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Abstract

Amazonian forests are threatened by numerous anthropogenic pressures not
visible by satellite imagery, such as over-hunting or undercover forest degra-
dation. Knowledge of the effects of these degradations is essential for an
effective local conservation policy. However, these effects can only be as-
sessed using quantitative methods for monitoring biodiversity in the field. In
recent years, ecoacoustics has offered an alternative to traditional techniques
with the development of Passive Acoustic Monitoring (PAM) systems allow-
ing, among other things, to automatically monitor species that are difficult
to identify by observers, such as crepuscular and nocturnal tropical birds.
Although the use of such systems makes it possible to acquire large sets of
data collected in the field, it is often difficult to process these data because
they generally represent several thousand hours of recordings that need to
be annotated and validated manually by an expert with in-depth knowledge
of the phenology and behavior of the species studied. The objective of this
thesis is to develop a new method to facilitate the work of ecoacousticians in
managing large unlabeled acoustic datasets and to improve the identification
of potential new taxa. Based on the advancement of Meta-Learning methods
and unsupervised learning techniques integrated into the Deep Learning (DL)
framework, the Meta Embedded Clustering (MEC) method is proposed to
progressively discover and improve the inherent structure of unlabeled data.
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Chapter 1

Introduction

Due to its ubiquity and ability to efficiently transfer information over long
distances, humans have often studied acoustic communication to understand
animal interactions within ecosystems. Although animals communicate us-
ing a variety of sensory channels (i.e. optical, acoustical, chemical, tactile,
and electrical), acoustic signals have the advantage of allowing rapid transfer
of information over long distances, through obstacles, in the darkness, and
without leaving traces.

As a multidisciplinary field of study, bioacoustics aims to evaluate the im-
pact of acoustic signals in several biological contexts. In particular, one can
study the intrinsic properties of the acoustic signal, its properties of propa-
gation and transmission in the environment, and the production mechanisms
used by animals to communicate. The emergence of new technologies and
the process of numerical computation towards the end of the 20th century
allowed bioacoustics to compete with manual analysis [1] with the develop-
ment of new automated methods for the analysis of acoustic signals, such as
Passive Acoustic Monitoring (PAM) systems [2] for the study and classifi-
cation of species. Because the visibility of the species were not necessarily
crucial for these studies (e.g. challenging scenarios such as night conditions,
deep ocean), new methods became convenient in detection, classification,
and localization of sound sources. In this way, population density and the
impact of various anthropogenic pressures on population dynamics could be
estimated remotely [3]. The mentioned technological innovations provided a
foundation for the development of a scientific field we today known as ecoa-
coustics. Compared to earlier studies on animal communication, this recent
scientific discipline aims to analyse the ecological rather than behavioral is-
sues of animal communication [1].



1.1 Motivation

Ecoacousticians deals with rich and diverse sound typology analysis compris-
ing a variety of acoustic units (e.g. impulsive, harmonic, iterative). Indeed,
the sounds produced by most mammals have varying degrees of loudness and
pitch, and different abilities to modulate in frequency for occupying differ-
ent acoustic niches. Some birds are even capable to alternate between noisy
and harmonic sounds or relatively pure tones using resonance in their vocal
tract to enhance the energy of the fundamental [5]. As an example, a time-
frequency representation of the particularities of the Furopean Greenfinch’s
song is presented in Figure 1.1. In general, ecoacousticians do not focus

Figure 1.1: The song of the European Greenfinch. Top: A picture of the
European Greenfinch (credits (€) Rogério Rodrigues). Bottom: Spectrogram
of pure tone and complex call of the European Greenfinch.



on specific species but proceed with large time and space recordings where
several species communicate simultaneously and at the same site. These
so-called soundscape recordings can contain birds, insects, amphibians, and
mammal recordings for terrestrial habitats, but also mammals, crustacean,
and fish sounds for aquatic environments (biophony). Furthermore, biotic
sound sources can be masked by abiotic sounds sources, that is, sound ele-
ments such as wind through the trees or water flows (geophony) or human
produced sounds often coming from machines (anthropophony). Altogether,
these recordings generate highly dynamic and complex sound scenes with
a complex mix of sound sources. The latter leads us to one of the stated
challenges in ecoacoustics, namely the decomposition these recordings and
the identification of different sound sources to infer proper ecology informa-
tion such as the absence/presence of target species. A primary motivation
behind this thesis is therefore to propose a framework useful for a better un-
derstanding and visualization of highly dynamic and complex sound scenes.
The goal is to facilitate the work of ecoacousticians in their management
of acoustic data and identification of potential new taxa, by proposing tools
that hopefully can facilitate the issues of discovering and gradually improving
the inherent structure of unlabeled data.

1.1.1 Research Objectives

A recurring problem in ecoacoustics projects is the lack of large labeled
datasets to train models for sound source identification. This is particu-
larly problematic when (i) diversity is particularly high (e.g. inter-tropical
regions), (ii) national biodiversity inventories could not be carried out yet
(e.g. in developing countries) [0], or (iii) when rare species are targeted (e.g.
rare nocturnal bird species) [7]. It is therefore still necessary to develop meth-
ods to facilitate the building of identification models based on the collection
of specific training data at a local or regional scale.

The main research objective of this thesis is to improve ecoacoustics re-
search by tackling the problem of missing large datasets, namely: How can
we get around the problem of lack of large datasets in challenging acoustic
environments? In our case, the problem is related to the image classification
of bird songs known with few reference vocalizations for each species. This
problem of learning from a small number of examples is often referred to
as Few-Shot Learning (FSL). Note that we refer here to image classification
since we analyze time-frequency representations of bird songs in two dimen-
sions (e.g. spectrograms). The collection and annotation of datasets for the
classification of animal vocalizations are indeed very difficult because the



presence of species in the recordings can be unevenly distributed over time,
and the associated datasets are generally very large. Therefore, a complete
manual annotation of the field recordings is not practical because extremely
time-consuming, and it also requires an expert that can identify the sound
of the target species with a repertoire that can sometimes be very complex.
Challenges in developing datasets are a key hindrance preventing the devel-
opment of algorithms and models to automatically identify rare bird species
using computational techniques in ecoacoustics. Based on these observations,
we propose to investigate the viability of the Meta-Learning framework for
the Few-Shot Image Classification problem in the first step. This framework
assumes that it is not always possible to construct a set with a sufficient
number of samples to train a machine learning algorithm. In a second step,
we propose to find a way to gradually improve the quality of data clustering
for unlabeled samples to improve the visualization of the inherent structure
of the data. For this purpose, we address the following research questions.

1.1.2 Research Questions

Q1: How well does episodic training improve the performance of
a Meta-Learning algorithm compared to classical training? Meta-
Learning algorithms are usually trained episodically (i.e. N-way-K-shot). In
this thesis, the objective is to compare the performance of episodic training
against classical training to determine the best-performing method for the
Few-Shot Image Classification problem.

Q2: To what extent can Meta-Learning algorithms fine-tuned on
pseudo-labeled data classify classes that were not used during train-
ing? Meta-Learning algorithms have a good generalization capacity when
trained on labeled data. Moreover, they are easily adaptable to the Trans-
fer Learning (TL) task, which makes them easily adaptable to new tasks.
Based on these observations, the goal is here to evaluate the ability of Meta-
Learning algorithms trained on pseudo-labeled data to generalize on classes
that have not been seen during training. Pseudo-labels refer here to data
that has been automatically labeled by a clustering algorithm in an unsuper-
vised manner.

Q3: To what extent Meta-embeddings can improve the cluster-
ing quality of unlabeled data? Recent work has shown that performing
data clustering in a latent space can be highly beneficial when it comes to
improving the quality of the clustering [%]. Based on this assumption, it
is assumed that extracting features from models which have learned to un-



derstand strategies of how to learn without prior knowledge of the data (i.e.
Meta-Learning) could further contribute to improving the quality of the clus-
tering. For this purpose, the Meta Embedded Clustering (MEC) method is
proposed to gradually improve the clustering quality by allowing the model
to learn meaningful representation features autonomously.

1.1.3 Research Limitations

The framework proposed in this thesis is based on techniques related to
machine learning and management of acoustic data. As such, this thesis
has potential limitations related to the insufficient number of data on the
one hand and the ethical issue of data bias and discrimination on the other.
Given the very limited access to soundscape recordings of nocturnal and
crepuscular tropical bird species, it was necessary to find effective ways to
circumvent this limitation. To do so, the use of the Meta-Learning framework
was favored for its ability to easily adapt to new tasks. Data collection was
on the other hand carried out on a collaborative database (Xeno-Canto')
mainly for its ease of use and access. However, this database does not allow
for systematic verification of the correspondence of recordings to associated
species, nor does it allow for a global representation of the extreme variety of
nocturnal and crepuscular bird songs living in tropical environments. Indeed,
some recordings may have been associated with bird species different from
the original song because access to the database is free and collaborative and
data checking is not systematic. On the other hand, given the small number
of soundscape recordings available for the target species, it is common to find
the same recordist name for sometimes all the recordings associated with a
rare species. This can have important consequences for database creation,
as the use of one recording material versus another, or the experience of the
recordist in field recording, can greatly improve or degrade the performance
of a machine learning model.

1.2 Contributions

The main contributions of this work are (i) the development of a completely
open-source framework to perform Few-Shot Image Classification tasks with
Meta-Learning algorithms fine-tuned on a pseudo-labeled dataset, and (ii)
the development of a useful method to improve the clustering quality of un-
labeled data to facilitate the work of ecoacousticians for the management

https://xeno-canto.org/

10


https://xeno-canto.org/

of acoustic data and the identification of potential new taxa. To accom-
plish this, extensive exploration and experimentation of Meta-Learning al-
gorithms are first performed. This includes three commonly used metric-
learning based algorithms, namely: the Matching Network [9], the Prototyp-
ical Network [10], and the Relation Network [I1]. Second, a comparison of
the performances of classical versus episodic training is done to define the
best-training method in various Few-Shot Image Classification tasks. Finally,
the best-performing model and training method are used to extract meaning-
ful latent space representations (i.e. embeddings) to improve the clustering
of unlabeled data, which is further improved by fine-tuning the model on
pseudo-labels generated by a clustering algorithm.

A unique dataset composed of acoustic units of nocturnal and crepuscu-
lar tropical bird species collected and segmented from the Xeno-Canto online
database is built. Nocturnal and crepuscular bird species are so far under-
represented in the literature, especially in tropical environments. Therefore,
contributing to the study of such species can be beneficial for better under-
standing their behaviors. As a result, the proposed dataset is released as an
open-source and code-based dataset that can be easily downloaded with the
following link: https://github.com/joachimpoutaraud/darksound. Fi-
nally, the objective is to contribute to the improvement of the identification
and visualization of rare bird species living in tropical environments, as well
as the discovery of potential new taxa based on acoustic properties only.

1.3 Thesis Structure

The framework proposed in this thesis is based on the use of computational
methods developed in the fields of ecoacoustics as well as on concepts and
techniques developed in machine learning. An overview of the historical evo-
lution of the literature is presented in chapter 2. Moreover, a critical perspec-
tive on the state of the art of current research is defined in chapter 3, notably
the introduction of Meta-Learning methods (section 3.1) and their use in the
framework of unsupervised learning (section 3.2). Chapter 4 presents the
material and methods of the proposed framework with details about the cre-
ation of the Darksound dataset (section 4.1) and the methods and evaluation
criteria used in our experimental design. The methods are essentially based
on the use of three pre-existing Meta-Learning algorithms (subsection 4.2.1)
and on the introduction of a method aiming at iteratively improving the
quality of data clustering (subsection 4.2.2). Furthermore, in chapter 5, the
results of our research are presented and discussed with our initial questions
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outlined in subsection 1.1.2. A critical view of the environmental considera-
tions related to the methods used in this thesis is also developed, as well as
a proposal for future work. Finally, the thesis is concluded in chapter 6.
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Chapter 2

Background

This chapter provides a general overview of the computational techniques
used in the field of ecoacoustics, with a particular focus on applications
related to Deep Learning (DL) for classification and Deep Embedding for
clustering analysis. The objective is to recontextualize the standard recipe
for ecoacoustics tasks in the DL framework while introducing the different
types of methods related to our research.

2.1 Computational Bioacoustics

Computational Bioacoustic Scene Analysis (CBSA), as a specific task of ecoa-
coustics, has recently been included in the Detection and Classification of
Sound Scenes and Events (DCASE) Challenge [12], which was organized by
the IEEE Technical Committee on Audio and Acoustic Signal Processing. An
overview of the different tasks proposed by the DCASE Challenge over the
years is presented in Table 2.1. This challenge was designed around the use of
automatic listening systems with two types of classification tasks, involving
the acoustic scenes and the sound events. On the one hand, the challenge in-
cluded the recognition of the type of acoustic scene, and on the second hand,
the detection and classification of sound events within the acoustic scene.
CBSA gathers a vast field of applications in ecoacoustics with, for example,
the monitoring and the conservation of populations through the detection,
classification, and localization of individuals representing species. The com-
mon point of these tasks is related to the numerical computation process
which is crucial since it allows the implementation of automated studies on
a large scale and over long periods, unlike traditional methods which are
relatively expensive, and limited in space and time [13, 11]. Moreover, the
numerical computation process allows the development of new automated

13



IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events
DCASE Tasks || 2018 2019 [ 2020 | 2021 | 2022
Task 1 Scenes
Task 2 Tags ‘ Monitoring
Task 3 Birds Localization
Task 4 Large-scale Domestic
Task 5 Monitor Urban Bioacoustics
Task 6 Caption

Table 2.1: Overview of the tasks of the Detection and Classification of Sound
Scenes and Events (DCASE) Challenge from 2018 to 2022.

methods for the resolution of problems related to the detection and classifi-
cation of animal vocalizations. Thus, the CBSA framework allows to target
(i) the simple presence/absence evaluation of species occurrence in an au-
dio recording (i.e. weak labelisation) [15], or (ii) the exact time position of
the animal vocalizations by determining the onsets and offsets (i.e. strong
labelisation) [10].

2.1.1 Species Identification and Localization

In ecoacoustics, identifying animal vocalizations in audio recordings is con-
sidered to be a useful means for estimating the population density of one
species with another, by setting up identification and localization methods
adapted to the species under study. The estimation of population density in-
tegrates a notion of individual tracking within a group of animals and allows
in particular the in-depth analysis of the main mechanisms contributing to
the recognition of an individual within a group, namely: the distinction of
the types of emissions and the production of individual signatures emitted
only for identification [17]. However, the frequency of use of acoustic signals
by species can change temporally and spatially, making individual identifi-
cation and population density estimation very tricky. Indeed, to estimate
population density, it is necessary to be able to first count the number of
individuals by identifying them one by one to define their acoustic signatures
and to localize them. Some studies have approached this but with proxy
approximations [18]. In addition, some species are difficult to access and the
lack of data on them may hinder their protection [17, 19]. In this regard, [7]
mentions that species identification is generally well specified in developed
countries, thanks to a large volume of data available for training a classi-
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fier, but that it is sometimes unfeasible in developing countries or in places
that are difficult to access, mainly due to the lack of accessible data. This
highlights the need for different strategies (e.g. supervised vs. unsupervised
methods) depending on the state of development of the country (i.e. large
dataset in developed countries with lower biodiversity vs. small dataset in
developing countries with higher biodiversity). Regarding the problem of
species identification and recognition in developing countries, new method-
ological approaches related to the clustering and the visualization of acoustic
units and their sequencing have recently been developed [20, 21].

Acoustic analysis of the environment can also allow to estimate the spa-
tial location of species or tracking of known and unknown individuals. In
most cases, this corresponds to the estimation of the direction of arrival of
sound for the position and orientation of a microphone array. This generally
requires triangulation based on the speed of sound and the relative arrival
time of a sound at each of the microphones [22] and allows for the implemen-
tation of species behavior studies, species-specific activity modeling, species
abundance estimates, or population density assessments. However, this is
generally only feasible at short distances (of the order of a few meters) and
depends on the configuration of the microphone array, the spacing chosen
between the microphones, and their sensitivity.

2.1.2 Sound Event Detection

Before classifying or clustering the acoustic units of animal species, one must
be able to detect them. For this purpose, it is necessary to develop methods
adapted to the specific species of interest and control whether their acoustic
signals are present in an audio recording. Note that an audio recording
without acoustic signals does not necessarily mean the absence of a species,
since many species can evolve in their ecosystem in silence. Thus, the task of
Sound Event Detection (SED) can be approached in several different ways.
According to [23], three broad types of categories can be distinguished.

1. Binary detection (presence/absence)
2. Sound event detection (temporal start/end)
3. Object detection (temporal and frequency start/end)

The main difference between these three categories is that the first aims only
at confirming the presence/absence of a target species, while the second and
third focus also on detecting the beginning and end of the corresponding

15



sound events. More precisely, the first detection task aims at describing
the “occupancy” information of the species by detecting in a binary way its
presence/absence in an audio recording. The second task aims at defining the
temporal boundaries of the start/end regions of a sound event, and finally,
the third detection task represents the temporal and frequency boundaries
of an “object” (i.e. a sound event) in a graphical representation of the sound
(e.g. a spectrogram). The three common approaches to the implementation
of sound detection are illustrated in Figure 2.1.

(a) Binary classification

1/0

time

(b) SED (multi-species)

species

A

B i
LN

time

(c) Object detection

DD -

time

frequency
||

Figure 2.1: Three common approaches to implementation of sound detec-
tion. (a) Binary classification: describes the “occupancy” information of the
species by detecting in a binary way its presence/absence in an audio record-
ing, (b) SED: defines the temporal boundaries of the start/end regions of
a sound event, and (c¢) Object detection: represents the temporal and fre-
quency boundaries of an “object” in a graphical representation of the sound.
From “Bird detection in audio: a survey and a challenge”, by D. Stowell et.
al. 2016b, PeerJ. (https://doi.org/10.7717/peerj-13152/fig-1)
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2.1.3 Passive Acoustic Monitoring

Ecoacoustic surveys can be performed over periods ranging from a few sec-
onds to several years. Thus, it is sometimes necessary to detect the presence
of active species over very long time scales. This is particularly the case in
the marine context where surveys on very large time and space scales are
common, or in environments where species access is limited. In such cases,
manual analysis of audio recordings appears impossible [24]. Indeed, manual
analysis can be time-consuming and requires the knowledge of experts who
can introduce a bias in the data annotation phase. In addition, few experts
can identify animals with certainty based on their acoustic signals. There-
fore, the use of automated methods appears to be an alternative solution to
overcome the problems related to the detection of species over long periods.
In particular, the use of Passive Acoustic Monitoring (PAM) systems such as
Autonomous Recording Units (ARUs) allows the study of species 24 hours
a day, every day of the year, and in several habitats simultaneously [25, 20].
Moreover, ecoacoustic surveys generally follow a two-step workflow: detec-
tion and classification (although this can sometimes be combined). This has
the advantage of facilitating the learning process by applying an automatic
classification only on the detected regions in the acoustic scene. The goal is
here to optimize the storage and transmission of data by rejecting a large
number of “negative” sound clips beforehand [23]. In general, ecoacoustics
studies make extensive use of Machine Learning methods for classification.
Classification is commonly applied at the species level, typically within a
family of taxa, as in the BirdCLEF challenge [27]. However, it can also be
applied at the scale of individuals within a particular species, for example, to
estimate population numbers or to analyze interactions between individuals.
Classification at the scale of individual acoustic units is relatively little con-
sidered, mainly because it is difficult to generalize to a whole species, given
the large number of individual differences and differences between distinct
populations.

2.2 Deep Learning for Classification

Machine learning is a field of study in Artificial Intelligence (AI) that allows
a machine to “learn” from data. This field has recently revolutionized the
field of ecoacoustics, in particular with the introduction of detection, clas-
sification, and clustering methods in the sub-field of Deep Learning (DL).
Although DL algorithms are used for a wide range of applications (e.g. clas-
sification /regression, signal enhancement, or new data synthesis), the ma-
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jority of its applications focus on DL classification methods studies. Classi-
fication is therefore considered the main method used in ecoacoustics with
DL [23]. This implies different types of classification such as binary clas-
sification, multi-class classification, multi-label classification, or imbalanced
classification. In this thesis, particular attention is paid to the multi-class
and imbalanced classification tasks.

Multi-Class Classification

The goal of multi-class classification is to predict to which class an input
example belongs with a minimum of two mutually exclusive class labels. For
example, classifying the song of five different bird species is a multi-class task
where the goal is to train a model able to correctly classify the vocalization
of a bird based on the properties of the class associated with it. For this
purpose, different architectures of DL algorithms can be considered. Most of
the algorithms used for this kind of task are referred to as “eager learners”.
Meaning that they have the particularity to build a model from a training
data set to make predictions on validation and test data sets. On the other
hand, “lazy learners” are used to memorize the training data, and look for
the nearest neighbor from the training data set to make a prediction. This
has the disadvantage of making them very slow during prediction.

Imbalanced Classification

A common case in multi-class classification tasks is that the number of ex-
amples is unevenly distributed in each class. This problem is related to
imbalanced classification, meaning that there may be more samples from
one class than others in the training data. There are several approaches to
tackling the imbalanced database problem. In this thesis, the most common
approach is used, that is to oversample the data (although it is sometimes
necessary to undersample the data), so that each class in the database has
a similar number of samples. Popular sampling techniques that can be used
for multi-class classification include:

Simple Random Sampling

Cluster Sampling

Systematic Sampling

Stratified random Sampling

18



2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are often defined as an organized set of
interconnected neurons allowing the solution of complex problems such as
computer vision, machine listening, or Natural Language Processing (NLP).
More precisely, the objective of an ANN is to mimic the architecture of the
human brain through a combination of data inputs, weights, and biases. It is
composed of a collection of connected units called artificial neurons that act
as conceptual derivatives of biological neurons. Each artificial neuron receives
inputs from several other neurons, multiplies them by assigned weights, adds
them up, and passes the sum to one or more neurons via the use of a transfer
function, as illustrated in Figure 2.2. Early work in ecoacoustics made use of

weights

activation
functon

net input

net.
J ¢ M
activation
x.;".—.-
transfer
: - function
0.
xH d
threshold
Figure 2.2: Diagram of the structure of an artificial neuron,
the basic component of ANNs. “Diagram of an artificial neu-

ron”, 2005, av Chrislb. (https://commons.wikimedia.org/wiki/File:
ArtificialNeuronModel_english.png)

ANNS for their ability to detect animal sounds, notably with the use of basic
architectures such as the Multi-Layer Perceptron (MLP) [28, 29]. The MLP
is a typical example of a feed-forward ANN composed of a series of layers of
nodes including an input layer, several hidden layers, and an output layer,
as illustrated in Figure 2.3. In the context of DL, such algorithms are also
known as Deep feed-forward Networks or Deep Neural Networks (DNNs) and
are the quintessential DL models. The term “feed-forward” refers here to the
fact that there are no feedback connections in which the model’s outputs are
sent back to itself. In the opposite case, we speak of Recurrent Neural Net-
works (RNNs) which have the particularity to include feedback connections.
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hidden layers

output layer

input layer ¢

Figure 2.3: Diagram of the basic structure of a Multi-Layer Perceptron
(MLP) with one input layer, several hidden layers, and one output layer.
“Multilayer Perceptron”, 2020, av David Rodriguez. (https://github.com/
d-r-e/multilayer-perceptron)

Regarding the field of ecoacoustics, DNNs have proven to be very efficient
for audio classification tasks and have been widely introduced in [23].

Architectures

There are many types of ANN architectures such as Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs), Auto-Encoders
(AEs), Transformer Neural Networks (TNNs) or Generative Adversarial Net-
works (GANs). Currently, the vast majority of audio classification tasks in
ecoacoustics make use of CNNs which often outperform other ANN archi-
tectures. Nevertheless, new approaches using TNNs have recently exposed
the difficulties that CNNs may have in capturing long-term relationships and
global context in audio data [30]. According to [23], the earliest study using a
CNN in ecoacoustics is related to the classification of 10 anuran species [31].
The use of the CNN was then widely developed, notably for the majority of
works participating in the BirdCLEF challenge, which use CNN systems with
spectrograms as input, including the highest scoring team. The application
of CNNs in the context of ecoacoustics generally makes use of off-the-shelf
CNN architectures, such as ResNet [32], VGG [33] or DenseNet [31]. These
types of architectures have been made popular by their accessibility and ease
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of use in the context of DL. On that matter, [23] has established a study of
the standard off-the-shelf CNN architectures used in the literature accord-
ing to their number of appearances in papers. The ranking of the top 5
off-the-shelf CNN architectures is presented in Table 2.2.

H CNN architecture \ Number of articles H

ResNet 23
VGG or VGGish 17
DenseNet 7
AlexNet 5
Inception 4

Table 2.2: Ranking of the top 5 off-the-shelf CNN architectures according
to their number of appearance in articles in 2022. From “Computational

bioacoustics with deep learning: a review and roadmap”, by Stowell et. al.
2022, PeerlJ.

Activation Functions

When used for supervised classification, the objective of an ANN is to es-
timate the probability of an input belonging to a class. For this purpose,
various types of activation functions can be applied to the output from a
node or nodes in a layer of the network. In this thesis, the focus is mainly
on the output layer of the network. Activation functions correspond to the
weighted sum of all the inputs that has been weighted by the weights of the
connections from the inputs to the neuron. The weighted sum of the inputs
is computed as xiwy + rows + ... + T, w,, Where xq, x9, ..., x, correspond to
the inputs and wy, ws, ..., w, to the weights. A bias [ is then added to the
weighted sum z1w; + xows + ... + x,w, + 5 to feed the computed value to
the activation function ¢ that produces the output.

o(r1wy + Tows + ... + xHwy, + B) (2.1)

Regarding multi-class classification, the Softmax function is commonly ap-
plied on the output layer of the network to generate a normalized probability
score, whose total sum of probabilities is equal to 100%, i.e. 1. Softmax func-
tion is defined in the equation 2.2.

Softmax(z) = —g—— fori=1,2,... K (2.2)



It is important to bound the total sum of probabilities within a small range in
order to avoid having huge weights or numbers while progressing backward or
forward within the network. In addition, the use of logarithmic probabilities
with the probabilities can be useful to improve the numerical performance
and optimize the gradient. For this purpose, it is sometimes advisable to use
the logarithm of the Softmax activation function which allows to strongly
penalize the model when it fails to predict a correct class. The choice of the
activation function is to be tested according to the statement of the problem
that the model tries to solve.

Back Propagation

Back propagation is the method used to train ANNs, optimizing the param-
eters of transformations, in particular weights and biases, from the last layer
to the first. This allows the ANN to learn from its errors and to correct
internal parameters according to the relative importance of the contribution
of each element. To correct internal parameters, a learning rate parameter
is used to define the size of the corrective steps that the model takes. Then,
weights that contribute the most to an error are modified more significantly
than the weights that cause a marginal error. Back propagation calculates
the gradient of a cost function, so that weights can be updated using gradient
descent methods (e.g. Stochastic Gradient Descent (SGD)). The objective
here is to converge iteratively to an optimal configuration of the weights,
which represents a minima of the loss-function (ideally the global minima,
although training algorithms may be stuck in sub-optimal local minima). Re-
garding multi-class classification, the Cross-Entropy loss, or log loss function
is commonly used to measure the performance of a model that produces an
output with a probability value between 0 and 1. It calculates a separate
loss for each class label per observation and sums the result. It is defined in
equation 2.3, where M corresponds to the number of classes > 2, y represents
the binary indicator (0 or 1) if the class label ¢ is the correct classification
for observation o, and p the predicted probability observation o is of class c.

M
ECE = - Z Yo,c 10g(p0,0) (23)

c=1

2.2.2 Acoustic Features

In the context of ecoacoustics, the magnitude spectrogram is generally used
as the input of DL algorithms. This finding is established by [23] on a set of
162 articles surveyed. The advantage of the spectrogram is to represent the
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intensity of the sound in a single time-frequency space. Several computational
parameters affect the time-frequency representation of the spectrogram. For
example, the length of the window used to compute the Short-Time Fourier
Transform (STFT) or the form of the window function used (e.g. Hann win-
dow). Regarding the window length, a shorter window will provide a better
time resolution of a particular sound event, whereas a longer window will
provide a better frequency resolution. The problem related to the length of
the window refers to a well-known dilemma from quantum physics which was
stated as Heisenberg’s uncertainty principle. A comparison of the impact of
the window length on two Mel spectrograms is illustrated in Figure 2.4. Ac-
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Figure 2.4: Comparison of the impact of the window length on two Mel
spectrograms. Top: Mel spectrogram with a window length of 64 samples.
Bottom: Mel spectrogram with a window length of 8192 samples.

cording to [35], the fine-tuning of these parameters can significantly improve
the performance of DL classification models. Moreover, how the frequency
axis of the spectrogram is scaled has also an important impact, although
there is no strong consensus in the literature on which type of scale should
be used. In the context of ecoacoustics with DL, it is usually not scaled (i.e.
linear) or scaled logarithmically. When a logarithmically frequency axis is
used, it is common to use either the constant-Q transform (CQT) spectro-
gram [30] or the Mel spectrogram [37] which are both based on the human
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frequency process. The difference between the two is that the former is based
on a semitone scale while the latter is based on the Mel scale. The semitone
scale represents equally spaced tones on a logarithmic scale, whereas the Mel
scale makes equally spaced tones sound the same distance apart, regardless
of pitch. The conversion from Hertz (f) to Mels (m) is expressed in equation
2.4 and a visual difference of the CQT spectrogram compared to the Mel
spectrogram is illustrated in Figure 2.5.

f
= 25951 1+ =—— 24
m 995 log; ( + 00 (2.4)
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Figure 2.5: A visual difference of the CQT spectrogram compared to the Mel
spectrogram. Top: CQT spectrogram. Bottom: Mel spectrogram.

That is to say, the choice of a particular time-frequency representation
is not systematically appropriate to represent all aspects of the diversity of
animal vocalizations. On the other hand, the image can alternatively be opti-
mized by Per-Channel Energy Normalization (PCEN) [35], although there is
no strong consensus on this. Finally, the learning process of a model considers
the spectrogram in parts, dividing it into fragments of a few pixels or slices of
a few seconds, on which a succession of filters creating new images (i.e. con-
volution maps) are applied. These successively repeated convolutions make
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it possible to obtain a latent space representation (i.e. embedding), which
is evaluated through several Fully Connected (FC) feed-forward layers. The
classification happens at the output layer of the network, which is composed
of one neuron per class, with the logarithm of the Softmax activation func-
tion estimating the probability of belonging to a class. The different steps
required to classify a spectrogram using a CNN are summarized in Figure
2.6.

Fully

Convolution Connected

Poolin it
Input E..-

\ J\
Y

Feature Extraction Classification

Figure 2.6: Schematic representation of the overall steps of a CNN.
Features are extracted from an input image by applying a set of fil-
ters (or kernels) using a convolutional layer and reducing the dimen-
sions of the hidden layer with a pooling layer. Output variables
of the classification are obtained with a Fully Connected (FC) layer
where each neuron applies a linear transformation to the input vector
through a weights matrix.  “Binary Image classifier CNN wusing Ten-
sorFlow”, 2020, av Sai Balaji. (https://medium.com/techiepedia/
binary-image-classifier-cnn-using-tensorflow-a3f5d6746697).

2.2.3 Data Augmentation and Pretraining

Many animal vocalizations are still difficult to access today, either because
they are rare species or because their vocalizations can only be recorded
in environments that are difficult to access (e.g. underwater environments,
tropical rain forests). Due to their rarity, it is thus difficult to have access to
large datasets for the training of a DL classification model. Data augmen-
tation and pre-training are two techniques proposed to alleviate the issue of
data scarcity.
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Data Augmentation

Data augmentation is a common technique to artificially increase the size of a
dataset (usually the training set). In subsection 2.2, several methods related
to data sampling were cited to tackle the problem of imbalanced classification.
These methods also apply to problems related to data scarcity, by allowing
the number of data samples to be increased by applying small modifications
to create additional data samples. In the context of ecoacoustics with DL,
such modifications typically include:

e Time-shifting (e.g. random backward or forward time shift)
e Soundscape synthesis (e.g. mixing “ambient sound” recorded in situ)

e Frequency equalization (i.e. slightly changing the response character-
istics of the microphone by convolving it with an impulse response)

e Emulating the effects of distance by attenuating high frequencies due
to air absorption

e Adding low-amplitude Gaussian noise (although it is better to add
ambient sound)

Note that it is important not to adopt methods directly from image process-
ing without considering the aspect they transform. More precisely, while it
is possible to assume that neighboring pixels can belong to the same visual
object in standard image processing applications, this is not true for sound
images such as spectrograms. Spectral properties of sounds are non-local,
therefore, the representation of the frequencies in a spectrogram is generally
non-locally distributed [39]. Consequently, moving the frequencies of a bird
song upwards or downwards can be artificial and extends out of natural vari-
ation. For example, applying frequency shift to bird songs could change the
belonging of a species to a class. Nevertheless, if the frequency range of the
repertoire of the species to be augmented is known beforehand, this can be
considered.

Pretraining

Transfer Learning (TL) methods can be used as a meaningful way to reuse
the backbone of models pre-trained on large datasets, preferably similar to
the new task. In image classification, this is generally done to allow the
fine-tuning of the last layers of the backbone to classify new categories. As
a result, fine-tuning a network using TL allows one to generalize to other
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categories by reusing the first layers of the network as an efficient way to
solve problems related to edge detection or basic shape detection. Regarding
ecoacoustics with DL, recent works using pre-trained models on the Ima-
geNet dataset have been able to significantly improve model performance,
even though the images turn out to be very different from the spectrograms
[10]. Other approaches have used TL to improve the performance of audio
classifiers using a one-dimensional convolutional layer. To this end, mod-
els are generally pre-trained on Google’s AudioSet dataset or VGG Sound
dataset [11] and allow the application of TL methods for the classification of
one-dimensional audio waveforms. This type of approach can also eliminate
the need to worry about the time-frequency representation problems related
to Heisenberg’s uncertainty principle.

2.3 Deep Embedding for Clustering Analysis

Deep Neural Networks (DNNs) can be used as feature extractors to reduce
a given data space to a lower dimensional latent space. To do this, DNNs
transform images into latent space representations (i.e. embeddings) that
can then be used to compute a distance and to measure the similarity or the
dissimilarity between the representations. Deep embeddings can also be used
to learn feature representations for clustering the data on the latent space.
Such an approach has notably helped improve the quality of data clustering
by optimizing a clustering objective in an iterative way []. As a result, this
makes it possible to improve the quality of the data clustering as well as the
representation of the extracted features.

2.3.1 Clustering Algorithms

Data clustering techniques such as clustering algorithms are used to discover
the inherent structure of the data and can improve its visualization. The
advantage of clustering algorithms is that they use unsupervised learning
to discover hidden patterns or clusters of data without the need for human
intervention. Various methods allow to cluster elements within classes (as
homogeneous as possible) but without knowing the classes a priori. In this
sense, clustering algorithms aim at creating clusters with high intra-group
similarity (similarity within clusters) and low inter-group similarity (dissimi-
larity between clusters). In the following, the four most common approaches
in clustering analysis are introduced. A representative overview of the clus-
tering algorithms is shown in Figure 2.7.
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Figure 2.7: A comparison of the clustering algorithms in scikit-learn.
“Overview of clustering methods”, 2007-2023, av Scikit-Learn. (https:
//scikit-learn.org/stable/modules/clustering.html)

Centroid-Based Clustering

Centroid-based algorithms organize data into non-hierarchical clusters. One
of the most popular centroid-based algorithm is certainly the k-means with its
ability to divide observations into k clusters. However, the main drawbacks
of this algorithm is that it is sensitive to noise and requires the number of
clusters to be specified.

Hierarchical-Based Clustering

Algorithms based on hierarchical clustering allow the creation of a dendro-
gram able to illustrate how each cluster is composed. This is very well
adapted to hierarchical data such as taxonomies and has the advantage of
not having to specify the number of clusters beforehand.

Density-Based Clustering

Density-based algorithms are useful to merge areas of high example density
into clusters. They have the advantage of not having to specify the number
of clusters and they can deal with noise and keep it outside any clusters (e.g.
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DBSCAN, OPTICS). However, these algorithms have difficulties with data
of varying densities and high dimensions.

Distribution-Based Clustering

It is also possible to cluster data by assuming that they are composed of
distributions (e.g. Gaussian distributions). Thus, if a point moves away
from the center of the distribution of a cluster, its probability of belonging
to the cluster is low, and vice-versa. However, this requires to know the type
of distribution of the data in advance.

2.3.2 Deep Embedded Clustering

Clustering algorithms are often used in combination with dimensionality re-
duction algorithms that are useful to project data from a high dimensional
space into a lower dimensional space. Common techniques use linear di-
mensionality reduction frameworks such as Principal Component Analysis
(PCA), Independent Component Analysis (ICA), or Linear Discriminant
Analysis (LDA). Non-linear dimensionality reduction frameworks can also
be used, notably Manifold Learning which allows to generalize linear frame-
works like PCA by learning the high dimensional structure of the data from
the data itself. A visual comparison of Manifold Learning methods is illus-
trated in Figure 2.8. Another solution to avoid the “curse of dimensional-
ity” [12] is to use initialized parameters of a DNN as a feature extractor to
transform the data space into a latent space. This allows the performing
of initial non-linear mappings of the data that are appropriate for complex
data representation. Moreover, using a lower dimensional space can be use-
ful for clustering the data. In this regard, the Deep Embedded Clustering
(DEC) method introduced in [%] has shown that passing the data through
an initialized DNN to get an initial estimate of the non-linear mappings can
allow optimizing a clustering objective by performing a clustering algorithm
directly on the latent space, making it possible to refine the initial cluster
centroids by updating the parameters of a DNN.

Clustering Loss

DEC method is defined as a clustering loss between the “soft assignments”
(i.e. the relation between the embedded points and the cluster centroids)
and a target distribution [8]. This is achieved by minimizing the Kullback-
Leibler (KL) divergence iteratively. KL divergence allows to measure the
difference between one probability distribution P from a second probability
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Isomap Embedding Multidimensional scaling Spectral Embedding T-distributed Stochastic
Neighbor Embedding

Figure 2.8: A visual comparison of Manifold Learning methods for an ex-
ample of dimensionality reduction on a toy “S-curve” dataset in scikit-learn.
“Manifold Learning”, 2007-2023, av Scikit-Learn. (https://scikit-learn.
org/stable/modules/manifold.html)

distribution (), as defined in equation 2.5.

M P
L=KL(P||Q) = E P.log ac (2.5)
c=1 ¢

As a result, the DEC method makes it possible to iteratively refine the initial
clusters by matching the “soft assignments” to the target distribution. In this
sense, this method can be associated with Self-Supervised Learning (SSL)
techniques that use the predicted labels of a classifier to train the model by
itself, based on its own confidence predictions.

2.4 Summary

This section provided a general overview of the computational techniques
used in the field of ecoacoustics with a particular attention to applications
related to DL for classification, and deep embedding for clustering analysis.
To this end, species identification and location was first presented as a useful
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way to estimate the population density of one species relative to another, and
the techniques used to detect and classify the acoustic units of animal species
in soundscape recordings were reviewed. Moreover, the multi-class classifica-
tion problem in the context of DL was introduced and the technical aspects
of DNN architectures as well as the acoustic features and pre-processing tech-
niques used in ecocoustics were presented. Furthermore, the techniques used
in clustering analysis were detailed and the DEC method was introduced as

an interesting way to improve the quality of data clustering in the framework
of DL.
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Chapter 3
Related Work

A recurring problem in ecoacoustic projects is the lack of large labeled
datasets. As a result, it is difficult to capture the vocalizations of rare tropi-
cal bird species because few audio recordings are accessible for training a DL
classification model. In this chapter, different learning strategies are intro-
duced to overcome the problem of multi-class classification with few samples
of data. More precisely, the Meta-Learning framework is introduced as a rel-
evant solution to build DL classification models that can be quickly adjusted
for new tasks. Moreover, the Unsupervised Meta-Learning (UML) framework
is considered as an interesting way to automatically build learning tasks for
Few-Shot Image Classification, by assigning pseudo-labels to samples from
unlabeled datasets.

3.1 Meta-Learning for Few-Shot Classification

In the context of ecoacoustics with DL, several strategies have attempted
to tackle problems related to the lack of data, including multi-task learning
[13], semi-supervised learning [37], weakly-supervised learning [11] or Self-
Supervised Learning (SSL) [15]. In this thesis, Meta-Learning algorithms
are investigated for their capability to learn from other learning algorithms.
Meta-Learning algorithms consist in learning to quickly adapt to the learning
tasks of a prior model to be optimized for a set of novel tasks. In that sense,
the basic idea is to be able to “learn to learn” [16]. Therefore, Meta-Learning
algorithms provide a more general understanding of learning and allow to
solve classification tasks by exposure to multiple similar classification tasks
[17]. For this purpose, learning is usually performed in an episodic manner,
where one episode corresponds to an N-way-K-shot task [9].
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3.1.1 Episodic Learning

Meta-Learning algorithms are studied using the N-way-K-shot classification
task, where N corresponds to the number of classes and K is the number
of examples for each class, as illustrated in Figure 3.1. For example, the
goal might be to try to discriminate a set of 5 classes (5-ways) with only
1 sample per class (1-shot). This then allows us to consider episodic learn-
ing for training models and gain experience from other similar problems.
Episodic learning is different from conventional mini-batch training because
of the introduction of episodic task sets. In each episodic task, the model
learns to predict the classes of unlabeled data (i.e. query set) using very
few labeled examples (i.e. support set) [18]. Nevertheless, recent work sug-
gests that competitive results can be obtained from classical training with
simple Cross-Entropy loss overall training classes, compared to the more so-
phisticated episodic methods [19, 50]. Therefore, it is becoming increasingly
common to use a classical training process to train the backbone of a neural
network. In this thesis, the objective is to evaluate to what extent episodic
training compared to classical training can improve the performance of a
Few-Shot Image Classification task. Furthermore, Meta-learning is usually
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Figure 3.1: A Few-Shot Image Classification (5-ways-1-shot) task.
“Meta-Learning”, 2020, av Cloudera Fast Forward Labs. (https://
meta-learning.fastforwardlabs.com/)

defined in two levels: meta-training and meta-testing, as illustrated in Fig-
ure 3.2. During the meta-training phase, several episodic tasks are defined.
Here, this corresponds to classifying N-way bird species from K-shot spec-
trograms for each species. This then allows the knowledge learned through
the episodic tasks to be reused to understand how the structure of the tasks
varies across target domains and to classify new data in the meta-testing
phase. Performance evaluation of the Meta-Learning algorithms consists of
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using a set of test tasks where each of the classes is different from those
used in the training tasks. This makes it possible to measure the ability of
the model to correctly classify the query set based on its knowledge of the
support set.
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Figure 3.2: Meta-Learning data setup. “Meta-Learning”, 2020, av Cloudera
Fast Forward Labs. (https://meta-learning.fastforwardlabs.com/)

3.1.2 The Few-Shot Image Classification problem

One of the most popular examples of Meta-Learning is the Few-Shot Im-
age Classification problem. Recently, the Meta-Learning framework has at-
tracted increasing attention for the acoustic Few-Shot Image Classification
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problem [51, 52]. The goal is to allow the classification of new images (e.g.
spectrograms) from a handful of training examples. Some cases have only one
example per class (i.e. One-Shot Learning) or none (i.e. Zero-Shot Learn-
ing). Moreover, Few-Shot Learning (FSL) has attracted increasing attention
in the field of ecoacoustics with notably the introduction of the Task 5 of
the DCASE Challenge 2021 (Few-Shot Bioacoustic Event Detection). How-
ever, Task 5 deals with the actual detection of onsets and offsets of events
whereas the FSL framework is here used as an audio tagging task. Regard-
ing the DCASE Challenge 2022, the best overall F-score in the evaluation set
reached the 60% level. Table 3.1 presents the validation and evaluation of

F-score results per team, as mentioned in [53]. Given that a unique dataset

Team Name Validation set: Evaluation set:

F-score % F-score % (95% CI)
Du NERCSLIP 2 [54] 74.4 60.22 (59.66-60.70)
Liu Surrey 2 [57] 50.03 48.52 (48.18-48.85)
Martinsson RISE 1 [50] 60 47.97 (47.48-48.40)
Hertkorn ZF 2 [57] 61.76 44.98 (44.44-45.42)
Liu BIT-SRCB 4 [58] 64.77 44.26 (43.85-44.62)

Table 3.1: Ranking of the top 5 F-score results per team on the DCASE
Challenge 2022 Task 5 datasets. Systems are ordered by higher scoring rank
on the evaluation set. From “Few-shot bioacoustic event detection at the
dcase 2022 challenge” by 1. Nolasco et. al. 2022, arXiv.

is created ofr this thesis and that the FSL framework is used as an audio tag-
ging task, the evaluation results for the Few-Shot Image Classification task
obtained on the minilmageNet dataset are also presented to get a broader
idea of the performances of the Meta-Learning algorithms. Table 3.2 lists the
accuracy of three commonly used Meta-Learning algorithms as mentioned in

[47].

Algorithm 1-shot 5-shots
Matching Networks [9] 43.56% 55.31%
Prototypical Networks [10] 49.42% 68.2%
Relation Networks [59] 50.44% 65.32%

Table 3.2: Accuracy of 5-ways Few-Shot Image Classification tasks on the
minilmageNet dataset. From “A summary of approaches to few-shot learn-
ing”, by A. Parnami et. al, 2022, arXiv.
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The motivation around the Meta-Learning framework is nevertheless the
same as in detection and classification tasks because it lies essentially in
the possibility to train ANNs with a reasonable performance despite the few
training examples available, or to facilitate data labeling when the cost of
the latter is high.

3.1.3 Metric Learning

Meta-Learning algorithms are generally labeled as either metric-learning
based or gradient-based meta-learner. In this thesis, a particular empha-
sis is placed on metric-learning based algorithms to measure the distance be-
tween the feature vectors that are produced by the last layers of a pre-trained
network. In metric learning, the feature vector represents a relatively low di-
mensional space in which high dimensional vectors can be translated. These
vectors can then be placed in a coordinate system, also called dimensional
space, to allow the interpretation of points in space. Thus, the closer the
“points” are to each other, the more similar they will be considered. Pre-
vious metric-learning based algorithms focused on pairwise comparisons of
embeddings to determine the membership of two examples of data to the
same class or to different classes (e.g. Siamese Networks [60] or Triplets Net-
works [01]). In the context of ecoacoustics with DL, terrestrial and underwa-
ter projects have reported the ability of these models to train relatively well
with small or imbalanced data sets [62, 37]. The advancement of research in
the Meta-Learning framework has notably allowed the development of multi-
class algorithms capable of assigning new examples to a class among several
(e.g. Matching Networks [9] or Prototypical Networks [10]). All of these algo-
rithms use metric-learning methods to automatically construct task-specific
distance metrics that can be measured in various ways. The basis of many
similarity and dissimilarity measures is the Euclidean distance. This distance
is calculated between two vectors A and B as follows:

Euclidean Distance = |A — B| = Z (A; — B;)? (3.1)

=1

According to [10], the squared Euclidean distance can greatly improve results
depending on the network used. The only difference with the Euclidean
distance is that it does not take the square root.

Squared Euclidean Distance = |A — B| = Z (A; — B)? (3.2)

=1
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Moreover, the similarity between two points can also be measured by calcu-
lating the cosine similarity which determines the angle between the vectors
rather than the distance between their extremities.

ZAB

!A||||B|| \/ﬁ\/ﬁ

There are numerous other distance-based similarity measures (e.g. Man-
hattan distance, Minkowski distance, Cross-Correlation, Jaccard Similarity,
etc.). However, concerning ecoacoustics with DL, it is important to note
that such measures only approximately represent the perceptual similarity
of the vocalization of an animal [5]. Moreover, the acoustic perception of an
animal vocalization can often differ from one species to another. Therefore,
the similarity measure between, for example, two individual acoustic units,
can be strongly affected by the pre-processing applied to the time-frequency
representation on the one hand, and the type of similarity measure used on
the other. To this end, another solution is to use Deep Metric Learning
strategies to learn discriminative features produced by an ANN and to use it
as a non-linear operator producing a similarity score. This has been notably
introduced with the Relation Networks [59] that we will introduce in more
detail in section 4.2.1. The main characteristic of this network is that it can

predict a relation score as a means of predicting the relationship/similarity
of embeddings produced by a CNN.

Cosine Similarity = (3.3)

3.2 Unsupervised Meta-Learning

Most Meta-Learning algorithms are evaluated under supervised Few-Shot
Image Classification tasks which nevertheless require a large number of la-
beled data. To tackle this problem, recent approaches based on Unsuper-
vised Meta-Learning (UML) have been explored to allow the creation of
high-quality embeddings with pseudo-labeled training data. In contrast to
supervised Meta-Learning, the UML framework is characterized by a learning
procedure, without supervision, that is useful to solve a wide range of new
human-specified tasks [03]. This has led to the development of a wide field of
applications to define new types of representations needed for feature detec-
tion or classification from unlabeled data. The basic idea is that features are
learned from the pseudo-labeled data by analyzing the relationship between
points in the dataset. This learning can then be reused to classify/cluster
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sets with few data. In this thesis, the UML framework is used to develop un-
supervised embedding algorithms capable of improving the clustering quality
of unlabeled data. This can be achieved using various unsupervised methods
providing an alternative way to consider real-world problems, like exploit-
ing the support and query sets involved in the Meta-Learning framework as
pseudo-labeled data. To the best of our knowledge, such an approach has
never been established before in the context of ecoacoustics with DL.

3.2.1 Clustering-Based Unsupervised Methods

The basic idea of the UML framework is to use unlabeled data for the meta-
training phase. According to [(4], there are two common unsupervised meth-
ods to build tasks from the unlabeled dataset:

1. Comparative Self-Supervised (CSS)-based methods (as shown in Figure
3.3 (c¢)) which use data augmentations to create image pairs that can be
used to build training tasks. To this end, Khodadadeh et al. proposed
the method UMTRA [65] to enable the creation of synthetic tasks in
the meta-training phase, using random sampling and augmentation.

2. Clustering-based methods (as shown in Figure 3.3 (d)), which use the
pseudo-labels of the clusters generated by a clustering algorithm to
build training tasks. To this end, Hsu et al. proposed the method
CACTUs [63] that allowed the development of efficient models from a
few samples of data for various tasks.

In this thesis, the main focus is on clustering-based methods to use unlabeled
data as multiple clusters defining the pseudo-labels of our images. More pre-
cisely, UML algorithms use the pseudo-labels defined by a standard cluster-
ing algorithm as supervision to update the weights of an ANN. However, the
meta-training phase is often limited by label inconsistency and limited diver-
sity in the training set which can affect the model performance. According to
[66], this is because the unsupervised embedding algorithms are not suitable
for the clustering task. For example, the algorithms used with the method
CACTUs, such as InfoGAN [067], BiGAN [68], ACAI [69], or DeepCluster
[70], were originally designed for the pre-training phase of the model only to
refine the features extracted in the downstream tasks. Table 3.3 presents the
baseline performances of unsupervised embedding algorithms trained from
scratch on the minilmageNet dataset. The best overall accuracy in the eval-
uation set reached the 50% level with the UFLST method [18]. The results
are averaged over 1000 downstream tasks.
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Figure 3.3: The four baselines from the view of sampling. (a) Label-based
baseline, which is a supervised baseline. Since the images have category
labels, two of the four sampled images belong to the same category. (b)
Random-based baseline, in which four images are randomly sampled, and
the label of tasks is randomly determined. (c) CSS-based baseline, in which
three images are randomly sampled, and then one of the images is selected
to obtain another view through data augmentation. (d) Clustering-based
baseline, in which first all images are divided into multiple clusters by a
clustering algorithm, and then four images are selected with cluster ids as
labels. From “Unsupervised few-shot image classification by learning features
into clustering space”, by S. Li et. al, Conference, Tel Aviv, Israel, October
23, 2022, Springer.

Algorithm 1-shot 9-shots
BiGAN k-Nearest Neighbors [63] 25.56% 31.10%
BiGAN Linear Classifier [08] 27.08% 33.91%
DeepCluster k-Nearest Neighbors [70] 28.90% 42.25%
DeepCluster Linear Classifier [70] 29.44% 39.79%
InfoGAN [67] 29.81% 36.47%
UFLST [45] 37.75% 50.95%

Table 3.3: Baseline performances for 5-ways Few-Shot Classification tasks
with models trained from scratch on pseudo-labeled data. The data is
pseudo-labeled using a clustering algorithm on the minilmageNet dataset.
From “Unsupervised few-shot learning via self-supervised training”, by Z. Ji
et. al, 2019, arXiv.

3.3 Summary

This section provided an overview of the work related to a recurring prob-
lem in ecoacoustic projects, namely: the lack of large labeled datasets. For
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this purpose, the Meta-Learning framework was reviewed, with a particu-
lar emphasis on metric-learning based algorithms to introduce the concept
of episodic learning as well as the Few-Shot Image Classification problem.
Moreover, the Unsupervised Meta-Learning (UML) framework was intro-
duced as an interesting alternative to tackle the problems related to the lack
of large labeled datasets in the context of ecoacoustics with DL. Specifically,
the clustering-based methods have been identified as a relevant solution to
train Meta-Learning algorithms using pseudo-labeled data. This makes it
possible to improve the performance of a classifier even though there is a
lack of labeled data available. Finally, although the use of unsupervised
methods in the UML framework is generally considered to tackle problems
related to Few-Shot Image Classification tasks, the following sections will
evaluate their ability to improve the quality of the clustering of unlabeled
data.
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Chapter 4

Material & Methods

In this section, our proposed framework is introduced in order to classify
rare tropical bird species with limited annotated data available and facilitate
the work of ecoacousticians for the management of acoustic data and the
identification of potential new taxa. In the context of ecoacoustics, more
and more projects are interested in studying animal populations in developing
countries or in locations/regions that are difficult to access. However, most
of the data present in current bird databases is mainly concentrated in the
United-States and Western Europe [6]. Therefore, the development of an
ecoacoustic project outside these regions often requires the contribution of
qualified field experts to label data that is sometimes unknown. For this
purpose, material and methods are presented to facilitate the identification
of rare bird species in tropical environments. This includes the creation of
a unique dataset, composed of acoustic units of nocturnal and crepuscular
bird species living in the American tropics collected and segmented from the
Xeno-Canto database!. This serves as a basis to (i) define an efficient method
for the Few-Shot Image Classification problem by comparing and evaluating
different pre-existing methods allowing us to tackle the problems related to
the lack of data, and (ii) review a method aiming at gradually improving
the quality of the clustering using an iterative learning process, in order to
facilitate the labeling of unlabeled data.

4.1 Darksound Dataset

The Darksound dataset is built as an open-source and code-based dataset
for the evaluation of Meta-Learning algorithms in the context of ecoacous-
tics with DL. The dataset is easily accessible and downloadable with the

lhttps://xeno-canto.org/

41


https://xeno-canto.org/

following link: https://www.kaggle.com/datasets/joachipo/darksound.
The particularity of this dataset is that it is composed of acoustic units,
also called Regions of Interest (ROIs), of 290 nocturnal and crepuscular bird
species living in tropical environments. All the ROIs in the Darksound data
set have a sampling rate of 48 kHz and are faded in and out to avoid aliasing
effects due to window effects. Moreover, each ROI is padded to a maximum
duration of 3 seconds to obtain input images of equal size for training the
model.

4.1.1 Data Acquisition

The data used for this work include soundscape recordings collected and seg-
mented from the Xeno-Canto database, a collaborative project dedicated to
sharing bird sounds around the world. More specifically, the Xeno Canto web
Application Programming Interface (API v2)? is used to build the dataset.
According to the API documentation, the data can be used without restric-
tion, with a limit of 10 queries per second. The data is accessed by send-
ing query parameters that return a JSON object containing details about
the records found with the given query. An explanatory notebook present-
ing the different steps necessary to acquire the data in tropical environ-
ments is available on this link: https://github.com/joachimpoutaraud/
darksound/blob/master/notebooks/01-builing_dataset.ipynb. This can
be easily re-appropriated for the creation of new data sets involving new en-
vironments.

Bambird

Data acquisition was facilitated by the use of the Bambird package® devel-
oped with the Python programming language by the EcoAcoustics Research
(EAR)* team of the Muséum National d’Histoire Naturelle (MNHN) in Paris.
This package allows the use of a data-centric function that automatically seg-
ments audio recordings before assigning a pseudo-label to each unsupervised
segmented audio sample [71]. the function used is defined in three parts,
namely:

1. Time-frequency acoustic unit segmentation

2. Feature computation for each acoustic unit

2https://xeno-canto.org/explore/api
3https://github.com/ear-team/bambird
‘https://ear.cnrs.fr
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3. Unsupervised classification of each acoustic unit as bird song or noise
with a clustering algorithm

More precisely, the first step consists in segmenting the data from a spectro-
gram by delimiting Regions Of Interest (ROIs) around the salient sounds.
The delimitation of the ROIs is performed using a regional growth segmen-
tation method known as binarization by hysteresis thresholds [72]. Then,
vectors of features are extracted for each ROI by convolving the ROIs with
a series of 2D Gabor filters to extract the spectro-temporal characteristics
according to the selected resolution [18, 71]. This allows the clustering of
the extracted features for each bird species entered in the Xeno-Canto query,
using the DBSCAN [73] clustering algorithm. The biggest cluster of ROIs
is finally selected for each species and represents the pseudo-labels of the
species in question. An overview of the complete labeling function design
process is illustrated in Figure 4.1. Results corresponding to the evaluation
of the Bambird workflow are presented in Appendix A.

(1 ) @)

strong
label

Metrics

Figure 4.1: Bambird workflow: after collecting N weakly labelled audio
recordings of a focal species from the Xeno-Canto database, labeling function
workflow consists of (1) segmenting each audio recording into time-frequency
acoustic units, (2) calculating 49 features (2D wavelet coefficients (n = 48)
+ frequency centroid (n = 1)) of each acoustic unit, (3) pseudo-labeling of
all acoustic units into signal (bird song belonging to the focal species) or
noise (everything else) with DBSCAN. In parallel, an expert can annotate
all acoustic units (1b) to calculate the metric to evaluate the performance
of the labeling function. From “Unsupervised classification to improve the
quality of a bird song recording dataset”, by Michaud et. al, Ecological In-
formatics, 2023, Elsevier.
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Training set

The training set included 249 species of tropical birds vocalizing at night,
which were automatically chosen. This included an initial number of 2,638
audio recordings requested from the Xeno-Canto database. The audio record-
ings were requested according to five parameters: (i) the audio quality, which
was strictly greater than C with quality ratings ranging from A (highest qual-
ity) to E (lowest quality) in the advanced queries parameters of the Xeno-
Canto database, (ii) the duration, which corresponded to a maximum of 120
seconds, (iii) the time of day at which bird species were recorded to down-
load only species vocalizing at night, and (iv) the geographic coordinates
that surrounded the Equator in America, so that the difference between day-
time hours and night-time hours remained fairly constant throughout the
year. The geographical coordinates were defined according to the latitude
of the Tropics, with the Tropic of Cancer in the Northern Hemisphere at
23°26’10.6”N and the Tropic of Capricorn in the Southern Hemisphere at
23°26’10.6”S. Average night-time hours were established according to the
geographical coordinates of the Tropics in America (minimum latitude: -
23.439, minimum longitude: -92.734, maximum latitude: 23.439, maximum
longitude: -34.789). This made it possible to define the average sunrise
(04:00) and sunset (19:00) times of the year by using the Norwegian website
timeanddate® which allowed one to retrieve time and time zone information
from anywhere in the world. An overview of the geographical distribution
of all the recordings in the Darksound data set is presented in Figure 4.2.
The segmentation of the audio recordings was performed using the Bambird
package with a frequency band between 250 and 2500 Hz corresponding to
the frequency bands of the target species to obtain a number N of ROIs from
which were features extracted. Particular attention was taken to removing
species with less than 10 ROIs, as well as ensuring that no target species
from the validation and test sets were found in the training set. Finally, a
clustering of the extracted features was performed for each species to define
several clusters on which the biggest one has been kept. As a result, each
query species of the training set was represented by the number of ROIs
found in the biggest cluster of its class. This resulted in the recovery of 249
species with a total number of 4,149 pseudo-labeled ROIs for the training
set. Regarding the species requested for the training set, it is important
to note that some of them could potentially be associated with other bird
species or groups of animals (e.g. anurans or insects) if it turned out that the
majority of the ROIs collected during the segmentation phase corresponded
to a different animal species than the one specified in the request. In this

Shttps://www.timeanddate.com/
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Figure 4.2: Geographical distribution of the Darksound training set in the
Tropics. The training set includes 249 species of tropical birds vocalizing
at night for an initial number of 2,638 audio recordings requested from the
Xeno-Canto database.

sense, the content of each class in the training set depended solely on the
pseudo-labeling of the clustering algorithm corresponding to step 3 of the
Bambird package. Meaning that, the training set was not labeled in a super-
vised manner.

Data oversampling was performed for each class of the training set which
had a total number of ROIs less than 50. This is so that each class had a
number of ROIs equal to 50. This avoided problems related to data imbalance
and enhanced the training phase of the model. To do this, we artificially
augmented the data using the Python package audiomentations® and applied
the following waveform transformations:

1. AddGaussianSNR (add Gaussian noise to the input)

2. AirAbsorption (a lowpass-like filterbank with variable octave attenua-
tion that simulates attenuation of high frequencies due to air absorp-
tion)

3. Time-Stretch (change the speed or duration of the signal without chang-
ing the pitch)

Shttps://iver56.github.io/audiomentations/
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4. Pitch-Shift (pitch shift the sound up or down without changing the
tempo)

5. Trim (trim leading and trailing silence from an audio signal)

Regarding the Pitch-Shift transformation, special attention was paid to the
average values of the spectral centroid of each class. Specifically, the mini-
mum and maximum average spectral centroid values were calculated on the
biggest cluster of each class to define the range of values allowed for the pitch
transformation. This ensures that the meaning of the data elements was not
changed. Regarding the Time-Stretch transformation, the rate of change of
the total duration of the signal was changed by 25% to slow down or speed
up the audio without changing the pitch. For the rest of the transformations,
the default parameters of the package were used.

Validation and Test Sets

The validation and test sets includes the vocalizations (i.e. ROIs) of 41 other
nocturnal and crepuscular tropical bird species that were manually selected.
The different species with their associated number of ROIs are presented in
Table 4.1. This includes a total number of 1,242 ROIs with 20 classes and
618 ROIs for the validation set, and 21 classes and 632 ROIs for the test
set. The target species include nocturnal raptors and tinamous, respectively
“umbrella” and “sentinel” species of the Amazonian forest. The selection is
made on the whole American continent to retrieve a maximum of data given
their rarity. Figure 4.3 shows a bar chart with the number of ROIs obtained
per target species.
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Figure 4.3: Total number of the nocturnal and crepuscular species in the val-
idation and test sets before augmentation. The corresponding abbreviations
of the species are filled in Table 4.1.
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Species Abbreviation Family Number of ROIs

Hydropsalis climacocerca HYDCLI Caprimulgidae 3
Lurocalis semitorquatus LUCSEM Caprimulgidae 32
Nyctidromus albicollis NYCALB Caprimulgidae 50
Nyctipolus nigrescens NYCNIG Caprimulgidae 18
Chordeiles acutipennis CHOACU Caprimulgidae 17
Chordeiles nacunda CHONAC Caprimulgidae 7
Nyctiprogne leucopyga NYCLEU Caprimulgidae 65
Daptrius ater DAPATE Falconidae 25
Falco femoralis FALFEM Falconidae 23
Falco rufigularis FALRUF Falconidae 12
Ibycter americanus IBYAME Falconidae 47
Micrastur ruficollis MICRUF Falconidae 92
Micrastur semitorquatus MICSEM Falconidae 53
Milvago chimachima MILCHI Falconidae 15
Caracara plancus CARPLA Falconidae 10
Falco columbarius FALCOL Falconidae 17
Falco deiroleucus FALDEI Falconidae 2
Falco peregrinus FALPER Falconidae 10
Herpetotheres cachinnans HERCAC Falconidae 135
Micrastur gilvicollis MICGIL Falconidae 54
Micrastur mirandollei MICMIR Falconidae 18
Nyctibius aethereus NYCAET Nyctibiidae 6
Nyctibius grandis NYCGRA Nyctibiidae 23
Nyctibius griseus NYCGRI Nyctibiidae 9
Nyctibius leucopterus NYCLEU Nyctibiidae 5
Asio flammeus ASIFLA Strigidae 20
Glaucidium hardyi GLAHAR Strigidae 24
Megascops roraimae MEGROR Strigidae 13
Pulsatriz perspicillata PULPER Strigidae 11
Striz huhula STRHUH Strigidae 62
Strix virgata STRVIR Strigidae 46
Athene cunicularia ATHCUN Strigidae 24
Bubo virginianus BUBVIR Strigidae 19
Lophostrix cristata LOPCRI Strigidae 44
Megascops choliba MEGCHO Strigidae 9
Megascops watsonii MEGWAT Strigidae 26
Crypturellus cinereus CRYCIN Tinamidae 45
Crypturellus sout CRYSOU Tinamidae 19
Crypturellus variegatus CRYVAR Tinamidae 8
Crypturellus brevirostris CRYBRE Tinamidae 47
Tinamus major TINMAJ Tinamidae 7

Table 4.1: Number of Region Of Interests (ROIs) of nocturnal and crepuscu-
lar tropical bird species present in the validation and test sets of the Dark-
sound data set. This includes five bird families with a total number of 1,242
ROIs with 20 classes and 618 ROIs for the validation set, and 21 classes and
632 ROIs for the test set.

All the ROIs of the validation and test sets have been labeled by a mem-
ber of the EAR team from the MNHN. Some of the classes had a num-
ber of ROIs lower than 6 (Hydropsalis climacocerca, Falco deiroleucus, and
Nyctibius leucopterus). Given that the performance of the Meta-Learning
algorithms is usually evaluated in two configurations (i.e. N-way-1-shot and
N-way-5-shots), classes with less than 6 ROIs were artificially augmented to
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a minimum of 6 ROIs per class (i.e. 5 shots 4+ 1 query) to allow the compar-
ison of the performances of the algorithms. Oversampling of the data was
performed in the same manner as on the training set.

4.1.2 Data Preprocessing

Commonly, CNN such as ResNetl8 performs image processing on multi-
channel images, where each channel represents a color and each pixel consists
of three channels (usually RGB). In this thesis, a multi-channel “sound im-
age” is proposed as input data to represent how the sound energy of animal
acoustic units is communicated and manifested over time. More precisely, an
input spectrogram is decomposed in Harmonic and Percussive components,
and its Derivative is calculated to obtain a 3-channels (HPD) “sound image”
as illustrated in Figure 4.4. The HPD image is useful for representing the
sound energy characteristics of animal acoustic units and defining meaningful
features for the classification phase.

-~

"

Figure 4.4: Schematic representation of a Harmonic-Percussive-Derivative
(HPD) sound image. Left: the HPD image. Right: Harmonic component
(top), Percussive component (middle), and Derivative of the original spec-
trogram in dB (bottom).
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Harmonic-Percussive Source Separation (HPSS)

The decomposition of a spectrogram into its harmonic component and per-
cussive component has attracted much interest in related literature and can
be applied as a pre-processing step for DL classification tasks [74]. In partic-
ular, its use has been extended with the separation of the residual component
which allows to refine the separation of the harmonic and percussive com-
ponents [75]. This approach can be useful for distinguishing certain animal
vocalizations since a different species may have a more expressive call in one
of its components [76]. Thus, using this approach as a pre-processing step
on a spectrogram may allow the development of more expressive CNN inte-
gration for the classification of animal vocalizations. For example, the use of
3-channels spectrograms as input to a CNN (treated in the same way as the
channels of an RGB image), can allow the establishment of latent space rep-
resentations more representative of the type of sound components conveyed
by an animal vocalization. As a result, by applying Harmonic and Percussive
Source Separation (HPSS) with median filtering on original spectrograms in
dB [74], it is possible to isolate the Harmonic and Percussive components of
animal vocalizations to improve their visual representation.

Delta Features

Acoustic signals produced by animals can be described as a sequence of tran-
sitions between acoustic units. A common method for extracting information
about these transitions is to determine the first difference in the signal char-
acteristics, known as the delta of a feature. Delta features are commonly
used in machine learning because they are easy to compute and provide a
clear advantage over instantaneous features. In this work, the delta of an in-
put spectrogram s in dB is computed at time instant k, with the following
equation:

Ak = Sk — Sk—1- (41)

4.2 Experimental Design

This section presents the experiments conducted in this thesis and the eval-
uation criteria that are used when evaluating the models. Specifically, this
section focuses on the evaluation of Meta-Learning algorithms that are com-
pared and used to generate useful latent feature representations for data clus-
tering. For this purpose, four types of experiments are performed, namely:
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1. Comparison of the raw performance of three Meta-Learning algorithms
on the Darksound dataset.

2. Comparison of episodic training against classical training for fine-tuning
Meta-Learning algorithms to determine the best training method for
Few-Shot Image Classification tasks.

3. Optimization of Meta-Learning algorithms and evaluation of their abil-
ity to classify classes that were not seen during training.

4. Extraction of Meta-embeddings to cluster the data in the latent space,
and refine the clusters by iteratively fine-tuning Meta-Learning algo-
rithms.

4.2.1 Meta-Learning Algorithms

As mentioned earlier, Meta-Learning algorithms are generally labeled as ei-
ther metric-learning based or gradient-based meta-learner. In this thesis, spe-
cific emphasis is placed on metric-learning based algorithms that are used for
performing the experiments. Architectures of the metric-learning based algo-
rithms have been adapted from the EasyFSL" package developed by Etienne
Bennequin and implemented using the Python library Pytorch®, a Torch-
based machine learning framework. The code of the model architectures is
available at the following address: https://github.com/joachimpoutaraud/
darksound. The implementation is based on the comparison of three com-
monly used Meta-Learning algorithms for the Few-Shot Image Classification
of ROIs that have been segmented using the Bambird package. For each
model, Transfer Learning (TL) is used to benefit from the learning of a pre-
trained model on image classification. This allows us to tackle the problem
related to the large amount of training data that Deep Neural Networks
(DNN) usually require to achieve satisfactory performance. Specifically, a
ResNet18 model pre-trained on the ImageNet database is used as a back-
bone. The ImageNet database contains 1,000 object classes with 1281,167
training images, 50,000 validation images, and 100,000 test images [77]. Al-
though this database does not contain spectrograms, its use in the context of
ecoacoustics with DL is common and has allowed the learning of a variety of
image features useful for spectrogram classification [78, 79]. Fully Connected
(FC) layers of the ResNetl8 are removed from the model implementation
and replaced with a Meta-Learning algorithm. Few-Shot Image Classifica-
tion is then performed by learning a measure on the Darksound dataset. To

"https://github.com/sicara/easy-few-shot-learning
8https://pytorch.org/
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do this, the query images of a new class are classified based on the learning
of a measure that computes distances to the support images. In DL, the
distance measure and the feature integration are often learned separately
to isolate as much of the non-linear structure of the data as possible. Ac-
cording to [30], this allows for the generation of more discriminative feature
representations. For each model, the last layer is composed of several nodes
corresponding to the number of target species (N-way). The probability
distribution is then calculated using the logarithm of the Softmax activa-
tion function which allows for strongly penalizing the model when it fails to
predict a correct class. As a result, the model produces a vector of N-way
scores, where the value closest to 1 corresponds to the species predicted by
the model. In the following, details of the Meta “metric-learning” algorithms
are introduced. This includes algorithms that are chosen based on the as-
pect they improve, namely: 1) learning feature embeddings, 2) learning class
representations, and 3) learning distance or similarity measures.

Matching Networks: Learning Feature Embeddings

Matching Networks are considered the first metric learning algorithm de-
signed to solve Few-Shot Image Classification problems [9]. Their operation
is based on methods of learning to integrate high-dimensional features into
a low-dimensional space so that discriminative features can be extracted to
perform a generalized form of nearest neighbor classification. According to
[31], the label of the one-shot coded query set y is defined as the weighted
sum of all labels in the one-shot coded support set {ynx}) 7

n=1 k=1

To calculate the similarity d[x,x, %], each example from the support set X,
goes through a CNN f[e] that produces a latent space representation, and
each example from the query set x goes through another CNN g[e] that pro-
duces another representation. A schematic representation of the architecture
of the Matching Networks is illustrated in Figure 4.5. Cosine similarity is
then calculated between the different latent space representations with the
following equation:
" gl
|| fhxniell] - [ g1

~

d[Xuk, X]

(4.3)
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Figure 4.5: Matching Networks architecture. From “Matching Networks for
One Shot Learning”, by O. Vinyals et. al, 2017, arXiv

The result is normalized with the logarithm of the Softmax function to pro-
duce positive similarities whose sum is equal to one.

exp|d[Xk, X]]
Sy Sy expldxur, X]]

That way, the model is trained in an end-to-end fashion by calculating the
Cross-Entropy loss on the actual labels and the predicted labels. The loss
is finally back-propagated through CNN so that it can learn from its errors.
Nevertheless, the disadvantage of Matching Networks is that they are not ro-
bust to data imbalance [31]. As a result, the more support examples there are
for some classes, the more classes with frequent training data may dominate.

(4.4)

a[f(nka X] =

Prototypical Networks: Learning Class Representations

To overcome the problem of data imbalance between classes, Prototypical
Networks were introduced in [10]. These networks use class prototypes that
serve as reference vectors for each class ¢ € C. The vectors v, are thus
constructed by taking the simple or weighted average of the latent space
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representations from the examples of the class, as illustrated in Figure 4.6.

vc:|;c| > folx) (4.5)

(%i,Y:)E€Se

(a) Few-shot (b) Zero-shot

Figure 4.6: Prototypical networks in the Few-shot and Zero-shot scenarios.
Left: Few-shot prototypes c¢; represents the mean of embedded support ex-
amples for each class. Right: Zero-shot prototypes ¢, are produced by embed-
ding class metadata vg. From “Prototypical networks for few-shot learning”,
by J. Snell et. al, 2017, Advances in Neural Information Processing Systems
30.

Prototypical Networks thus allow to learn the latent representation or the
prototype of each class using episodic training to minimize the Cross-Entropy
loss. To do this, the similarity is computed at each episode as the negative
multiple of the squared Euclidean distance between each prototype and the
query embedding. Furthermore, [10] mentions that the higher the number of
classes in the support set, the better the performance.

Relation Networks: Learning Distance/Similarity Measures

Unlike Matching Networks and Prototypical Networks, which both use a dis-
tance metric defined in advance to compare the latent space representations
produced by the CNN, Relation Networks [59] learn their own distance metric
to predict the relationship/similarity of embeddings using a CNN classifier
ge, as illustrated in Figure 4.7. Apart from that, the approach is quite similar
to that of Prototypical Networks since the simple or weighted average of the
embeddings is performed for each class of the support set to form a prototype
and thus alleviate data imbalance problems. The relationship score between
a pair of inputs x; and x;, is calculated as follows r;; = g4([x;,x;]) where [., ]
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Figure 4.7: Relation Network architecture for a 5-way 1-shot problem with
one query example. From “Learning to Compare: Relation Network for Few-
Shot Learning”, by F. Sung et. al, 2018, Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

represents the concatenation of each embedding with the query embedding.
A relationship score is finally obtained between 0 and 1. Predictions are
obtained by comparing the relation scores with the query labels that are en-
coded as one-hot vectors, where 1 indicates that the query example belongs
to this class prototype.

4.2.2 Meta Embedded Clustering

Recent works in the UML framework used clustering-based unsupervised
methods as an interesting way to train a model on pseudo-labeled data [63,
18, 66]. According to [18], clustering-based unsupervised methods can im-
prove the organization of data points for the model to discover “the un-
derlying structure of data gradually”. Based on this observation, the Meta
Embedded Clustering (MEC) method is proposed as an alternative to the
DEC method introduced in subsection 2.3.2. MEC method is performed on
the Darksound dataset to refine the clusters of the 21 target species that
are present in the test set. The goal is to determine the final number of
clusters in an unsupervised way to facilitate the identification and visualiza-
tion of rare tropical bird species in unlabeled datasets. The MEC method
is organized in two phases with parameter initialization of the model, and
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parameter optimization for clustering the data using KL divergence loss (see
equation 2.5). That way, it is possible to improve the quality of data cluster-
ing on unlabeled data to evaluate the capacity of the method to learn “the
underlying structure of data gradually” and determine the number of clus-
ters. For this purpose, (1) the data is passed through the initialized model to
(2) get an initial estimate of the non-linear mappings and avoid the “curse of
dimensionality” [12]. Then, (3) the clustering algorithm is performed on the
latent space to (4) build a pseudo-labeled dataset. Eventually, (5) the model
is fine-tuned on the pseudo-labeled dataset for n episodic tasks. This process
is repeated for 20 iterations to refine the initial clusters. An illustration of
the MEC method is presented in Figure 4.8.

Input data

||ﬁ_r|i iteration )
v

(5)

Episodic tasks Raw data

Meta-embeddings

y

=

e

Clustering

Pseudo-labeled
dataset

Figure 4.8: Meta Embedded Clustering (MEC) method. (1) Data is passed
through the initialized model. (2) Initial estimate of the non-linear mappings
are computed to avoid the curse of dimensionality. (3) Clustering algorithm
is performed on the latent space. (4) Pseudo-labeled dataset is built from
the clustering algorithm’s predictions. (5) Model is fine-tuned on the pseudo-
labeled dataset for n episodic tasks.
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4.2.3 Experiments

Comparison of the raw performance of three Meta-Learning algo-
rithms on the Darksound data set

For this first experiment, the performance of the Meta-Learning algorithms
is evaluated and compared with input images (i.e. spectrograms) that have
been pre-processed in different ways (i.e. with 3-channels (HPD) “sound im-
ages”). To do this, a pre-trained feature extractor (ResNet18) is used. Fully
Connected (FC) layers of the network are removed and replaced by a Meta-
Learning algorithm placed on the network top. When using the Matching and
the Prototypical Networks, the probability distribution is computed using the
logarithm of the Softmax activation function, and the Cross-Entropy loss is
used to measure the distance from the ground truth values (see equation 2.3).
The goal is here to minimize the loss to optimize the model, where a perfect
model has a Cross-Entropy loss of 0. Regarding the Relation Networks, the
Mean Squared Error (MSE) loss function is used with no activation function
since the CNN focuses on predicting relationship scores which is more like a
regression than a classification problem [I1]. MSE loss function is defined in
equation 4.6, where x and y are D dimensional vectors, and z; denotes the
value on the ith dimension of x.

D

Lyvse = Z(% - yi)2 (4'6)

=1

Adam optimizer [32] is chosen for adjusting the weights of the models based
on the moving average of gradients calculated in the current and previous
epochs. This optimizer is commonly used in DL for multi-class classification
tasks. Implementation of the Adam optimization method is performed with
a default learning rate of 0.0001 and weight decay of 0. Preliminary training
on the Darksound dataset is done using the three aforementioned models to
select the best-performing model. Each model is trained for 20 epochs on
various N-way-K-shot tasks, where N = {5,20} and K = {1,5}. A sched-
uler is used for reducing the learning rate by a default factor of 0.1 when an
indicator has stopped improving after 5 epochs. In addition, an early stop is
applied if the performance of the model has not improved after 10 epochs.

Evaluation of the performances of the model is performed using the con-
fusion matrix to produce four observations with (i) the True Positive (TP),
indicating that the observation is predicted to be positive and the prediction
is true, (ii) the True Negative (TN) indicating that the observation is pre-
dicted to be negative and the prediction is true, (iii) the False Positive (FP),
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indicating that the observation is predicted to be positive, but the prediction
is false, and (iv) the False Negative (FIN), indicating that the observation is
predicted to be negative, but the prediction is false. These observations are
then used to calculate the accuracy of the classification model as defined in
equation 4.7.

Performance metrics

Accuracy describes the performance of a model on positive and negative
samples in a symmetric way. It measures the rate of correct predictions with
the following equation:

TP+ TN
TP+TN+ FP+ FN

(4.7)

Accuracy =

Comparison of episodic training against classical training for fine-
tuning Meta-Learning algorithms to determine the best training
method for Few-Shot Image Classification tasks

For this second experiment, comparison of episodic training against classi-
cal training is performed for Few-Shot Image Classification tasks. Classical
training of models requires the set of the batch size that can have a decisive
influence on the results [¢3]. Thus, for a fair comparison in the case of clas-
sical training, the batch size is determined according to the episodic training
parameters. For example, if a model is trained on an N-way-K-shot task,
the batch size is determined according to the number of N-ways times the
total number of images per class K + @), where K corresponds to the number
of support samples per class and @) to the number of query samples per class.
As a result, the batch size for a 5-ways-5-shots task with 1 query sample per
class is equal to 5 x (54 1) = 30. For each comparison, experiments are
conducted with a model fine-tuned for 20 epochs on the Darksound training
set. The model is optimized using the Adam optimizer initialized with a de-
fault learning rate of 0.0001 and weight decay of 0. A scheduler is reducing
the learning rate by a default factor of 0.1 when the training loss stopped
improving after 5 epochs. Moreover, an early stop is applied if the validation
accuracy of the model has not improved after 10 epochs. The architecture of
the model is composed of a ResNet18 pre-trained on ImageNet from which
the FC layers have been removed and replaced with a Meta-Learning algo-
rithm.
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For practicalities, the algorithm that achieved the best performances in
the first experiment is used (i.e. Matching Networks). Matching Networks ar-
chitecture is composed of a bidirectional Long-Short Term Memory (LSTM)
[341] that is used to encode the support and the query sets as mentioned
in the original paper [9]. The distance between all query images and nor-
malized support images is on the other hand computed using the matrix of
cosine similarities, and compute the query log probabilities based on the co-
sine similarity to support instances and support labels. Evaluation of the
performances of the model also uses the confusion matrix with accuracy.

Optimization of Meta-Learning algorithms and evaluation of their
ability to classify classes that were not seen during training

For this third experiment, the best-training method determined in the second
experiment is used to fine-tune the best-performing Meta-Learning algorithm
(i.e. Matching Networks) on pseudo-labeled data to evaluate its performances
to correctly classify classes on the Darksound test set. Hyper-parameters of
the model are optimized using the Python package optuna® for 100 trials to
automatically optimize the model by comparing three different optimizers
(Adam, RMSprop, SGD) methods with values of learning rate ranging from
0.00001 to 0.1. On the other hand, the Cross-Entropy loss is computed
between the training data and the model’s predictions as the cost function.
To establish the performances of the model in a more thoroughly, a K-Fold
Cross Validation is built on the Darksound dataset. This is done over 5
different folds in the shape of Few-Shot Image Classification tasks, where
the average performance of the model is calculated on 100 episodic tasks in
every fold, and the average score over all the folds corresponds to a more
generic overview of the final performances of the model. Evaluation of the
performances of the model also uses the confusion matrix with accuracy and
additional performance metrics such as Precision, Recall, and F-1 score.

Performances metrics

Precision is used to evaluate the rate of correct predictions among the positive
predictions. It is used to measure the capacity of the model not to make an
error during a positive prediction and is calculated as follows:

TP
Precision = ——— 4.
recision TP EP (4.8)

https://optuna.org/
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Recall is used to evaluate the rate of all the positive ROIs detected by the
model. It is calculated as follows:

TP
Recall = ———— 4.9
T TPYFN (4.9)
F-1 Score measures the ability of the model to predict positive ROIs, both in
terms of Precision and Recall. It corresponds to the harmonic mean of these
indicators and is calculated as follows:

Pl 2 x Precision X Recall B 2x TP
"~ Precision + Recall ~ 2x TP+ FP+ FN

(4.10)

Extraction of Meta-embeddings to cluster the data in the latent
space and refine the clusters by fine-tuning Meta-Learning algo-
rithms in an iterative way

For this last experiment, a comparison of the latent space representations
(i.e. embeddings) extracted from the baseline model and the model fine-
tuned on pseudo-labeled data are evaluated for their capacity to improve the
quality of the clustering. Latent space representations correspond to vectors
of 512 dimensions that are then normalized between 0 and 1 using the Min-
MaxScaler class from the pre-processing module of scikit-learn'®. Finally, the
normalized vectors are clustered using a density-based clustering algorithm.

Density-based algorithms are useful for merging areas with a high den-
sity of examples into clusters. These algorithms have the advantage of not
having to specify the number of clusters and can handle noise while keeping
it out of any cluster (e.g. DBSCAN, OPTICS). However, density-based algo-
rithms generally have difficulty with high-dimensional and variable-density
data. Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [¢5] algorithm has recently allowed tackling this kind of
problem by running the DBSCAN algorithm on different epsilon (¢) values.
The values are evaluated in a hierarchical way which allows us to find a clus-
tering with better stability on e. In this thesis, the HDBSCAN Clustering
library!'! is used to find clusters of different densities with the default param-
eters. For each iteration, outliers detected by the HDBSCAN algorithm are
removed to construct Few-Shot Image Classification tasks using the labels

Ohttps://scikit-learn.org/
Hhttps://hdbscan.readthedocs.io/en/latest/index.html
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of the predicted clusters. The number of clusters found by HDBSCAN rep-
resents the number of N-ways that are used for fine-tuning the model. The
number of K-shot and ()-query samples is, on the other hand, determined by
the minimum number of points allowed per cluster. Baseline performances of
unsupervised embedding algorithms in the UML framework have shown that
accuracy increases as the number of shots is increased (see subsection 3.2.1).
Therefore, the min_cluster_size parameter of the HDBSCAN algorithm is set
to 6 to allow the construction of Few-Shot Image Classification with a mini-
mum of 5-shots, where K =5 and ) = 1 because K + @) need to be inferior
or equal to the min_cluster_size. The model is fine-tuned for 20 epochs for
each iteration to avoid over-fitting and clustering performance metrics are
computed.

The MEC method is experimented with Meta-embeddings extracted from
models that have been fine-tuned with different numbers of ways (i.e. 5-ways
and 20-ways) to see if it can have an impact on the final number of clusters
found. The MEC method is also experimented by artificially augmenting
the number of samples found in the clusters by 50. For this purpose, ini-
tial waveform transformations introduced in subsection 4.1.1 are used except
Pitch-Shift as it is assumed that there is not enough data in the clusters
to find the averaged frequency of the acoustic units. The MEC method is
finally evaluated by computing clustering performance metrics over the itera-
tions and visualizing the quality of the clustering by reducing the dimensions
of the feature vectors to two. For this purpose, the Uniform Manifold Ap-
proximation and Projection for Dimension Reduction'? (UMAP) algorithm
is used. An overview of the behaviors of the proposed framework is presented
in Figure 4.9.

Clustering performance metrics

Clustering-based unsupervised methods can be evaluated using various per-
formance metrics. In the field of Deep Clustering [30], three standard unsu-
pervised evaluation metrics are generally used to indicate the average correct
classification rate of clustering samples: Accuracy (ACC), Normalized Mu-
tual Information (NMI), and Adjusted Rand Index (ARI). Regarding the
validation of the quality of the clustering, the Density-Based Clustering Val-
idation (DBCV) [87] metric is used for interpreting and validating the relative
density connection between the clusters.

2https://umap-learn.readthedocs.io/en/latest/
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Figure 4.9: Visual comparison of the clustering quality in two dimensions
using the UMAP algorithm. The clustering of the data is performed on the
latent space with two different types of embedding using the HDBSCAN al-
gorithm. Top: Baseline embeddings (ResNet18). Bottom: Meta-embeddings
(Matching Networks) fine-tuned and optimized on the Darksound data set.
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Accuracy for Clustering (ACC)

ACC differs from the standard classification accuracy metric because unsu-
pervised clustering algorithms can potentially use a different cluster label
than the actual ground truth label to represent the same cluster. Conse-
quently, it is required to use a mapping m to represent the set of all possible
permutations between the cluster labels and ground truth labels. In this
experiment, ACC is used to find all possible one-to-one mappings m between
the ground truth labels y and the cluster labels ¢, as defined in the equation
4.11. .

ACC(y, ¢) = max,, > iz Hyi = m(a)} (4.11)

n

Normalized Mutual Information (NMI)

Recent works used the Normalized Mutual Information (NMI) metric for
assessing the performance of a clustering model in the UML framework [18,

|. In this experiment, NMI metric is computed after each iteration using
the library scikit-learn to account for the entropy reduction of class labels
based on the labels associated with the clusters. NMI score ranges from 0
to 1, where a 1 stands for the perfect alignment between two clusters. Note
that the NMI score is independent of the permutation of labeling orders.
The NMI score between clusters X and Y is defined in the equation 4.12,
where I() corresponds to the Mutual Information metric and H() the entropy
metric.

I(X,Y)

NMI(X,Y) = AORT)

(4.12)

Adjusted Rand Index (ARI)

ARI metric is also computed after each iteration using the library scikit-learn
to measure the similarity between clusters, although ignoring permutations.
Compared to the Rand Index (RI) score, the ARI score is adjusted for the
number of samples and the number of clusters. It is defined in equation 4.13.

RI — E(RI)

ARL= max(RI) — E(RI)

(4.13)

As for the NMI score, a perfect ARI labeling is scored 1.0. However, the ARI
score ranges from -1 to 1, where a value of 0 indicates random agreement
and a value of -1 shows complete disagreement.
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Density-Based Clustering Validation (DBCYV)

To evaluate clustering in an unsupervised way (i.e. without using ground
truth labels), it is common to use objective metrics to measure the distance
or cohesion between the clusters. However, most of the metrics or indexes
used for this kind of task (e.g. Silhouette score) do not take noise into ac-
count and are therefore inappropriate for measuring density-based clustering
techniques (i.e. HDBSCAN). To tackle this problem, the quality of clustering
is validated using a Python implementation of DBCV'? as this metric has the
advantage of taking noise into account and capturing the shape property of
clusters through densities and not distances. The DBCV metric corresponds
to the weighted average of the values of the “Validity Index” of all the clus-
ters in C, where C' = {C;},1 < i < [. The DBCV is defined in equation
4.14.

|Cil
O]

DBCV(C) = i Ve (C) (4.14)

DBCYV score ranges from -1 to 1, the closer the value is to 1, the better the
quality of the density-based clustering.

13https://github.com/christopherjenness/DBCV
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Chapter 5

Results & Discussion

In this chapter, the results including the comparison of performances of Meta-
Learning algorithms and training methods are first introduced. Moreover, the
results related to the classification performances of optimized Meta-Learning
algorithms on the Darksound dataset, as well as the clustering performances
of the MEC method are presented. In the second step, the challenges related
to the Few-Shot Image Classification and the clustering of rare tropical bird
species are discussed, notably the environmental considerations regarding the
computational resources needed in ecoacoustics with DL and some future
work propositions related to our research.

5.1 Results

5.1.1 Meta-Learning Algorithms

Table 5.1 presents a comparison of the raw performances of the three Meta-
Learning algorithms used in this thesis, namely: Matching Networks [9],
Prototypical Networks [10], and Relation Networks [59]. Baseline models
were compared to models that were fine-tuned on the Darksound training set
using episodic training. Results show that fine-tuning a model on a pseudo-
labeled dataset allows, in all cases, to improve the performance of the model.
This has the advantage to tackle a recurring problem in ecoacoustic projects
that is associated with the lack of large labeled datasets. On the other hand,
Matching Networks was identified as the best-performing model because it
achieved the best results in almost every Few-Shot Image Classification task.
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5-ways Acc. 20-ways Acc.

Algorithm 1-shot d-shots  1-shot 5-shots
Matching (baseline) 68.56%  84.30%  45.74%  65.46%
Matching (fine-tune) 74.88%  87.48% 59.13% 78.98%
Prototypical (baseline) 66.12%  84.90%  42.20%  64.79%
Prototypical (fine-tune) 78.80% 86.79%  58.54%  76.99%
Relation (baseline) - - - -
Relation (fine-tune) 71.94%  84.53%  50.09%  70.63%

Table 5.1: Results for 5 and 20 ways Few-Shot Classification tasks on the
Darksound dataset. All the baseline models correspond to a pre-trained
ResNet18 with Fully Connected (FC) layers replaced with a Meta-Learning
algorithm. All the fine-tuned models correspond to the fine-tuning of baseline
models for 20 epochs, with 1 epoch corresponding to 100 episodic tasks on a
random Few-Shot batch. A scheduler is used for reducing the learning rate
by a factor of 0.1 when an indicator has stopped improving after 5 epochs.
An early stop is applied if the performance of the model has not improved
after 10 epochs. FEach evaluation result corresponds to the average accuracy
of a 5-Fold Cross Validation on 100 episodic tasks.

5.1.2 Episodic/Classical Training

Table 5.2 presents a comparison of the performances of episodic versus clas-
sical training for models that were fine-tuned for various Few-Shot Image
Classification tasks. As can be seen from the results, using episodic training
against classical training allows the model to perform better in almost all the
Few-Shot Classification tasks, although classical training performs better on
the 5-ways-5-shots task. Consequently, episodic training was preferred over
classical training for our third experiment because it improved the model
performance and potentially contributed to producing representative Meta-
embeddings for clustering bird songs in soundscape recordings.

5.1.3 Few-Shot Image Classification

Table 5.3 presents the average accuracy, precision, recall, and F-1 scores of
the models that were fine-tuned and optimized for 20-way Few-Shot Image
Classification tasks on the Darksound dataset. All the results correspond
to the average performances of the models in a 5-Fold Cross-Validation pro-
cedure, where one fold represents the average performance on 100 episodic
tasks.
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5-ways Acc. 20-ways Acc.

Training 1-shot 5-shots 1-shot 5-shots
Episodic 74.88% 87.48% 59.13% 78.98%
Classical 71.28% 91.86% 53.08% 78.33%

Table 5.2: Comparison of episodic versus classical training with Meta-
Learning algorithm (Matching Networks [9]) fine-tuned on the Darksound
dataset. The training methods are evaluated for 20 epochs with the Adam
optimizer (learning rate = 0.0001). A scheduler is applied to reduce the learn-
ing rate when the training loss stopped improving after 5 epochs, as well as
an early stop if the validation accuracy of the model has not improved after
10 epochs. In every case, the batch size used for training the model corre-
sponds to the Few-Shot Classification task (e.g. 5-ways-5-shots-1-query = 5
x (5 + 1) = 30). Each evaluation result corresponds to the average accuracy
of a 5-Fold Cross Validation on 100 episodic tasks.

20-ways-1-shot

Algorithm Accuracy Precision Recall F1-Score
Baseline 45.74% 46.77% 45.74% 45.63%
Fine-tune 59.13% 60.97% 60.03% 59.99%
Optimized 62.16% 62.90% 62.17%  61.94%
20-ways-5-shots
Algorithm Accuracy Precision Recall F1-Score
Baseline 65.46% 66.16% 65.46% 64.67%
Fine-tune 78.98% 79.30% 78.98% 78.91%
Optimized 79.90% 80.33% 79.90% 79.81%

Table 5.3: Classification performances of the Matching Networks fine-tuned
and optimized for 20-ways Few-Shot Classification tasks. All the results
correspond to the average performances of the models on the Darksound
dataset in a 5-Fold Cross-Validation procedure, where one fold represents
the average performance on 100 episodic tasks. The models were fine-tuned
using the optimizer Adam and a Cross-Entropy loss and optimized using the
Python library optuna for 100 trials to automatically optimize the model by
comparing three different optimizers methods (Adam, RMSprop, SGD) with
values of learning rate ranging from 0.00001 to 0.1.

For the 20-ways-1-shot classification task, the best trial using optuna
set the learning rate of the optimizer Adam to 0.000024 and obtained an
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average accuracy of 62.16% on the Darksound test set. This represents an
improvement of &~ 16.42% or &~ 3.03% compared to the baseline model or fine-
tune model respectively. For the 20-ways-5-shots classification task, the best
trail using optuna set the optimizer Adam with a learning rate of 0.000028
and allowed to obtain an average accuracy of 79.90% on the Darksound data
set. That is &~ 14.44% or ~ 0.92% improvement compared to the baseline
model or the fine-tuned model respectively. All in all, the Adam optimizer
gave the best results with a slightly different learning rate ~ 0.000024 — 28
compared to the default 0.0001 learning rate value. Results show that fine-
tuning and optimizing a model on pseudo-labeled data in an episodic way can
significantly improve the classification of bird songs in soundscape recordings
and tackle the problem of the Few-Shot Image Classification. Training and
validation curves for the optimization of the models are presented in Figure
5.1.
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Figure 5.1: Training and validation curves for the optimization of models
trained using the Darksound dataset. Top: Accuracy and loss for model
training and validation on a 20-ways-1-shot task. Bottom: Accuracy and
loss for model training and validation on a 20-ways-5-shots task.

5.1.4 Meta Embedded Clustering

Table 5.4 presents a comparison of the clustering performances of the baseline
embeddings versus Meta-embeddings. Meta-embeddings were extracted from
models fine-tuned on pseudo-labeled data and optimized for a 20-ways-5-
shots classification task. A visual representation of the number of clusters
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found by the HDBSCAN algorithm in the latent space is illustrated in the
Figure 5.2. Results show that using Meta-embeddings fine-tuned on pseudo-
labeled data can significantly improve the accuracy of the clustering (30.58%
vs. 67.48%) as well as allow to get closer to the actual number of clusters to
be determined (4 vs. 13 for 21 bird species to be found).

Embedding Number of clusters Accuracy NMI  ACI  DBCV

Baseline 4 30.58%  0.1201 0.0212 -0.0949
Meta 13 67.48% 0.8142 0.5813-0.2029

Table 5.4: Comparison of the baseline embeddings versus Meta-embeddings
fine-tuned on pseudo-labeled data and optimized for a 20-ways-5-shots clas-
sification task. Data clustering is performed on the latent space using the
HDBSCAN algorithm with min_cluster_size parameter set to 6. Results are
obtained by evaluating the ground truth labels to the labels predicted by
HDBSCAN using clustering performance metrics (Accuracy, NMI, ACI, and
DBCV).

Initial and final results found with the MEC method over 20 iterations
are presented in Table 5.5. Initial results of the MEC method (i.e. iteration
0) correspond to the initial clustering performances performed on the latent
space given by the best Meta-Learning model (i.e. Matching Networks) fine-
tuned and optimized on pseudo-labeled data, but without learning latent
space representations from the clusters predicted by the HDBSCAN algo-
rithm. After each iteration, the model is fine-tuned again with the pseudo-
labeled data assigned by the last clustering process. Data labeled as noise
are removed during the refining of the model. The final results of the MEC
method are calculated by taking the average number of clusters found over
the 20 iterations, where the highest DBCV score associated to the average
number of clusters determines the final accuracy of the MEC method found
at iteration n.

For this experiment, the objective was also to determine if using mod-
els that have been fine-tuned with a different number of ways (i.e. 5-ways
and 20-ways) could have an impact on the clustering performances. Results
show that when using Meta-embeddings with models fine-tuned on differ-
ent Few-Shot Image Classification tasks, different numbers of clusters were
found. Nevertheless, the difference in the number of clusters found between
the two experiments is relatively small (17 vs. 19). Even though the goal
was to find a target number of 21 species, the results show that the model
can improve its ability to determine the final number of clusters through-
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Figure 5.2: Visual representation of the number of clusters found by the
HDBSCAN algorithm in the latent space. Data clustering is performed on
two different types of embedding. Top: Baseline embeddings (ResNet18).
Bottom: Meta-embeddings (Matching Networks) fine-tuned on pseudo-

labeled data and optimized for a 20-ways-5-shots classification task.
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5-ways-5-shots
Iteration Number of clusters Accuracy NMI  ACI  DBCV

0 17 69.10%  0.8460 0.5650 -0.3547
16 19 76.60% 0.8681 0.6842-0.0920

20-ways-5-shots
Iteration Number of clusters Accuracy NMI  ACI  DBCV

0 13 67.48%  0.8142 0.5813 -0.2029
12 17 70.96%  0.8564 0.6153 -0.3547

Table 5.5: Results of the Meta Embedded Clustering (MEC) method using
Meta-embeddings pre-trained on two Few-Shot Classification tasks. Cluster-
ing performance metrics are computed at each iteration over a total number
of 20 iterations. For each iteration, Meta-embeddings are fine-tuned for 20
epochs on the predicted labels found by the HDBSCAN algorithm (i.e. with-
out outliers). Results at iteration 0 indicate the initial clustering performance
without learning the latent space representations from the predicted clusters.
Results at iteration n are determined according to the highest DBCV score
found for the average number of clusters determined over all iterations.

out iterations, as in both cases, the initial number of clusters found versus
the final number of clusters found is closer to the actual number of clusters.
Interestingly, using Meta-embeddings extracted from models that had been
fine-tuned on 5-ways-5-shots tasks compared to Meta-embeddings extracted
from models that had been fine-tuned on 20-ways-5-shots tasks allowed to
obtain better performances for the MEC method (76.60% vs. 70.96%). Re-
garding the experiment of the MEC method with data augmentation, Fig-
ure 5.3 presents the behaviors of iterative clustering with and without data
augmentation using Meta-embeddings extracted from models that had been
fine-tuned for 5-ways-5-shots classification tasks. Compared to performing
the MEC method without data augmentation, results show that augment-
ing the pseudo-labeled data did not improve the clustering accuracy nor the
clustering quality, although it did smooth out the curves, especially in terms
of determining the final number of clusters (Figure 5.3 (5)).

5.2 Discussion
This section discusses the proposed framework that is related to Few-Shot

Image Classification and bird song clustering in soundscape recordings. En-
vironmental considerations are also highlighted concerning the impact of de-
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Figure 5.3: Behaviors of Meta Embedded Clustering (MEC) over 20 itera-
tions. For each iteration, clustering performances are computed to evaluate
the clustering quality of Meta-embeddings extracted from models fine-tuned
on 5-ways-5-shots episodic tasks. (1) Accuracy (ACC) for clustering repre-
senting the best mapping between the ground truth labels and the cluster
labels (2) Density-Based Clustering Validation (DBCV) interpreting the im-
provement of clustering quality over the iterations (3) Normalized Mutual
Information (NMI) representing the entropy reduction of class labels based
on the labels associated with the clusters. (4) Adjusted Rand Index (ARI)
measuring the similarity between clusters. (5) Number of clusters found over
the 20 iterations.

ploying such technology when it comes to their energy consumption. Further-
more, proposals for future work in connection with an ecoacoustic mission in
real conditions are presented.
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5.2.1 Meta-Learning Baseline

In this thesis, it was first necessary to define a baseline Meta-Learning algo-
rithm to facilitate the evaluation of the proposed framework. The selection
of the algorithm used was based on the accuracy and the ability of the algo-
rithm to generalize to the Darksound test set. The results obtained in table
5.1 were used to define the Matching Networks as the baseline algorithm. At
this stage, the algorithms were tested without considering parameter tuning,
nevertheless, models could have produced better results if all parameters had
been carefully tuned. However, the problem is that this would have required
a different setting for each of the Few-Shot Classification tasks. This was
not considered since Meta-Learning algorithms are primarily designed to be
flexible in configurations that are not highly dependent on tuning.

5.2.2 Proposed Framework

To assess the extent to which the proposed framework addresses our research
questions, we will now return to each of the initial questions and discuss
them in detail.

Q1: How well does episodic training improve the performance of a
Meta-Learning algorithm compared to classical training?

The results presented in Table 5.2 allowed us to answer our first research
question and favor episodic learning over classical learning. However, the
results show that this trend seems to be contradicted as the number of shots
increases, as classical learning performs better for the 5-ways-5-shots classi-
fication task and almost as good for the 20-ways-5-shots classification task.
Indeed, recent work suggests that competitive results can be obtained from
classical training with simple Cross-Entropy loss compared to episodic train-
ing [19, 50]. Nevertheless, it is important to mention that our results evaluate
the performance of two training methods on common grounds, which is not
always the case in the literature. This implies using the same batch size
for the training in both situations, given that this can have a critical influ-
ence in DL [23]. Indeed, unlike episodic training, classical training allows
to use batch sizes that are independent of the number of classes, therefore,
the optimization of this parameter in classical training can surely improve
the performance of the model. In our case, the performances of these two
training methods were compared on common bases, since it was assumed
that this parameter could have an important influence on the results.
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Q2: To what extent can Meta-Learning algorithms fine-tuned on
pseudo-labeled data classify classes that were not used during train-
ing?

The results presented in Table 5.3 allowed us to conclude that fine-tuning
a Meta-Learning algorithm on pseudo-labeled data can largely improve the
performance of the model. In the context of ecoacoustics, and more specifi-
cally in the detection and classification of bird species, this makes it possible
to create efficient classification models without the need to annotate a large
dataset. Although here classification is performed in a closed-set setting, the
democratization of this kind of practice in open-set settings could greatly
facilitate the classification of bird species whose vocalizations are well repre-
sented in the Xeno-Canto database. On the other hand, the diagnosis of the
model performance with the help of the learning curves presented in Figure
5.1 has also allowed us to highlight a problem related to the Darksound train-
ing set. Indeed, this dataset does not seem to provide enough information to
learn the problem given the important gap that remains between the training
and validation curves. This may be related to the fact that the training set
contains features with lower variance than the validation set. Thus, adding
more samples or increasing the number of augmented samples could help
tackle the problem related to the variability of the features in the training
data.

Q3: To what extent Meta-embeddings can improve the clustering
quality of unlabeled data?

When performing clustering on the latent space, results presented in Table 5.4
have shown that Meta-embeddings compared to baseline embeddings improve
the quality of the clustering. In addition, results presented in Table 5.5 have
shown that performing iterative clustering on the Meta-embeddings can also
help refine the clusters and further improve the clustering quality. However,
how Meta-embeddings were fine-tuned beforehand has also shown that it
can influence the results. Indeed, using 5-ways-5-shots Meta-embeddings
compared to 20-ways-b-shots Meta-embeddings allowed us to obtain better
clustering performances. It thus appears more appropriate to extract Meta-
embeddings from a model that obtained better classification results even if
the number of ways used for the fine-tuning is closer to the actual number
of clusters to determine. On the other hand, although augmenting the data
usually helps to prevent over-fitting and improve the accuracy of the model,
this has not been confirmed when performing the MEC method. The reason
is perhaps that the initial clusters found by the HDBSCAN algorithm in the
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latent space are not accurate enough, consequently, fine-tuning the model
on pseudo-labeled data that is misclassified can lead the model in the wrong
direction even further if it appears that the data has been augmented. A
way to get around this problem could be to augment the data after a few
iterations to give the model time to become more confident in its choices.

5.2.3 Environmental considerations

The deployment of large-scale computing in the context of ecoacoustics with
DL often requires the use of many technologies with a significant environ-
mental impact. We thus must take this impact into account and to evaluate
its energy consumption as well as the use of resources on which it depends
(e.g. rare earth minerals or electronic waste considerations). A summary of
these considerations has been introduced in [38] and proposes, among others,
the use of battery-less ecoacoustic devices. In this thesis, an estimate of the
energy consumption related to the training and validation of the models for
Few-Shot Image Classification tasks has been calculated using the Python
package PyJoules®. This made it possible to define the total energy consumed
for the fine-tuning of the optimized models on a machine with 28 cores (Intel
Xeon)/128 and a GPU NVIDIA GeForce GTX 1080 Ti. By default, the val-
ues obtained with the package PyJoules are expressed in microjoules (u.J).
These were converted into Watts (W) by recovering the training time (¢) in
seconds recorded for each epoch. Thus, the equation to define the energy
consumption in Watts per epoch (IWe) was defined as follows:
(nJ x 17°)

We = Y (5.1)

An overview of the energy consumption for 20 epochs is shown in Figure
5.4. This allows us to point out a higher energy consumption when a larger
amount of data is involved in the training phase (1 shot vs. 5 shots). Thus,
we believe that the systematic use of units of power such as We should also
be taken into account in the future optimization of the models, since to be
really efficient, a model must have good classification performances as well
as low energy consumption, especially when the purpose of the analysis is
related to environmental preservation and biodiversity conservation.

5.2.4 Future Work

To continue developing the proposed framework in the future, it is planned
to test it on data collected during an ecoacoustic mission in real-conditions.

https://pypi.org/project/pyJoules/
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Figure 5.4: Energy consumption in Watt per epochs (We) for 20-ways Few-
Shot Classification tasks. Energy consumption is estimated using the Python
package PyJoules for the fine-tuning of the models on a machine with 28 cores
(Intel Xeon)/128 and a GPU NVIDIA GeForce GTX 1080 Ti.

To this end, the EAR team of the MNHN of Paris collected a dataset in
French Guyana between mid-December and mid-May 2022. This dataset is
composed of 6800 hours of audio recordings to map the presence/absence of
nocturnal and crepuscular species in the area. The recordings focus on time
periods where the target species are most likely to vocalize (high probability
of capturing a vocalization). This corresponds to 1h of recording before
dawn (i.e. civil twilight), 30min centered on sunset and 30 min centered on
the beginning of the night (about 1h15 after sunset) to focus on the truly
nocturnal species, i.e. 2h/d. Nevertheless, to date, no annotations of the data
have been performed due to the large amount of data and the need to find
experts able to identify the target species. Therefore, our future objective is
to test our proposed framework on this dataset to improve the visualization
of the inherent structure of the data that will be more easily identified by
experts as clusters, without the need to label each record one by one. This
would save valuable time and, ideally, allow for improved quality of data
clustering for the labeling of vocalizations of target or unknown species.
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Chapter 6

Conclusion

A recurrent problem in ecoacoustic projects is the lack of large labeled
datasets available for training models. The primary objective of this master
thesis has accordingly been to discover efficient ways to respond to this prob-
lem using learning methods with good generalization capacities and that can
adapt easily to new learning tasks. The use of the Meta-Learning framework
has consequently proven to be convenient in dealing with the problem of Few-
Shot Image Classification. In this thesis, several Meta-Learning algorithms
based on metric-learning strategies have been tested to define a reference
model for our further experiments.

The global objective of this research has been to facilitate the work of
ecoacousticians in their management of acoustic data and identification of
potential new taxa, by discovering and gradually improving the inherent
structure of unlabeled data. The numerous tests carried out in this thesis
have shown that Matching Networks are the most suitable Meta-Learning
algorithm for the proposed framework. Moreover, the use of the episodic
learning method compared to the classical learning method has proven to al-
low an improvement of the models performances. Taking into consideration
the total number of solutions considered in this thesis, it was the aforemen-
tioned combination that produced the highest total accuracy for the majority
of the configurations, including an accuracy of 79.81% for the classification
of 20 tropical nocturnal and crepuscular bird species from the Darksound
dataset in a 5-shot classification task. In the second step, this learning
framework permitted an extraction of more meaningful latent space repre-
sentations when clustering similar unlabeled data. As a matter of fact, the
fine-tuning of the models on pseudo-labeled data allowed us to improve the
performance of the data clustering by 36.90%, compared to the simple use of
latent space representations extracted from models commonly used in com-
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puter vision (ResNet18). Based on the unsupervised clustering-based meth-
ods reviewed in our theoretical background, the Meta Embedded Clustering
(MEC) method turned out to progressively improve the inherent structure
of unlabeled data. This method has eventually allowed us to further improve
the accuracy of the data clustering (69.10% vs. 76.60%) and, in this way,
contribute to determine a number of clusters closer to the actual number of
clusters expected.

In conclusion, the use of unsupervised Meta-embedding has proven to be
an effective solution for improving the clustering of bird songs in soundscape
recordings. These technological methods can therefore bring forward novel
research in developing countries that can facilitate the identification of species
as well as the detection of potential new rare bird species.
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Appendix A
Bambird

Additional functions for the Bambird package were built in order to facilitate
the labeling of the data and evaluating the performances of the clustering
algorithm used in the Bambird workflow. Performance of the Bambird work-
flow in correctly classifying the ROIs for each species were evaluated as being
labeled “signal” or “noise”. Table A.1 presents the evaluation results of the
Bambird workflow, where the initial number of True Positive (TP) and False
Positive (FP) correspond to the ROIs that were manually labeled. TP and
FP respectively represent the number of ROIs labeled by the clustering al-
gorithm as “signal” and “noise”. The results of the Precision Initial column
indicate the percentage of correct predictions among the positive predictions
(i.e. FN / (TP+FN)) and measure the ability of the clustering algorithm not
to make mistakes when predicting “signal” versus “noise” for each species.
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Species Number Number TP FP TP FP TN FN Precision

ROIs ROIs Initial  Initial Initial
Initial Final
ASIFLA 56 31 20 36 3 28 8 17 36%
ATHCUN 54 23 24 30 0 23 7 24 44%
BUBVIR 61 43 19 42 19 24 18 0 31%
CARPLA 15 9 10 5 8 1 4 2 67%
CHOACU 25 16 17 8 16 0 8 1 68%
CHONAC 58 23 7 51 0 23 28 7 12%
CRYBRE 52 20 47 5 18 2 3 29 90%
CRYCIN 61 33 45 16 33 0 16 12 74%
CRYSOU 23 14 19 4 13 1 3 6 83%
CRYVAR 9 7 8 1 6 1 0o 2 89%
DAPATE 48 20 25 23 20 0 23 5 52%
FALCOL 25 6 17 8 1 5 3 16 68%
FALDEI 6 3 2 4 0o 3 1 2 33%
FALFEM 47 17 23 24 6 11 13 17 49%
FALPER 18 16 10 8 9 7 1 1 56%
FALRUF 22 12 12 10 11 1 9 1 55%
GLAHAR 38 20 24 14 20 O 14 4 63%
HERCAC 150 32 135 15 32 0 15 103 90%
HYDCLI 3 0 3 0 o 0 o0 3 100%
IBYAME 60 44 47 13 42 2 11 5 78%
LOPCRI 81 34 44 37 22 12 25 22 54%
LURSEM 43 19 32 11 17 2 9 15 74%
MEGCHO 16 4 9 7 4 0 7 5 56%
MEGROR 14 6 13 1 6 0 1 7 93%
MEGWAT 30 11 26 4 10 1 3 16 87%
MICGIL 71 8 54 17 7 1 16 47 76%
MICMIR 23 7 18 5 6 1 4 12 78%
MICRUF 97 31 92 5 31 0 5 61 95%
MICSEM 68 51 53 15 49 2 13 4 78%
MILCHI 43 36 15 28 15 21 7 0 35%
NYCAET 7 4 6 1 4 0 1 2 86%
NYCALB 69 46 50 19 42 4 15 8 72%
NYCGRA 47 20 23 24 10 10 14 13 49%
NYCGRI 36 12 9 27 0 12 15 9 25%
NYCLEU 10 2 5 5 1 1 4 4 50%
NYCNIG 20 16 18 2 14 2 0 4 90%
NYCLEU 66 66 65 1 65 1 0o 0 98%
PULPER 16 7 11 5 6 1 4 5 69%
STRHUH 83 52 62 21 49 3 18 13 75%
STRVIR 62 19 46 16 17 2 14 29 74%
TINMAJ 114 20 s 37 o 20 17 77 68%

Table A.1: Evaluation of the Bambird workflow for the unsupervised clas-
sification of the ROIs as being “signal” or “noise”. The number of initial
True Positive (TP) and False Positive (FP) correspond to the ROIs manu-
ally labeled. TP and FP respectively represent the number of data labeled as
“signal” and “noise”. The results of the Precision Initial column indicate the
percentage of correct predictions among the positive predictions and measure
the ability of the clustering algorithm not to make mistakes when predicting
“signal” versus “noise” for each species.
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