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Abstract

Through densely connected networks of vessels, microcirculatory systems
exchange blood in the vasculature and the surrounding tissue. For finite element
solvers, these vast microcirculatory systems can offer challenges in preprocessing
and/or inference. This motivates the study of supplementary ways of obtaining
the relation between vascular geometry and fluid interaction, and our objective
is to see if the Fourier neural operator can learn this relation when we model
fluid interaction by diffusion and exchange in branching geometries continuously
connected by one-dimensional segments and in the confining two-dimensional
square.

Since our proposed model learns in the supervised setting we first derive
the method of constrained constructive optimization (CCO), allowing us to
algorithmically create realistic vascular trees. In this way, we circumvent the
need for medical images and can decide the complexity of the vascular geometry
by deciding the number of vessels in the vascular tree. With coupled partial
differential equations defined on 2D-1D manifolds we describe fluid interaction
and by the conditions of the Lax-Milgram theorem, we address the existence
and uniqueness of weak solutions. By regularity assumptions, we develop a
priori error estimates and investigate convergence rates of the finite element
solution to manufactured solutions on different 2D-1D manifolds.

Having established confidence in the finite element solver we develop a data
production routine to obtain the input by a distance representation of the
vascular trees and target by the finite element solver. We train and test the
machine learning model through a series of experiments and obtain 3% relative
mean squared test error for 10000 (20% test, 80% train) samples of vascular
trees with 3-5 vessels. Best and worst predictions are visualized and interpreted
and by increasing the number of vessels we look at the generalization of the
proposed model architecture to the higher complexity of the vascular trees.
Finally, we verify the property of discretization independence of the model and
illustrate the time-sparing advantage it can offer compared to the finite element
solver.
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CHAPTER 1

Introduction

The blood circulation in the human brain and other organs is through vast
vascular networks of arteries, arterioles, capillaries, venules and veins. The
arteries, carrying oxygenated and nutrient-rich blood from the heart, branch
out to arterioles which supply networks of capillaries, known as capillary beds.
Capillaries connect arterioles and veins and are responsible for exchanging
oxygen and other nutrients as well as clearance of waste substances like carbon
dioxide. Understanding solute transport in such microcirculatory systems is
of great physiological importance and can contribute to advances in e.g. drug
delivery (Cattaneo & Zunino, 2014) or a better understanding of Alzheimer’s
disease (Goirand et al., 2021). There are three distinct ways of studying
solute transport in microvasculature: in vivo, in vitro and in silico. In
microbiology, in vivo refers to conducting a study in living organisms. In
vivo studies are often based on different imaging techniques, e.g. magnetic
resonance imaging (MRI) and photoacoustic imaging. Through images, one can
obtain information on the spatial arrangement of the vasculature, morphometric
properties and also measures of function by images of perfusion, oxygenation
or permeability (A. Murray & Dinsdale, 2016). In vitro refers to the study
of isolated components of the organism. Because of the complex network of
vessels in the microvasculature, in vitro studies can provide more accurate
measurements by isolating components of this vast connected network of
vessels (see Kodama et al., 2019, e.g.). In silico refers to studies conducted on
computers and via computer simulations. There are numerous ways of studying
microcirculatory systems in silico and these studies can also be combined with
in vivo measurements. Often in vivo image data is used to obtain 3D models of
microvascular networks and by prescribing fluid equations to the vascular system,
one can study the solute transport and delivery to the surrounding tissue (see e.g.
Linninger et al., 2013; Peyrounette et al., 2018). In this thesis, we will conduct
our study purely in silico, and to obtain numerical methods we must first obtain
a mathematical model of fluid interaction. The proposed model is based on
the seminal work of (D’Angelo, 2007) which through dimensionality reduction
of the vessels modelled networks of vessels and their interaction with the
surrounding tissue. Dimensionality reduction offers relief in the computational
expense while retaining geometric properties of the vasculature and is also a
well-investigated mathematical technique for studying microcirculatory systems
(see e.g. D’Angelo, 2012; Kuchta et al., 2016; Masri et al., 2023). However, for
increasing complexity in the vasculature and to reduce the approximation error,
these finite element models increase in computation expense in preprocessing
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and/or inference. For body-fitted meshes that require conformity between
the discretization of the tissue and that of the vessels, the computational
cost increases in preprocessing, i.e. in obtaining the mesh needed for the
finite element solver. Furthermore, (D’Angelo, 2012) showed that to retain
optimal convergence rates the refinement of the mesh had to be increased
in the vicinity of the vasculature. To by-pass this need for high refinement
alternative methods have been proposed (see e.g Gjerde et al., 2020; Koch
et al., 2020) but these alternatives again rely on higher complexity in inference,
to assemble and solve the corresponding linear system. Because of this, it is
interesting to study alternative methods that can offer time-sparing advantages
both in preprocessing and inference. Such methods exist via artificial neural
networks (NN’s) and the use of NN’s to assist or improve computational fluid
dynamics (CFD) calculations has become very popular in recent years (see figure
1. Viquerat & Hachem, 2020) but examples of use in biomedical research related
to microcirculatory flow are sparse and primarily by the use of physics-informed
neural networks (PINN’s) (Karniadakis et al., 2002).

While restricting ourselves to the two-dimensional setting our objective is
to investigate if NN’s and specifically if the Fourier neural operator (FNO) (Li
et al., 2020a) can offer a mesh-free and discretization-independent alternative
way of obtaining information on the interaction of fluid in microvascular systems
and the surrounding tissue.

Figure 1.1: Schematic display of obtaining pressure distributions. 1) By mesh
generation and the finite element method. 2) By distance representation and
a pre-trained neural network. The medical image is obtained from (Meyer
et al., 2008) and is an image of vascular corrosion cast at 400µm of the cerebral
cortex of mice. The structures in the other images are made to resemble an
arbitrary piece of an artery and are obtained using the method of constrained
constructive optimization.

Figure 1.1 illustrates how trained neural networks can offer an alternative to
the traditional finite element approach in obtaining the solution corresponding
to the pressure distribution in the vasculature and the surrounding tissue. Since
we aim to develop an alternative path through supervised learning we will
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in chapter 2 first construct a way of obtaining realistic vascular trees using
the method of constrained constructive optimization (CCO). This will remove
the dependence on the use of medical images to obtain vascular geometries
with the additional benefit of being able to control the geometric complexity
of the vasculature, by deciding the number of vessels in the vascular trees.
In chapter 3 we derive a mathematical model of the interaction of fluid in
microvessels and the surrounding tissue. By model reduction of the vessels,
going from a two-dimensional representation to a one-dimensional representation
we can easily extend the model to hold for vascular trees. Fixing appropriate
boundary conditions and including the method of CCO, we obtain a purely
numerical method, in the framework of the finite element method, to investigate
how different vascular geometries correspond to different pressure distributions
along the vasculature and in the confining square representing the tissue. This
represents the first path in Figure 1.1 and is the way we will generate the data
needed for the Fourier neural operator. Chapter 4 describes the Fourier neural
operator, its architecture and parameter choices and explains how we choose
to represent the vascular trees as input and how we represent the pressure in
the vasculature and the surrounding tissue as the target. In chapter 5 and
with a simplified dataset of input-target samples, we train and reconfigure
according to a parameter search before we step by step increase the complexity
of the dataset and the FNO architecture to obtain our final configuration of the
neural network model. We measure how the Fourier neural operator generalizes
to higher complexity of the vasculature, its discretization independence and
execution time compared to that of obtaining the pressure from the finite
element method which we used to generate the data.

Appendices

Appendix A contains additional experiments on the harmonic extension of the
pressure distribution in the vascular geometry to the confining square square.
The experiments ensure the correct implementation of the interior boundary
conditions and also provides convergence analysis of the harmonic extension to
the pressure distribution in the confining square.

Appendix B contains a simplified, less realistic approach to obtaining
branching structures continuously connected by one-dimensional segments by
the method of rapidly exploring random trees.

Mathematical notation

a lower case letters are used for scalars and scalar functions.

A upper case letters are used for matrices, operators, functionals and spaces,
but also to separate scalar values.

a bold letters are used for points, vectors and vector-valued functions.

A calligraphic letters are used for sets.

Lastly, we use ⟨·, ·⟩ to denote the inner product and use the notation [·] and (·)
interchangeably.
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CHAPTER 2

Constrained Constructive
Optimization

Since the microcirculatory systems consist of vast networks of microvessels,
the possibility to construct rather than extract such networks can offer time-
sparing advantages, as well as circumvent the lack of information about vascular
architecture. Therefore, numerous efforts have been made to develop automatic
generation of vascular networks and there are especially two classes of methods
that are popular in the literature. 1) Fractal methods (see e.g. Barnsley &
Demko, 1985; Bassingthwaighte et al., 1989; Gottlieb, 1990; West & Goldberger,
1987) and 2) Space filling methods (see e.g. Nekka et al., 1996; Schreiner &
Buxbaum, 1993). Fractal methods follow the statistical evaluation of features
like vessel radii, vessel length, bifurcation, etc. and unlike the space-filling
methods, the fractal methods do not provide confinement on the vascular
network but are independent of the vascular territory. In our approach, we
will follow (Schreiner & Buxbaum, 1993) deriving the space-filling method of
constrained constructive optimization and although the method is based on
physical laws rather than statistical observation. One key feature of the method
is also statistically observed. The feature is the relation of the radii through
bifurcations and is known as Murray’s law (C. D. Murray, 1926) observed in
mammalian circulatory and respiratory systems (Sherman, 1981).

(Schreiner & Buxbaum, 1993) introduced the method of constrained
constructive optimization (CCO) to generate arterial tree structures by
modelling the arterial trees as networks of straight cylindrical tubes following
Poiseuville’s law (Sutera & Skalak, 1993). Furthermore, the straight cylindrical
tubes representing the vessels in the arterial tree were modelled with a boundary
condition, in the form that each terminal vessel should output the constant
flow rate Qterm against the constant pressure Pterm. The task of the generated
tree is then to supply the tissue with the prescribed flow Q0 while following
a set of geometrical constraints. They found that the requirements above
could be fulfilled by appropriate scaling of the vessels’ radii and independent of
the particular connective structure of the tree. By using an appropriate cost
function dependent on the segments’ radii they were able to connect terminal
vessels to a preexisting tree simply by choosing the connective structure which
minimizes the cost. The method was further developed by the original authors
in (Karch et al., 1999, 2000) and by other authors (see e.g Jaquet et al., 2018;
Maso Talou et al., 2021).
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2.1. The method of CCO

2.1 The method of CCO

Bifurcation rule

Considering a parent vessel vp bifurcating into children vessels vn, vnew, we
constrain the vessels’ radii before and after bifurcation to follow Murray’s law

rγ
vp

= rγ
vn

+ rγ
vnew

(2.1)

where γ is called the bifurcation exponent. The specific choice of γ has been
discussed in e.g. (Brown et al., 2000) and varies between 2 and 3, but it is most
commonly chosen as γ = 3 following the original derivation in (C. D. Murray,
1926) from Poiseuville’s law.

Cost function

Consider a vessel vi uniquely defined by (ri, xp
i , xd

i ), where ri is the vessel radius,
xp

i its start/proximal point and xd
i its end/distal point, the length of the vessel

is then li = ∥xd
i − xp

i ∥ and its two dimensional volume is given by Vi = liπr2
i .

Let T denote a generated tree consisting of the set of vessels {vi, i = 1, .., N}.
By defining the cost function equivalent to the total volume of T we aim to
minimize

V (T ) =
N∑

i=1
liπr2

i . (2.2)

Hemodynamics model

If we presume the blood to behave as an incompressible, homogeneous Newtonian
fluid and let each vessel be a straight cylindrical tube we can apply Poiseuille’s
law to find the resistance in each vessel vi by

Ri = 8η

π

li
r4

i

(2.3)

where η is the viscosity of the blood. Additionally, we have

∆pi = RiQi (2.4)

where ∆p denotes the pressure drop in vi and Qi the volumetric flow rate. We
note the following properties of the resistance for later use; Considering vessels
in series we have additivity of the resistance

Rtot = R1 + R2 (2.5)

and in parallel, we have the relation

1
Rtot

= 1
R1

+ 1
R2

. (2.6)

2.2 Implementation

We initialize our method by defining a root vessel v0 inside or partially inside
the perfusion area Ωp with proximal point x0 and distal point x1. We then
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2.2. Implementation

draw a random number xd inside Ωp and seek to connect the random number
xd to our tree T , which at this point only consists of the root. The connection
will then replace v0 with tree new vessels vp, vn, vnew where vp = (_, x0, xbk

) is
a straight vessel, bifurcating into vn = (_, xbk

, xn) and vnew = (_, xbk
, xnew)

such that xd = xnew is the distal end of vnew and xn = x1 - the distal end
of the root becomes the distal end of vn. We denote Tk = (vp, vn, vnew)k the
proposed resulting tree with specific bifurcation xbk

. The optimal bifurcation
point xb is then chosen such that we minimize the cost function (2.2). Note,
that the radii in vp, vn and vnew are omitted since this depends on the exact
location of the bifurcation candidate xbk

and thus needs to be calculated for
all candidate bifurcation points xbk

to obtain the different costs V (Tk). This is
achieved by scaling the vessels’ radii such that the terminal vessels yield the
constant flow Qterm against the constant pressure pterm. Presuming we have a
tree T = {vi, i = 1, .., N} of N connected vessels we proceed as follows.

Perfusion area

The perfusion area denotes the area for which the new terminal vessel is allowed
to output the constant terminal flow Qterm. Because the main structure of
the tree T is highly influenced by the first vessels we want to discard distal
points to our new terminal vessel close to the existing tree. This is achieved
by defining a minimum distance lmin such that the randomly drawn point xd,
following a uniform distribution inside the perfusion area Ωp, fulfills

∥x− xd∥ > lmin = lc

√
ν

Nterm + 1 . (2.7)

x is here the closest point in the set of vessels in the preexisting tree T ,

lc =
√∫

Ω
dA

π , NT is the number of terminal vessels in T and ν is a tuning
parameter. Should Nfail consecutive attempts to draw a random point fulfilling
(2.7), we let

lmin = frllim (2.8)
for fr ∈ (0, 1). The possible connection points in the tree T are the proximal
points in each vessel except the root. Additionally, we consider a fixed number
Ncon of vessels to be evaluated for connecting the randomly drawn point xd.
Once we obtain a point xd fulfilling (2.7), we let xnew = xd indicating that this
will be the distal point in our new terminal vessel. The candidate vessels (to be
replaced) are denoted Tn = {vi, .., vNcon

} and are the set of Ncon vessels closest
to the new terminal point xnew. Note that if the preexisting tree has a number
of vessels less than Ncon, then T = Tn.

Flow rate

Since the addition of a new terminal segment increases the flow rate in our
tree we need to update the flow rate in each vessel accordingly. If we let each
terminal segment supply the "tissue" Ωp with the constant flow rate Qterm, the
flow rate Qi in each vessel vi is uniquely defined by the number of terminal
segments distal to vi. Letting ni

dist denote the number of terminal vessels distal
to vi we have

Qi = ni
distQterm (2.9)
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2.2. Implementation

and thus, the input flow rate Q0 is given by

Q0 = NtermQterm (2.10)

where Nterm is the current total number of terminal vessels in T .

Bifurcation candidates

Once we have obtained the set of closest vessels Tn = {vi, .., vNcon
}, we

discretize the triangle domain with vertices (xp
i , xn

i , xnew) into a set of candidate
bifurcation points Xb = {xbk

}Popt

k=1 . Popt =
∑∆v

i=1 i−3 and ∆v is the discretization
of each side length in the triangle. We then seek to minimize the cost function

xp

xn

xnew

vi

xbk

(a) Bifurcation point candidates Xb

vp
vn

vnew

(b) Vascular tree T with optimal bifurca-
tion point xb

Figure 2.1: Illustration of optimal bifurcation point search, replacing vessel vi

with vessels (vp, vn, vnew) using ∆v = 6.

(2.2) over all candidate bifurcations (vp
i , vn

i , vnew)k replacing vessel vi ∈ Tn. We
denote T i

k the preexisting tree T with the specific vessel vi ∈ {vi}Ncon
i=1 replaced

by (vp, vn, vnew)k and with specific bifurcation xbk
∈ Xb. To obtain the radii

needed to calculate the cost of the candidate tree T i
k we proceed as follows.

Reduced resistance

Following the derivations made in (Karch et al., 1999) we define the reduced
resistance R∗ = Rr4 and consider a possible set of candidate vessels (vp, vn, vnew)
where vn may or may not be terminal. For terminal segments, the reduced
resistance is simply given by

R∗
term = 8η

π
li (2.11)

while for a combined set of vessel, e.g. vp bifurcating into vn and vnew the
resistance in vp is given by

Rsub,p = 8η

π
li +

[
(rn/rp)4

R∗
n

+ (rnew/rp)4

R∗
new

]−1

(2.12)

where we have used the relations (2.5) and (2.6). In the case vn is not terminal,
we calculate the resistance to vn by post-order traversal. Starting at the
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2.2. Implementation

terminal segments distal to vn and traversing up to vn applying (2.11) at each
terminal vessel and (2.12) at each non-terminal vessel distal to vn. Notice for
the situation when vn is not terminal, the ratios (rn/rp) and (rnew/rp) have
been calculated in the preceding steps in the tree generation.

Bifurcation ratios

Exploiting the fact that we have equal terminal pressures and thus a constant
pressure drop ∆p between the root and an arbitrary terminal vessel, we have
by (2.4)

RnQn = RnewQnew →
Qn

Qnew
= Rnew

Rn

and using the factorization R∗ = Rr4 we obtain

rn

rnew
=

(
QnR∗

n

QnewR∗
new

)1/4
. (2.13)

By the bifurcation rule (2.1) we can then obtain the bifurcation ratio(
rp

rn

)γ

= 1 + rnew

rn

γ
→ rp

rn
=

[
1 +

(
rnew

rn

)γ]1/γ

(2.14)

and similarly
rp

rnew
=

[
1 +

(
rnew

rn

)−γ
]1/γ

. (2.15)

Knowing the bifurcation ratios given by the formulas above, we can obtain the
radii in each vessel vi by

ri = r0 ·
i∏

k=1
βk, (2.16)

where the product is taken over the unique path from the root to the vessel vi

and βk are the bifurcation ratios along this path. The root radius r0 is given by

r0 =
[
R∗

0 ·
Q0

p0 − pterm

]1/4
. (2.17)

Since R∗
0 obviously varies when growing the vascular tree i.e. adding more

terminal vessels and Q0 is fixed by (2.10) we have the option to either vary the
root radii r0 or the total pressure drop ∆p = p0 − pterm to fulfil (2.17).

Update tree

We can now obtain the updated resistance in the unique path of vessels proximal
to our new bifurcation site. Since clearly, the bifurcation ratios depend on the
flow rates and the reduced resistances by (2.13), we also need to update all
bifurcation ratios in the unique path proximal to vp and then update the radii
in the tree according to (2.16). Finally, we can obtain the cost V (T i

k ) for a
specific vessel vi (to be replaced) and a specific bifurcation point xbk

.
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2.3. CCO parameters

Geometric constraints

Along with the bifurcation rule (2.1) we include the following geometrical
constraints.

• We do not allow for vessels to intersect.

When obtaining the set of candidate bifurcation points Xb we first check if
the bifurcation point to be evaluated leads to intersecting vessels. If not, we
proceed to calculate the cost. To speed up computation we temporary create
a vessel vtemp = (_, xp

i , xnew) between the proximal point of vi ∈ Tn and the
new terminal point xnew for each vi ∈ Tn and check if vtemp intersects with the
other vessels in Tn. If vtemp leads to an intersection we neglect the vessel vi

corresponding to vtemp in Tn.
Following (Maso Talou et al., 2021) we require two more geometrical

constraints.

• Symmetry ratio constraint

For terminal vessels, we require that the ratio between the minimum radius
and the maximum radius, when considering two post-bifurcating vessels, to be
bounded below by the symmetry ratio parameter δ

min(rn, rnew)
max(rn, rnew) > δ. (2.18)

This has the effect of a more homogeneous distribution of the terminal vessels.

• Aspect ratio constraint

The aspect ratio of each vessel vi in the arterial tree T is constrained to follow

li
ri

> 2 (2.19)

which bounds the length of each vessel to be at least two times the length of
the radius.

2.3 CCO parameters

Table 2.1 summarize the parameters introduced in the preceding sections. The
geometric parameters describe the geometric features of the model by specifying
the confinement of the arterial tree (perfusion area) the initial root vessel and
the total number of terminal vessels in the tree. The geometric parameters γ, δ
ensure that geometric features of real vasculature are embedded in the model.
The physical parameters can be set to real physiological values, representing
specific parts of the vasculature, as they did in the original paper (Schreiner &
Buxbaum, 1993) modelling the left anterior descending artery during cardiac
arrest. Alternatively, the root radius can be fixed, then by (2.17) the value
∆p does not enter the model other than requiring equal terminal pressures to
obtain (2.14) and (2.15) and the flow rate Q only enters the model as a ratio
between the terminal flow rate and the flow rate in the connecting vessel vn,
in addition to our requirement under Flow rate. This means we obey the

9



2.3. CCO parameters

Ωp perfusion area
Geometric x0, x1 proximal and distal end of root vessel

N t
final number of terminal vessels in the final tree T
γ bifurcation exponent
δ symmetry ratio parameter

Physical η blood viscosity
Q0, Qterm total perfusion flow rate or terminal flow rate
r0 or ∆p root radius or total perfusion pressure drop by (14)

Tuning ν tuning parameter
fr correction step factor

Optimization Nfail correction number
Ncon number of vessels evaluated in connection search
∆v discretization parameter for bifurcation point search

Table 2.1: Parameter specifications for Algorithm 1.

rules of the CCO but the value of ∆p is not required and the flow rate Q0 or
Qterm can be set arbitrarily. Since the viscosity is constant for all vessels in
the vascular tree, this can also be set arbitrarily for fixed r0. The optimization
parameters decide the attempts to fulfil (2.7) without the correction (2.8) and
the number of cost evaluations (2.2) deciding each vessel connection. Increasing
the optimization parameters thus results in a more predictable vascular growth
but at increasing computational cost.

We choose to initialize the algorithm with one root vessel, but the algorithm
can be grown from an arbitrary number of connected preexisting vessels following
the prescribed rules.

10



2.4. CCO algorithm

2.4 CCO algorithm

We summarize the method described in chapter 2 with the following algorithm.

Algorithm 1 CCO
Data: Parameters as in Table 2.1

n = 0
while n < N t

final − 1 do
j = 0
repeat ▷ (2.7) → (2.8)

draw random point xd inside Ω
j = j + 1
if j = Nfail then

lmin = frlmin

j = 0
end if

until ∥xd − x∥ > lmin

Define Tn

for vi ∈ Tn do
Update flow ▷ (2.9)
Compute bifurcation candidates Xb

for xb ∈ Xb do
Update reduced resistance ▷ 2.11 → (2.12)
Update bifurcation ratios ▷ (2.13) → (2.17)
Update tree Tk

if Constraints is satisfied then ▷ (2.18) → (2.19)
Ck = Ck ∪ V (Tk)

end if
end for
if Ck ̸= ∅ then
Cvi

= Cvi
∪mink(Ck)

end if
end for
if Cvi ̸= ∅ then

c = minvi
Cvi

Choose vessel vi corresponding to c as connection point and xbk
as

bifurcation point.
n = n + 1

end if
if Cvi = ∅ then

n = n− 1
end if

end while

11



2.5. Illustration of resulting vascular trees

2.5 Illustration of resulting vascular trees

In all figures below we use the parameter specifications; γ = 3, δ = 0.7, ν =
1, fr = 0.9, Ncon = 3, ∆v = 6 and Nfail = 5.
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Figure 2.2: Illustration of model capabilities, confined in circle and parallelogram
and grown to N t

final = 200.
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Figure 2.3: Illustration of tree growth. Root initiated as segment between
(x, y) = (0, 0.5) and (1, 0.5) and Ω given as the square with vertices
(0, 0), (1, 0), (1, 1) and (0, 1).
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CHAPTER 3

Finite element solver for fluid
interaction

Having a way to generate vascular trees we now want assign differential equations
to the corresponding geometries aiming to describe the interaction of fluid in
the vascular trees and the surrounding tissue. This multi-physics problem
and the topological and geometric complexity of the vasculature lead to the
need for particular attention when deriving governing fluid equations and
investigating their numerical stability. We will follow the derivations made in
(Cerroni et al., 2019; Masri et al., 2023), which through model reduction of the
vasculature obtain well-posed variational formulations of fluid interaction on
mixed dimensional domains. Our aim is to provide the necessary details in the
first steps of obtaining the mathematical framework for such methods and to
provide insight into the corresponding numerical procedure.

First, we provide the necessary tools of functional analysis to establish the
existence and uniqueness of a weak solution to a boundary value problem,
befor we then embark on deriving a mathematical model for the interaction
of a two-dimensional porous medium with the flow through conduits. With
model reduction techniques and simplifications, we obtain a well-posed weak
formulation of a coupled elliptic boundary value problem describing the
interaction of flow through vascular trees and the surrounding tissue. In
the framework of the Galerkin finite element method we establish a priori error
bounds and by the method of manufactured solution we investigate how different
geometries allow for different solutions and in turn different convergence rates.
In this way, we establish confidence in the proposed numerical solution of the
mathematical problem before we incorporate the vascular trees obtained by
the method of CCO. Lastly, we physically motivate the choice of boundary
conditions and interpret the results of the numerical solver.

The proposed method provides pressure distributions in vascular trees and
the surrounding tissue. Using the method of CCO and this finite element solver
we can numerically generate the data needed for the machine learning model.
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3.1. Preliminaries

3.1 Preliminaries

In the mathematical branch of functional analysis one mainly studies functions
defined on vector spaces and for partial differential equations a vector space of
particular interest is the Hilbert space. To understand why, we express different
properties of Hilbert spaces through a series of theorems. In the following,
leading up to Theorem 3.1.6 we follow the derivations made in (van Neerven,
2022).

Proposition 3.1.1. We claim that the orthogonal complement of any subspace
X of a Hilbert space H is closed.

We have
X⊥ := {x ∈ H|x ⊥ y ∀y ∈ X}

and want to show that X⊥ is closed.

Proof. Let xn → x in H with xn ∈ X⊥. Then by continuity of the inner
product

⟨x, y⟩ = lim
n→∞

⟨xn, y⟩ = 0.

Whence, we see that X⊥ contains all its limit points which means it is a closed
subspace of H. ■

Theorem 3.1.2 (Best approximation theorem). Let C be a nonempty convex
closed subspace of H. Then for all x ∈ H there exists a unique c ∈ C that
minimizes the distance from x to the points of C:

∥x− c∥ = min
y∈C
∥x− y∥

Proof. Let {yn}n≥1 be a sequence in C such that

lim
n→∞

∥x− yn∥ = inf
y∈C
∥x− y∥ := D

By the parallelogram law applied to the vectors x− ym and x− yn we have

∥yn − ym∥2 + ∥2x− (yn − ym)∥2 = 2∥x− ym∥2 + 2∥x− yn∥2.

As m, n→∞, the right hand side tends to 2D2+2D2 = 4D2 and from convexity
we have 1

2 (ym − yn) ∈ C. It follows that

∥2x− (yn − ym)∥2 = 4∥x− 1
2(yn − ym)∥2 ≥ 4D2.

Hence,

lim
m,n→∞

∥yn − ym∥2 = 4D2 − lim
n,m→∞

∥2x− (yn − ym)∥2

≤ 4D2 − 4D2 = 0.

This shows that the sequence {yn}n≥1 is Cauchy in C. Since H is complete
we have limn→∞ yn = c for some c ∈ H, and since C is closed we have c ∈ C.
Now,

∥x− c∥ = lim
n→∞

∥x− yn∥ = D,

so c minimizes the distance to x. ■
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Theorem 3.1.3. If X is a closed linear subspace of H, then we have an
orthogonal direct sum decomposition

H = X ⊕X⊥.

That is, we have X ∩X⊥ = {0}, X + X⊥ = H and X ⊥ X⊥.

Proof. From Proposition 3.1.1 we have that Y ⊥ is a closed subspace of H. If
y ∈ Y ∩ Y ⊥ then y ⊥ y, so ⟨y, y⟩ = 0 and y = 0. It remains to show that
Y +Y ⊥ = H. Let x ∈ H be arbitrary and fixed, we must show that x ∈ Y +Y ⊥.
Let fy : H → X denote the mapping arising from the previous theorem. Then
fy(x) is the unique element of Y that minimizes the distance to x i.e.

∥x− fy(x)∥ = min
y∈Y
∥x− y∥.

Set y0 := fy(x) and y1 := x− y0. Then y0 ∈ Y , and for all y ∈ Y we have

∥y1∥ = ∥x− y0∥ ≤ ∥x− (y0 − y)∥
= ∥y + (x− y0)∥ = ∥y + y1∥.

We now claim that this implies y1 ∈ Y ⊥, to see this, fix a nonzero y ∈ Y . For
any c ∈ F1 we have

∥y1∥2 ≤ ∥cy + y1∥2 = |c|2∥y∥2 + 2Re⟨cy, y⟩+ ∥y1∥2

Taking c = − ⟨y,y1⟩
∥y∥2 gives

0 ≤ ⟨y, y1⟩2

∥y∥2 − 2 ⟨y, y1⟩2

∥y∥2 = −⟨y, y1⟩2

∥y∥2

where the left-hand side of the above is only possible if ⟨y, y1⟩ = 0. Since
y ̸= 0 ∈ Y was arbitrary this shows that y1 ∈ Y ⊥ and proves the claim. It
follows that x = y0 + y1 belongs to Y + Y ⊥. ■

Theorem 3.1.4 (Riesz representation theorem). If T : H → F is a bounded linear
functional, there exists a unique element y ∈ H such that

T (x) = ⟨y, x⟩ ∀ x ∈ H. (3.1)

Proof. If T (x) = 0 ∀x ∈ H, we take y = 0. So assume T (x) ̸= 0, we know
from Theorem 3.1.3 that closed subspaces of a Hilbert space H is orthogonally
complemented. Whence (N(T ))⊥ ̸= {0} 2 so we can choose a norm one vector
y0 ∈ (N(T ))⊥ and fix an arbitrary x ∈ H with c := T (x)

T (y0) . We then have

T (x− cy0) = T (x)− cT (y0) = 0

where we have used the linearity of T and our definition of c. This means that
x− cy0 ∈ N(T ), so x− cy0 ⊥ y0 and

T (x) = cT (y0) = T (y0)⟨cy0, y0⟩ = T (y0)⟨x, y0⟩ = ⟨x, T (y0)y0⟩
1F is the field consisting of all real R and complex C numbers.
2N(T ) denotes the null space of T , i.e. N(T ) = {x ∈ H : T (x) = 0}.
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Setting y = T (y0)y0 we obtain (3.1). To prove uniqueness, suppose that
T = T (y) = T (y′) for y, y′ ∈ H. Then

∥y−y′∥2 = ⟨y−y′, y−y′⟩ = ⟨y−y′, y⟩−⟨y−y′, y′⟩ = T (y−y′)−T (y−y′) = 0,

where we have used the properties of the inner product and (3.1). Since the
norm is positive definite we see that the above derivation implies y = y′. ■

Proposition 3.1.5. Assume A : H → H to be a bounded linear operator that is
bounded from below i.e.

∥Ax∥ ≥ C∥x∥
for C > 0 and all x ∈ H. Then A is injective (1-1) and has closed range.

Proof. Assume A is not 1-1, then Ax = Ay for x ̸= y, but since A is bounded
from below we have

0 = ∥Ax−Ay∥ = ∥A(x− y)∥ ≥ C∥x− y∥ > 0

which contradicts x ̸= y. To show that R(A) is closed let {yn}n≥1 be a sequence
in R(A) that converges to a point y ∈ H. For each n ∈ N, there exists xn ∈ H
such that yn = A(xn). For any m, n ∈ N we have

C∥xm − xn∥ ≤ ∥A(xm − xn)∥ = ∥ym − yn∥.

Since {yn}n≥1 is a Cauchy sequence, we see from the above derivation that
{xn}n≥1 is also a Cauchy sequence. Since H is a Banach space it is complete
and there exists a x ∈ H s.t. xn → x. Since A is bounded it is continuous and
y = Ax ∈ R(A). ■

Now, we are ready to introduce the main theorem for the well-posedness
of elliptic problems. The theorem is stated as in (Evans, 1998). We now use
lower case letters to denote functions, taking either a finite or infinite number
of values.

Theorem 3.1.6 (Lax Milgram theorem). Assume that B : H × H → R is a
bilinear mapping, for which there exists constants α, β > 0 such that

i) |B[u, v]| ≤ α∥u∥∥v∥
ii) β∥u∥2 ≤ B[u, u]

where u, v ∈ H. Finally let F : H → R be a bounded linear functional on H.
Then there exists a unique u ∈ H such that

B[u, v] = F (v)

for all v ∈ H.

Proof. For each fixed u ∈ H, the mapping v 7→ B[u, v] is a bounded linear
functional on H, whence by Theorem 3.1.4 exists a unique element w ∈ H
satisfying

B[u, v] = ⟨w, v⟩.

Let us write Au = w whenever the above holds, so that

B[u, v] = ⟨Au, v⟩
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for u, v ∈ H. We claim that A : H → H is a bounded linear operator, 1-1 and
that the range of A is closed in H.
To prove that A is linear we let λ1, λ2 ∈ R and u1, u2 ∈ H. We then have

⟨A(λ1u1 + λ2u2, v⟩ = B[λ1u1, λ2u2, v]
= λ1B[u1, v] + λ2B[u2, v]
= λ1⟨Au1, v⟩+ λ2⟨Au2, v⟩
= ⟨λ1Au1 + λ2Au2, v⟩.

Since this holds for all v ∈ H, A is a linear operator. Furthermore,

∥Au∥2 = ⟨Au, Au⟩ = B[u, Au] ≤ α∥u∥∥Au∥

hence,
∥Au∥ ≤ α∥u∥.

So A is bounded. Next, we compute

β∥u∥2 ≤ B[u, u] = ⟨Au, u⟩ ≤ ∥Au∥∥u∥.

Where in the last inequality we have used the Cauchy-Schwarz inequality (see
e.g. Evans, 1998, page. 708). This shows that A is bounded from below

β∥u∥ ≤ ∥Au∥

and by Proposition 3.1.5 we have that A is 1-1 and R(A) is closed. We
demonstrate now that R(A) = H. For if not, then, since R(A) is closed, there
would by Theorem 3.1.3 exists a nonzero element w ∈ H with w ∈ R(A)⊥. This
fact in turn implies

β∥w∥2 ≤ B[w, w] = ⟨Aw, w⟩ = 0

So, w must be zero, and we have obtained a contradiction.
Next, we observe once more from Theorem 3.1.4 that

F (v) = ⟨w, v⟩ ∀v ∈ H

for some element w ∈ H. We can then use our previous derivations to find
u ∈ H satisfying w = Au, then

B[u, v] = ⟨Au, v⟩ = ⟨w, v⟩ = F (v).

Finally, we show that there is at most one element u ∈ H satisfying the above.
For if both

B[u1, v] = F (v) and B[u2, v] = F (v)

then B[u1 − u2, v] = 0 ∀v ∈ H. We set v = u1 − u2 to find

β∥u1 − u2∥2 ≤ B[u1 − u2, u1 − u2] = 0→ u1 = u2

■
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Sobolev spaces and operators

We define the following spaces and operators which will be used in this chapter.
Let Ω ∈ Rn, then the Sobolev space W m,p(Ω) consist of all functions u on Ω
such that for each multi-index |α| ≤ m the weak or distrubutional derivative

Dα = ∂|α|

∂xα1
1 · · · ∂xαn

n

exists and ∥Dαu∥Lp(Ω) <∞. The Lp-norm is defined as

∥u∥Lp(Ω) :=
(∫

Ω
|u|pdx

) 1
p

. (3.2)

When p = 2 the Sobolev space W m,2 becomes a Hilbert space and we denote it
Hm,

Hm := {u ∈ L2 : ∥Dmu∥L2 <∞ ∀|α| <∞}.

This Hilbert space is equipped with the norm

∥u∥Hm(Ω) :=

 ∑
|α|≤m

∥Dmu∥L2(Ω)

 1
2

and if u is differentiable in the classical sence then the weak and strong derivative
coincide, i.e. we have ∇m = Dm.
Since functions u ∈ H1(Ω) only need to be defined almost everywhere in Ω
we need to specify what we mean by u|∂Ω. Let Ω be a bounded domain with
Lipschitz boundary ∂Ω, we then define the trace operator as the operator

T : H1(Ω)→ L2(∂Ω) (3.3)

which maps functions in H1(Ω) to L2(∂Ω). We have the properties

Tu = u|∂Ω if u ∈ H1 ∩ C(Ω̄) (3.4)
∥Tu∥L2(∂Ω) ≤ CT ∥u∥H1(Ω) if u ∈ H1(Ω) (3.5)

where Ω̄ denotes the closure of Ω, i.e. if u can be continuously extended to the
boundary ∂Ω then the trace of u is equal to u evaluated at the boundary. For
the existence of such an operator we refer to (Evans, 1998, p. 272).

We also define the fractional Sobolev space H
1
2 (∂Ω) as the range of the

trace operator

H
1
2 (∂Ω) := {g ∈ L2(∂Ω) : ∃Eg ∈ H1(Ω) : T (Eg) = g}. (3.6)

With this definiton we have the exstension operator E : H
1
2 (∂Ω)→ H1 as the

operator taking the "boundary data" g ∈ H
1
2 (∂Ω) and exstending it to Ω with

regularity H1(Ω). For the proof of the existence of such an operator, we refer to
(Grisvard, 2011, theorem 1.5.1.3, 1.5.2.1). Lastly, we denote with the subscript
H1

α(Ω) the spaces
H1

α(Ω) = {H1(Ω) : u = α on ∂Ω} (3.7)
where the function u takes spesific values on the boundary. With the definitions
above we are ready to start building the mathematical model.
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3.2. The 2D-1D boundary value problem

3.2 The 2D-1D boundary value problem

Our aim is to build a model of the interaction of flow in the vasculature and
the surrounding tissue. To derive the proposed model we first follow (Cerroni
et al., 2019) describing the interaction of wells with reservoirs by means of
dimensionality reduction, reducing a 3D-3D problem to a 3D-1D problem. We
will follow the proposed model reduction technique but in a 2D-2D to 2D-1D
setting. The 2D domain then represents the tissue/reservoir and the 2D domain
reduced to 1D, the vasculature/well. We first consider a single vessel, before we
extend the problem to hold for vascular trees.

Following the notation used in (Cerroni et al., 2019) we let Ωp denote the,
from now on called, tissue, Ωw denote the, from now on called, vessel and Γ
the interface between Ωp and Ωw. We require Ωw to be a C2-regular curve. Let
vp, up denote the flow velocity and pressure in the tissue and vw, uw the velocity
and pressure injected or extracted through the vessel. We model the tissue as a
porous medium, and thus vp, up follows Darcy’s law (Whitaker, 1986)

v = −k∇u (3.8)
where k is the permeability tensor. Motivated by our derivation in chapter 2
and specifically Poiseuville’s law (2.3) we also model vw as a flow velocity purely
driven by the pressure gradient, and thus also follows (3.8). Next, we presume
that the compressibility of v∗, ∗ = p, w is small enough to be neglected, leading
to the incompressibility condition

∇ · v = 0. (3.9)
Lastly, we presume that the interface Γ is permeable, and model this by a
normal flux kΓ(up−uw) for flow "leaking" from the tissue to the vessel and equal
but opposite from the vessel to the tissue. kΓ ≥ 0 denotes the permeability of
the interface Γ. Summarizing the above we have

∇ · vp = 0, vp + kp∇up = 0 in Ωp

∇ · vw = 0 vw + kw∇uw = 0 in Ωw

vp · np = kΓ(up − uw) on Γ
vw · nw = kΓ(uw − up) on Γ.

(3.10)

The above equations can be written as a function of the pressures solely by
combining (3.8) and (3.9). Furthermore, we consider the pressures dimensionless
quantities and presume constant isotropic permeability tensors k∗ = k∗I. with
k∗ > 0. We then have

−kp∆up = 0 in Ωp

−kw∆uw = 0 in Ωw

−kp∇up · np = kΓ(up − uw) on Γ
−kw∇uw · nw = kΓ(uw − up) on Γ.

(3.11)

To make the above boundary value problem complete we need to add boundary
conditions and motivated by the fact that we later will use manufactured
solutions enforced through Dirichlet boundary conditions we choose

up = gp on Σ (3.12)
uw = gw on ∂Ωw (3.13)
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3.2. The 2D-1D boundary value problem

where Σ = ∂Ωp/Γ is a subset of the boundary ∂Ω, and ∂Ωw is the starting
point and endpoint of the vascular segment. The specific choice of gw will be
specified later, but since Ωw will be reduced to one dimension we let gw be
constant on the two respective parts of ∂Ωw. We also require gp ∈ H

1
2 (Σ) and

gw ∈ H
1
2 (∂Ωw).

Model reduction of the vessel

Figure 3.1: Example of a portion of the vessel used for model reduction,
surrounded by the tissue Ωp.

Consider a portion P of the vessel Ωw as depicted in Figure 3.1, we
parametrize the centerline Λ by

Λ = {λ(s), s ∈ (s1, s2)}

and cross-section by

D(s) = [−r(s)n(s), r(s)n(s)] : [0, R)→ R2

where n is the unit normal perpendicular to Λ and r is the distance perpendicular
from the interface. We then have the parametrization of the portion P as

P = {λ(s)− r(s)n(s) + r(s)n(s), s ∈ (s1, s2), r ∈ [0, ρ)} (3.14)

with the interface

Γ = {λ(s)−R(s)n(s) + R(s)n(s), s ∈ (s1, s2), R ∈ [0, ρ)} (3.15)

such that 2R is the width of the vascular segment at location s along the
interface. We now want to apply a topological model reduction such that the
depiction above can be expressed as a 2D-1D problem. We make the following
assumptions

1. The radius of the vascular segment is small compared to the size of the tissue,
in particular, R/L≪ 1., where L loosly represents the length and width
of the surrounding tissue.

2. With the first assumption in mind, we presume further that uw has a uniform
profile on each cross-section D, i.e. uw can be written as a function of s
only and we let û(s) = uw(r, s) denote the one-dimensional representation
of uw.
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3.2. The 2D-1D boundary value problem

Let w be an arbitrary function and let us introduce the following notation

¯̄w(s) = 1
2R

∫
D(s)

wdσ (3.16)

is the mean of w over D at a specific location s on the centerline such that∫
Λ

∫
D

wdσds =
∫

Λ
2R ¯̄w(s)ds. (3.17)

Similarly, we let
w̄(s) = 1

2w|∂D (3.18)

be the mean of w on ∂D such that∫
Λ

w|∂Dds =
∫

Λ
2w̄(s)ds. (3.19)

Integrating the second term in (3.11) over P we have

−kw

∫
P

∆uwdx = −
∫

∂P
kw∇uw · nw

=
∫

D(s1)

∂

∂s
kwuwdσ −

∫
D(s2)

∂

∂s
kwuwdσ −

∫
Γ

kw∇uw · nwdσ

(3.20)

where the first equality is from the divergence theorem. Applying the
fundamental theorem of calculus we can rewrite the first two terms in the
second equality as∫

D(s1)

∂

∂s
kwuwdσ −

∫
D(s2)

∂

∂s
kwuwdσ = −

∫ s2

s1

d

ds

(∫
D

∂

∂s
kwuwdσ

)
ds

= −
∫ s2

s1

d

ds

(
2kwR

∂

∂s
¯̄uw

)
ds (3.21)

where in the last inequality we have used (3.17) and our assumption of constant
permeability kw. Next, we integrate the interface condition given last in (3.11)
to obtain

−
∫

Γ
kw∇uw · nw =

∫
Γ

kΓ(uw − up)

=
∫ s2

s1

[kΓ(uw − up)]∂Dds =
∫ s2

s1

2kΓ(ūw − ūp)ds. (3.22)

Inserting (3.22) and (3.21) in (3.20) and recalling the left hand side in (3.11)
we obtain ∫ s2

s1

d

ds

(
2kwR

∂

∂s
¯̄uw

)
+ 2kΓ(ūw − ūp)ds = 0. (3.23)

Since the choice of s1 and s2 was arbitrary we conclude

d

ds

(
2kwR

∂

∂s
¯̄uw

)
+ 2kΓ(ūw − ūp) = 0. (3.24)
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3.2. The 2D-1D boundary value problem

Recalling our assumption that uw has uniform profile, we can insert û for the
averages above and obtain

d

ds

(
2kwR

∂

∂s
û

)
+ 2kΓ(û− ūp) = 0 on Λ, (3.25)

since û is a single variable function of s the partial derivative is the total
derivative and we let ∆û = d2

ds2 û to obtain

2kwR∆û + 2kΓ(û− ūp) = 0 on Λ. (3.26)

Lastly, including the boundary conditions in (3.13) we get the boundary value
problem on the center line Λ

2kwR∆û + 2kΓ(û− ūp) = 0 on Λ (3.27)
û = ĝ on ∂Λ (3.28)

where we have used the same notation on the boundary term i.e. ĝ = gw to
emphasize the relation to û.

Model reduction of the interface

Let w on Γ be expressed as its average plus some fluctuation

w = w̄ + w̃. (3.29)

Then we make the following assumptions

3. We assume that the product of fluctuations is small over each interface ∂D,
if w1, w2 are functions in (Ωp, Ωw) then

(w̃1w̃2)|∂D = 0.

Furthermore, the mean of the fluctuation is zero, ¯̃w = w̃|∂D = 0.

4. We identify Ωp with the entire Ω = Ωp ∪ Ωw and hence skip the subscript p.

Multiplying the first term in (3.11) with test functions v and integrating
over the domain we get

−
∫

Ωp

(kp∆up)v =
∫

Ω
k∇u · ∇vdx−

∫
∂Ω

(k∇u · n)vdS (3.30)

where we have used integration by parts and Green’s identity. Next, we split
the boundary integral into its respective parts∫

∂Ω
(k∇u · n)vds =

∫
Σ

(k∇u · n)vdS +
∫

Γ
(k∇u · n)vdS (3.31)

and the integral over the Dirichlet boundary vanishes by choosing the appropriate
test space H1

Σ0
= {v ∈ H1(Ωp) : v = 0 on ∂Σ}. From the interface condition in

(3.11) we have

−
∫

Γ
(kp∇up · np)vds =

∫
Γ

kΓ(up − uw)vds =
∫

Γ
kΓupvds−

∫
Γ

kΓuwvds.

(3.32)
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3.2. The 2D-1D boundary value problem

where the last terms can be written as the evaluation of the functions on ∂D
and integrated over the centerline Λ,∫

Γ
kΓu∗vds =

∫
Λ

kΓ(s)(u∗v)|∂Dds (3.33)

for ∗ = w, p. Inserting (3.29) we have∫
Λ

kΓ(s)(u∗v)|∂Dds =
∫

Λ
kΓ(s)

(
(ū∗ + ũ∗)(v̄ + ṽ)

)
|∂Dds (3.34)

=
∫

Λ
kΓ(s)

(
ū∗v̄ + ū∗ṽ + ũ∗v̄ + ũ∗ṽ

)
|∂Dds, (3.35)

by assumption 3 and noting that the means is only a function of s we obtain∫
Λ

kΓ(s)(u∗v)|∂Dds =
∫

Λ
2kΓū∗v̄ds. (3.36)

Putting together (3.30), (3.36), the right hand side of (3.11) and using
assumption 4. we obtain∫

Ω
k∇u · ∇vdx +

∫
Λ

2kΓ(ū− û)v̄ds = 0 ∀v ∈ H1
Σ0

(Ω). (3.37)

Extension to vascular tree

The previous derivations model the interaction of fluid in one single vessel and
the surrounding tissue. Using conservation of fluxes and continuity through
bifurcations we can extend the model to vascular trees. Before we begin the
derivation we simplify by assuming that

6. The radii throughout the vascular tree is constant, Ri = R ∀i ∈ N , and
independent of s.

7. We have the relation kp = 2Rkw such that the only free parameter is the
"coupling factor" γ = 2kΓ

kp
= 2kΓ

2Rkw
, γ ≥ 0.

Let Λ be constructed as by the method of CCO, then Λ can be expressed as
the union of the vascular segments Λ = ∪N

i=1Λi, where Λi = {λi(si), si ∈ (0, Si)}.
Since each vascular segment was presumed to be C2 curves we know that (3.28)
and (3.37) holds on each segment, specifically that ∆û is well-defined on each
Λi. We then let

B = {bj ∈ R2 : j = 1, ..., M}

be the set of all bifurcation points in Λ and for a specific bifurcation point bj

we have

k = {i ∈ {1, ..., N} : λi(0) = bj}
Oj = {i ∈ {1, ..., N} : λi(Si) = bj}

where k represents the index of the proximal vessels to the bifurcation and Oj

the indices of the two vessels distal to the bifurcation. Furthermore, we let
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3.2. The 2D-1D boundary value problem

Figure 3.2: Example of model reduction on vascular tree.

ûi = 1, ..., N denote the solution û on each segment Λi. Following (Masri et al.,
2023) and (Laurino & Zunino, 2019) we require

( d

dsk
ûk)(0) =

∑
l∈Oj

( d

dsl
ûl)(Sl) (3.38)

ûk(0) = ûl(Sl) ∀l ∈ Oj . (3.39)

(3.38) corresponds to a balance of fluxes in the bifurcations points, and (3.39)
corresponds to continuity. For the root (i = 0) and all terminal vessels
(t = 1, ..., Nterm) we express the Dirichlet boundary conditions by letting

û0(0) = d0, ût(St) = dt. (3.40)

We define

H1(Λ) :=
⊕
Λi

H1(Λi) ∩ C0(Λ) (3.41)

as the Hilbert space consisting of all functions that are locally in H1 and
continuous over each bifurcation point. Furthermore, we define

H1
D := {v ∈ H1(Λ) : v0(0) = d0, vt(St) = dt, t = 1, .., Nterm}
H1

0 := {v ∈ H1(Λ) : v0(0) = 0, vt(St) = 0, t = 1, .., Nterm}.

Multiplying (3.28) with test functions v ∈ H1
0 (Λ), using the simplifications and

integrating we obtain
N∑

i=1

∫
Λi

∇ûi · ∇v̂ids− [∇ûiv̂i]∂λi
+ γ

∫
Λi

(ûi − ū)v̂ids = 0,

where ∇, in this case, is the derivative w.r.t. si. Using the notation introduced
earlier we can rewrite the boundary term as

N∑
i=1

[∇ûiv̂i]∂Λi
= [∇û0v̂0]∂Λ0 +

M∑
j=1

[∇ûkv̂k]∂Λk
−

∑
i∈Oj

[∇ûiv̂i]∂Λi


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3.3. Well-posedness

+
Nterm∑

t=1
[∇ûtv̂t]∂Λt

.

By the definition of the test space the first and last terms above are zero, and
since the test functions are continuous over each bifurcation we have for each
j and each i ∈ Oj , v̂k = v̂i, hence we can factorize out the test functions to
obtain

N∑
i=1

[∇ûiv̂i]∂Λi
=

M∑
j=1

[∇ûk]∂Λk
−

∑
i∈Oj

[∇ûi]∂Λi

 v̂j

which is zero by the balance of fluxes (3.38). Letting û ∈ H1
D(Λ) denote the

collection of functions satisfying (3.42) and taking the Dirichlet values (3.40)
at the root proximal point and terminal distal points we have the variational
formulation; find û ∈ H1

D(Λ) such that∫
Λ
∇û · ∇v̂ds + γ

∫
Λ

(û− ū)v̂ds = 0 ∀v̂ ∈ H1
0 (Λ). (3.42)

Since R is constant throughout the vascular tree, the average ū is by definition
constant over each cross-section D and since the averages only appear in the
last terms of (3.28) and (3.37) we approximate ū by the centerline trace of u,
i.e. we let ū = u|Λ. Since (3.37) should hold for all vascular segments Λi we
can combine (3.37) and (3.28) to obtain the boundary value problem of finding
(u, û) ∈ H1

ΣD
(Ω)×H1

D(Λ) such that∫
Ω
∇u · ∇vdx +

∫
Λ
∇û · ∇v̂ds + γ

∫
Λ

(u− û)(v − v̂)ds

= 0 ∀(v, v̂) ∈ H1
Σ0

(Ω)×H1
0 (Λ). (3.43)

3.3 Well-posedness

We aim to prove well-posedness of the boundary value problem (3.43) by showing
that it satisfies the requirements of Lax-Milgram, Theorem 3.1.6. Since we seek
a solution pair (u, û) of the boundary value problem (3.43) we first note the
following theorem.

Theorem 3.3.1. Let H1(Ω) and H1(Λ) be known Hilbert spaces with inner
products

⟨u, v⟩H1(Ω) =
∫

Ω
∇u · ∇vdx +

∫
Ω

uvdx

⟨û, v̂⟩H1(Λ) =
∫

Λ
∇û · ∇v̂ds +

∫
Λ

ûv̂ds.

Then let u, v ∈ H1(Ω), û, v̂ ∈ H1(Λ), and denote the Cartesian product of H1(Ω)
and H1(Λ) by

V = H1(Ω)×H1(Λ).
We aim to prove that this is also a Hilbert space and that an appropriate inner
product is defined by

⟨(u, û), (v, v̂)⟩V = ⟨u, v⟩H1(Ω) + ⟨û, v̂⟩H1(Λ),
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3.3. Well-posedness

which induces the norm

∥(v, v̂)∥2
V = ∥v∥2

H1(Ω) + ∥v̂∥2
H1(Λ). (3.44)

Proof. We first check that the proposed inner product is indeed an inner product.
we have

⟨(u, û), (v, v̂)⟩ = ⟨u, v⟩+ ⟨û, v̂⟩
= ⟨v, u⟩+ ⟨v̂, û⟩ = ⟨(v, v̂), (u, û)⟩

which shows that the proposed inner product is symmetric. To show linearity
we let a, b ∈ R and have

⟨a(u, û) + b(v, v̂), (w, ŵ)⟩ = ⟨(au + bv, aû + bv̂), (w, ŵ)⟩
= ⟨au + bv, w⟩+ ⟨aû + bv̂, ŵ⟩
= a⟨u, w⟩+ b⟨v, w⟩+ a⟨û, ŵ⟩+ b⟨v̂, ŵ⟩
= a⟨(u, û), (w, ŵ)⟩+ b⟨(v, v̂), (w, ŵ)⟩.

Since the inner product over H1 is positive-definite we easily see that the inner
product over V is positive-definite. Hence, V is an inner product space. It
remains then to show that it is complete. Let (vn, v̂n) be Cauchy sequences in
V converging to (v, v̂), using the norm we then have

∥(vn − v, v̂n − v̂)∥2
V = ∥vn − v∥2

H1(Ω) + ∥v̂n − v∥2
H1(Λ) → 0

which shows that vn and v̂n are Cauchy sequences in H1(Ω) and H1(Λ)
respectively. To show completeness we now need to show that (v, v̂) is in
V. Again, using the norm, we have

∥(vn, v̂n)− (v, v̂)∥2
V = ⟨(vn, v̂n)− (v, v̂)⟩

= ⟨(vn − v), (vn − v)⟩+ ⟨(vn − v), (vn − v)⟩
= ∥vn − v∥2

H1(Ω) + ∥v̂n − v̂∥2
H1(Λ) → 0.

■

Defining

B[(u, v), (û, v̂)] :=
∫

Ω
∇u · ∇vdx +

∫
Λ
∇û · ∇v̂ds + γ

∫
Λ

(u− v)(û− v̂)ds

The above theorem ensures that we are in the familiar setting of Theorem 3.1.6,
seeking a bilinear operator B : V× V→ R, where V are Hilbert spaces. The
above theorem can also easily be extended to hold for the product of N Hilbert
spaces, showing that the Hilbert space defined in (3.41) makes sense. The next
steps are to show boundedness and coercivity of B.

Boundedness

We consider the terms in B separately and by the Cauchy–Schwarz inequality
we have

|
∫

Ω
∇u · ∇vdx| ≤

∫
Ω
|∇u · ∇v|dx ≤ ∥∇u∥L2(Ω)∥∇v∥L2(Ω).
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3.3. Well-posedness

Furthermore, since ∥w∥2
H1 = ∥∇w∥2

L2 + ∥w∥2
L2 , the above is bounded by

|
∫

Ω
∇u · ∇vdx| ≤ ∥u∥H1(Ω)∥v∥H1(Ω). (3.45)

and by (3.44) we obtain the desired bound

|
∫

Ω
∇u · ∇vdx| ≤ ∥(u, û)∥V∥(v, v̂)∥V. (3.46)

Similarly, we have

|
∫

Λ
∇û · ∇v̂ds| ≤ ∥(u, û)∥V∥(v, v̂)∥V.

For the last expression in the bilinear form we use the triangle inequality and
Cauchy-Schwarz to obtain

|γ
∫

Λ
(u− û)(v − v̂)ds| ≤ γ

∫
Λ
|u− û||v − v̂|ds

≤ γ∥u− û∥L2(Λ)∥v − v̂∥L2(Λ)

≤ γ
(
∥u∥L2(Λ) + ∥û∥L2(Λ)

) (
∥v∥L2(Λ) + ∥v̂∥L2(Λ)

)
.

Recall, that we denote uΛ as the centerline trace of u, by the trace inequality
(3.5) we then obtain

|γ
∫

Λ
(u− û)(v − v̂)ds| ≤ γ(CT ∥u∥H1(Ω) + ∥û∥L2(Λ))(CT ∥v∥H1(Ω) + ∥v̂∥L2(Λ))

≤ γ(CT + 1)|∥u∥H1(Ω) + ∥û∥H1(Λ)||(CT + 1)∥v∥H1(Ω) + ∥v̂∥H1(Λ).

Note, that we could have used max{CT , 1} but for simplicity, we choose
(CT + 1) ensuring that the constant is greater than one. Lastly we use that
∥x∥l1 ≤

√
d∥x∥l2 , for x ∈ Rd to obtain

|γ
∫

Λ
(u− û)(v − v̂)ds| = γ(CT + 1)2√2∥(u, û)∥V∥(v, v̂)∥V.

Summarizing we have

|B[(u, û), (v, v̂)] ≤ (γ(CT + 1)2√2 + 1 + 1)∥(u, û)∥V∥(v, v̂)∥V
= (γ(CT + 1)2√2 + 2)∥(u, û)∥V∥(v, v̂)∥V (3.47)

which shows boundedness with constant α = (γ(CT + 1)2√2 + 2).

Coercivity

We have defined different trial and test spaces for the solutions (u, û) and test
functions (v, v̂), however, Theorem 3.1.6 require them to be equal. Poincare
type inequalities shows us that trace zero spaces like H1

0 , H1
Σ0

are subspaces of
H1 but this is not true for H1

D and H1
ΣD

. To show coercivity we therefore need
to reformulate (3.43), seeking also solutions in H1

Σ0
×H1

0 (Λ).
We will use two Poincare-type inequalities, one for the 2D solution u and

another for the 1D solution û. Consider first the latter, we seek a solution
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3.3. Well-posedness

û ∈ H1
D(Λ) = {û ∈ H1(Λ) : û = ĝ on ∂Λ} and define û = û0 + Eĝ, where Eĝ

denotes an extension of the boundary data to the whole of Λ. Inserting this in
the bilinear operator we obtain∫

Ω
∇u · ∇vdx +

∫
Λ
∇(û0 + Eĝ) · ∇v̂ds + γ

∫
Λ

(u− (û0 + Eĝ))(v − v̂)ds

=
∫

Ω
∇u · ∇vdx +

∫
Λ
∇û0 · ∇v̂ds +

∫
Λ

(u− û0)(v − v̂)ds

=
∫

Λ
Eĝ(v − v̂)−∇Eĝ · ∇v̂ds.

Since û0 is zero on the boundary ∂Λ we can use the following lemma

Lemma 3.3.2 (Poincaré for H1
0 ). Assume Λ is a bounded open subset of R and

that u ∈ H1
0 (Λ), then the following inequality holds

∥u∥L2(Ω) ≤ Cp∥∇u∥L2(Ω) (3.48)

Proof. (See e.g. Evans, 1998, p. 280). ■

For the 2D solution u we seek u ∈ H1
ΣD

= {u ∈ H1(Ω) : u = g on Σ}. Since
Σ is a subset of the boundary ∂Ω it will require a similar but different treatment
as the 1D solution. We define u = u0 + Eg such that u0 ∈ H1

Σ0
= {H1(Ω) :

u0 = 0 on Σ}, the bilinear operator then becomes∫
Ω
∇(u0 + Eg) · ∇vdx +

∫
Λ
∇û0 · ∇v̂ds + γ

∫
Λ

((u0 + Eg)− û0)(v − v̂)ds

=
∫

Ω
∇u0 · ∇v +

∫
Λ
∇û0 · ∇v̂ds + γ

∫
Λ

(u0 − û0)(v − v̂)ds

= −
∫

Ω
∇Eg · ∇vdx−

∫
Λ

Eg(v − v̂)ds.

Since u0 has vanishing trace on Σ = ∂Ω/Λ we can use the following lemma.

Lemma 3.3.3. Let Σ be a Lipschitz continuous subset of the boundary ∂Ω and
let u ∈ H1

Σ0
(Ω) be functions with vanishing trace on Σ, then

∥u∥L2(Ω) ≤ CpΣ∥∇u∥L2(Ω) (3.49)

Proof. The lemma is stated as in (Cerroni et al., 2019) and the proof can be
found in (e.g. Salsa, 2016, p. 489). ■

We now have B[(u0, û0), (v0, v̂0)] : V× V→ R, where V = H1
Σ0

(Ω)×H1
0 (Λ)

and the right hand side

F (v, v̂) = −
∫

Ω
∇Eg · ∇vdx−

∫
Λ
∇Eĝ · ∇v̂ds +

∫
Λ

(Eĝ − Eg)(v − v̂)ds.

(3.50)

To show coercivity we want to bound

B[(u0, û0), (u0, û0)] =
∫

Ω
(∇u0)2dx +

∫
Λ

(∇û0)2 + γ

∫
Λ

(u0 − û0)2ds
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3.3. Well-posedness

below and since γ ≥ 0 we have

B[(u0, û0), (u0, û0)] ≥
∫

Ω
(∇u0)2dx +

∫
Λ

(∇û0)2ds.

Then, isolating the first term, we have∫
Ω

(∇u0)2dx = ∥∇u0∥2
L2(Ω) = 1

2∥∇u0∥2
L2(Ω) + 1

2∥∇u0∥2
L2(Ω)

≥ 1
2∥∇u0∥2

L2(Ω) + 1
2C2

pΣ
∥u∥2

L2(Ω)

≥ min{1
2 ,

1
2C2

pΣ
}∥u0∥2

H1(Ω)

by Lemma 3.3.3. Similarly, we obtain∫
Λ

(∇û0)2 ≥ min{1
2 ,

1
2C2

p

}∥û0∥2
H1(Λ)

by Lemma 3.3.2. Finally, letting C1 = min{ 1
2 , 1

2C2
pΣ
} and C2 = min{ 1

2 , 1
2C2

p
}

the coercivity constant β = min{C1, C2} provides a lower bound on the bilinear
operator

B[(u0, û0), (u0, û0)] ≥ β∥(u0, û0)∥2
V.

Boundedness of F

Lastly, we need to show that F ((v, v̂)) : V→ R is a bounded linear functional
on V. We note that the form of F is similar to B which is bounded
and thus continuous on V for (u, û) ∈ H1(Ω) × H1(Λ) 3 hence we require
(Eg, Eĝ) ∈ H1(Ω)×H1(Λ). Recalling our definitions on the extension and trace
operators and the requirement on the boundary data as functions g ∈ H

1
2 (Σ),

ĝ ∈ H
1
2 (∂Λ) there does indeed exists a function Eg ∈ H1(Ω) with the trace

Eg|Σ = g and Eĝ ∈ H1(Λ) with the trace Eĝ|∂Λ = ĝ.
Summarizing, we have shown that there exists a unique (u, û) ∈ H1

ΣD
(Ω)×

H1
D(Λ) such that∫

Ω
∇u · ∇vdx +

∫
Λ
∇û · ∇v̂ds + γ

∫
Λ

(u− û)(v − v̂)ds

= 0 ∀(v, v̂) ∈ H1
Σ0

(Ω)×H1
0 (Λ) (3.51)

via Theorem 3.1.6 and the constants

α = (γ(CT + 1)2√2 + 2) (3.52)
β = min{CΩ, CΛ} (3.53)

representing the upper and lower bound of the bilinear operator.
For ease of notation we from here on denote Dirichlet boundary conditions as

3We did not require trace zero to show boundedness of B.
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3.4. Galerkin finite element method

subscripts to the trial space and do not provide how this changes the right-
hand side F . To see how the Dirichlet boundary conditions are enforced and
specifically how the extensions of the boundary data Eg, Eĝ are constructed
we refer to (Badia & Verdugo, 2020).

3.4 Galerkin finite element method

Consider an abstract problem on a Hilbert space H, namely, find w ∈ H such
that

B[w, z] = F (z) ∀ z ∈ H (3.54)
where B[·, ·] is a bilinear operator and F (z) is a bounded linear functional on
H. By Theorem 3.1.6 presuming coercivity and boundedness of B[·, ·], we know
that there exists a unique solution w ∈ H to (3.54). Similarly, we can define a
finite approximation wh to w on a finite-dimensional subspace Hh ⊂ H. Then
(3.54) becomes, find wh ∈ Hh such that

B[wh, zh] = F (zh) ∀ zh ∈ Hh. (3.55)

which is often denoted "the Galerkin equation". Inserting the error e = wh − w
in the above we get

B[e, zh] = B[wh, zh]−B[w, zh] = F (zh)− F (zh) = 0 ∀zh ∈ Hh.

This implies B-orthogonality of the approximation error e. Assuming that
B[·, ·] is symmetric, i.e B[w, z] = B[z, w], the bilinear operator defines an inner
product in H and induces the norm ∥w∥B =

√
B[w, w], whence, using the

B-orthogonality and the Cauchy-Schwartz inequality we have

∥w − wh∥2
B = B[w − wh, w − wh]

= B[w − wh, w]−B[w − wh, wh]
= B[w − wh, w]−B[w − wh, zh] ∀zh ∈ Hh

= B[w − wh, w − zh] ≤ ∥w − wh∥B∥w − zh∥B .

Dividing with ∥u− uh∥B we obtain the estimate

∥w − wh∥B ≤ ∥w − zh∥B . (3.56)

Since this holds for all zh ∈ Hh we know that wh is the best approximation to
w in Hh measured in the B-norm. Motivated by this we want to numerically
find an approximation to w by solving (3.55).

In this thesis we will consider problems on the form (3.55) seeking
approximations (uh, ûh) ∈ Vh × V̂h to (u, û) ∈ V × V̂ . We let Ω ∈ R2 denote
the domain restriction to u and Λ the domain restriction to û. We will always
restrict ourselves to the case where Λ ⊂ Ω i.e. the one-dimensional domain Λ is
restricted to live inside the two-dimensional domain Ω. Ω will in fact work as a
bounding box of Λ, but further details on this will be provided in chapter 5.
With these simple requirements on (Ω, Λ) we briefly describe how we build the
approximations uh, ûh.
We let Ph denote an admissible triangulation of (Ω, Λ), then

Ω =
⋃

△h
k

∈Ph

△h
k (3.57)
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3.4. Galerkin finite element method

where h is a refinement parameter and the partitioning of (Ω, Λ) is generated
such that the length of all the triangle edges is bound by the choice of h. Ph

consists of triangle elements △h
k aligned such that

Λ =
⋃

ih
k

∈Ih

ih
k (3.58)

is made up of a set of triangle edges in Ph. We refer to this as the embedding
of the domain Λ in Ω. Ih is then the admissible partitioning of Λ with line
segments ih

k and thus, h also bounds the length of each line segment ih
k .

Let {ϕ1, ϕ2, ..., ϕn} be basis functions for Vh consisting of continuous Lagrangian
polynomials and similarly let {ϕ̂1, ϕ̂2, ..., ϕ̂m} be basis functions for V̂h. Then by
letting {ξi}n

i=1 be the nodal values in Ph and {ξi}m
i=1 ⊂ {ξi}n

i=1 be the nodal
values in Ih we have

ϕi(ξj) = δij , and ϕ̂i(ξj) = δij

where δij is the Kronecker-Delta function

δij =
{

1 i = j

0 i ̸= j.

Since uh ∈ Vh and ûh ∈ V̂h they can be expressed as a linear combination of
the basis functions, i.e.

uh =
n∑

i=1
uiϕi, ûh =

n∑
i=1

ûiϕ̂i (3.59)

and similarly for the test functions vh, v̂h.
Expanding the last term in the previously introduced boundary value problem
(3.43) we have

γ

∫
Λ

(u− û)(v − v̂)ds = γ

∫
Λ

(uv − uv̂ − ûv + ûv̂) ds

then we let

AW(w1, w2) =
∫

W
∇w1 · ∇w2dw + γ

∫
Λ

w1w2ds (3.60)

B(w1, w1) = γ

∫
Λ

w1w2ds (3.61)

such that

AΩ(u, v) + AΛ(û, v̂)−B(u, v̂)−B(û, v) = B[(u, û), (v, v̂)].

Considering the terms above and the right hand side of (3.43) we insert our
ansatz’ (3.59) to obtain

n∑
i=1

ui

[∫
Ω
∇ϕi · ∇ϕjdx +

∫
Λ

ϕiϕjds

]
+

m∑
i=1

ûi

[
γ

∫
Λ

ϕ̂iϕjds

]
= 0 ∀ϕj ∈ Vh
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3.4. Galerkin finite element method

and
n∑

i=1
ûi

[∫
Λ
∇ϕ̂i · ∇ϕ̂jdx +

∫
Λ

ϕ̂iϕ̂jds

]
+

n∑
i=1

ui

[
γ

∫
Λ

ϕiϕ̂jds

]
= 0 ∀ϕ̂j ∈ V̂h

Since the above is a linear system of equations we can express it as[
AΩ −B1
−B2 AΛ

] [
u
û

]
=

[
0
0

]
(3.62)

where Aij
Ω = A(ϕi, ϕj), Aij

Λ = A(ϕ̂i, ϕ̂j), Bij
1 = B(ϕ̂i, ϕj) and Bij

2 = B(ϕi, ϕ̂j).

We will partition our domain as in (3.57) and (3.58) using the Gmsh
(Geuzaine & Remacle, 2009) software and assemble and solve the system (3.62)
with the Gridap (Badia & Verdugo, 2020) software. Both first and second-order
interpolating polynomials will be considered but we will restrict ourselves to
Lagrangian basis functions. The integral calculation needed to obtain the entries
of the matrices in (3.62) is done using Gaussian quadrature (see e.g. Quarteroni
et al., 2006, Chapter. 10). We note that an n-point Gaussian quadrature rule is
exact when integrating polynomials of degree 2n− 1. Figure 3.3 illustrates the

Figure 3.3: Nodal locations in P1 and P2 elements.

nodal locations for P1 and P2 type elements, where P denotes triangle elements
and the subsequent number is the polynomial order of the basis functions ϕi, ϕ̂i.
We will also the notation Q1 and Q2 for quadrilateral elements.

Error estimates

Theorem 3.1.6 provides existence and uniqueness to the previously introduced
boundary value problem (3.51) and by the Galerkin method we can find an
approximation to the unique solution (u, û). A natural question then arises
of how the error i.e. the difference between our approximation (uh, ûh) and
the solution (u, û) behaves and to answer this question we want to establish a
bound on this difference.
We note that the bilinear operator is symmetric i.e.

B[(u, û), (v, v̂)] = B[(v, v̂), (u, û)]
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3.4. Galerkin finite element method

4 then, by (3.56) we have

∥(u− uh, û− ûh)∥B ≤ ∥(u− vh, û− v̂h)∥B ∀(vh, v̂h) ∈ Vh

where ∥·∥B =
√

B[·, ·]. Using the coercivity and boundedness of B[·, ·] we obtain

β∥(u− uh, û− ûh)∥2
V ≤ B[(u− uh, û− ûh), (u− uh, û− ûh)]

= ∥(u− uh, û− ûh)∥2
B

≤ ∥(u− vh, û− v̂h)∥2
B

≤ ∥(u− vh, û− v̂h)∥2
V ∀(vh, v̂h) ∈ Vh.

Hence,

∥(u− uh, û− ûh)∥2
V ≤

α

β
∥(u− vh, û− v̂h)∥2

V

≤ α

β

[
∥u− vh∥2

H1(Ω) + ∥û− v̂h∥2
H1(Λ)

]
∀(vh, v̂h) ∈ Vh.

(3.63)

Since this holds for all (vh, v̂h) ∈ Vh we can choose (vh, v̂h) = (It
hu, It

hû) i.e.
the interpolation of order t of (u, û) in Vh. Provided sufficient regularity on the
triangulation Ph and using piecewise interpolating polynomials t = 1 we have
from (Braess, 2007, Theorem 6.4) the interpolation error

∥u− I1
hu∥H1(Ω) ≤ CΩh∥D2u∥L2(Ω) (3.64)

where D2u denotes the second order weak or distributive derivative of u and
h is a measure on the distance between the nodes in Ph. The above estimate
shows that if we can bound D2u i.e. if u is H2-regular then we should expect
first-order convergence. Similarly, we have from (Cerroni et al., 2019) that the
one dimensional interpolation error in û− I1

hû can be bounded by

∥û− I1
hû∥H1(Λ) ≤ hCΛ∥D2û∥L2(Λ). (3.65)

Inserting the above estimates in (3.63) we obtain

∥(u− uh, û− ûh)∥2
V ≤

α

β

[
C2

Ωh2
Ω∥D2u∥2

L2(Ω) + C2
Λh2

Λ∥D2û∥2
L2(Λ)

]
. (3.66)

Since Ih ⊂ Ph we have hΩ ≥ hΛ and by taking the scare root of both sides of
the equations above we obtain an estimate on the error measured in the V-norm

∥(u− uh, û− ûh)∥V ≤ h

√
α(γ)

β

[
C2

Ω∥D2u∥2
L2(Ω) + C2

Λ∥D2û∥2
L2(Λ)

] 1
2 (3.67)

where we have set h = hΩ and emphasized the dependence of the coupling
factor γ by letting the boundedness constant α = α(γ).

4Because B[·, ·] is symmetric a much simpler proof for existence and uniqueness can be
obtained using the Riez representation theorem 3.1.4 directly, however since we wanted to
obtain the constants α, β we chose the framework of the Lax-Milgram theorem 3.1.6
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3.5. Method of manufactured solutions

3.5 Method of manufactured solutions

We want to investigate convergence rates for different solutions to the boundary
value problem; find (u, û) ∈ H1

ΣD
(Ω)×H1

D(Λ) such that

B[(u, û), (v, v̂)] = F (v, v̂) ∀(v, v̂) ∈ H1
Σ0

(Ω)×H1
0 (Λ) (3.68)

where B[·, ·] is the bilinear form corresponding to the variational problem (3.51)
introduced in the previous chapter and F (·, ·) is a bounded linear functional.
We will use to enforce manufactured solutions (um, ûm). Specifically, we
can choose solutions (um, ûm) and calculate the corresponding F (·, ·) such
that when we numerically solve (3.68) we can measure the convergence of
the computed solution to the true/manufactured solution. We recall that
the Gaussian quadrature rule used for numerically computing the integrals
associated with (3.68) is exact. The gradients will be provided by analytic
derivation of the manufactured solutions. Since the manufactured solutions and
the approximations is defined on the same discretization the error is then only
by polynomial approximation of the manufactured solutions. We will allways
use Dirichlet boundary conditions corresponding to um|Σ and ûm|∂Λ.

We will investigate the finite element solver with three different geometries
of Λ. The aim is to understand how different geometries allow for different
regularities on the solution (u, û) and thus different convergence for the solution
(uh, ûh) to the manufactured solutions (um, ûm).

Manufactured solutions on straight line domain and basic estimates

Figure 3.4: Square mesh with straight line embedded interface.

We define Ω as the square with vertices (0, 0.5), (1, 0.5), (1,−0.5) and
(0,−0.5) and the subdomains Ω1 = {(x, y) ∈ Ω : y > 0} and Ω2 = {(x, y) ∈ Ω :
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3.5. Method of manufactured solutions

y < 0}. The one dimensional line Λ is embedded in Ω as Λ = {(x, y) ∈ Ω : y = 0}.
The corresponding strong formulation of (3.68) on the manifold (Ω, Λ) is then

−∆u1 = f1 on Ω1

−∆u2 = f2 on Ω2 (3.69)
u1 = u2 = um on Σ

on Λ


−∆û + γ(û− u∗) = f̂

û|∂Γ = ûm

u1 − u2 = 0
−∇u1 · ν1 −∇u2 · ν2 = γ(u∗ − û) + g

(3.70)

where u∗ denotes either u1 and u2 which are equal on Λ. Recall, Σ = ∂Ω \ ∂Λ.
We define v1 = v|Ω1 , v2 = v|Ω2 , u1 = u|Ω1 , u2 = u|Ω2 and require continuity by
v1− v2 = u1− u2 = 0 on Λ. To see how the above equations relate to (3.68) we
follow the standard procedure of multiplying with test functions and integrating
over the respective domains, using integration by parts and Green’s identity we
get ∫

Ω1

∇u1 · ∇v1 =
∫

Ω1

f1v1 +
∫

∂Ω1

(∇u1 · ν1)v1∫
Ω2

∇u2 · ∇v2 =
∫

Ω2

f2v2 +
∫

∂Ω2

(∇u2 · ν2)v2

→

→
∫

Ω
∇u · ∇v =

∫
Ω

fv −
∫

Λ
(∇u1 · ν1 +∇u2 · ν2)v

=
∫

Ω
fv +

∫
Λ

γ(u− û)v + gv (3.71)

where we have inserted g from (3.70) and set v = 0 on Σ such that the
boundary term vanishes on Σ and the remainder is the interface conditions over
Λ. Similarly, we get ∫

Λ
∇û · ∇v̂ + γ(û− u)v̂ =

∫
Λ

f̂ v̂. (3.72)

Note that since Λ is one dimensional, there does not appear a Neumann term
and for the gradient on Λ we have ∇ = d

dx , we do however keep the notation ∇
for consistency. Combining (3.71) and (3.72) we obtain the familiar variational
formulation; Find (u, û) ∈ H1

ΣD
(Ω)×H1

D(Λ) s.t.∫
Ω
∇u · ∇v +

∫
Λ
∇û · ∇v̂ +

∫
Λ

γ(u− û)(v − v̂) =
∫

Ω
fv +

∫
Λ

f̂ v̂ − gv

∀(v, v̂) ∈ H1
Σ0

(Ω)×H1
0 (Λ) (3.73)

where the H1
ΣD

(Ω) = {u ∈ H1(Ω) : u = um on ∂Σ} and H1
D(Λ) = {û ∈

H1(Λ) : u = ûm on ∂Λ}. Using the strong formulation we can construct
manufactured solutions by choosing u = um, û = ûm and calculating the
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3.5. Method of manufactured solutions

corresponding f, f̂ and g. With these source terms, our solutions (uh, ûh) to
the variational problem above should approximate the manufactured solutions
(um, ûm).

In our basic estimates, we want to control that the solver can approximate the
manufactured solutions exactly when the order of our interpolating polynomials
and the manufactured solutions agree. We also want to show that the solver
behaves as expected for no coupling (γ = 0) and weak coupling (γ = 1). The
error is defined as the difference of uh, ûh and u, û measured in the H1-norm
respectively and combined with the V-norm

etot :=
√
∥u− uh∥2

H1(Ω) + ∥û− ûh∥2
H1(Λ).

γ = 0 γ = 1
Manufactured Solutions H1-error etot H1-error etot

um = x− y 2.9e-15 2.9e-15 2.2e-15 3.5e-15
ûm = x 4.1e-15 2.7e-16

um = x− y 2.9e-15 0.072 7.3e-4 0.072
ûm = x2 0.072 0.072

um = cos(x) + sin(y) 0.032 0.037 0.032 0.037
ûm = sin(x) 0.019 0.019

Table 3.1: Error in approximating manufactured solutions for the boundary
value problem (3.73)

Table 3.1 shows the error for different manufactured solutions. Since we have
used P 1 elements in our approximations we should expect machine precision for
manufactured solutions of polynomial degree t = 1. The table shows that this
is the case and we also note that the approximation error inflicts on um when
the coupling factor γ ̸= 0 and ûm is a higher order polynomial, even though u
is a first-order polynomial.
Recall our estimate

etot = ∥(u− uh, û− ûh)∥V ≤ h

√
α(γ)

β

[
C2

Ω∥D2u∥2
L2(Ω) + C2

Λ∥D2û∥2
L2(Λ)

] 1
2

(3.74)

calculating etot for five successive mesh refinements, approximately halving h
for each refinement we should, from the estimate above expect h1-convergence
- for H2 regular solutions. Furthermore, (Braess, 2007) establishes the more
general bound by

∥u− Ihu∥Hm(Ω) ≤ Cht−m∥Dtu∥L2(Ω) (3.75)

for triangle elements when interpolating the 2D solution using t − 1 order
polynomials and also shows that the bound holds for quadrilateral elements
when t ∈ [2, 3]. Although, our estimate (3.74) does not bound the error in the
L2 norm we want to see if (3.75) holds and thus measure the error in both norms
(L2 and H1) and use both triangular P and quadratic Q elements. Furthermore,
provided enough regularity it is natural to suspect that the one-dimensional
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approximation also follows the above bound. We thus suspect that etot follows
(3.75) for interpolating polynomials of order 2.
Using the last manufactured solutions in table (3.1) which is clearly both H2

and H3 regular we measure the error for four successive refinements on h. From
(3.74) and the derivation of the boundedness constant α we see that the error
also depends on the coupling factor γ and we should expect an increase in the
error if γ increases.

(a) Log-log plot of error measured in both
the L2 -norm and the H1-norm using
both Pt and Qt, t ∈ [1, 2] elements.

(b) error as a function of increasing
coupling γ using P1 elements.

Figure 3.5: Convergence analysis of the approximation (uh, ûh) to manufactured
solutions (um, ûm).

Figure 3.5 (a) shows that we obtain the expected convergence rates for both
triangular and quadrilateral elements. From Figure 3.5 (b) we see that the
error associated with an increase in γ is minuscule as ∆e = 6.0 · 10−5 while
γ ∈ [0, 1000]. For the rest of our study on manufactured solutions we therefore
simply set γ = 1. Further experiments providing intuition on the specific shape
of the graphs in Figure 3.5 (b) are provided in Appendix A.

The boundary value problem (3.73) admits solution (u, û) ∈ H1 /∈ H2,
however from the estimate (3.74) we see that that the regularity of the solution
clearly affects the bound on the error. To study convergence for lower regularity
of the solution we let um = sin|y| or equivalently

um =
{

sin(y) on Ω1

−sin(y) on Ω2
(3.76)

and, for simplicity, we set û = 0 on Λ. We then have

um(x, y) = sin|y|, d

dy
um(x, y) = y

|y|
cos|y| = sgn(y)cos|y|

d2

dy2 um(x, y) = d

dy
sgn(y)cos|y|+ sgn(y) d

dy
cos|x|

since cos(y) is symmetric we have cos|y| = cos(y) and we can rewrite
sgn(y) = 2H(y) − 1 where H(y) is the Heaviside function with the known
distributional derivative δ(y), namely the Dirac-delta function. Whence, we get

d2

dy2 um(x, y) = 2δ(y)− sgn(y)sin(y)
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where we have simplified 2δ(y)cos(y) = 2δ(y) since cos(0) = 1 and δ(y) = 0
when y ̸= 0. The corresponding source terms to our manufactured solutions are
then

f1 = −sin(y), f2 = sin(y), f̂ = 0
g = −(0, cos(y)) · (0, 1)− (0,−cos(y)) · (0,−1)− γsin(|y|)

= −2cos(y)− γsin(|y|).

Now, considering the regularity of u(x, y) = u(y) on Ω we want to show, for
H1-regularity, that u has a weak derivative Du and that ∥Du∥L2(Ω) < ∞.
Hence, we need to find a measurable function Du : Ω→ R such that∫

Ω
u(y)ϕ′(y) = −

∫
Ω

Du(y)ϕ(y)

holds for all smooth functions ϕ : Ω → R with compact support in Ω. Using
integration by parts we have∫

Ω
sin|y|ϕ′(y) =

∫
Ω1

sin(y)−
∫

Ω2

sin(y)

=
[
sin(y)ϕ(y)

]
Ω1
−

∫
Ω1

cos(y)ϕ(y)−
[
sin(y)ϕ(y)

]
Ω2

+
∫

Ω2

cos(y)ϕ(y),

since ϕ has compact support and since sin(0) = 0 we get∫
Ω

sin|y|ϕ′(y) = −
∫

Ω1

cos(y)ϕ(y) +
∫

Ω2

cos(y)ϕ(y) = −
∫

Ω
sgn(y)cos(y)ϕ(y).

Thus Du(y) = sgn(y)cos(y) = ∇u(y).
Next, we check

∥Du∥2
L2(Ω =

∫
Ω
|sgn(y)cos(y)| =

∫
Ω
|cos(y)| <∞

which concludes u ∈ H1(Ω).
Considering the second derivative of u on the two subdomains Ω1, Ω2 we have

u′′(y) =
{
−sin(y) on Ω1

sin(y) on Ω2

which we know have to agree with the weak derivative on the domains. Again,
using integration by parts we obtain∫

Ω
u′ϕ′ =

∫
Ω1

cos(y)ϕ′(y)−
∫

Ω2

cos(y)ϕ′(y) =
[
cos(y)ϕ(y)

]
Ω1

+
∫

Ω1

sin(y)ϕ(y)−
[
cos(y)ϕ(y)

]
Ω2
−

∫
Ω2

sin(y)ϕ(y)

= (0− ϕ(0))− (ϕ(0)− 0) +
∫

Ω
sgn(y)sin(y)ϕ(y)

= −2ϕ(0) +
∫

Ω
sgn(y)sin(y)ϕ(y) !=︸︷︷︸

should equal

−
∫

Ω
u′′(y)ϕ(y) =

∫
Ω

sgn(y)sin(y)ϕ(y)
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which should hold for all ϕ ∈ C∞
c (Ω) but only holds when ϕ(0) = 0. Therefore

D2u does not exist and u /∈ H2(Ω). We do, however, note that the disagreement
lies on Λ and that we do have u ∈ H2(Ωi) for i = 1, 2 but without a bound on
∥D2û∥ we cannot guarantee first order convergence of etot when refining the
mesh parameter h.

(a) Computed solution (b) Error

Figure 3.6: Computed solution uh and corresponding error eu = um − uh.

Figure 3.6 shows the computed solution uh over the domain Ω = Ω1 ∪ Ω2
and the corresponding error eu = u− uh for h ≈ 0.17. We see that the highest
error is located on and around Λ. From figure (a), the computed solution uh

on Λ is −2.9 · 10−8, while we know that the manufactured solution um = 0 on
Λ, this amounts for the error in (b).

Figure 3.7: Log-log plot of error against mesh refinement for manufactured
solutions 3.76

Figure 3.7 shows that the convergence is close to not affected by the lower
regularity on u. The calculated slope is 0.994 while with H2 regularity on the
whole of the domain Ω we should expect 1.0. With higher refinement of h or by
considering a part of the domain closer to the error in Figure 3.6 (b) we could
expect a further decrease in convergence rate.
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Nonconvex subdomain

Consider the boundary value problem (3.73) on the square domain Ω = Ω1 ∪Ω2
with vertices (−1, 1), (1, 1), (1,−1) and (−1,−1). We define Ω2 = {(x, y) ∈ Ω :
(x, y) < 0}, Ω1 = {(x, y) ∈ Ω : (x, y) /∈ Ω2} and Λ = {(x, y) ∈ Ω : (x, y) ∈
Ω1 ∩ Ω2}.

Figure 3.8: Meshed 2D-1D domain, with nonconvex subdomain Ω1

The reason we want to consider a non-convex domain Ω1 is that convexity
is a well-known requirement on elliptic problems to ensure H2-regularity of the
solution u, (see e.g. Grisvard, 2011, Chapter 2). We note that the corresponding
strong formulation of the variational problem (3.73) equal (3.69) and (3.70) but
with different definitions on the unit vectors ν1 and ν2, this will be emphasised
later. We follow our standard procedure of constructing manufactured solutions,
but we must pay extra attention to how we implement the solution in Λ. Since
Λ = Λ1 ∪ Λ2 where Λ1 = {(x, y) ∈ Λ : y = 0} and Λ2 = {(x, y) ∈ Λ : x = 0} we
will implement the manufactured solution ûm piecewise as

ûm(x, y) =
{

û1 (x, y) ∈ Λ1

û2 (x, y) ∈ Λ2.

Let us consider solutions û1 and û2 that are Ck(Λi), i ∈ [1, 2] with k ≥ 2.
Integration by parts then gives us∫

Λ
∇ûmϕ′ =

∫
Λ1

∂xû1ϕ′ +
∫

Λ2

∂yû2ϕ′

= [∂xû1ϕ]∂Λ1 + [∂yû2ϕ]∂Λ2 −
∫

Λ1

∂xxû1ϕ−
∫

Λ2

∂yyû2ϕ

= [(∂xû1(x, y)− ∂yû2(x, y))ϕ(x, y)](0,0) −
∫

Λ
∆ûϕ.
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3.5. Method of manufactured solutions

As previously, D2ûm
!= ∆ûm to obtain ûm ∈ H2(Γ), therefore we require

continuity of the derivatives in (0, 0) i.e. ∂xû1(0, 0) = ∂yû2(0, 0) or equivalently
∇ûm ∈ C0(Λ) to ensure ûm ∈ H2(Γ). Notice also that this requirement
corresponds to the balance of fluxes in section 3.2. Experiments show that with
the above satisfied and thus u, û ∈ H2 we get the expected convergence rates
for manufactured solutions (um, ûm) ∈ H2(Ω)×H2(Γ).

One reason that higher regularity of the solution to a boundary value
problem and convexity of the domain often imply each other is that non-convex
domains, like Ω1 and a particular boundary value problem, can have underlying
singularities. (Elman et al., 2014) investigates the solution to the Poisson
boundary value problem −∆u = 1 on a domain similar to Ω1 with boundary
conditions u = 0 on ∂Ω1. They show that the solution u can be closely
approximated at the origin by

u = r2/3sin((2θ + π)/3) (3.77)

where r represents the radial distance to the centre of Figure 3.8 and θ the angel
with the vertical axis y, notice that the radial derivatives of u are unbounded
at the origin. Setting

u1(r, θ) = r2/3sin((2θ + π)/3) on Ω1 (3.78)
u2 = 0 on Ω2 (3.79)
û = 0 on Λ (3.80)

as manufactured solutions, we can create a similar scenario as the Poisson
boundary value problem on a non-convex domain. We use the definitions

r(x, y) :=
√

x2 + y2 (3.81)

θ(x, y) :=
{

cos−1( x
r ) y ≥ 0

−cos−1( x
r ) y < 0

(3.82)

and note that θ(0, y < 0) = −π
2 → u1 = 0 and θ(x < 0, 0) = −1→ u1 = 0 such

that the continuity condition u1 − u2 = 0 on Λ is fulfilled. The condition given
last in (3.70) is fulfilled by defining ν1 as the piecewise unit normal vector (in
polar coordinates) from Ω1 over Λ1 and Λ2. ν2 is defined similarly, but opposite,
from Ω2 to Ω1.

From Figure 3.9(a) we see that the computed solution cannot approximate
the singularity at the origin, and this amounts to the error in Figure 3.9(b).
The yellow colour denotes that the value at the origin node is a NaN value and
since the plot interpolates the nodal values inside the triangle elements, each
triangle sharing the origin node is yellow. For this boundary value problem,
u ∈ H1(Ω) /∈ H2(Ω) and we cannot bound the error by (3.74). However, (Elman
et al., 2014) establishes, for the Poisson boundary value problem on an L-shaped
domain, the bound

∥∇(u− uh)∥L2(Ω) ≤ Ch
2
3 −ϵ (3.83)

where ϵ > 0 is an arbitrary constant.
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3.5. Method of manufactured solutions

(a) Computed solution (b) Error

Figure 3.9: Computed solution and corresponding error, yellow colour indicated
singularity at origin (x,y) = (0,0).

Figure 3.10: Log-log plot of error against mesh refinement.

Figure 3.10 shows that the bound (3.83) holds for four successive refinements
on h and for P1, P2, Q1, Q2 type elements.

Unstructured mesh

Previously we have only considered structured meshes, which we have shown
provide regular and uniform errors excluding the point of singularity in Figure 3.9.
However, considering a more irregular domain Λ, we are forced to use a less
structured mesh to be able to embed Λ ⊂ Ω. Recalling estimate (3.74) we know
that the bound on the error is dependent on the length between the nodes h.
Considering the 2D triangulation Ph, consisting of triangle elements ∆k we
should expect a different error bound depending on the length of the longest
triangle edge hk. Indeed, following (Elman et al., 2014) we can establish the
bound

∥D(u− uh)2
∆k
∥ ≤ 2 h2

k

|∆k|
∥D(ū− ūh)∥2

∆∗
. (3.84)
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3.5. Method of manufactured solutions

Figure 3.11: Branching domain Λ embedded in 2D domain Ω.

where ū denotes the mapped function on a reference element ∆∗. (3.84) shows
that a large aspect ratio h2

k

|∆k| , i.e. long triangle edges w.r.t the area of the
triangle correspond to a high bound associated with that element error, where
the lowest bound is obtained for equilateral elements.

We consider the 2D-1D domain given in Figure 3.11 and manufactured
solutions

um = x3 − y3 on Ω (3.85)
ûm = x3 + y3 on Λ. (3.86)

Since um ∈ C2(Ω), the strong formulation of (3.68) is simplified to

−∆u = f on Ω (3.87)
u = um on Σ

on Γ


−∆û + γ(û− u) = f̂

û|∂Γ = ûm

0 = γ(u− û) + g

. (3.88)

Note that the Dirichlet boundary condition û|∂Γ = ûm is now enforced on the
starting point (x, y) = (−1,−1) and at both ends (1, 0) and (0, 0.8). Using
P1, P2

5 type elements we will experience an interpolation error in our solution
5This curve Λ does not allow for discretization using Qk type elements. Gmsh (Geuzaine

& Remacle, 2009) allows for combined element types, but this functionality is not yet
implemented in Gridap (Badia & Verdugo, 2020), and will thus not be investigated.
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3.5. Method of manufactured solutions

(uh, ûh) but we want to ensure convergence with the more complex Λ and as a
consequence, the more irregular mesh. We enforce the manufactured solutions
by setting the source terms

f =−∆u (3.89)
g =− γ(u− û) (3.90)

and to enforce ûm on Λ we divide Λ into

Λxy =
{

Λ x, y ∈ (−1, 0)
∅ else

Λx =
{

Λ x ∈ (0, 1), y = 0
∅ else

Λy =
{

Λ y ∈ (0, 1), x = 0
∅ else.

Now, we can separate the different gradients given as

∇Λxy
= 1√

2

(
∂

∂x
,

∂

∂x

)
, ∇Λx

= ∂

∂x
, ∇Λy

= ∂

∂y

and calculate the different source terms

f̂1 = −∇Λxy
· ∇Λxy

u = 1
2

(
∂2ûm

∂x2 + ∂2ûm

∂y2

)
, f̂2 = ∇Λx

· ∇Λx
= ∂2ûm

∂x2

f̂3 = ∇Λy
· ∇Λy

= ∂2ûm

∂y2

Notice that the ∇Λxy
û = ∇Λx

û = ∇Λy
û at the branch point (0, 0) so û ∈ C1(Λ)

and thus from our reasoning in the non-convex domain, û ∈ H2(Λ). Figure 3.12

(a) Error on coarsest mesh. (b) Error in finest mesh.

Figure 3.12: Error u− uh with mesh refinement hk ≈ 0.35→ 0.02.

shows that on an unstructured grid, the location of the interpolation error is
decided by the aspect ratio of the triangle elements. The nodes shared between
triangle elements with a high aspect ratio will exhibit the highest error. Refining
the mesh in Figure 3.12 (b) allows for more equilateral triangle elements but
retains the more "bad" elements along the boundary ∂Ω and Λ. The domain
Λ is partitioned into equal distance nodes, therefore the error on Λ is more
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3.5. Method of manufactured solutions

regular and the error is concentrated away from the boundary points ∂Λ where
we enforce ûh = ûm as Dirichlet boundary conditions. From estimate (3.84) we
see that the bound is dependent on the aspect ratio of the triangle elements,
in particular, we must prevent that |∆k| → 0 as we refine the mesh. Gmsh
(Geuzaine & Remacle, 2009) does this automatically by scaling the elements
size and then re-meshing the surface (Ω, Λ). Gmsh also provides a measure of
the aspect ratio of the computed triangle elements, using a metric defined by

η := 2R1/R2

where R1 is the inscribed radius and R2 circumscribed radius. By the relations

R1 =
√

(s− a)(s− b)(s− c)
s

, R2 = abc

4R1s

where a, b, c are the triangle side lengths and s = 1
2 (a + b + c) is the semi-

perimeter. Additionally, we have the formula

|∆k| =
√

s(s− a)(s− b)(s− c)

which is often denotes as Heron’s formula. Combining the above we can express
η by

η = 2R1 · 4R1s

abc
= 8R2

1s

abc
= 8|∆k|2

sabc
= 16|∆k|2

a2bc + b2ac + c2ab

and choosing a, b or c as our longest triangle edge hk we see that increasing h2
k

|∆k|
i.e. minimizing the triangle area or increasing hk has the effect of decreasing η.
We also note that for an equilateral triangle, we have the best possible aspect
ratio and η = 1. Table 3.2 shows that the aspect ratio does not increase (η

scale element id hmax η
1.0 71 0.3504 0.767
0.5 97 0.1572 0.823
0.25 395 0.0773 0.686
0.125 628 0.0437 0.787
0.0625 1158 0.02136 0.737

Table 3.2: Worst elements according to η and corresponding max edge length
for five successive mesh refinements.

decrease) as we refine the mesh and that hmax is approximately halved for each
scaling factor.
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3.5. Method of manufactured solutions

Figure 3.13: Log-log plot of error against mesh refinement.

Figure 3.13 shows that we obtain close to the expected converge rate, but
the more varying quality of the triangle elements to some degree slows down
the convergence.
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3.6. Deciding boundary conditions and error analysis with CCO curvature

3.6 Deciding boundary conditions and error analysis with
CCO curvature

We want to consider solutions to the boundary value problem introduced in
section 3.2 using vasculature obtained from the method of CCO. We let Ω be
the unit square (0, 1)2 and Λ the 1D representation of the vasculature and
confined in Ω. We chose homogeneous Neumann boundary conditions on Σ and
let the Dirichlet boundary conditions on ∂Λ be given as

D = 1
1 + di

(3.91)

where di is the Euclidean distance from the root proximal point x0 to a specific
distal terminal point, following the path along Λ.

Figure 3.14: Solutions of the boundary value problem with strong coupling
γ = 100 and structures of Λ obtained by the method of CCO.

Figure 3.14 shows the solution uh as contour lines in the square Ω and ûh

as a color map on the curvature Λ. Since uh is purely driven by diffusion and
exchange by the high coupling (γ = 100) with ûh we see that the boundary
values of ûh on the root proximal point and terminal distal points inflicts on the
solution uh surrounding ûh. The physical motivation for the proposed Dirichlet
boundary conditions on ûh is then that an injected fluid in the root proximal
point will travel along the curvature to the terminal distal points extracting the
flow. Since the required energy to "carry" the fluid increases with the length of
the path along Λ, we set a difference in pressure that increases with the curve Λ.
The homogeneous Neumann boundary conditions are identified in Figure 3.14
by the fact that uh is constant, normal to the boundary ∂Ω which indeed implies
that the contour lines are perpendicular to ∂Ω. Physically, we motivate this
choice of boundary condition by the consideration of only a "patch" of the tissue,
in this scenario there would not be a blockage or leakage in the restriction of
this patch, but a constant continuation across the boundary.

The method of CCO aims to spread the terminal distal points as
homogeneously as possible in Ω and the physical intuition of this is that the
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3.6. Deciding boundary conditions and error analysis with CCO curvature

tissue needs to be provided with nutrients by the blood. Considering a uniform
piece of tissue the vasculature providing these nutrients should be evenly spread
throughout the tissue. The proposed boundary value problem also follows this
intuition and hence a consequence of more terminal segments in the vasculature
Λ leads to the pressure difference being more evenly spread out in Ω.

Considering an arbitrary number of terminal segments, the complexity of Λ
no longer allows for manufactured solutions and we cannot measure convergence
as done previously. Indeed our best estimate for the true solution (u, û) is the
solution obtained with high refinement h and since the solution (uh, ûh) should
converge to this solution we measure the relative error between successive mesh
refinements. We let u = (u, û), hk = h/2k and measure the relative error by

RE(uhk+1 , uhk
) =
∥uhk+1 − uhk

∥
∥uhk+1∥

(3.92)

for both P1 and P2 type elements.

Figure 3.15: Relative error (3.92) measured in the L2 and H1 norm of u on
mesh refinements {h/2k, k = 0, .., 6} with h = 0.125. All other parameters used
correspond to 3.14

The relative error is computed by interpolating uhk
on the discretization

corresponding to hk+1, and the relative error is measured on two curves Λ
obtained by the method of CCO with 36 terminal vessels.

With these numerical results, we conclude confidence that the mathematical
model exhibits the physical features we expected and that the corresponding
numerical procedure is consistent and converges for higher refinement. We have
thus a way of describing the interaction of fluid in the vasculature and the
surrounding tissue by the mathematical description of diffusion and exchange.
By the method of CCO we can obtain the spatial location of the vascular
trees which is needed as the input for the machine learning model and by the
boundary value problem with fixed boundary conditions described above we
obtain the target to the model by using the now investigated finite element
solver.
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CHAPTER 4

Deep learning with the Fourier
neural operator

Many problems in science and engineering involve solving partial differential
equations (PDEs) repeatedly for different geometries. The traditional finite
element solvers, like the one we introduced in the previous chapter, often rely
on a particular kind of discretization to obtain the solution. In situations where
we are dealing with complex geometries and particularly in situations where the
geometries vary but the PDEs and boundary conditions remain the same this
can become costly operations. From our convergence studies in the previous
chapter, we clearly see that there is a trade-off between the approximation error
and the refinement parameter h. Because of this, there has been an interest in
using supervised learning to relax the need for high refinement. A particular
neural network architecture achieving tremendous success for computer vision
tasks is the convolutional neural network (CNN), by using local convolutions
these deep networks have been proven good at detecting local patterns as edges
and shapes in images. Since images are a natural way to represent geometries
there have been studies on how they can handle computational fluid dynamics
(CFD) tasks (see e.g. Guo et al., 2016; Viquerat & Hachem, 2020). However, the
primary success of CNNs has been in situations where no mathematical details
of the relation between the input image and the output image are known. The
deep structures of CNNs then provide enough complexity to learn everything
purely by the features of the input data. In learning solutions to PDEs, it has
therefore become a question of if you can incorporate a priori knowledge of the
problem you are trying to learn into the structure of the neural network. In this
way, you could aim to learn an entire family of solutions to PDEs instead of the
traditional solvers which obtain the solution for one instance of the PDE. This
is known as operator learning and two different approaches in the literature
are DeepOnet (Lu et al., 2021) and simply "Operator learning"(Kovachki et al.,
2021). In our study we will focus on the latter and specifically Fourier Neural
Operators which employ global convolutions through discrete Fourier transforms
to learn mappings between function spaces.

In this chapter, we first motivate the use of operator learning to obtain
approximations of the solution (u, û) by considering the energy functional of the
previously introduced boundary value problem. We then describe the method
proposed in (Li et al., 2020a) to train a parametric map Gθ : X → Y working as
an approximation to (u, û) through supervised learning. Lastly, we present our
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choice of the input X and the target Y and show it relates to the vasculature Λ
and the pressures (u, û).

Motivation

We define the energy functional

Ef (u, û) := 1
2

∫
Ω

(∇u)2dx + 1
2

∫
Γ
(∇û)2ds + γ

2

∫
Λ

(u− û)2ds (4.1)

for γ ≥ 0 and consider the following minimization problem

min
(u,û)∈V

Ef (u, û).

A minimum (u, û) is characterized by Ef (u, û) ≤ Ef (u + ϵv, û + ϵv̂) for all
v, v̂ ∈ V and ϵ > 0. Defining a new function

Φ(ϵ) := Ef (u + ϵv, û + ϵv̂)

we know that Φ has a minimum at ϵ = 0 and dΦ(ϵ)
dϵ |ϵ=0 = 0. Whence,

dF (u + ϵv, û + ϵv̂)
dϵ

=
∫

Ω
(∇u + ϵ∇v) · ∇vdx

+
∫

Λ
(∇û + ϵ∇v̂) · ∇v̂ds + γ

∫
Λ

(u + ϵv − (û− v̂)) · (v − v̂)ds

= 0 ∀(v, v̂) ∈ V.

Setting ϵ = 0 we obtain the familiar bilinear form

B[(u, û), (v, v̂)] =
∫

Ω
∇u · ∇vdx +

∫
Λ
∇û · ∇v̂ds + γ

∫
Λ

(u− û)(v − v̂)ds. (4.2)

We can thus express our boundary value problem as finding the pair (u, û) which
minimizes Ef , and fixing the boundary conditions on Ω and γ and seeking to
minimize Ef only dependent on the structure of Λ we have

G := min
(u,û)∈V

Ef (u, û; Λ), G(Λ) 7→ (u, û). (4.3)

Presume now that we have a set of observations {X, Y }N
i=1 where X and

Y correspond to some representation of the vacular geometry and the solution
(u, û) respectively. We know that there exists an operator

G : X → Y (4.4)

and aim to learn the operator G by constructing an approximation Gθ ≈ G,
where Gθ : X × Θ → Y is a parametric map. More specifically, by defining
a cost functional C : Y × Y → R which measures the difference between the
output of the operator G and our approximation Gθ, we seek a minimizer θ ∈ Θ
by

min
θ∈Θ

C [Gθ(X, θ), G(X)] . (4.5)

Provided that Gθ is differentiable w.r.t. θ we can employ optimization algorithms
to efficiently find a minimum θ ∈ Θ. In the following derivation motivated and
inspired by (Li et al., 2020a), (Li et al., 2020b), (Kovachki et al., 2021) we
present a specific construction of the parametric map Gθ.
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4.1. The method of FNO

4.1 The method of FNO

Let Ωj = {xj}n
j=1 be a discretization of Ω, where xj are evenly spaced points.

Furthermore, assume we have observations X ∈ Rn×dx and Y ∈ Rn×dy , where
dx represents the number of channels in the input X and dy the number of
channels in the output Y .
We then provide the following network architecture, given as an iterative scheme

v0(x) = P (X(x)) (4.6a)
vt+1(x) = σ(Wvt(x) + (K(Xs; θ)vt)(x)) (4.6b)

u(x) = Q(vT (x)). (4.6c)

(4.6)a is denoted the lifting layer, (4.6)b is denoted the Fourier layer and (4.6)c
is denoted the projection layer. Notice that each iterative step is expressed
as function evaluations, and (x) represents that each layer or iterative step is
functions taking spatial coordinates as input. P (·) : Rdx → Rdv is denoted the
"lifting" operator since we let Rdv > Rdx , σ(·) : R→ R is an activation function,
W : Rdv → Rdv is a linear transformation and Q(·) : Rdv → Rdy is a projection
operator, whose role is to project the output vT to the desired output shape.

The kernel integral operator is defined by

(K(X; θ)vt)(x)) :=
∫

D

κθ(x, s, X(x), X(s); θ)vtds. (4.7)

where κθ(·) : R2(2+dx) → Rdv×dv . To estimate the integral above we impose
κ(x, s, X(x), X(s)) = κ(x− s) and can then apply the Convolutional Theorem
(Renardy & Rogers, 1993, p. 158) to obtain

(K(θ)vt)(x)) = F−1(F(κθ) · F(vt))(x) (4.8)

and by direct parameterization of κθ in Fourier space, we simplify the above to

(K(θ)vt)(x)) = F−1(Rθ · (Fvt))(x) (4.9)

and denote it as the Fourier integral operator. Notice that the operator is now
independent of the input X but we see from the architecture (4.6) that both
W ̸= 0 and vt will "carry" the information of X through the different layers.
Let f(x) : Ω→ R be an integrable function. The Fourier transform of f(x) is
defined as

F(f)(k) =
∫

Ω
f(x)e−2πi⟨x,k⟩dx. (4.10)

where i =
√
−1 is the imaginary unit and ⟨·, ·⟩ denotes the inner product between

the two dx-dimensional vectors x and k. Since our domain Ω is discretized with
points {x1, x2, ..., xn} (4.10) is approximated by the discrete Fourier transform
expressed as

Ffl(k) =
n∑

j=1
fl(xj)e−2πi⟨

xj
n ,k⟩ =

nx∑
jx=1

ny∑
jy=1

fl(xjx
, yjy

)e−2πi
[ xjx

nx
kx+

yjy
ny

ky

]
(4.11)
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4.2. Model architecture and parameter choices

where l = {1, .., dv}. Calculating Fvt as above using the Fast Fourier Transform
(Cooley & Tukey, 1965) for all modes {k1, k2, ..., kn} and all channels or
dimensions l we obtain Fvt ∈ Cdv×n 1.

Following (4.6) the next step is to multiply the Fourier transform Fvt to
a weights tensor Rθ. The number of learnable parameters in Rθ is given
by (dv · dv · n) complex numbers and we truncate the higher modes by
letting Fvt ∈ Cdv×kmax where kmax is the maximum number of modes to
keep, we denote these modes the cut-off frequencies. Rθ is then reduced to
Rθ ∈ Cdv×dv×kmax and the multiplication is defined by

(Rθ · Fvt)k,l =
dv∑

j=1
Rl,j,k(Fvt)k,j , k = 1, .., kmax, j = 1, .., dv. (4.12)

Notice that we restrict ourselves to the case where the maximum number of
modes to keep is the same for each dimension in Ω, i.e. kmax,x = kmax,y for
kmax = (kmax,x, kmax,y).

Similarly as (4.11) we have the discrete inverse Fourier transform defined as

F−1fl(x) = 1
n

n∑
j=1

fl(xj)e2πi⟨
kj
n ,x⟩. (4.13)

After obtaining (Rθ ·Fvt) ∈ Cdv×kmax we compute the inverse Fourier transform
(4.13) by zero-padding (Rθ ·Fvt) before the transformation to obtain the desired
output shape F−1(Rθ · Fvt) ∈ Rn×dv .

4.2 Model architecture and parameter choices

We summarize the neural network architecture and parameters for the method
introduced in the previous section. The restriction on the lifting and projection

Identity Restriction Map
P (·) P (X(x)) = (P (X))(x) Rdx → Rdv

Q(·) Q(vT (x)) = (Q(vT ))(x) Rdv → Rdy

W linear transformation Rdv → Rdv

σ(·) nonlinear transformation R→ R
σMLP nonlinear transformation R→ R

Table 4.1: Transformation specifications for network architecture.

operators P (·), Q(·) is that they should be pointwise operations for any x ∈ Ωj .
We will consider P (·), Q(·) defined as an multilayer perceptron with activation
σMLP (·) and hMLP ≤ 2 number of hidden layers with size dMLP and restriction
dMLP ≥ dv. To illustrate how the restriction in Table 4.1 is satisfied we let P (·)
be defined with hMLP = 1 and can then express the operator as

P (X(x)) = (σMLP (X(x)W T
1 + b1)W T

2 + b2 (4.14)
1Since the Fourier transform of real input is Hermitian-symmetric, we only collect the

modes leading up to the Nyquist frequency, hence n is in fact Nx × (Ny//2 + 1).
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4.3. Input representation

where Wi represents the weights and bi the bias. Since and W1 : Rdx →
RdMLP , b1 ∈ RdMLP , W2 : RdMLP → Rdv and b2 ∈ Rdv and since σMLP (·)
action is defined pointwise we see that P (X) is independent of the discretization
n and fulfill the restriction in table 4.1. The same reasoning generalizes to
hMLP > 1 and the same argument holds for Q(·). Section 4.1 together with

Data features dx number of channels in input X
dy number of channels in output Y
n number of points in discretion Ωj

N number of data samples
Model features dv number of channels in vi(x)

dMLP width of hidden layer in MLP
kmax max number of frequency modes

T number of Fourier layers vi

Table 4.2: Parameter specifications for the model and the data.

Table 4.1 and Table 4.2 provides the necessary details to construct the parametric
map Gθ. One key feature of Gθ is that it is discretization independent, i.e. we
can train the model on one resolution and predict on another. We do however
restrict ourselves to square discretization Nx = Ny.

4.3 Input representation

To obtain the input X we use the geometries obtained by the method of CCO.
By the model reduction in section 3.2 we have simplified the geometries to 1D
and hence model the "vessels" purely by points and connections. To obtain
these geometries we let Ω, the representation of the tissue be the unit square
(1, 0)2 and initiate the CCO algorithm with a root segment (_, x0, x1). We
draw x0 from a random uniform distribution along the left boundary edge of
∂Ω i.e. the line segment between (0, 0) and (0, 1). x1 is then drawn inside a
a padded domain Ωp until it fulfills the minimum distance criteria (2.7). The
growth of the arterial tree is always restricted to the domain Ωp with vertices
(0 + p, 0 + p), (1− p, 0), (1− p, 1− p) (0 + p, 1− p), where p represents a padding
factor with the purpose of only allowing x0 to be on the boundary ∂Ω. The
arterial tree is generated until the number of terminal segments Nterm = N t

final.
By observation, considering the features; complexity, randomness, verisimilitude
and computing time the remainder parameter specifications as presented in
Table 4.3 are used to obtain the data set {Tk}M

k=1.
Note that the root radius r0 is a dimensionless quantity decided as a

fraction of Ω and is required to generate the trees {Tk}M
k=1 but obsolete in the

1D geometry representation of the trees {Λk}M
k=1. Indeed, we have {Λk}M

k=1
represented by the points corresponding to the distal and proximal points of the
vessels and the connections (idxp

, idxd
)i representing the vessels by the indices

of the proximal and distal point to vessel vi. The parameters in Table 4.3 will
be fixed for every experiment but we will vary the number of terminal segments
N t

final.
We aim to learn the operator G in (4.3) by a neural network approximation
Gθ : X → Y where X denotes the input representation of the 1D geometry Λ
and Y is the output representation of the solution (uh, ûh). In the simplest
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4.3. Input representation

Geometric γ 3.0 bifurcation exponent
δ 0.7 symmetry ratio parameter
p 0.01 padding factor

Physical r0 0.01 root radius
Tuning ν 1.0 tuning parameter

fr 0.9 correction step factor
Optimization Nfail 10 correction number

Ncon 3 number of vessels evaluated in connection search
∆v 6 discretion parameter for bifurcation point search

Table 4.3: Parameter specifications for the method of CCO.

two-dimensional form, Λ could then be represented as a binary Nx ×Ny matrix
taking ones on the curve Λ and zeros elsewhere, or the opposite. However,
following (Guo et al., 2016) we see that using a distance function to represent
the location of Λ in the square domain Ω could obtain better results when
training a neural network. It is additionally somewhat intuitive that more
information in the input helps the training of the model. We therefore let
X = DΛ be a distance representation of the 1D geometry Λ by

DΛ : p ∈ Ω→ min
q∈Λ
|p− q| (4.15)

where p and q are points in the plane Ω. To obtain the minimum distance from
a point in the plane Ω to a point on the geometry Λ we recall that Λ is made
up of sets of points and connecting lines. The equation of a line between two
points p1, p2 is y = p1 + a(p2 − p1) and the shortest distance from the point
p3 to the line y is given by the criteria (p3 − y) · (p2 − p1) = 0 i.e. when the
line connecting p3 is perpendicular on y. Inserting the equation of the line and
solving for a we obtain

a = (x3 − x1)(x2 − x1) + (y3 − y1)(y2 − y1)
∥p2 − p1∥2 (4.16)

which gives the point of intersection pint = p1 + a(p2 − p1) and hence the
distance from a point p3 to a line y passing through two points p1 and p2 is
given by

dist(y, p3) = ∥p3 − pint∥. (4.17)

By setting

a =


1 a > 1
0 a < 0
4.16 else

we obtain the shortest distance from a point p3 to a line segment between the
points p1 and p2.
Calculating the above for all line segments making up Λ and choosing the
minimum distance we obtain the distance from a point p to Λ. DΛ is then
obtained by doing this calculation for evenly spaced points in Ω where the
spacing of the points decides the resolution Nx ×Ny.
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4.4. Target representation

Figure 4.1: Flow chart for obtaining distance representation of 1D geometry Λ.

Figure 4.1 illustrate the steps involved to obtain the input X to the network
Gθ and we summarize them as follows.

1. Obtain vascular tree with fixed parameters provided in Table 4.3 and choice
of N t

final.

2. Extract points and connecting lines to obtain Λ.

3. Compute distance representation of Λ by the method described previously
and with specified resolution Nx ×Ny.

4.4 Target representation

To obtain the target representation Y we solve the previously introduced
boundary value problem as in section 3.6. With prescribed Dirichlet condition
D = 1

1+di
and homogeneous Neumann conditions on Σ. The appropriate trial

and test spaces are then

U = H1(Ω)×H1
D(Λ)

V = H1
0 (Ω)×H1

0 (Λ)

and we recall the boundary value problem of finding (u, û) ∈ U s.t.∫
Ω
∇u · ∇v +

∫
Γ
∇û · ∇v̂ +

∫
Λ

γ(u− û)(v − v̂) = 0 ∀(v, v̂) ∈ V. (4.18)

Following the derivations made in section 3.4 we then seek the discrete solutions
(uh, ûh) defined on the partitioning (Ph, Ih).
To represent the solution ûh we let Eû be defined as the harmonic extension of
the solution ûh by

−∆Eû = 0 on Ω (4.19)
Eû = ûh on Λ (4.20)

−∇Eû · n = 0 on ∂Ω. (4.21)

Eû will then be a 2D solution defined on Ω and identical to ûh on the partitioning
Ih of Λ. To obtain the solution Eûh we follow the standard approach of deriving
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4.4. Target representation

the variational formulation of the above boundary value problem, we multiply
with test functions vhe ∈ V he and integrate over the domain Ω. By the last
term above (zero Neumann), the exterior boundary term vanishes and we get:
Find Eû ∈ Uhe s.t. ∫

Ω
∇Eû · ∇vhe = 0 ∀vhe ∈ V he. (4.22)

The enforcement of the Dirichlet boundary condition on the interior boundary Λ
is specified by letting Uhe = {H1(Ω) : Eû = û on Λ} and V he = {H1(Ω) : Eû =
0 on Λ} and after obtaining the solutions uh, Eûh both on the triangulation Ph

we interpolate to obtain the desired square resolution Nx ×Ny.

Figure 4.2: Flow chart for obtaining the target representation Y .

Figure 4.2 illustrates the procedure of obtaining the target representation
to the network Gθ, we summarize them as follows, since the first two steps are
shared with obtaining the input we only state the remainder.

3. Partition geometry (Ω, Λ).

4. Implement and solve linear system (3.62) corresponding to (4.18).

5. Use solution ûh to obtain the harmonic extension Eûh by solving (4.22).

6. Interpolate uh and Eûh to desired resolution Nx ×Ny.

Since the two first steps corresponding to obtaining the geometry Λ are shared
between the input and target representation, we combine the two steps to
generate the data set {X, Y }N

i=1. This allows for efficient implementation and
also ensures that the input and target samples agree. A specific attribute of
the Fourier neural operator is that it takes function evaluations as input, hence
the input X corresponding to DΛ should be presented to the network as X(x)
where x is the points in the discretization Ωj . Since x is equal for all samples
Xi we simply append x to each sample Xi before we present it to the network.
Since our configuration of the CCO algorithm in 2.1 and specifically the choice
of root proximal point x0 provides that the different 1D structures do not
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4.5. Optimization

exhibit rotational symmetry we can increase our data with consecutive 90-
degree rotations, rotating the input X and the corresponding output Y . Data
augmentation by rotations then quickly quadruples the number of samples in
the data set.

4.5 Optimization

Having a model for the parametric map Gθ, and a way to obtain the data
samples {X, Y }N

i=1 we now want to construct a routine for obtaining the set of
parameters θ ∈ Θ which correspond to a minimum of the cost (4.5). Defining
a specific way to evaluate the cost which is differentiable with respect to the
parameters, the gradient will contain information on the direction and rate of
fastest increase. We can then update the parameters in the opposite direction
of the gradient, and the following evaluation of the cost should produce a value
smaller than the previous evaluation. On a perfect convex cost function, doing
this procedure iteratively we will obtain the minimum θ. In the case of machine
learning and neural networks, the cost is not simply a convex curve, but a
multi-dimensional surface with peaks and valleys, however, the same principle
applies, we always want to update the parameters in such a way that it reduces
the cost. Doing this in an iterative procedure denotes optimization, and the
specific choice of optimization leads to an optimization algorithm. There are
multiple different ways to evaluate the cost and also optimization algorithms
to choose from. Following a similar model structure as (Li et al., 2020a) it is
natural to choose a similar optimization algorithm and cost evaluation. This
also has the benefit of easily being able to compare our results to that of (Li
et al., 2020a) and (Li et al., 2020b).

Loss function

Since the difference of the output Gθ and the target Y will be evaluated for
subsets of the data {X, Y }N

i=1 we use the terminology of loss function instead
of cost function and define it as the relative L2 loss by

L(Gθ(X), Y ) = 1
|Ωj |
∥Gθ(X)− Y ∥L2(Ωj)

∥Y ∥L2(Ωj)
(4.23)

The norm is calculated using the pointwise squared absolute error

∥Y ∥L2(Ωj) =

√√√√ n∑
j=1
|Yj |2, (4.24)

and the average over points in the discretization allows us to compare the loss
for different resolutions.

Optimization Algorithm

Since its introduction in (Kingma & Ba, 2017) the Adam optimization algorithm
has been a popular choice for machine learning tasks and is indeed the
optimization algorithm chosen in (Kovachki et al., 2021).
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4.5. Optimization

Algorithm 2 Adam
Data: β1, β2 ∈ [0, 1), λ, θ0, L, ϵ

t = 0
m0 = 0
v0 = 0
while t ≤ T do

t = t + 1
gt = ∇θL(Gθt−1(X), Y ) + wθt−1
mt = β1 ·mt−1 + (1− β1) · gt

vt = β2 · vt−1 + (1− β2) · g2
t

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

θt = θt−1 − λ · m̂t/(
√

v̂t + ϵ)
end while

Algorithm 2 describes the Adam optimization algorithm and how the gradient
of the model is used to update the parameters θ. β1, β2 are hyperparameters
used to compute running averages of the gradient gt and its square g2

t , λ
is the stepsize/learning rate, θ0 is the initial state of the parameters, w is
a L2 regularization term as described in (Loshchilov & Hutter, 2017) and
ϵ is a term added to prevent division by a number ≈ 0 and hence improve
numerical stability. We do not present the way to obtain the value ∇θL as this
is conveniently done through the Pytorch software (Paszke et al., 2019) using
automatic differentiation.

Weights and bias initialization

Lastly, we need to define our initial guess of the parameters θ, we denote this
as the choice of initialization for the weights and bias. Choosing an appropriate
initialization can help the model Gθ to more quickly learn the generalized
features and to prevent exploding/vanishing gradients. For P (·), Q(·) and W
we will use LeCun initialization (LeCun et al., 2002) defined as samples drawn
from the uniform distribution

U

(
−

√
1

nin
,

√
1

nin

)
. (4.25)

The values in the parenthesis denote the range in which the numbers are drawn
and nin is the number of input features, i.e. nin = dx for P (·) and nin = dv for
Q(·) and W . This is the default PyTorch initialization for linear transformations
e.g. 2D convolutional layers with kernel size (1× 1).
The complex values of Rθ are drawn from

U

(
0,

1
nin · nout

(1 + i)
)

(4.26)

where nin ·nout represents the multiplication of the number of input and output
features of the Fourier layer. This choice of this initialization is simply based
on the implementation from (Li et al., 2020a).
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4.6. Training the model

4.6 Training the model

Having a data set {X, Y }N
i=1, a specific initialization of the parameters θ, a way

to measure the difference of the prediction Gθ(X) and the target Y and a way
to update the parameters θ we combine all and denote it "training the model".
We split the data set {X, Y }N

i=1 into two respective groups, the training set
and the test set. The training set is used to update the parameters θ and the
test set is used for an unbiased evaluation of model prediction during training.
This prevents the parameters θ to learn the specific features in the training set
(overfitting) but rather the generalized features of the data. To save memory
requirements we follow the standard procedure of splitting the data into batches
to evaluate the model and compute the gradient. The learnable parameters θ
are then updated via the optimization algorithm Algorithm 2 for every batch
in the training set and this procedure is repeated for every epoch in Nepochs.

Algorithm 3 Training
Data: Nepoch, L, Adam(·, β1, β2, λ, L, ϵ), {X, Y }test, {X, Y }train

i = 0
while i ≤ Nepoch do

i = i + 1
j = 0
for (x, y) ∈ {X, Y }train do ▷ Randomly choose batch from training data

ypred = Gθi
j
(x) ▷ Make prediction using θi

ltrain = L(ypred, y) ▷ Compute loss by (4.23)
Lbatch,train ← l ▷ Store loss
θi

j+1 = Adam(θi
j , β1, β2, λ, L, ϵ) ▷ Update parameters as in

Algorithm 2
j = j + 1

end for
Li

train = 1
Nbatch

∑Nbatch

k=1 Lk,train

for (x, y) ∈ {X, Y }test do ▷ Evaluate parameter configuration θi on test
data

ypred = Gθi(x)
ltest = L(ypred, y)
Lbatch,test ← l

end for
Li

test = 1
Nbatch

∑Nbatch

k=1 Lk,test

if li
test < Li−1

test then
θbest = θi ▷ Store parameter configuration

end if
end while

Algorithm 3 shows the training procedure of obtaining the best model Gθ.
We randomly shuffle the batches in the training and test set before we draw
the batches needed for updating the parameters θ and evaluating the model.
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CHAPTER 5

Numerical experiments

Through a series of experiments, we want to investigate the learnability of
the proposed parametric map Gθ : X → Y . We will restrict ourselves to a
maximum number of 10000 data samples {X, Y }N

i=1, but will produce some
additional data to evaluate different features of the model Gθ. Our aim is to
provide a proof of concept study of the model Gθ, introduced in the previous
chapter ability to learn the generalized features in the data {X, Y }N

i=1. These
features correspond to the operator described as the minimization of the energy
functional (4.1) of the boundary value problem (4.18). The features change
when varying the geometry Λ, but the generalized features do not.

The most similar example of our problem description is the Darcy Flow
example provided in (Li et al., 2020a), where they consider the steady state
Darcy’s equation in two dimensions for different values on the diffusion coefficient.
Since this example provides a reference of the structure on Gθ and corresponding
results, we first simplify our problem setup such that it resembles the Darcy
flow example with only one image target. Finding a specific configuration
on this simplified model we add an additional channel in the target Y and
evaluate different model architectures allowing for the two-image prediction.
Using the best-obtained model we complete the study by looking at specific
features provided by the alternative map Gθ : X → Y and the time-sparing
capability compared to the traditional finite element solver. Lastly, we make
our concluding remarks and propose how the work presented in the thesis can
be extended.

5.1 Experiment 1: One-image target

From the physical interpretation provided in section 3.6 a geometry Λ with a high
number of terminal segments will result in a solution u ∈ Ω with a homogeneous
distribution of the pressure and a geometry Λ with a small number of terminal
segments yields a less homogeneous distribution. The impact of the number of
terminal segments on the pressure distribution is therefore much more visible
for a few numbers of terminal segments and it is reasonable to presume that
the map between Λ and u is easier to learn. Motivated by this we first aim to
build the approximation Gθ for 2− 3 terminal segments in the input data and
the corresponding output data.

The three first plots in Figure 5.1 show the input to the network. The
embeddings illustrate how the network Gθ consists of layers that are considered
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5.1. Experiment 1: One-image target

Figure 5.1: Input and target representation, one-image target.

as function taking the points of Ωj as input. Motivated by our observation in
Appendix A, where we see the convergence of uh to the harmonic extension Eûh

for strong coupling factor γ, we choose the target as Eûh where the location of
the terminal segments is most profound.
From chapter chapter 4 it is clear that the network is resolution independent
i.e. the discretization of Ωj does not affect the number of learnable parameters.
Since it does not require high resolution to resolve the characteristics of the
input DΛ and the target Eûh train the network at 64x64 resolution.
Inspired by the Darcy flow example mentioned previously we first create 1000
training samples and 250 test samples. The data is normalized by extracting
the mean and dividing it by the standard deviation. The normalization of the
training and test data is done separately. We want to see how the number of
parameters θ effects the learnability of the features provided in the test and
training set.

We include batch normalization and use only ReLu activation functions
after each Fourier layer. In all fully-connected layers we use GeLu activation
functions, e.g. in P, Q. Unless otherwise specified we use the Adam optimizer
Algorithm 2 with a learning rate 0.001 that is halved for every 100 epoch and
we train for a total of 500 epochs. All losses are relative errors by (4.23) and
taken as the mean over all samples.

Fourier layers

Since the total number of learnable parameters θ is most affected by the
construction of the Fourier layer we first evaluate how increasing the number of
cut-off frequencies and the number of Fourier layers decreases the error. We
choose P (·) as pure lifting, i.e. 2D convolution with kernel size 1, lifting the
dimension of the input to dv = 32. The projection is pure projection and the
reverse of the lifting operator, i.e. Q(·) : Rdv → Rdy , where currently dy = 1.

Figure 5.2(a) shows the lowest obtained error on the test data when trained
on 1000 samples for 500 epochs. The total number of learnable parameters
ranges from approximately 4 · 102 to 4 · 105. By increasing the number of
learnable parameters in a machine-learning model the model possesses more
expressiveness in the form of having more ability to reproduce the features in
the target. This implies that the training loss decreases as the total number of
learnable parameters increases. However, in learning the generalized features
contained in the training set i.e. reducing the test loss, we see from Figure 5.2
(a) that the lowest loss is obtained from a higher number of Fourier layers, but
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5.1. Experiment 1: One-image target
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(a) Lowest obtained test loss for different
numbers of cut-off frequencies and num-
bers of Fourier layers.
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corresponding train losses.

Figure 5.2: Increasing the number of learnable parameters, by increasing the
number of cut-off frequencies and the number of Fourier layers.

not necessarily a high number of cut-off frequency modes. Figure 5.2 (b) shows
the training loss and test loss during training and plotted as moving averages.
We clearly see the case of overfitting on the features contained in the training
data. We suspect that the reason for this is that the data does not contain
enough samples for the model to learn the generalized features of the problem.
We also note that the loss is affected by the initial configuration of the weights
and biases in the network as well as the initial samples drawn from the data
set. Figure 5.2 (a) should therefore not be used to choose the exact value of
kmax and the number of Fourier layers, but rather to analyse the impact of the
two different ways of increasing the number of learnable parameters.
In this first configuration of Gθ we only considered the number of Fourier layers
and the number of cut-off frequencies. Choosing kmax = 6 and six Fourier layers
we want to see if changing the lifting and projection layers could further reduce
the test error.

Lifting and projection layer

Examples in the (Li et al., 2020a) show that P (·) are usually chosen as a pure
lifting operator i.e. a fully connected layer lifting the dimensionality of the
input to a specified number dv. However, comparing the input to (Li et al.,
2020a) Darcy flow problem, we see that they use a binary representation of the
input. Because of this difference in input representation, we want to study the
impact of different configurations on P (·). We let P (·) be either a pure lifting
operator or a multi-layer perceptron with one or two hidden layers with the
width given as a multiple of dv. Similarly, we study the effect of changing the
projection operator Q(·). From Figure 5.2 (b) we see that the change in error is
small after 200 epochs and therefore we only evaluate the impact on the error
for different lifting and projection layers for the first 200 epochs.

Table 5.1 shows the lowest obtained test loss for different configurations on
the lifting and projection operators. These operators are always multi-layer
perceptrons and the increase in complexity is by adding one or two hidden layers
with specified size. The increase in the number of parameters θ for different
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5.1. Experiment 1: One-image target

(a) Lifting operator
h/w dv 2 · dv 4 · dv

0 0.16
1 0.15 0.16 0.14
2 0.14 0.14 0.16

(b) Projection operator
h/w dv 2 · dv 4 · dv

0 0.16
1 0.15 0.15 0.15
2 0.15 0.16 0.16

Table 5.1: Lowest test loss for different lifting and projection operators,
dv = 32, kmax = 6 and six Fourier layers.

configurations on P and Q is at most 2 · 104.

dv 10 20 30 40 50
min. train loss 0.14 0.09 0.06 0.06 0.05
min. test loss 0.25 0.16 0.16 0.15 0.15

Table 5.2: Minimum loss for increasing number of dv, kmax = 6, six Fourier
layers, pure lifting and pure projection.

Table 5.2 shows the effect on the lowest obtained training and test loss for
increasing the dimensionality of the input, the number of learnable parameters
ranges from 103 to 2 · 105.

Figure 5.2 (a), Table 5.1 and Table 5.2 shows that we are not able to
decrease the test loss further than approximately 15% relative error when
changing the architecture of Gθ we therefore conclude that the model needs
more data to learn the generalized features, and we increase the data set.

Figure 5.3 (a) shows how increasing the data set further reduces the test loss
all the way to the situation where the test and training loss is approximately
equal. The plot is obtained using kmax = 6, six Fourier layers and pure lifting
and projection with dv = 32. Ideally, we want the model to have enough
learnable parameters available to overfit slightly on the training data, this way
we know that the model has enough learnable parameters available to learn
the generalized features present in the training data. Figure 5.3 (b) shows the
impact on the test error by increasing the number of learnable parameters by
increasing kmax and the number of Fourier layers. Using kmax = 10 and six
Fourier layers, Figure 5.3 (c) investigates the impact of the learning rate and
the learning rate scheduler, we take advantage of the higher number of training
samples to approximate the effect on the optimization parameters. Motivated
by 5.3 (b) and (c) we retain the configuration on the optimization algorithm
i.e. learning rate 0.001 and halving this every 100 epochs but we include a
weight decay w = 10−4 in Algorithm 2. The learnable parameters are increased
by choosing kmax = 10 with six Fourier layers, Q(·) is chosen as a multilayer
perceptron with 1 hidden layer and width 2 · dv. P (·) remains a pure lifting
operator and dv = 32. Figure 5.3 (d) shows the results obtained with this
configuration on the model and the optimization algorithm, the relative error
on the training data surpasses 2%, while the relative error on the test data
converges to 4%.
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5.1. Experiment 1: One-image target
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(c) Optimization parameter search, er-
rors on the training set.
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Figure 5.3: Learning the generalized features.
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Figure 5.4: Top three predictions. Error is pointwise squared absolute.

Figure 5.4 and Figure 5.5 show the three best and three worst predictions
on the 2000 test data samples. We see that the best prediction is on "Y-shaped"
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Figure 5.5: Worst three predictions. Error is pointwise squared absolute.

curves Λ, with a high bifurcation angle. The two worst predictions are different
in the way that it is harder to locate the specific bifurcation point and the
following branching of the curve. Since the bifurcation indicates which part
of the graph is the root and which part is the terminal vessel, we see that the
model either misses or can’t decide which endpoint of the curve that should
take the initial value of 1.0. We also note that the method of CCO prefers
"Y-shaped" bifurcations and hence shapes of Λ with less prominent bifurcation
are underrepresented in the data set.

5.2 Experiment 2: Two-image target

The boundary value problem (4.18) has a solution pair (u, û) and in experiment
1. we restricted ourselves to the case where we only learn the 2D extension
of û i.e. the harmonic extension Eû (4.21). In this experiment, we want to
change the model architecture of Gθ such that it predicts the solution uh for
fixed γ = 10 and additionally Eû. The model is then Gθ : X → Y , where
X remains the distance representation of Λ with its embeddings and Y is a
two-image target where the first image is the interpolation of the solution uh

and the second is the interpolation of Eûh. Because of this extra channel the
loss in Algorithm 3 is calculated for both images and the mean of these is used
in the optimization Algorithm 2.
There are different ways of restructuring the model Gθ to allow for a two-image
output and since experiment 1. already shows the ability to learn the features
of one image, a natural restructuring is to simply feed the input X to two
respective networks G1

θ and G2
θ, we then know the ability to learn the second

image I(Eûh) and the remaining question is the learnability of I(uh).
Another approach is to provide some connectivity between the layers, since

the solution does indeed come from the same operator G it is natural to presume
that parameters θ could be shared between G1

θ and G2
θ.
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5.2. Experiment 2: Two-image target
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Figure 5.7: Model configuration 2.

The last approach is to let G1
θ and G2

θ be fully connected and thus equal
through the Fourier layers while providing the split, the division of the prediction
of uh and Eûh, only by the projection Q(·).
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(a) Test and train loss using configuration
1.
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(b) Test and train loss using configuration
2 and MLP connections.

Figure 5.8

Figure 5.8 (b) shows the lowest loss obtained using the connective structure
and considering three different ways of connection: sum, activation and MLP.
The model and optimization configuration correspond to the best obtained
in experiment 1. The difference in 5.8 (a) and (b) clearly illustrates that
sharing parameters θ in the prediction of the two image targets helps the model
learn the generalized features of the data. We also note that the connective
structure reduces the test error with an additional 1% on both image predictions,
compared to the one image prediction in 5.3 (d). The last alternative, providing
the split only by projection, is not reported since the loss was much higher then
that of model configuration 1 and 2. A characteristic feature of the training
curves provided is that the test loss does not increase but remains approximately
constant while the training loss continues to decrease. Since this indeed is the
case even though we drastically increase the number of learnable parameters,
we suspect that the small learning rate in addition to the filtering procedure
of the Fourier layer leads to the model overfitting on the filter rather than the
data. The reasoning thus implies that the weights are not capable of simply
constructing the target, but can only change the filter to which best predict

66



5.3. Experiment 3: Increasing data complexity

the target. This intuition and the shape of the test curves match that in the
literature (See e.g. Li et al., 2020b, page. 9) and (Figure 3. Li et al., 2020a).

5.3 Experiment 3: Increasing data complexity

Having a model which is able to predict the features of the map G(Λ) 7→ (u, û)
with good precision averaging at 3% relative error we want to see if the model
is able to generalize for a higher number of terminal segments. We increase the
number of terminal segments such that the data set consist of 10000 samples
with a uniform distribution of the number of terminal segments between 2 and
10. Increasing the resolution to 128x128 we ensure that all features of the
data are presented to the model. We train a model using the configuration
which obtained the best predictions in Experiment 2. and obtain a mean
relative error of 5%. A question then arises of how the increase in error is
related to the increase in the number of terminal segments. To measure this
relation we evaluate the trained model on input corresponding to different
numbers of terminal segments. Since the data used to train the model is
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Figure 5.9: Relative error for the different number of terminal segments.

not sorted for the number of terminal segments we generate new data. We
let N t

final ∈ [2, 4, 6, 8, 10] and generate 100 samples at resolution 64 × 64 for
each value of terminal segments. Figure 5.9 illustrate how the relative error
changes when the pre-trained model predicts on samples with different numbers
of terminal segments. We notice two features in the plot, the error tends to
increase when the number of terminal segments increases and the range of
the error decreases significantly before it stabilises. Since the model is trained
on a uniform distribution of the number of terminal segments it should not
"prefer" one over the other. Since there is a relationship of the output from a
few terminal segments to a high number of terminal segments, it is reasonable
to presume that the model, to some extent contains trained parameters which
generalize independent of the number of terminal segments. In this scenario, the
model would predict best on the average number of terminal segments, simply
because it is the mean of the sample distributions in the training set. Recalling
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5.4. Experiment 4: Discretization independence and execution time

the three worst predictions in Figure 5.5 we suspected that for a few terminal
segments occurrences of outliers with less apparent bifurcation made it difficult
for the model to separate the root and terminal vessels. Investigating the input
corresponding to the outliers in Figure 5.9 we see that this is the case. Input
where the bifurcation is less apparent and one terminal segment lies close to
the edge and hence has a similar appearance as the root leads to higher error.

5.4 Experiment 4: Discretization independence and
execution time

As previously mentioned in chapter 4 a key feature of the Fourier neural
operator is that it is resolution independent. We can train on one resolution
and predict on another. To illustrate this capability we create 10 samples with
high refinement h = 0.001, N t

final = 3 and interpolate to Nx ×Ny = 512× 512.
Different resolutions is down-sampled from this set and we use the best model
obtained in Experiment 2, which is trained on resolution 64× 64 to measure
the relative error between resolutions.
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Figure 5.10: Relative error in logarithmic scale for different resolutions.

Figure 5.10 shows that the model is able to generalize to higher resolution
and furthermore that the error is consistent for the different resolutions. This is
a great advantage for the practical use of the model, unlike traditional solvers
like the finite element solver we used to generate the data the model is not
restricted to a certain discretization of the input and can thus be reused for
prediction on different resolutions. This also offers an advantage compared
to using other neural networks, like a U-net structure of convolutional neural
networks.
Based on these results, the model Gθ can offer time-sparing advantages compared
to the traditional finite element solver. Indeed, recalling the flow chart Figure 4.2
we can replace the partitioning of the geometry (Ph, Ih) and the finite element
solver by producing the distance representation of Λ and feed it directly into
the model Gθ.
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Figure 5.11: Time differences in the finite element method and the proposed
Fourier neural operator architecture, measured on CPU.

Resolution 32 64 128 256 512
square elements in (Nx ×Ny) 1024 4096 16384 65536 262144
triangle elements in (Ph, Ih) 1289 4627 17943 69637 273633

Table 5.3: Number of elements in the unit square Ω.

Figure 5.11(a) compares the time difference in preprocessing i.e. in creating
the partitioning (Ph, Ih) and in obtaining the distance representation of a
simple geometry Λ. Figure 5.11(b) shows the time difference in inference,
i.e. in obtaining the solution (uh, ûh) from the finite element solver and the
partitioning (Ph, Ih) and in obtaining the solution Y = Gθ(X) from the distance
representation DΛ. We use the architecture corresponding to the best predictions
in Experiment 2 and to make (Ph, Ih) comparable to the square resolution
Nx × Ny, Nx = Ny we use a simple Y-shaped structure on Λ, and let the
refinement parameter be given as h ≈ 1.5/Nx = 1.5/Ny. Since the Gmsh
software refits the mesh ensuring hmax < 1.5/Nx while preferring equilateral
triangle elements the resolutions are not directly comparable, Table 5.3 contains
the number of elements, triangle and square for the different discretizations.
Due to inherit randomness in measuring executing time on a CPU we measure
over 10 consecutive runs, and the highlighted curves in the plot are the mean.
Compilation time is excluded. We clearly see that the computational expense in
preprocessing increases more rapidly for the finite element model as a function of
refinement than the neural network model does as a function of resolution. The
difference in inference is less prominent but we do see a slight trend benefitting
the machine learning model and we suspect that the differences in inference
become more apparent for even higher refinement.

5.5 Conclusion and future work

Our objective was to investigate if a neural network, and specifically if the
Fourier neural operator could learn the relationship between vascular geometry
and fluid interaction in the tissue.

With the method of CCO, we were able to generate realistic vascular trees,
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and with a simplified 2D-1D representation of the tissue and vasculature,
we derived a mathematical model describing the interaction of fluid through
diffusion and exchange. Fixing the physically motivated boundary conditions
and only varying the geometry of the vasculature we produced sets of data
consisting of input and target samples. The input was obtained by the distance
representations of the geometric position of the vascular trees in the confining
unit square. The target was the pressures obtained by solving the derived
mathematical model of fluid interaction by an investigated finite element solver.

We then trained and tested the Fourier neural operator through a series
of experiments. First, we used a data set consisting of 2-3 terminal vessels
with one-image targets. We achieved high accuracy (mean relative error of 4%,
measured over 2500 test samples). Next, we investigated different configura-
tions of the FNO that allowed for two-image output and the best-performing
configuration was able to further reduce the error by 1%. With a trained model
at hand, we saw agreement with the expected discretization independence of the
model and saw that the model could generalize to a higher number of vessels
in the vascular trees. Lastly, we demonstrated the time-sparing advantage a
pre-trained Fourier neural operator can offer in preprocessing and inference
compared to the conforming finite element method used to generate the data.

Inference

The presented machine learning model offers a different way in both prepro-
cessing and inference to obtain the pressure distributions compared to finite
element solvers. Since we only measured the time difference in inference for
our specific finite element solver it would be interesting to compare the infer-
ence time to the Fourier neural operator and alternative finite element solvers
provided in (Koch et al., 2020) and (Gjerde et al., 2020).

From 2D to 3D

Throughout this thesis, we have restricted ourselves to the two-dimensional
setting, but every step in the previous chapters is applicable in three dimensions
and indeed this is where the potential realization of the physical application lies.
The extension of the method of CCO to 3D is provided in (Karch et al., 1999).
Since the method of CCO is based on the modelling of straight cylindrical tubes
following Poiseuille’s Law it can also be argued that 3D is the more natural
setting in which to apply the method, changing only the cost to the actual
volume and the spatial coordinates. The derivation of the traditional approach
to obtain the fluid interactions was simplified to two dimensions and thus the
methodology used in the derivation applies to 3D, specifically (Cerroni et al.,
2019; Masri et al., 2023). The Fourier neural operator can be used on 2D cross
sections and by putting them together we can obtain a 3D map of the pressures.
A natural step in future work is thus to extend to a three-dimensional setting.

Including time

We have only considered stationary maps of the pressure but both the fluid
equations and the Fourier neural operator can be extended with a temporal
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variable. Interestingly, an experiment in (Li et al., 2020a) shows that the
FNO is not only discretization invariant in the spatial domain but also the
temporal domain when considering the Navier-Stokes equations for a viscous,
incompressible fluid in vorticity form on the unit torus.

Increasing the complexity of the fluid equations

In addition to the two previous subsections, there are numerous ways to increase
the complexity of the boundary value problem in the pursuit of obtaining more
realistic descriptions of the fluid interaction. We do not believe that a higher
dimensional representation of the vasculature is the way forward because of the
computational cost of deriving the discretization. We rather believe that the
radii could be represented as a parameter in the coupling factor, i.e. γ = γ(r)
which fits the mathematical framework presented in section 3.2. Furthermore,
we have only looked at purely diffusion-driven flow but (Masri et al., 2023)
suggests that fluid, specifically in brain vasculature is also driven by convection.
This paper also includes time and another dimension to describe the transport
of solutes in a 3D-1D-1D model.

Inverse problem

Presume we have a trained Fourier neural operator, possibly trained on
vasculature obtained by the method of CCO. We denote this model Gθ and for
simplicity of notation let Gθ(x) : DΛ → U , where DΛ as previously denotes the
distance representation of Λ and U is a pressure distribution. Additionally, we
let Nθ denote a parametric map Nθ : Ωj → BΛ where Ωj is the discretization
of some domain Ω and BΛ is a binary representation of Λ. Now, considering a
scenario where we know U but not Λ, we can then aim to minimize

min
θ∈Θ

C[Gθ(DΛ(Nθ))(x), U(x)]

for some choice of cost function C to obtain the geometry Λ that best fits
the pressure distribution U . Previously, we have only considered a scenario
where we want to use the method of CCO to fill in the missing information
of vasculature extracted through medical images but this approach possibly
provides another way of filling in the missing information of the geometry. By
using direct measurements of partial pressure as obtained in (Mächler et al.,
2022) and by having a fast differentiable model Gθ we can find the geometry
that best fits the measurements.

Real microvasculature

Lastly, we illustrate a microvascular system by providing an image of a digitized
network of 15.000 vessels obtained from one cubic millimetre of the brain cortex
of mice.

The microcirculatory network of vessels in Figure 5.12 illustrates the sheer
complexity of these networks and thus motivates the use of different scientific
disciplines, in vivo, in vitro and in silico to be able to get one step closer in
understanding the distribution of blood in these efficient, highly integrated
systems.
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Figure 5.12: 1mm3 microvascular network of the mouse cortex. Image obtained
from (Goirand et al., 2021). The colouring represents the simulated blood flow
rate, red has a high flow rate and dark blue has a low flow rate.
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APPENDIX A

Numerical experiments of the
harmonic exstension

Implementation of the harmonic extension

To ensure the correct implementation of the harmonic extension we measure
the difference

diff = ∥Eûh − ûh∥L2(Λ) (A.1)

between the solution Euh and ûh on a random 1D geometry Λ with 37 terminal
segments. Since ûh is enforced through Dirichlet on the boundary, we know
that the difference should be machine precision when computing the solutions
using P1 elements. This is because every degree of freedom on Λ is set by the
Dirichlet condition, while the difference using P2 elements should converge for
higher mesh refinement. We also measure the relative error (3.92) with the same
mesh refinements given in figure (3.15). Figure (A.1) shows that we obtain the

Figure A.1: Relative error (3.92) and difference (A.1) over mesh refinements.

expected results when evaluating the implementation of the harmonic extension.
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Convergence of uh to the harmonic extension

Recalling our energy functional

Ef (u, û) = 1
2

∫
Ω

(∇u)2 dx + 1
2

∫
Λ

(∇û)2 ds + γ

2

∫
Λ

(u− û)2 ds (A.2)

and seeking the minimizer

G : min
u⃗ ∈ U

Ef (u⃗; Λ), (A.3)

it is natural to suspect that u|Λ − û→ 0 as γ > 0 increases since the last term
in (A.2) obtains its minimum when u|Λ = û. Hence, the last expression can be
thought of as weak enforcement of u|Λ = û and the solution uh converges to
Eûh. Numerically measuring the difference between Eûh and the solution uh

we should obtain a decreasing difference for increasing coupling factor γ.

Figure A.2: log-log plot of difference ∥Euh − uh∥Ω as a function of coupling
factor γ, measured in the H1 and L2 norm, using P1 and P2 type elements.

Figure A.2 Shows the expected behavior of the difference ∥Euh − uh∥. For
P1 elements the difference goes to zero, while for P2 elements the difference
converges to approximatly 10−5 because there is some approximation error
assosiated with the enforcement of ûh on Λ.
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APPENDIX B

Rapidly exploring random trees

We present an alternative to the method of CCO to obtain the different
geometries Λ. The method is faster but less realistic as it is a stochastic
procedure and does not follow any physical laws as the method of CCO.
Inspired by the Rapidly Exploring Random Tree (RRT) algorithm (LaValle,
1998) we have constructed a way of drawing points in the plane such that it
exhibits the branching features of vasculature.

Algorithm 4 RRT
p1 = (x1, y1) ▷ Starting point

i = 2
while i ≤ N do

Draw random point pd following uniform distribution U(0, 1) in each
coordinate

n = argminj∈{1,..,i−1} aj − b ▷ Get closest point aj to pd

θ = arctan−1(an, pd)
pi = pn + (cos(θ), sin(θ)) ▷ New point
i = i + 1

end while

Note that the new point is always one unit length from the previous point, while
the randomness is in the angle. By changing the spread of the random numbers
b we can vary the stochastic nature of the points. Algorithm 5 shows how we

Algorithm 5 Connect RRT
for i ∈ {2, .., N} do

iter = 0
for j ∈ {1, .., N} do

if i > j & |pi − pj | < d then
iter = iter +1
if iter < 2 then

connections ← (j, i) ▷ Store index as low to high
end if

end if
end for

end for
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connect the points, looking at a specific point pi we allow for one connection
with a lower indexed point pj within a given distance d. From Algorithm 4 we
see that each new point is 1 unit away from its closest point and therefore we
simply set d = 1+tol. Algorithm 4 and Algorithm 5 provides a specified way to
generate different 1D geometries. The resulting geometries exhibit four desired
features continuity, randomness, none loops and none intersections
We enforce none loops, by only allowing two connections per point. With the
stochastic nature of our 1D geometry generation, it sometimes happens that the
connecting lines from algorithm 2. intersect, although this is an anomaly that
can happen in real vasculature, meshing such domains require special attention.
We, therefore, add a tolerance on how close the points {p}N

i can be to each
other - making the intersection less likely to happen and additionally having
the upside of producing more equilateral triangle mesh elements. Additionally,
we include a safety measure of neglecting seeds producing intersecting lines.

Figure B.1: Eight random 1D geometries generated with algorithm 1 and 2. and
normalized s.t. x, y ∈ [0, 1]. N = 30, (x1, y1) = [U(0, N/4), 0] or [0, U(0, N/4)].

Figure B.1 shows eight different geometries obtained by Algorithm 4 and
Algorithm 5. The connective routine provides only bifurcations similar to the
method of CCO, but the number of bifurcations are in this method arbitrary.
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