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Abstract

Radio/(sub)-millimeter (mm) telescopes are powerful instruments for studying the universe
at radio, sub-millimeter, and millimeter wavelengths, but their accurate pointing is crucial
for obtaining high-quality data. Pointing errors, which refer to the deviation of the
telescope’s orientation from its desired direction, can significantly impact the quality of the
collected data. Radio/(sub)-mm telescopes use linear regression pointing models to correct
for these errors, taking into account various factors such as weather conditions, telescope
structure, and the target’s position in the sky. However, residual pointing errors can still
occur due to factors that are hard to model accurately, such as thermal and gravitational
deformation and environmental conditions like humidity and wind. In this thesis, we
investigated machine learning approaches to predict and correct residual pointing errors
for the Atacama Pathfinder EXperiment (APEX) telescope in the high-altitude Atacama
Desert in Chile. For our research, we used APEX telescope1 pointing data from 2022. We
trained eXtreme Gradient Boosting (XGBoost) models that reduced azimuth and elevation
(horizontal and vertical angle) root-mean-square errors by 7.0% and 9.4%, respectively,
on an unseen test set. We also developed neural network pointing models from scratch
that outperformed the commonly used linear regression model on a test case. Our study
highlights the importance of larger datasets for accurate pointing models and the potential
of machine learning to enhance the capabilities of current and future radio/(sub)-mm
telescopes, such as the Atacama Large Aperture Submillimeter Telescope (AtLAST).

1Frontpage image source: https://www.eso.org/public/images/potw1216a/

https://www.eso.org/public/images/potw1216a/
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Thesis Structure

The thesis is structured into three parts, with the first chapter introducing the problem
of pointing with radio telescopes. The first chapter also discusses the research questions,
related works, and astronomy background.

Part I, Background & Theory, consists of two chapters. Chapter 2 provides a detailed
description of the pointing model developed at APEX and the data we used for the research
in this thesis. Chapter 3 presents the machine learning concepts we utilized.

Part II, Data Processing & Methods, also contains two chapters. Chapter 4 outlines
the data processing and feature engineering techniques we used in the study. Chapter
5 describes two machine learning experiments that we aimed at answering the research
questions posed in the introduction.

Finally, Part III, Results & Discussion, includes chapter 6 with the results and discussion
of the two experiments, followed by the conclusion in chapter 7. In addition to the main
body of the thesis, we provide an appendix, which includes supplementary information.
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Chapter 1

Introduction

1.1 Introduction
Radio/(sub)-millimeter (mm) telescopes are powerful tools to study the Universe at radio,
sub-millimeter, and millimeter wavelengths. These telescopes are designed to capture
and detect electromagnetic radiation from space, which can provide valuable insights into
astronomical phenomena, ranging from the formation of stars [1] and galaxies [2] to the
behavior of black holes [3]. One of the key components of a radio telescope is its reflective
surface, which collects and focuses the incoming radiation. Most radio/(sub)-mm telescopes
have a large, parabolic dish-shaped primary mirror, reflecting incoming radiation onto
a smaller, secondary mirror (see Figure 1.1a). The secondary mirror (or subreflector)
then reflects the radiation onto a detector or receiver placed at the focal point, which
records and processes the signals. In astronomy, the term "pointing" refers to the process
of positioning the telescope to observe an astronomical source. The goal is to fit the source
at the center of the central resolution element or "beam" of the telescope (see Figure 1.1b),
which in the case of single-beam instruments corresponds to the field of view of the telescope.

(a) Radio telescope basics. Source [4] (b) Telescope beam sketch. Source: P.
Napier, Synthesis Summer School 2002
(https://slideplayer.com/slide/7448846/)

Figure 1.1: a) Basics of how a radio telescope works and b) Sktech of a telescope’s beam.

https://slideplayer.com/slide/7448846/
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Radio/(sub)-mm telescopes detect and record photons over time, which are then pro-
cessed to create a composite image or spectrum. However, this process requires highly
accurate pointing, as even slight errors in the telescope’s orientation can significantly affect
the resulting data quality. Pointing errors, often referred to as pointing offsets, can be
caused by various factors, including thermal deformation of the telescope components [5],
gravitational deformation [6], and other environmental factors like humidity [7] and wind
[8]. Most radio/(sub)-mm instruments do not have an imaging camera. Hence, the correct
positioning of the source within the resolution element (beam) and at the center of the field
of view cannot be checked directly. To achieve this accuracy, radio/(sub)-mm telescopes
use pointing models [9], which take into account a range of factors that can contribute
to the pointing error, including weather conditions, telescope structure, and the target’s
position in the sky.

The Atacama Pathfinder EXperiment (APEX) telescope [10]1, pictured in Figure 1.2,
located in the high-altitude Atacama Desert in Chile, currently uses an effective analytical
pointing model run in the background and recalibrated periodically through pointing
measurement campaigns. However, there is still a residual pointing offset (with a median
value of 2.84 arcseconds and an interquartile range of 1.55′′ to 4.66′′ at 230GHz with
beamwidth 28′′) whose origin is not understood. This thesis aims to investigate two
research questions. First, we want to explore using machine learning to increase the
pointing accuracy of the current pointing model at APEX based on observational data such
as weather patterns and telescope pointing. Secondly, we want to investigate a machine
learning approach for developing a pointing model from scratch for a new radio/(sub)-mm
single dish telescope. A machine learning approach would benefit larger radio/(sub)-mm
telescopes like the future Atacama Large Aperture Submillimeter Telescope (AtLAST) 2.
AtLAST will have a 50-meter diameter primary mirror and 12-meter diameter subreflector.
Hence, the subreflector will be as big as APEX’s primary mirror. Due to the size and
complexity of AtLAST, it will be harder to develop an analytical model. By developing
a more advanced and reliable pointing model with machine learning, this research can
enhance the capabilities of current and future radio/(sub)-mm telescopes to advance our
understanding of the universe.

(a) Telescope structure. Credit: C. Cicone (2023) (b) Subreflector. Credit: P. Gallardo (2023)

Figure 1.2: Pictures of the APEX telescope
1Link to APEX website http://www.apex-telescope.org/ns/
2Link to AtLAST website https://www.atlast.uio.no/

http://www.apex-telescope.org/ns/
https://www.atlast.uio.no/
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1.2 Related Works
The application of machine learning in astronomy has become increasingly popular in recent
years, with various applications such as data analysis and prediction. For instance, Petrillo
et al. [11] used two convolutional neural networks to detect gravitational lensing from
images. George & Huerta [12] used a convolutional neural network to detect gravitational
waves in real time at the Laser Interferometer Gravitational-Wave Observatory(LIGO).
Despite many use cases for machine learning in astronomy and the need for an accurate
pointing model in radio telescopes, we have not found any studies that used machine
learning to develop or maintain a pointing model for radio telescopes. Traditional methods
for pointing models in radio telescopes involve modeling the pointing error as a function of
various parameters, such as azimuth, elevation, temperature, and time. These models are
often complex and require significant effort to develop and maintain. Moreover, they can
be limited by the accuracy of the models used for atmospheric refraction, instrumental
error, and other sources of noise. Several papers have described various approaches to
improve the pointing accuracy of radio telescopes. For example, White et al. [13] developed
a pointing model for the Green Bank Telescope using theoretical terms based on the
telescope’s structure and analysis on the thermal deformation of the telescope structure.
Greve et al. [14] studied seasonal effects on the pointing. The use of machine learning
for pointing models in radio telescopes poses several challenges and opportunities. One
of the main challenges is the need for large datasets, which can be difficult to obtain in
the context of radio telescopes. Large datasets require extensive observational "pointing"
campaigns which take time and subtract it from astrophysical observations. Another
challenge is to have access to such datasets (which are usually unpublished and used only
internally by the staff at the observatories) and collect these datasets in a coherent way.
Moreover, the accuracy of the pointing model depends on the accuracy of the data used
for training, which can be affected by various sources of noise and error. Nonetheless,
machine learning algorithms offer the potential for significant improvements in pointing
accuracy, and can potentially reduce the complexity and maintenance requirements of
traditional pointing models. Future research in this area could explore the development
of machine learning algorithms that can handle the challenges unique to radio telescopes,
and the integration of machine learning techniques into existing pointing models. Blakseth
et al. [15] demonstrated a similar approach by combining physics-based modeling with
data-driven techniques, such as deep neural networks, to learn a corrective source term in
numerical experiments on one-dimensional heat diffusion. This approach could potentially
be adapted for a pointing model, where a hybrid model that combines theoretical and
empirically-based corrective terms commonly used in pointing models today with sensor
data could result in a more accurate and robust pointing model. Such a model could
require less maintenance and development time, which would benefit science operations.
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1.3 Astronomy Background
In order to understand some of the parameters used in the pointing models, we need to
introduce some basic concepts concerning astronomical coordinates

1.3.1 The Celestial Sphere

The celestial sphere is a fundamental concept in astronomy. It is an imaginary sphere
with an arbitrary radius centered on Earth, and it allows us to represent the positions
of celestial objects conveniently and intuitively. Any astronomical observation is a 2D
projection onto the celestial sphere, a tool astronomers use to specify the position of a
target as it appears in the sky without using its physical distance from Earth (which
requires a deeper knowledge of the physical properties of the astronomical target, usually
acquired after many different observations). We describe the position as two-dimensional
angular coordinates on the sphere. While the celestial sphere is a universal concept, the
coordinate system used to specify the location of a target can vary.

1.3.2 Altitude-Azimuth Coordinate System

Figure 1.3 depicts the altitude-azimuth coordinate system, which depends on the observa-
tory’s position on Earth and is commonly used when performing astronomical observations
(but rarely used in scientific publications, which instead use a universal coordinate system).
This system specifies the angular coordinates (e.g. in degrees or arcminutes, which are
1/60 of a degree, or arcseconds which are 1/60 of an arcmin) using an azimuth and an
altitude (or elevation) angle. Azimuth is the angle around the axis perpendicular to the
horizontal plane, with zero degrees corresponding to due north. At APEX, the convention
is to increase the azimuth angle in a clockwise direction. The interval for azimuth angles is
[−270◦, 270◦] due to APEX’s ability to rotate one and a half times around its axis in the
horizontal plane. On the other hand, elevation is the angle perpendicular to the horizontal
plane, with zero degrees corresponding to the telescope pointing at the horizon and 90◦

to the telescope pointing at the zenith directly above it. In this thesis, we used elevation
instead of altitude to describe this coordinate.
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Figure 1.3: The altitude-azimuth coordinate system used at APEX. Source [16]

1.3.3 Radio/(Sub)-mm Telescope Basics

In this section, we present an overview of the fundamental components of a radio/(sub)-mm
telescope. As illustrated in Figure 1.1a, the basic operation of a Nasmyth-Cassegrain
telescope design involves collecting electromagnetic radiation with a primary mirror, which
is then reflected onto a secondary mirror (subreflector). The photons are subsequently
redirected toward the interior of the telescope, where they are converted into an electrical
signal by an attached receiver (instrument). The electric signal is then processed and
recorded for further analysis.

Additionally, Figure 1.1b provides a visual representation of the telescope’s beam. The
telescope’s beam indicates the source of the strongest signal detected by the telescope.
The beam power weakens towards the edges, and the goal is to place the source as the
peak of the telescope’s response, i.e., at the center of the beam The angular resolution
of a telescope, or the solid angle it can observe, is determined by the width of its beam.
Physical characteristics, including the primary dish diameter and the electromagnetic
radiation frequency, determine the beam’s width. The standard measure for beamwidth is
the half-power beamwidth or the angle between two points on the beam where the radiation
power is half its maximum [17].
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Part I

Background and Theory
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Chapter 2

APEX Pointing Model and
Database

2.1 Pointing model
Since radio/(sub)-mm telescopes observe over an extended time, they need a pointing
model to obtain sufficiently accurate pointings. The flux of the brightest radio sources is
also weaker than the atmospheric emission, which means that the signal is often hidden in
the noise and needs to be extracted using long integrations and modulation techniques.
Therefore, astronomers must know that the pointing is accurate before initiating a long
integration on the source.

The pointing model at APEX consists of two steps, an analytical model and additional
pointing corrections performed at regular intervals based on recently observed pointing
offsets. The analytical model consists of fitting multiple terms to the many measurements
of the pointing offset (difference between input coordinates and the observed coordinates
of the source). These terms can be geometric terms or terms related to, for example,
metrology data. The fitted terms are used for 1-2 months and run in the background
adjusting all input coordinates. The additional pointing corrections are performed by
astronomers every 1-2 hours during the science observations and before observing a new
target.

These equations explain the resulting pointing

Az = Azinput + ∆Azanalytical model + ∆Azcorrection (2.1)
El = Elinput + ∆Elanalytical model + ∆Elcorrection (2.2)

Where the first terms, Azinput and Elinput, are the input coordinates. The second terms
∆Azanalytical model and ∆Elanalytical model are the adjustment made according to the analyt-
ical model. Furthermore, the last terms, ∆Azcorrection and ∆Elcorrection, are the corrections
based on recently measured pointing offsets.

In the following section, we introduce and explain the adjustments from the analytical
model and pointing offsets.

2.1.1 Analytical Model

Accurately measuring pointing offsets without a pointing model can be challenging as the
error is typically larger than the beamwidth, causing the source to fall outside the beam.
At APEX, astronomers use an optical receiver mounted in the primary mirror to make
the initial observations, which allows them to observe the source in real-time. During
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this process, which the astronomers perform periodically every 1-2 months, the telescope
is pointed at various sources with known locations, yielding both input and observed
coordinates.

The analytical pointing model at APEX considers various factors that affect pointing,
including purely geometrical terms based on the imperfect mounting of telescope components
and empirical terms. It uses the terms described below, all of which are dependent on the
azimuth Az or elevation El, except for a couple of constant terms. The coefficients for
all the terms are determined by the TPOINT [18] software, using a linear fit based on the
observed offsets from a pointing campaign. The sum of all terms is the adjustment made
by the model.

Most of the terms described in this section are fitted on data collected from the optical
receiver mounted in the primary mirror. Then, the astronomers refine the terms using
observations from different instruments to develop specialized pointing models for each,
while most terms remain constant from the optical fit. The analytical model is crucial
in accurately determining the telescope’s pointing offsets, essential in obtaining high-
quality observational data. Table 2.1 provides a list of the terms utilized in the analytical
model, indicating whether each term is determined through optical data or recalibrated for
individual radio receivers.

The following descriptions of the terms are taken directly from the TPOINT software
manual [18].

Harmonic terms

The analytical model has multiple harmonic terms, some geometrical and some empirical.
We introduce all the purely geometrical terms below, being AN, AW, CA, IA, IE, and
NPAE, in addition to NRX, which is not purely geometrical but still affects pointing
accuracy. The TPOINT software that the APEX staff uses to develop the analytical model
suggests terms that improve the model’s performance on the chosen dataset. The following
terms are the empirical terms for azimuth.

∆Az =c1 · sin Az + c2 · cos 2Az

cos El
+ c3 · cos 3Az + c4 · sin 2Az (2.3)

+ c5 · cos 2Az + c6 · cos Az

cos El
+ c7 · cos 5Az

cos El
, (2.4)

and the terms for elevation are

∆El =c1 · sin El + c2 · cos El + c3 · cos 2Az + c4 · sin 2Az (2.5)
+ c5 · cos 3Az + c6 · sin 3Az + c7 · sin 4Az + c8 · sin 5Az (2.6)

The TPOINT software denotes the harmonic terms in the format Hrfci. The list below
explains the different terms.

• H: Stands for harmonics

• r: The resulting variable, either Az or El, denoting azimuth and elevation respectively.
The resulting variable can also be S, which means the result is horizontal, or azimuth
scaled by a factor 1/ cos El.

• f : The harmonic function, either S or C denoting sine and cosine.

• c: The variable that the funciton f is dependent on, either Az or El.

• i: Integer value in the range 0-9, denoting the frequency of the harmonic.

For example, is ∆Az = HACA3 cos 3Az denoted as HACA3 in the TPOINT software.
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Az/El non-perpendicularity (NPAE)

In an altazimuth mount, if the azimuth axis and elevation axis are not exactly at right
angles, horizontal shifts proportional to sin El occur. This effect is zero when pointing at
the horizon and increases with elevation proportional to 1/ cos El

∆Az ≃ −NPAE sin El

cos El
= −NPAE tan El, (2.7)

where NPAE is the horizontal displacement when pointing at Zenith.

Left-right collimation error (CA)

In an altazimuth mount, the collimation error is the non-perpendicularity between the
nominated pointing direction and the elevation axis. It produces a horizontal image shift
given by

∆Az ≃ −CA/ cos El (2.8)

Azimuth and elevation index error (IA/IE)

Index errors are the errors when pointing at origo.
The azimuth index error is

∆Az = −IA, (2.9)

and elevation index error is
∆El = IE (2.10)

Azimuth axis misalignment (AN/AW)

In an altazimuth mount, misalignment of the azimuth axis north-south or east-west causes
errors. The errors caused by misalignment in the north-south are given by

∆Az ≃ −AN sin Az · tan El, (2.11)

and

∆El ≃ −AN cos Az, (2.12)

where AN is the misalignment alignment in the north-south direction. The errors given by
misalignment in east-west are given by

∆Az ≃ −AW cos Az tan El, (2.13)

and

∆El ≃ AW sin Az, (2.14)

where AW is the misalignment alignment in the east-west direction.
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Displacement of Nasmyth rotator (NRX/NRY)

In a Nasmyth altazimuth mount, a horizontal displacement between the elevation axis of
the mount and the rotation axis of the Nasmyth instrument-rotator produces and image
shift on the sky with a horizontal component

∆Az ≃ −NRX, (2.15)

and an elevation component
∆El ≃ −NRX sin El, (2.16)

where NRX is the horizontal displacement.
A vertical displacement produces an image shift on the sky with a horizontal component

∆Az ≃ −NRY tan El, (2.17)

and an elevation component
∆El ≃ NRY cos El, (2.18)

In the case of APEX, NRY = 0.

Table 2.1: List of terms included in the analytical pointing model at APEX. All the
terms are fitted using observations from the optical receiver, while the terms below "Radio
receiver" are refitted specifically for each radio receiver.

Term Azimuth Elevation
Optical receiver

NPAE x
HASA x
HECA2 x
HSCA2 x
HACA3 x
HASA2 x
HACA2 x
HSCA x
HESA2 x
HECA3 x
HSCA5 x
HESA3 x
HESA4 x
HESA5 x
NRX x x
NRY x x

Radio receivers
HESE x
HECE x
IA x
IE x
CA x
AN x x
AW x x
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2.1.2 Pointing Corrections

Although the analytical linear regression pointing model at APEX fits pointing campaign
observations well, it cannot accurately model the changes in pointing over time, resulting
in residual errors. Astronomers regularly correct these errors by observing a strong source
with known coordinates, measuring the pointing offset, and updating the model’s terms for
azimuth and elevation correction (CA and IE, respectively). The update procedure is as
follows:

CA = CA + δAz (2.19)
IE = IE − δEl, (2.20)

where δAz and δEl are the recently observed pointing offsets in azimuth and elevation,
respectively. The astronomers perform these pointing corrections every couple of hours to
ensure the pointing is sufficient during science observations.

Note that we divide the term CA (2.8) by cosine elevation, which converts the observed
horizontal offset to azimuth.

2.2 APEX Database
In this section, we introduce the different data sources utilized throughout the research in
this thesis.

2.2.1 Pointing Scan Data

During a pointing scan, the telescope observes a source with a known location to obtain
a pointing offset measured in arcseconds. The observers use this offset to correct the
pointing model (using equations (2.19) and (2.20)). There are two types of pointing scans:
Line-pointings and continuum scans.

Line-pointing

A line-pointing involves pointing at a source with strong emission lines well known coordi-
nates. The telescope then performs multiple scans recording the flux intensity from the
source around the center of the pointing, as shown in Figure 2.1. The upper panel shows a
high-quality pointing scan, and the lower panel shows a noisy, low-quality pointing scan.
The cross-plot on the right side shows the line spectrum for each observation (center plus
eight offset observations).

The integrals of the flux recorded from the source are plotted as blue dots on the
left-hand side of the panel. A Gaussian is fitted to these points, and the table shows the
resulting amplitude, full width at half maximum (FWHM), and offsets.
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(a) Line-pointing with little noise and a good Gaussian fit.

(b) Noisy line-pointing with bad Gaussian fit.

Figure 2.1: The two figures show line-pointing scans. a) is good and clean, and b) is noisy
and unreliable. A Gaussian is fit both for the azimuth and elevation pointing. The table
shows the amplitude, full width at half maximum (FWHM), offset, and the uncertainty of
these measures, for azimuth and elevation. The figures also show the correction applied
during the pointing (ca and ie), along with other metrics.

Continuum Scan

Not all sources have emission lines; for these sources, the telescope performs a continuum
scan instead. In this case, a source (typically major planets) is continuously scanned in
azimuth and elevation while recording the flux intensity. A Gaussian curve is fitted to the
recorded flux intensity to determine the offsets, amplitude, and full width at half maximum
(FWHM). Figure 2.2 show examples of continuum scans and the corresponding Gaussian
fits.
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(a) Line-pointing with little noise and a good Gaussian fit.

(b) Noisy line-pointing with bad Gaussian fit.

Figure 2.2: The two panels show continuum pointing scans. a) is good and clean, and b) is
noisy and unreliable. A Gaussian is fit both for the azimuth and elevation pointing. The
amplitude, full width at half maximum, offset, and the uncertainty of these measures are
shown for both of the fits.

Pointing scan timestamp

In the main database, each pointing scan has a timestamp in the format YYYY-MM-DD
HH:MM:SS, with a one-second resolution. This timestamp does not reflect the actual
start of a pointing scan. Also, no information in the database itself indicates whether
the telescope is observing, but this information can be extracted from some dump files
from the tiltmeter, which includes a flag indicating whether the telescope is idle, preparing
to observe, or observing. Combining this flag with the timestamps, we can obtain the
accurate start and end time of a pointing scan. However, these tiltmeter dump files are
only available for some time periods.
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Instruments

The observing instruments on the telescope operate at various frequencies. Table 2.2
provides information on the frequency range covered by each instrument, along with the
number of scans performed using each instrument throughout the year 2022.

The broad range of frequencies at which astronomical phenomena emit electromagnetic
radiation requires observation across a wide range of frequencies to study these phenomena
comprehensively. APEX’s website provides a complete list of instruments along with their
descriptions.

Table 2.2: The number of times each instrument was used for a pointing scan in 2022.
There are 8847 scans in total.

Instrument Frequency band [GHz] # of scans
NFLASH230 200-270 3197
LASMA345 268-375 1861
NFLASH460 385-500 1394
SEPIA660 578-738 856
SEPIA345 272-376 818
SEPIA180 159-211 359
HOLO 92.4 225
ZEUS2 666-856 103
CHAMP690 620-720 34

2.2.2 The Monitor Database

The monitor database is critical in this project, providing valuable sensory data from
within and outside the telescope. In this section, we will explore the data contained within
the monitor database and identify the most relevant variables to our purposes. We had a
copy of the database containing data from 01.01.2022 to 17.09.2022.

The monitor database provides data with varying frequencies, as shown in Table A.7,
which lists the approximate number of data points per minute for each table used in this
project. Figure 2.4 presents scatter plots of a selected subset of variables from the database
during pointing scans. Table A.7 in Appendix A shows a comprehensive list of these
variables, along with the frequencies of their measurements.

Azimuth and Elevation

The database includes tables for the input azimuth and elevation, labeled COMMANDAZ
and COMMANDEL. These tables contain the raw coordinates before the pointing model
has adjusted the pointing.

The database also includes tables for the actual azimuth and elevation, labeled ACTU-
ALAZ and ACTUALEL. These tables contain the coordinates obtained after applying the
pointing model and automatic adjustments based on sensory data.

Finally, the database contains tables for the azimuth and elevation velocity, labeled
ACTUALVELOCITYAZ and ACTUALVELOCITYEL. These tables provide information
on the velocity of the telescope during observations.

The frequency of these measurements is 6 data points per minute. Figure 2.4a show
these measurements for the duration of a pointing scan, along with additional data points
before and after the scan.

https://www.eso.org/sci/facilities/apex/cfp/cfp110/instrument_summary.html.html
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Temperature Measurements

Multiple instruments located at different locations on the telescope measure the temperature
and store the measurements in the database. The tables that contain these measurements
are labeled TEMPERATURE, TEMP1 through TEMP6, TEMP26 through TEMP28, and
TILT1T. Figure 2.3 indicates that many of these measurements are highly correlated. For
example, TEMP1 through TEMP6 show a strong correlation ≥ 0.98. Similarly, TEMP26
through TEMP28 and TEMPERATURE are also highly correlated. The frequencies of
some of these measurements are different, and they may all be found in Table A.7. Figure
2.4c and 2.4d show the measurements of TEMP1 and TILT1T respectively for the duration
of a pointing scan and additional data points before and after the scan.
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Figure 2.3: Linear correlation between temperature measurements at APEX. The values
are sampled by the median value at each pointing scan.

Hexapod

The secondary mirror, also known as the subreflector, is supported by a hexapod. The
hexapod moves in three dimensions and rotates around azimuth and elevation axes. There
are five measures associated with the hexapod: POSITIONX, POSITIONY, POSITIONZ,
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ROTATIONX, and ROTATIONY. These measures are essential for positioning the sec-
ondary mirror and ensuring accurate pointing. The frequency of these measurements is 6
data points per minute.

Tiltmeter

The telescope has two tiltmeters that measure its tilt or inclination to the vertical direction.
One tiltmeter aligns with the telescope’s pointing (TILT1X), while the other is orthogonal
to the pointing (TILT1Y). The frequency of these measurements is 12 data points per
minute.

Weather data

The weather station at the telescope provides measurements of various weather parameters,
including dew point, humidity, pressure, wind speed, and wind direction. The instruments
take measurements at a frequency of 5 data points per minute. The Figures 2.4e and 2.4f
show wind direction and speed measurements for the time period around a pointing scan.

Displacement measures

There are displacement measurements of the yoke (component of the mounting system
that allows the telescope to move in azimuth and elevation). It measures the deformation
due to mechanical stress caused by accelerations in azimuth and elevation, and thermal
variations. These are labeled DISP_ABS in the database, and the measurements have a
frequency of 12 data points per minute.

Automatic adjustments

Automatic adjustments based on readings from various sensors ensure accurate and stable
pointing of the telescope. These adjustments account for previously modeled systematic
errors based on measurements from tiltmeters, temperature sensors installed at different
locations, and other relevant data sources. SPEM denotes the adjustments based on the sag
of the quadrupod structure supporting the subreflector due to gravitation. Some system at
the telescope automatically makes these adjustments, and the tables in the database that
contain information about these adjustments start with DAZ or DEL, denoting adjustments
in azimuth and elevation, respectively.

The frequency of this data is 12 data points per minute.
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(b) Elevation angle.
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(c) Temperature measurements at temperature
sensor 1.
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(d) Temperature measurements at tiltmeter 1.
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(e) Wind direction data from the weather station,
measured in degrees from North, where clockwise
is the positive angle direction.
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(f) Wind speed data from the weather station.

Figure 2.4: Scatter plots that show different sensory data from before, during, and after a
pointing scan. The red line denotes the timestamp for a scan in the pointing scan database.
The red dots indicate when the telescope is observing, while the blue dots indicate when
the telescope is idle or preparing to observe.

2.2.3 Raw Data

The raw data from the pointing scans using the NFLASH230 receiver provides input
and actual coordinates. APEX staff has obtained the actual coordinates of the sources
by combining the input coordinates with the adjustments made by the pointing model,
automatic adjustments based on sensory data, and the observed offset. Then, they use this
raw data to refine the model fit on data obtained from the optical receiver. Specifically,
this data refines the model of the NFLASH230 model. Table 2.3 is included to provide an
example of this data format.
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Table 2.3: Extract of raw data obtained with NFLASH230. The data file also includes the
source, which is irrelevant to this project.

Input Observed
Date Azimuth Elevation Azimuth Elevation

2022-01-03 14:24:04 189.812879 41.0762 190.254779 40.883651
2022-01-03 18:59:40 50.842145 73.371647 51.269044 73.203243
2022-01-03 19:01:49 49.555916 73.752182 49.983112 73.583545
2022-01-03 19:16:10 39.378382 76.076236 39.781084 75.908956
2022-01-03 19:18:27 113.934309 39.345667 114.391232 39.170168
2022-01-22 13:54:31 94.04365 18.148405 94.492505 17.981161
2022-01-22 14:15:35 148.569964 89.044036 147.783271 88.852306
2022-01-22 14:18:15 215.664924 49.563821 216.104389 49.386438

2.2.4 Tiltmeter Dump Files

The tiltmeter dump files are a small part of the database and are only used to analyze
when pointing scans start and end, using a "scan flag". In the pointing scan database,
there is a timestamp linked to each pointing scan, but this timestamp does not mark the
start of the scan, but rather some time right before it. The tiltmeter dump files contain a
flag indicating whether the telescope is idle, preparing to observe, or observing. There are
280 of these files, and all have filenames in the format "Tiltmeter_YYYY-MM-DD.dump,"
which indicates the data’s date. These files contain seven columns: datetime, azimuth,
elevation, tilt1x, tilt1y, tilt1t, and the scan flag. For our purpose, only the datetime and
scan flags provide useful information. Table 2.4 shows an extract of the datetime and scan
flag columns from one of the tiltmeter dumps. Analysis of this data is presented in section
4.2.

Table 2.4: Extract from a tiltmeter dump file. It shows the timetamp, and a variable
denoting if the telescope is a) idle, b) preparing to observer, or c) observing.

Datetime Scan flag
2022-11-13T02:23:37 IDLE
2022-11-13T02:23:38 IDLE
2022-11-13T02:23:39 PREPARING
2022-11-13T02:23:40 PREPARING

...
...

2022-11-13T02:23:52 PREPARING
2022-11-13T02:23:53 PREPARING
2022-11-13T02:23:55 OBSERVING
2022-11-13T02:23:56 OBSERVING
2022-11-13T02:23:57 OBSERVING
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Chapter 3

Machine Learning Theory

In this section, we present most of the machine learning concept utilized in our research.
For more details on the theory in sections 3.1 through 3.6, see [19].

3.1 Supervised Learning
Supervised learning is a subfield of machine learning that refers to training a model to
predict a specific target value based on input data. In this context, we refer to the input
data as "features." The training is supervised when paired with the corresponding target
value for prediction. There are two types of supervised learning, regression and classification.
In regression, we predict a continuous variable, while in classification predict a binary value,
true or false. The model architecture of the model can be the same regardless of predicting
a true/false or continuous value. The difference is in the loss function, which is used to
evaluate the model’s performance during training. The last layer activation function for
neural networks is different for regression and classification. In-depth explanations of this
will come in the following sections.

3.2 Loss/Cost
In machine learning, the loss of a model refers to the discrepancy between the predicted
and true values. It is calculated using a specific function designed to penalize incorrect
predictions and measure the model’s performance. The ultimate goal of any machine
learning model is to minimize the loss and thereby reduce the difference between predicted
and desired outputs. To achieve this, the model is trained by calculating the gradient
of the loss function with respect to different components in the model. These gradients
determine how the model is adjusted to minimize the loss through an iterative process. As
a result, the model is optimized to make better predictions and achieve higher accuracy.

The most common loss function for regression is the mean squared error

L(y, ỹ) = 1
N

N∑
i=1

(y − ỹ)2, (3.1)

where ỹ is the prediction, y the true value, and N the number of predictions.

3.2.1 Loss Functions

Loss functions are used to evaluate the performance of the machine learning model during
training. We consider two different loss functions when predicting azimuth and elevation
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simultaneously with the same model, such as a neural network. One loss function considers
the offset in azimuth and elevation separately, and one considers the total distance. Let
ỹAz and ỹEl denote the prediction for the offset in azimuth and elevation, respectively. yAz

and yEl are the true values. The first loss function is the mean squared error (MSE)

LMSE = 1
2N

N∑
i

(
(yAz,i − ỹAz,i)2 + (yEl,i − ỹEl,i)2

)
, (3.2)

where N is the number of predictions.
For the second loss function, we use the mean squared distance (MSD)

LMSD = 1
N

N∑
i

[
(yAz,i − ỹAz,i)2 + (yEl,i − ỹEl,i)2

]
, (3.3)

It is difficult to predict the effects of these loss functions if any at all, but one difference
could be that LMSE is more sensitive to outliers, and LMSD reduces the offsets more evenly.

For models with a single output azimuth or elevation, we use the regular mean squared
error (3.1)

3.3 Datasplitting
Machine learning models can be highly complex and fit all the data points in a dataset.
While this can result in perfect predictions on the training data, it often leads to poor
performance on new data, a phenomenon known as overfitting. To counteract this, the
data is typically split into two parts - a training set and a validation set. The model is
trained on the training set, and the error on the validation set is used to evaluate the
model’s performance. By using a separate set of data for validation, we can better estimate
the model’s performance on new data and avoid overfitting.

When the error on the training data is low, the model has low bias. However, if the
model is too complex, it may also have high variance, meaning that it is overly sensitive to
the training data and unable to generalize well to new data. The key to building a good
model is to balance bias and variance and to find the right level of complexity that will
allow the model to generalize well. Proper selection of the train/test split ratio and other
techniques, such as regularization, can help achieve this balance and improve the model’s
performance.

One usually picks the machine learning model with the best performance on the
validation set, but this performance is not a reasonable estimate of the expected performance
on future predictions. This is because multiple models are typically trained, and the model
with the best performance on the validation set may have obtained its results by chance.
Therefore, a third test set is used to get an unbiased estimate of the model’s performance.
The data in the test set is not used when training or validating and is only used to estimate
the final model’s performance.

3.4 Scaling
In machine learning, some models, such as neural networks, are highly sensitive to the scale
of input data. The inputs to a model often contain different types of data with varying
scales. Neural networks use weights to transform the input data, and each neuron in a
fully connected network receives data from every input feature. If the input features have
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different scales, training the weights can be slow and unstable. Scaling the input data
to have the same scale improves the speed and performance of the model. The scaling
of the data range does not influence tree-based models, as they operate through binary
tests rather than mathematical calculations. For our research, we scaled the data to have
zero mean and a standard deviation of one. This is called standardizing and is achieved
by subtracting the mean and dividing by the standard deviation. Mathematically, the
standardization of a feature x is represented as:

xscaled = x − µ

σ
(3.4)

where µ is the mean of the feature values, and σ is the standard deviation of the feature
values. The mean and standard deviation are computed using the following equations:

µ = 1
n

n∑
i=1

xi (3.5)

σ =

√√√√ 1
n

n∑
i=1

(xi − µ)2, (3.6)

where n is the number of observations of the feature. In addition to standardization,
other scaling methods, such as min-max and robust scaling, are also used in specific cases.
Overall, scaling is a crucial step in preprocessing data for machine learning, as it can
significantly impact the performance of a model. However, for tree-based methods, scaling
has no effect, as predictions are made based on conditions in the data, not mathematical
operations.

3.5 Decision Trees
Decision trees are tree-like models that make decisions based on conditions. As shown
in Figure 3.1, each circle represents a node with various types, including decision nodes
that split into two other nodes and leaf/terminal nodes that do not. The root node is the
topmost decision node. Given an observation, a single path to a leaf node represents the
prediction made by the decision tree.

Trees are constructed greedily from the top, meaning that each split is made to minimize
the loss function at the current step without considering future splits. More than a single
decision tree is required for complex problems. Various methods exist to improve decision
tree models, as Figure 3.2 demonstrates. The final step in the figure is XGBoost [20], a
highly efficient and high-performing machine learning algorithm. This section will briefly
cover the methods used to optimize decision trees for prediction.

3.5.1 Bagging

Bagging, also known as Bootstrap Aggregation, is a method for training an ensemble of
models that contribute to the final prediction. Each model is trained using bootstrapped
data (resampled from the original dataset with replacement), resulting in diverse decision
trees. The final prediction is the average of all ensemble models.

3.5.2 Random Forest

Random forest is based on bagging, where each tree in the ensemble is made using only a
randomly chosen subset of features. This often leads to better generalization and reduced
overfitting.



30 CHAPTER 3. MACHINE LEARNING THEORY

3.5.3 Boosting

In boosting, an ensemble is created, but the trees are not made independently. They
are trained one by one, considering the errors of the previous trees. A sample weight is
assigned to each sample used to train a tree based on the current ensemble’s accuracy.
Samples with significant prediction errors are assigned larger weights, and those with
accurate predictions are assigned lower weights. The final prediction is a weighted sum of
all ensemble predictions, with weights based on each tree’s accuracy.

3.5.4 Gradient Boosting

Like in regular boosting, an ensemble of trees is created iteratively by considering the
errors made by previous trees. The process starts with a constant model that predicts
the mean of all samples. The gradient of the loss function with respect to each sample
is calculated, and a tree is made to predict these gradients. The new prediction is the
constant plus a small step in the direction of the predicted gradients. Repeated iteration
with small steps in the gradient direction helps reduce both bias and variance.

Figure 3.1: An example of a decision tree with three decision nodes and five leaf nodes.
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Figure 3.2: The evolution of XGBoost. Source: [21]

3.6 Neural Networks
A Neural Network (NN) is an Artificial Intelligence (AI) model composed of interconnected
neurons inspired by biological neural networks in animal brains. These networks are
arranged in layers, as shown in Figure 3.3, and consist of an input layer, one or more
hidden layers, and an output layer. The size of the hidden layer(s) varies depending on the
nature of the problem. A NN processes input to produce an output, ideally close to the
true value.

Each connection in an NN has a trainable weight wl
jk, representing the weight from the

kth neuron in layer (l − 1) to the jth neuron in layer l. Each neuron also has its own bias
bj , added to its output to prevent the input to its activation function σ from being zero.
The activation function σ applied to the neuron’s output is the final transformation before
passing data to the next layer. This nonlinear function is crucial in allowing NNs to learn
nonlinear relationships in data [22].

The following is the mathematical explanation of how a neuron processes the outputs
from the previous layer.

al
j = σ

(∑
k

wl
jkal−1

k + bl
j

)
= σ(zl

j) (3.7)

The quantity
zl

j =
∑

k

wl
jkal−1

k + bl
j (3.8)

will be helpful when explaining how to optimize a neural network and can be considered
the weighted input for neuron j in layer l.
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Figure 3.3: This is an illustration of how information is passed through and processed in a
neural network. Adapted from work by Izaak Neutelings [23]. Generated using TikZ [24]

3.6.1 Backpropagation

Backpropagation[25] is a fundamental algorithm in training artificial neural networks. It
calculates the gradient of the loss function with respect to all the weights and biases in
the network, allowing for updating these parameters to reduce the loss. The algorithm is
based on four key equations, which we describe in this section.

We define the error in the jth neuron in the lth layer by

δl
j = ∂C

∂zl
j

= ∂C

∂al
j

σ′(zl
j) (3.9)

This can also be considered the partial derivative of the cost function with respect to
the bias in neuron j in layer l, as

δl
j = ∂C

∂zl
j

= ∂C

∂bl
j

∂bl
j

∂zl
j

= ∂C

∂bl
j

, (3.10)

where we have used the relation ∂bl
j/∂zl

j = 1 from rearranging equation (3.8). The next
equation relates the error in a neuron with the errors in the neurons in the subsequent
layer.

δl
j = ∂C

∂zl
j

=
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂zl
j

=
∑

k

δl+1
k

∂zl+1
k

∂zl
j

=
(∑

k

δl+1
k wl+1

kj

)
σ′(zl

j) (3.11)

Note that the indices on the weight w are now swapped. We may think of this equation as
an error propagating backward by multiplying the error in layer l + 1 with the transpose
of the weight connecting layer l with l + 1 We derive the final equation from the partial
derivative of the cost function with respect to the weight wl

jk

∂C

∂wl
jk

= ∂C

∂zl
j

∂zl
j

∂wl
jk

= δl
jal−1

k (3.12)
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Equation (3.9) lets us calculate the error in the last layer, and using equation (3.11),
we can propagate this error backward through the network, calculating the error for all
the neurons. We then use equations (3.10) and (3.12) to calculate the gradient of the cost
function with respect to the weights and biases.

3.6.2 Gradient Descent

Gradient Descent (GD) is an iterative optimization algorithm used in machine learning for
minimizing a differentiable function. The goal of GD is to update the model’s trainable
parameters in such a way that the loss function is minimized. In mathematical terms, we
aim to find the values of the parameters θ that minimize the objective function L(x, θ),
where x represents the input data. The loss function is typically defined as the mean
squared error (3.1) for regression problems, so

L(x, θ) = 1
N

N∑
i=1

(yi − f(xi, θ))2, (3.13)

where f(xi, θ) is the output of the model for input data xi, and yi is the target value.
To achieve the goal, GD involves calculating the gradient of the loss function with

respect to the model’s trainable parameters and updating them iteratively by taking a
small step in the negative direction of the gradient. The iterative update rule can be
expressed as follows:

vt = ηt∇θL(x, θ), (3.14)
θt+1 = θt − vt, (3.15)

where η denotes the learning rate, and ∇θ denotes the gradient with respect to θ. The
learning rate determines the step size of the update, and it is important to choose a suitable
value to ensure convergence of the optimization.

One major limitation of GD is that it can get stuck in local minima, yielding suboptimal
results. The choice of initial parameter values θ can also impact the final optimized model.
Moreover, computing the gradient using the entire dataset can be computationally expensive
for large datasets. To address these limitations, various modifications of GD have been
proposed, such as stochastic gradient descent (SGD) and mini-batch gradient descent
(MBGD), which compute the gradient using only a subset of the data at each iteration.
These modifications can help to accelerate the convergence and improve the scalability of
GD.

3.6.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a widely used optimization algorithm in machine
learning that addresses some of the limitations of Gradient Descent (GD). Unlike GD,
which computes the gradient using the entire dataset at each iteration, SGD computes the
gradient using only a randomly sampled subset, called a mini-batch. This makes SGD
more efficient and less computationally expensive than GD, particularly for large datasets.
Furthermore, by randomly sampling mini-batches, SGD is more likely to escape local
minima and converge to the global minimum. The update rule for SGD can be derived
similarly to that for GD, with the only difference being the replacement of the full dataset
with a mini-batch. By iteratively updating the model’s parameters using mini-batches,
SGD can converge faster and more robustly than GD.
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However, SGD also has limitations to consider. If the learning rate is too large, the
optimization may overshoot the minimum and fail to converge. On the other hand, if the
learning rate is too small, the optimization may converge very slowly. In addition, if there
are areas in the function space with small gradients, the optimization may stagnate and fail
to converge. To address these limitations, various modifications of SGD have been proposed,
such as adaptive learning rate methods like Adagrad and RMSprop, which adjusts the
learning rate dynamically based on the history of the gradients. These modifications can
improve the stability and convergence speed of SGD.

3.6.4 Momentum

In practice, SGD is mostly used with momentum. Momentum serves as a memory of
previous momenta and can improve the convergence speed of SGD, particularly in areas of
the function space with low gradients, such as local minima.

The update rule for momentum can be expressed as follows:

vt = γvt−1 + ηt∇θL(x, θ) (3.16)
θt+1 = θt − vt, (3.17)

where γ is the momentum parameter with 0 ≤ γ ≤ 1. The momentum term considers
the update of the previous step, in addition to the gradients at the current step. By
incorporating previous momenta, momentum can smooth out variations in the optimization
trajectory and accelerate convergence towards the minimum.

Momentum is particularly useful when the gradient direction is consistent across many
iterations, as it allows the optimization to maintain a higher velocity in the same direction.
In contrast, in areas of high variance or noisy gradients, momentum may cause overshooting
and slow down convergence. To address this, adaptive momentum methods like Adam
have been proposed, which adjust the momentum parameter dynamically based on the
history of the gradients. These methods can improve the convergence speed and stability
of momentum-based optimization algorithms.

3.6.5 Adam

Adam is an optimization algorithm that combines the benefits of both SGD with momentum
and adaptive learning rate methods. It uses a running average of the first and second
moments of the gradient to compute per-parameter adaptive learning rates. Adam updates
the parameters iteratively as follows:

gt = ∇θL(x, θ) (3.18)
mt = β1mt − 1 + (1 − β1)gt (3.19)
st = β2st − 1 + (1 − β2)g2

t (3.20)

m̂t = mt

1 − (β1)t
(3.21)

ŝt = st

1 − (β2)t
(3.22)

θt+1 = θt − ηt
m̂t√
ŝt + ϵ

, (3.23)

where gt denotes the gradient at time step t, mt and st are the first and second moment
estimates, respectively. β1 and β2 control the decay rate of the first and second moments,
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respectively. ηt is the learning rate, and ϵ is a regularization constant to prevent division
by zero.

Adam has several advantages over other optimization algorithms, including its ability
to adaptively compute per-parameter learning rates and the robustness of its estimates
to noise in the gradient. The adaptive learning rates can help speed up convergence and
lead to better performance. Furthermore, the memory of previous first and second-order
gradient estimates enables the algorithm to be more robust to noise and outliers in the
data. As a result, Adam is widely used and has become the de facto standard optimization
algorithm in deep learning.

3.6.6 Activation Functions

Activation functions play a crucial role in training a neural network by allowing it to
learn non-linear relationships between inputs and outputs. Different activation functions
have varying properties; we will discuss some of the most common ones in this section.
Properties like non-linearity, differentiability, monotonicity, smoothness, and zero-centering
are important for activation functions. Non-linearity enables the model to capture complex
relationships, differentiability is necessary for calculating the derivative of the loss function
with respect to the trainable weights, monotonicity helps ensure stability in activation
outputs, smoothness stabilizes gradients during training, and zero-centering balances the
activation distribution within the model.

• Non-linearity enables the model to capture complex relationships

• Differentiability is necessary for calculating the derivative of the loss function with
respect to the trainable weights

• Monotonicity helps ensure stability in activation outputs, smoothness stabilizes
gradients during training

• Smoothness: A smooth activation function helps stabilize the gradients and training.

• Zero-centering balances the activation distribution within the model.

Tanh

Tanh, the hyperbolic tangent function is given by

Tanh(x) = ex + e−x

ex − e−x
(3.24)

ReLU

The Rectified Linear Unit (ReLU) activation function pushes all negative values to zero
while leaving positive values unchanged, which introduces non-linearity while solving the
vanishing gradients problem by having a gradient of either 0 or 1 for negative and positive
values, respectively.

ReLU(x) =
{

x if x > 0
0, otherwise

(3.25)
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GeLU

The Gaussian Error Linear Unit (GeLU) is a smooth approximation of the ReLU function,
given by

GeLU(x) = xΦ(x), (3.26)

where Φ(x) is the standard Gaussian cumulative distribution function.
GeLU can be approximated with

GeLU(x) ≈ 0.5x

(
1 + tanh

[√
2/π(x + 0.044715x3)

])
, (3.27)

which is faster to compute than the original definition but can result in worse performance.
For computational efficiency, we used this approximation.

3.7 Model Explainability
In the context of machine learning, SHAP [26] and SAGE [27] apply the same idea to
determine the contribution of each feature to a prediction. SHAP provides a local expla-
nation by computing the contribution of each feature to the prediction of a single data
point. On the other hand, SAGE provides a global explanation by computing each feature’s
contribution to the model’s overall prediction performance. These methods allow us to
understand the relationship between the features and the prediction, which is particularly
useful when the model is too complex to interpret. Additionally, they provide a way to
validate the model’s fairness and bias. By understanding which features contribute the
most to a prediction, one can determine if the model is fair or biased and if the prediction
is trustworthy.

Both SHAP and SAGE methods are based on Shapley values [28], a concept in game
theory introduced by Lloyd Shapley in 1951. Shapley values determine each player’s
contribution to a group’s surplus or overall value. The explanation below of Shapley values,
SHAP, and SAGE is inspired by a blog post by Ian Covert [29], the author of [27].

The Shapley value for a player i in a cooperative game with d players is

ϕi(w) = 1
d

∑
S⊆D\{i}

(
d − 1
|S|

)−1

[w(S ∪ {i}) − w(S)] (3.28)

where D is the set of all players, S is a coalition of players, w(S) is the value of the
coalition S, and |S| is the number of players in the coalition. This formula satisfies four
important conditions:

• Efficiency: The sum of all Shapley values is equal to the group’s total value.

• Symmetry: If two players i and j have the same impact on all coalitions with
w(S ∪ {i}) = w(S ∪ {j}) for all S, they should have the same Shapley value ϕi(w) =
ϕj(w).

• Dummy: A player i that makes no contribution to the group with w(S ∪ {i}) = w(S),
should receive a value of zero, or ϕi(w) = 0.

• Linearity: A player’s value is proportional to their contribution to the group. If
player i contributes twice as much as player j to the group’s overall worth, then
player i should have twice the Shapley value.
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3.7.1 SHAP

Shapley values explain how each feature (x1, . . . , xd) in a model f contributes to the
deviation from the mean prediction E[f(x)] of the dataset for a single prediction. It assigns
a value ϕ1, . . . , ϕd to each feature that quantifies the feature’s influence on the prediction
f(x). SHAP (Shapley Additive Explanations) computes approximate Shapley values for
machine learning models.

We define a cooperative game vf,x to represent a prediction given the features xS , as

vf,x(S) = E
[
f(X)|XS = xS

]
, (3.29)

where xS are known, and the remaining features are treated as random variable X S̄

(where S̄ = D\S). This is the mean prediction f(X) when the unknown values follow the
conditional distribution X S̄ |XS = xS .

Using a subset of features from the prediction while sampling the rest from the dataset
reduces the chance of improbable samples. Given this convention for making predictions,
we can apply the Shapley value to define each feature’s contribution to the prediction
f(X) using Shapley values ϕi(vf,x). A Shapley value of ϕi(vf,x) > 0 indicates that feature
i contributes to an increase in prediction f(X). A negative Shapley value ϕi(vf,x) < 0
indicates the opposite, that the feature contributes to a decrease in f(X). Uninformative
features will have small values ϕi(vf,x) ≈ 0.

3.7.2 SAGE

SAGE (Shapley Additive Global Importance) explains how every feature contributes to
the model’s overall performance, and it relates to SHAP in a simple way. For a given
feature, the global feature importance is the average SHAP value (for that feature) across
all samples in the dataset. This is, however, different from how it is calculated in practice.
A paper by Ian Covert et al. [30] on global feature importance proposes an algorithm
that aims directly at a global feature explanation, unlike the SHAP values, which makes it
faster. This is the algorithm used for approximating the SAGE values for the features in
the thesis.

3.8 Mutual Information
Mutual information is a fundamental measure of the statistical dependence between two
random variables, providing a way to quantify the amount of information one variable
conveys about the other [31]. For a pair of discrete random variables X and Y , we have

I(X; Y ) =
∑

y

∑
x

p(x, y) log
(

p(x, y)
p(x)p(y)

)
, (3.30)

where p(x, y), p(x), and p(y) are the joint and marginal probabilities, respectively. The
mutual information captures linear and nonlinear relationships between variables, unlike
Pearson’s correlation coefficient, which can only detect linear relationships. However, mutual
information has limitations in that it relies on binning the data, which can introduce bias
and limit the resolution of the information.

Furthermore, estimating mutual information for high-dimensional data sets can be
computationally expensive. Despite these limitations, mutual information remains a popular
tool in feature selection, data visualization, and machine learning.
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Part II

Data Processing & Methods
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Chapter 4

Data Processing

This chapter of the thesis outlines the methodology used for data analysis, cleaning,
transformation, and feature engineering. Data-driven methods have the potential to learn
all relations in the data, but the size of the dataset limits this. Therefore, cleaning the data
and selecting features containing information relevant to the desired output is essential.
With the system’s complexity, identifying relevant features can be challenging. To address
this, we employed data-driven modeling to help identify important features while using
feature engineering to incorporate our understanding of the system and create informative
features.

Cleaning data involves removing irrelevant data that could confuse the model, thereby
ensuring that the model learns from the most relevant information. Feature engineering
involves incorporating domain knowledge into the model to create features that provide
additional information.

We performed data analysis to decide which features to train our models. This analysis
involves understanding the relationships between the different variables in the dataset and
identifying which variables could be helpful in predicting the target variable.

4.1 Cleaning Pointing Scan Data
When utilizing data-driven modeling for predictive purposes, ensuring that the dataset is
clean and informative is crucial. In this project, various factors may impact the quality
of the data, and therefore, we implemented measures to clean the data based on our
knowledge of the telescope’s operation. We employed a criteria-based approach and a
machine learning classifier to remove pointing scans from the dataset. During the removal
of pointing scans, it is important to strike a balance between removing noise and retaining
relevant information. Outliers in the training data can introduce bias into machine learning
models, as these data points may not accurately represent typical conditions. Consequently,
having outliers in the training data can be more damaging than removing good pointing
scans. Therefore, we have a strict approach when cleaning the data to ensure high-quality
datasets for model training.

4.1.1 Cleaning Criteria

To eliminate unreliable or unusable scans, we applied criteria informed by the insights of
astronomers at APEX. The following list outlines the criteria used to filter out such scans:

• Scans using the HOLO transmitter: These scans are aimed at a radio tower and are
not realistic data for training an ML model.
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• Scans using ZEUS2: These are highly experimental pointing scans and unreliable.

• Scans using CHAMP690: There are very few scans with this instrument.

• Scans in January and February of 2022: The weather is unreliable and there are few
scans in this period.

• Scans that are tracking tests

• Scans after 17.09.2022 since we only have sensory data until this point

After this filtering, there were 5901 out of 8862 scans left.

4.1.2 Pointing Scan Classifier

Method

In addition to cleaning the data based on the criteria above, we had to remove the outright
bad pointing scans (like 2.2b 2.1b, 2.1b). The scan quality is often obvious when inspecting
the data visually, but it is hard to develop suitable measures to identify which scans are
good or bad. Instead, we trained a classifier to predict whether a scan is of good or bad
quality. We used an XGBoost classifier with 13 features as inputs, all of which are present
in the pointing scan figures (2.1 and 2.2). The first 12 features are the amplitudes, FWHMs,
pointing offsets, and these values’ uncertainties. The last feature is the beamwidth of the
telescope for the given observing frequency.

We had to label a dataset set by manually looking at pointing scans. The size of
the dataset set was 369 samples with 270 good and 99 bad scans. Table 4.1 shows the
hyperparameters and search ranges we used when optimizing this model, along with
the resulting best parameter values. Refer to Appendix C.1 for description of XGBoost
hyperepameters. We also used scale_pos_weight to consider the unbalanced classes, for
which the value is the ratio of negative to positive classes (number of bad scans divided
by the number of good scans). We split the data into 80% for training and the rest for
validating, corresponding to 295 and 74 samples for training and validation, respectively.

Table 4.1: This table presents a list of parameters we sampled during hyperparameter
tuning for the pointing scan classifier. The table includes names, sampled distributions
and corresponding ranges, and parameter values for the best model.

Parameter Sample Distribution Range Best Parameter Value
max_depth Uniform [1, 5] 2
n_estimators Uniform [1, 80] 53

Results

The XGBoost classifier performed well with a 97% overall accuracy on the validation set,
which selected hyperparameters max_depth= 2 and n_estimators= 53. Figure 4.1 shows
the precision-recall curve on the left and the average precision curve on the right. From
the precision-recall curve, it is clear that we can achieve close to 100% precision while still
having a high recall. We select a large threshold such that the classifier removes most bad
scans from the training data, because a bad pointing scan is potentially more harmful for
the model than discarding a few good scans. The average precision curve shows an optimal
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threshold for maximizing the precision, which is about 80%.

We used the classifier to clean the dataset further, using prediction threshold 0.8, we
remove another 575 scans, leaving us with 5326 scans for the rest of the analysis.

(a) Precision-recall curve on the test set.
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Figure 4.1: Precision-recall and average precision curve for the XGBoost classifier when
classifying good and bad pointing scans in the test set.

4.2 Scan Duration Analysis
As mentioned in the database section 2.2, the scans’ timestamps are not the accurate start
time of a scan. The tiltmeter dump files with the flag indicating whether the telescope
is idle, preparing to observe, or observing, is the only accurate data we have when the
telescope performs a pointing scan. Therefore, we need to combine the timestamp of the
pointing scan with the flag in the dump files to analyze the duration of scans.

4.2.1 Analysis

First, we convert the different scan flags to numbers. IDLE and PREPARING is the set
0, and OBSERVING is set to 1. Then we can subtract the previous rows from all rows,
resulting in the value 1 when the scan starts, and −1 when it ends. Table 4.2 shows an
example of the result.

Time Flag Flag Integer ∆
11:21:21 IDLE 0 0
11:21:22 PREPARING 0 0
11:21:23 OBSERVING 1 1
11:21:24 OBSERVING 1 0
11:21:25 OBSERVING 1 0
11:21:26 IDLE 0 −1

Table 4.2: This table shows the tiltmeter dump file containing the telescope state flag, and
how we found the start (∆ = 1) and end (∆ = −1) of a scan.
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4.2.2 Algorithm

With the scan timestamp and the observing flag from tiltmeter dumps, we used the
following algorithm to obtain the start and end of pointing scans.

Algorithm 1 Algorithm that finds the start and end of pointing scan
Input:

• Pointing scan timestamps D = {D1, . . . , Dn}
• Timestamps T = {T1, . . . , Tm} and scan flag F = {F1, . . . , Fm}

Output: Start and end of pointing scans S = {Si, . . . , Sn} and E = {Ei, . . . , En}
for i = 1, . . . , m do

if Fi = OBSERV ING then
Fi = 1

else
Fi = 0

end if
end for

for i = 1, . . . , n do
T̂ = {Tj , if Tj > Di}m

j

F̂ = {Fj , if Tj > Di}m
j

for all ti, fi in T̂ , F̂ do
∆ = fi − fi−1
if ∆ = 1 then

Si = ti

end if
if ∆ = −1 then

Ei = ti

Continue
end if

end for
end for

4.2.3 Results

By analyzing start and end timestamps for all the scans we had tiltmeter dumps for, we
see that the first OBSERVING flag present after a scan is on average 53.9 seconds after the
scan timestamp on average, with a standard deviation of 20.5 seconds. Figure 4.2 shows
boxplots of this time difference for each of the instruments, which strongly indicates that
assuming the starting point of a scan is 53.9 seconds after the timestamp is reasonable.
In the same plot, we also see that the starting time is fairly constant for the different
instruments. The right plot of Figure 4.3 shows the time difference in seconds between the
first observing flag after a scan timestamp throughout the year. From the plot, this stays
constant over time.

Now that we have found the starting points of the pointing scans, we can look at their
duration. The left plots in Figure 4.3 and 4.2 show the duration of the pointing scans for
different instruments. From these figures, it is clear that the duration of a pointing scan
varies a lot. A varying scan duration is problematic because we only have these tiltmeter
dump files for 2875/8381 ≈ 34% of the pointing scans. To address this issue, we collected
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data for feature engineering over a shorter period of time. It is important to note that
using data from after a pointing scan has ended can be inaccurate, as the telescope may
start observing a different source. When examining the scatter plot of scan durations, we
observed clusters of scans around 60-70 seconds, 120-130 seconds, and so on. To ensure
that we collected during a pointing scan, we did not use data from more than 60 seconds
after the start of a scan. For the scans with an exact start and end time, we used this time
period instead.
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Figure 4.2: Box plot of the duration of scans, and the time difference between the timestamp
of a scan and the actual start of it.
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Figure 4.3: Scatter plot of the duration of scans, and the time difference between the
timestamp of a scan and the actual start of it.
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4.3 Feature Engineering
Feature engineering is important to ensure that the inputs for the machine learning models
are as informative as possible. Informative features make it easier for the machine learning
model to learn thse relationship between features and target values. With limited training
data, this is essential.

4.3.1 Median Values

From the scan duration analysis 4.2, we know that the duration of a scan varies. Therefore,
we use the median value during a pointing scan as a feature.

4.3.2 Turbulence

Turbulence could affect the pointing, and we used the simple model

τwind = σ2
wind, (4.1)

where the σ2
wind variance in windspeed. We calculated the variance in a period of 5 minutes

before the pointing scan.

4.3.3 Position of the Sun

Observers at the telescope report that the Sun is affecting the pointing. It is most drastically
affected when the Sun sets or rises, likely due to rapid temperature change leading to
deformation in the telescope structure. We also think the Sun’s position affects the pointing.
For instance, if the Sun is shining on the left side of the telescope, it will affect the pointing
differently than if it is on the right side. Obtaining the Sun’s position for the telescope’s
location is done using the Python module PyEphem [32].

Using the azimuth angle of the Sun and the telescope, we can calculate the position of
the Sun with respect to the pointing with

∆Az⊙ = Azt − Az⊙ (4.2)

This will result in values outside the [−180◦, 180◦]. An example is if Az⊙ = 179◦ and
Azt = −179◦. The calculation in equation (4.2) yield −179◦ − 179◦ = −358◦, which
corresponds to the Sun being 358◦ to the right of the telescope, while it ideally should be
2◦ to the left. Therefore, we adjust the values accordingly

∆Az⊙ = Az⊙ + 360◦, for ∆Az⊙ < 180◦ (4.3)
∆Az⊙ = Az⊙ − 360◦, for ∆Az⊙ > 180◦ (4.4)

Here, the interval of the difference in azimuth is fixed to the interval (−180◦, 180◦), where
0◦ means the telescope is pointing towards the Sun in the azimuth direction. ∆Az⊙ = 90◦

corresponds to the Sun being direct to the left of the pointing direction.
We also calculated the change of ∆Az⊙ in the past five minutes. Let ∆Az⊙(t) denote

the difference between the telescope’s and the Sun’s azimuth given time t in minutes, then
the change in the past five minutes are given by

∆5∆Az⊙ = ∆Az⊙(t) − ∆Az⊙(t − 5) (4.5)
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4.3.4 Time based features

We also used time-based features to capture the time of day and year. There are seasonal
changes that affect the pointing throughout the year, and there are environmental factors
throughout the day that are correlated with the time of day. Therefore, we also used these
features

• Continous month: The number of months after 2022-01-01 00:00:00

• Integer month: The number of integer months after 2022-01-01 00:00:00

• Time of day: The number of hours after 00:00:00 the given day

4.3.5 Additional features

There are additional features from the pointing scan data that we used as features. The
correction terms CA (2.19) for azimuth and IE (2.20) for elevation are used as inputs
when predicting pointing offsets. In addition, we used the type of receiver as input.
The environmental factors that cause pointing offsets might affect the different receivers
differently; therefore, the model must consider this possibility.
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Chapter 5

Machine Learning Experiments

This chapter provides an overview of two machine learning experiments related to the two
research questions in section 1. The first experiment aims to examine the effectiveness of
an XGBoost model in predicting pointing scan offsets to enhance the pointing accuracy.
The primary objective of this experiment is to assess whether the proposed model can
outperform the current model in terms of pointing accuracy. The second experiment aims
to investigate the effectiveness of neural networks in developing a pointing model that could
replace the current linear model, which is created through linear regression. It explores
the feasibility of a more sophisticated model that can account for environmental factors in
addition to the theoretical and empirical terms used in the current pointing model.

5.1 Experiment 1: Pointing Correction Model
This experiment aims to improve the accuracy of the existing pointing model by training
XGBoost models to predict offsets obtained from pointing scans. To accomplish this, we
utilized two different datasets, which we processed using the cleaning outlined in section 4.1.
The difference between these datasets is that one contains the scans from all instruments,
while the other only contains the scans from NFLASH230. By training our models on these
datasets, we aim to reduce the pointing offset and improve the accuracy of the pointing. In
addition, we varied the way we split the datasets for training and testing. We considered
two cases:

• Case 1: The dataset is sorted by date and split into six equal-sized folds. We
consider each of the folds one by one. For each of these folds, we use the last 1/6th
of the data as a test set and the remaining 5/6th as training and validation.

• Case 2: The dataset is sorted by date and split into six equal-sized folds. We used
5/6 of the data for training and validation and the remaining for testing. We repeated
this process six times, using each fold for testing once.

Figure 5.1 illustrates the two cases. In both cases, we trained and validated the model
on 5/6 of the data and tested on the last 1/6. The difference is the amount of data used for
training, which can indicate whether models trained on shorter or longer periods perform
better. Using longer period, and thus more data, can help the model find complex relations.
However, a smaller period may be better for learning some relationships, as we expect less
variation in a shorter period.

We also split the training and validation data such that scans from a given day only
can be either in the training or validation set, not both. When splitting the data, we used
35% of the days for validation and 65% for training.
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Figure 5.1: This figure shows two cross-validation cases: the orange region represents the
train and validation set, the red region represents the test set, and the blue region is unused
for evaluation. In Case 1, the dataset is split into six equal-sized folds sorted by date.
For the selected fold, we use the last part (colored red) for testing and the remaining part
(colored orange) for training and validation. This process is repeated six times, once for
each fold. In Case 2, the dataset is again split into six equal-sized folds sorted by date.
However, we use one whole fold for testing this time and the remaining five for training and
validation. This process is repeated six times, with each fold used exactly once for testing.

5.1.1 Feature Selection

We trained models using a range of features, specifically k = [2, 5, 10, 20, 30, 40, 50] features.
For each model, we selected the k features that had the greatest mutual information (3.30)
with the target value on the training and validation set. This approach helps us identify
the most important features to improve the model’s performance. Selecting a subset of
features can reduce the noise in the data. By selecting different numbers of features, we
can explore the trade-off between model complexity and performance.

5.1.2 Model Architecture

We performed a hyperparameter search for each model using the parameter space in Table
5.1. The search space includes eight hyperparameters that affect the model’s complexity,
such as the maximum depth of the trees, the regularization strength, and the learning
rate. We used a uniform or log-uniform distribution to sample each hyperparameter within
a specific range. We evaluated 200 different combinations of hyperparameters (for each
dataset, cross-validation case, target variable, and the number of features selected) to
find the optimal values for each model. The models were validated using the MSE. See
Appendix C.1 for description of the different hyperparameters.
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Table 5.1: This table presents a list of parameters we sampled during hyperparameter
tuning for XGBoost the pointing correction model. The table includes names, sampled
distributions, and corresponding ranges.

Parameter Sample Distribution Range
max_depth Uniform [1, 5]
reg_lambda Uniform [0, 1]
colsample_bytree Uniform [0.5, 1]
n_estimators Uniform [20, 500]
learning_rate Log-Uniform [10−5, 1]
subsample Uniform [0.5, 1]
gamma Log-Uniform [10−5, 1]
min_child_weight Uniform [1, 10]

5.1.3 Model Evaluation

To evaluate the performance of the models, we calculated the RMS on each test fold and
compared it to the current RMS of the telescope on the same data. We calculated the
RMS for azimuth and elevation separately since an XGBoost model only can predict one
target. Given fold j and target either azimuth or elevation, we calculate the RMS by

RMStarget,j =

√√√√ 1
Nj

Nj∑
i=1

(δ̃target,ji − δtarget,ji)2, (5.1)

where δ̃target,ji is the predicted pointing offset and δtarget,ji is the true pointing offset for
the ith pointing scan in fold j. Nj is the number of pointing scans in fold j.

The measure we used for evaluating an analyzing the results is the RMS ratio between
the XGBoost pointing correction model and the current model, given by

rRMS,j = RMStarget,j
RMScurrent,j

. (5.2)

This measure is useful because it compares our results to the current performance of the
telescope. If rRMS,j < 1, it indicates that the XGBoost model provides an improvement
over the current performance of the telescope for a given fold.

To obtain an overall measure of the model’s performance compared to the current
performance of the telescope, we averaged the ratios rRMS,j over all six test folds

r̄RMS =
6∑

i=1

RMSmodel,j

RMScurrent,j
. (5.3)

This gives us an average ratio r̄RMS , which measures the expected performance of the
pointing correction model. If r̄RMS < 1, it indicates that the XGBoost model outperforms
the current pointing correction method on average across all test folds. By comparing
the average ratio r̄RMS for the two different cross-validation cases in Figure 5.1, we can
identify which models provide the best performance.

5.2 Experiment 2: Pointing Model using Neural Networks
This experiment uses the raw dataset containing input coordinates, Azinput and Elinput
respectively, and corresponding true observed values Azobserved and Elobserved.
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The goal is to find a model f such that

f(X) ≈ (δAz, δEl) = (Azobserved − Azinput, Elobserved − Elinput) (5.4)

We split the data into a train, validation, and test set. The last 15% of the data, which
we sorted by date, is used for testing. We use the remaining 85% of the data for training
and validation and split this set into 20% for training and 80% for validation. This results
in ∼ 76% and ∼ 24% of the total dataset used for training and validation.

5.2.1 Feature Selection

Selecting the right features is essential in improving the pointing model’s accuracy. This
model uses two types of features: geometric and harmonic terms (some of which are part
of the current analytical pointing model [(2.3),(2.5)]) and new features extracted from the
telescope’s database. For the geometric and harmonic terms, we analyzed Pearson and
Spearman’s rank correlation to the target values in equation (5.4) and picked a subset of
features that showed a strong correlation. We did the same for the other features, except
we picked out the features that showed a correlation of either type larger than 0.1. Tables
A.5 and A.6 list the features we extracted from the database with a correlation equal to
or greater than 0.1. During model training, we randomly selected n ∈ [2, 19] ∩ Z features
from these lists and used them to train the model. This way of choosing features does not
consider complex dependencies between the features that can affect the offsets. However,
training neural networks is computationally heavy, so we had to select the features we
tested carefully.

5.2.2 Model Architecture

This experiment utilized four different model architectures. The first architecture involved
feeding all input data into one or two hidden layers. The other three architectures
incorporated machine learning techniques by separating the geometric and harmonic terms
of the input data from the other features and processing them using distinct architectures.
The approaches aimed to keep the current model’s simplicity and performance while
incorporating new features.

The following are the four different architectures:

1. Regular Neural Network: All features are passed through the same layers, all
with a nonlinear activation function. See Figure 5.2a

2. Neural Network with Separated Features 1: This architecture separates the
input features into two groups: geometric and harmonic features and the rest of the
features. The geometric and harmonic features are connected directly to the linear
output layer, while we pass the remaining features through layers with nonlinear
activation functions. See Figure 5.2b

3. Neural Network with Separated Features 2: This architecture is similar to the
previous architecture, but we feed the geometric and harmonic features through an
additional layer with a nonlinear activation function before connecting them to the
output layer. See Figure 5.2c

4. Neural Network with Separated Features 3: This architecture combines the
previous two architectures by passing the regular features through a few hidden layers
with nonlinear activation functions before concatenating them with the geometric
and harmonic features. We then pass the combined features through a final layer
before connecting them to the output layer. See Figure 5.2d
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These are visualized in Figure 5.2.

(a) Regular neural network: This is the stan-
dard neural network architecture without any
feature separation. All features are connected to
the same layers.

Geometric
+

Harmonics

Nonlinear

(b) Neural network with separated features
1: In this architecture, the geometric and har-
monic features are separated from the other fea-
tures and directly connected to the output layer
without any nonlinear activation function.

Geometric
+

Harmonics

Nonlinear

(c) Neural network with separated features
2: Similar to the previous architecture, the geo-
metric and harmonic features are separated from
the other features. However, they are also pro-
cessed by a nonlinear activation function before
being connected to the output layer.

Geometric
+

Harmonics

Nonlinear

(d) Neural network with separated features
3: In this architecture, we concatenate the pro-
cessed regular features to the geometric and har-
monic features before being connected to the
output layer.

Figure 5.2: The different architectures tested for the pointing model.

The hyperparameters for the neural networks were randomly sampled from different
distributions, as presented in Table 5.2. We used the Adam optimization algorithm for all
models and trained 100 networks of each architecture for 200 epochs. We picked the model
from the epoch with the best performance on the validation set.



5.2. EXPERIMENT 2: POINTING MODEL USING NEURAL NETWORKS 51

Table 5.2: This table presents a list of parameters we sampled during hyperparameter
tuning for the base pointing model. The table includes names, the distribution we sampled
from, and corresponding ranges.

Name Distribution Type Range
hidden layers uniform integer [1,2]
hidden layer size uniform integer [20, 120]
learning rate uniform [0.001, 0.02]
batch size uniform integer [32, 512]
activation categorical [gelu, tanh]
loss function categorical [MSE, MSD]

5.2.3 Loss Function and Model Evaluation

To evaluate the performance of the models, we used the root mean squared (RMS), measured
in arcseconds, on the test set. We calculate the RMS as follows:

RMS =

√√√√ 1
N

N∑
i=1

(
(δ̃Az,i − δAz,i)2 + (δ̃El,i − δEl,i)2

)
, (5.5)

where δ̃Az and δ̃El are the predicted offsets, while δAz and δEl are the true values. N is
the number of observations in the test set.

This RMS is used to compare the performance of the models. It will also be compared
with a benchmark linear regression model to see if a machine learning approach offers any
improvements.
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Part III

Results & Discussion
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Chapter 6

Results & Discussion

6.1 Results of Experiment 1: Pointing Correction Model
In this section, we present the results obtained from experiment 1 introduced in section
5.1. Prior to presenting the results, we provide a reminder of the RMS ratio measure
(5.3), which we frequently used in this section. We used this measure to compare the
current pointing model to the machine learning model, and a value less than 1 indicates an
improvement of the current model.

Table 6.1 presents the validation and test RMS ratios for all folds of the NFLASH230
model in case 1 and case 2. Recall that models were trained with different numbers of
features k, and these results are from the model with the best performance on the validation
set (can be different k for each fold). The results show that the model’s performance on
the validation set is very good in both case 1 and 2. However, this does not generalize
well to the test set, with the performance on the test set for case 1 being significantly
worse than the current model for all folds. In contrast, for case 2, the performance on
the test set is better than the current model for most of the folds. Table 6.2 presents
the same results for the model predicting the offsets of all instruments. This model
exhibits similar trends, although its performance on the test set is not as good as the
NFLASH230 model. For the hyperparameters selected by the models in each fold in case 2,
refer to Table A.4 for the NFLASH230 models and Table A.3 for the all instruments models.
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Table 6.1: Validation and test performance measured in RMS ratio (5.2) in case 1 and
2 (see Figure 5.1) for the pointing correction model trained on NFLASH230 data. The
performance is given for the model complexity k that yields the best results on the validation
data for the given fold.

Case 1 RMS ratio Case 2 RMS ratio
Target Fold Validation Test Validation Test

Azimuth

1 0.848 1.188 0.846 1.043
2 0.841 1.427 0.870 0.962
3 0.840 1.462 0.923 0.882
4 0.837 1.266 0.873 0.989
5 0.846 1.242 0.879 0.944
6 0.837 1.318 0.907 0.930

Elevation

1 0.835 1.173 0.887 1.030
2 0.831 1.188 0.889 0.973
3 0.831 1.204 0.886 1.025
4 0.812 1.198 0.826 0.844
5 0.815 1.166 0.802 0.870
6 0.810 1.262 0.825 0.906

Table 6.2: Validation and test performance measured in RMS ratio (5.2) in case 1 and 2
(see Figure 5.1) for the pointing correction model trained on all data. The performance is
given for the model complexity k that yields the best results on the validation data for the
given fold.

Case 1 RMS ratio Case 2 RMS ratio
Target Fold Validation Test Validation Test

Azimuth

1 0.870 1.642 0.881 1.233
2 0.861 1.626 0.971 0.928
3 0.876 1.784 0.897 1.016
4 0.866 1.613 0.938 0.950
5 0.862 1.935 0.927 0.942
6 0.874 1.779 0.923 1.027

Elevation

1 0.832 1.193 0.948 0.965
2 0.831 1.141 0.924 1.051
3 0.824 1.129 0.929 1.094
4 0.816 1.172 0.822 0.922
5 0.818 1.196 0.828 0.978
6 0.822 1.186 0.831 0.951

In addition to Table 6.1 and Table 6.2, we also evaluated the performance of the
NFLASH230 model with different complexities. Table 6.3 shows the mean RMS ratio (5.3)
on the test set, and the associated standard deviation for the azimuth and elevation models
when using the same number of features k on all folds. By inspection, we see that the
machine learning model does not provide any improvement over the current pointing model
for case 1, apart from a slight improvement of an average of 1.8% reduced RMS with a
standard deviation of 1.4% for the azimuth model with number of features k = 2. However,
case 2 shows more promising results. For azimuth, the best RMS ratio is 0.948 with a
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standard deviation of 0.056, which is an average improvement of 5.2% reduced RMS on
all folds, with a standard deviation of 5.6%. The number of features for these results is
k = 2. Using k = 50 features shows similar results, with 0.945 RMS ratio and a standard
deviation of 0.073.

For elevation, the best RMS ratio is 0.940 with a standard deviation of 0.075, using
k = 50 features. Table 6.4 shows the same results for case 1 and 2, but for the model
trained on data from all instruments. We see the same trends, with case 1 showing no
improvement and case 2 showing a slight improvement for azimuth and elevation. The best
RMS ratio for azimuth in case 2 is 0.980 with a standard deviation of 0.059, using k = 2
features. For elevation, the best model is the one with k = 50 features, with a RMS ratio of
0.955 and a standard deviation of 0.029. Overall, the elevation models show slightly better
results than the azimuth models. Additionally, the model predicting only NFLASH230
offsets performs better than the model predicting offsets from all instruments.

Table 6.3: Resulting mean RMS ratio (5.3) on unseen test sets in case 1 and 2 (see Figure
5.1) for the model trained on NFLASH230 data, using different number of features k in
the model.

Case 1 RMS Ratio Case 2 RMS Ratio
Azimuth Elevation Azimuth Elevation

k Mean STD Mean STD Mean STD Mean STD
2 0.982 0.014 1.020 0.024 0.948 0.056 0.972 0.081
5 1.366 0.077 1.198 0.034 0.983 0.142 0.953 0.097
10 1.383 0.087 1.155 0.047 0.957 0.080 0.967 0.087
20 1.252 0.119 1.126 0.071 0.972 0.131 0.949 0.069
30 1.335 0.226 1.094 0.041 0.963 0.093 0.959 0.077
40 1.146 0.036 1.058 0.020 0.961 0.089 0.948 0.077
50 1.202 0.131 1.062 0.022 0.945 0.073 0.940 0.075

Table 6.4: Resulting mean RMS ratio (5.3) on unseen test sets in case 1 and 2 (see Figure
5.1) for the model trained on all data, using different number of features k in the model.

Case 1 RMS ratio Case 2 RMS ratio
Azimuth Elevation Azimuth Elevation

k Mean STD Mean STD Mean STD Mean STD
2 1.007 0.003 1.232 0.055 0.980 0.059 0.964 0.016
5 1.003 0.003 1.170 0.028 0.990 0.067 0.964 0.016
10 1.288 0.101 1.116 0.015 1.001 0.102 0.979 0.059
20 1.580 0.082 1.121 0.023 1.018 0.130 0.971 0.036
30 1.606 0.110 1.107 0.018 1.026 0.151 0.957 0.018
40 1.528 0.111 1.068 0.010 1.026 0.137 0.973 0.044
50 1.758 0.121 1.061 0.027 1.018 0.114 0.955 0.029
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Table 6.5 presents an unbiased estimate of the performance of this approach, since
we chose the model to use on the test set purely based on performance on the validation
set. It shows the mean RMS ratio for the test set on all folds for both models in Tables
6.1 and 6.2. The results indicate that there is no improvement over the current pointing
model for case 1. However, for case 2, the model predicting only NFLASH230 offsets
shows a small improvement over the current model, with an RMS ratio of 0.958 for az-
imuth and 0.941 for elevation, both with standard deviations of 0.055 and 0.079, respectively.

Although the results of case 1 have not shown any improvement over the current
pointing model, case 2 has demonstrated potential for improving the pointing accuracy.
However, it is important to note that the test data used in the cross-validation process for
case 2 is either before or in the middle of the training and validation sets in time, except for
the last fold. In the last fold, the test set falls after the training and validation in time, and
for the NFLASH230 model, the RMS ratio on this fold was 0.930 for azimuth and 0.906
for elevation, which represents a 7.0% and 9.4% improvement, respectively. In contrast, for
all instruments, the RMS ratio was 1.027 for azimuth and 0.951 for elevation, representing
a 2.7% worse performance for azimuth and a 4.9% improvement for elevation. This result
is the most realistic and unbiased estimate we have on the performance of these models.

For a list of the 50 features with the greatest mutual information to the target variable,
please refer to Tables A.1 and A.2 in Appendix A.

Table 6.5: Mean RMS ratio (5.3) in case 1 and 2 (see Figure 5.1) over all test folds for
both the NFLASH230 and all instruments model.

Case 1 RMS ratio Case 2 RMS ratio
Azimuth Elevation Azimuth Elevation

Dataset Mean STD Mean STD Mean STD Mean STD
All instruments 1.730 0.126 1.170 0.028 1.016 0.114 0.994 0.065
Only NFLASH230 1.251 0.131 1.198 0.033 0.958 0.055 0.941 0.079

Figure 6.1 shows the distribution of NFLASH230 offsets with and without the machine
learning model corrections. These are the distribution of offsets of the unseen test set for
the last fold.
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(a) The azimuth model, with offsets reduced on the unseen test set by 7.0%.
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(b) The elevation model, with offsets reduced on the unseen test set by 9.4%.

Figure 6.1: Distribution of offsets with and without the NFLASH230 pointing correction
model on the unseen test set for the last fold. a) Azimuth model and b) elevation model.
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Figure 6.2 show the predicted and observed pointing NFLASH230 offsets for all samples
in the unseen test set of the last fold. We sorted the samples by the true value in ascending
order.
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(a) The azimuth model, with offsets reduced on the unseen test set by 7.0%.

0 50 100 150 200 250 300
Sample #

8

6

4

2

0

2

4

6

8

Of
fs

et
 ['

']

True and predicted offset
Predicted
True

(b) The elevation model, with offsets reduced on the unseen test set by 9.4%.

Figure 6.2: Offset predictions by the NFLASH230 pointing correction model on the unseen
test set for the last fold. Predicted and observed values, sorted in ascending order by
observed value. a) Azimuth model and b) elevation model.
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Figure 6.3 show the SAGE values for the NFLASH230 azimuth pointing correction
model on the validation set (Figure 6.3a) and test set (Figure 6.3b). The same plots for
the elevation models are presented in Figure 6.4.
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Figure 6.3: SAGE values for the NFLASH230 azimuth pointing correction model on the a)
validation set, and b) test set.
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Figure 6.4: SAGE values for the NFLASH230 elevation pointing correction model on the
a) validation set, and b) test set.



62 CHAPTER 6. RESULTS & DISCUSSION

6.2 Discussion of Experiment 1: Pointing Correction Model
The first research question addressed in this thesis is whether machine learning can enhance
the pointing accuracy of a radio telescope using the current pointing strategy. To investigate
this question, we explore a realistic scenario (case 1) in which a model is trained on a
smaller period of data and used to predict the offset of consecutive scans for a period
afterward. We focus now on the model predicting the offsets of only NFLASH230. The
results from this case, presented in Table 6.1, demonstrate that the model’s performance
on the validation set is promising, with the root-mean-square (RMS) ratio in the range
of approximately 0.80-0.85 for azimuth and elevation, which corresponds to a 15-20%
reduction in pointing offset. However, this performance does not transfer to the following
test period, in which the RMS ratios are 1.16-1.46, indicating a 16-46% increase in pointing
offset. There are several possible reasons for the model’s poor performance on the test set.
One of the limitations of tree-based models, such as XGBoost, is that they typically do not
generalize well to new data that is different from the training data, as they predict solely
based on logical conditions seen in the training set. If the factors affecting the pointing
offset change over time and the new data is very different from the training data, the
model will likely perform poorly. Furthermore, another potential explanation for the poor
performance could be that the dataset is too small, and the model overfits on the validation
set. The results of this experiment suggest that learning the relationships in the data that
affect pointing offset is challenging, and a complex model may be necessary. To train a
proper complex model, a larger amount of data is required, at least more than the number
of samples in the training and validation sets for case 1. The findings also indicate that
choosing the complexity of the model with the best performance on the validation set may
not necessarily lead to the best performance on the test set. We further explore this aspect
by examining Table 6.3, which demonstrates the mean RMS ratio on the test set using the
same number of features for all the folds. This provides an idea of the complexity that
might provide the best-performing models on the test set. Even though the model with the
best performance on the validation set is not chosen, which could be a lucky or overfitted
performance, no improvement is observed in the current pointing model on the test set.
However, the results show better performance than the first Table 6.1. The same trends
are observed when predicting offsets from all instruments in Tables 6.2 and 6.4.

Moving on to case 2, which tests whether the amount of data is a limitation for en-
hancing the pointing accuracy. In this case we split the data into six folds and performed
cross-validation. Since the training/validation data is either before or in between the test
data in time (except for the last fold), this is a less realistic test case. Results from this case
indicate that a larger time period helps the model generalize better, which we expected as
a longer period includes more variation that can help the model capture the relationships
between features. We start by looking at Table 6.1. Here, we also see a good performance
on the validation set across all folds, with a 9-20% reduced pointing offset on the validation
set. The average RMS ratio on all folds on the test set for case 2 is 0.958 for azimuth
and 0.941 for elevation. With the standard deviations, the 95% confidence intervals would
be put at [0.850, 1.066] for azimuth and [0.786, 1.010] for elevation. Given that the upper
bound of both confidence intervals is larger than one and the testing case is not realistic,
we cannot conclude that the model can reduce the pointing offset robustly and consistently.
For an unbiased result that reflects expected performance in practice, we look at the RMS
ratio for the last fold in Table 6.1, showing a 7.0% and 9.4% reduced RMS for azimuth
and elevation, respectively. These results are the ones visualized in the histograms and
plots in Figures 6.1 and 6.2, respectively. It is not apparent from the histogram with the
azimuth model results that the model performs better than the current model. What we
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can see, however, is a shift in offsets towards the left, indicating more negative offsets.
This is consistent with the sorted prediction plot 6.2a, which shows a bias towards positive
predictions. There also seem to be slightly less large negative offsets. Looking at the
elevation histogram (Figure 6.1b and sorted prediction plot (Figure 6.2b), we can make
the same analysis. The histogram shows a shift towards the left, and the sorted prediction
plot shows a bias toward positive predictions. We do also see that there are more offsets in
the center bin in the histogram (meaning more smaller offsets). The tails in the sorted
prediction plots also seem steep, indicating that the cleaning could have been better.

We now discuss the results of the SAGE analysis on the validation and test sets for the
NFLASH230 model on the last fold, as shown in Figures 6.3 and 6.4. This analysis helps
us understand the factors that improve and worsen the models’ performance on unseen
data, thereby providing insights into how the models can be improved.

For the azimuth model, we observe that the azimuth correction ca is the most important
feature, contributing significantly to the model’s performance on both the validation and
test sets. However, the elevation correction ie shows a mixed effect on the model’s
performance. While it improves the performance on the validation set, it worsens the
performance on the test set. This indicates that there are some correlation between the
azimuth and elevation correction that change over time. Notably, the COMMANDAZ and
COMMANDEL features, which are included in every model, do not affect the azimuth or
elevation model’s performance. This suggests that the analytical pointing model, which is
based solely on azimuth and elevation, is performing very well, and the offsets are likely
attributed to factors other than the pointing direction. We also find that the continuous
month feature is the second most important feature in the elevation model, after the
elevation correction ie. However, the model’s performance on the test set does not benefit
from this feature, as its value is larger in the test set than in the training and validation sets.
This is one of the weaknesses of tree-based models. Training the model on the previous
years’ data could solve this problem, as long as there are no other significant changes in
the structure or mounting of the instruments.

In summary of the results from case 2, we see promising results with machine learning
models further reducing the offsets slightly. This indicates that a possible pointing strategy
could be training a model on multiple months worth of data and then using the model
for a couple of weeks. An even better strategy could be training on previous years’ data.
However, given the limited data available in this project, this could not be tested thoroughly.
If more data were available, we could preform a similar analysis with the start and end
time of both the train/validation and test set moved by two weeks and iteratively train
new models to predict the offsets for the next period in time. This could verify whether
the improved performance repeats.

In case 2, the model predicting offsets from all instruments shows results similar to the
model predicting only NFLASH230 offsets, though with slightly worse performance. The
reduced performance is likely due to less training data available for the other instruments.
The difference in performance between these two models provides some insights. First,
it suggests that various factors influence the different instruments differently. Otherwise,
we expect the larger model to perform better than the smaller model. The reason that
each instrument can be affected differently is because of the different mounting locations
at the telescope. Different mounting locations mean that the path of photons leading to
the receiver can vary, leading to distinct factors affecting the pointing.
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There are several measures we could take to enhance the analysis further. One such
measure is to improve feature engineering. When the quantity of training data is limited,
it is vital to ensure that the features are as informative as possible. For example, instead
of including six distinct temperature measurements in a model, it may be preferable to
create terms based on the difference between multiple temperature measurements, as they
did in [13].

Another step is to integrate corrections for CA and IE into the offset that we intend
to predict. These corrections are applied at each pointing scan and display the strongest
correlation to the target offset of all the features, and we therefore incorporated them in
all the models. By transforming the offsets δaz = δaz + CA and δel = δel + IE, we can
then eliminate CA and IE from the input to the models. This could remove a layer of
complexity for the model.

Another option to consider for predicting the pointing offsets is to use neural networks.
These models offer several advantages if trained successfully. For instance, they can handle
multiple outputs and thus only require a single model. By training the neural network
with two outputs, it can simultaneously consider the offsets in azimuth and elevation and
explore the correlation between them. It would also be beneficial to fine-tune the network
as new pointing scans become available continuously. Despite their potential benefits, our
initial tests with neural networks did not yield satisfactory results, likely due to the limited
training data available. Neural networks also require more tuning, which makes them more
difficult to use with limited datasets.

To further improve the analysis, there are other possible areas for exploration, such as
minimizing the number of pointing scans conducted by the astronomers. While performing
scans every one to two hours is standard practice, this can be time-consuming and may
disrupt astrophysical observations. A possible approach to investigate this possibility is
to identify periods when pointing scans are conducted every hour or so. Rather than
providing the model with the corrections CA and IE obtained following the previous
pointing scan, the model can use the corrections from a pointing scan six hours earlier
as inputs to evaluate the performance. In this case, reducing pointing offsets is not a
primary objective of the machine learning approach. Instead, maintaining the same level
of pointing accuracy while conducting fewer pointing scans would be a satisfactory outcome.

6.3 Results of Experiment 2: Pointing Model using Neural
Networks

Table 6.6 shows the RMS in arcseconds on the test set over all folds for the different model
architectures. The models presented in this table are the ones with the lowest mean RMS
across all test folds. A linear regression model is included for comparison. It is clear that
neural network architectures significantly outperform the linear regression model. The
mean RMS over all folds show that the different neural network architectures offer similar
performance. We also see that the RMS of fold 1 is far worse than the other folds. The
lowest mean RMS is from the architecture where the non-linear features are connected to
the geometrical and harmonic features.

Table 6.7 shows the hyperparameter used for the best models. All architectures perform
better with a single hidden layer. The regular neural network uses ReLU activation and
MSE loss (3.2), while the other architectures use Tanh activation and MSD loss (3.3). The
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Table 6.6: The RMS of the pointing model on the test set in each fold for all neural network
architectures. The different architectures are described in Figure 5.2.

RMS [′′] on test fold
Network 1 2 3 4 5 6 Mean STD
Regular 28.06 19.34 12.28 13.25 17.19 16.33 17.74 5.19
Separated 1 30.69 16.93 13.76 10.04 15.77 13.61 16.80 6.57
Separated 2 27.34 20.75 12.65 24.17 13.64 16.69 19.21 5.38
Separated 3 30.27 20.59 14.01 10.76 13.67 10.34 16.61 6.97
Linear regression 70.55 40.19 51.17 49.69 36.86 37.29 47.63 12.81

regular neural network also has more neurons in the hidden layer and a higher learning rate.
The batch size is also varying. There seem to be similarities between the hyperparameters
chosen for the three architectures with separate features. However, given the large standard
deviation of the mean RMS, there are probably bigger issues than hyperparameter tuning.

Table 6.7: Hyperparameters used in the best-performing model for all neural network
architectures. The different architectures are described in Figure 5.2.

Architecture Activation Hidden Layers Learning Rate Batch Size Loss
Regular ReLU [82] 0.0199 334 MSE
Seperated 1 Tanh [40] 0.0098 101 MSD
Seperated 2 Tanh [40] 0.0098 101 MSD
Seperated 3 Tanh [26] 0.0039 358 MSD

Table 6.8 lists the features selected for the best-performing models.

6.4 Discussion of Experiment 2: Pointing Model using Neu-
ral Networks

To address the second research question of whether machine learning models can replace
the traditional analytical linear regression models commonly used in radio/(sub)-mm
telescopes, we utilized raw data from the APEX telescope containing input and observed
coordinates for azimuth and elevation. Typically, linear regression models are fitted to
this raw data using multiple geometrical and empirical terms. As a benchmark, we used a
linear regression model and compared its performance against four different neural network
architectures (see Figure 5.2). Our goal was to determine if a machine learning approach
could outperform the linear regression model and, if so, which type of architecture performs
the best. We employed cross-validation with six folds and found that all neural network
architectures significantly outperformed the linear regression model. The mean RMS of the
linear regression model was 47.63′′ with a standard deviation of 12.81′′, whereas all neural
network architectures fell within the range of 16′′-19′′ with deviations of 5′′-7′′. Although
all the neural network architectures had similar performance and standard deviation, we
cannot conclude that any of them are better than the others. Overall, our results indicate
that machine learning models can outperform traditional analytical models for pointing
offset prediction in radio telescopes, and we encourage further research in this area to
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Table 6.8: Features used in the best-performing model for each architecture.

Feature Seperated 1 Seperated 2 Seperated 3 Regular
COMMANDAZ x x x x
COMMANDEL x x x x
DISP ABS3 x x x x
CA x x x
NPAE x x x
Constant x x x
cos (COMMANDEL) x x x
cos (2 · COMMANDEL) x x x
cos (3 · COMMANDEL) x x x
cos (4 · COMMANDEL) x x x
cos (5 · COMMANDEL) x x x
sin (COMMANDEL) x x x
sin (2 · COMMANDEL) x x x
sin (3 · COMMANDEL) x x x
sin (4 · COMMANDEL) x x x
sin (5 · COMMANDEL) x x x
Turbulence x x x
DEL TILTTEMP x x x
DAZ DISP x
POSITIONY x
TILT1Y x
TEMPERATURE x
TILT1T x
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explore the full potential of machine learning techniques.

Analysis of the hyperparameters selected for the top-performing models reveals that
most of them are relatively simple in structure. Interestingly, none of the models em-
ployed two hidden layers. Additionally, the architectures incorporating distinct layers
for the terms employed in the analytical pointing models exhibited lower neuron counts
in their nonlinear layers. This is likely because the level of complexity required for the
input features provided to the nonlinear layers is lower when other parts of the model are
responsible for handling certain factors, like the pointing direction. Thus, the observed
pattern of hyperparameter selection is consistent with the expectation based on architecture.

Table 6.8 presents the features selected by each model. All the models included COM-
MANDAZ and COMMANDEL as inputs for the nonlinear layers. The "Separated" neural
networks incorporated the harmonic features as inputs in the linear part of the network,
shown in Figure 5.2. We sampled the remaining features randomly. Interestingly, the
models used few nonlinear features, indicating that the factors influencing pointing error
are difficult to model with the current training set. Obtaining more data may be necessary
to establish more complex relationships between features that can improve the performance
of the pointing models. Notably, the regular neural network utilized only one additional
feature, namely DISP_ABS. This finding suggests that a neural network utilizing only the
azimuth and elevation angle could outperform a linear regression model. However, linear
regression models have advantages in terms of transparency and robustness, as they are
linear, and all the features in the model are independent of each other, resulting in a model
that is unlikely to result in significant pointing errors. This is an important consideration
when using machine learning models, which are challenging to interpret. Their robustness
must be thoroughly tested before being deployed in practical settings. These considerations
also underlie the design of the "Separated" neural network architectures. We wanted to uti-
lize the robustness of linear regression on the terms used in the current analytical pointing
model while incorporating new features. Considering that the experiment demonstrated
negligible performance differences between the separate neural networks and the regular
one, and that the best models only choose a few features, we conclude that additional
training data is required to see if this is a feasible approach.

While the experiment did not demonstrate the performance that would be expected
from using such models in practice, it indicates that a neural network could provide a
more efficient and effective model than a linear regression model. Moreover, a neural
network can be fine-tuned with newly obtained data, making it an appealing model. If this
approach is shown to be reliable and high-performing, it could be the preferred choice for
more advanced telescopes, as it may require less manual analysis to develop and maintain
a pointing model. However, further testing with additional data is needed to confirm the
feasibility of this approach.
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Chapter 7

Conclusion

7.1 Experiment 1: Pointing Correction Model
In conclusion, our study addressed the research question of whether machine learning could
enhance the pointing accuracy of a radio telescope. Our findings suggest that while machine
learning has the potential to improve pointing accuracy, a more extensive dataset and a
complex model may be necessary for consistent and robust performance. We tested two
cases, one where we trained on a smaller period and tested on unseen data in a consecutive
period, and another where we trained and tested on a longer period. The results indicated
that a longer period or more training data helps the model generalize better, and the
NFLASH230 model provided a reduction in offset for azimuth and elevation. However,
given that the testing case is not entirely realistic, we cannot conclude that the model can
reduce pointing offset in a robust and consistent manner. Therefore, further research is
needed to verify the performance improvements of such a strategy.

Furthermore, our study highlighted several potential avenues for future research to
improve the accuracy and efficiency of pointing offset prediction in radio telescopes using
machine learning techniques. One key area for improvement is feature engineering, where
more informative features could be created to enhance model performance, especially when
dealing with limited training data. We also suggest exploring neural networks, which offer
advantages such as handling multiple outputs and continuous fine-tuning as new data
becomes available. Although our initial tests did not yield satisfactory results, further
investigation is necessary with more extensive training data to explore the potential of
using neural networks for pointing offset prediction in radio/(sub-)mm telescopes. Finally,
minimizing the number of pointing scans conducted by astronomers while maintaining
similar pointing accuracy is another potential area for exploration. Overall, our study
provides insights into future research directions to optimize the performance of machine
learning models for pointing offset prediction in radio telescopes and highlights the potential
for machine learning to improve this critical aspect of radio telescope operations.

7.2 Experiment 2: Pointing Model using Neural Networks
In this study, we investigated whether neural network pointing models can replace traditional
analytical linear regression models in radio/(sub)-mm telescopes. To address this question,
we used raw data from the APEX telescope containing input and observed coordinates for
azimuth and elevation. We fitted a linear regression model to the raw data and compared
its performance against four different neural network architectures using cross-validation
with six folds.
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Our results showed that all neural network architectures significantly outperformed the
linear regression model, with mean RMS falling within the range of 16′′-19′′ with deviations
of 5′′-7′′, while the mean RMS of the linear regression model was 47.63′′ with a standard
deviation of 12.81′′. Although all the neural network architectures had similar performance
and standard deviation, we cannot conclude that any of them are better than the others.

The top-performing models we analyzed had relatively simple structures, most using
only one hidden layer. We also found that the models used few features for the nonlinear
layers, suggesting that the factors influencing pointing error are difficult to model with
the current data set. Obtaining more data may be necessary to establish more complex
relationships between features that can improve the performance of the pointing models.

While our experiment did not demonstrate the performance we expect from using such
models in practice, it indicates that a neural network could provide a more efficient and
effective model than a linear regression. Moreover, a neural network can be fine-tuned
with newly obtained data, making it an appealing model. If this approach is shown to be
reliable and high-performing, it could be the preferred choice for more advanced telescopes,
as it may require less manual analysis to develop and maintain a pointing model. However,
further testing with additional data is needed to confirm the feasibility of this approach.
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Appendix A

Tables

A.1 Pointing Correction Results

Table A.1: The 50 features with the greatest mutual information to the target value
(unsorted). (part 1 of 2)

All Instruments NFLASH230
Features Az El Az El
ACTUALAZ_MEDIAN x x x x
ACTUALEL_MEDIAN x x x x
COMMANDAZ_MEDIAN x x x x
COMMANDEL_MEDIAN x x x x
DAZ_DISP_MEDIAN x x x
DAZ_TILTTEMP_MEDIAN x x x x
DAZ_TILT_MEDIAN x x x x
DAZ_TOTAL_MEDIAN x x x x
DEL_DISP_MEDIAN x x x x
DEL_SPEM_MEDIAN x x x x
DEL_TILTTEMP_MEDIAN x x x x
DEL_TILT_MEDIAN x x x x
DEL_TOTAL_MEDIAN x x x x
DEWPOINT_MEDIAN x x x x
DISP_ABS1_MEDIAN x x x x
DISP_ABS2_MEDIAN x x x x
DISP_ABS3_MEDIAN x x x x
DSUNAZ_CHANGE_P5 x x x x
HUMIDITY_MEDIAN x x x x
POSITIONX_MEDIAN x x x x
POSITIONY_MEDIAN x x x x
POSITIONZ_MEDIAN x x x
PRESSURE_MEDIAN x x x x
ROTATIONX_MEDIAN x x x
SUNAZ_MEDIAN x x x x
SUNEL_MEDIAN x x
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Table A.2: The 50 features with the greatest mutual information to the target value
(unsorted). (part 2 of 2)

All Instruments NFLASH230
Features Az El Az El
TEMP26_MEDIAN x x x x
TEMP27_MEDIAN x x x x
TEMP28_MEDIAN x x x x
TEMP1_MEDIAN x x x x
TEMP2_MEDIAN x x x x
TEMP3_MEDIAN x x x x
TEMP4_MEDIAN x x x x
TEMP5_MEDIAN x x x x
TEMP6_MEDIAN x x x x
TEMPERATURE_MEDIAN x x x
TILT1T_MEDIAN x x x x
TILT1X_MEDIAN x x x x
TILT1Y_MEDIAN x x x x
TILT2T_MEDIAN x x x x
TILT2X_MEDIAN x x x x
TILT2Y_MEDIAN x x x x
TILT3T_MEDIAN x x x
TILT3X_MEDIAN x x x x
TILT3Y_MEDIAN x x x x
WINDDIRECTION_MEDIAN x x x
WINDSPEED_MEDIAN x x
WINDSPEED_VARIANCE_P5 x x x x
CA x x x x
IE x x x x
month x x
month_continuous x x x x
time_of_day x x x x
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Table A.3: The selected hyperparameters for the all instruments pointing correction model
in case 2.

Fold
Colsample

γ η
Min Number

λ Subsampleby Max child of
tree Depth weight estimators

Azimuth
1 0.536 0.013 0.018 5 8 269 1 0.699
2 0.526 0.013 0.010 1 10 393 0.175 0.756
3 0.970 0.063 0.023 2 2 460 0.071 0.800
4 0.501 0.008 0.019 3 2 400 0.578 0.979
5 0.530 0.031 0.187 2 3 69 0.277 0.931
6 0.668 0.056 0.139 2 2 77 0.426 0.783

Elevation
1 0.577 0.247 0.017 5 1 111 0.966 0.517
2 0.645 0.078 0.063 5 2 33 0.010 0.787
3 0.600 0.017 0.009 5 5 86 0.660 0.598
4 0.608 0.019 0.037 5 10 368 0.329 0.600
5 0.999 0.031 0.022 4 1 427 0.178 0.716
6 0.788 0.369 0.097 2 1 354 0.552 0.796

Table A.4: The selected hyperparameters for the NFLASH230 pointing correction model
in case 2.

Fold
Colsample

γ η
Min Number

λ Subsampleby Max child of
tree Depth weight estimators

Azimuth
1 0.720 0.125 0.126 1 4 201 0.247 0.864
2 0.777 0.988 0.017 1 6 468 0.763 0.962
3 0.517 0.298 0.014 2 7 470 0.509 0.762
4 0.972 0.773 0.116 5 1 30 0.006 0.802
5 0.897 0.112 0.008 5 10 435 0.658 0.819
6 0.935 0.011 0.064 1 6 224 0.228 0.748

Elevation
1 0.600 0.156 0.007 5 2 140 0.047 0.792
2 0.999 0.148 0.029 5 1 38 0.998 0.580
3 0.955 0.237 0.014 3 6 210 0.613 0.712
4 0.537 0.014 0.034 2 10 352 0.537 0.594
5 0.686 0.324 0.081 1 1 371 0.368 0.966
6 0.862 0.306 0.184 1 10 157 0.029 0.701



74 APPENDIX A. TABLES

A.2 Raw Data Correlation

Table A.5: Features with Spearman’s rank correlation ≥ 0.1 to either one of the target
values.

Feature δAz δEl

WINDSPEED_VAR_5 0.10 0.12
DAZ_TILT_MEDIAN_1 0.09 0.03
DAZ_TILTTEMP_MEDIAN_1 0.00 -0.06
TILT1Y_MEDIAN_1 0.08 0.02
TEMP26_MEDIAN_1 0.06 0.13
TEMP27_MEDIAN_1 0.06 0.13
TEMP28_MEDIAN_1 0.04 0.11
TEMPERATURE_MEDIAN_1 0.04 0.12
POSITIONZ_MEDIAN_1 0.05 0.11
DEWPOINT_MEDIAN_1 0.08 0.12
DAZ_TOTAL_MEDIAN_1 0.09 0.03
WINDSPEED_MEDIAN_1 0.02 0.02
sin(2 · El) 0.46 0.44
sin(3 · El) 0.98 0.94
sin(4 · El) 0.97 0.92
sin(5 · El) 0.34 0.31
cos(5 · Az) 0.06 0.05
cos(El) 1.00 0.96
cos(2 · El) 1.00 0.96
cos(3 · El) 0.76 0.72
cos(5 · Az)/cosEl 0.12 0.11

Table A.6: Features with Pearson’s correlation ≥ 0.1 to either one of the target values.

Feature δAz δEl

TEMP26_MEDIAN_1 0.05 0.11
TEMP27_MEDIAN_1 0.05 0.11
DAZ_TOTAL_MEDIAN_1 0.12 0.08
WINDSPEED_MEDIAN_1 0.03 0.03
AW_AZ 0.00 −0.01
sin(2 · El) 0.56 0.54
sin(3 · El) 0.97 0.90
sin(4 · El) 0.91 0.82
sin(5 · El) 0.29 0.22
cos(El) 1.00 0.92
cos(2 · El) 0.98 0.89
cos(3 · El) 0.70 0.62
cos(Az)/cos(El) 0.01 −0.00
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A.3 Monitor Database
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Table A.7: The frequency in data points per minute of different variables in the monitor
database.

Table Frequency [datapoints/minute]
ACTUALAZ 6
ACTUALEL 6
ACTUALVELOCITYAZ 6
ACTUALVELOCITYEL 6
COMMANDEL 6
COMMANDAZ 6
TILT1X 12
TILT2Y 12
TILT1T 12
TEMPERATURE 5
TEMP1 6
TEMP2 6
TEMP3 6
TEMP4 6
TEMP5 6
TEMP6 6
TEMP26 2
TEMP27 2
TEMP28 2
DAZ_TEMP 12
DAZ_TILT 12
DAZ_TILTTEMP 12
DAZ_SPEM 12
DAZ_DISP 12
DAZ_TOTAL 12
DEL_TEMP 12
DEL_TILT 12
DEL_TILTTEMP 12
DEL_SPEM 12
DEL_DISP 12
DEL_TOTAL 12
POSITIONX 6
POSITIONY 6
POSITIONZ 6
ROTATIONX 6
ROTATIONY 6
DISP_ABS1 12
DISP_ABS3 12
DISP_ABS2 12
DEWPOINT 5
PRESSURE 5
HUMIDITY 5
WINDSPEED 5
WINDDIRECTION 5
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Additional Methods

B.1 Transformation of Pointing Offsets and Corrections
Table B.1 show examples of pointing offsets and corrections applied during the pointing
scans. The column "Original" show raw pointing scan data. The pointing corrections ca
and ie are normally updated according to equations (2.19) and (2.20), as shown in the
first two rows of the table. However, observers may choose not to update the pointing,
particularly when the pointing offset is small, as illustrated in the consecutive row of the
table. In other cases, the corrections may be updated but not according to equations
(2.19) and (2.20). This can occur when a new science project is loaded and the pointing
correction from the previous time that project was used is applied. These factors introduce
several challenges for the training of a model:

• ca and ie should represent the optimal correction using all the information we have
about the current state of a system. If we do not update the corrections, there is
some information about the system (the previously observed pointing offset) that
the model is not receiving.

• Some features are constructed as the change in variables since the last correction.
If the corrections are not updated, this interval is longer than if they were, and
the resulting features could be more prone to uncertainties and noise. A problem
with the integration also occurs if the corrections are not updated according to the
equations (2.19) and (2.20). Then, we do not know when those corrections represent
the system, resulting in inaccurate features.

A possible solution to this problem is a two step procedure where we first transform
the offsets and corrections to represent the system at the most recent pointing scan, and
second use these transformed offsets as training labels and the transformed corrections as
training inputs.

In practice, we do this by assuming the corrections ca and ie are updated after every
pointing scan. This changes the correction applied during the next pointing scan, which
further affects the observed pointing offset. This effect propagates throughout the whole
dataset. The following formulas

c̃ai = c̃ai−1 + δ̃az,i−1 (B.1)
ĩei = ĩei−1 − δ̃el,i−1 (B.2)

δ̃az,i = δaz,i + cai − c̃ai (B.3)
δ̃el,i = δel,i − iei + ĩei (B.4)
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Where the "∼" denotes a transformed variable. Using these transformations, the corrections
used for training and the resulting offset are similar to the ones that would be observed if
the corrections were made according to the equations (2.19) and (2.20) after every pointing
scan. The column "Transformed" in the table shows the transformed variables.

Table B.1: Original: Example from the dataset of the observed pointing offsets and
the corrections applied during the pointing scan. Transformed: Pointing offsets and
corrections according to equations (B.1), (B.2), (B.3), and (B.4).

Original Transformed
i δaz δel ca ie δ̃az δ̃el c̃a ĩe

1 1.2 0.1 2.1 1.7 1.2 0.1 2.1 1.7
2 0.0 0.5 3.3 1.6 0.0 0.5 3.3 1.6
3 −1.1 0.0 3.3 1.6 −1.1 −0.5 3.3 1.1
4 0.6 0.7 2.2 1.6 0.7 0.7 2.2 1.6
5 0.9 1.4 2.2 1.6 0.2 0.7 2.8 0.9
6 1.0 1.1 2.2 1.6 0.1 −0.3 3.1 0.2
7 −0.9 1.2 3.1 0.5 −1.0 1.3 3.2 0.5
8 0.5 1.5 2.2 −0.7 0.5 1.4 2.2 −0.7
9 −0.3 0.4 2.2 −0.7 −0.8 −1.1 2.7 −2.2

B.2 Feature Engineering for Transformed Offsets and Cor-
rections

There are two main features engineered for this project; features that represent the system
during a pointing scan and features that represent changes since the last correction. The
idea behind this is simple. The correction used during a pointing scan represents the ideal
correction for the system during the previous pointing scan. As there are a lot of factors
and complex relationships, and we do not have large amounts of training data, it might be
easier for the model to learn how these changes affect the pointing rather than learning all
the relationships.

B.2.1 Feature Transformation

Median values

The median value of variables during a pointing scan is the most used feature.

Sum of all change

To capture systematic error in pointing due to the telescope moving back and forth in
azimuth and elevation, we sum over the positive and negative changes in these variables.

Given the time of the last pointing correction t1 and the start of a pointing scan t2,
the sum over the positive changes in a variable xi is given by

X =
t2∑

i=t1+1
max(0, xi − xi−1) (B.5)

Similarly, the sum of negative changes in a variable is

X =
t2∑

i=t1+1
min(0, xi − xi−1) (B.6)
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We make these features with azimuth and elevation.

Change since the last correction

This feature is self-explanatory and is just the change in a variable since the pointing was
corrected.

∆x = xt2 − xt1 (B.7)
In order to make this feature more robust against noisy data, we instead consider the

change in the median for a time interval around the last correction t1 and the start of a
pointing scan t2

∆x = median(xt2 , xt2−1, . . . , xt2−p) − median(xt1 , xt1+1, . . . , xt1+p), (B.8)
where p is the number of data points needed to cover a period of P minutes, given by
p = P · frequency. The unit of frequency is data points per minute, found in Table A.7.

Max change in time interval

In case the speed of the temperature change affects the deformation of the telescope’s
structure, we find the maximum temperature change in a given time interval since the last
pointing correction.

X = max(xt1+p − xt1 , xt1+p − xt1 , . . . , xt2 − xt2−p), (B.9)

Position of the sun

Observers at the telescope report that the sun is affecting the pointing. It is most drastically
affected when the sun sets or rises, likely due to rapid temperature change leading to
deformation in the telescope structure. We also think the sun’s position affects the pointing.
For instance, if the sun is shining on the left side of the telescope, it will affect the pointing
differently than if it is on the right side. Obtaining the sun’s position for the telescope’s
location is done using the python module PyEphem [32].

Using the azimuth angle of the sun and the telescope, we can calculate the position of
the sun with respect to the pointing with

∆Az⊙ = Azt − Az⊙ (B.10)

This will result in values outside the [−180◦, 180◦]. An example is if Az⊙ = 179◦ and
Azt = −179◦. The calculation in equation (4.2) yield −179◦ − 179◦ = −358◦, which
corresponds to the sun being 358◦ to the right of the telescope, while it ideally should be
2◦ to the left. Therefore, we adjust the values accordingly

∆Az⊙ = Az⊙ + 360◦, for ∆Az⊙ < 180◦ (B.11)
∆Az⊙ = Az⊙ − 360◦, for ∆Az⊙ > 180◦ (B.12)

Here, the interval of the difference in azimuth is fixed to the interval (−180◦, 180◦), where
0◦ means the telescope is pointing towards the sun in the azimuth direction. ∆Az⊙ = 90◦

corresponds to the sun being direct to the left of the pointing direction.

Another measure tested is the total angle between the pointing and the sun’s position.
We calculate this using the following formula

θ = cos Azt·cos Elt·cos Az⊙·cos El⊙+sin Azt·cos Elt·sin Az⊙·cos El⊙+sin Elt·sin El⊙ (B.13)
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Appendix C

Supplementary Theory

C.1 XGBoost Hyperparameters
This section provides an explanation of the hyperparameters used in the XGBoost models.

n_estimators: This parameter denotes the number of trees used in the ensemble.
Increasing this number will allow for a more complex model.

max_depth: This parameter denotes the maximum depth of a tree. A tree could have
a shorter depth if no new splits improve the model, but it cannot surpass this parameter
value. A larger depth can improve the complexity of the model but also lead to overfitting.

reg_lambda: This parameter is responsible for the L2 regularization on leaf weights.
Increasing this value reduces overfitting and can improve generalization.

colsample_by_tree: This parameter controls the fraction of samples used when
building a new tree. It can have values in the range (0, 1].

learning_rate: This parameter controls the shrinkage of the weights of each tree
during the learning process. Lowering this value will require more trees to be used in the
ensemble but can improve generalization.

subsample: This parameter denotes the fraction of samples used when constructing a
tree. Using a subset of the samples of the full dataset can lead to better generalization.
The range of this parameter is (0, 1].

min_child_weight: This parameter denotes the minimum number of samples required
to create a new child node during tree construction.

gamma: This parameter specifies the minimum reduction in loss needed to split a leaf
node.
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