be
used to describe liquid plugs, as shown in fig. 2.3.

12 CHAPTER 2. SLUG FLOW

(a) The nose of a plug slug moving from left to right.

(b) The tail of a plug slug moving from left to right.

Figure 2.3: Examples of the nose and tail for a plug slug. Note how there is practically
no diffusion of the light when compared with fig. 2.2.

Chapter 3

Machine Learning

In the kingdom of the blind, the
one-eyed man is king.

Desiderius Erasmus
(1466 - 1536)

Mankind has always drawn inspiration from nature, and this inspiration is reflec-
ted in the tools we utilize. Ancient tribes used shamanistic masks depicting animal
faces in religious ceremonies, the clothes worn by early humans were usually made
from animal fur or hide, and even today the influence of nature’s design is apparent.

For instance, the kingfisher is a clade (group of species with common ancestor)
that contain species which engage in terrestrial foraging, and species that hunt by
way of plunge-diving. By studying the beaks of the respective species, scientists were
able to deduce that the plunge-diving species had a smaller deceleration when passing
the water barrier, both experimentally and by way of computation [26].

These results have been applied in the design of modern, Japanese bullet trains.
Whenever a high-speed train enters a tunnel, it goes from a low pressure, low res-
istance environment into an environment with higher resistance, much like how a
kingfisher travels from low-density air into high-density water. By designing the front
of the train in a matter which resembles the plunge-diving kingfishers beak, the air
pressure in the tunnel was reduced by 30%, and the use of electricity was reduced by
15% even though the train experienced a speed increase of 10% 1[27].

Not all problems require a physical alteration or tool, however, and the solutions
to complicated problems or systems are seldom obvious. Nature’s solution to the

1The nose of the train was not directly modelled after the kingfishers beak, but data analysis of
bullets entering pipes concluded that the ideal shape is almost identical to that of the kingfishers
beak

13

14 CHAPTER 3. MACHINE LEARNING

predicament of complexity was to evolve a brain; a collection of neurons which activ-
ate in specific pathways by way of electrical signals. The brain remains a scientific
mystery, but the basic neuron itself is somewhat understood. The complex behavior
of out own mind emerges from the connections between somewhat simple agents.

Drawing inspiration from this structure, researchers McCulloch and Pitts laid the
foundation from which the biggest innovations of the 21st century would emerge. In
1943, the perceptron was born, and it is now known as the McCulloch-Pitts neuron
(MP Neuron) [28].

As a consequence of the neurological inspiration, the MP Neuron only received
boolean values as input, mimicking how neurons either fire a signal or don’t. In
addition, the weights used in the calculation were manually implemented. The MP
Neuron would then be able to binary classify an input of length n by testing whether
f(x,w) was a positive or negative number, with f(x,w) given by

f(x,w) = x ·w, (3.1)
f(x,w) = x1w1 + x2w2 + · · ·+ xnwn. (3.2)

This was later expanded upon, most notably by Rosenblatt (which first coined the
term perceptron) in 1958 [29]. His perceptron accepted not only boolean values, but
any real number along with having learnable weights [30]. The perceptron started
seeing some use at this point, but it could still only approximate linear solutions. Due
to this, direct inspiration from the brain halted. Scientists were not finished with the
perceptron, and evolution has since been rapid.

In recent times machine learning in the form of artificial intelligence has garnered
societal attention with tools such at ChatGPT and Dall·E 2 which build upon techno-
logies such as the transformer [31], and advances within stable diffusion [cite ramesh],
respectively. Artificial intelligence and machine learning are here to stay, and if we
are to believe Google’s keynotes presented May 2023 2, will be implemented into more
existing technologies in the years to come. The understanding of artificial intelligence
and machine learning is more important now than ever, so lets start at the basics.

3.1 The basics

Machine learning is a regression method, capable of making predictions, much like
linear regression. Unlike linear regression, machine learning models are able to make
more accurate predictions on data which is not suited for other classical regression
methods.

2https://io.google/2023/program/396cd2d5-9fe1-4725-a3dc-c01bb2e2f38a/

https://io.google/2023/program/396cd2d5-9fe1-4725-a3dc-c01bb2e2f38a/

3.2. FEED-FORWARD NEURAL NETWORKS 15

The machine learning model is capable of improving its predictions through train-
ing. The training is done on collected data, referred to as training data. In order to
validate the performance of the model, validation data/test data is used. This is data
which is previously unseen by the model.

Training and testing data are important as we risk the model simply remembering
the correct features of the training data, rather than gaining insight into the overarch-
ing trends in the features. This can lead to a problem within machine learning known
as overfitting, where the model is substantially better optimized for predictions on
the training data than the test data.

When the model trains using the training data it is said to undergo one epoch
when it has seen every datasample from the training dataset once.

3.2 Feed-Forward Neural Networks

The Feed-Forward Neural Network is the simplest way of orchestrating a neural net-
work, and is achieved by having the neurons (hereby node) structured in layers. This
kind of network is usually illustrated by having the nodes represented by circles,
and the connections between them represented by arrows indicating the direction the
information travels.

The initial layer of the network is known as the input layer. This is the layer that
receives the information which the network utilizes in its further calculations and is
represented in orange in figure 3.1. A distinguishing feature of the input layer is that
it does not receive information from any nodes, in contrast to the hidden layer as well
as the output layer.

The hidden layer (or layers) is responsible for the intermediate calculations made
by the network. If a neural network contains more than one hidden layer, we say
that the network utilizes deep learning, a sub-category of Machine Learning as shown
in figure 3.2. In figure 3.1 the hidden layers are represented in green. The hidden
layers are where the magic of the neural network takes place. Partly because the
connections to and from the hidden layer compose the bulk of the network itself, but
perhaps most importantly, because the nodes in the hidden layers are affected by
activation functions. Activation functions and their consequences will be expanded
upon later in this chapter.

Lastly, the output layer returns the values calculated by the model. Depending on
the specific implementation, the output layer could be prone to an activation function,
but this is usually not the case. When no activation function is used and the model
should solve a classification problem, the model returns a so-called logit. For the
statisticians, this is an abuse of naming, as the logit (logistic unit) is defined to be
a function which maps probabilities from R[0, 1] to R(−∞,∞). Following Berkson’s

16 CHAPTER 3. MACHINE LEARNING

Input Layer Hidden Layer(s) Output Layer

x1

x2

x3

x4

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
5

y1

y2

Figure 3.1: Illustration of a simple Feed-Forward Neural Network, containing two
hidden layers.

definition from 1944 [32], we have that the logit is given by the taking the logarithm
of the odds; logit(p) = ln

(
p

1−p

)
.

This mapping was motivated by the ability to use linear regression methods on a
domain where the output is a probability. At this point the connection somewhat re-
veals itself, as the neural network provides "probabilities" for which class the provided
data belongs to. Of course, the neural network is a non-linear regression method, and
the raw logits violate the Kolmogorov axioms of probability [33], but the terminology
still remains.

With that small digression taken care of, we can turn our attention to why the
regression is non-linear in the first place; the implementation and use of activation
functions.

3.2. FEED-FORWARD NEURAL NETWORKS 17

Artificial Intelligence

Machine
Learning

Deep
Learning

Figure 3.2: Crude categorization of Artificial Intelligence frameworks. Note that the
borders are somewhat blurred, this definition is in alignment with Goodfellow et al.
[30].

3.2.1 Activation Functions

One of the parameters which determine the final performance of a neural network
is the activation function which works on each of the nodes in a layer. Usually the
activation function is the same throughout the layer, but in theory this need not be
the case. In practice, however, this is heavily encouraged, and is standard across the
main frameworks for machine learning. Denoting the activation function as f , we
have that the output of a single neuron is given by

f(x ·w + b), (3.3)

where, as usual, x is the output of the previous layer, w are the accompanying weights,
and b denotes the bias.

There are multiple choices for f , a sample of the most common is given in table
3.1. An important property of the activation function is that its derivative is known.
This property is used in the back-propagation algorithm, thus the derivative of the
activation function is also provided. In practice, however, it is not required that
the activation function has a defined derivative at all inputs. Using numerical dif-
ferentiation, for instance, in the form of autograd, the derivative need not even be
implemented manually, sidestepping having to know the derivative of the activation
function in its entirety.

There are not many requirements an activation function must adhere to, but it is
worth noting that the activation function should be monotonic. In addition, for non-
linear regression there must be at least one layer of non-linear activation functions.

18 CHAPTER 3. MACHINE LEARNING

Activation Function Definition, f(x) Derivative, df
dx

Sigmoid/Logistic 1
1+e−x

e−x

(1+e−x)2
= f(x)(1− f(x))

Rectified Linear Unit

{
x if x > 0

0 if x ≤ 0

1 if x > 0

0 if x < 0

undefined if x = 0

Linear/Identity x 1

Tanh ex−e−x

ex+e−x 1− (ex−e−x)
2

(ex+e−x)2
= 1− f 2(x)

Table 3.1: Definitions and derivatives for some of the most commonly used activation
functions.

It is this implementation of non-linear activation functions which is the reason our
neural network can approximate not only linear functions, but, in fact, any function!
This is summarized in the Universal Approximation Theorem.

Universal Approximation Theorem

The Universal Approximation Theorem states that the error of an approximation
provided by a neural network that follows the feed-forward architecture, can be made
arbitrarily small. There are two ways this can be achieved; namely the arbitrary width
case, and the arbitrary depth case.

The Arbitrary width case was initially proven by Cybenko in 1989 [34] who showed
that the feed-forward neural network is a universal approximator when using the
Sigmoid activation function. Later Hornik, Stinchcombe and White showed that a
network with one hidden layer and a finite amount of nodes is sufficient for the network
to be a universal approximator [35].

For the depth case, progress was a bit more slow. Work continued none the less,
and after a series of papers it was shown that the feed-forward neural network is a
universal approximator for a range of activation functions [36–39].

These proofs rely primarily on representation and measurement theory and is
outside the scope of this thesis. None the less, the results are still valid, providing
Neural Networks with the theoretical foundation required for rigorous use.

3.2.2 Mathematics behind the forward pass

With an understanding of the components of the neural network, we may now dive
into how predictions are made. For the Feed-Forward Neural Network, this is known
as a forward pass. As a quick reminder; the input layer has no previous layer, and

3.2. FEED-FORWARD NEURAL NETWORKS 19

the output layer has the linear activation function. That is, we do not set restrictions
on the predictions provided by the network.

A single node in a fully connected feed-forward neural network (often referred to
as MultiLayer Perceptrons, MLP) receives as its input all the outputs from its pre-
ceding layer in the network multiplied by some tune-able weights. In addition to the
weighted previous output, the input has a tune-able bias added as well. Introducing
the notation zli as the input to node i in layer l, and ali as the output (activation of
input), we have

zli =

(
Nl−1∑
j=1

wl
ija

l−1
j

)
+ bli, (3.4)

and

ali = f l(zli), (3.5)

where it is assumed that all nodes in the same layer have the same activation function,
f l. Moreover, wl

ij is the weight connecting node j from layer l − 1 to node i in layer
l, al−1

j is the output, or activation, from node j in layer l − 1, bli is the bias added to
node i in layer l, and Nl−1 is the number of nodes in layer l − 1. The data returned
from the input layer will be the same as the data provided to the input layer. That
is a0i = xi where x is the input.

Let us now consider a fully connected neural network with L + 1 layers. The
final output, or prediction, of the model is then usually denoted by ŷ as to follow the
convention of f(x) = y, in combination with hat denoting that this is a prediction.
The final prediction must then be given by

ŷi = fL
(
zLi
)

(3.6)

= fL

((
NL−1∑
j=1

wL
ija

L−1
j

)
+ bLi

)
(3.7)

... (3.8)

ŷi = fL

(
NL−1∑
j=1

wL
ijf

L−1

(
NL−2∑
k=1

wL−1
jk fL−2

(
. . . f 1

((
N0∑
n=1

w1
mna

0
n

)
+ b1m

)
. . .

)
+ bL−1

j

)
+ bLi

)
,

(3.9)

where fL usually is the linear function, as described in table 3.1.

20 CHAPTER 3. MACHINE LEARNING

The same calculations can also be described in terms of linear algebra. By now
letting the input and output be given as vectors, we have

zl = Wlal−1 + bl (3.10)

where

al =

f l(zl1)
f l(zl2)

...
f l(zl

N l)

 . (3.11)

Wl denotes the matrix containing the weight from layer l−1 to layer l, and b denotes
the bias. Performing the calculation between layer l−1 containing N nodes, and layer
l containing M nodes

Wlal−1 + bl =

wl

11 wl
12 . . . wl

1N

wl
21 wl

22 . . . wl
2N

...

wl
M1 wl

M2 . . . wl
MN

al−1
1

al−1
2

...

al−1
N

+

bl1

bl2
...

blM

 (3.12)

=

wl

11a
l+1
1 + wl

12a
l+1
2 + · · ·+ wl

1Na
l+1
N + bl1

wl
21a

l+1
1 + wl

22a
l+1
2 + · · ·+ wl

2Na
l+1
N + bl2

...

wl
M1a

l+1
1 + wl

M2a
l+1
2 + · · ·+ wl

MNa
l+1
N + blM

 (3.13)

=

(∑N
j=1 w

l
1ja

l+1
j

)
+ bl1(∑N

j=1 w
l
2ja

l+1
j

)
+ bl2

...(∑N
j=1w

l
Mja

l+1
j

)
+ blM

(3.14)

= zl. (3.15)

3.2. FEED-FORWARD NEURAL NETWORKS 21

By using the notation f ◦ v for a function applied piece-wise to elements in a
matrix or vector, defined as

(f ◦A)i,j = f(Aij), (3.16)

(f ◦ v)i = f(vi), (3.17)

we have that

f l ◦
(
Wlal−1 + bl

)
= f l ◦ zl (3.18)

=

f l
((∑Nl−1

j=1 wl
1ja

l−1
j

)
+ bl1

)
f l
((∑Nl−1

j=1 wl
2ja

l−1
j

)
+ bl2

)
...

f l
((∑Nl−1

j=1 wl
Mja

l−1
j

)
+ blM

)

, (3.19)

such that

(
f l ◦

(
Wlxl−1 + bl

))
i
=
(
f l ◦ zl

)
i

(3.20)

= f l

((
Nl−1∑
j=1

wl
ija

l−1
j

)
+ bli

)
, (3.21)

which we recognise as eq. 3.5.
Using this notation further, we can again express the final prediction as

ŷ = fL ◦
(
WLfL−1 ◦

(
WL−1fL−2 ◦

(
. . . f 1 ◦

(
W1x+ b1

)
. . .
)
+ bL−1

)
+ bL

)
,

(3.22)

with x being the input to our fully connected feed forward neural network.
From the universal approximation theorem, we know that the prediction ŷ can be

made arbitrarily precise for valid values of f , but how can we achieve this? Note that
x is a fixed value and the activation functions are predefined and hence not subject
to change. Thus the only options are to change the weights and biases. In order to
change the weights and biases in a favourable manner, we need to measure the error
made by the model. This is achieved through the use of loss functions.

22 CHAPTER 3. MACHINE LEARNING

3.2.3 Loss functions

Choosing the metric from which to judge the performance of our neural network is
instrumental when it comes to the final performance. This is a mathematical con-
sequence of how the model improves itself, or trains. The loss function, or cost
function (used interchangeably), will provide some metric as to how close the predic-
tion provided by the model is to some predefined label. The label will then function
as the ground truth.

Ideally, the difference between prediction and label is zero, corresponding to a
perfect prediction. Thus the loss function should be minimized, in order to ensure
best possible predictions.

There exists a myriad of loss functions, each reflecting the specific purpose of the
neural network in question. In our case, it is natural to sort them into two main
groups. These are; Classification and Regression.

For classifications, the output is often provided as a vector in which each element
correspond to one of the possible classes. Both the vector returned from the neural
network, and the label are on the form y ∈ RN for N distinct possible classes.
Depending on whether there are one or more correct classes, the label will have one
or more of its elements equal to 1, corresponding to the correct label. The rest off
the labels will be zeros, as depicted in fig. 3.4. This kind of label is often referred to
as one-hot encoding, or a one-hot vector.

In the regression case, we are free to use any method for measuring distance in
RN . Drawing inspiration from the standard linear regression, the mean squared error
is most commonly used.

In this thesis work two loss-functions were utilized, one for classification and one
for regression.

The loss function used for classification is the so-called Cross Entropy Loss func-
tion, and is defined as

LCE(y, ŷ) = −
N∑
1

yi log(ŷi), (3.23)

where the yi’s are the labels, and ŷi is the prediction from the model, with some
treatment. This treatment is the softmax function, defined as

softmax(xi) =
exi∑N
j=1 e

xj

, (3.24)

which scales the logit output from the model element-wise. The scaled output is
now a vector of the same dimensionality, but with its elements in the closed range

3.2. FEED-FORWARD NEURAL NETWORKS 23

[0, 1]. This is a necessary step as logits from the model could be negative, which
would certainly make the calculations in LCE end rather disastrously. Moreover, if
ŷi > 1 then log(ŷi) > 0 which could result in LCE < 0. Seeing as the model aims
to minimize LCE, this would guide the model into predicting completely erroneous
values that would still provide the smallest loss metric. However, as the values used
in the loss calculation are now in the region [0, 1], log(ŷi) ≤ 0, thus ensuring LCE ≥ 0.

An example of the application of the softmax function, and an example calculation
of the Cross Entropy Loss are shown in figs. 3.3 and 3.4.

-0.81

-0.32

0.24

0.23

1.02

ŷ

0.44

0.73

1.27

1.26

2.77

1
6.4741

· =

0.07

0.11

0.20

0.19

0.43

softmax(ŷ)

∑5
j=1 e

ŷj = 6.4741

Figure 3.3: Illustration of the softmax function applied to a rank 1 tensor. Note how
the elements of the tensor softmax(ŷ) sum to 1.

24 CHAPTER 3. MACHINE LEARNING

0.07

0.11

0.20

0.19

0.43

softmax(ŷ)

0

0

1

0

0

Class label

Cross Entropy Loss

−
(
0 · log(0.43)

+ 0 · log(0.19)
+ 1 · log(0.20)
+ 0 · log(0.11)
+ 0 · log(0.07)

)
= 1.61

(a) Cross Entropy Loss with a weak prediction.

0.07

0.11

0.20

0.19

0.43

softmax(ŷ)

0

0

0

0

1

Class label

Cross Entropy Loss

−
(
1 · log(0.43)

+ 0 · log(0.19)
+ 0 · log(0.20)
+ 0 · log(0.11)
+ 0 · log(0.07)

)
= 0.84

(b) Cross Entropy Loss with a stronger prediction.

Figure 3.4: Illustration of how the Cross Entropy Loss function acts on a rank 1
tensor which has undergone a softmax transformation.

In the regression case, the Mean Squared Error was used as a loss function, and
is defined as

MSE(x,y) =
1

N

N∑
i=1

(xi − yi)
2. (3.25)

Seeing as the intention of this thesis work is to regress a value, and not a function,
the MSE is reduced to (y − ŷ)2. Similarly to the classification case, the loss function
for regression has a lower bound of zero as the predicted values are real. That is
MSE ≤ 0 because y, ŷ ∈ R.

3.2. FEED-FORWARD NEURAL NETWORKS 25

3.2.4 Update weights and biases; Gradient descent

Before embarking on what is, perhaps, the most crucial algorithm in classical nerual
networks, a summary is in order. Thus far we have seen how data enters a neural
network, and how the values in the next layers are calculated, by the use of weights,
biases and activation functions. Finally, the prediction is evaluated by some metric
which is defined through a loss function.

The structure of the network, activation functions and loss functions are defined,
and thus not subject to change. Yet we want a model which improves for each
iteration. We are left with no other choice than to change the weights and biases
in order to improve the precision of the predictions. This is done through backward
propagation, and was first introduced by Rumelhart et al. [40].

The Backpropagation Algorithm

In order to change the weights and biases such that the loss is minimized, we need to
know how it changes with respect to each weight and bias. As explained by Nielsen
in [41], there are four essential equations which are needed in order to calculate these
values.

Let a neural network consist of L+1 layers, l = 0, 1, . . . , L. Let δlj denote the error
at node j in layer l, defined δlj =

∂C
∂zlj

, where C is the value of the loss function (here
denoted C because of its interchangeable name; cost function, and in order to avoid
confusion with layer number). Let f denote the loss function and f ′ its derivative.
For the final layer of the network, we have the error done by node j given as

δLj =
∂C

∂zLj
. (3.26)

Using the chain rule, and the definition of aLk as given in 3.5, we have that

δLj =
∑
k

∂C

∂aLk

∂aLk
∂zLj

(3.27)

=
∂C

∂aLj
f ′(zLj). (3.28)

Calculating both ∂C
∂aLj

and f ′(zLj) is straight forward, especially when the derivative
of the cost function and activation function is known.

We can then write 3.28 as a vector δL. By writing the first factor as ∇aLC and the
second factor as f ′ ◦ zL, the element wise product would be equal to δ.L. This can be

26 CHAPTER 3. MACHINE LEARNING

achieved by the Hadamard product, denoted by ⊙, and defined such that (A⊙B)i =
AiBi. The error from the final layer L is then given as δL = ∇aLC ⊙

(
f ′ ◦ zL

)
.

We now need to find the error from the previous layers in the network, which can
be done by expressing the error for a given layer as the error in the following layer.
By definition we have

δlj =
∂C

∂zlj
(3.29)

and, again, by the chain rule we have

δlj =
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
(3.30)

=
∑
k

δl+1
k

∂zl+1
k

∂zlj
. (3.31)

Using that zl+1
k =

(∑
j w

l+1
kj alj

)
+ bl+1

k =
(∑

j w
l+1
kj f(zlj)

)
+ bl+1

k , we have ∂zl+1
k

∂zlj
=

wl+1
kj f ′(zlj). The error for an arbitrary layer l is thus expressed by the error its following

layer as

δlj =
∑
k

δl+1
k wl+1

kj f ′(zlj). (3.32)

Again, we may express this as a vector

δl =
((

W l+1
)T

δl+1
)
⊙
(
f ′ ◦ zl

)
. (3.33)

We are now able to calculate the error for any layer in the network by first calcu-
lating the error in the final layer, then iterating backward. We can then find the final
partial derivatives we are after, the change in cost given by the change in weights,
and the change in bias.

Starting with the bias case, again using definition 3.26 in combination with the
chain rule:

δlj =
∂C

∂zlj
(3.34)

=
∂C

∂blj

∂blj
∂zlj

(3.35)

=
∂C

∂blj

1
∂zlj
∂blj

. (3.36)

3.2. FEED-FORWARD NEURAL NETWORKS 27

Using zlj =
(∑

k w
l
jka

l−1
k

)
+ blj, it is easy to calculate ∂zlj

∂blj
= 1, thus ∂C

∂blj
= δlj.

Similarly, by observing that ∂zlj
∂wl

jk
= al−1

k , we can calculate

δlj =
∂C

∂zlj
(3.37)

=
∂C

∂wl
jk

∂wl
jk

∂zlj
(3.38)

=
∂C

∂wl
jk

1
∂zlj
∂wl

jk

(3.39)

=
∂C

∂wl
jk

1

al−1
k

, (3.40)

thus ∂C
∂wl

jk
= al−1

k δlj, and we have our final expression needed for the full backpropaga-
tion algorithm, which is given as algorithm 1.

Algorithm 1 The backpropagation algorithm, as explained by Nielsen [41]. Note
that the omission of subscript indicates vector.
Require: x ; Input
Require: W , b; Initial weights and biases
1: a0 ← x
2: for l = 1, 2, . . . , L do
3: zl ← wlal−1 + bl

4: al ← f ◦ zl
5: end for
6: δL ← ∇aLC ⊙

(
f ′ ◦ zL

)
7: for l = L− 1, L− 2, . . . , 1 do
8: δl ←

((
W l+1

)T
δl+1

)
⊙
(
f ′ ◦ zl

)
9: end for

10: return Gradient of the loss function given by ∂C
∂wl

jk
= al−1

k δlj and ∂C
∂blj

= δlj.

If we could now solve for ∂C
∂wl

jk
= al−1

k δlj = 0 and ∂C
∂blj

= δlj = 0, we would have found
a local (or potentially global) minima for the weights and biases. Sadly, closed form
expression for these partial derivatives rarely exist. This motivates the use of other
optimization methods.

28 CHAPTER 3. MACHINE LEARNING

Gradient Descent methods

The idea behind gradient descent is simple. Start at some point in RD, and take a
step in the direction which lowers the value the most. This direction is by definition
the negative gradient of the function one wishes to minimize.

In the following derivations the weight and biases will be grouped together in
the common variable θ. Calculating the gradient can then be done as described in
subsection 3.2.4. With the direction in which to step now known, the length of the
step can be put into the spotlight. In general, the step length is denoted by the greek
letter η, and thus we have everything needed to take a step in the parameter space
θ. The weights and biases for the next time step t+ 1 are then given by

θt+1 ← θt − η∇θC(θt). (3.41)

In this fashion, gradient descent will converge towards a position in parameter
space where the gradient is zero. There is, however, no guarantee that the θ for
which ∇θC(θ) = 0 is the same θ as argmin

θ
C(θ). Which is to say that there is no

way to distinguish a local minima from a global minima, based on θ and ∇θC(θ). In
order to handle this, two modifications are made. The introduction of stochasticity,
and momentum.

Stochastic Gradient Descent

In contrast with the classic gradient descent, we no longer calculate the gradient for
the entire data set. At least, not all at once. By splitting the dataset into multiple
batches containing random samples from the dataset, we can calculate the gradient
in parameter space for a single batch, ∇θCi(θ), and then update the weights and
biases accordingly. The idea is that the local minima will now change in parameter
space, depending on which samples are currently in the batch. Hopefully, with the
stochastic element now introduced, the path explored through the parameter space
sweeps a larger "area", increasing the probability that the global minima is found.
Or, at least, a better minima than the one found strictly by the full-batch gradient
descent, which has one batch consisting of the entire dataset, making it equal to
traditional gradient descent.

Momentum

The other method introduced is, as mentioned, momentum. In this case, the over-
arching idea is that the inertia, or momentum, of the descent should be taken into

3.2. FEED-FORWARD NEURAL NETWORKS 29

account in order to overcome local minima and potentially noisy or oscillating gradi-
ents. This is quite analogous to momentum in classical mechanics, where a ball rolling
down a hill could have enough kinetic energy to roll out of a local minima.

This is achieved by calculating the momentum for a the next iteration, t+ 1, as

mt+1 = γmt + η∇θCi(θt), (3.42)

where γ is a parameter which dictates how much of the prior momentum should be
included in the current. The parameters are then updated as

θt+1 = θt −mt+1. (3.43)

The process of gradient descent with momentum is given in algorithm 2.

Algorithm 2 Stochastic gradient descent with momentum.
Require: η
Require: γ ∈ [0, 1)
Require: C(θ)
Require: θ0
1: m0 ← 0
2: t← 0
3: while not converged do
4: mt+1 ← γmt + η∇θCi(θt)
5: θt+1 ← θt −mt+1

6: t← t+ 1
7: end while
8: return θ

Adaptive Momentum

In this thesis work a stochastic gradient descent method with adaptive momentum
was used. The method was published late in 2014, by Kingma & Ba [42], and was
given the name ADAM. With over 140 000 citations, the optimizer has proven itself
to be a rather popular choice. As to why this is the case, the authors explanation is
sufficiently detailed;

“(...) an algorithm for first-order gradient-based optimization of stochastic ob-
jective functions, based on adaptive estimates of lower-order moments. The method

30 CHAPTER 3. MACHINE LEARNING

is straightforward to implement, is computationally efficient, has little memory re-
quirements, is invariant to diagonal rescaling of the gradients, and is well suited for
problems that are large in terms of data and/or parameters.”[42]

The steps can, again, be summarized in a set of equations

gt = ∇θCi(θt−1), (3.44)
mt = γ1mt−1 + (1− γ1)gt, (3.45)
vt = γ2vt−1 + (1− γ2)g

2
t , (3.46)

m̂t = mt/
(
1− γt

1

)
, (3.47)

v̂t = vt/
(
1− γt

2

)
, (3.48)

and the algorithm itself is provided in algorithm 3.

Algorithm 3 The adaptive momentum algorithm, as provided by Kingma & Ba [42].
Note that g2

t indicates the element-wise square gt ⊙ gt. Suitable default settings are
η = 0.001, γ1 = 0.9, γ2 = 0.999 and ϵ = 10−8. The ϵ is included in order to avoid
division by zero errors. All operations are done element-wise.
Require: η
Require: γ1, γ2 ∈ [0, 1)
Require: C(θ)
Require: θ0
m0 ← 0
v0 ← 0
t← 0
while θt not converged do
t← t+ 1
gt ← ∇θCi(θt−1)
mt ← γ1mt−1 + (1− γ1)gt

vt ← γ2vt−1 + (1− γ2)g
2
t

m̂t ←mt/(1− γt
1)

v̂t ← vt/(1− γt
2)

θt ← θt−1 − ηm̂t/
(√

v̂t + ϵ
)

end while
return θ

3.3. CONVOLUTIONAL NEURAL NETWORKS 31

3.3 Convolutional Neural Networks
Convolutional neural networks aim to combine technology used in classical image
treatment, and neural networks. The convolutional neural network is arguably the
most common framework for deep learning, and because of its connection to image
analysis applications range from text mining, spam detection, image classifications,
audio and speech processing ans natural language processing [43].

3.3.1 Convolution

Convolution in general is a mathematical operation which takes two functions and
produces a third. The operation in denoted by a star, ∗, and is defined for two
continuous functions as

(f ∗ g)(χ) =
∫ ∞

−∞
f(x)g(χ− x)dx. (3.49)

The applications are wide-spread, mostly within different forms of signal analysis.
This is due to the operations ability to combine, or superimpose the two functions.

For applications on series of discrete values, which is the case for all digitally
treated data, the discrete convolution is used, and is defined as

(f ∗ g)[n] =
m=∞∑
m=−∞

f [m]g[n−m]. (3.50)

Even though it is possible to take the convolution of two different series containing
data, the application which is used in the setting of convolutional neural networks is
letting one of the series be a so-called kernel. The kernel is generally a smaller series,
containing specific values which alter the original series, such that their convolution
has a new, desired feature. Moreover, the kernel can be used for extraction of specific
features present in the original series.

Convolution is not limited to one dimension, however, and can be generalized to
higher dimensions. For image analysis both the data and kernel is often given in two
dimensions. Color images often contain 3 channels however, in order to include all
three RGB values for a given pixel. How this is treated in the convolutional neural
network is discussed in a later chapter. The two dimensional discrete convolution is
defined as

(f ∗ ∗g)[n1, n2] =

m2=∞∑
m2=−∞

m1=∞∑
m1=−∞

f [m1,m2]g[n1 −m1, n2 −m2] (3.51)

32 CHAPTER 3. MACHINE LEARNING

(a) Image of a coffee mug. (b) Convolution of 3.5a using the Sobel kernel.

Figure 3.5: Example of a 2D convolution applied to an image in order to extract some
feature. In this case the Canny edge detection algorithm has been performed, with
the Sobel kernel. Note the lack of coffee present in the mug.

Again depending on a suitable kernel, features from the input data can be extrac-
ted. For images, this is illustrated in fig. 3.5.

The feature extraction property is widely used in image processing, which inspires
the use of trainable kernels in machine learning.

3.3.2 Trainable kernel

In contrast with more classical image analysis, the kernels used in convolutional neural
networks are not predefined. In fact, they are not even static. The values in a
given kernel is subjected to the backward propagation algorithm in a similar manner
to every other tuneable parameter in the network. The derivation for this back-
propagation is considerably longer than that of the feed-forward neural network, and
interested reader is referred to Zhang [44] for a full derivation.

The dynamic nature of the convolutional neural network kernels offers some ad-
vantages. Most importantly, the user will not need any prior information about
which parts of the data is interesting. Given a sufficiently labeled dataset, the net-
work should iteratively update the kernels such that the relevant information for the
purpose of the network is extracted. Not only does this save time, as the user need

3.3. CONVOLUTIONAL NEURAL NETWORKS 33

not hand craft each kernel, but the network could discover some previously ignored
feature in the data which was relevant.

Powerful as it may seem, the tuneable kernel has at least one flaw in the form of
new parameters, which in turn slows down the back-propagation process, due to the
new calculations which need to be performed. The kernel is however only one part of
the convolution performed in a convolutional neural network.

3.3.3 Data stream

The convolution part of the neural network does not only consist of the kernel ap-
plications. The output of a convolution is subject to an activation function, exactly
as the output from any other node in a neural network. In addition, a process called
pooling is performed. At this point it is appropriate to introduce the term tensor, at
least how a computer scientist would view a tensor. From an informatics perspective,
a tensor is simply a nested array. The number of indices one must specify in order
to receive a single value from this tensor would determine the rank of the tensor. A
single floating point number would be a rank 0 tensor, as no index is needed in order
to get the value. For an array of floats, one index is needed in order to get an element,
thus the array would be a rank 1 tensor, etc. The tensor transformations which occur
in the convolution part of the network is as follows.

Each kernel in a convolutional layer will provide one output. Hence, for a con-
volutional layer with n kernels, the layer will produce n · c outputs, where c is the
number of channels in the provided tensor. This output tensor is then subject to an
activation function, which works piece-wise on all the elements in the tensor. In order
to reduce the dimensionality of the tensor, pooling is performed. Pooling is simply
replacing values within a given region with some statistic from the values present in
said region. This new singular value will take the place of all the old values, and thus
reduce the overall elements in the tensor. The most common pooling operation is the
maxpool, which returns the largest of the evaluated values. How many elements the
pooling operator should take into consideration is a hyperparamter for the model, a
common value is pooling over a 2 by 2 area, hence reducing the dimensionality by a
factor of 4.

The effects of 2D discrete convolution on a rank-2 tensor is illustrated in fig. 3.6.
Similarly the effect of the activation function and pooling is illustrated in fig. 3.7.
Note that if the stride of the maxpool kernel was set equal to 1, no values would be
omitted, and the resulting tensor would be

0.14 0.10 0.14 0.44
0.14 0.25 0.25 0.44
0.04 0.25 0.25 0.17
0.10 0.10 0.49 0.50

 .

34 CHAPTER 3. MACHINE LEARNING

This process; use of convolution, use of an activation function, and pooling is
repeated multiple times, and in the context of convolutional neural networks is simply
referred to as a convolution layer. The reduction along some dimensions due to the
convolution and pooling, and the expansion along others due to the number of kernels
is illustrated in fig. 3.8.

After the desired number of convolution layers, the output tensor, which should
now contain all the accumulated features, is flattened. This flat rank-1 tensor serves as
the input into a feed-forward neural network, which then performs the final classifica-
tion or regression. No rule dictates that this feed-forward neural network has to be a
deep neural network with multiple hidden layers. The network should simply perform
the final calculation, but if the convolution part of the network has extracted all the
relevant information from the original input tensor, excessive nodes and connections
is most likely not necessary. It is worth noting that for networks performing multiple
classifications and/or regressions, having a specialized convolution part might not be
favorable. In this case, it is tempting to speculate that it might be more favorable to
have the convolution part of the network just summarize the features into a tensor
of more generalized information, and to then have the feed-forward neural network
carry out the final calculations, with custom connections for their individual purpose.

3.3. CONVOLUTIONAL NEURAL NETWORKS 35

a5,1

a4,1

a3,1

a2,1

a1,1

a5,2

a4,2

a3,2

a2,2

a1,2

a5,3

a4,3

a3,3

a2,3

a1,3

a5,4

a4,4

a3,4

a2,4

a1,4

a5,5

a4,5

a3,5

a2,5

a1,5

Input tensor

Output tensor after first
convolution step

z1,1

z1,1 = w1,1 · a1,1 + w1,2 · a1,2 + · · ·+ w3,3 · a3,3 + b

a5,1

a4,1

a3,1

a2,1

a1,1

a5,2

a4,2

a3,2

a2,2

a1,2

a5,3

a4,3

a3,3

a2,3

a1,3

a5,4

a4,4

a3,4

a2,4

a1,4

a5,5

a4,5

a3,5

a2,5

a1,5

Input tensor

Output tensor after second
convolution step

z1,1 z1,2

z1,2 = w1,1 · a1,2 + w1,2 · a1,3 + · · ·+ w3,3 · a3,4 + b

Figure 3.6: Illustration of 2D convolution on a rank 2 tensor. The kernel is a 3x3
rank-2 tensor, such that the resulting tensor is a 3x3 rank-2 tensor. In this example,
the stride of the convolution kernel is equal to 1.

36 CHAPTER 3. MACHINE LEARNING

-0.45 -0.05 0.04 0.14 0.18

0.14 0.06 0.10 -0.32 0.44

0.04 -0.07 0.25 -0.16 -0.33

-0.24 -0.09 -0.22 -0.27 0.17

-0.32 0.10 -0.13 0.49 0.50

ReLU() =

0.00 0.00 0.04 0.14 0.18

0.14 0.06 0.10 0.00 0.44

0.04 0.00 0.25 0.00 0.00

0.00 0.00 0.00 0.00 0.17

0.00 0.10 0.00 0.49 0.50

0.00 0.00 0.04 0.14 0.18

0.14 0.06 0.10 0.00 0.44

0.04 0.00 0.25 0.00 0.00

0.00 0.00 0.00 0.00 0.17

0.00 0.10 0.00 0.49 0.50

MaxPool2d() =
0.14 0.14

0.04 0.25

Figure 3.7: Illustration of how the ReLU activation function first works on a 5x5
rank-2 tensor, and then how the MaxPool2d function extracts the max value using a
2x2 kernel. In this example the stride of the MaxPool kernel is equal to its size, that
is stride equal to 2. If the kernel would be out of bounds wrt. the tensor, the column
or row in question is omitted. This is chosen deliberately as to accurately mimic how
these funtions work by default in the PyTorch framework.

3.3. CONVOLUTIONAL NEURAL NETWORKS 37

1 channel

Conv.

3 channels

Conv.

9 channels

Figure 3.8: Illustration of how the dimensionality of a tensor changes when its passed
through multiple convolution layers. In this case, each convolution has three kernels,
such that the number of output channels is equal to the number of input channels
times three.

38 CHAPTER 3. MACHINE LEARNING

Part III

Methodology & Implementation

39

Chapter 4

Laboratory setup

The data which composes the constructed dataset is gathered at the Hydrodynamics
laboratory at the Institute of Mathematics, University of Oslo.

4.1 Layout

Experiments were conducted in a clear, 31m PVC pipe with an internal diameter,
D=10cm. Schematics for the experimental setup is illustrated in fig. 4.1. For ad-
ditional details on the pipe loop equipment, the reader is referred to Sanchis et. al
[45].

The ruler which is attached underneath the pipe is visible in the captured video,
albeit somewhat faintly and/or blurry. Using the ruler in combination with markers
present on the pipe, it was found that one pixel in the video footage corresponds to
0.000457 meters along the pipe.

4.2 Hardware

Microphone

Three similar, but not identical, microphones (accelerometers) were used. They are
from the same manufacturer, Brüel & Kjær. The type for microphones 1 and 2 is
4507-B-002, and the type for microphone 3 is 4507. One order of magnitude separates
the microphones when it comes to calibration, this is accounted for by increasing the
gain in the amplifiers accordingly.

41

42 CHAPTER 4. LABORATORY SETUP

Mic 1 Mic 2 Mic 3

Amplifier 1 Amplifier 2

Computer 1

Reservoir

Inlet Outlet

Camera

Computer 2

Air Flow

Water Flow

Air Flow

Water Flow LEDRuler

Figure 4.1: Schematics describing the experimental setup used for audio and video
sampling. The horizontally striped area by the inlet indicates the honeycomb mech-
anism which reduces turbulence where the gas-liquid boundary is formed.

Amplifier

The linear amplifiers used are also supplied from Brüel & Kjær, and are similar, but
not identical. The amplifier used for microphones 1 and 2, amplifier 1, is of the type
1704-A-002, and the type for the amplifier used for microphone 3, amplifier 2, is 1704-
A-001. The gain on amplifier 2 is set to 10x the gain on amplifier 1 in order to account
for the aforementioned calibration missmatch. The two amplifiers are connected to
a computer, which used LabVIEW [46] for storing the audio data stream in realtime
at 8000 Hz. This sampling frequency is kept constant throughout all experiments
performed. The resulting measurements were written locally as .lvm files. The .lvm
files consists of a header containing meta information about the experiment, along
with the time for a measurement, and the three measurements corresponding to the

4.2. HARDWARE 43

three distinct microphones.

Camera

The high speed camera used throughout the experiments was a Promon U1000 Mono
1 with a Carl Zeiss Planar 1,4/50 ZF.2 2 lense. The camera was set to record an
area of 1920x334 pixels at 30 frames per second. The live video was streamed to a
computer, where the raw video files were stored locally. Conversion from .raw4 to
.mp4 took place on the same computer after the experiment was conducted.

1https://www.aostechnologies.com/fileadmin/user_upload/PDFs/Process_Monitoring/AOS_Promon_
U1000_en_2017_web.PDF

2https://www.zeiss.com/consumer-products/int/photography/classic/planar-1450.html

https://www.aostechnologies.com/fileadmin/user_upload/PDFs/Process_Monitoring/AOS_Promon_U1000_en_2017_web.PDF
https://www.aostechnologies.com/fileadmin/user_upload/PDFs/Process_Monitoring/AOS_Promon_U1000_en_2017_web.PDF
https://www.zeiss.com/consumer-products/int/photography/classic/planar-1450.html

44 CHAPTER 4. LABORATORY SETUP

Chapter 5

Data

As in most other machine learning projects, the quality of the data is most likely
what will make the project a success or a failure. After the collection of data through
the setup described in chapter 4, we are left with both sound in the form of arrays
of floating point numbers, and video in the .raw4 format. The videos has since been
encoded to .mp4 files for easier handling. Treatments of both of these measurements
are needed in order to extract any meaningful information from the data, as well as
making it more manageable for the final neural network model at runtime.

Information about the measurements is presented in table 5.1, as the run number
and/or filenames will be referenced throughout this chapter.

Filename Run number Type Length (time)
micData_49.lvm 49 Aerated Slug and Breaking Wave 32 min 05 sec
micData_51.lvm 51 Aerated Slug and Breaking Wave 30 min 15 sec
micData_53.lvm 53 Aerated Slug and Breaking Wave 30 min 09 sec
micData_54.lvm 54 Noise 30 min 05 sec
micData_55.lvm 55 Noise 30 min 06 sec
micData_58.lvm 58 Noise 30 min 15 sec
micData_59.lvm 59 Plug Slug 22 min 18 sec
micData_60.lvm 60 Plug Slug 21 min 19 sec

Table 5.1: Overview of measurements used in the construction of the final data set.
Note that "Noise" is equivalent to stratified or stratified-wavy flow, but no occurrences
of slugs or breaking waves.

45

46 CHAPTER 5. DATA

5.1 Data Treatment

5.1.1 Audio

The data gathered from the accelerometers is saved continuously through LabView
during a run, and is saved as a .lvm file. Timestamps for the measurements are
saved alongside the measurements for each of the accelerometers, As mentioned in
section 4.2, the stored audio data consists of three channels which contain the meas-
urements from the accelerometers. A sample of this data is shown in fig. 5.1.

Figure 5.1: 5 minute data sample from run number 59.

Considering the length of the data files, as presented in table 5.1, the file is separ-
ated into shorter segments. The intention is for one segment to contain exactly one
event, be it a slug or breaking wave. An example of an audio segment is illustrated
in fig. 5.2.

A consequence of this way of splitting the data is that each segment has a different
length. This is not a problem in of itself, but this should be kept in mind when
splitting the noise data into segments. The intention is for the network to classify
based on the content of the data, not the shape of the data. In order to ensure that
the noise has a similar shape as the data, the same lengths are used when splitting
the noise data. The following definition aims to clarify;

Let A be a data series containing n events, and each segment ai contain the event

5.1. DATA TREATMENT 47

Figure 5.2: Sample of a data segment which contains one event. This event in par-
ticular corresponds to the eight peak in fig. 5.1.

i, and i only. Let ti be the length of ai. Let N be a data series containing noise. N
is then split into segments ni, such that ni has length ti.

This ensures that the shapes of the data is similar, and should not affect the
training of the model.

The complete collection of all these segments constitute the constructed dataset.
Stored data has no value without proper labels, at least when performing supervised
learning.

5.1.2 Video and Automated Labeling

A necessity for supervised learning is the availability of proper data. That is; proper
quality, and proper labeling. Ideally this labeling should be performed by humans to
ensure that it is as precise as possible. This is, however, very costly when it comes
to working hours. Teams can be hired for labeling, but if datasets are very large an
automatic solution might be more appropriate. Unfortunately, this method is not
without its consequences. If there was a simple way to classify data, there would
be no need to train a neural network to perform the job, a deterministic algorithm
could take its place. In addition, edge cases which can prove difficult to label even
for humans will most certainly prove difficult for a labeling algorithm. We need to be

48 CHAPTER 5. DATA

aware of these pitfalls when implementing an automatic labeler. Thankfully, for this
dataset we have the video recordings which accompany the audio. We are then able
to analyse the video in order to estimate the velocity and length for a given slug.

The automatic labeling process consists of multiple steps of data treatment.

1. Time slice for pixel column

Start by selecting a column of pixels in the video. For each frame, store the values
in the column such that we obtain a new image with width equal to the number of
frames. This process is shown through figures 5.3, 5.4 and 5.5.

Figure 5.3: First frame of the mp4 file for run number 59, with the marked pixel
column.

For this example, the column of pixel 1500 in fig. 5.3 was chosen. The time
evolution for the chosen column is shown in fig. 5.4.

5.1. DATA TREATMENT 49

Figure 5.4: Illustration of how the values for a given column can be shown as an
image with time along the x-axis and the height in pixel along the y-axis. In this
example the column of pixel 1500 was chosen.

This operation generates the time slice for a single column, which can be seen in
fig 5.5.

50 CHAPTER 5. DATA

Figure 5.5: Time evolution at pixel column 1500 for the first event in run number 59.

We now have an understanding of how a single slice of the pipe evolves through
time. In order to reduce the constant glare which is present in the image, each row
has its mean subtracted from itself. The result is shown in fig. 5.6, and the image has
a visible air-water boundary. The width of the slug corresponds to the time in which
it occupied the measured slice as measured in frames, as the x-axis in the image is
the frame count of the segment.

5.1. DATA TREATMENT 51

Figure 5.6: Time evolution at pixel column 1500 for the first event in run number 59,
with the row-wise mean subtracted from each row.

Since all the information we need from the image is dictated by the slug edges,
the image can be transformed into a one dimensional array by taking the mean for
all the values column wise, which makes the data easier to analyse. This operation
preserves the border locations as the columns containing the edges are brighter than
the rest of the image, and the result will be referred to as intensity. In addition, the
intensity is smoothed using a 1D convolution with the kernel equal to an array of
length 11, with each element equal to 1/11, such that the convolved intensity is equal
to the local average. An example of intensity is shown in fig. 5.7

52 CHAPTER 5. DATA

Figure 5.7: Intensity of the slug, used for further information extraction. Note that
the intensity is dimensionless.

2. Peak extraction and Width calculation

We now need to extract the peak and calculate the time width of the slug segments.
In the plug slug case, the intensity is generally lower between the nose and tail of

the slug. This is exploited in order to find the first peak, which corresponds to the
nose. By finding the first convolved intensity value less than negative one standard
deviation of the convolved intensity, the peak can then be found by the taking largest
value before this point. The width of the slug, nose to tail, is then from the peak until
the values are no longer less than -std(convolved intensity). The process is illustrated
in fig. 5.8.

For the aerated slugs, there is only one distinct peak in the intensity plot, as
the slug diffuses a lot of the light from below, due to the dispersed air bubbles. In
this case, the peak is found by taking the largest value of the intensity values. The
width of the slug is estimated as the distance between the last point with value less

5.1. DATA TREATMENT 53

(a) Peak and troth for the convolved intensity, along
with the troth cutoff at negative one standard devi-
ation.

(b) Image from fig. 5.6, with an overlay of the estimated
nose and tail of slug indices.

Figure 5.8: Slug nose and tail estimation method for plug slugs.

than std(intensity) before the peak itself, and the first point with value less than
std(intensity) after the peak. The process is illustrated in fig. 5.9.

3. Velocity and Length estimation

In order to find the velocity of the slug nose, we use the measurements taken for a
range of pixel columns. By plotting the frame number for the peak as a function
of pixel columns, we are able to regress a line through the data points. Due to
inconsistencies in the peak and width extraction process, the RANSAC regression
(RANdom SAmple Consensus) [ref] was used in order to discard any outliers. Note
that this plot has position on the x-axis and time given in frames (1/30 s) on the
y-axis. The slope of the computed regression line is then the estimate for the inverse
of the velocity.

For the estimated time lengths it was found that the median value was a good
estimation.

Examples of the process behind velocity and length estimation are shown in fig.
5.10.

4. Unit conversion and final calculation

Finally a unit conversion is performed. As mentioned, the prior step provides the
inverse of the velocity as ∆ frame / ∆ pixel. Using that one pixel equals 0.000457

54 CHAPTER 5. DATA

(a) Peak extraction and estimations of the slug width.
(b) Row-wise mean subtracted intensity, with overlay
of the estimated nose and tail of slug indices.

Figure 5.9: Slug nose and tail estimation method for aerated slugs.

meters, the final velocity estimate is given as

v̂ =
1

slope
· 0.000457 m

pixel
· 30 frame

s
=

0.000457 · 30
slope

m
s
.

In order to get the final estimated length, the estimated length in time (frames),
t̂, is multiplied with the estimated velocity. That is

l̂ = t̂ · 30 frame
s
· v̂.

These values are written to a .csv file alongside additional information about the
event which the estimations correlate to.

Class label estimation

Ultimately, developing one single algorithm for sorting all possible events was not
possible given the scope of this thesis work. A more custom solution was implemented,
based on previous knowledge about the runs. Because every event in the runs 59 and
60 were slug plugs, these were automatically labeled as such.

In a similar fashion, seeing as the runs 54, 55 and 58 only contains noise, these
segments were automatically labeled as well.

For runs 49, 51 and 53, however, both aerated slugs and breaking waves were
present. The separation of these classes was again done by way of video analysis. By

5.1. DATA TREATMENT 55

(a) Plug slug example.

(b) Aerated slug example.

Figure 5.10: Examples of velocity and length estimations, both for the plug slug and
the aerated slug case.

56 CHAPTER 5. DATA

Figure 5.11: Region of which the intensity was averaged over for aerated slug/breaking
wave classification.

definition, as described in chapter 2, for an event to be classified as a slug, it needs to
occupy the entire cross-sectional area of the pipe. To check whether this occurred for a
given event, a selected region close to the pipes ceiling had its average value computed
for each frame. The region was chosen to be close to the 2nd accelerometer, with the
intention being that a slug should fill the pipe whilst traveling past a microphone.
The region is marked in red, as shown in fig. 5.11. If the maximum of these average
values was above a certain threshold, the event was classified as an aerated slug.
If not, the event was classified as a breaking wave. It was found that 220 was a
satisfactory value for the threshold. The maximum value the averaged intensity can
have is 255, as can be seen in fig. 5.5. In order for an even to be classified as aerated,
the averaged intensity within the measured region must be close to white.

5.2 The Constructed Dataset

The constructed dataset is available in the repository danaars/Pipesound.

The final dataset consists of 995 text files, as well as a .csv file containing the dif-
ferent labels, as well as additional meta information. Each text file contains the audio
data for exactly one event, unless the file contains noise, in which case there should
be no significant events. The filenames are on the format "[event number]_r[run
number].txt", and the counting start at 1. For instance, "8_r59.txt" contains the
audio data for the eight event in run number 59.

https://github.com/danaars/Pipesound

5.2. THE CONSTRUCTED DATASET 57

Run number Event

Count avg. length [s] max length [s] min length [s]
49 115 16.74 25.70 9.06
51 180 10.08 17.41 6.95
53 138 13.11 29.13 6.63
54 108
55 180
58 138
59 69 19.39 22.59 15.77
60 67 19.09 20.06 13.77

Table 5.2: Chosen statistics about the events. Note that the runs 54, 55 and 58
contained noise data, thus no event is present. The count column for these runs
reflect the number of segments each run was split into.

The distribution for class labels is shown in fig. 5.12.

58 CHAPTER 5. DATA

Figure 5.12: Count of the different classes in the final data set. Note that the number
of noise events is equal to the number of aerated slug events and number of breaking
wave events combined.

Chapter 6

Specific Application of the CNN

All machine learning models used in this thesis work is created with the PyTorch
framework, which is one of the main frameworks used for artificial intelligence imple-
mentations in python.

As the test case for the CNN method, given in appendix A, is considered a success,
a similar implementation is used. There are some differences, however, which must
be accounted for. The aforementioned MNIST case study only concerns itself with
classifying the audio data, whereas this specific application has to both classify and
perform multiple regressions. As a consequence, the network will at some point branch
into multiple sub-networks which each will provide one prediction.

6.1 Architecture

The convolutional neural network architecture utilized in this work consists of three
convolution layers, followed by three distinct feed-forward neural networks, each with
two hidden layers. The overarching architecture was kept constant across implement-
ations, and is illustrated in fig. 6.1. In both the 1D and 2D case the number of nodes
in each hidden layer was set to 64.

1D

The kernel sizes for the 1D convolution case are provided in table 6.1.

2D

The kernel sizes for the 2D convolution case are given in table 6.2.

59

60 CHAPTER 6. SPECIFIC APPLICATION OF THE CNN

Input tensorInput tensor

Convolution layer 1

Convolution layer 2

Convolution layer 3

Flattened tensor

Hidden layer 1

Hidden layer 2

Hidden layer 1

Hidden layer 2

Hidden layer 1

Hidden layer 2

Prediction Prediction Prediction

Figure 6.1: Sketch of the final convolutional neural network layout used in both the
1D and 2D cases. The three final feed-forward neural networks are independent from
each other, such that the loss from one will not affect the others. This is indicated
by the disconnected blue regions. In contrast, all convolution layers are connected,
and are thus grouped in the same region.

6.2. DATA PRE-PROCESSING 61

Convolution layer Kernel size Channels out
1 16 8
2 8 16
3 5 32

Table 6.1: Kernel sizes and number of kernels (channels out) for each convolution
layer.

Convolution layer Kernel size Channels out
1 16x16 8
2 8x8 16
3 5x5 32

Table 6.2: Kernel sizes and number of kernels (channels out) for each convolution
layer.

6.1.1 Custom loss function

The loss function which was utilized for both the 1D and 2D case is a linear combin-
ation of the Cross Entropy Loss function, and the Mean Squared Error function as
described in subsection 3.2.3. As the output of the model consists of three distinct
predictions, they are collectively denoted by the vector ŷ, and the corresponding label
is denoted by y. The loss function used for training can then be written as

L(ŷ,y) = αLCE(ŷclf , yclf) + βMSE(ŷvel, yvel) + γMSE(ŷlen, ylen), (6.1)

where ŷclf is the classification prediction, ŷvel the velocity prediction and ŷlen the
slug length prediction. Note that the variables α, β, γ ∈ R can be tuned in order
to emphasise one of the loss functions metric more strongly than the others. In this
application, the values were simply set to α = β = γ = 1.

The proposed loss functions contain the properties of the Cross Entropy loss func-
tion and the Mean Squared Error function, as this is simply a linear combination.
Moreover, the location in parameter space which minimizes the proposed loss function
is not necessarily the same location that would minimize the functions individually.

6.2 Data Pre-Processing

When data is treated in some manner which does not generate new data points, it
is generally not considered augmentation, but rather pre-processing of the data. The

62 CHAPTER 6. SPECIFIC APPLICATION OF THE CNN

intention of which is to make the convergence of the training faster, or in some cases,
even feasible.

6.2.1 Scaling

Scaling is an important factor when it comes to training and final performance of
the network [ref]. In this work two scaling methods are compared, normalization and
standardization. For an input x the normalized output χ is given by χ = x/max(x)

such that χ ∈ [0, 1]. The standardized output is given by χ = x−mean(x)
std(x)

. This
does not put an upper or lower bound in the data, but rather scales the distribution
and ensures that std(χ) = 1. For symmetric probability distributions the expected
value of χ would be zero, but since the underlying distribution of the data samples is
unknown, the expected value is not known a priori.

6.2.2 Transformations

For the 1D case, a transformation is strictly not necessary, as the model accepts the
audio data without issue. If we wish to transform the data, a natural choice is the
Fourier Transform, calculated by the ever-relevant Fast Fourier Transform [47]. The
Fast Fourier Transform algorithm is arguably the most important tool within modern
signal analysis, and is the foundation of the transformations used in the 2D case.

In order to even perform a 2D convolution on the audio data, a transformation is
necessary, as the audio data itself is simply multiple 1D arrays. For the initial test-
ing a spectrogram transformation (wavelet transformation) 1 was used, as it seemed
promising from the test case presented in Appendix A. The specific implementation
is done by the spectrogram function found within scipy’s scipy.signal module.
There are, however, other candidate functions. Most noteably the Short-Time Four-
ier Transform, which is a localized Fourier Transform.

6.3 Implementations

The following combinations of data pre-processing and data augmentations were
tested.

6.3.1 1D

• No Scale; Incoming data is fed directly into the network.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html

6.3. IMPLEMENTATIONS 63

• Channel wise normalization; Incoming data has each channel normalized
by their channel-wise max.

• Full normalization; Incoming data has channels normalized by the max across
all channels.

• Channel standardization; Incoming data is standardized with respect to the
mean and standard deviation for each channel.

• Full standardization; Incoming data is standardized with respect to the mean
and standard deviation across all channels.

• Discrete Fourier Transform; Data is transformed with the Fast Fourier
Transform before being fed into the network.

• Discrete Fourier Transformation and normalization; Data is transformed
with the Fast Fourier Transform and then normalized.

• Discrete Fourier Transformation and standardization; Data is trans-
formed with the Fast Fourier Transform and then standardized.

6.3.2 2D

• No scale; Incoming data is transformed directly into a spectrogram.

• Channel wise normalization before spectrogram transformation; In-
coming data is normalized channel wise and then transformed into a spectro-
gram.

• Normalization before spectrogram transformation; Incoming data is nor-
malized, then transformed into a spectrogram.

• Spectrogram transformation then channel-wise normalization; Data is
transformed into a spectrogram, then normalized channel-wise.

• Spectrogram transformation then normalization; Data is transformed
into a spectrogram, then normalized.

• Spectrogram transformation then channel-wise standardization; Data
is transformed into a spectrogram, then normalized.

• Spectrogram transformation then standardization; Data is transformed
into a spectrogram, then normalized.

64 CHAPTER 6. SPECIFIC APPLICATION OF THE CNN

• Short-Time Fourier Transformation then channel-wise normalization;
Data is transformed then normalized with respect to the channel-wise max.

• Short-Time Fourier Transfromation then normalization; Data is trans-
formed then normalized.

6.4 Metrics
The collection of performance metrics was performed after each epoch, through the
implementation of the python package torchmetrics.

For the classification, the accuracy is used for model performance evaluation. Due
to the distinct labels— The accuracy is simply defined as the number of correct
classifications/predictions divided by the number of total classification/predicitons.

When it comes to regression, it does not make sense to discuss whether a prediction
was correct or not, as the output values are continuous. A better metric is to specify
how close the prediction was to the label. A common choice for regression metric is
the R2 score. Whilst for instance the mean squared error can be used as a metric,
the value it provides is rather arbitrary, and is usually used only for comparing the
model against itself. The R2 score on the other hand compares the error made by
the model with the error from simply guessing the sample mean, and is defined as

R2 = 1− SSres

SStot

, (6.2)

where the SSres =
∑

i(yi−ŷi)2 is the sum of squared residuals, and SStot =
∑

i(yi−ȳ)2
is the total sum of squares. This comparison between prediction and mean makes the
R2 score more suitable for comparisons between different models.

Note that for both the accuracy and R2 score the highest possible score is 1.
This corresponds to an accuracy of 100%, and for regression it would mean that
yi − ŷi = 0 ∀ i, i.e. a perfect prediction every time.

Part IV

Results & Discussions

65

Chapter 7

Results & Discussion

The proposed model has been trained with a constant architecture, as explained in
section 6.1. The training itself took place on the high performance computing machine
learning nodes at the institute of informatics at the university of Oslo 1. Training
was either performed on a RTX 2080 Ti or a RTX 3090 graphics processing unit.

For studying the performance of the proposed models the number of epoch was set
to 50. The ADAM algorithm for stochastic gradient descent was used, and the initial
learning rate set to 0.001, which is the default value for PyTorch. The batch size
used throughout the testing was set to 1, as anything higher could run into memory
problems during training. A study of favorable hyperparameters was not conducted.

Note that tables in this section show the best performance metrics achieved, during
training. The best values did not necessarily occur for the same epoch, that is, for
the same model.

7.1 Multi-channel

7.1.1 2D

Scaling

Initially the general effects of scaling was tested with the spectrogram transformation.
From the results presented table 7.1, multiple things are evident. Firstly, scaling has
a significant effect on the performance of the models.

Secondly, and most crucially, scaling has the largest effect when performed after
the transformation. Due to the black box nature of the convolutional neural networks
used, an exact explanation as to why cannot be given, but one might speculate that

1Machine learning infrastructure (ML Nodes), University Centre for Information Technology,
University Of Oslo, Norway.

67

68 CHAPTER 7. RESULTS & DISCUSSION

this is related to the potentially large values of the data. Scaling the input values does
not change the underlying frequencies, and thus the numerical values in the tensor
containing spectrogram data may still be large. Activation functions tend to be the
most interesting for small values, preferably in the region about 0, and if the values
are kept low throughout the network, this feature of the activation functions can be
exploited to its greatest capacity.

Finally we observe that the difference in normalizing channel wise and normal-
izing with regard to the full tensor is rather small. An exception to this however is
the length predictions, which seem to perform better when the full normalization is
performed.

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

No scaling 0.421 0.457 -1.919e-5 -2.503e-6 -1.466e-5 3.040e-6
Channel-wise normalization∗ 0.413 0.487 -7.033e-6 -7.057e-5 -5.519e-5 -5.484e-6

Full normalization∗ 0.437 0.392 -9.667e-5 -7.093e-5 -0.001 -8.130e-5
Channel-wise normalization 1.0 0.939 0.988 0.667 0.975 0.252

Full normalization 1.0 0.959 0.986 0.635 0.969 0.426

Table 7.1: Performance metrics for the proposed 2D model with different data scaling,
on multiple channels. The ∗ indicates that the scaling takes place before a transform-
ation, that is, on the raw audio data itself. The boldface highlights the best metric
for the given column.

When examining scaling with standardization, the results from normalization is
taken into account. Hence, the standardization is only done after the wavelet trans-
formation. The results are presented in table 7.2.

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

Channel-wise standardization 1.0 0.929 0.981 0.481 0.956 0.362
Full standardization 1.0 0.935 0.983 0.639 0.965 0.391

Table 7.2: Performance metrics with data subjected to channel-wise and full stand-
ardization after the spectrogram transformation. The boldface highlights the best
metric for the given column.

7.1. MULTI-CHANNEL 69

From table 7.2 it is apparent that the standardization of the data performs some-
what worse than normalizing. Comparing the full normalization with the full stand-
ardization we see that normalization performs better on every metric. Still, the
standardization produces generally good result, again testifying to the effectiveness
of appropriate scaling.

The accuracy of the classification for the model subjected to the full normalization
is presented in fig. 7.1.

Figure 7.1: The accuracy score for the proposed model when the data has undergone
a spectrogram transformation followed by normalization.

The R2 scores for the velocity and length regressions are shown in fig. 7.2.
From fig. 7.1 we see that the highest accuracy occurred early in the training, at

epoch 5. As the model keeps training the accuracy for the previously unseen test
data has a slight downward trend. This could indicate that the model is somewhat
overfitted to the training data.

When it comes to fig. 7.2 we see that the length regression is generally better
early on, as was also the case for the accuracy score. Whilst this could further
indicate overfitting, we also see that the model is stable after epoch 30, if not slightly
improving. For the velocity regression the performance of the model seems to improve
with increased number of epochs.

70 CHAPTER 7. RESULTS & DISCUSSION

(a) R2 score for the velocity regression. (b) R2 score for the length regression.

Figure 7.2: The R2 scores for the proposed model when the data has undergone a
spectrogram transformation followed by normalization.

Transformations

We now aim to study whether using a different transformation alters the results. Note
that since a transformation must be used in order to obtain 2D data, the spectrogram
transformation is already performed and the results can be found in table 7.1.

Based on the insights gathered from the scaling, only normalized and channel-wise
normalized Short Time Fourier Transforms were tested. The results are presented in
table 7.3.

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

Channel-wise normalization 1.0 0.945 0.989 0.576 0.979 0.356
Full normalization 1.0 0.950 0.990 0.661 0.983 0.428

Table 7.3: Performance metrics with data subjected to channel-wise and full normal-
ization after the Short Time Fourier Transformation. The boldface highlights the
best metric for the given column.

We see from table 7.3 that, again, full normalization performs better than the
channel-wise implementation. By comparing table 7.1 and table 7.3 we see that

7.1. MULTI-CHANNEL 71

the models perform extremely similarly. The short time fourier transform is however
marginally better. This is expected as the Short Time Fourier Transform does not only
have a higher temporal resolution, but also the real and imaginary values provided.

The accuracy of the classification for the model with a normalized Short Time
Fourier Transform is presented in fig. 7.3. Moreover, the R2 scores for the velocity
and length regressions are shown in fig. 7.4.

Figure 7.3: The accuracy score for the proposed model when the data has undergone
a spectrogram transformation followed by normalization.

The same general patterns emerge in fig. 7.4 as in fig. 7.2, with the velocity
regression R2 score for the test data stabilizing at around 0.6, whilst the length
regression R2 score for the test data has a slight downward trend and ends up at
about 0.3 - 0.25. By comparing fig. 7.3 and fig. 7.1 we see a similar trend of variance
within the test data.

7.1.2 1D

Scaling

In contrast to the 2D case, the 1D case can be completed without the use of transform-
ations. Five different alternatives for scaling are tested, and the results are presented
in table 7.4.

72 CHAPTER 7. RESULTS & DISCUSSION

(a) R2 score for the velocity regression. (b) R2 score for the length regression.

Figure 7.4: The R2 scores for the proposed model when the data has undergone a
spectrogram transformation followed by normalization.

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

No scaling 1.0 0.975 0.993 0.635 0.985 0.299
Channel wise normalization 1.0 0.915 0.988 0.499 0.984 0.104

Full normalization 1.0 0.919 0.988 0.616 0.984 0.341
Channel-wise standardization 1.0 0.920 0.991 0.544 0.988 0.200

Full standardization 1.0 0.960 0.989 0.702 0.983 0.346

Table 7.4: Performance metrics for the proposed 1D model with different scaling.
The boldface highlights the best metric for the given column.

It is evident from table 7.4 that these performances are more similar to each other
than what is seen in table 7.1. A possible explanation for this is that these values are
generally small, as can be seen from 5.1. Hence normalizing and standardizing has a
diminished effect compared to after transformations.

Transformations

When it comes to transformations for the 1D multichannel data, the discrete Fourier
transform is tested, through the implementation of the fast Fourier transform.

7.1. MULTI-CHANNEL 73

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

No scaling 1.0 0.884 0.992 0.518 0.985 0.249
Full normalization 1.0 0.985 0.991 0.787 0.976 0.412

Full standardization 1.0 0.940 0.987 0.641 0.985 0.243

Table 7.5: Performance metrics for the proposed 1D model with a Discrete Fourier
Transform and different scaling. The boldface highlights the best metric for the given
column.

For the 1D transformation and scaling, table 7.5 shows that the data which is
normalized again provide the best test scores. This is similar to the 2D case. By
comparing table 7.4 and table 7.5 it would seem like subjecting the data to discrete
fourier transform before normalizing results in a small increase in performance.

The accuracy of the classification for the model with a normalized Fast Fourier
Transform is presented in fig. 7.5. Moreover, the R2 scores for the velocity and length
regressions are shown in fig. 7.6.

Figure 7.5: The accuracy score for the proposed model when the data has undergone
a Fast Fourier Transformation followed by normalization.

74 CHAPTER 7. RESULTS & DISCUSSION

(a) R2 score for the velocity regression. (b) R2 score for the length regression.

Figure 7.6: The R2 scores for the proposed model when the data has undergone a
Fast Fourier Transformation followed by normalization.

Judging from the best metrics alone, it would seem like the Fast Fourier Trans-
form with normalization performs the best overall, whilst the Short Time Fourier
Transformation with normalization performs the best in the 2D case.

For further analysis, the model was chosen at the epochs which performed the best
with respect to accuracy of test data. That is, epoch 7 for the Short Time Fourier
Transform, and epoch 20 for the Fast Fourier Transform. The confusion matrices for
the normalized Short-Time Fourier Transform is presented in fig. 7.7. The confusion
matrices for the normalized Fast Fourier Transform is presented in fig. 7.8.

7.2 Single Channel

The performance of the proposed model is tested when only trained on data from one
of the three microphones. Data from microphone 2 was chosen, as it should correlate
strongest with the label obtained from video analysis. The position of microphone 2
in relation to the camera frame is as shown in fig. 4.1.

The results of training on data from a single microphone are presented in table
7.6.

7.2. SINGLE CHANNEL 75

(a) Confusion matrix for training data. (b) Confusion matrix for testing data.

Figure 7.7: The confusion matrices for the normalized Short-Time Fourier Transform
at epoch 7.

Scaling
Best

Accuracy Velocity R2 Length R2
Train Test Train Test Train Test

STFT normalized 1.0 0.935 0.983 0.723 0.969 0.40
FFT normalized 1.0 0.955 0.988 0.722 0.979 0.337

Table 7.6: Performance metrics for the proposed model when only subjected to data
from one microphone. The boldface highlights the best metric for the given column.

From tables 7.6 and table 7.3 we see that the 2D implementation performs better
on all metrics except from the R2 score for the length regression on the training data.
Seeing as this is training data, this result is not significant. Still, only using one
microphone results in a surprisingly good score.

The accuracy of the classification for the model with a normalized Fast Fourier
Transform is presented in fig. 7.9. Moreover, the R2 scores for the velocity and length
regressions are shown in fig. 7.10.

From tables 7.6 and table 7.5 we see that the 2D implementation again performs
better on all metrics that matter.

The accuracy of the classification for the model with a normalized Fast Fourier
Transform is presented in fig. 7.11. Moreover, the R2 scores for the velocity and

76 CHAPTER 7. RESULTS & DISCUSSION

(a) Confusion matrix for training data. (b) Confusion matrix for testing data.

Figure 7.8: The confusion matrices for the normalized Fast Fourier Transform at
epoch 20.

length regressions are shown in fig. 7.12.

7.2. SINGLE CHANNEL 77

Figure 7.9: The accuracy score for the proposed model when the data from micros-
phone 2 has undergone a Short Time Fourier Transform followed by normalization.

(a) R2 score for the velocity regression. (b) R2 score for the length regression.

Figure 7.10: The R2 scores for the proposed model when the data from microsphone
2 has undergone a Short Time Fourier Transform followed by normalization.

78 CHAPTER 7. RESULTS & DISCUSSION

Figure 7.11: The accuracy score for the proposed model when the data from micros-
phone 2 has undergone a Short Time Fourier Transform followed by normalization.

(a) R2 score for the velocity regression. (b) R2 score for the length regression.

Figure 7.12: The R2 scores for the proposed model when the data from microsphone
2 has undergone a Short Time Fourier Transform followed by normalization.

Chapter 8

Conclusion

This thesis has studied the novel use of convolutional neural networks applied to
acoustic emissions. A dataset has been created by use of experimental data from
accelerometers, and automatic labeling algorithms applied to video recordings of the
same experiments.

The proposed model used to classify flow-regimes for multi-phase flow through
pipes shows and shows high accuracy. The highest accuracy for previously unseen
data was 98.5%. This is in agreement with other applications of machine learning
applied to multi-phase flow-regime identification [5–15, 17, 19].

The proposed model seems to be somewhat prone to overfitting. This is not sur-
prising as the model itself has not been optimized for best possible performance.
Rather a comparison between the treatment of data was performed in order to gauge
which transformations highlighted the necessary features for flow-regime identifica-
tion. No definitive conclusion can be drawn on which transformation performs best
in the 2D case, as both the spectrogram transformation and the Short Time Four-
ier Transform perform similarly. Taking small differences into account, it was found
that Short Time Fourier Transform gave the highest accuracy in combination with
Normalization when using a 2D convolutional neural network.

When it comes to regression it is evident that the multi-channel setup using three
microphones is able to provide good predictions on the velocity of slugs. From the
sample data shown in fig. 5.1, it is evident that the passing of slugs generate a distinct
sound signature. This property could be exploited in order to make a deterministic
algorithm for slug velocity.

For the 1D case it was found that the discrete Fourier transform containing real
imaginary and absolute values gave the highest accuracy when combined with nor-
malization. These metrics were even better then that of the 2D model, suggesting
that the frequencies which compose the signal are more important than when the
acoustic emission is measures, at least for these short time samples.

79

80 CHAPTER 8. CONCLUSION

Based on the trends of overfitting it is evident that more data is needed. This
would in addition lead to better metrics for both classification and regression. The
most difficult cases were the breaking wave. This is expected as the breaking wave
had the fewest data samples as can be seen from fig. 5.12. The combination of a small
dataset and few breaking waves made the models which randomly were assigned the
breaking wave samples in the test dataset appear worse, even though the accuracy
on the other three categories generally were equal with an overall high accuracy.

8.1 Future Work
Multiple path forward has revealed themselves thuring this thesis work. The software
used for this study could be the foundation for a device which performs realtime
multi-phase flow-regime identification. For this to be the case, further development
is necessary as well as implementation of micro controllers and/or sensor technology.

As has already been discussed, the deep learning model proposed could have
benefited from more data. Further collection of data and application of new better
labeling algorithms could be used in order to improve upon the results. In addition
more labels could be introduced.

An alternative to collecting data is artificially generating more, by way of res-
ampling. This could be implemented, but should be done with caution as the data
quality would be compromised.

In order to bypass the data labeling part in its entirety, it would be possible to
implement unsupervised deep learning methods which sort data without the need for
labels. Keep in mind that this form for deep learning required extreme amounts of
data.

Methods similar to those presented here could be used in the study of single phase
flow, particularly in the detection of the transition between turbulent and laminar
flow.

Finally, by implementing more precise data, similar methods could be implemen-
ted in order to predict the entire velocity field of the multi-phase flow.

Bibliography

[1] E. S. Kordyban and T. Ranov, ‘Mechanism of slug formation in horizontal two-
phase flow,’ Journal of Basic Engineering, vol. 92, no. 4, pp. 857–864, 1st Dec.
1970, issn: 0021-9223. doi: 10 . 1115 / 1 . 3425157. [Online]. Available: https :
//doi.org/10.1115/1.3425157 (visited on 05/05/2023).

[2] J.-M. Godhavn, M. P. Fard and P. H. Fuchs, ‘New slug control strategies, tun-
ing rules and experimental results,’ Journal of Process Control, vol. 15, no. 5,
pp. 547–557, 1st Aug. 2005, issn: 0959-1524. doi: 10.1016/ j . jprocont .2004.
10.003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0959152404001131 (visited on 10/05/2023).

[3] E. Storkaas, S. Skogestad and V. Alstad, ‘Stabilization of desired flow regimes
in pipelines,’ 1st Jan. 2001.

[4] A. Sausen, P. Sausen and M. de, ‘The slug flow problem in oil industry and pi
level control,’ in New Technologies in the Oil and Gas Industry, J. S. Gomes,
Ed., InTech, 31st Oct. 2012, isbn: 978-953-51-0825-2. doi: 10 . 5772 / 50711.
[Online]. Available: http://www.intechopen.com/books/new-technologies-in-the-
oil-and-gas-industry/the-slug-flow-problem-in-oil- industry-and-pi-level-control
(visited on 09/05/2023).

[5] H. Xu, T. Tang, B. Zhang and Y. Liu, ‘Identification of two-phase flow regime in
the energy industry based on modified convolutional neural network,’ Progress
in Nuclear Energy, vol. 147, p. 104 191, 1st May 2022, issn: 0149-1970. doi:
10.1016/j.pnucene.2022.104191. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0149197022000695 (visited on 10/05/2023).

[6] N. Baba, Y. Yamashita and Y. Shiraishi, ‘CLASSIFICATION OF FLOW PAT-
TERNS IN TWO PHASE FLOW BY NEURAL NETWORK,’ in Artificial
Neural Networks, T. Kohonen, K. Mäkisara, O. Simula and J. Kangas, Eds.,
Amsterdam: North-Holland, 1st Jan. 1991, pp. 1617–1620, isbn: 978-0-444-
89178-5. doi: 10 .1016 /B978- 0 - 444- 89178- 5 .50149- 4. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii / B9780444891785501494
(visited on 10/05/2023).

81

https://doi.org/10.1115/1.3425157
https://doi.org/10.1115/1.3425157
https://doi.org/10.1115/1.3425157
https://doi.org/10.1016/j.jprocont.2004.10.003
https://doi.org/10.1016/j.jprocont.2004.10.003
https://www.sciencedirect.com/science/article/pii/S0959152404001131
https://www.sciencedirect.com/science/article/pii/S0959152404001131
https://doi.org/10.5772/50711
http://www.intechopen.com/books/new-technologies-in-the-oil-and-gas-industry/the-slug-flow-problem-in-oil-industry-and-pi-level-control
http://www.intechopen.com/books/new-technologies-in-the-oil-and-gas-industry/the-slug-flow-problem-in-oil-industry-and-pi-level-control
https://doi.org/10.1016/j.pnucene.2022.104191
https://www.sciencedirect.com/science/article/pii/S0149197022000695
https://www.sciencedirect.com/science/article/pii/S0149197022000695
https://doi.org/10.1016/B978-0-444-89178-5.50149-4
https://www.sciencedirect.com/science/article/pii/B9780444891785501494

82 BIBLIOGRAPHY

[7] S. Cai, H. Toral and J. Qiu, ‘Flow regime identification by a self-organising
neural network,’ in ICANN ’93, S. Gielen and B. Kappen, Eds., London: Springer,
1993, pp. 868–868, isbn: 978-1-4471-2063-6. doi: 10.1007/978-1-4471-2063-
6_251.

[8] S. Cai, H. Toral, J. Qiu and J. S. Archer, ‘Neural network based objective flow
regime identification in air-water two phase flow,’ The Canadian Journal of
Chemical Engineering, vol. 72, no. 3, pp. 440–445, 1994, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cjce.5450720308,
issn: 1939-019X. doi: 10.1002/cjce.5450720308. [Online]. Available: https://
onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450720308 (visited on 13/05/2023).

[9] H. Wu, F. Zhou and Y. Wu, ‘Intelligent identification system of flow regime
of oil–gas–water multiphase flow,’ International Journal of Multiphase Flow,
vol. 27, no. 3, pp. 459–475, 1st Mar. 2001, issn: 0301-9322. doi: 10.1016/S0301-
9322(00)00022-7. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0301932200000227 (visited on 13/05/2023).

[10] T. Xie, S. M. Ghiaasiaan and S. Karrila, ‘Artificial neural network approach for
flow regime classification in gas–liquid–fiber flows based on frequency domain
analysis of pressure signals,’ Chemical Engineering Science, vol. 59, no. 11,
pp. 2241–2251, 1st Jun. 2004, issn: 0009-2509. doi: 10.1016/j.ces.2004.02.
017. [Online]. Available: https : / / www. sciencedirect . com / science / article / pii /
S0009250904001381 (visited on 13/05/2023).

[11] B. M. Abbagoni and H. Yeung, ‘Non-invasive classification of gas–liquid two-
phase horizontal flow regimes using an ultrasonic doppler sensor and a neural
network,’ Measurement Science and Technology, vol. 27, no. 8, p. 084 002, Jun.
2016, Publisher: IOP Publishing, issn: 0957-0233. doi: 10.1088/0957-0233/
27/8/084002. [Online]. Available: https://dx.doi.org/10.1088/0957-0233/27/8/
084002 (visited on 13/05/2023).

[12] Y. Zhang, A. N. Azman, K.-W. Xu, C. Kang and H.-B. Kim, ‘Two-phase flow
regime identification based on the liquid-phase velocity information and ma-
chine learning,’ Experiments in Fluids, vol. 61, no. 10, p. 212, 14th Sep. 2020,
issn: 1432-1114. doi: 10.1007/s00348-020-03046-x. [Online]. Available: https:
//doi.org/10.1007/s00348-020-03046-x (visited on 13/05/2023).

[13] E. Åbro, V. A. Khoryakov, G. A. Johansen and L. Kocbach, ‘Determination
of void fraction and flow regime using a neural network trained on simulated
data based on gamma-ray densitometry,’ Measurement Science and Technology,
vol. 10, no. 7, p. 619, Jul. 1999, issn: 0957-0233. doi: 10.1088/0957-0233/10/7/
308. [Online]. Available: https://dx.doi.org/10.1088/0957-0233/10/7/308 (visited
on 13/05/2023).

https://doi.org/10.1007/978-1-4471-2063-6_251
https://doi.org/10.1007/978-1-4471-2063-6_251
https://doi.org/10.1002/cjce.5450720308
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450720308
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.5450720308
https://doi.org/10.1016/S0301-9322(00)00022-7
https://doi.org/10.1016/S0301-9322(00)00022-7
https://www.sciencedirect.com/science/article/pii/S0301932200000227
https://www.sciencedirect.com/science/article/pii/S0301932200000227
https://doi.org/10.1016/j.ces.2004.02.017
https://doi.org/10.1016/j.ces.2004.02.017
https://www.sciencedirect.com/science/article/pii/S0009250904001381
https://www.sciencedirect.com/science/article/pii/S0009250904001381
https://doi.org/10.1088/0957-0233/27/8/084002
https://doi.org/10.1088/0957-0233/27/8/084002
https://dx.doi.org/10.1088/0957-0233/27/8/084002
https://dx.doi.org/10.1088/0957-0233/27/8/084002
https://doi.org/10.1007/s00348-020-03046-x
https://doi.org/10.1007/s00348-020-03046-x
https://doi.org/10.1007/s00348-020-03046-x
https://doi.org/10.1088/0957-0233/10/7/308
https://doi.org/10.1088/0957-0233/10/7/308
https://dx.doi.org/10.1088/0957-0233/10/7/308

BIBLIOGRAPHY 83

[14] C. M. Salgado, C. M. N. A. Pereira, R. Schirru and L. E. B. Brandão, ‘Flow
regime identification and volume fraction prediction in multiphase flows by
means of gamma-ray attenuation and artificial neural networks,’ Progress in
Nuclear Energy, vol. 52, no. 6, pp. 555–562, 1st Aug. 2010, issn: 0149-1970. doi:
10.1016/j.pnucene.2010.02.001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0149197010000375 (visited on 13/05/2023).

[15] E. Nazemi, S. A. H. Feghhi, G. H. Roshani, R. Gholipour Peyvandi and S. Set-
ayeshi, ‘Precise void fraction measurement in two-phase flows independent of
the flow regime using gamma-ray attenuation,’ Nuclear Engineering and Tech-
nology, vol. 48, no. 1, pp. 64–71, 1st Feb. 2016, issn: 1738-5733. doi: 10.1016/
j.net.2015.09.005. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1738573315002144 (visited on 13/05/2023).

[16] Z. Yang, H. Ji, Z. Huang, B. Wang and H. Li, ‘Application of convolution neural
network to flow pattern identification of gas-liquid two-phase flow in small-size
pipe,’ in 2017 Chinese Automation Congress (CAC), Oct. 2017, pp. 1389–1393.
doi: 10.1109/CAC.2017.8242984.

[17] G. M. Hobold and A. K. da Silva, ‘Machine learning classification of boiling
regimes with low speed, direct and indirect visualization,’ International Journal
of Heat and Mass Transfer, vol. 125, pp. 1296–1309, 1st Oct. 2018, issn: 0017-
9310. doi: 10.1016/j.ijheatmasstransfer.2018.04.156. [Online]. Available: https:
/ /www.sciencedirect.com/science/article/pii /S0017931017346100 (visited on
13/05/2023).

[18] M. Du, H. Yin, X. Chen and X. Wang, ‘Oil-in-water two-phase flow pattern
identification from experimental snapshots using convolutional neural network,’
IEEE Access, vol. 7, pp. 6219–6225, 2019, Conference Name: IEEE Access, issn:
2169-3536. doi: 10.1109/ACCESS.2018.2888733.

[19] C. Shen, Q. Zheng, M. Shang, L. Zha and Y. Su, ‘Using deep learning to recog-
nize liquid–liquid flow patterns in microchannels,’ AIChE Journal, vol. 66, no. 8,
e16260, 2020, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.16260,
issn: 1547-5905. doi: 10.1002/aic.16260. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/aic.16260 (visited on 13/05/2023).

[20] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning applied
to document recognition,’ Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998, Conference Name: Proceedings of the IEEE, issn: 1558-2256.
doi: 10.1109/5.726791.

https://doi.org/10.1016/j.pnucene.2010.02.001
https://www.sciencedirect.com/science/article/pii/S0149197010000375
https://www.sciencedirect.com/science/article/pii/S0149197010000375
https://doi.org/10.1016/j.net.2015.09.005
https://doi.org/10.1016/j.net.2015.09.005
https://www.sciencedirect.com/science/article/pii/S1738573315002144
https://www.sciencedirect.com/science/article/pii/S1738573315002144
https://doi.org/10.1109/CAC.2017.8242984
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.156
https://www.sciencedirect.com/science/article/pii/S0017931017346100
https://www.sciencedirect.com/science/article/pii/S0017931017346100
https://doi.org/10.1109/ACCESS.2018.2888733
https://doi.org/10.1002/aic.16260
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.16260
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.16260
https://doi.org/10.1109/5.726791

84 BIBLIOGRAPHY

[21] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘ImageNet classification with deep
convolutional neural networks,’ Communications of the ACM, vol. 60, no. 6,
pp. 84–90, 24th May 2017, issn: 0001-0782. doi: 10.1145/3065386. [Online].
Available: https://dl.acm.org/doi/10.1145/3065386 (visited on 13/05/2023).

[22] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-
scale image recognition, 10th Apr. 2015. doi: 10.48550/arXiv.1409.1556. arXiv:
1409.1556[cs]. [Online]. Available: http://arxiv.org/abs/1409.1556 (visited on
13/05/2023).

[23] G. G. Yen and H. Lu, ‘Acoustic emission data assisted process monitoring,’ ISA
Transactions, vol. 41, no. 3, pp. 273–282, 1st Jul. 2002, issn: 0019-0578. doi: 10.
1016/S0019-0578(07)60087-1. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0019057807600871 (visited on 10/05/2023).

[24] S. Al-lababidi, A. Addali, H. Yeung, D. Mba and F. Khan, ‘Gas void fraction
measurement in two-phase gas/liquid slug flow using acoustic emission tech-
nology,’ Journal of Vibration and Acoustics, vol. 131, no. 64501, 18th Nov.
2009, issn: 1048-9002. doi: 10 . 1115 / 1 . 4000463. [Online]. Available: https :
//doi.org/10.1115/1.4000463 (visited on 13/05/2023).

[25] F. A. Holland and R. Bragg, ‘7 - gas–liquid two-phase flow,’ in Fluid Flow
for Chemical Engineers (Second Edition), F. A. Holland and R. Bragg, Eds.,
Oxford: Butterworth-Heinemann, 1st Jan. 1995, pp. 219–267, isbn: 978-0-340-
61058-9. doi: 10.1016/B978-034061058-9.50009-8. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780340610589500098 (visited on
09/05/2023).

[26] K. E. Crandell, R. O. Howe and P. L. Falkingham, ‘Repeated evolution of
drag reduction at the air–water interface in diving kingfishers,’ Journal of
The Royal Society Interface, vol. 16, no. 154, p. 20 190 125, 15th May 2019,
Publisher: Royal Society. doi: 10 . 1098 / rsif . 2019 . 0125. [Online]. Available:
https: / / royalsocietypublishing.org/doi / full /10.1098/rsif.2019.0125 (visited on
10/03/2023).

[27] ‘JFS biomimicry interview series: No.6,’ JFS Japan for Sustainability. (), [On-
line]. Available: https://www.japanfs.org/en/news/archives/news_id027795.html
(visited on 10/03/2023).

[28] W. S. McCulloch and W. Pitts, ‘A logical calculus of the ideas immanent in
nervous activity,’ The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–
133, 1st Dec. 1943, issn: 1522-9602. doi: 10.1007/BF02478259. [Online]. Avail-
able: https://doi.org/10.1007/BF02478259 (visited on 10/03/2023).

https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://arxiv.org/abs/1409.1556 [cs]
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/S0019-0578(07)60087-1
https://doi.org/10.1016/S0019-0578(07)60087-1
https://www.sciencedirect.com/science/article/pii/S0019057807600871
https://www.sciencedirect.com/science/article/pii/S0019057807600871
https://doi.org/10.1115/1.4000463
https://doi.org/10.1115/1.4000463
https://doi.org/10.1115/1.4000463
https://doi.org/10.1016/B978-034061058-9.50009-8
https://www.sciencedirect.com/science/article/pii/B9780340610589500098
https://www.sciencedirect.com/science/article/pii/B9780340610589500098
https://doi.org/10.1098/rsif.2019.0125
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2019.0125
https://www.japanfs.org/en/news/archives/news_id027795.html
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

BIBLIOGRAPHY 85

[29] F. Rosenblatt, ‘The perceptron: A probabilistic model for information storage
and organization in the brain,’ Psychological Review, vol. 65, pp. 386–408, 1958,
Place: US Publisher: American Psychological Association, issn: 1939-1471. doi:
10.1037/h0042519.

[30] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016.

[31] A. Vaswani et al., ‘Attention is all you need,’ in Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html (visited on 10/05/2023).

[32] J. Berkson, ‘Application of the logistic function to bio-assay,’ Journal of the
American Statistical Association, vol. 39, no. 227, pp. 357–365, 1944, Publisher:
[American Statistical Association, Taylor & Francis, Ltd.], issn: 0162-1459. doi:
10.2307/2280041. [Online]. Available: https: / /www. jstor.org/stable/2280041
(visited on 11/05/2023).

[33] A. N. Kolmogorov, Foundations of the theory of probability, in collab. with
G. A. S. L. University of Florida. New York: Chelsea Pub. Co., 1950, 90 pp.
[Online]. Available: http://archive.org/details/foundationsofthe00kolm (visited on
15/05/2023).

[34] G. Cybenko, ‘Approximation by superpositions of a sigmoidal function,’ Math-
ematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1st Dec.
1989, issn: 1435-568X. doi: 10.1007/BF02551274. [Online]. Available: https:
//doi.org/10.1007/BF02551274 (visited on 10/03/2023).

[35] K. Hornik, M. Stinchcombe and H. White, ‘Multilayer feedforward networks
are universal approximators,’ Neural Networks, vol. 2, no. 5, pp. 359–366, Jan.
1989, issn: 08936080. doi: 10.1016/0893-6080(89)90020-8. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/0893608089900208 (visited on
10/03/2023).

[36] G. Gripenberg, ‘Approximation by neural networks with a bounded number of
nodes at each level,’ Journal of Approximation Theory, vol. 122, no. 2, pp. 260–
266, 1st Jun. 2003, issn: 0021-9045. doi: 10 . 1016 / S0021 - 9045(03) 00078 -
9. [Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0021904503000789 (visited on 14/05/2023).

[37] B. Hanin and M. Sellke, Approximating continuous functions by ReLU nets
of minimal width, 10th Mar. 2018. doi: 10.48550/arXiv.1710.11278. arXiv:
1710.11278[cs,math,stat]. [Online]. Available: http://arxiv.org/abs/1710.11278
(visited on 14/05/2023).

https://doi.org/10.1037/h0042519
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.2307/2280041
https://www.jstor.org/stable/2280041
http://archive.org/details/foundationsofthe00kolm
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(89)90020-8
https://linkinghub.elsevier.com/retrieve/pii/0893608089900208
https://doi.org/10.1016/S0021-9045(03)00078-9
https://doi.org/10.1016/S0021-9045(03)00078-9
https://www.sciencedirect.com/science/article/pii/S0021904503000789
https://www.sciencedirect.com/science/article/pii/S0021904503000789
https://doi.org/10.48550/arXiv.1710.11278
https://arxiv.org/abs/1710.11278 [cs, math, stat]
http://arxiv.org/abs/1710.11278

86 BIBLIOGRAPHY

[38] P. Kidger and T. Lyons, Universal approximation with deep narrow networks,
8th Jun. 2020. doi: 10 . 48550 / arXiv . 1905 . 08539. arXiv: 1905 . 08539[cs ,
math , stat]. [Online]. Available: http : / / arxiv. org /abs / 1905 .08539 (visited on
14/05/2023).

[39] S. Park, C. Yun, J. Lee and J. Shin, Minimum width for universal approx-
imation, 15th Jun. 2020. doi: 10 . 48550 / arXiv . 2006 . 08859. arXiv: 2006 .
08859[cs, stat]. [Online]. Available: http : / /arxiv.org /abs /2006 .08859 (visited
on 14/05/2023).

[40] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations
by back-propagating errors,’ Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986,
Number: 6088 Publisher: Nature Publishing Group, issn: 1476-4687. doi: 10.
1038/323533a0. [Online]. Available: https://www.nature.com/articles/323533a0
(visited on 28/04/2023).

[41] M. A. Nielsen, Neural networks and deep learning, Type: misc, 2018. [Online].
Available: http://neuralnetworksanddeeplearning.com/.

[42] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 29th Jan.
2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs]. [Online]. Available:
http://arxiv.org/abs/1412.6980 (visited on 04/05/2023).

[43] L. Alzubaidi et al., ‘Review of deep learning: Concepts, CNN architectures,
challenges, applications, future directions,’ Journal of Big Data, vol. 8, no. 1,
p. 53, 31st Mar. 2021, issn: 2196-1115. doi: 10.1186/s40537-021-00444-8.
[Online]. Available: https://doi.org/10.1186/s40537-021-00444-8 (visited on
15/05/2023).

[44] Z. Zhang, ‘Derivation of backpropagation in convolutional neural network (CNN),’
[45] A. Sanchis, G. W. Johnson and A. Jensen, ‘The formation of hydrodynamic

slugs by the interaction of waves in gas–liquid two-phase pipe flow,’ Interna-
tional Journal of Multiphase Flow, vol. 37, no. 4, pp. 358–368, 1st May 2011,
issn: 0301-9322. doi: 10.1016/j.ijmultiphaseflow.2010.11.005. [Online]. Avail-
able: https: / /www.sciencedirect .com/science/article/pii /S0301932210001941
(visited on 10/05/2023).

[46] R. Bitter, T. Mohiuddin and M. Nawrocki, LabVIEW: Advanced programming
techniques. Crc Press, 2006.

[47] K. Rao, D. Kim and J.-J. Hwang, Fast Fourier Transform - Algorithms and Ap-
plications (Signals and Communication Technology). Dordrecht: Springer Neth-
erlands, 2010, isbn: 978-1-4020-6628-3 978-1-4020-6629-0. doi: 10.1007/978-1-
4020-6629-0. [Online]. Available: http://link.springer.com/10.1007/978-1-4020-
6629-0 (visited on 07/05/2023).

https://doi.org/10.48550/arXiv.1905.08539
https://arxiv.org/abs/1905.08539 [cs, math, stat]
https://arxiv.org/abs/1905.08539 [cs, math, stat]
http://arxiv.org/abs/1905.08539
https://doi.org/10.48550/arXiv.2006.08859
https://arxiv.org/abs/2006.08859 [cs, stat]
https://arxiv.org/abs/2006.08859 [cs, stat]
http://arxiv.org/abs/2006.08859
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.ijmultiphaseflow.2010.11.005
https://www.sciencedirect.com/science/article/pii/S0301932210001941
https://doi.org/10.1007/978-1-4020-6629-0
https://doi.org/10.1007/978-1-4020-6629-0
http://link.springer.com/10.1007/978-1-4020-6629-0
http://link.springer.com/10.1007/978-1-4020-6629-0

Appendix A

MNIST Audio Case Study

In order to ensure the validity of convolutional neural network and implementation
utilized in this thesis work, a test was conducted on an audio version of the MNIST
dataset 1. The audio data is subjected to a spectrogram transformation, before being
fed into the network. The proposed model has an accuracy above 95% for previously
unseen data.

AudioMNIST dataset

The Modified NIST database of handwritten digits contains in total 70000 samples
and is a subset of a larger set available from NIST (the USA’s National Institute for
Standards and Technology). Each sample is originally given as a 28x28 array where
elements value is given by an unsigned 8-bit integer, but the dimensionality changes
across different sources 2. Due to its size, relative simplicity, and availability (in-
cluded in the main machine learning frameworks by default 3) the MNIST dataset for
handwritten digits has become a natural starting point for multi label classification.

The AudioMNIST dataset consists of 30000 samples of English spoken digits and
its total length is roughly 9.5 hours. Data was accumulated from a total of 60 different
individuals, both male and female, ranging in age from 22 to 61 years old. Each
speaker provided 500 samples, 50 samples per digit. Although additional information
(dialect, age, sex, etc.) was not utilized in this study, knowing that variation between

1https://github.com/soerenab/AudioMNIST
2http://yann.lecun.com/exdb/mnist/
3SciKit Learn: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#

sklearn.datasets.load_digits
PyTorch: https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html#torchvision.
datasets.MNIST
Tensorflow: https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data

87

https://github.com/soerenab/AudioMNIST
http://yann.lecun.com/exdb/mnist/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html##sklearn.datasets.load_digits
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html##sklearn.datasets.load_digits
https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html##torchvision.datasets.MNIST
https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html##torchvision.datasets.MNIST
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data

88 APPENDIX A. MNIST AUDIO CASE STUDY

speakers is present in the dataset might have a soothing effect on the sceptic reader.
However, it is worth noting that the majority of speakers were male (48/60), non-
native speakers (57/60). The distribution of origin for the speakers is given in figure
A.1, which will give an indication of the dialects the model is exposed to.

Figure A.1: Number of speakers for the AudioMNIST dataset, sorted by their country
of origin. Note: The double category count (Spain/Spanien) is a consequence of the
meta data file provided by the Audio-source.

As a consequence, the model might show a higher proficiency in classifying spoken
digits when the voice comes from a male with a German dialect. Confirming this is
outside the scope of this case study.

89

(a) Raw data. Note that the y-axis is dimensionless as sound
is measured in dB, which is dimensionless. In this case, the
data value is a signed 16-bit integer.

(b) Spectrogram transformation of the data shown in A.2a.
Note that the lower frequencies dominate because this is a
recording of a human voice.

Figure A.2: Example of data and its spectrogram transformation, file 7_20_23.wav
was used.

Data treatment

Each data point from the dataset is a short (∼0.5-2 sec) .wav file with sampling rate
of 48 kHz. Utilizing the method scipy.io.wavfile.read from the scientific python
package, the .wav file is converted into a 1D array of 16-bit signed integers. The array
is then transformed into a spectrogram by scipy.signal.spectrogram. Our sample
has now gone from a sound clip to a matrix, which can be represented as a picture,
as can be seen in figure A.2.

In order to ensure identical dimensionality for all data points, the matrices were
zero-padded. Since the sound clips vary in length, the matrices will vary in width, but
the network which the model is build upon expects data in a specific format. Thus,
it is necessary that all input data has the same shape. These spectrogram matrices
of data are then saved, to later be loaded during the training of the model itself.
Treating the data this way offers a few advantages. Firstly, the amount of matrices
loaded in memory is now a parameter which can be changed before each training
cycle. Considering how the matrices occupy a total of ∼ 20 GB, loading them all to
memory is not necessarily a possibility for older hardware.

Furthermore, the burden of computing the spectrogram for a given sound clip,
as well as padding, can now be avoided at runtime, ensuring more computational

90 APPENDIX A. MNIST AUDIO CASE STUDY

resources towards the training of the model.

Architecture and Model Hyperparameters

In this case study a Convolutional Neural Network was utilized. The model has a
sequential structure, consisting of three convolutions, a flattening of the data into
a 1D array, and then a feed forward section which in the end produces the final
prediction. The layers, and additional information, are presented in Table A.1

Sequential
Order Layer Activation

Function Additional Number of
Kernels Kernel Size

1 Conv2D Relu Max Pooling 2x2 8 16× 16
2 Conv2D Relu Max Pooling 2x2 16 8× 8
3 Conv2D Relu Max Pooling 2x2 32 5× 5
4 Flatten
5 Dense Relu
6 Dense Relu
7 Dense Relu

Table A.1: Structure of the tested convolutional neural network, with layer-wise
explanations.

Seeing as this is a classification problem, the Cross Entropy Loss function was
used as a loss function.

The Adaptive momentum Stochastic Gradient Descent algorithm was used, thus
no learning rate hyperparameter was explicitly used. By default, however, PyTorch
uses an initial learning rate of 0.001. The upper limit on number of epochs was set
to 30.

Results & Discussion

The accuracy of the model during training is illustrated in fig A.3.
The highest accuracy for the test dataset was 0.9795 which was achieved at epoch

22. For the train dataset the highest accuracy was 0.9914 and achieved at epoch 12.
The confusion matrices for epoch 12 and epoch 22 are given in fig A.4 and fig A.5.

91

Figure A.3: The accuracy of the model as a functions of epochs trained, given as a
fraction. Note that testing was done after each epoch, meaning that even for epoch =
1 the model had seen every data point and updated its weights and biases accordingly.

(a) Training data. (b) Testing data.

Figure A.4: Confusion Matrix for True labels vs. Predicted labels for train and test
data in epoch 12.

92 APPENDIX A. MNIST AUDIO CASE STUDY

(a) Training data. (b) Testing data.

Figure A.5: Confusion Matrix for True labels vs. Predicted labels for train and test
data in epoch 22.

From figures A.3, A.4 and A.5 it is clear that the model is able to classify the
audio signals with high precision. When studying the confusion matrices we see that
for the training set at epoch 12 the lowest accuracy was for the audio samples with
the true label of 5. In this case the accuracy is 0.9591 (2299/2397). For the best test
set epoch, the lowest accuracy is 0.9571 (581/607) and occurred for the true label 9.
Even though some of the other values on the diagonal are smaller, the accuracy’s are
better. This is simply due to the differences between the sizes in the data set. The
fact that the proposed model still has some errors in the training data indicates that
the model is resilient against overfitting.

Conclusion
In this study a convolutional neural network is applied in order to study classification
of spoken digits which has undergone a spectrogram transformation. The aim is to
explore whether this kind of implementation is suitable for further audio classifica-
tions. The results show that the model has a high accuracy (>95%) when tested
on previously unseen data. To conclude, the use of a spectrogram transformation in
combination with convolutional neural networks in order to classify audio data is a
promising way to correctly classify previously unseen data. Given the reason for this
case study; Testing the validity of the proposed method, we can safely conclude that
this implementation meets this authors expectations.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	I Introduction
	Introduction
	Turbulent pipe flow
	Flow Regime identification with Machine Learning
	Acoustic Emission

	Contribution
	Thesis Structure
	Additional resources

	II Theory
	Slug Flow
	Flow Regimes
	Slugs
	Aerated slug
	Plug flow

	Machine Learning
	The basics
	Feed-Forward Neural Networks
	Activation Functions
	Mathematics behind the forward pass
	Loss functions
	Update weights and biases; Gradient descent

	Convolutional Neural Networks
	Convolution
	Trainable kernel
	Data stream

	III Methodology & Implementation
	Laboratory setup
	Layout
	Hardware

	Data
	Data Treatment
	Audio
	Video and Automated Labeling

	The Constructed Dataset

	Specific Application of the CNN
	Architecture
	Custom loss function

	Data Pre-Processing
	Scaling
	Transformations

	Implementations
	1D
	2D

	Metrics

	IV Results & Discussions
	Results & Discussion
	Multi-channel
	2D
	1D

	Single Channel

	Conclusion
	Future Work

	MNIST Audio Case Study

