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Abstract

Several copula goodness-of-fit approaches are examined, three of which are proposed in this paper.
Results are presented from an extensive Monte Carlo study, where we examine the effect of dimension,
sample size and strength of dependence on the nominal level and power of the different approaches.
While no approach is always the best, some stand out and conclusions and recommendations are made.
A novel study of p-value variation due to permuation order, for approaches based on Rosenblatt’s
transformation is also carried out. Results show significant variation due to permutation order for
some of the approaches based on this transform. However, when approaching rejection regions, the
additional variation is negligible. Finally, motivated by the permutation study, new versions of some
goodness-of-fit approaches are proposed and examined. The new versions consider all permutation
orders of the variables and we see some power improvement over the approaches that consider one
permutation order only.

Key words: Copula, Cramér-von Mises statistic, empirical copula, goodness-of-fit, parametric bootstrap,
pseudo-observations, Rosenblatt’s transform.

1 Introduction

A copula contains all the information about the dependency structure of a random vector. Due to the
representation theorem of Sklar (1959), every distribution function H can be written as H(x1, . . . , xd) =
C{F1(x1), . . . , Fd(xd)}, where F1, . . . , Fd are the marginal distributions and C : [0, 1]d → [0, 1] is the
copula. This enables the modelling of marginal distributions and the dependence structure in separate
steps. This feature in particular has motivated successful applications in areas such as survival analysis,
hydrology, actuarial science and finance. For exhaustive and general introductions to copulae, the reader
is referred to Joe (1997) and Nelsen (1999), and for introductions oriented to financial applications,
Malevergne and Sornette (2006) and Cherubini et al. (2004). While the evaluation of univariate distri-
butions is well documented, the study of goodness-of-fit (GoF) tests for copulas emerged only recently as
a challenging inferential problem.

Let C be the underlying d-variate copula of a population. Suppose one wants to test the composite
GoF hypothesis

H0 : C ∈ C = {Cθ; θ ∈ Θ} vs. H1 : C /∈ C = {Cθ; θ ∈ Θ}, (1)

where Θ is the parameter space. Lately, several contributions have been made to test this hypothesis, e.g.
Genest and Rivest (1993), Shih (1998), Breymann et al. (2003), Malevergne and Sornette (2003), Scaillet
(2005), Genest and Rémillard (2008), Fermanian (2005), Panchenko (2005), Genest et al. (2006a), Berg
and Bakken (2007), Dobrić and Schmid (2007), Quessy et al. (2007), Genest et al. (2008), among others.
However, the field is still in its infancy and general guidelines and recommendations are sparse.

For univariate distributions, the GoF assessment can be performed using e.g. the well-known Anderson-
Darling statistic (Anderson and Darling, 1954), or less quantitatively using a QQ-plot. In the multivariate
domain there are fewer alternatives. A simple way to build GoF approaches for multivariate random vari-
ables is to consider multi-dimensional chi-square approaches, as in for example Dobrić and Schmid (2005).
The problem with this approach, as with all binned approaches based on gridding the probability space,
is that they will not be feasible for high dimensional problems due to the curse of dimensionality. An-
other issue with binned approaches is that the grouping of the data is not trivial. Grouping too coarsely
destroys valuable information and the ability to contrast distributions becomes very limited. On the



other hand, too small groups leads to a highly irregular empirical cumulative distribution function (cdf)
due to the limited amount of data. For these reasons, multivariate binned approaches are not considered
in this study. Multivariate kernel density estimation (KDE) approaches such as the ones proposed by
Fermanian (2005) and Scaillet (2005) are also excluded from this study as they will simply be too com-
putationally exhaustive for high dimensional problems. The author believes GoF to be most useful for
high-dimensional problems since copulae are then harder to conceptualize. Moreover, the consequences
of poor model choice is often much greater in higher dimensional problems, e.g. risk assessments for high
dimensional financial portfolios.

The class of dimension reduction approaches is a more promising alternative. Dimension reduction
approaches reduce the multivariate problem to a univariate problem, and then apply some univariate
test, leading to numerically efficient approaches even for high dimensional problems. These approaches
primarily differ in the way the dimension reduction is carried out. For the univariate test it is common to
apply standard univariate statistics such as Kolmogorov- or Cramér-von Mises type statistics. Examples
include Breymann et al. (2003), Malevergne and Sornette (2003), Genest et al. (2006a), Berg and Bakken
(2007), Quessy et al. (2007) and Genest and Rémillard (2008) among others.

This paper is organized as follows. In Section 2 some preliminaries are presented. Section 3 gives
an overview of the nine GoF approaches considered, including three new ones. In Section 4 results are
presented from an extensive Monte Carlo study where we examine the effect of dimension, sample size and
strength of dependence on the nominal level and power of the approaches. Several null- and alternative
hypothesis copulae are considered. Further, this section also presents results from a novel numerical
study of the effect of permutation order for approaches based on Rosenblatt’s transform. New versions of
some of the approaches based on this transform are proposed and examined. These new versions utilize
all permutation orders of the data in an attempt to extract more information, and hence increase the
power. Finally, Section 5 discusses and recommends. In addition, detailed testing procedures, leading to
proper p-value estimates for all approaches, are given in the appendix.

2 Preliminaries

For copula GoF testing one is interested in the fit of the copula alone. Typically, one does not wish
to introduce any distributional assumptions for the margins. Instead the testing is carried out using
rank data. Suppose we have a random d-variate vector X. The inference is then based on the so-called
pseudo-vector Z:

Zj = (Zj1, . . . , Zjd) =

(
Rj1

n + 1
, . . . ,

Rjd

n + 1

)
, (2)

where Rji is the rank of Xji amongst (X1i, . . . , Xni). This transformation of each margin through their
normalized ranks is often denoted the empirical marginal transformation. Given the independent samples
(x1, . . . ,xn), the pseudo-observations (z1, . . . , zn) can be considered to be samples from the underlying
copula C. However, due to the rank transformation, (z1, . . . , zn) are no longer independent samples. In
addition, since we are testing a hypothesized parametric copula model, as summarized by (1), parameter
estimation error will influence the limiting distribution of any GoF approach. The practical consequence
is the need for parametric bootstrap procedures to obtain reliable p-value estimates. This is treated in
more detail in Secion 3.10.

2.1 Rosenblatt’s transformation

The Rosenblatt transformation, proposed by Rosenblatt (1952), transforms a set of dependent variables
into a set of independent U [0, 1] variables, given the multivariate distribution. The transformation is a
universally applicable way of creating a set of i.i.d. U [0, 1] variables from any set of dependent variables
with known distribution. Given a test for multivariate, independent uniformity, the transformation can
be used to test the fit of any assumed model.

Definition 2.1 (Rosenblatt’s transformation)
Let Z = (Z1, . . . , Zd) denote a random vector with marginal distributions Fi(zi) = P (Zi ≤ zi) and
conditional distributions Fi|1...i−1(Zi ≤ zi|Z1 = z1, . . . , Zi−1 = zi−1) for i = 1, . . . , d. Rosenblatt’s
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transformation of Z is defined as R(Z) = (R1(Z1), . . . ,Rd(Zd)) where

R1(Z1) = P (Z1 ≤ z1) = F1(z1),

R2(Z2) = P (Z2 ≤ z2|X1 = z1) = F2|1(z2|z1),

...

Rd(Zd) = P (Zd ≤ xd|Z1 = z1, . . . , Zd−1 = zd−1) = Fd|1...d−1(zd|z1, . . . , zd−1).

The random vector V = (V1, . . . , Vd), where Vi = Ri(Zi), is now i.i.d. U [0, 1]d.

A recent application of this transformation is multivariate GoF tests. The Rosenblatt transformation is
applied to a data set, assuming a multivariate null hypothesis distribution, and then a test of multivariate
independence is carried out on the resulting transformed data set. The null hypothesis is typically a
parametric copula family. The parameters of this copula family needs to be estimated before performing
the transformation.

One advantage with Rosenblatt’s transformation in a GoF setting is that the null- and alternative
hypotheses are the same, regardless of the distribution before the transformation. Hong and Li (2005)
report Monte Carlo evidence of multivariate tests using transformed variables outperforming tests using
the original random variables. Chen et al. (2004) believe that a similar conclusion also applies to GoF
tests for copulae. Another advantage is that computationally intensive double bootstrap procedures can
be avoided for some approaches.

A disadvantage with tests based on Rosenblatt’s transformation is the lack of invariance with respect
to the permutation of the variables since there are d! possible permutations. However, as long as the
permutation is decided randomly, the results will not be influenced in any particular direction. The
practical implications of this disadvantage is studied in Section 4.2.

2.2 Parameter estimation

Testing the hypothesis in (1) involves the estimation of the copula parameters θ by some consistent

estimator θ̂. There are mainly two ways of estimating these parameters; the fully parametric method or a
semi-parametric method. The fully parametric method, termed the inference functions for margins (IFM)
method (Joe, 1997), relies on the assumption of parametric, univariate margins. First, the parameters
of the margins are estimated and then each parametric margin is plugged into the copula likelihood
which is then maximized with respect to the copula parameters. Since we treat the margins as nuisance
parameters we rather proceed with the pseudo-vector Z and the semi-parametric method. This method is
denoted the pseudo-likelihood (Demarta and McNeil, 2005) or the canonical maximum likelihood (CML)
(Romano, 2002) method, and is described in Genest et al. (1995) and in Shih and Louis (1995) in the
presence of censorship. Having obtained the pseudo-vector Z as described in (2), the copula parameters
can be estimated using either maximum likelihood (ML) or using the well-known relation to Kendall’s
tau.

For the elliptical copulae in higher dimensions the pairwise sample Kendall’s tau’s are inverted. This
gives the correlation- and scale matrix for the Gaussian and Student copulae, respectively. For the Student
copula one must also estimate the degree-of-freedom. We follow Mashal and Zeevi (2002) and Demarta
and McNeil (2005), who propose a two-stage approach in which the scale matrix is first estimated by
inversion of Kendall’s tau, and then the pseudo-likelihood function is maximized with respect to the
degree-of-freedom ν, using the estimate of the scale matrix. For the Archimedean copulae the parameter
is estimated by inversion of Kendall’s tau. For dimension d > 2 we estimate the parameter as the average
of the d(d − 1)/2 pairs of Kendall’s tau’s.

3 Copula goodness-of-fit approaches

The following nine copula GoF approaches are examined:

A1: Based on Rosenblatt’s transformation, proposed by Berg and Bakken (2007). This approach in-
cludes, as special cases, the approaches proposed by Malevergne and Sornette (2003), Breymann
et al. (2003), and the second approach in Chen et al. (2004).
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A2: Based on the the empirical copula and the copula distribution function, proposed by Genest and
Rémillard (2008).

A3: Based on approach A2 and the Rosenblatt transformation, proposed by Genest et al. (2008).

A4: Based on the empirical copula and the cdf of the copula function, proposed by Savu and Trede
(2004) and Genest et al. (2006a).

A5: Based on Spearman’s dependence function, proposed by Quessy et al. (2007).

A6: A new approache that extends Shih’s test (Shih, 1998) for the bivariate Clayton model to arbitrary
dimension.

A7: Based on the inner product between two vectors as a measure of their distance, proposed by
Panchenko (2005).

A8: A new approach based on approach A7 and the Rosenblatt transformation.

A9: A new approach based on averages of the approaches above.

Approaches A1-A5 are all dimension reduction approaches, while A6 is a moment-based approach and
A7-A8 are denoted full multivariate approaches. For all the dimension reduction approaches only the
Cramér-von Mises statistic is considered for the unviariate test.

3.1 Approach A1

Berg and Bakken (2007) propose a generalization of the approches proposed by Breymann et al. (2003)
and Malevergne and Sornette (2003). The approach is based on Rosenblatt’s transformation applied to
the pseudo-vector Z from (2), assuming a null hypothesis copula Cbθ. The d-variate vector V, resulting
from the transformation, is i.i.d. U [0, 1]d under the null hypothesis.1 Berg and Bakken (2007) also
propose a second Rosenblatt transformation, applied to V but this term will not be considered here.

The dimension reduction of approach A1 is based on V:

W1 =

d∑

i=1

Γ{Vi; α}, (3)

where Γ is any weight function used to weight the information in V and α is the set of weight parameters.
Any weight function may be used, depending on the use and the region of V one wishes to emphasize.
Consider for example the special case Γ{Vi; α} = Φ−1(Vi)

2 which corresponds to the approach proposed
by Breymann et al. (2003). If the null hypothesis is the Gaussian copula this is also equivalent with the
approach proposed by Malevergne and Sornette (2003). Both of the latter studies apply the Anderson-
Darling (Anderson and Darling, 1954) statistic. Berg and Bakken (2007) show that the Anderson-Darling
statistic with Γ{Vi; α} = |Vi − 0.5| performs particularly well for testing the Gaussian null hypothesis.
Hence, when performing the numerical studies in Section 4.1 the following two special cases of approach
A1 are considered:

A(i)
1 : Γ{Vi; α} = Φ−1(Vi)

2 and A(ii)
1 : Γ{Vi; α} = |Vi − 0.5|.

For approach A(i)
1 it is easy to see that the distribution of W1 is a χ2

d distribution1. However, for

approach A(ii)
1 , and in general, the distribution of W1 is not known and one must turn to a double

bootstrap procedure to approximate the cdf F1 under the null hypothesis. The test observator S1 of
approach A1 is defined as the cdf of F1(W1):

S1(w) = P{F1(W1) ≤ w}, w ∈ [0, 1].

Under the null hypothesis, all Vi are i.i.d. U [0, 1], hence S1(w) = w. Suppose we have the random
samples (v1, . . . ,vn) from V. Then the empirical version of the test observator can be computed as

Ŝ1(w) =
1

n + 1

n∑

j=1

I{F1(W1) ≤ w}. (4)

1Since we are working with rank data this is only close to, but not exactly true. This issue is discussed in Section 3.10.
Until then it is assumed that this holds.
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This paper only considers the Cramér-von Mises statistic, a version of which becomes (shown in Appendix
B):

T̂1 = n

∫ 1

0

{Ŝ1(w) − S1(w)}2 dS1(w)

=
n

3
+

n

n + 1

n∑

j=1

Ŝ1

(
j

n + 1

)2

− n

(n + 1)2

n∑

j=1

(2j + 1)Ŝ1

(
j

n + 1

)
.

(5)

3.2 Approach A2

Genest and Rémillard (2008) propose to use the copula distribution function for the dimension reduction.
The approach is based on the empirical copula process, introduced by Deheuvels (1979):

Ĉ(u) =
1

n + 1

n∑

j=1

I {Zj1 ≤ u1, . . . , Zjd ≤ ud} . (6)

where Zj is given by (2) and u = (u1, . . . , ud) ∈ [0, 1]d. The empirical copula is the observed frequency
of P (Z1 < u1, . . . , Zd < ud). Suppose we have the random samples (z1, . . . , zn) from Z. The idea is

then to compare Ĉ(z) with an estimation Cbθ(z) of Cθ. This is a very natural approach for copula GoF
testing considering that most univariate GoF tests are based on a distance between an empirical- and null
hypothesis distribution function. Genest et al. (2008) state that, given that it is entirely non-parametric,

Ĉ is the most objective benchmark for testing the copula GoF. We expect this approach to be very
powerful since there are so few transformations of the data. A Cramér-von Mises statistic for approach
A2 becomes (Genest et al., 2008):

T̂2 = n

∫

[0,1]d

{
Ĉ(z) − Cbθ(z)

}2

dĈ(z) =

n∑

j=1

{
Ĉ(zj) − Cbθ(zj)

}2

. (7)

3.3 Approach A3

Genest et al. (2008) propose to apply approach A2 to the vector V resulting from applying the Rosenblatt
transform to Z. Suppose we have the random samples (v1, . . . ,vn) from V. The idea is then to compare

Ĉ with the independence copula C⊥. A Cramér-von Mises statistic for approach A3 becomes (Genest
et al., 2008):

T̂3 = n

∫

[0,1]d

{
Ĉ(v) − C⊥(v)

}2

dĈ(v) =

n∑

j=1

{
Ĉ(vj) − C⊥(vj)

}2

. (8)

3.4 Approach A4

Savu and Trede (2004) and Genest et al. (2006a) propose to use Kendall’s dependence function K(w) =
P (C(Z) ≤ w) as a GoF approach. The test observator S4 of approach A4 becomes

S4(w) = P{C(Z} ≤ w}, w ∈ [0, 1],

where Z is the pseudo-vector from (2). Under the null hypothesis, S4(w) = S4,bθ(w) which is copula spe-

cific. Suppose we have the random samples (z1, . . . , zn) from Z. The empirical version of test observator
S4 then equals

Ŝ4(w) =
1

n + 1

n∑

j=1

I{Ĉ(zj) ≤ w}. (9)

A Cramér-von Mises statistic for approach A4 is given by:

T̂4 = n

∫ 1

0

{Ŝ4(w) − S4,bθ(w)}2 dŜ4(w) =

n∑

j=1

{
Ŝ4

(
j

n + 1

)
− S4,bθ

(
j

n + 1

)}2

. (10)
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3.5 Approach A5

Quessy et al. (2007) propose a GoF approach for bivariate copulae based on Spearman’s dependence
function L2(w) = P (Z1Z2 ≤ w). Notice that L2(w) = P (C⊥(Z1, Z2) ≤ w). A natural extension to
arbitrary dimension d is then Ld(w) = P (C⊥(Z) ≤ w) and the test observator S5 of approach A5

becomes
S5(w) = P{C⊥(Z) ≤ w}, w ∈ [0, 1],

where Z is the pseudo-vector from (2). Under the null hypothesis, S5(w) = S5,bθ(w), which is copula spe-

cific. Suppose we have the random samples (z1, . . . , zn) from Z. The empirical version of test observator
S5 then equals

Ŝ5(w) =
1

n + 1

n∑

j=1

I{C⊥(zj) ≤ w}. (11)

A Cramér-von Mises statistic for approach A5 is given by:

T̂5 = n

∫ 1

0

{Ŝ5(w) − S5,bθ(w)}2 dŜ5(w) =

n∑

j=1

{
Ŝ5

(
j

n + 1

)
− S5,bθ

(
j

n + 1

)}2

. (12)

3.6 Approach A6

Shih (1998) propose a moment-based GoF test for the bivariate gamma frailty model, also known as Clay-
ton’s copula. Shih (1998) considered unweighted and weighted estimators of the dependency parameter
θ via Kendall’s tau and a weighted rank-based estimator, namely

θ̂τ =
2τ̂

1 − τ̂
and θ̂W =

∑
i<j ∆ij/Wij∑

i<j(1 − ∆ij)/Wij
, (13)

where τ̂ = −1 + 4
∑

i<j ∆ij/{n(n− 1)}, ∆ij = I{(Zi1 −Zj1)(Zi2 −Zj2) > 0} and Wij =
∑n

k=1 I{Zk1 ≤
max(Zi1, Zj1), Zk2 ≤ max(Zi2, Zj2)}. Since θ̂τ and θ̂W are both unbiased estimators of θ under the null
hypothesis that C = Cθ for some θ ≥ 0, Shih (1998) propose the GoF statistic

T̂Shih =
√

n{θ̂τ − θ̂W }.

Shih (1998) shows that this statistic is asymptotically normal under the null hypothesis. Unfortunately,
the variance provided by Shih (1998) was found to be wrong by Genest et al. (2006b), where a corrected
formula is provided.

One way of extending this approach to arbitrary dimension d is comparing each pairwise element
of θ̂τ and θ̂W . The resulting vector of d(d − 1)/2 statistics will tend, asymptotically, to a d(d − 1)/2
dimensional normal vector with a non-trivial covariance matrix. The normalized version of the vector,
i.e. the inverted square root of the covariance matrix multiplied with the vector of statistics, will be
asymptotically standard normal and hence the sum of squares will now be chi-squared with d(d − 1)/2
degrees of freedom. The covariance matrix of the vector of statistics remains to be computed and is
deferred to future research. For now we simply compute the non-normalized sum of squares and perform
a parametric bootstrap to estimate the p-value, as for all other approaches.

The test statistic for approach A6 then becomes:

T̂6 =

d−1∑

i=1

d∑

j=i+1

{
θ̂τ,ij − θ̂W,ij

}2

. (14)

θ̂W , and hence approach A6, is constructed specifically for testing the Clayton copula and will not be
considered for testing any other copula model.

3.7 Approach A7

Approaches A1-A5 are all two-stage dimension reduction approaches. First the problem is reduced to a
univariate problem, second a univariate test statistic is applied. In contrast, the approach proposed by
Panchenko (2005) tests the entire data set in one step. The approach is based on the inner product of
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Z and Zbθ, where Z is the pseudo-vector from (2) and Zbθ is the null hypothesis vector with θ̂ being a
consistent estimator of the copula parameter. The inner product can be used as a measure of the distance
between two vectors. Now define the squared distance Q between the two vectors as

Q =
〈
Z − Zbθ |κd| Z − Zbθ

〉
.

Here κd is a positive definite symmetric kernel such as the Gaussian kernel:

κd(Z,Z′) = exp
{
−‖Z− Z′‖2/(2dh2)

}
,

with ‖ · ‖ denoting the Euclidean norm in R
d and h > 0 being a bandwidth. Q will be zero if and

only if Z = Zbθ. Suppose we have the random samples (z1, . . . , zn) from Z. Now generate the random
samples (z∗1, . . . , z

∗
n) from the null hypothesis vector Zbθ. Following the properties of an inner product,

Q can be decomposed as Q = Q11 − 2Q12 + Q22. Each term of this decomposition is estimated using
V-statistics (see Denker and Keller (1983) for an introduction to U- and V-statistics) and the test statistic
for approach A7 is given by:

T̂7 =
1

n2

n∑

i=1

n∑

j=1

κd(zi, zj) −
2

n2

n∑

i=1

n∑

j=1

κd(zi, z
∗
j ) +

1

n2

n∑

i=1

n∑

j=1

κd(z
∗
i , z

∗
j ). (15)

3.8 Approach A8

Along the lines of approach A3 we propose a version of approach A7 based on V, the vector resulting
from the Rosenblatt transformation applied to Z. Suppose we have the random samples (v1, . . . ,vn)
from V. Now generate the random samples (v∗

1 , . . . ,v∗
n) from the independence copula. The statistic for

approach A8 is simply

T̂8 =
1

n2

n∑

i=1

n∑

j=1

κd(vi,vj) −
2

n2

n∑

i=1

n∑

j=1

κd(vi,v
∗
j ) +

1

n2

n∑

i=1

n∑

j=1

κd(v
∗
i ,v∗

j ). (16)

3.9 Approach A9

Finally, we propose to use averages of the approaches already introduced, as new approaches. Such aver-
ages will capture several aspects of the data and its potential deviation from the null hypothesis. Surely
one can find optimal weights for a weighted average and the average should be taken over standardized
variables, i.e. all approaches should be scaled appropriately. However, due to the computational load,
this approach is included here in its most simple form as an interesting supplement and a hint of further
research. Two averages are considered, first the average of all approaches and second the average of the
three approaches based on the empirical copula, i.e. A2, A3 and A4. The corresponding statistics are
defined as

T̂
(i)
9 =

1

9




T̂
(i)
1 + T̂

(ii)
1 +

8∑

j=2

T̂j




 and T̂
(ii)
9 =

1

3

{
T̂2 + T̂3 + T̂4

}
. (17)

3.10 Testing procedures

In Section 3.1 it was assumed that V, resulting from applying Rosenblatt’s transformation to Z, is i.i.d.
U [0, 1]d. The non-parametric margins introduce dependence in V. Hence, it is only close to, but not
exactly independent. This applies to all approaches considered here. In addition, we have small sample
estimation error from the estimation of the null hypothesis copula parameter. To cope with these issues
and obtain a proper estimate of the p-value of a statistic, one turns to parametric bootstrap procedures.
The parametric bootstrap procedure used in Genest et al. (2006a) is adopted, the validity of which is
established in Genest and Rémillard (2008). Dobrić and Schmid (2007) and Berg and Bakken (2007)
propose a very similar procedure in their modification of the original procedure used in Breymann et al.
(2003). The asymptotic validity of the bootstrap procedure has only been proved for the approaches
A2 and A4. However, the results in Dobrić and Schmid (2007) and Berg and Bakken (2007) strongly
indicates that the procedure is valid also for approach A1. This is further discussed in view of the results
in Section 4.1 and in Section 5. The test procedure for approach A7, originally proposed in Panchenko
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(2005), gave us too low nominal levels (i.e. the rejection rate when the null hypothesis is true is lower
than the prescribed size). However, a small fix, in line with the procedure of Genest and Rémillard
(2008), solved this issue. The test procedures for all approaches are detailed in Appendix C. In many
cases one must resort to a double parametric bootstrap to compute a statistic. This means that there are
two bootstrap parameters that needs to be chosen, the sample size Nb for the double bootstrap step and
the number of replications K for the estimation of p-values. In this paper the number of replications K
is chosen to equal 1000, while the double bootstrap sample size Nb is chosen to equal 10000 for approach
A1, and 2500 in dimension d = {2, 4} and 5000 in dimension d = 8 for approaches A2, A4 and A5. See
Appendix C for details.

4 Numerical experiments

4.1 Size and power simulations

A large Monte Carlo study is performed to assess the properties of the approaches for various dimensions,
sample sizes, levels of dependence and alternative dependence structures. The nominal levels and the
power against fixed alternatives are of particular interest. The simulations are carried out according to
the following factors:

• H0 copula (5 choices: Gaussian, Student, Clayton, Gumbel, Frank),

• H1 copula (5 choices: Gaussian, Student (ν = 6), Clayton, Gumbel, Frank),

• Kendall’s tau (2 choices: τ = {0.2, 0.4}),

• Dimension (3 choices: d = {2, 4, 8}),

• Sample size (2 choices: n = {100, 500}).

Due to extreme computational load, the Student copula is only considered as null hypothesis in the
bivariate case. In each of the remaining 260 cases, a sample of dimension d and size n is drawn from the
H1 copula with dependence parameter corresponding to τ . The statistics of the various GoF approaches
are then computed under the null hypothesis H0 and p-values are estimated. This entire procedure
is repeated 10, 000 times in order to estimate the nominal level and power for each approach under
consideration.

Since we apply a parametric bootstrap procedure in the estimation of p-values, critical values are
obtained by simulating from the null hypothesis, and hence all reported powers are so-called size-adjusted
powers and approaches can be compared appropriately (see e.g. Hendry (2006) and Florax et al. (2006)
for size-adjustment suggestions).

The critical values of each statistic under the true null hypothesis were tabulated for each dimension
and sample size considered and for many levels of dependence. For the power simulations we used table
look-up with linear interpolation to ensure comparison with the appropriate critical value. Despite the
tabulation this computationally exhaustive experiment would not have been feasible without access to
the Titan computer grid at the University of Oslo, a cluster of 1, 750 computing cores, 6.5 TB memory,
350 TB local disk and 12.5 Tflops.

4.1.1 Testing the Gaussian hypothesis

Let us first consider testing the Gaussian hypothesis under several fixed alternatives. Table 1 shows the
results from our simulations.

Notice that the nominal levels of all approaches match the prescribed size of 5% well. Note next
that the power generally (but not always) increases with level of dependence, as expected since two
copulae differs more and more as we move away from independence where all copulae are equivalent
to the independence copula. Also note that the power increases with sample size, as it should for the
approaches to be consistent. The power generally (but not always) also increases with dimension. This
is also expected since it is natural to believe that the difference between two distributions increases with
dimension, see for example Chen et al. (2004) who show that the Kullbach-Leibler Information Criterion
(a measure of distance between two copulae) between the Gaussian- and Student copulae increases with
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dimension. Also, one can imagine that there is more for a GoF approach to work with the higher
dimension is.

Next, we note that no approach is always the best, they all have special cases where they perform
well and cases where they perform poor. For example, approaches A1 and A3 perform particularly well

for testing against heavy tails, i.e. the Student copula alternative. A(i)
1 performs extremely well for high

dimensions and large sample sizes while A3 performs very well for the bivariate case and for small sample
sizes in higher dimensions. When Clayton and Gumbel are the alternatives, two of the approaches
based on the empirical copula, A2 and A4, perform very well. In addition, in particular for Gumbel
alternatives in higher dimensions, approach A5 performs very well. And finally, as expected, approach

A(ii)
9 , the average of A2, A3 and A4 perform very well for Clayton and Gumbel alternatives. For the

Frank alternative, approach A3 performs particularly well for the bivariate case, but then, surprisingly,
extremely poor for higher dimensions while approaches A4 and A5 perform quite well for all dimensions.
This shows us the danger of concluding for higher dimensions based on bivariate power results. We also
note from the table that approaches A7 and A8 are generally quite poor, they almost never perform
among the best. However, at the same time they are usually not among the worst. Finally we see that
the average approaches perform quite well in most cases, sometimes being the most powerful ones.

One aspect of the power comparison that is lost when only looking at the best approach (bold in the
tables), or when ranking the approaches, is that an approach can be almost as good as the best approach
in all cases, but not necessarily the very best. For example when the alternative is the Gumbel copula for

d = 4, n = 500 and τ = 0.40, approach A(ii)
9 will be ranked 1 with a power of 99.8 while approach A5 will

be ranked number 5 when its power is 98.1. This small difference in power may not even be statistically
significant and purely due to Monte Carlo variation. Hence, in addition to the table we also examine
a boxplot of the differences in power, from the best performing approach. This is depicted in Figure
1. From this figure we see that although approaches A2 and A4 are the best performing approaches in
addition to the average approaches, the power in some very few cases is remarkably low compared to
the best in those specific cases. All cases of poor performance of these approaches are for the Student
alternative. Hence, for testing the Gaussian copula one should apply more than one approach, e.g A2

and A3 and in higher dimensions with large sample sizes also approach A(i)
1 . The average approaches

is an attempt of applying several approaches simultaneously and we see that they have very stable and
good performance. However, also for these approaches there are cases, although very few, of very poor
performance compared to the very best approach.

For approach A1, Berg and Bakken (2007) report results where the weight function Γ{Vi; α} =
|Vi − 0.5| outperformed Γ{Vi; α} = Φ−1(Vi)

2, in particular for small sample sizes. These results are not
confirmed in this paper where the conclusion is the opposite in almost all cases. However, in this paper the
Cramér–von Mises statistic was applied while Berg and Bakken (2007) considered the Anderson–Darling
statistic. Since the Anderson–Darling statistic emphasizes the tails of the distribution, when mixed with
the extreme weight on the corners and edges of the unit hypercube from Φ−1(Vi) it may be too extreme
for small sample sizes. When using the Cramér–von Mises statistic this is apparently not the case.

4.1.2 Testing the Student hypothesis

Next, we consider testing the Student copula hypothesis, for the bivariate case only. Table 2 and Figure 2
show the results. Again we note that the nominal levels match the prescribed size well. The powers against
the Gaussian copula are also very close to the nominal levels which makes sense since the Student copula
approaches the Gaussian as the degrees of freedom increases. As for testing the Gaussian hypothesis,

approaches A2, A4, and particularly A(ii)
9 , perform very well. Approaches A1, A7 and A8 all perform

rather poorly. While approach A1 performed very well for Student alternatives when testing the Gaussian
copula, this is of course not the case when testing the Student copula since this is now the null hypothesis
and nominal levels should, and do indeed, match the prescribed size of 5%.

4.1.3 Testing the Clayton hypothesis

Table 3 shows the results of testing the Clayton hypothesis and Figure 3 shows the power differences.
The nominal levels match the prescribed size well. Again notice the very good performance of approaches

A2 and A4. A6 does however outperform all other approaches. A(i)
9 also perform very well, but is highly

dominated by A6 and does not provide additional knowledge in this case. Approach A6, the multivariate
version of Shih’s statistic, is constructed specifically for testing the Clayton copula. With this in mind,
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Table 1: Percentage of rejections (at 5% significance level) of the Gaussian copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.3 5.0 5.0 4.6 5.4 5.7 – 4.7 5.2 5.0 5.1

Student-t 0.9 4.2 7.0 8.8 6.1 5.3 – 5.6 6.0 3.3 6.4
Clayton 2.6 5.0 19.7 19.6 19.9 15.6 – 7.1 6.9 10.6 24.0

Gumbel 1.9 4.6 10.7 3.6 11.6 8.4 – 6.2 5.9 4.9 9.7
Frank 3.4 3.2 6.0 7.4 6.0 6.2 – 5.4 5.5 3.4 6.1

0.4 Gaussian 5.2 5.0 4.7 5.4 4.8 4.7 – 5.0 4.7 5.0 4.9

Student-t 1.3 2.4 5.9 11.6 4.8 3.9 – 5.3 5.8 2.3 6.4
Clayton 1.1 2.5 57.4 59.6 49.7 33.7 – 14.9 15.8 22.2 63.9

Gumbel 1.3 2.6 19.1 5.0 18.5 8.2 – 7.0 7.9 4.1 16.2
Frank 0.8 1.2 10.6 11.6 10.1 8.9 – 6.1 6.3 1.5 11.8

500 0.2 Gaussian 4.7 4.9 5.2 4.8 5.2 5.1 – 5.1 4.9 4.9 5.0

Student-t 19.5 16.9 10.0 16.9 8.4 8.5 – 10.3 9.8 21.4 10.0
Clayton 2.0 5.8 72.5 71.3 71.9 57.2 – 23.8 20.3 56.5 79.5

Gumbel 2.5 6.9 33.2 8.5 33.9 25.8 – 12.3 11.1 21.2 34.3

Frank 2.2 2.9 11.4 21.9 11.1 9.9 – 7.6 8.1 5.8 14.5
0.4 Gaussian 5.0 5.0 4.6 5.4 4.9 4.8 – 4.9 5.5 5.1 4.8

Student-t 23.8 12.5 8.2 30.5 6.6 6.9 – 10.1 12.6 20.6 12.0
Clayton 6.8 4.3 99.8 100 99.6 96.2 – 78.1 84.3 99.0 99.9
Gumbel 8.8 6.0 65.3 18.9 62.9 39.8 – 26.4 32.4 42.3 65.3

Frank 15.1 12.2 36.9 60.7 33.4 26.4 – 17.0 20.6 36.9 52.1
4 100 0.2 Gaussian 4.8 5.0 4.6 4.8 4.8 5.3 – 5.6 5.0 5.0 4.9

Student-t 5.1 6.5 8.9 15.4 8.5 7.0 – 6.7 6.6 7.5 9.7
Clayton 1.1 5.0 45.6 30.5 52.5 19.2 – 9.4 7.0 20.2 55.9

Gumbel 1.2 3.1 12.8 0.7 42.5 56.4 – 13.9 8.8 13.2 34.9
Frank 2.0 1.4 1.8 3.0 12.2 19.6 – 7.5 6.8 2.0 8.4

0.4 Gaussian 4.5 4.8 5.2 5.4 5.1 5.1 – 4.9 5.3 4.9 5.3

Student-t 9.2 3.7 8.6 24.4 6.1 5.3 – 6.9 7.1 7.5 8.1
Clayton 1.1 1.8 90.8 80.4 84.0 45.6 – 27.9 18.3 48.8 90.1
Gumbel 1.5 1.7 41.0 3.6 52.0 48.7 – 25.8 15.4 17.1 50.1
Frank 1.6 2.2 10.1 7.3 23.6 20.6 – 12.6 8.3 5.6 21.2

500 0.2 Gaussian 5.8 5.3 5.3 5.0 4.8 4.9 – 5.0 5.5 4.9 4.7

Student-t 98.5 71.8 16.5 47.1 11.2 12.6 – 13.6 15.0 96.5 15.7
Clayton 4.3 7.7 99.0 94.4 98.0 88.4 – 39.3 22.2 94.6 99.2

Gumbel 8.0 5.9 84.2 48.0 97.7 98.5 – 70.3 34.7 92.3 98.0
Frank 3.6 6.6 25.4 5.0 64.3 66.2 – 20.3 17.2 39.1 63.8

0.4 Gaussian 4.7 4.7 4.8 4.9 4.7 4.8 – 5.1 5.0 4.4 4.6

Student-t 98.1 67.5 11.6 72.1 8.0 8.8 – 16.4 18.7 94.0 13.8
Clayton 44.3 13.2 100 100 100 99.9 – 97.2 91.2 100 100

Gumbel 63.2 34.7 98.9 70.1 99.6 98.1 – 95.5 77.4 99.4 99.8

Frank 79.3 74.2 73.2 19.5 88.6 74.5 – 61.2 40.7 97.4 90.6
8 100 0.2 Gaussian 5.0 5.2 5.9 4.7 5.8 5.2 – 5.3 5.2 5.4 5.7

Student-t 40.4 16.4 9.8 15.0 12.3 7.7 – 7.9 6.9 35.9 12.4
Clayton 0.7 4.1 48.7 24.3 66.0 1.2 – 11.8 6.6 19.5 65.5
Gumbel 0.6 1.7 22.0 2.3 61.5 98.3 – 56.9 13.8 14.0 56.1
Frank 0.4 0.6 3.8 1.3 7.3 56.0 – 14.4 7.2 0.6 4.7

0.4 Gaussian 5.1 5.2 5.0 4.6 5.3 5.7 – 5.5 5.1 5.3 5.1

Student-t 51.7 16.1 8.3 17.6 7.4 6.1 – 8.0 8.5 39.2 7.8
Clayton 1.6 2.4 96.6 49.2 93.3 28.1 – 40.4 19.9 59.9 95.0
Gumbel 16.2 10.1 70.5 2.7 78.4 92.8 – 67.9 28.1 52.7 78.6
Frank 4.8 8.3 19.6 2.9 28.7 23.9 – 26.7 7.5 14.6 25.7

500 0.2 Gaussian 5.5 4.8 4.4 5.1 4.8 5.4 – 5.2 5.1 4.6 4.8

Student-t 100 99.9 23.7 56.4 19.1 11.8 – 21.7 20.9 100 21.3
Clayton 11.8 12.9 100 74.3 99.7 84.8 – 50.5 13.6 97.2 99.9
Gumbel 30.0 13.4 100 71.7 100 100 – 100 63.0 99.9 100

Frank 22.9 38.3 99.8 10.5 98.4 99.9 – 69.6 19.4 90.7 99.8
0.4 Gaussian 4.9 5.4 4.9 5.2 5.4 5.1 – 4.7 5.9 5.1 5.2

Student-t 100 99.8 16.9 71.5 12.2 10.6 – 21.4 32.0 100 13.7
Clayton 78.0 52.6 100 99.8 100 100 – 99.2 81.5 100 100

Gumbel 100 98.7 100 33.9 100 100 – 100 94.7 100 100

Frank 99.5 99.5 100 1.9 99.8 95.6 – 97.3 37.7 100 100

Note: The Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are nominal levels
and should correspond to the prescribed size of 5%. Numbers in bold indicates the best performing approach. All
powers are size-adjusted.
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Figure 1: Distribution of power difference from the very best approach for testing the Gaussian copula.

Table 2: Percentage of rejections (at 5% significance level) of the bivariate Student copula by approaches
A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.7 5.4 4.9 4.0 5.0 5.2 – 5.6 5.3 5.6 4.8
Student-t 4.4 4.6 4.8 4.1 5.1 4.8 – 5.1 5.0 4.6 4.8

Clayton 4.8 5.3 19.2 11.0 20.1 17.2 – 7.3 6.8 15.4 21.3

Gumbel 4.7 5.1 9.2 4.9 10.5 7.0 – 5.9 5.8 7.6 10.1
Frank 4.9 5.4 6.0 4.4 6.6 7.1 – 5.8 5.7 6.5 6.6

0.4 Gaussian 4.7 5.4 4.9 4.0 5.2 5.4 – 5.7 4.9 5.2 4.8
Student-t 4.1 4.5 4.2 4.4 4.8 5.1 – 4.9 4.9 4.4 4.4

Clayton 4.2 4.9 55.0 31.7 53.3 41.1 – 15.4 14.8 39.9 57.3

Gumbel 4.4 5.0 17.2 6.1 18.7 9.1 – 7.2 7.4 10.5 17.5
Frank 2.9 3.4 11.8 5.3 12.5 10.5 – 7.5 6.3 6.9 11.6

500 0.2 Gaussian 5.8 5.8 5.1 5.1 5.0 5.6 – 5.8 5.5 6.0 5.3
Student-t 5.1 5.1 4.5 4.5 4.5 5.3 – 5.1 5.2 4.8 4.6

Clayton 5.6 4.8 69.9 60.4 72.4 61.3 – 22.0 19.9 65.7 77.5

Gumbel 5.2 5.3 28.6 18.6 30.0 19.7 – 11.0 10.0 23.5 33.2

Frank 5.2 6.3 12.3 8.3 12.7 12.6 – 7.4 7.8 11.6 13.4

0.4 Gaussian 5.6 5.2 4.5 5.3 5.0 5.5 – 5.2 4.9 5.4 5.0
Student-t 4.9 4.6 5.3 4.4 4.5 4.8 – 4.7 5.0 4.7 4.6

Clayton 6.4 7.0 99.8 99.6 99.6 97.7 – 74.6 78.4 99.5 99.9

Gumbel 4.5 5.1 61.7 40.0 61.2 34.1 – 22.4 24.1 49.2 68.3

Frank 11.6 5.9 41.2 15.4 40.4 31.7 – 17.2 14.2 36.0 44.8

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are nominal levels and
should correspond to the prescribed size of 5%. Numbers in bold indicates the best performing approach. All powers
are size-adjusted.
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Figure 2: Distribution of power difference from the very best approach for testing the bivariate Student
copula.

the performance of approaches A2 and A4 is quite impressive. While approach A3 performed very
well for testing the Gaussian copula it performs very poor for testing the Clayton copula, with terrible
performance in some cases. Finally, note that the powers are in general higher than that for testing
the Gaussian hypothesis, i.e. it is simpler to detect deviations from the Clayton copula than from the
Gaussian copula.

4.1.4 Testing the Gumbel hypothesis

We now test the Gumbel hypothesis. The results are shown in Table 4 and the power differences in
Figure 4. Notice that the nominal levels match the prescribed size well. Note also, again, the very good

performance of approaches A2 and A4. Finally, approach A(ii)
9 perform very well. This is not surprising

since it is the average of A2, A3 and A4.

4.1.5 Testing the Frank hypothesis

Finally, we test the Frank hypothesis. The results are shown in Table 5 and the power differences in
Figure 5. The nominal levels match the prescribed size well. Note again the very good performance of

approach A2. Approaches A4 and A(ii)
9 also perform very well.

4.2 Effect of permutation order for Rosenblatt’s transform

ApproachesA1, A3 and A8 are all based on Rosenblatt’s transform and a consecutive test of independence.
The lack of invariance to the order of permutation may pose a problem to these approaches in the sense
that the statistic for a given data set may prove very different depending on the permutation order. This
is an undesirable feature of a statistical testing procedure. However, the practical consequence of this
permutation invariance has not yet been investigated.

Table 6 shows the effect of permutation order on the estimated p-value for the three approaches
based on Rosenblatt’s transformation. The reported values are means and standard deviations of the
estimated p-values (over d! permutations). The study is restricted to dimension d = 5 for which there
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Table 3: Percentage of rejections (at 5% significance level) of the Clayton copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 7.5 7.3 21.3 6.6 23.2 14.5 20.9 7.3 6.9 20.8 22.4
Student-t 8.0 8.5 23.8 8.4 24.1 16.3 15.9 7.5 7.0 21.0 23.7
Clayton 4.9 5.1 5.0 5.2 5.0 5.2 4.5 5.2 5.2 5.0 5.1

Gumbel 6.2 9.4 46.7 13.0 47.3 32.3 40.4 12.4 11.1 41.2 47.1
Frank 7.0 6.9 24.6 6.4 27.1 16.3 30.3 8.6 7.4 25.1 25.8

0.4 Gaussian 24.0 26.7 58.9 26.4 58.2 33.7 62.1 16.6 15.3 66.5 60.6
Student-t 13.4 19.0 60.6 16.0 58.4 35.1 53.6 15.4 13.7 58.2 57.3
Clayton 4.4 4.8 4.8 5.4 4.9 4.9 4.8 4.7 4.8 4.6 4.8

Gumbel 29.7 38.9 91.6 41.2 90.6 70.1 90.2 34.9 31.7 92.0 90.2
Frank 24.1 19.2 64.8 24.2 66.2 35.6 84.3 19.3 16.5 77.0 65.6

500 0.2 Gaussian 20.6 13.3 78.7 44.8 70.2 52.9 85.9 24.0 20.5 68.5 75.3
Student-t 26.9 23.3 82.1 33.4 73.7 64.8 68.5 26.1 22.2 76.1 77.6
Clayton 5.2 5.1 5.0 4.8 5.1 5.4 5.1 5.3 4.5 4.8 5.2

Gumbel 12.6 23.2 99.2 84.9 97.9 94.0 99.0 60.1 52.0 97.2 98.6
Frank 18.8 9.0 86.6 42.9 82.2 63.4 97.6 30.4 22.7 78.3 84.8

0.4 Gaussian 94.8 85.6 100 99.5 99.7 95.5 100 77.7 82.3 99.9 99.9
Student-t 65.3 71.4 99.9 89.7 99.6 97.3 99.8 74.7 74.9 99.8 99.8
Clayton 5.3 5.1 5.0 5.2 4.7 4.8 4.9 4.7 4.4 5.0 4.7

Gumbel 98.4 97.8 100 100 100 100 100 99.4 99.5 100 100

Frank 97.8 69.9 100 99.4 99.9 96.7 100 84.6 86.8 100 100

4 100 0.2 Gaussian 10.8 10.6 37.4 3.2 38.5 39.1 49.8 10.6 6.5 49.2 37.9
Student-t 27.1 21.3 48.4 17.8 37.7 42.2 37.7 10.1 7.3 57.2 42.5
Clayton 4.7 5.1 5.3 5.6 5.2 5.1 4.6 6.3 4.7 5.0 5.2

Gumbel 8.8 12.0 64.4 3.0 91.1 94.1 81.5 31.9 14.0 88.4 88.6
Frank 7.7 6.5 36.0 1.4 74.7 68.9 73.0 15.1 7.2 72.8 68.8

0.4 Gaussian 78.3 65.7 89.8 3.0 83.0 73.9 91.6 31.0 16.7 95.2 84.3
Student-t 53.9 45.7 92.9 6.1 82.6 76.0 86.2 29.9 15.8 92.2 85.6
Clayton 5.2 4.7 5.6 5.5 5.2 5.1 4.5 5.3 4.9 5.1 5.3

Gumbel 79.1 62.1 99.3 4.9 99.8 99.8 99.8 80.8 40.1 99.9 99.8
Frank 68.7 37.9 91.4 3.2 97.0 84.8 99.6 52.4 15.1 99.3 96.3

500 0.2 Gaussian 89.6 38.1 99.4 18.1 97.0 91.2 99.9 38.8 23.0 99.4 98.0
Student-t 93.7 76.9 99.9 89.7 95.8 94.5 97.9 44.1 30.8 100 98.7
Clayton 4.8 4.7 5.2 5.6 5.6 4.7 5.0 4.8 5.3 5.1 5.6

Gumbel 71.1 37.8 100 80.3 100 100 100 97.8 83.4 100 100

Frank 82.6 11.8 99.8 14.5 100 99.9 100 67.9 24.8 100 100

0.4 Gaussian 100 100 100 99.7 100 99.9 100 97.4 95.5 100 100

Student-t 100 99.8 100 80.0 100 100 100 96.9 90.1 100 100

Clayton 4.9 5.2 5.3 5.7 5.6 5.2 5.6 4.8 5.5 5.1 5.4

Gumbel 100 100 100 100 100 100 100 100 100 100 100

Frank 100 99.0 100 99.9 100 100 100 100 93.6 100 100

8 100 0.2 Gaussian 14.3 12.6 29.9 9.9 21.4 53.5 82.6 8.1 6.6 74.2 22.3
Student-t 57.8 61.0 44.3 40.9 20.2 54.3 65.9 9.3 8.6 85.5 24.4
Clayton 5.5 5.0 5.2 5.5 5.6 5.4 4.3 4.7 5.2 5.1 5.5

Gumbel 7.6 10.5 63.2 52.6 91.9 100 98.0 68.7 26.5 97.0 90.8
Frank 3.2 6.0 16.6 4.2 74.8 96.5 96.7 20.4 6.3 93.4 68.9

0.4 Gaussian 97.5 91.7 96.9 2.5 87.1 89.0 98.2 34.8 10.9 99.1 90.2
Student-t 86.3 80.5 98.4 29.5 86.1 89.4 96.0 32.4 10.7 97.7 91.4
Clayton 5.7 5.4 4.8 5.1 4.7 4.8 4.6 5.3 5.0 4.7 4.7

Gumbel 93.0 82.2 99.8 19.9 100 100 100 97.3 43.4 100 100

Frank 85.2 62.8 93.7 0.6 99.6 97.7 100 76.5 8.1 100 99.6
500 0.2 Gaussian 100 71.6 100 24.9 98.9 97.4 100 41.8 17.0 100 99.5

Student-t 100 100 100 99.3 96.7 98.1 100 50.8 32.0 100 99.3
Clayton 5.3 4.8 5.0 4.8 4.9 5.3 4.6 5.3 5.4 5.4 4.7

Gumbel 98.3 40.7 100 96.6 100 100 100 100 96.8 100 100

Frank 99.9 11.0 100 3.7 100 100 100 92.8 15.5 100 100

0.4 Gaussian 100 100 100 96.1 100 100 100 98.7 84.4 100 100

Student-t 100 100 100 93.2 100 100 100 98.7 78.1 100 100

Clayton 4.5 4.8 4.8 4.9 4.9 5.2 5.1 5.5 4.9 4.8 4.8

Gumbel 100 100 100 88.5 100 100 100 100 100 100 100

Frank 100 100 100 69.5 100 100 100 100 76.0 100 100

Note: The Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are nominal levels
and should correspond to the prescribed size of 5%. Numbers in bold indicates the best performing approach. All
powers are size-adjusted.
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Figure 3: Distribution of power difference from the very best approach for testing the Clayton copula.

A1
(i)

A1
(ii)

A2 A3 A4 A5 A7 A8 A9
(i)

A9
(ii)

0
20

40
60

80
10

0
P

ow
er

 d
iff

er
en

ce
 (

%
)

Figure 4: Distribution of power difference from the very best approach for testing the Gumbel copula.
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Table 4: Percentage of rejections (at 5% significance level) of the Gumbel copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 7.7 6.6 9.9 7.3 9.6 9.6 – 6.4 6.6 10.2 9.8
Student-t 7.1 6.2 11.2 9.8 9.0 7.6 – 5.9 6.2 8.8 10.4
Clayton 5.9 6.5 45.8 31.1 44.0 35.1 – 12.3 10.8 33.1 47.5

Gumbel 5.3 5.1 5.1 4.9 5.1 5.1 – 5.1 5.3 5.1 4.9

Frank 6.7 5.2 12.1 8.0 11.3 13.3 – 7.4 6.8 10.4 11.7
0.4 Gaussian 11.4 11.2 17.5 8.9 16.4 13.7 – 8.1 7.2 19.1 17.6

Student-t 5.8 6.2 20.2 15.2 16.1 11.3 – 7.5 6.7 13.9 19.7
Clayton 8.1 14.0 92.6 75.4 89.8 75.3 – 34.7 31.4 83.4 92.6

Gumbel 4.8 4.6 4.8 5.1 4.9 4.7 – 4.7 5.2 4.8 5.0

Frank 8.1 7.1 28.7 9.4 24.8 24.3 – 10.3 9.0 20.9 25.7
500 0.2 Gaussian 19.9 9.8 37.0 23.9 29.2 26.9 – 11.7 10.2 31.4 33.1

Student-t 16.6 11.6 39.1 33.7 25.2 17.3 – 11.8 10.2 27.7 30.8
Clayton 8.4 10.3 99.6 98.5 98.5 95.9 – 57.5 51.5 97.1 99.3
Gumbel 4.7 4.6 5.1 4.8 4.6 5.1 – 5.0 4.6 4.6 4.6

Frank 16.0 7.4 53.9 30.7 38.5 42.6 – 16.2 12.7 37.1 44.3
0.4 Gaussian 49.9 32.4 74.1 38.4 61.6 46.8 – 25.4 28.9 73.8 67.7

Student-t 9.0 10.8 74.1 56.7 57.3 36.0 – 20.9 21.1 53.0 68.4
Clayton 43.6 57.8 100 100 100 100 – 99.3 99.6 100 100

Gumbel 5.4 4.9 5.2 5.5 5.0 5.0 – 4.8 5.2 5.0 4.9

Frank 45.3 13.8 95.5 47.8 85.1 82.2 – 44.4 42.1 86.2 89.2
4 100 0.2 Gaussian 6.8 13.0 54.7 43.4 51.1 24.0 – 14.9 7.5 41.6 57.3

Student-t 24.9 24.8 56.8 55.7 52.8 21.1 – 13.0 8.8 58.7 60.1

Clayton 3.4 15.1 89.6 85.4 97.1 82.2 – 29.9 10.1 90.6 97.2

Gumbel 5.0 4.9 5.0 4.5 5.0 5.3 – 5.0 5.6 4.8 5.0

Frank 4.6 5.4 22.2 13.1 29.2 30.6 – 12.6 5.5 18.6 30.0
0.4 Gaussian 29.7 36.6 66.7 44.0 59.9 33.7 – 28.8 9.2 70.5 65.0

Student-t 15.1 22.0 68.0 66.1 60.7 30.2 – 26.2 9.9 60.0 68.9

Clayton 26.8 29.9 99.9 99.1 100 98.8 – 82.4 32.8 99.8 100

Gumbel 5.0 5.0 5.0 5.2 5.1 5.1 – 5.0 5.4 5.5 5.0

Frank 17.8 9.0 51.4 12.5 54.3 56.1 – 26.2 7.3 46.5 53.7
500 0.2 Gaussian 75.9 59.1 99.4 98.5 98.3 96.0 – 68.4 19.5 99.4 99.2

Student-t 92.0 88.5 99.1 99.7 97.7 94.5 – 67.4 27.3 100 99.2
Clayton 34.2 64.9 100 100 100 100 – 98.1 53.3 100 100

Gumbel 4.7 4.8 4.8 4.6 4.7 5.0 – 4.7 4.2 4.6 4.7

Frank 47.7 10.0 86.6 47.5 92.7 98.1 – 58.0 9.8 93.2 94.0
0.4 Gaussian 99.9 98.2 100 99.7 99.6 97.6 – 95.9 54.8 100 99.9

Student-t 86.1 91.3 100 100 99.6 97.1 – 93.9 60.2 100 100

Clayton 100 95.7 100 100 100 100 – 100 99.8 100 100

Gumbel 4.7 5.1 4.9 5.3 5.1 4.8 – 4.6 5.1 4.8 5.2

Frank 99.4 31.8 99.9 58.9 99.8 100 – 93.0 23.7 100 99.9
8 100 0.2 Gaussian 1.0 30.0 89.8 73.2 87.1 29.9 – 37.6 6.7 50.0 90.4

Student-t 52.3 70.3 89.4 76.6 86.2 30.9 – 36.1 8.3 91.9 89.9
Clayton 0.2 29.9 93.6 95.4 99.8 81.2 – 53.3 8.6 89.3 99.7
Gumbel 5.4 5.1 4.1 4.8 4.9 4.8 – 4.6 5.1 5.1 4.8

Frank 0.3 4.3 14.6 10.3 40.4 19.4 – 28.4 5.5 3.6 36.8
0.4 Gaussian 36.8 68.2 98.1 72.3 90.2 50.3 – 70.1 6.8 93.7 93.7

Student-t 45.3 65.7 97.8 83.8 90.8 51.8 – 65.0 11.7 94.1 94.6
Clayton 38.5 45.9 100 99.6 100 99.9 – 98.2 42.0 100 100

Gumbel 5.2 5.1 5.3 5.1 5.3 5.4 – 5.0 5.5 5.2 5.4

Frank 16.0 8.7 54.3 9.6 67.1 63.5 – 53.4 4.9 42.5 66.2
500 0.2 Gaussian 99.9 99.1 100 100 100 100 – 99.2 14.8 100 100

Student-t 100 100 100 100 100 100 – 98.9 31.7 100 100

Clayton 79.4 98.9 100 100 100 100 – 100 33.0 100 100

Gumbel 5.1 4.9 4.1 4.8 5.1 5.2 – 4.3 4.8 5.2 5.0

Frank 78.6 18.6 90.1 36.7 99.9 100 – 93.7 7.0 99.2 99.9
0.4 Gaussian 100 100 100 100 100 100 – 100 37.5 100 100

Student-t 100 100 100 100 100 100 – 100 67.5 100 100

Clayton 100 99.9 100 100 100 100 – 100 99.7 100 100

Gumbel 5.3 4.9 5.1 5.3 5.2 5.4 – 4.9 5.0 5.2 5.1

Frank 100 48.8 100 35.6 100 100 – 99.8 9.5 100 100

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are nominal levels and
should correspond to the prescribed size of 5%. Numbers in bold indicates the best performing approach. All powers
are size-adjusted.
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Table 5: Percentage of rejections (at 5% significance level) of the Frank copula by approaches A1-A9.

d n τ True copula A
(i)
1 A

(ii)
1 A2 A3 A4 A5 A6 A7 A8 A

(i)
9 A

(ii)
9

2 100 0.2 Gaussian 5.8 5.5 6.0 7.5 6.9 6.6 – 4.9 5.1 6.2 7.4
Student-t 10.6 8.4 8.8 9.9 8.9 7.9 – 6.0 5.7 11.9 10.1
Clayton 5.1 5.3 24.4 21.3 26.2 18.5 – 7.9 7.4 17.4 29.4

Gumbel 5.2 6.0 13.5 8.8 14.2 11.4 – 6.3 6.3 10.0 14.9

Frank 5.8 5.6 5.5 7.3 5.6 5.4 – 5.4 4.8 5.7 5.9

0.4 Gaussian 12.2 9.1 9.4 9.2 9.5 6.8 – 5.6 6.5 13.1 10.7
Student-t 8.2 6.4 13.7 10.4 13.3 9.4 – 6.2 7.1 12.0 14.7

Clayton 6.8 5.2 65.4 47.5 62.4 34.6 – 15.9 16.9 46.6 68.2

Gumbel 6.5 6.0 29.1 9.6 26.0 15.7 – 8.4 9.1 18.0 26.6
Frank 5.9 4.8 4.9 6.3 5.2 4.7 – 4.1 5.1 5.3 5.3

500 0.2 Gaussian 7.6 6.7 11.2 15.3 10.3 10.3 – 6.7 7.3 10.3 11.8
Student-t 47.8 26.9 28.0 20.5 26.5 25.2 – 12.4 13.4 48.0 29.2
Clayton 7.6 7.1 87.7 81.0 84.2 66.4 – 27.5 27.5 74.3 87.8

Gumbel 11.4 10.3 55.6 31.9 44.5 41.8 – 15.1 15.9 41.1 49.2
Frank 5.5 4.9 4.5 7.2 5.4 5.1 – 4.6 5.4 4.9 5.5

0.4 Gaussian 30.3 23.1 42.5 35.1 32.7 23.2 – 14.0 14.9 47.5 42.2
Student-t 20.9 14.5 68.5 28.6 57.1 46.2 – 22.3 21.5 58.9 63.8
Clayton 11.9 9.5 100 99.9 100 97.6 – 83.9 85.2 99.9 100

Gumbel 9.9 12.2 95.2 47.5 85.8 77.3 – 41.7 41.2 81.2 89.9
Frank 6.0 4.8 4.2 6.4 4.7 4.0 – 4.6 5.0 4.9 5.0

4 100 0.2 Gaussian 4.8 9.3 27.6 27.0 24.8 10.3 – 6.9 6.9 18.2 29.8

Student-t 44.0 25.9 40.0 41.1 36.8 20.3 – 8.2 7.7 59.2 44.5
Clayton 6.5 8.5 68.0 75.0 87.1 41.9 – 13.2 8.5 71.9 88.4

Gumbel 10.2 5.3 19.6 3.9 33.8 50.5 – 11.2 7.2 27.3 31.1
Frank 5.5 5.3 4.5 4.9 4.8 4.7 – 5.2 5.1 5.2 4.8

0.4 Gaussian 14.1 29.4 30.1 33.1 31.3 18.4 – 10.8 7.6 43.9 37.3
Student-t 18.5 16.7 47.4 53.0 43.3 29.2 – 13.0 9.3 49.8 53.6

Clayton 4.5 9.8 95.5 97.5 98.0 62.1 – 47.1 19.4 93.8 98.8

Gumbel 9.7 5.1 58.0 7.2 54.7 65.3 – 21.3 9.1 44.0 56.6
Frank 5.6 4.8 5.4 5.4 5.3 5.7 – 5.2 4.6 5.4 5.5

500 0.2 Gaussian 13.4 38.1 86.1 79.1 66.0 57.7 – 19.8 15.9 77.3 76.2
Student-t 99.0 90.2 97.4 95.7 88.3 88.7 – 34.3 27.9 99.9 95.2
Clayton 11.2 31.1 100 100 100 99.7 – 66.7 37.3 100 100

Gumbel 26.6 7.8 84.7 22.0 91.9 97.5 – 56.8 25.5 91.2 92.5
Frank 5.6 5.4 5.1 4.9 4.4 5.6 – 4.9 5.0 5.8 4.5

0.4 Gaussian 78.9 93.7 98.3 95.3 90.9 74.2 – 58.9 40.3 99.9 95.7
Student-t 72.0 78.8 99.9 99.6 98.6 95.8 – 72.2 52.2 100 99.6
Clayton 8.0 36.9 100 100 100 100 – 99.9 96.5 100 100

Gumbel 35.0 6.9 99.9 51.9 99.7 99.9 – 91.5 54.4 99.7 99.8
Frank 4.9 5.1 5.3 6.0 5.0 5.1 – 5.7 4.8 5.0 5.3

8 100 0.2 Gaussian 1.0 20.5 81.2 68.2 60.8 12.5 – 11.2 6.3 26.9 72.6
Student-t 75.6 68.9 84.6 73.1 69.2 27.1 – 12.6 7.9 94.3 79.5
Clayton 2.6 15.5 83.6 94.6 97.7 36.5 – 22.7 8.6 79.5 97.4
Gumbel 20.3 5.0 35.7 22.2 63.2 87.7 – 39.8 7.8 43.7 60.4
Frank 4.5 5.1 4.7 5.2 4.8 4.8 – 5.5 5.1 4.9 4.8

0.4 Gaussian 11.7 62.0 93.6 81.4 60.1 24.2 – 25.7 8.2 78.1 73.4
Student-t 47.8 55.9 95.2 91.3 74.1 38.4 – 28.3 10.8 90.9 86.2
Clayton 1.3 18.1 98.7 99.8 99.9 69.4 – 81.0 39.4 98.5 99.9

Gumbel 26.5 7.9 72.8 29.5 74.7 93.7 – 50.3 11.0 67.6 77.0
Frank 5.0 4.8 4.6 5.2 5.1 5.5 – 4.7 4.4 4.9 5.0

500 0.2 Gaussian 47.7 94.1 100 100 99.8 99.0 – 66.6 15.1 100 100

Student-t 100 100 100 100 100 100 – 77.4 32.3 100 100

Clayton 6.3 82.8 100 100 100 100 – 93.7 35.8 100 100

Gumbel 71.4 6.0 95.9 74.3 100 100 – 98.5 34.1 98.9 100

Frank 4.5 4.8 4.3 5.1 5.2 5.3 – 5.6 5.3 5.5 5.1

0.4 Gaussian 100 100 100 100 99.9 93.1 – 97.6 37.9 100 100

Student-t 100 100 100 100 100 99.7 – 98.6 61.5 100 100

Clayton 8.3 83.7 100 100 100 100 – 100 99.6 100 100

Gumbel 93.3 16.3 100 95.1 100 100 – 99.9 62.5 100 100

Frank 5.0 4.6 4.7 4.9 4.6 4.2 – 5.3 4.7 4.4 4.6

Note: Student copula alternative hypothesis with degree-of-freedom ν = 6. Numbers in italic are nominal levels and
should correspond to the prescribed size of 5%. Numbers in bold indicates the best performing approach. All powers
are size-adjusted.
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Figure 5: Distribution of power difference from the very best approach for testing the Frank copula.

are d! = 120 different permutations, sample size n = 100 and dependence τ = 0.5. All reported values
are averaged over 1000 independent simulations. For some of the approaches there are two sources of
variation; permutation order and double bootstrap procedure. In order to see the effect of permutation
order only, we report the same p-value variation results when the permutation is kept fixed, see Table 7.

From the two tables one can see that the permutation order adds no variance for approach A(i)
1 when

the null hypothesis is the Gaussian copula. This permutation invariance of approach A(i)
1 under the

Gaussian null hypothesis is proved in Appendix A. However, when using a different weight function or
when the null hypothesis is different from the Gaussian copula, variation is added due to the permutation
order. Note that in- or close to rejection regions, the variation due to permutation order is as great
as in other regions, relative to the mean. However, the practical effect will not be so important as the
conclusion will most probably be the same, regardless of permutation order. We see the same for the
other approaches. When the null- and alternative hypotheses are the same we see that the average of
the mean p-values are approximately 0.5 as they should be. We also see that the variation in these cases

are quite large, typically around 0.25 for approaches A(ii)
1 , A3 and A8. For approach A(i)

1 we see that
the variation is in general lower than for the other approaches. Also note that for approach A8 the
permutation order adds almost no variation in any case as the estimated p-value will vary heavily even
when keeping the permutation order fixed. This is due to the construction of the approach. Random
samples from the null hypothesis copula are drawn in every computation of the statistic, hence inducing
large variation, at least when we are far from rejection regions.

To further illustrate, we look at so-called mixing tests. Two copulae are mixed in the following way:

CMix = (1 − β)C1 + βC2,

where β ∈ [0, 1] is the mixing parameter. We consider the case where C1 is the Clayton copula while
C2 is the Gumbel copula. So when β = 0, the mixed copula is equivalent with the Clayton copula,
while when β = 1 it is equivalent with the Gumbel copula. We draw n = 500 random samples from the
d = 5 dimensional mixed copula with dependences τ1 = τ2 = 0.4. We then estimate the p-value under a

Clayton null hypothesis for all values of β, using approaches A(i)
1 , A(ii)

1 , A3 and A8, i.e. all approaches
based on Rosenblatt’s transformation. The p-value is estimated for each of the d! permutations of the
variables and the 95% confidence interval over the d! permutations is computed. This is repeated 1000
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Table 6: Estimated mean p-value (mean of d! permutations) for approaches based on Rosenblatt’s trans-
formation. In parentheses the standard deviation over all permutations is given. All quoted values are
averaged over 100 simulations.

H0 H1 A
(i)
1 A

(ii)
1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.520 (0.263) 0.513 (0.287) 0.510 (0.290)
Clayton 0.501 (0.000) 0.480 (0.239) 0.021 (0.038) 0.205 (0.201)
Gumbel 0.479 (0.000) 0.460 (0.237) 0.549 (0.294) 0.294 (0.247)
Frank 0.415 (0.000) 0.419 (0.232) 0.535 (0.311) 0.428 (0.287)

Clayton Gaussian 0.003 (0.002) 0.008 (0.015) 0.312 (0.187) 0.248 (0.237)
Clayton 0.520 (0.159) 0.535 (0.263) 0.519 (0.269) 0.501 (0.283)
Gumbel 0.002 (0.002) 0.016 (0.024) 0.370 (0.222) 0.103 (0.139)
Frank 0.008 (0.004) 0.040 (0.051) 0.424 (0.226) 0.265 (0.242)

Gumbel Gaussian 0.082 (0.027) 0.095 (0.118) 0.109 (0.100) 0.390 (0.279)
Clayton 0.035 (0.012) 0.214 (0.181) 0.000 (0.001) 0.101 (0.129)
Gumbel 0.533 (0.110) 0.533 (0.270) 0.528 (0.264) 0.506 (0.287)
Frank 0.113 (0.034) 0.340 (0.239) 0.417 (0.246) 0.463 (0.286)

Frank Gaussian 0.242 (0.102) 0.129 (0.152) 0.104 (0.086) 0.380 (0.274)
Clayton 0.536 (0.153) 0.400 (0.248) 0.000 (0.001) 0.173 (0.184)
Gumbel 0.396 (0.135) 0.492 (0.265) 0.325 (0.227) 0.365 (0.267)
Frank 0.509 (0.151) 0.508 (0.272) 0.506 (0.245) 0.486 (0.281)

Note: Applied to n = 100 samples of d = 5 dimensional copulae with dependence parameter τ = 0.5.

Table 7: Estimated mean p-value (mean of d! separate estimations based on the same data set) for
approaches based on Rosenblatt’s transformation. In parentheses the standard deviation over all permu-
tations is given. All quoted values are averaged over 100 simulations.

H0 H1 A
(i)
1 A

(ii)
1 A3 A8

Gaussian Gaussian 0.514 (0.000) 0.530 (0.057) 0.523 (0.000) 0.510 (0.284)
Clayton 0.501 (0.000) 0.483 (0.056) 0.021 (0.000) 0.205 (0.194)
Gumbel 0.479 (0.000) 0.458 (0.052) 0.559 (0.000) 0.294 (0.239)
Frank 0.415 (0.000) 0.416 (0.048) 0.551 (0.000) 0.432 (0.282)

Clayton Gaussian 0.002 (0.000) 0.008 (0.003) 0.318 (0.000) 0.250 (0.216)
Clayton 0.517 (0.000) 0.535 (0.056) 0.524 (0.000) 0.501 (0.275)
Gumbel 0.002 (0.000) 0.013 (0.003) 0.382 (0.000) 0.105 (0.125)
Frank 0.008 (0.000) 0.038 (0.007) 0.436 (0.000) 0.262 (0.218)

Gumbel Gaussian 0.080 (0.000) 0.089 (0.023) 0.104 (0.000) 0.390 (0.268)
Clayton 0.036 (0.000) 0.205 (0.036) 0.000 (0.000) 0.100 (0.123)
Gumbel 0.527 (0.000) 0.531 (0.061) 0.532 (0.000) 0.508 (0.281)
Frank 0.112 (0.000) 0.342 (0.050) 0.421 (0.000) 0.461 (0.278)

Frank Gaussian 0.240 (0.000) 0.129 (0.031) 0.109 (0.000) 0.381 (0.263)
Clayton 0.541 (0.000) 0.395 (0.055) 0.000 (0.000) 0.170 (0.174)
Gumbel 0.391 (0.000) 0.489 (0.059) 0.320 (0.000) 0.366 (0.257)
Frank 0.502 (0.000) 0.510 (0.063) 0.501 (0.000) 0.485 (0.274)

Note: Applied to n = 100 samples of d = 5 dimensional copulae with dependence parameter τ = 0.5.
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Figure 6: P -value variation due to permutation order for approaches based on Rosenblatt’s transforma-
tion. Average 95% confidence intervals over 1000 separate mixed copula simulations. The null hypothesis
is the Clayton copula and the alternative hypothesis is the Gumbel copula. The solid line represents the
variation over d! permutation orders while the dotted line represents the variation when permutation is
kept fixed.

times and Figure 6 shows the resulting confidence intervals, averaged over the 1000 repetitions. Included
in the figure are also the corresponding confidence intervals when the permutation order is kept fixed.
This way we can see the additional p-value variation solely due to permutation order. We see that for

approach A(i)
1 the additional variation is substantial when the null hypothesis is true. However, as we

move towards rejection, the additional variation becomes negligible in the sense that the conclusion will
be the same no matter which permutation order is chosen. Again we note that the additional variation

due to permutation order is smaller for approach A(i)
1 than for the other approaches based on Rosenblatt’s

transformation. Note also, that for approach A(ii)
1 there is p-value variation even when the permutation

is kept fixed. This is due to the double parametric bootstrap step concerned with the approximation of
F1 in (3.1). This is also the case for approach A8 where we see only marginal additional variation due to
permutation order.

Finally, we examine whether the utilization of all permutations may give us additional power. The
idea is that by computing a statistic for each permutation of the data, more information is extracted

from the data and we may achieve higher power. This is investigated for approaches A(i)
1 and A3 in the

case d = 4, n = 100, τ = 0.4 for H0 and H1 both being one of the Gaussian-, Clayton-, Gumbel- or
Frank copulae. We simply compute the average of the statistics over the d! permutations. Table 8 shows
the results, along with corresponding results (permutation fixed) from Tables 1, 3, 4 and 5. We see that
averaging over all d! permutations adds some power, e.g. for A3 for H0 =Gaussian, H1 =Clayton where
the power increases from 81% to 95%. Hence, this might be a fruitful idea to pursuit in future research.
Perhaps one can find clever ways of averaging only over some few of the d! permutations, and still gain
most of the power increase.
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Table 8: Percentage of rejections (at 5% significance level) by approaches A(i)
1 and A3 when computing

the average of T̂
(i)
1 and T̂3 over all d! permutations. These are denoted by A(i)

1,d! and A3,d! and they are

compared to corresponding rejection rates for the original approaches A(i)
1 and A3, that only consider

one, fixed permutation.

H0 H1 A
(i)
1 A

(i)
1,d! A3 A3,d!

Gaussian Gaussian 4.7 5.2 5.1 4.9

Clayton 1.0 1.0 80.8 94.9
Gumbel 1.5 1.7 3.6 2.2
Frank 1.6 1.8 7.3 6.6

Clayton Gaussian 78.3 83.4 3.0 4.7
Clayton 5.2 5.7 5.5 5.1

Gumbel 79.1 83.2 4.9 6.1
Frank 68.7 74.5 3.2 3.4

Gumbel Gaussian 29.7 30.0 44.0 62.9
Clayton 26.8 26.0 99.1 99.9
Gumbel 5.0 5.3 5.2 5.2

Frank 17.8 18.4 12.5 18.3
Frank Gaussian 14.1 14.6 33.1 48.4

Clayton 4.5 4.0 97.5 99.5
Gumbel 9.7 8.9 7.2 6.8
Frank 5.6 5.1 5.4 5.3

Note: Dimension d = 4, sample size n = 100 and dependence τ = 0.4. Numbers in italic are nominal levels and should
correspond to the prescribed size of 5%. All powers are size-adjusted.

5 Discussion and recommendations

An overview of six copula GoF approaches was given, along with the proposal of three new approaches.
A large Monte Carlo study was presented, examining the nominal levels and the power against some fixed
alternatives under several combinations of problem dimension, sample size and dependence.

Results show, in general, increasing power with dimension, sample size and dependence, as expected.
Further, the results show that approach A2, the approach based on a distance between the empirical-
and null hypothesis copula distribution functions, is in general the best approach, with approach A4 as a
strong runner up. However, in some cases, e.g. when testing the Gaussian hypothesis against heavy tails,
approach A2 does not perform so well. In this case, however, the otherwise poor approach A1 performs
very well for high dimensions and large sample sizes. Hence, in general, approach A2 is recommended.

However, one should consider supplmenting it with approaches A4 and A(i)
1 , in particular if no strong a

priori opinions exist as to which distribution we are testing for and what kind of deviations to detect.
Average approaches merge the qualities of all the approaches included in the averaging and provides
more stable power performance than the individual approaches. However, the topic of averaging different
approaches was included as a hint of further research and needs more work. Finally, to decide which
approaches to consider, a preliminary test of ellipticity (see e.g. Huffera and Park (2007)) can be helpful.

When doing model evaluation, it is recommended to also examine various diagnostic tests such as
GoF plots, e.g. plotting S4(w) with simulated null hypothesis confidence bands as done in Genest et al.
(2006a). This may give valuable information on the fit of a copula. However, there is still a need for
intuitive and informative diagnostic plots. Ideally such a plot should show, in some way and in case of
rejection by the formal tests, which variable (i.e. which dimension) and/or which samples causes the
rejection. Is it actually a deviation in the dependence structure between the variables or is the rejection
due to some extreme samples? More research is needed on this topic.

Next, results were reported on the variation of the p-value estimates due to permutation order for
approaches based on Rosenblatt’s transformation. In general, one does not want a statistical testing
procedure to give different values when running it several times on the same data set. However, for
some of the approaches based on Rosenblatt’s transformation, the estimated p-value will be different
depending on which permuation order that is chosen for the variables. This effect decreases as the p-
value estimates approach critical levels. Hence, the author does not believe that the permutation effect
is something to worry about. On the contrary, the permutational invariance may actually be useful, as
seen when averaging over all permutations increases the power of some of the approaches. Also, as long
as the permutation order is chosen in a random fashion, the results are not influenced in any particular
direction.

The results concerning the permutation of variables also point in direction of important future re-
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search. The variation of p-value estimates also depends on the bootstrap parameters M and Nb. These
parameters are usually, in a rather arbitrary way, set to what is believed to be large values. This is also
the case in this paper. However, there has been no study of the effect that these choices may have on the
power, and even more importantly the nominal levels of an approach. Originally, in the power studies
of Section 4.1, a double bootstrap parameter Nb = 2500 was chosen for all combinations of dimension,
sample size, dependence and alternative copula. However, for dimension d = 8 we observed some peculiar
results, e.g. decreasing power as sample size increased. These peculiarities vanished when increasing Nb

to 5000 for dimension d = 8. Choosing appropriately large values for these parameters and thus achieving
proper nominal levels is crucial for any study and/or application of these GoF approaches. Hence, a study
of the effects of these parameters and required minimum values would be highly interesting.

The computational aspect also deserves some attention. An important quality of approaches based
on Rosenblatt’s transform is computational efficiency. Approaches A2, A4 and A5 need computationally
intensive double parametric bootstrap procedures to estimate p-values in some cases (e.g. for the elliptical
copulae, in particular for higher dimensions and large sample sizes). Approaches based on Rosenblatt’s
transformation does not, in general, need this double bootstrap step, since after Rosenblatt’s transfor-
mation, the null hypothesis is always independence.

Finally, a word of warning. As emphasized in Genest et al. (2008), the asymptotics of several of the
procedures presented here are not known. Hence, one cannot know for sure whether a bootstrap procedure
will converge in every case. However, all the results so far on the performance of the proposed approaches
and bootstrap procedures are comforting and strongly indicate the validity of the test procedures. Keep
in mind though, the original approach and test procedure proposed by Breymann et al. (2003), which
showed terrible performance in the study of Dobrić and Schmid (2007). This shows how wrong it can all
go if our test procedure is not valid. Approaches A2 and A4, that turned out to be the best in our study,
both have known asymptotics and the bootstrap procedures for these approaches are well established
from Quessy (2005), Genest et al. (2006a) and Genest and Rémillard (2008). Hence, for the time being,
these are the recommended ones to use for copula goodness-of-fit testing.
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A Proof of permutation invariance of A(i)
1 under Gaussian copula

null hypothesis

To prove that approach A(i)
1 is permutatoin invariant under the Gaussian copula null hypothesis, let us

first look at how Rosenblatt’s transformation is carried out. For the Gaussian copula null hypothesis,
this transformation is easily computed using the Cholesky decomposition of the covariance matrix. Let
X ∼ N (µ,Σ) be a d-dimensional vector, where µ = E(X) and Σ is the d× d positive definite covariance
matrix.

Since Σ is positive definite it can be written as Σ = AT A, where A is a lower triangular matrix
and AT denotes its transpose. Next, it is well known that X can be expressed as X = µ + ATY where
Y ∼ N (0, I) and I is the d-dimensional identity matrix. I.e. Y is a vector of d i.i.d. standard normally
distributed variables. Solving for Y gives Y = (AT )−1(X − µ). We now see that the vector V = Φ(Y)
is i.i.d. U(0, 1)d under the Gaussian null hypothesis.

For approach A(i)
1 we now need to compute W1 =

∑d
i=1 Φ−1(Vi)

2 =
∑d

i=1 Y 2
i = YTY. We now pro-

ceed with the bivariate setting for simplicity but the proof can easily be extended to arbitrary dimension
d. Consider the Cholesky decomposition of the covariance matrix Σ = AT A in detail:

Σ1 =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
a11 a12

0 a22

) (
a11 0
a12 a22

)
=

(
a2
11 + a2

12 a12a22

a12a22 a2
22

)
,

where the superscript 1 in Σ1 denotes permutation order 1. We see now that a11 =
√

σ2
1σ

2
2 − σ2

12/σ2,
a12 = σ12/σ2 and a22 = σ2. Next, we see that

(AT )−1 =

( 1
a11

− a12

a11a22

0 1
a22

)

and that

Y = (AT )−1(X− µ) =

( 1
a11

(X1 − µ1) − a12

a11a22
(X2 − µ2)

1
a22

(X2 − µ2)

)
.

Now to compute W 1
1 = YT Y, superscript 1 denoting permutation order 1, we get

W 1
1 =

(X1 − µ1)
2

a2
11

+
a2
12

a2
11a

2
22

(X2 − µ2)
2 − 2a12

a2
11a22

(X1 − µ1)(X2 − µ2) +
(X2 − µ2)

2

a2
22

=
(X1 − µ1)

2σ2
2 + (X2 − µ2)

2σ2
1 − 2(X1 − µ1)(X2 − µ2)σ12

σ2
1σ2

2 − σ2
12

by inserting σ’s for the a’s.
By doing the same exercise with permutation order 2 we first get

Σ2 =

(
σ2

2 σ12

σ12 σ2
1

)

and a11 =
√

σ2
1σ2

2 − σ2
12/σ1, a12 = σ12/σ1 and a22 = σ1. Next, in the same manner as above, it is easily

shown that

W 2
1 =

(X2 − µ2)
2σ2

1 + (X1 − µ1)
2σ2

2 − 2(X1 − µ1)(X2 − µ2)σ12

σ2
1σ2

2 − σ2
12

= W 1
1 .

Hence we have shown that approach A(i)
1 is permutation invariant under the Gaussian copula null hy-

pothesis. This is not so for other weight functions or other null hypothesis copulae. The invariance stems
from the use of Φ−1 which cancels out with the Φ in V = Φ(Y) and the squaring Φ(Vi)

2.
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B Derivation of a Cramér-von Mises statistic

Consider the Cramér–von Mises (CvM) statistic

T = n

∫ 1

0

{F̂ (w) − F (w)}2dF (w),

where F̂ (w) = 1
n+1

∑n
j=1 I(Xj ≤ t) is the empirical distribution function, equivalent to the normalized

ranks used in the construction of the pseudo-vector Z in (2). Given a random sample (x1, . . . , xn), the

empirical version T̂ of the CvM statistic can be derived as follows.

T̂ =n

∫ 1

0

{F̂ (w) − F (w)}2dF (w)

=n

∫ 1

0

F̂ (w)2dF (w) − 2n

∫ 1

0

F̂ (w)F (w)dF (w) + n

∫ 1

0

F (w)2dF (w).

Since F̂ (w) is constant and equal to F̂ (j/(n + 1)) between j/(n + 1) and (j + 1)/(n + 1) for j = 1, . . . , n,
the first two integrals can be split into n smaller integrals:

T̂ =n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)2

dF (w)

−2n

n∑

j=1

∫ (j+1)/(n+1)

j/(n+1)

F̂

(
j

n + 1

)
F (w)dF (w) +

n

3

[
F (w)3

]1

0

=
n

3
+ n

n∑

j=1

F̂

(
j

n + 1

)2 {
F

(
j + 1

n + 1

)
− F

(
j

n + 1

)}

−n

n∑

j=1

F̂

(
j

n + 1

){
F

(
j + 1

n + 1

)2

− F

(
j

n + 1

)2
}

.

For approach A1 the test observator S1(w) is U [0, 1] under the null hypothesis. Hence F (w) = w and we

easily see that T̂ reduces to

T̂ ′ =
n

3
+

n

n + 1

n∑

j=1

F̂

(
j

n + 1

)2

− n

(n + 1)2

n∑

j=1

(2j + 1)F̂

(
j

n + 1

)
.

C Test procedures

Suppose we have observed the sample data (x1, . . . ,xn). The following parametric bootstrap procedures
lead to proper p-value estimates for a parametric null hypothesis copula.

C.1 Approach A1 (Berg and Bakken, 2007)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute (v1, . . . , vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula Cbθ
. Here R(z1, . . . , zn) =

(R(z11, . . . , z1d), . . . ,R(zn1, . . . , znd)) where R(z11, . . . , z1d) = (R1(z11), . . . ,Rd(z1d)) denotes Rosenblatt’s
transformation as presented in Definition 2.1.

(4) Compute (h1, . . . , hn) = R(v1, . . . ,vn).

(5) Compute W1 according to (3), using weight functions ΓV and ΓH on (v1, . . . ,vn) and (h1, . . . ,hn) respec-
tively.

(6) If W1 follows a known distribution under the null hypothesis, compute F1(W1) accordingly and jump to
step (8).
If not, approximate F1 as follows. For some large integer Nb, repeat the following steps for every l ∈
{1, . . . , Nb}:
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(i) Generate a random sample v
∗

l = (v∗

1,l, . . . , v
∗

d,l) from the null hypothesis copula, namely an i.i.d.

U [0, 1]d vector.

(ii) Compute h
∗

l = (h∗

1,l, . . . , h
∗

d,l) = R(v∗

1,l, . . . , v
∗

d,l).

(iii) Compute W ∗

1,l according to (3) using the same weight functions ΓV and ΓH as in step (5) but now on
(v∗

1,l, . . . , v
∗

d,l) and (h∗

1,l, . . . , h
∗

d,l) respectively.

(7) Compute F1(W1) = 1
Nb+1

PNb

l=1 I{W ∗

1,l > W1}.

(8) Compute bT1 according to (4) and (5).

(9) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k) assuming the parametric null hypothesis copula Cbθ0
k
.

(d) Compute (h0
1,k, . . . ,h0

n,k) = R(v0
1,k, . . . ,v0

n,k).

(d) Compute W 0
1,k according to (3), using the same weight functions ΓV and ΓH as in step (5), now on

(v0
1,k, . . . ,v0

n,k) and (h0
1,k, . . . ,h0

n,k) respectively.

(e) If W 0
1,k follows a known distribution under the null hypothesis, compute F1(W

0
1,k) accordingly and

jump to step (g).
If not, approximate F1 as follows. For some large integer Nb, repeat the following steps for every
l ∈ {1, . . . , Nb}:

(i) Generate a random sample v
0∗
l,k = (v0∗

1,l,k, . . . , v0∗
d,l,k) from the null copula, an i.i.d. U [0, 1]d vector.

(ii) Compute h
0∗
l,k = (h0∗

1,l,k, . . . , h0∗
d,l,k) = R(v0∗

1,l,k, . . . , v0∗
d,l,k).

(iii) Compute W 0∗
1,l,k according to (3) using the same weight functions ΓV and ΓH as in step (5) but

now on (v0∗
1,l,k, . . . , v0∗

d,l,k) and (h0∗
1,l,k, . . . , h0∗

d,l,k) respectively.

(f) Compute F1(W
0
1 ) = 1

Nb+1

PNb

l=1 I{W 0∗
1,l,k > W 0

1,k}.

(g) Compute bT 0
1,k according to (4) and (5).

(10) An approximate p-value for approach A1 is then given by bp = 1
K+1

PK

k=1 I{bT 0
1,k > bT1}.

C.2 Approach A2 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute bC(z) according to (6).

(4) If there is an analytical expression for Cθ, compute the estimated statistic bT2 by plugging bC(z) and Cbθ
(z)

into (7). Jump to step (5).
If there is no analytical expression for Cθ then choose Nb ≥ n and carry out the following steps:

(i) Generate a random sample (x∗

1, . . . ,x
∗

Nb
) from the null hypothesis copula Cbθ

and compute the associ-
ated pseudo-samples (z∗

1, . . . , z
∗

Nb
) according to (2).

(ii) Approximate Cbθ
by C∗

bθ
(u) = 1

Nb+1

PNb

l=1 I{z∗

l ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (7) by bT2 =
Pn

j=1

n
bC(zj) − C∗

bθ
(zj)

o2

.

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Let bC0
k(u) = 1

n+1

Pn

j=1 I{z0
j,k ≤ u}, u ∈ [0, 1]d.

(d) If there is an analytical expression for Cθ, let bT 0
2,k =

Pn

j=1

n
bC0

k(z0
j,k) − Cbθ0

k
(z0

j,k)
o2

and jump to step

(6).
If there is no analytical expression for Cθ then choose Nb ≥ n and proceed as follows:
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(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cbθ0
k

and compute

the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (2).

(ii) Approximate Cbθ0
k

by C0∗
bθ0
k

(u) = 1
Nb+1

PNb

l=1 I{z0∗
l,k ≤ u}, u ∈ [0, 1]d,

(iii) Approximate the CvM statistic in (7) by bT ∗

2,k =
Pn

j=1

n
bC0

k(z0
j,k) − C0∗

bθ0
k

(z0
j,k)

o2

.

(6) An approximate p-value for approach A2 is then given by bp = 1
K+1

PK

k=1 I{bT 0
2,k > bT2}.

C.3 Approach A3 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute (v1, . . . ,vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula Cbθ
.

(3) Compute bC(v) according to (6).

(4) Compute bT3 according to (8).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x1,k, . . . ,x0
n,k) from the null hypothesis copula Cbθ

and compute the
associated pseudo-samples (z0

1,k, . . . , z0
n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k).

(d) Let bC0
k(u) = 1

n+1

Pn

j=1 I{v0
j,k ≤ u}, u ∈ [0, 1]d.

(e) Compute bT 0
3,k =

Pn

j=1

n
bC0

k(v0
j,k) − C⊥(v0

j,k)
o2

.

(6) An approximate p-value for approach A3 is then given by bp = 1
K+1

PK

k=1 I{bT 0
3,k > bT3}.

C.4 Approach A4 (Genest et al., 2008)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute bC(z) according to (6).

(4) If there is an analytical expression for S4,θ , compute the statistic bT4 according to (9) and (10). Jump to
step (5).
If there is no analytical expression for S4,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x∗

1, . . . ,x
∗

Nb
) from the null hypothesis copula Cbθ

and compute the associ-
ated pseudo-samples (z∗

1, . . . , z
∗

Nb
) according to (2).

(ii) Approximate S4,bθ
by bS∗

4 (w) = 1
Nb+1

PNb

l=1 I{ bC∗(z∗

l ) ≤ w}, where

bC∗(u) = 1
Nb+1

PNb

l=1 I{z∗

l ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (10) by

bT4 = n
Nb

PNb

l=1

n
bS4

“
bC∗(z∗

l )
”
− bS∗

4

“
bC∗(z∗

l )
”o

.

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Let bS0
4,k(w) = 1

n+1

Pn

j=1 I{ bC0
k(z0

j,k) ≤ w}, where bC0
k(u) = 1

n+1

Pn

j=1 I{z0
j,k ≤ u}.

(d) If there is an analytical expression for S4,θ , compute the statistic bT 0
4,k by using bS0

4,k and S4,bθ0
k

in (10).

Jump to step (6).
If there is no analytical expression for S4,θ then choose Nb ≥ n and proceed as follows:
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(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cbθ0
k

and compute

the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (2).

(ii) Approximate S4,bθ0
k

by bS0∗
4,k(w) = 1

Nb+1

PNb
l=1 I{ bC0∗

k (z0∗
l,k) ≤ w}, where

bC0∗
k (u) = 1

Nb+1

PNb

l=1 I{z0∗
l,k ≤ u}, u ∈ [0, 1]d.

(iii) Approximate the CvM statistic in (10) by

bT 0
4,k = n

Nb

PNb

l=1

n
bS0
4,k

“
bC0∗

k (z0∗
l,k)

”
− bS0∗

4,k

“
bC0∗

k (z0∗
l,k)

”o
.

(6) An approximate p-value for approach A4 is then given by bp = 1
K+1

PK

k=1 I{bT 0
4,k > bT4}.

C.5 Approach A5

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) If there is an analytical expression for S5,θ , compute the statistic bT5 according to (11) and (12). Jump to
step (4).
If there is no analytical expression for S5,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x∗

1, . . . ,x
∗

Nb
) from the null hypothesis copula Cbθ

and compute the associ-
ated pseudo-samples (z∗

1, . . . , z
∗

Nb
) according to (2).

(ii) Approximate S5,bθ
by bS∗

5 (w) = 1
Nb+1

PNb

l=1 I{C⊥(z∗

l ) ≤ w}.

(iii) Approximate the CvM statistic in (12) by

bT5 = n
Nb

PNb

l=1

n
bS5 (C⊥(z∗

l )) − bS∗

5 (C⊥(z∗

l ))
o
.

(4) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Let bS0
5,k(w) = 1

n+1

Pn

j=1 I{C⊥(z0
j,k) ≤ w}.

(d) If there is an analytical expression for S5,θ , compute the statistic bT 0
5,k by using bS0

5,k and S5,bθ0
k

in (12).

Jump to step (5).
If there is no analytical expression for S5,θ then choose Nb ≥ n and proceed as follows:

(i) Generate a random sample (x0∗
1,k, . . . ,x0∗

Nb,k) from the null hypothesis copula Cbθ0
k

and compute

the associated pseudo-samples (z0∗
1,k, . . . , z0∗

Nb,k) according to (2).

(ii) Approximate S5,bθ0
k

by bS0∗
5,k(w) = 1

Nb+1

PNb

l=1 I{C⊥(z0∗
l,k) ≤ w}.

(iii) Approximate the CvM statistic in (12) by

bT 0
5,k = n

Nb

PNb

l=1

n
bS0
5,k

`
C⊥(z0∗

l,k)
´
− bS0∗

5,k

`
C⊥(z0∗

l,k)
´o

.

(5) An approximate p-value for approach A5 is then given by bp = 1
K+1

PK

k=1 I{bT 0
5,k > bT5}.

C.6 Approach A6

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Estimate the parameters bθτ and bθW according to (13).

(4) Compute bT6 according to (14).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters bθ0
τ,k and bθ0

W,k according to (13).

(c) Compute bT 0
6,k according to (14) using bθ0

τ,k and bθ0
W,k.

(6) An approximate p-value for approach A6 is then given by bp = 1
K+1

PK

k=1 I{bT 0
6,k > bT6}.
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C.7 Approach A7 (Panchenko (2005) – corrected)

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Generate a random sample (x∗

1, . . . ,x
∗

n) from the null hypothesis copula Cbθ
and compute the associated

pseudo-samples (z∗

1, . . . , z
∗

n) according to (2).

(4) Compute bT7 according to (15) using (z1, . . . , zn) and (z∗

1, . . . , z
∗

n).

(5) For some large integer K, repeat the following steps for each k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Generate a random sample (x0∗
1,k, . . . , x0∗

n,k) from the null hypothesis copula Cbθ0
k

and compute the

associated pseudo-samples (z0∗
1,k, . . . , z0∗

n,k) according to (2).

(d) Compute bT 0
7,k according to (15) using (z0

1,k, . . . , z0
n,k) and (z0∗

1,k, . . . , z0∗
n,k).

(6) An approximate p-value for approach A7 is then given by bp = 1
K+1

PK

k=1 I{bT 0
7,k > bT7}.

C.8 Approach A8

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute (v1, . . . ,vn) = R(z1, . . . , zn) assuming the parametric null hypothesis copula Cbθ
.

(4) Generate a random sample (v∗

1 , . . . ,v∗

n) from the independence copula.

(5) Compute bT8 according to (16) using (v1, . . . ,vn) and (v∗

1, . . . ,v
∗

n).

(6) For some large integer K, repeat the following steps for each k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Compute (v0
1,k, . . . ,v0

n,k) = R(z0
1,k, . . . , z0

n,k) assuming the parametric null hypothesis copula Cbθ0
k
.

(d) Generate a random sample (v0∗
1,k, . . . ,v0∗

n,k) from the independence copula.

(e) Compute bT 0
8,k according to (16) using (v0

1,k, . . . ,v0
n,k) and (v0∗

1,k, . . . ,v0∗
n,k).

(7) An approximate p-value for approach A8 is then given by bp = 1
K+1

PK

k=1 I{bT 0
8,k > bT8}.

C.9 Approach A9

(1) Extract the pseudo-observations (z1, . . . , zn) by converting the sample data (x1, . . . ,xn) into normalized
ranks according to (2).

(2) Estimate the parameters θ with a consistent estimator bθ = bV(z1, . . . , zn).

(3) Compute bT (i)
1 , bT (ii)

1 , bT2- bT8 by carrying out the appropriate steps of test procedures C.1-C.8 using (z1, . . . , zn)

and bθ.
(4) Compute bT9 according to (17).

(5) For some large integer K, repeat the following steps for every k ∈ {1, . . . , K}:

(a) Generate a random sample (x0
1,k, . . . ,x0

n,k) from the null hypothesis copula Cbθ
and compute the

associated pseudo-samples (z0
1,k, . . . , z0

n,k) according to (2).

(b) Estimate the parameters θ0 with a consistent estimator bθ0
k = bV(z0

1,k, . . . , z0
n,k).

(c) Compute bT 0,(i)
1,k , bT 0,(ii)

1,k , bT 0
2,k- bT 0

8,k by carrying out the appropriate steps of test procedures C.1-C.8

using (z0
1,k, . . . , z0

n,k) and bθ0
k.

(d) Compute bT 0
9,k according to (17) using bT 0,(i)

1,k , bT 0,(ii)
1,k , bT 0

2,k- bT 0
8,k.

(6) An approximate p-value for approach A9 is then given by bp = 1
K+1

PK

k=1 I{bT 0
9,k > bT9}.
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