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Abstract

The asymptotic behavior of several goodness-of-fit statistics for copula families is obtained

under contiguous alternatives. Many comparisons between a Cramér–von Mises functional

of the empirical copula process and new moment-based goodness-of-fit statistics are made by

considering their associated asymptotic local power curves. It is shown that the choice of the

estimator for the unknown parameter can have a significant influence on the power of the

Cramér–von Mises test, and that some of the moment-based statistics can provide simple and

efficient goodness-of-fit methods. The paper ends with an extensive simulation study that

aims to extend the conclusions to small and moderate sample sizes.
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1. Introduction

Copula functions contain all the information about the dependence structure of a random vector.
Indeed, due to the representation theorem of Sklar (1959), every bivariate distribution function
H can be written as H(x, y) = C {F (x), G(y)}, where F and G are the marginal distributions
and C : [0, 1]2 → [0, 1] is the copula. It turns out that C, which is unique when F and G are
continuous, is a distribution function with uniform marginals on [0, 1]. This representation enables
practitioners to model the marginal behaviors and the dependence structure in separate steps.
While the adjustment of univariate distributions is well documented, the study of goodness-of-fit
tests for copulas emerged only recently as a challenging inferential problem.

Let C be the underlying copula of a bivariate population with continuous marginals and suppose
one wants to test the goodness-of-fit hypotheses H0 : C ∈ F = {Cθ; θ ∈ M} and H1 : C /∈ F =
{Cθ; θ ∈ M}, where M is the parameter space. Test statistics that help discriminate between H0

and H1 have been proposed by Fermanian (2005), Genest et al. (2006a), Scaillet (2006) and Chen
& Fan (2005), among others. A bayesian selection procedure has also been investigated by Huard
et al. (2006). In most cases, the efficiency of these methods, i.e. the power, is approximated by
simulating repeatedly from a fixed alternative copula D /∈ F . This is done, in particular, in the
works of Genest et al. (2008) and Berg (2007), where many simulation results and recommendations
are provided.

One of the most desirable property of a statistical procedure is its ability to detect small
departures from the null hypothesis. In the context of testing the fit to a particular copula family,
such perturbations from H0 are given by the sequence of distributions

Qδn(x, y) = (1 − δn)C(x, y) + δnD(x, y), (1)



where δn = n−1/2δ, δ > 0 and C, D are bivariate copulas such that C ∈ F . This mixture
distribution is a copula for all 0 < δ ≤ n1/2. It is supposed throughout the paper that Qδn belongs
to F only at the limit when n → ∞. Moreover, in order to ensure that the departure from H0

increases as δ becomes larger (at least for large values of n), it is assumed that the copula D
stochastically dominates C, i.e. D(x, y) ≥ C(x, y) for all (x, y) ∈ [0, 1]2. The skill of a goodness-
of-fit test to reject H0 under (1) can easily be motivated from applications in finance, where it
is often advisable to detect changes in the dependence pattern over time, e.g. regime shifts for
commodity markets.

In this paper, the asymptotic non-degenerate distribution of some goodness-of-fit statistics is
investigated under the sequence (Qδn)n≥1 of alternatives. The focus is put on a Cramér–von Mises
type statistic computed from a version of the empirical copula process and on simple but efficient
moment-based test statistics. The characterization of their limiting behavior enables to compute
asymptotic local power curves from which comparisons between the goodness-of-fit statistics under
investigation can be made.

In Section 2, the goodness-of-fit test statistics studied in this work are defined. In Section 3,
their asymptotic distribution under alternatives of the form (1) are obtained. These results enable
to compute, in Section 4, the local power curves of the statistics under study and hence to compare
the latter under chosen scenarios of local distributions. In Section 5, a new measure of asymptotic
relative efficiency generalizing that of Pitman is described and computed for many cases. This
index is particularly useful for the Cramér–von Mises goodness-of-fit statistic whose local power
curve has no explicit expression. An extensive simulation study that aim to investigate the local
behavior of the testing procedures in small and moderate sample sizes and compare with the
asymptotic results follows in Section 6. The paper ends with a discussion about ideas of future
investigations.

2. Some goodness-of-fit statistics for copula families

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate population with continuous marginal
distributions F , G and whose underlying copula is C. In Subsections 2.1, 2.2 and 2.3, statistical
procedures to determine if C belongs or not to a parametric family F = {Cθ; θ ∈ M} are described.
It is assumed throughout that M is a subset of the real line, so that θ can be estimated by an
empirical version of a moment of Cθ. Since all statistics considered in this work are invariant under
strictly increasing transformations of the variables, one can consider, for simplicity and without
any loss of generality, that the marginal distributions are uniform on the interval [0, 1].

2.1. The empirical copula goodness-of-fit process

A consistent estimation of a copula is possible via the empirical copula, which Deheuvels (1979)
described as the distribution function of the sample of normalized ranks, i.e. (R̃1,n, S̃1,n), . . .,

(R̃n,n, S̃n,n), where R̃i,n = Fn(Xi) and S̃i,n = Gn(Yi), with

Fn(x) =
1

n

n
∑

i=1

1 (Xi ≤ x) and Gn(y) =
1

n

n
∑

i=1

1 (Yi ≤ y)

being the empirical marginal distributions. Explicitly, C is estimated by

Cn(x, y) =
1

n

n
∑

i=1

1
(

R̃i,n ≤ x, S̃i,n ≤ y
)

. (2)

The weak consistency of the empirical process Cn,θ =
√
n(Cn − Cθ) to a centered gaussian limit

was obtained by Deheuvels (1979) under the hypothesis of independence, i.e. in the special case
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when Cθ(x, y) = xy. This result was extended under general distributions by Gänssler & Stute
(1987), Fermanian et al. (2004) and Tsukahara (2005). A suggestion made by Fermanian (2005)
and exploited by Quessy (2005) and Genest et al. (2008) consists in basing a goodness-of-fit test

on a modified version of Cn,θ, namely Cn =
√
n(Cn − Cθ̂n

), where θ̂n consistently estimates θ.
As shown by Quessy (2005), Cn is weakly consistent under H0 if the following assumptions are
satisfied.

A1. For all θ ∈ M, the first order partial derivatives of Cθ exist and are continuous;

A2. (Cn,θ,Θn) converges jointly to a gaussian process (Cθ,Θ), where Θn =
√
n(θ̂n−θ). Moreover,

for all θ ∈ M and as ε ↓ 0,

sup
‖θ⋆−θ‖<ε

sup
(x,y)∈[0,1]2

∣

∣

∣
Ċθ⋆(x, y) − Ċθ(x, y)

∣

∣

∣
−→ 0,

where Ċθ = ∂Cθ/∂θ.

Under A1 and A2, the empirical goodness-of-fit process Cn converges weakly to a centered limit
C = Cθ − ΘĊθ having covariance function ΓC(u, v, u′, v′) = cov{C(u, v), C(u′, v′)} whose expression
is explicit but cumbersome. Thanks to this asymptotic result, it is then justified to base a goodness-
of-fit test on some continuous functional computed from Cn in virtue of the continuous mapping
theorem (see Billingsley, 1968). An omnibus statistic which has good power properties in general
is the Cramer–von Mises distance function

Vn =

∫ 1

0

∫ 1

0

{Cn(x, y)}2
dxdy. (3)

Note that the use of other functional distances are possible, e.g. the Kolmogorov–Smirnov type
statistics, but the latter have been found by Genest et al. (2006a) and by Genest et al. (2008) to
be generally less powerful than the Cramér–von Mises statistic. Since statistic (3) has no explicit
form in general, Genest & Rémillard (2008) proposed to rely on the parametric bootstrap version

Vn,N =

∫ 1

0

∫ 1

0

{Cn,N(x, y)}2
dxdy,

where Cn,N =
√
n(Cn − CN ) and CN is the empirical copula computed via equation (2) from an

artificial sample (X⋆
1,n, Y

⋆
1,n), . . . , (X⋆

N,n, Y
⋆
N,n) from Cθ̂n

. These authors show that as n,N → ∞,
the process Cn,N converges to the same limit as Cn and consequently, Vn,N has the same asymptotic
distribution as Vn.

2.2. Moment-based goodness-of-fit statistics

Consider two real valued moments m1 and m2 of Cθ that are related to θ by one-to-one functions
r1, r2 defined on M such that m1 = r1(θ) and m2 = r2(θ). Under the null hypothesis that the
unknown copula of a population belongs to F , one has r−1

1 (m1) = r−1
2 (m2). If m̂1,n and m̂2,n

are consistent for m1 and m2 respectively, then θ̂1,n = r−1
1 (m̂1,n) and θ̂2,n = r−1

2 (m̂2,n) provide

consistent estimations of θ. In most cases of interest,
√
n(θ̂j,n − θ) is asymptotically normal with

mean zero and variance σ2
j (Cθ) under H0. A simple, asymptotically normal goodness-of-fit statistic

is then given by
Sn =

√
n

{

r−1
1 (m̂1,n) − r−1

2 (m̂2,n)
}

. (4)

A goodness-of-fit test then consists in rejecting the null hypothesis whenever |Sn|/σ(Cθ) exceeds
zα/2, i.e. the (1 − α/2)-th percentile of a N (0, 1) distribution, where σ2(Cθ) = limn→∞ var(Sn).
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Note that tests based on Sn may be inconsistent since it may happen that r−1
1 (m1) = r−1

2 (m2)
even if H0 is false.

The above method can be employed by considering two of the most popular measures of asso-
ciation, namely Spearman’s rho and Kendall’s tau. The latter are respectively defined, in terms of
the underlying copula Cθ of the population, by

ρCθ
(θ) = 12

∫ 1

0

∫ 1

0

Cθ(x, y)dxdy − 3 and τCθ
(θ) = 4

∫ 1

0

∫ 1

0

Cθ(x, y)dCθ(x, y) − 1. (5)

Consistent estimators based on inversions of these rank statistics are θ̂n,ρ = ρ−1
Cθ

(ρn) and θ̂n,τ =

τ−1
Cθ

(τn), where

ρn = 1 − 6n

n2 − 1

n
∑

i=1

(

R̃i,n − S̃i,n

)2

and τn = −1 +
4

n(n− 1)

∑

i6=j

1 (Xi ≤ Xj , Yi ≤ Yj)

are their sample versions. Another estimator arises from the so-called pseudo maximum-likelihood
method, which is similar to the classical likelihood approach but where the normalized ranks are
used instead of the observations. The resulting estimator θ̂n,PL has been studied by Genest et al.

(1995), Shih & Louis (1995) and recently by Kim et al. (2006). Based on these three consistent
estimators, one can build three goodness-of-fit statistics of the form (4), namely

Sn1 =
√
n

(

θ̂n,ρ − θ̂n,τ

)

, Sn2 =
√
n

(

θ̂n,ρ − θ̂n,PL

)

and Sn3 =
√
n

(

θ̂n,τ − θ̂n,PL

)

. (6)

2.3. Shih’s goodness-of-fit test for the gamma frailty model

The dependence function associated to the bivariate gamma frailty model, also referred to as
Clayton’s copula, is given in Equation (13) to be found in Appendix B. Shih (1998) considered
unweighed and weighted estimations of the dependence parameter θ via Kendall’s tau τn and the
weighted rank-based statistic

θ̂n,W =
∑

i<j

∆ij

Wij

/

∑

i<j

1 − ∆ij

Wij
,

where ∆ij = 1 {(Xi −Xj)(Yi − Yj) > 0} and

Wij =
n

∑

k=1

1 {Xk ≤ max(Xi, Xj), Yk ≤ max(Yi, Yj)} .

Since θ̂n,τ = 2τn/(1 − τn) and θ̂n,W are both unbiased for θ under the null hypothesis that C
belongs to Clayton’s family of copulas, a version of a goodness-of-fit statistic proposed by Shih
(1998) is Sn4 =

√
n(θ̂n,τ − θ̂n,W ). One deduces from arguments to be found in Shih (1998) that Sn4

is asymptotically normal under the null hypothesis. Unfortunately, the variance provided by Shih
(1998) was found to be wrong by Genest et al. (2006b), where a corrected formula is provided.
From the work of these authors, one may deduce the asymptotic representation

Sn4 =
1√
n

n
∑

i=1

{Kθ(Xi, Yi) − Lθ(Xi, Yi)} + oP(1), (7)

where

Kθ(x, y) = 2(θ + 2)2
{

2
(

x−θ + y−θ − 1
)−1/θ − x− y +

1

θ + 2

}
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and
Lθ(x, y) = (θ + 1)(2θ + 1) log

(

x−θ + y−θ − 1
)−1/θ − (θ + 1)2 log(xy) + θ.

Genest et al. (2006b) then used (7) to compute the asymptotic variance of Sn4, whose complicated
expression is given by

σ2
4(Cθ) =

136θ7 + 1352θ6 + 5171θ5 + 9449θ4 + 8281θ3 + 3001θ2 + 240θ+ 18

3θ2(θ + 1)2(θ + 3)2

+
8(θ + 2)4

θ2(θ + 1)2
I1(θ) −

4(θ + 1)4

θ4

∞
∑

k=0

(−1)k

(k + 1 + 1/θ)
2 − 8(θ + 1)(θ + 2)

θ3
I2(θ),

where

I1(θ) =
∞
∑

k=0

Γ2(1/θ)

Γ(1/θ)

k!Γ (k + 1/θ)

Γ (k + 1 + 2/θ)
and I2(θ) =

∞
∑

k=0

Γ(2/θ)k!

(k + 1/θ) Γ (k + 1 + 2/θ)
.

3. Asymptotic behavior under local sequences

In order to derive non-degenerate limiting distributions for a given goodness-of-fit statistic under
the sequence (Qδn)n≥1 defined in Equation (1), one has to ensure that Qδn is close to Q0 = Cθ in
a certain sense. One such criteria is given by van der Vaart & Wellner (1996), where it is supposed
that

lim
n→∞

∫ 1

0

∫ 1

0

{

√
n

(

√

qδn(x, y) −
√

q0(x, y)
)

− δq̇0(x, y)

2
√

q0(x, y)

}2

dxdy = 0, (8)

for qδ being the density associated to Qδ and q̇δ = ∂qδ/∂δ. Note that condition (8) entails that the
sequence (Qδn)n≥1 is contiguous with respect to Q0. This is the key requirement that enables to
derive the asymptotic local representation of the goodness-of-fit statistics Vn,N and Sn1, . . . ,Sn4.
This is the subject of the remaining of this section.

3.1. Local behavior of some estimators of the dependence parameter

Many interesting estimators for the unknown parameter of a copula family admit the asymptotic
representation

Θn,Λ =
√
n

(

θ̂n,Λ − θ
)

=
1√
n

n
∑

i=1

ΛCθ

(

R̃i,n, S̃i,n

)

+ oP(1), (9)

where ΛCθ
: [0, 1]2 → [0, 1] is a twice differentiable score function such that for all θ ∈ M and all

(x, y) ∈ [0, 1]2, ECθ
{ΛCθ

(X,Y )} = 0 and |Λ′′
Cθ

(x, y)| ≤ gθ(x, y), where gθ and Λ2
Cθ

are integrable
with respect to cθ(x, y) = ∂2Cθ(x, y)/∂x∂y. These conditions ensure that Θn,Λ converges in law
to

ΘΛ = Θ′
Λ +

∫

(0,1)2
ΛCθ,10(x, y)β1(x)cθ(x, y)dxdy +

∫

(0,1)2
ΛCθ,01(x, y)β2(y)cθ(x, y)dxdy,

where Θ′
Λ is the limit of n−1/2

∑n
i=1 ΛCθ

(Xi, Yi) and β1, β2 are uniform brownian bridges, i.e.
gaussian processes with covariance function cov{βj(s), βj(t)} = min(s, t) − st, j = 1, 2, arising as
the limits of

√
n{Fn(x)− x} and

√
n{Gn(y)− y} respectively. Here, ΛCθ,10(x, y) = ∂ΛCθ

(x, y)/∂x
and ΛCθ,01(x, y) = ∂ΛCθ

(x, y)/∂y.
Among the estimators that admit representation (9), one has the inversion of Spearman’s rho

and the pseudo-maximum likelihood estimator explored by Genest al. (1995) and Shih & Louis

4



(1995). More details will be given in Example 1 and Example 2. Another popular estimation

strategy using a statistic that is not of the form (9) is based on θ̂n,τ , i.e. on the inversion of
Kendall’s measure of association.

The next proposition, whose proof is deferred to Appendix A.1, identifies the asymptotic distri-
bution of Θn,Λ and Θn,τ =

√
n(θ̂n,τ − θ) under contiguous alternatives of the type (1). This result

is a prerequisite in order to compute the local power of moment-based goodness-of-fit statistics
described in Section 2.2. It will also enable to characterize the asymptotic behavior of the process
Cn, and consequently that of Vn,N , under (Qδn)n≥1 for several strategies that aim to estimate θ.

Proposition 1

Assume that condition (8) holds for the sequence (Qδn)n≥1. Then under (Qδn)n≥1,

(i) Θn,Λ  ΘΛ + δµΛ(Cθ, D), where µΛ(Cθ , D) = ED {ΛCθ
(X,Y )} − ECθ

{ΛCθ
(X,Y )} and ΘΛ is

a normal random variable with mean 0 and variance

σ2
Λ(Cθ) = var

{

ΛCθ
(X,Y ) +

∫ 1

0

∫ 1

X

ΛCθ,10(x, y)cθ(x, y) +

∫ 1

Y

∫ 1

0

ΛCθ,01(x, y)cθ(x, y)

}

;

(ii) Θn,τ  Θτ + δµτ (Cθ , D), where µτ (Cθ, D) = 4{τ ′Cθ
(θ)}−1 {ED(Cθ) − ECθ

(Cθ)} and Θτ is a

normal random variable with mean 0 and variance

σ2
τ =

16

{τ ′Cθ
(θ)}2

var {2Cθ(X,Y ) −X − Y } .

The next two examples are applications of part (i) of Proposition 1 when the estimator is based
on an inversion of Spearman’s rho and on the pseudo maximum-likelihood estimator.

Example 1. Let ρCθ
(θ) be the population value of Spearman’s measure of association for a vector

(X,Y ) with underlying copula Cθ. Then θ̂n,ρ = ρ−1
Cθ

(ρn) is a consistent estimator for θ, where ρn

is Spearman’s rank correlation coefficient. Using a Taylor expansion of order 1, one can show that
this estimator can be written in the form (9) with ΛCθ

(x, y) = {ρ′Cθ
(θ)}−1{12xy − 3 − ρCθ

(θ)},
where ρ′Cθ

(θ) = ∂ρCθ
(θ)/∂θ. Thus, under the contiguous sequence (1), Θn,ρ =

√
n(θ̂n,ρ − θ) is

asymptotically normal with drift parameter µρ(Cθ, D) = {ρ′Cθ
(θ)}−1{ρD − ρCθ

(θ) and variance

σ2
ρ(Cθ) =

144

{ρ′Cθ
(θ)}2

var

{

XY +

∫ 1

0

∫ 1

X

ycθ(x, y)dxdy +

∫ 1

Y

∫ 1

0

xcθ(x, y)dxdy

}

.

Example 2. Let θ̂n,PL be the pseudo likelihood estimator. From the work of Genest et al. (1995),
one has representation (9) with ΛCθ

(x, y) = β−1
Cθ
ℓ′Cθ

(x, y), where ℓCθ
(x, y) = log cθ(x, y) and

βCθ
= ECθ

[{ℓ′Cθ
(X,Y )}2], with ℓ′Cθ

= ∂ℓCθ
/∂θ. An application of Proposition 1 shows that

Θn,PL =
√
n(θ̂n,PL − θ) converges in law to a normal distribution with variance σ2

PL(Cθ) =
β−2

Cθ
var{ℓ′Cθ

(X,Y ) −WCθ,1(X) −WCθ,2(Y )}, where

WCθ,1(u) =

∫ 1

u

∫ 1

0

ℓ′Cθ
(x, y)ℓ′Cθ,1(x, y)cθ(x, y)dxdy

and

WCθ,2(u) =

∫ 1

0

∫ 1

u

ℓ′Cθ
(x, y)ℓ′Cθ,2(x, y)cθ(x, y)dxdy,
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with ℓ′Cθ,1(x, y) = ∂ℓCθ
(x, y)/∂x and ℓ′Cθ,2(x, y) = ∂ℓCθ

(x, y)/∂y. The asymptotic mean is

µPL(Cθ, D) = β−1
Cθ

ED

{

ℓ′Cθ
(X,Y )

}

− β−1
Cθ

ECθ

{

ℓ′Cθ
(X,Y )

}

= β−1
Cθ

ED

{

ℓ′Cθ
(X,Y )

}

,

since by Lebesgue’s dominated convergence theorem,

ECθ

{

ℓ′Cθ
(X,Y )

}

=

∫ 1

0

∫ 1

0

ċθ(x, y) dx dy =
∂

∂θ

∫ 1

0

∫ 1

0

cθ(x, y) dx dy = 0.

3.2. Local behavior of the goodness-of-fit statistics

The first theoretical result of this section establishes the large-sample behavior of Cn under the
sequence (Qδn)n≥1. It is assumed that the estimator of θ is either of the form (9) or based on the
inversion of Kendall’s tau.

Proposition 2

Suppose condition (8) and Assumptions A1–A2 hold and assume that Θn =
√
n(θ̂n − θ) converges

in law to Θ̃ = Θ + δµ(Cθ, D) under the sequence (1), where Θ is the limit in law of Θn under H0.

Then under (Qδn)n≥1, the empirical process Cn =
√
n(Cn − Cθ̂n

) converges weakly to

C̃ = C + δ
{

D − Cθ − µ(Cθ, D)Ċθ

}

,

where C is the weak limit of Cn under H0 and Ċθ = ∂Cθ/∂θ.

Remark. As one may expect, a sequence of the form Qδn = Cθ+δn yields absolutely no power for
statistics based on Cn since Qδn ∈ F in that case. Indeed, as one can deduce from computations
made in the proof of Proposition 2, condition (8) enounced in van der Vaart & Wellner (1996)
implies that Cn,θ converges to Cθ + δĊθ. Moreover, since Θn converges to Θ + δ in that case,√
n(Cθ̂n

− Cθ) converges to (Θ + δ)Ċθ, so that Cn = Cn,θ −√
n(Cθ̂n

− Cθ) converges to C, i.e. to
the same limit as under H0.

The asymptotic local behavior of the moment-based goodness-of-fit statistics (6) can easily be ob-
tained as consequences of Proposition 1. This is the subject of Proposition 3, whose straightforward
proof is omitted.

Proposition 3

Suppose condition (8) holds. Then under (Qδn)n≥1,

(i) Sn1  S1 + δ {µρ(Cθ, D) − µτ (Cθ , D)};

(ii) Sn2  S2 + δ {µρ(Cθ, D) − µPL(Cθ, D)};

(iii) Sn3  S3 + δ {µτ (Cθ, D) − µPL(Cθ, D)}.

This result implies that the limiting distribution of Snj , j = 1, 2, 3 under the contiguous sequence is
normal with some mean δµj(Cθ, D) and variance σ2

j (Cθ). As long as µ(Cθ , D) 6= 0, a goodness-of-fit
procedure based on Snj will yield power locally.

3.3. Shih’s statistic under contiguity

The asymptotic behavior of Sn4 under the contiguous sequence (Qδn)n≥1 will follow from an ap-
plication of Lecam’s third lemma and the asymptotic representation (7). The result is summarized
in Proposition 4.
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Proposition 4

Under the contiguous sequence (Qδn)n≥1, the goodness-of-fit statistic Sn4 converges in law to a

normal distribution with variance σ2
4(Cθ) and mean δη1(Cθ , D) − δη2(Cθ, D), where

η1(Cθ, D) = 4(θ + 2)2 {ED(Cθ) − ECθ
(Cθ)} ,

η2(Cθ, D) = (θ + 1)(θ + 2)

∫ 1

0

∫ 1

0

{d(u, v) − cθ(u, v)} logCθ(u, v)dudv

− (θ + 1)2
∫ 1

0

∫ 1

0

{d(u, v) − cθ(u, v)} log uvdudv.

4. Local power comparisons

In this section, the asymptotic power of the goodness-of-fit tests based on Vn,N and Sn1, . . . ,Sn4

are investigated under alternatives of the form (1). Here, C and D are chosen to be in the
same family with different levels of dependence. In other words, local alternatives of the form
Qδn(x, y) = (1 − δn)Cθ(x, y) + δnCθ′(x, y) are considered, where θ < θ′. It is assumed that θ is a
dependence parameter for the family {Cθ; θ ∈ M}, i.e. Cθ(x, y) ≤ Cθ′(x, y) for all (x, y) ∈ [0, 1]2.
This requirement is fulfilled for most families of copulas. The above mixture distribution can
represent a setting where the data generating process stays in the same family over time but the
dependence strength suddenly changes, c.f. regime-shifting models. Structural changes of this kind
can occur in mean-reverting processes such as those driving oil and other commodity prices, where
the dependence pattern, i.e. the copula family, remains the same over time but the strength of
this link becomes significantly stronger or weaker at some moment.

The following analyses will consider local distributions involving mixtures of Clayton, Frank,
Gumbel–Barnett and Normal copulas whose analytical expressions are given in equations (13)–(16)
to be found in Appendix B.

4.1. Efficiency of the empirical copula process under various estimation strategies

Here, the influence of the estimation strategy on the power of the Cramér–von Mises statistics is
investigated under local sequences. Here and in the sequel, Cn,N,ρ, Cn,N,τ and Cn,N,PL refer to the
empirical copula goodness-of-fit process with the estimation of θ based respectively on Spearman’s
rho, Kendall’s tau and the pseudo-likelihood approach. Similarly, Vρ

n,N , Vτ
n,N and VPL

n,N are the
associated Cramér–von Mises functionals.

According to Proposition 2, the weak limits of the empirical copula goodness-of-fit processes
Cn,N,ρ, Cn,N,τ and Cn,N,PL under the contiguous sequence (Qδn)n≥1 are

C̃ρ = Cρ + δ(g − µρĊθ), C̃τ = Cτ + δ(g − µτ Ċθ) and C̃PL = CPL + δ(g − µPLĊθ),

where Cρ, Cτ and CPL are the respective limits under H0 and g(x, y) = D(x, y) − Cθ(x, y). Com-
putations of µρ, µτ and µPL are detailed in Appendix B for mixtures of Clayton, Frank, Gumbel–
Barnett and Normal copulas. The results are reported in Table 1. Generally speaking, these drift
terms are higher for Θn,ρ and Θn,PL than for Θn,τ . This indicates that the estimator based on
Kendall’s tau is more robust under perturbations of H0 of the type Qδn , which is not necessarily
a good property for goodness-of-fit testing where one wants to detect departures from H0.
There is no hope to obtain explicit representations for the asymptotic distributions of Vρ

n,N , Vτ
n,N

and VPL
n,N , and consequently for the associated power curves. A procedure to overcome this difficulty

is explained next in order to compute the local power curve of the Cramér–von Mises tests. For
simplicity, only the case involving Vρ

n,N is detailed.
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Table 1: Drift terms for the estimators based on Spearman’s rho, the pseudo-maximum likelihood
and Kendall’s tau under mixtures of Clayton, Frank, Gumbel–Barnett and Normal copulas

τCθ
τD Model µρ µPL µτ Model µρ µPL µτ

0.1 0.2 0.244 0.250 0.030 0.901 0.926 0.111
0.1 0.3 0.475 0.487 0.059 1.789 1.815 0.231
0.1 0.4 0.692 0.697 0.086 2.615 2.704 0.333
0.1 0.5 Clayton 0.889 0.882 0.114 Frank 3.385 3.519 0.435
0.4 0.5 0.527 0.544 0.067 1.319 1.381 0.164
0.4 0.6 0.996 0.995 0.128 2.436 2.619 0.315
0.4 0.7 1.384 1.393 0.183 3.351 3.810 0.452
0.4 0.8 1.679 1.786 0.228 4.021 4.762 0.548
0.1 0.2 0.099 0.101 0.013 0.154 0.154 0.019
0.1 0.3 0.192 0.198 0.025 0.301 0.302 0.037
0.1 0.4 0.281 0.290 0.037 0.440 0.443 0.054
0.1 0.5 Gumbel– 0.485 0.379 0.049 Normal 0.565 0.572 0.071
0.4 0.5 Barnett 0.096 0.101 0.016 0.120 0.123 0.017
0.4 0.6 0.179 0.195 0.029 0.226 0.228 0.032
0.4 0.7 0.250 0.282 0.044 0.312 0.315 0.046
0.4 0.8 0.303 0.797 0.068 0.377 0.387 0.062

First note that under (Qδn)n≥1,

Vρ
n,N  Ṽρ =

∫ 1

0

∫ 1

0

{

C̃ρ(x, y)
}2

dxdy =

∫ 1

0

∫ 1

0

{Cρ(x, y) + δhρ(x, y)}2
dxdy,

where hρ(x, y) = D(x, y) − Cθ(x, y) − µρ(Cθ , D)Ċθ(x, y). Hence, for large values of n and N , an
approximation is given by

Ṽρ
n,N =

∫ 1

0

∫ 1

0

{Cn,N,ρ(x, y) + δhρ(x, y)}2dxdy,

where Cn,N,ρ is the empirical copula goodness-of-fit process where θ is estimated through an inver-

sion of Spearman’s rho. One can see that Ṽρ
n,N = Vρ

n,N + 2δV1 + δ2V2, where

V1 =

∫ 1

0

∫ 1

0

hρ(x, y)Cn,N,ρ(x, y)dxdy

=
1√
n

n
∑

i=1

∫ 1

R̃i,n

∫ 1

S̃i,n

hρ(x, y)dxdy −
√
n

∫ 1

0

∫ 1

0

hρ(x, y)Cθ̂n,ρ
(x, y)dxdy

and

V2 =

∫ 1

0

∫ 1

0

{hρ(x, y)}2
dxdy.

In Figure 1 and Figure 2, the local power curves of the Cramér–von Mises test statistic computed
under the three considered estimation strategies using the above approximations with n = 2500 and
N = 2500 are reported under mixtures of Clayton, Frank, Gumbel–Barnett and Normal copulas.
The strength of the dependence of the null copula C and of the perturbation copulaD, as measured
by Kendall’s tau, are (τC , τD) = (0.1, 0.5) in Figure 1 and (τC , τD) = (0.4, 0.8) in Figure 2.
It is first interesting to note that surprisingly, the choice of the estimator has a significant impact
on the local power curves in almost all cases considered, except under Normal mixtures. Under
Clayton alternatives, the conclusions are the same in Figure 1 and Figure 2, namely that Vτ

n,N
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Figure 1: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N under mixtures

of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal copulas with τC = 0.1 and τD = 0.5.

has a significantly much larger local power than its two competitors. Overall, Vρ
n,N is the least

powerful locally. Probably due to the fact that the drift terms µτ associated to the estimation by
Kendall’s tau are small (see Table 1), Vτ

n,N performs generally very well, especially in the case of

small level of dependence, i.e. for (τC , τD) = (0.1, 0.5). For higher degrees of dependence, VPL
n,N

is often better than Vτ
n,N and constitutes a good choice under all scenarios, except for Clayton

mixtures.

4.2. Comparison of the empirical copula process with the moment-based statistics

In view of Propositions 3 and 4, the asymptotic local power curves β1, . . . , β4 of the goodness-of-fit
tests based on Sn1, . . . ,Sn4 are of the form

βj(δ, Cθ, D) = 1 − Φ

{

zα/2 −
∣

∣

∣

∣

δµj(Cθ, D)

σj(Cθ)

∣

∣

∣

∣

}

+ Φ

{

−zα/2 −
∣

∣

∣

∣

δµj(Cθ, D)

σj(Cθ)

∣

∣

∣

∣

}

, (10)

where zα/2 is the (1 − α/2)-th percentile of a N (0, 1) distribution. Here, µ1 = µρ − µτ , µ2 =
µρ − µPL, µ3 = µτ − µPL and µ4 = η1 − η2. In view of equation (10), the local power of the test
based on Snj only depends on the absolute value of the ratio µj(Cθ , D)/σj(Cθ), i.e. the asymptotic
local efficiency. Some values of µ1, µ2 and µ3 are reported in Table 2 under the four choices of
mixture distributions. The highest local efficiencies, i.e. the one that yields the most power locally
among the three, are identified in bold.

Table 2 establishes a clear picture of which statistic is the best under a given scenario of mixture
distributions : for Clayton, Gumbel–Barnett and Normal mixtures, Sn1 is the most powerful locally,
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Figure 2: Asymptotic local power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N under mixtures

of (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal copulas with τC = 0.4 and τD = 0.8.

while Sn3 is the best for local mixtures of Frank copulas. The test statistic Sn2 is very poor in all
cases, except when (τC , τD) = (0.4, 0.8) under Gumbel–Barnett alternatives. It is also interesting
to note that under Clayton mixtures, Sn1 performs better than Shih’s statistic Sn4, even if the
latter is specifically conceived for this particular case. To come to this conclusion, note that
|µ4|/σ4 = 0.655 when (τC , τD) = (0.1, 0.5) and |µ4|/σ4 = 0.347 when (τC , τD) = (0.4, 0.8).
Figure 3 compares the local power curves of Sn1, Sn2 and Sn3 to the best statistic among Vn,N,ρ,
Vn,N,τ and Vn,N,PL according to the results of subsection 4.1. Only the case (τC , τD) = (0.4, 0.8)
is considered. For the mixture of Clayton copulas, the goodness-of-fit statistic of Shih, suitable
only for this family, is also investigated.
The test statistic Sn1 exhibit high power locally in all cases, while Sn3 also performs very well. The
most surprising discovery here is the rather poor performance of the Cramér–von Mises statistics
compared to the very simple, asymptotically normal moment-based statistics. These conclusions
must however be treated with care since the nature of the alternative distributions considered could
have favored the moment-based statistics. Nevertheless, the latter deserve further investigations
under other types of alternatives. Also, multivariate extensions of Sn1, . . . ,Sn4 could be considered
as serious competitors to Vρ

n,N , Vτ
n,N and VPL

n,N , the latter being very costly in terms of computing
time.

In some cases, e.g. in panel (b) of Figure 3, it is difficult to decide whether Sn2 performs better
than VPL

n,N , locally. A way to circumvent this problem consists in computing some measure of
asymptotic relative efficiency. This idea is developed in the next section.

5. Asymptotic relative efficiencies
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Table 2: Asymptotic local efficiency terms for the test statistics Sn1, Sn2 and Sn3 under mixtures
of Clayton, Frank, Gumbel–Barnett and Normal copulas

Mixture Sn1 Sn2 Sn3 Mixture Sn1 Sn2 Sn3

τCθ
τD model |µ1|/σ1 |µ2|/σ2 |µ3|/σ3 model |µ1|/σ1 |µ2|/σ2 |µ3|/σ3

0.1 0.2 1.627 0.006 0.227 3.329 0.065 4.269

0.1 0.3 3.163 0.013 0.442 6.566 0.067 8.298

0.1 0.4 4.608 0.009 0.632 9.617 0.230 12.420

0.l 0.5 Clayton 5.894 0.005 0.794 Frank 12.432 0.346 16.155

0.4 0.5 0.762 0.007 0.234 1.162 0.039 1.873

0.4 0.6 1.438 0.000 0.426 2.134 0.115 3.547

0.4 0.7 1.989 0.004 0.594 2.916 0.290 5.169

0.4 0.8 2.403 0.046 0.765 3.494 0.468 6.487

0.1 0.2 1.920 0.006 0.289 3.971 0.000 0.444
0.1 0.3 3.728 0.019 0.568 7.765 0.003 0.871
0.1 0.4 5.446 0.029 0.831 11.353 0.010 1.278
0.1 0.5 Gumbel– 9.732 0.338 1.084 Normal 14.529 0.023 1.646
0.4 0.5 Barnett 0.795 0.017 0.361 1.459 0.011 0.446
0.4 0.6 1.491 0.056 0.706 2.748 0.007 0.824
0.4 0.7 2.048 0.112 1.012 3.768 0.011 1.131
0.4 0.8 2.336 1.725 3.099 4.462 0.036 1.367

In bold, the most powerful statistic locally among Sn1, Sn2 and Sn3

5.1. A new ARE measure

For a goodness-of-fit statistic whose limiting distribution is normal with mean δµ(Cθ , D) and vari-
ance σ2(Cθ), the associated local power curve β(δ, Cθ, D) is an increasing function of µ(Cθ, D)/σ(Cθ, D)
for all fixed values of δ > 0. It thus seems natural to compare the efficiency of two such statistics
Snj and Snk via Pitman’s measure of asymptotic relative efficiency (ARE), namely

AREPitman(Snj ,Snk) =

{

µj(Cθ, D)/σj(Cθ)

µk(Cθ, D)/σk(Cθ)

}2

.

However, it is not entirely clear how to extend this measure in the case when the limiting distri-
bution of a test statistic is no longer normal, which is the case with many of the goodness-of-fit
statistics. A generalization of Pitman’s measure proposed by Genest et al. (2006c) and Genest et

al. (2007) is

ÃRE(Snj ,Snk) = lim
δ→0

βSnj (δ) − βSnj(0)

βSnk
(δ) − βSnk

(0)

in terms of the local power functions βSnj , βSnk
of two tests Snj and Snk. For most cases of

interest, however, this measure requires the derivatives of the power curves in a neighborhood of
δ = 0. Since the asymptotic local power functions of the tests based on Vn,N,ρ, Vn,N,τ and Vn,N,PL

admit no explicit representations, this causes a serious problem when trying to apply the latter
definition.

Here, another generalization of AREPitman is proposed :

ARE(Snj ,Snk) =

{

lim
M→∞

∫ M

0
{1 − βSnk

(δ)} dδ
∫ M

0

{

1 − βSnj(δ)
}

dδ

}2

. (11)

The first motivation for such a definition is the possibility to estimate
∫ M

0

{

1 − βSnj (δ)
}

dδ and
∫ M

0
{1 − βSnk

(δ)} dδ when accurate approximations β̂Snj and β̂Snk
are available. This is the case

for the power curves of the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N . To be specific, suppose β̂(δ)
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Figure 3: Asymptotic local power of the Cramér–von Mises tests and of Sn1, Sn2, Sn3 and Sn4

under (a) Clayton, (b) Frank, (c) Gumbel–Barnett and (d) Normal mixtures with τC = 0.4 and
τD = 0.8.

is available at the points iM/N , i = 1, . . . , N , for sufficiently large N in order to achieve some

numerical accuracy. Upper and lower approximations of
∫ M

0

{

1 − βSnj(δ)
}

dδ are

I1 =
M

N

N
∑

i=1

{

1 − β̂

(

iM

N

)}

and I2 =
M

N

N−1
∑

i=0

{

1 − β̂

(

iM

N

)}

,

and the chosen approximation, provided M is selected such that β̂(M) = 1, is

I1 + I2
2

=
M

N

N−1
∑

i=1

{

1 − β̂

(

iM

N

)}

+
M

N

(

1 − α

2

)

.

Another interesting feature of ARE(Snj ,Snk) is the fact that it generalizes Pitman’s notion of
asymptotic relative efficiency. To see this, let β(δ) = 1 − Φ(zα/2 − δµ) + Φ(−zα/2 − δµ) and
compute

∫ ∞

0

{1 − β(δ)} dδ =

∫ ∞

0

Φ
(

zα/2 − δµ
)

dδ −
∫ ∞

0

Φ
(

−zα/2 − δµ
)

dδ

=
1

µ

{
∫ zα/2

−∞

Φ(x)dx −
∫ −zα/2

−∞

Φ(x)dx

}

=
1

µ

∫ zα/2

−zα/2

Φ(x)dx =
zα/2

µ
.
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As a consequence, one has

∫ ∞

0

{1 − βj(δ, Cθ, D)}dδ = zα/2

{

µj(Cθ, D)

σj(Cθ)

}−1

(12)

for local power functions of the form (10). Computations of ARE for some of the goodness-of-fit
statistics encountered in this paper are provided in the next subsection.

5.2. Local efficiency comparisons

In all situations considered in subsection 4.2, the best moment-based statistic locally outperform
the best Cramér–von Mises statistic. Hence, it seems useless to compare the latter in terms of
their asymptotic relative efficiency. However, since the power curves of Vρ

n,N , Vτ
n,N and VPL

n,N are
often very close to each other, such computations could be very interesting. They are presented in
Table 3.

Table 3: Estimated values of limM→∞

∫ M

0
{1−β(δ)}dδ for the goodness-of-fit statistics Vρ

n,N , Vτ
n,N

and VPL
n,N and asymptotic relative efficiencies under mixtures of Clayton, Frank, Gumbel–Barnett

and Normal copulas.

Mixture limM→∞

R M
0

{1 − β(δ)}dδ Asymptotic relative efficiency
model τCθ

τD Vρ
n,N

Vτ
n,N VPL

n,N (Vρ
n,N

,Vτ
n,N ) (Vρ

n,N
,VPL

n,N ) (Vτ
n,N ,VPL

n,N )

Clayton 0.1 0.5 12.018 2.540 12.618 0.211 1.050 4.968
0.4 0.8 23.469 8.349 26.091 0.356 1.112 3.125

Frank 0.1 0.5 17.464 2.381 17.594 0.136 1.007 7.389
0.4 0.8 29.483 27.079 8.670 0.918 0.294 0.320

Gumbel– 0.1 0.5 5.954 2.506 16.143 0.421 2.711 6.442
Barnett 0.4 0.8 30.369 9.282 5.475 0.306 0.180 0.590

Normal 0.1 0.5 3.142 2.491 3.150 0.793 1.003 1.265
0.4 0.8 8.390 8.527 8.609 1.016 1.026 1.010

These computations show, among other things, that Vτ
n,N is generally more powerful than VPL

n,N for
low dependence alternatives, i.e. close to independence. An opposite conclusion arises for mixture
of high dependence copulas, namely when (τC , τD) = (0.4, 0.8). The performance of V PL

n,N and V ρ
n,N

are quite similar for low dependence, except under Gumbel–Barnett mixtures. Overall, V τ
n,N seems

the best choice close to the independence copula, while V PL
n,N performs well under high levels of

dependence.
Looking back at panel (b) of Figure 3, it is difficult to decide whether Sn2 performs better than

VPL
n,N . Even though the local power curve of VPL

n,N reaches 1 more quickly, the asymptotic relative

efficiency is given by ARE(VPL
n,N ,Sn2) = 0.950, which supports the choice of Sn2 if a mixture of

Frank distributions is suspected as a possible alternative.

6. Sensitivity in small samples

This section is devoted to the sensitivity in small samples and under fixed alternatives of the test
statistics encountered in this paper, namely Vρ

n,N , Vτ
n,N,, VPL

n,N , Sn1, Sn2, Sn3 and Sn4. The main
goal is to relate the asymptotic local efficiency results of Section 4 and Section 5 with empirical
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situations. In subsection 6.1, the specific influence of the estimators on the power of the Cramér–von
Mises statistics is investigated. In subsection 6.2, comparisons with the moment-based statistics
are made. These results will be paralleled with those presented in subsections 4.1 and 4.2 under
contiguous sequences.

6.1. Influence of the estimators on the power of the Cramér–von Mises statistics

It was seen in subsection 4.1 that the asymptotic local powers of the goodness-of-fit tests based
on the empirical copula process are sensitive to the choice of the estimator of the dependence
parameter, at least under the mixture distributions considered. In this section, the ability of
Vρ

n,N , Vτ
n,N and VPL

n,N to reject the null hypothesis is first examined under fixed alternatives and
many sample sizes. The results can be found in Tables 4–7. First note that all 5% nominal levels
are maintained, keeping in mind a margin of error of the magnitude of ±1% when estimating
proportions from 10 000 replicates.
When Clayton’s family of copulas is in the null hypothesis, one can see from Table 4 that Vρ

n,N

performs very well against all alternatives, especially in small samples, while Vτ
n,N is almost as

powerful. The latter are significantly superior to VPL
n,N under Gumbel–Barnett alternatives, espe-

cially in small samples. The performance of VPL
n,N however surpasses that of Vρ

n,N and Vτ
n,N under

Frank and Normal alternatives, and this advantage is particularly marked for higher degrees of
dependence.

Things are much simpler in Table 5 when testing the membership to Frank’s family, where
the three considered estimation strategies yield almost the same power for the Cramér–von Mises
statistics. For the null hypothesis of belonging to Gumbel–Barnett’s class, the statistic VPL

n,N is
remarkably better than its two competitors under Frank and Normal alternatives, especially for
large sample sizes, as one can notice from the entries in Table 6. An opposite conclusion must
however be made under Clayton alternatives, where Vρ

n,N and Vτ
n,N are slightly better.

Finally, the most powerful statistics for testing the Normal hypothesis are Vρ
n,N and Vτ

n,N under

Clayton alternatives, while VPL
n,N is the best choice under observations that come from the Frank

copula. Here again, the performance of the latter increases as the sample size becomes larger.
In a second series of analyses, the power of the Cramér–von Mises statistics under mixture

distributions of the type Qδn = (1−δn)Cθ +δnCθ′ have been considered for samples of size n = 500.
The corresponding empirical power curves are presented in Figure 4. In this setting, 100× δ/

√
500

% of the observations come from the distribution Cθ′ , so the power increases with δ. However, from
a certain threshold, the observed powers suddenly decreases toward the nominal level. This occurs
because Cθ′ also belongs to the family of copulas under H0. One may have expected, however,
that the powers would start to decrease at the middle point, i.e. when δ =

√
500/2 ≈ 11.2. The

observed asymmetry in all four cases is probably an indication that the goodness-of-fit tests are
better to detect discrepancies from H0 when the data come from a copula with a high level of
dependence. The fact that θ′ > θ probably explained that the middle point is skewed to the right.

As expected, the differences in power between Vρ
n,N , Vτ

n,N and VPL
n,N are less apparent in small

sample sizes than it was asymptotically (see Figure 2 to compare). Nevertheless, the conclusions
here are very similar to the asymptotic situation, except that the performance of Vρ

n,N is not as bad
as for n → ∞ under Clayton and Gumbel-Barnett mixtures. Briefly, the choice of the estimator
doesn’t seem to have a significant influence under Gumbel–Barnett and Normal mixtures, while
for Clayton mixtures, the pseudo-likelihood estimator is not recommended. The latter is however
the best choice under Frank mixtures.
6.2. Power of the Cramér–von Mises statistics compared to the moment-based statistics

It was seen in subsection 6.1 that the test statistic Vρ
n,N was a good choice for small sample sizes

when testing the goodness-of-fit under the hypothesis of belonging to the Clayton family. The
ability to reject H0 in that case is almost as good for tests based on Sn2 and Sn3, with a slight
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Table 4: Estimated percentage of rejection of the null hypothesis of belonging to Clayton’s family
for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2 and Sn3 under fixed copula
alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 5.0 4.5 4.2 3.2 3.4 6.2 22.4 20.2 12.0 2.7 11.2 6.0
0.15 5.7 5.0 5.2 3.1 4.2 7.2 38.7 36.6 24.0 2.3 18.6 11.0
0.20 6.0 5.5 5.6 2.8 4.5 6.8 55.4 53.3 38.6 1.4 27.6 19.1

250 0.10 5.1 4.6 5.1 3.9 4.9 6.1 37.7 36.1 26.6 2.4 33.8 26.6
0.15 5.3 5.1 5.0 4.0 4.9 5.9 65.4 64.6 53.2 1.7 58.2 49.9
0.20 5.1 5.3 5.1 3.1 5.1 5.9 86.2 85.5 77.7 1.1 78.0 74.5

500 0.10 5.0 5.0 4.3 3.5 5.1 5.3 57.1 54.9 46.6 1.3 64.8 59.8
0.15 5.6 5.1 4.8 4.8 4.9 5.7 86.6 86.2 79.9 1.4 90.1 88.2
0.20 5.0 5.2 5.3 3.6 5.1 5.8 97.5 97.3 95.6 1.1 98.4 98.2

1000 0.10 5.1 5.1 4.7 3.0 5.2 5.4 73.3 73.8 69.7 0.6 90.5 89.9
0.15 4.8 5.3 5.3 5.0 5.5 5.7 97.4 97.5 96.0 0.8 99.7 99.7
0.20 5.1 5.3 5.3 4.8 4.9 5.2 99.9 100 99.9 2.2 100 100

2500 0.10 4.7 4.7 6.2 4.2 4.8 5.2 90.1 89.8 90.5 0.4 99.9 99.9
0.15 4.8 4.8 5.5 4.7 4.3 4.6 99.9 99.9 99.9 0.3 100 100
0.20 4.5 5.3 5.5 5.8 5.9 5.2 100 100 100 13.0 100 100

H1: Frank H1: Normal
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 12.8 11.6 8.1 3.9 7.5 3.8 12.3 11.2 6.7 3.4 5.6 3.1
0.15 20.8 19.2 13.9 4.3 11.0 4.8 20.2 18.4 11.5 3.6 8.0 3.9
0.20 31.3 29.5 23.9 5.1 17.6 9.3 29.4 26.9 17.9 3.2 11.5 6.1

250 0.10 18.8 18.3 17.8 4.7 24.0 16.4 18.6 17.3 12.7 4.0 17.4 11.4
0.15 36.0 34.8 36.5 7.3 44.0 34.2 33.0 32.3 25.5 5.3 29.4 21.1
0.20 55.7 54.6 58.3 9.3 64.7 56.5 49.7 47.8 41.2 5.0 44.3 36.1

500 0.10 28.7 27.1 32.0 5.3 49.9 42.8 25.8 24.6 20.8 3.9 35.8 29.1
0.15 54.5 52.9 61.3 10.2 81.2 75.4 48.6 46.9 43.6 7.0 61.4 53.7
0.20 77.1 76.1 84.7 14.1 95.3 93.6 69.7 68.4 66.7 7.9 81.8 78.0

1000 0.10 37.3 37.8 50.5 5.5 81.4 78.2 33.8 33.0 35.5 3.9 63.6 59.5
0.15 72.3 72.3 83.5 15.7 98.7 98.1 66.7 65.8 65.8 10.2 92.5 89.4
0.20 92.4 92.8 97.6 25.0 100 100 88.2 87.3 89.4 15.2 99.0 98.8

2500 0.10 50.2 48.5 73.3 9.0 99.6 99.6 43.4 42.4 52.4 5.8 96.1 95.9
0.15 88.9 88.6 96.5 20.5 100 100 83.5 82.2 88.0 14.0 100 100
0.20 99.1 99.2 99.9 40.4 100 100 97.5 97.8 98.6 28.7 100 100
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Table 5: Estimated percentage of rejection of the null hypothesis of belonging to Frank’s family
for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2 and Sn3 under fixed copula
alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 7.1 6.4 6.4 4.0 1.1 6.5 10.5 9.6 10.0 3.0 1.0 6.5
0.15 11.3 10.2 10.4 3.6 1.3 8.3 15.2 14.2 14.6 2.4 1.0 8.5
0.20 16.3 14.8 15.5 2.6 1.1 10.1 17.3 17.0 17.3 1.8 1.3 11.0

250 0.10 12.7 12.0 12.9 3.2 1.6 9.4 12.6 12.8 12.9 2.1 0.8 9.6
0.15 24.8 24.8 26.0 2.3 1.4 15.1 19.7 19.6 20.3 0.9 1.6 15.4
0.20 43.4 43.5 43.7 1.4 2.3 18.9 28.3 29.6 29.6 0.5 3.7 20.3

500 0.10 22.6 22.1 21.7 2.8 1.1 15.9 16.5 16.2 16.0 1.0 1.0 16.1
0.15 47.3 47.1 47.0 1.8 2.4 25.9 28.3 28.6 28.8 0.5 5.1 27.1
0.20 73.2 74.2 73.7 1.0 6.5 31.8 42.8 45.7 45.1 1.0 14.4 34.1

1000 0.10 36.4 39.3 38.5 2.2 1.5 26.8 21.4 22.9 22.7 0.4 3.6 29.0
0.15 72.5 73.1 72.1 1.3 8.4 41.7 41.1 42.8 41.9 0.9 19.2 45.8
0.20 92.8 92.9 93.2 1.3 18.0 47.9 60.6 62.1 63.9 8.0 37.1 54.7

2500 0.10 53.2 52.2 51.9 1.4 8.5 51.1 26.0 26.2 26.5 1.0 26.3 59.5
0.15 90.6 91.1 91.5 1.1 32.3 74.8 53.6 56.0 56.9 19.8 66.0 82.4
0.20 99.6 99.5 99.4 10.9 54.1 79.9 79.9 79.7 81.2 65.9 85.6 88.7

H1: Frank H1: Normal
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 6.0 5.6 5.5 4.6 2.3 4.3 6.0 5.1 5.4 3.8 2.1 4.7
0.15 6.0 5.7 5.6 4.5 2.8 4.5 6.4 5.7 5.7 3.6 2.5 5.0
0.20 5.4 5.4 5.2 4.5 3.3 4.7 6.7 6.4 6.7 3.3 2.8 5.9

250 0.10 4.8 4.9 4.9 4.2 3.1 4.5 6.2 5.6 6.0 3.3 3.2 5.3
0.15 4.8 4.7 4.7 3.9 3.4 4.6 6.6 6.0 6.3 2.8 3.5 6.6
0.20 4.5 5.1 4.8 4.2 3.6 4.7 8.3 7.7 7.9 2.0 3.0 7.8

500 0.10 4.6 4.6 4.5 3.9 4.1 4.6 6.2 5.6 5.4 2.7 3.7 6.6
0.15 4.7 4.9 4.6 4.5 4.2 5.2 8.0 7.5 7.6 2.2 4.3 8.1
0.20 5.0 5.3 5.1 4.7 4.4 5.1 10.8 11.4 10.1 1.6 4.1 8.6

1000 0.10 4.3 5.9 5.1 4.7 4.7 5.3 7.3 7.6 6.8 2.5 4.1 8.2
0.15 5.4 5.7 5.1 5.0 5.0 5.1 9.8 10.3 9.2 1.6 3.9 8.9
0.20 4.8 5.1 5.1 4.7 4.9 4.7 14.7 14.3 13.8 1.0 3.5 8.8

2500 0.10 5.3 5.1 4.3 4.6 4.6 4.4 7.6 7.4 6.8 1.7 4.5 9.0
0.15 5.0 5.5 5.0 4.8 5.1 5.7 10.9 11.3 11.2 1.2 4.8 11.2
0.20 5.4 5.0 5.3 4.2 4.7 4.5 17.2 16.2 17.3 0.6 4.0 9.5
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Table 6: Estimated percentage of rejection of the null hypothesis of belonging to Gumbel–Barnett’s
family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2 and Sn3 under fixed copula
alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 9.3 7.9 5.4 6.2 16.5 5.8 3.6 3.7 4.9 5.7 5.9 7.0
0.15 18.8 16.8 12.1 7.6 22.4 7.2 4.7 4.3 5.2 5.6 5.1 6.3
0.20 31.5 29.9 22.2 7.8 26.7 9.6 4.9 4.7 5.3 5.3 4.4 4.8

250 0.10 26.8 25.1 20.7 8.4 36.3 24.2 4.6 4.5 5.4 5.5 5.8 5.9
0.15 53.9 52.4 45.7 9.4 53.1 38.4 4.8 4.9 4.9 4.9 5.0 4.8
0.20 78.9 77.5 70.6 10.4 67.9 55.1 5.2 5.0 5.0 5.1 4.7 4.6

500 0.10 48.8 48.0 41.7 9.9 59.8 51.8 4.7 5.1 4.8 4.8 4.9 4.8
0.15 83.2 83.0 78.6 12.4 83.8 78.1 5.1 5.0 5.6 4.1 5.0 4.7
0.20 96.9 96.8 95.6 13.0 94.2 92.3 4.9 4.4 4.7 4.4 5.1 4.9

1000 0.10 73.5 72.4 69.1 13.6 88.8 85.9 5.0 4.8 5.6 4.8 4.9 4.8
0.15 97.5 97.0 96.7 19.3 98.9 98.7 5.1 4.9 5.3 4.5 4.8 5.1
0.20 100 100 99.9 22.5 99.9 99.9 5.3 4.9 5.3 4.6 5.0 4.8

2500 0.10 92.6 91.6 90.4 16.3 99.9 99.9 5.8 4.9 5.0 3.5 5.6 5.4
0.15 99.9 99.9 99.9 35.0 100 100 5.6 5.2 5.6 4.4 5.2 4.9
0.20 100 100 100 41.7 100 100 5.5 5.0 5.3 5.2 5.1 5.5

H1: Frank H1: Normal
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 4.2 3.8 3.2 7.7 13.2 4.7 4.0 3.6 3.0 7.2 10.3 4.1
0.15 5.4 5.2 5.1 9.7 16.4 4.6 4.9 4.3 3.8 8.5 11.9 3.7
0.20 7.3 7.3 7.1 12.9 20.1 4.8 5.6 5.0 4.4 9.5 12.2 3.0

250 0.10 7.2 7.4 10.1 10.2 27.7 16.5 6.4 6.3 6.6 9.5 18.4 10.7
0.15 12.8 13.0 18.1 15.3 42.0 26.0 10.4 9.8 9.8 11.9 25.3 13.4
0.20 18.2 18.4 27.2 22.1 55.8 38.8 15.2 13.7 13.6 16.1 32.1 17.9

500 0.10 12.4 12.9 21.4 14.4 48.7 38.8 10.3 10.2 12.0 12.6 31.4 22.4
0.15 22.2 23.1 37.5 24.1 73.3 63.6 18.3 16.8 19.4 18.5 47.3 35.2
0.20 36.2 35.4 56.1 36.5 89.9 84.4 26.4 23.9 28.6 27.7 62.7 49.7

1000 0.10 18.7 19.2 36.8 19.5 79.6 74.5 14.9 14.2 20.7 16.9 57.4 50.1
0.15 37.0 36.1 62.3 38.8 97.0 95.7 28.1 25.6 35.5 32.3 79.8 73.5
0.20 56.9 57.1 81.9 58.3 99.7 99.6 41.0 40.7 51.6 50.3 91.1 86.3

2500 0.10 28.4 25.5 54.8 25.8 99.6 99.5 23.1 20.3 31.8 21.6 94.3 92.5
0.15 54.7 55.1 81.4 65.9 100 100 39.8 40.6 54.8 62.1 99.4 99.2
0.20 79.8 79.5 95.2 88.0 100 100 62.6 60.5 72.8 85.1 100 100
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Table 7: Estimated percentage of rejection of the null hypothesis of belonging to the Normal
family for the goodness-of-fit tests based on Vρ

n,N , Vτ
n,N , VPL

n,N , Sn1, Sn2 and Sn3 under fixed
copula alternatives.

H1: Clayton H1: Gumbel–Barnett
n τ Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N
VPL

n,N
Sn1 Sn2 Sn3

100 0.10 4.8 4.4 4.5 4.9 5.0 6.2 7.1 6.8 7.0 4.1 5.4 6.7
0.15 7.7 7.5 7.7 4.3 3.9 6.0 10.5 9.6 9.6 2.9 5.1 6.9
0.20 12.3 12.2 11.4 4.3 4.2 5.9 13.9 13.5 13.5 2.4 5.1 6.9

250 0.10 10.5 9.6 9.5 5.0 4.2 6.8 10.3 9.1 9.7 2.8 5.4 8.3
0.15 21.7 21.4 19.6 4.5 4.5 7.3 15.5 15.6 14.6 2.0 5.5 8.2
0.20 36.6 37.4 32.9 3.2 3.9 6.5 21.5 21.4 19.7 1.2 5.3 8.0

500 0.10 19.7 20.5 16.9 4.8 5.5 8.3 14.1 13.7 12.8 2.1 6.6 9.6
0.15 41.3 42.3 36.7 3.5 5.8 8.7 22.6 22.8 19.8 0.8 7.2 9.5
0.20 65.1 65.4 58.9 2.6 5.3 7.2 32.9 32.8 28.8 1.6 6.6 8.3

1000 0.10 33.7 31.8 28.2 4.6 8.0 10.5 18.6 16.8 15.9 1.1 9.5 11.7
0.15 64.3 64.2 59.1 2.7 10.4 12.7 31.3 30.2 27.7 1.7 11.5 12.1
0.20 87.8 88.2 84.2 2.6 9.8 11.1 46.0 48.4 43.4 10.2 10.9 10.3

2500 0.10 43.2 45.1 41.9 3.0 15.3 17.8 18.1 19.7 18.7 1.6 18.4 18.4
0.15 83.1 85.1 82.1 3.3 21.9 23.2 37.9 41.6 37.8 27.0 21.8 18.3
0.20 98.6 98.5 98.0 11.2 25.8 24.9 61.9 62.2 59.0 67.0 26.7 18.4

H1: Frank H1: Normal
n τ Vρ

n,N
Vτ

n,N VPL
n,N Sn1 Sn2 Sn3 Vρ

n,N
Vτ

n,N VPL
n,N Sn1 Sn2 Sn3

100 0.10 4.1 4.0 4.3 5.2 11.7 7.4 4.5 4.1 4.1 4.9 6.0 5.1
0.15 4.5 4.4 5.1 5.9 15.6 10.0 4.8 4.7 4.4 4.9 5.6 4.7
0.20 5.9 6.1 7.3 7.3 20.9 14.7 4.7 4.7 5.0 5.3 6.3 5.4

250 0.10 5.0 5.0 5.8 6.1 15.9 11.2 4.6 4.1 4.2 5.2 5.2 5.2
0.15 6.3 6.7 9.7 7.2 25.6 19.6 4.8 4.9 5.1 5.1 5.3 5.3
0.20 7.3 7.8 12.7 9.4 35.3 30.2 4.5 4.8 4.6 4.9 5.0 5.4

500 0.10 6.1 6.6 8.1 6.8 22.7 18.2 5.0 5.0 4.5 4.9 4.7 5.4
0.15 7.1 8.2 13.2 8.8 36.9 31.5 5.2 5.4 4.7 5.1 5.2 5.6
0.20 9.5 11.1 20.1 11.1 55.2 51.2 4.9 4.9 4.6 5.2 4.9 4.9

1000 0.10 7.5 7.1 11.2 8.4 34.9 30.0 6.2 5.2 5.0 5.5 5.3 5.1
0.15 8.7 9.5 19.5 11.0 59.8 55.3 5.5 5.1 4.9 5.4 4.8 4.6
0.20 13.2 14.7 31.5 13.8 82.2 80.4 5.0 5.1 5.4 4.5 5.1 5.1

2500 0.10 6.4 7.2 14.1 9.8 63.7 60.7 4.3 5.0 4.9 4.5 4.8 4.8
0.15 10.0 11.7 26.7 14.5 91.7 90.5 4.4 5.2 5.1 5.4 4.8 4.7
0.20 17.7 18.1 45.1 17.0 99.3 99.4 5.2 5.1 5.3 5.0 5.3 5.7
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Figure 4: Power curves for the tests based on Vρ
n,N , Vτ

n,N and VPL
n,N under (a) Clayton, (b) Frank,

(c) Gumbel–Barnett and (d) Normal mixtures with (τC , τd) = (0.4, 0.8), n = 500 and N = 2500.

advantage to Sn2. The power of the latter even becomes larger than that of Vρ
n,N when n ≥ 500

and is often better than the best Cramér–von Mises statistic in large samples, namely VPL
n,N . Note

the poor performance of Sn1 in all cases considered.
When testing the hypothesis of belonging to the Frank family, Sn1 and Sn2 are bad choices.

However, Sn3 is sometimes comparable with the Cramér–von Mises statistics when the sample size
is large, especially under Gumbel–Barnett alternatives.

The null hypothesis of a Gumbel–Barnett family provides an example of a very powerful
moment-based statistic. Here, Sn2 is more powerful than the best Cramér–von Mises statistic,
namely Vρ

n,N under Clayton and VPL
n,N under Frank and Normal copulas. Another example is

given when testing the hypothesis of belonging to the Normal family against Frank alternatives,
where Sn2 and Sn3 are clearly the most powerful. The latter are unfortunately inefficient to detect
Clayton and Gumbel–Barnett dependence structures.

A final analysis have been made to compare the power of the tests under Qδn = (1 − δn)Cθ +
δnCθ′ . The results are to be found in Figure 5. Here, the ordering in the power curves are often quite
different to the ones encountered in Figure 3 in the asymptotic situation. An explanation probably
lies in the fact that the moment-based statistics are especially good in very large samples, and the
result is that the latter outclass the Cramér–von Mises statistics when n → ∞. This domination
is weaker in moderate sample sizes. This is particularly evident under Clayton mixtures where
the best Cramér–von Mises statistic outperforms all moment-based statistics. Note here the very
poor performance of Sn1, in contrast to the extremely good performance of the same statistic when
n → ∞. Under Frank mixtures the moment-based statistics perform very well even for moderate
sample sizes, where they outperform the best Cramér–von Mises statistic. Under Gumbel–Barnett
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mixtures, Sn1 is clearly the best statistic while under Normal mixtures, Sn3 is the best and Sn1

provides a very poor performance.
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Figure 5: Power of the tests based on Vn,N , Sn1, Sn2, Sn3 and Sn4 when n = 500 under (a) Clayton,
(b) Frank, (c) Gumbel–Barnett and (d) Normal mixtures with τC = 0.4 and τD = 0.8

7. Discussion

In this paper, the local power curves of tests based on Cramér–von Mises distances of the empirical
copula goddness-of-fit process have been investigated and compared to that of moment-based
statistics involving Spearman’s rho, Kendall’s tau and the pseudo-maximum likelihood estimator.
Many discoveries have been made, in particular that the estimation strategy can have a significant
impact on the power of the Cramér–von Mises statistics, and that some of the moment-based
statistics provide very powerful tests under many distributional scenarios. Also, it seems that
the ability of the Cramér–von Mises statistics to detect departures from H0 is better under fixed
alternatives rather than under mixtures, while an opposite conclusion can be expressed for the
moment-based statistics.

In future works, these kind of investigations could also be accomplished for other popular
goodness-of-fit tests like those proposed by Scaillet (2006), Huard et al. (2006) and Genest et

al. (2006a). The latter authors based their tests on Kendall’s process Kn(t) =
√
n{Kn(t) −

Kθ̂n
(t)}, where Kθ(t) = P{Cθ(X,Y ) ≤ t}, with (X,Y ) ∼ Cθ, is the bivariate probability integral

transformation of Cθ and Kn is a fully nonparametric estimator of Kθ. Suitable adaptations of
the arguments to be found in Ghoudi & Rémillard (1998) should enable to establish that Kn  

K + δ(L̇0 − µK̇θ) under alternatives of the type Qδn , where K is the weak limit of Kn under H0,
Lδ is the probability integral transformation of Qδ and µ is the drift term associated to the limit
of Θn =

√
n(θ̂n − θ) identified in Proposition 1.
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It could also be interesting to exploit the idea of moment-based statistics to test the fit to
families of multivariate copulas. For example, possible estimators of a univariate parameter θ are
those based on inversions of the multivariate extensions of Spearman’s rho described by Schmid &
Schmidt (2007), namely

ρn,⋆ = ξ(d)

{

2d

∫

(0,1)d

Cn(u)du− 1

}

and ρn,⋆⋆ = ξ(d)

{

2d

∫

(0,1)d

C̄n(u)du− 1

}

,

where ξ(d) = (d+ 1)(2d − d− 1)−1, Cn is the multivariate empirical copula and C̄n is the survival
version of Cn. Then, the local behavior of the goodness-of-fit statistic

Sn =
√
n

{

ρ−1
⋆ (ρn,⋆) − ρ−1

⋆⋆ (ρn,⋆⋆)
}

,

where ρ⋆ and ρ⋆⋆ are the population versions of ρn,⋆ and ρn,⋆⋆, will be a consequence of that of
Cn,θ that can be deduced from the proof of Proposition 2.

It may be noted that the form of the alternative hypothesis (1) is not the only one under which
asymptotic power curves could be derived. Another possibility is given by

Q⋆
δ(x, y) = ψ−1

δ [C {ψδ(x), ψδ(y)}] ,

where ψδ must satisfy some conditions to ensure that Q⋆
δ is a copula and the perturbation function

ψδ is chosen such that ψ0(t) = t. Then, by arguments similar to that in the proof of Proposition 2,
it would be possible to establish that Cn,θ  Cθ + δQ̇⋆

0, where

Q̇⋆
0(x, y) = C10(x, y)ψ̇0(x) + C01(x, y)ψ̇0(y) − ψ̇0 {C(x, y)} .
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Appendix A : Proofs

A.1. Proof of Proposition 1. Assumption (8) enables to deduce, from Lemma 3.10.11 of Van der
Vaart & Wellner (1996), that the log-likelihood ratio of Qδn with respect to Q0 has the asymptotic
representation

Ln =
δ√
n

n
∑

i=1

{

d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}

− δ2

2n

n
∑

i=1

{

d(Xi, Yi) − cθ(Xi, Yi)

cθ(Xi, Yi)

}2

+ oP(1).

The proofs for (i) and (ii) are achieved in separate steps.
(i) From the asymptotic representation (9), it follows that

Θn,Λ = Θ′
n,Λ +

1

n

n
∑

i=1

ΛCθ,10(Xi, Yi)βn1(Xi) +
1

n

n
∑

i=1

ΛCθ,01(Xi, Yi)βn2(yi) + oP(1),

where βn1(x) =
√
n{Fn(x)−x} and βn2(y) =

√
n{Gn(y)−y}. From Slutsky’s lemma, the bivariate

central limit theorem and arguments that one can find in Ghoudi & Rémillard (1998), the vector
(Θn,Λ, Ln) converges to a bivariate normal distribution with mean vector and covariance matrix

µ =

(

0,
−δ2σ2(L)

2

)

and Σ =

(

σ2
Λ(Cθ) δµΛ(Cθ , D)

δµΛ(Cθ , D) δ2σ2
Λ(Qδ)

)

,
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where σ2(L) = varCθ
{d(X,Y )/cθ(X,Y )}. One may then conclude, in view of Lecam’s third

lemma, that Θn,Λ is asymptotically normal with mean δµΛ(Cθ, D) and variance σ2
Λ(Cθ) under the

contiguous sequence (Qδn)n≥1.
(ii) From Hájek’s projection method (Hájek & Sidák, 1967), one deduces the large-sample repre-
sentation

Θn,τ =
4

τ ′Cθ
(θ)

1√
n

n
∑

i=1

{

2Cθ(Xi, Yi) −Xi − Yi +
1 − τCθ

(θ)

2

}

+ oP(1).

Hence, the vector (Θn, Ln) converges to a bivariate normal distribution with mean vector and
covariance matrix

µ =

(

0,
−δ2σ2(L)

2

)

and Σ =

(

σ2
τ δµτ (θ)

δµτ (θ) δ2σ2
τ (Qδ)

)

,

from which it follows that Θn,τ is asymptotically N (δµτ (θ), σ2
τ ) under (Qδn)n≥1.

A.2. Proof of Proposition 2. Let (X
(n)
1 , Y

(n)
1 ), . . . , (X

(n)
n , Y

(n)
n ) be a random sample from Qδn .

Write C(n)
n = C(n)

n,θ − B(n)
n , where C(n)

n,θ =
√
n(C

(n)
n − Cθ) and B(n)

n =
√
n(C

θ̂
(n)
n

− Cθ). Here, θ̂
(n)
n is

the estimator based on the sample from Qδn and

C(n)
n (x, y) = H(n)

n

{

(

F (n)
n

)−1

(x),
(

G(n)
n

)−1

(y)

}

,

where

H(n)
n (s, t) =

1

n

n
∑

i=1

1
(

X
(n)
i ≤ s, Y

(n)
i ≤ t

)

,

F
(n)
n (s) = H

(n)
n (s, 1) and G

(n)
n (t) = H

(n)
n (1, t). From van der Vaart & Wellner (1996), condition (8)

implies that IH
(n)
n (s, t) =

√
n(H

(n)
n − Cθ) IH + δ(D − Cθ). In particular,

β
(n)
1,n(x) =

√
n{F (n)

n (x) − x} = IH(n)
n (x, 1) IH(x, 1)

and
β

(n)
2,n(y) =

√
n{G(n)

n (y) − y} = IH(n)
n (1, y) IH(1, y)

since D(x, 1) − Cθ(x, 1) = D(1, y) − Cθ(1, y) = 0. From Chapter 3 in Shorack & Wellner (1986),
both

sup
0≤x≤1

∣

∣

∣
F (n)

n (x) − x
∣

∣

∣
= sup

0≤x≤1

∣

∣

∣

∣

(

F (n)
n

)−1

(x) − x

∣

∣

∣

∣

and

sup
0≤y≤1

∣

∣

∣
G(n)

n (y) − y
∣

∣

∣
= sup

0≤y≤1

∣

∣

∣

∣

(

G(n)
n

)−1

(y) − y

∣

∣

∣

∣

converge in probability to zero, so that

√
n

{

(

F (n)
n

)−1

− I

}

 −IH(·, 1) and
√
n

{

(

G(n)
n

)−1

− I

}

 −IH(1, ·).

Hence, since one can write

C(n)
n,θ(x, y) = IH(n)

n

{

(

F (n)
n

)−1

(x),
(

G(n)
n

)−1

(y)

}

+
√
n

{

Cθ

(

(

F (n)
n

)−1

(x),
(

G(n)
n

)−1

(y)

)

− Cθ(x, y)

}

= IH(n)
n

{

(

F (n)
n

)−1

(x),
(

G(n)
n

)−1

(y)

}

+ Cθ,10(x, y)
√
n{(F (n)

n )−1(x) − x}

+ Cθ,01(x, y)
√
n{(G(n)

n )−1(y) − y} + oP(1),
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one deduces that C(n)
n,θ converges weakly to Cθ + δ(D − Cθ), where Cθ = IH − Cθ,10IH(·, 1) −

Cθ,01IH(1, ·) is the limit identified, e.g. by Gänssler & Stute (1987) and Tsukahara (2005) under
the null hypothesis. The second part of Assumption A2 and the mean-value theorem enable to

establish that B(n)
n converges to Θ̃Ċθ = ΘĊθ+µ(Cθ, D)Ċθ, while the joint consistency of (C(n)

n,θ ,B
(n)
n )

to (Cθ + δ(D − Cθ),ΘĊθ + µ(Cθ , D)Ċθ) rises from Assumption A1.

Appendix B : Computation of the drift terms

In the case of Clayton, Frank and Gumbel–Barnett copulas, the value of Spearman’s rho cannot
be expressed explicitly in terms of the dependence parameter, and hence the population value of
formula (5) must be estimated through numerical methods. Such is also the case for

ρ′Cθ
(θ) = 12

∫ 1

0

∫ 1

0

Ċθ(x, y)dxdy, ED {Cθ(X,Y )} =

∫ 1

0

∫ 1

0

Cθ(x, y)d(x, y)dxdy,

βCθ
=

∫ 1

0

∫ 1

0

{ċθ(x, y)}2

cθ(x, y)
dxdy and ED

{

ℓ′Cθ
(X,Y )

}

=

∫ 1

0

∫ 1

0

ċθ(x, y)

cθ(x, y)
d(x, y)dxdy,

where cθ(x, y) = ∂2Cθ(x, y)/∂x∂y, ċθ(x, y) = ∂cθ(x, y)/∂θ and Ċθ(x, y) = ∂Cθ(x, y)/∂θ. Note that
for Archimedean copulas, i.e. dependence models of the form Cθ(x, y) = φ−1

θ {φθ(x) + φθ(y)}, one
can show that

Ċθ(x, y) =
φ̇θ(x) + φ̇θ(y) − φ̇θ {C(x, y)}

φ′θ {Cθ(x, y)}
,

where φ̇θ(x) = ∂φθ(x)/∂θ and φ′θ(x) = ∂φθ(x)/∂x. The Clayton, Frank and Gumbel–Barnett
copulas are member of this important class of models.

B.1. The Clayton family. The copulas in this class and their associated densities are

CCL
θ (x, y) =

(

x−θ + y−θ − 1
)−1/θ

and cCL
θ (x, y) = (θ + 1) (xy)

−θ−1 (

x−θ + y−θ − 1
)−1/θ−2

, (13)

where θ > −1. The associated value of Kendall’s tau is τCCL
θ

(θ) = θ/(θ + 2), from which one

deduces easily that ECθ
(Cθ) = (θ + 1)/2 and τ ′

CCL
θ

(θ) = 2/(θ + 2)2. Further,

Ċθ(x, y) =
Cθ(x, y)

θ

{

x−θ log x+ y−θ log y

x−θ + y−θ − 1
− logCθ(x, y)

}

.

B.2. The Frank family. Frank’s copula is given by

CF
θ (x, y) = −1

θ
ln

{

1 −
(

1 − e−θx
) (

1 − e−θy
)

1 − e−θ

}

, (14)

where θ ∈ R \ {0}. As reported in Frees & Valdez (1999), Spearman’s rho and Kendall’s tau in
this family are expressed by

ρCF
θ
(θ) = 1 +

12

θ2

∫ θ

0

t(2t− θ)

et − 1
dt and τCF

θ
(θ) = 1 − 4

θ
+

4

θ2

∫ θ

0

t

et − 1
dt.

Hence, one deduces

ρ′CF
θ
(θ) =

12

θ (eθ − 1)
− 24

θ4

∫ θ

0

t(3t− θ)

et − 1
dt
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and

τ ′CF
θ
(θ) =

4

θ2
+

4

θ (eθ − 1)
− 8

θ3

∫ θ

0

t

et − 1
dt.

The other necessary computations, however, must be accomplished numerically.

B.3. The Gumbel–Barnett family. The analytical form of this extreme-value copula (see Ghoudi et

al., 1998) is

CGB
θ (x, y) = exp

{

−
(

|log x|1/(1−θ)
+ |log y|1/(1−θ)

)1−θ
}

, (15)

where 0 ≤ θ ≤ 1. Computations of the drift terms in this class of models are difficult and must be
done numerically. The only explicit expressions are for Kendall’s tau and its derivative, namely
τCGB

θ
(θ) = θ and τ ′

CGB
θ

(θ) = 1.

B.4. The Normal family. The Normal copula, which arises as the dependence function associated
to the classical normal model, is defined by

CN
θ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

hθ(s, t)dsdt, (16)

where

hθ(s, t) =

(

1 − θ2
)−1/2

2π
exp

{

− 1

2(1 − θ2)

(

s2 + t2 − 2θst
)

}

is the standard bivariate normal density with correlation coefficient θ. Despite the implicit form
of CN

θ involving the percentile function of a standard univariate normal distribution, there exists
explicit relationships between the dependence parameter θ and Kendall and Spearman measures
of association. Explicitly,

τCθ
(θ) =

2

π
sin−1(θ) and ρCθ

(θ) =
6

π
sin−1

(

θ

2

)

,

from which it follows easily that

ECθ
(Cθ) =

2 sin−1(θ) + π

4π
, τ ′Cθ

(θ) =
2

π
√

1 − θ2
and ρ′Cθ

(θ) =
6

π
√

4 − θ2
.

Hence, if D ≡ CN
θD

, i.e. if one considers a mixture of Normal copulas, then

µρ(Cθ, D) =
sin−1(θD/2) − sin−1(θ/2)√

4 − θ2
.

Also, the density associated to CN
θ is

cNθ (x, y) = hθ

{

Φ−1(x),Φ−1(y)
} (

Φ−1
)′

(x)
(

Φ−1
)′

(y),

and it is possible to establish that

ℓ′CN
θ
(x, y) =

ċNθ (x, y)

cNθ (x, y)
=
θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

∣

∣

∣

∣

s=Φ−1(x), t=Φ−1(y)

.
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This enables to compute

ED

{

ℓ′CN
θ
(X,Y )

}

=

∫ 1

0

∫ 1

0

ℓ′CN
θ
(x, y)cNθD

(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

{

θ(1 − θ2) − θ(s2 + t2) + (θ2 + 1)st

(1 − θ2)2

}

hθD(s, t)dsdt

= EθD

{

θ(1 − θ2) − θ(S2 + T 2) + (θ2 + 1)ST

(1 − θ2)2

}

,

where (S, T ) follows a bivariate normal distribution with means 0, variances 1 and correlation
coefficient θD. Here, EθD denotes expectation with respect to hθD . Thus, noting that EθD(S2) =
EθD(T 2) = 1 and EθD(ST ) = θD, straightforward computations yield

ED

{

ℓ′CN
θ
(X,Y )

}

=
(θ2 + 1)(θD − θ)

(1 − θ2)2
.

Long but similar computations enable to obtain βCθ
= θ2 + 1 and hence

µPL(Cθ, D) =
θD − θ

(1 − θ2)2
.
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