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Abstract

This study analyses automatically detected avalanche deposits in Sentinel-
1 SAR images by the SatSkred algorithm from the three winter seasons
2018/19, 2019/20 and 2020/21. SatSkred allows for near-real-time
automatic avalanche detection, but previous studies indicate great over-
detection due to misinterpreted signatures in the change detection images.
By inspecting scenarios in the dataset with high avalanche activity, we
aim to discern patterns for false positive detections and suggest concepts
for improvement, which the developers can use to increase the true
detection accuracy. We have inspected smaller areas in a total of 16
RGB-change detection images. By developing a Greenness Indicator,
we have quantified the band values in RGB-composites to explain the
relative change in backscatter. Further, this was used to analyse the
greenness in non-avalanche terrain, avalanche terrain, detection area, and
a 40 meters buffer zone in potentially true and false change detection
scenarios. The greenness in non-avalanche terrain correlated highly with
the avalanche terrain (corr = 0.85), while the greenness in the detection
area correlated highly with the buffer zone (corr = 0.74). We found no
dependence between the avalanche terrain and the detection area. Our
results indicate that a contrast of minimum 0.25 between the buffer zone
and detection area excluded 83% of the potentially false detections while
including 92% of the potentially true detections. Following, a contrast
of minimum 0.48 between the avalanche terrain and the detected area
excluded 78% of the potentially false detections and included 73% of the
potentially true detections. The thresholds were further tested in two case
studies with changing meteorological conditions. Our case studies revealed
high sensitivity to the threshold of 0.48 between the avalanche terrain
and the detected area, indicating a high potential for false positive errors.
Our findings indicate a potential for false detections to be filtered by the
proposed threshold value between the detections and the surrounding
buffer areas.
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CHAPTER 1

Introduction

1.1 Background

Snow avalanches (hereafter avalanches) have caused 104 fatalities in Norway
since the winter season of 2008/09 (Varsom, 2023). Increased interest in
backcountry use in the winter increases the vulnerability to avalanche hazards
in mountainous regions. Avalanche forecasting is one of the most important
mitigation measures against severe avalanche accidents (McClung, 2002). The
primary sources of a precise avalanche forecast are snowpack assessments put
in context with meteorological data. It is also necessary to combine triggering
factors with direct avalanche observations to avoid biases in forecasting
(McClung, 2002). Nevertheless, accurate avalanche observations consistent in
space and time are difficult to come by with traditional field-based methods,
especially in regional-wide monitoring.

The European satellites Sentinel-1 A and B have operated since 2014 and 2016,
respectively, orbiting near-polar ascending towards and descending from the
North Pole (Sentinel 1B out of order since 2022). The active radar sensor
onboard the satellites captures radar images all over the planet with a repeat
cycle of minimum 6 days. The recent development of an automatic processing
chain allows for the detection of avalanche debris in the SAR-images, resulting
in near-real-time automatic avalanche detection (Eckerstorfer et al., 2019). By
utilising a temporal change detection method, avalanche debris are detectable
due to the relative increase in backscatter, originating from the increased
backscatter coefficient of rougher, disturbed snow.

A consortium around the Norwegian Avalanche Warning Service (NAWS)
operates continuous monitoring of avalanche activity over large parts of Norway
using the SatSkred technology, with the intention to feed detected avalanches
into the national avalanche database with information on size, timing, and
location in the terrain. SatSkred has processed SAR images for avalanche-prone
regions in Norway from November 2018 to May 2021. During this period,
243.000 avalanches have been detected by the automatic avalanche detection
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1. Introduction

algorithm. The number of detected avalanches varies from ∼18.500 in the
season of 20/21 to ∼174.000 in the season of 19/20.

Variations in detected avalanche activity could be caused by varying snow
conditions, constraints in detectability (e.g., differences in frequency of mapping
in some areas), or other circumstances, such as other features on Earth’s
surface that resemble avalanches. It is known that various natural and artificial
processes can cause signatures in the SAR data to be misinterpreted as debris.
This can include ice-covered rivers and glacier melt, but also snow ploughing in
urban or rural areas. While most of these so-called false alarms can be handled
by the current system setup, some conditions leading to false detections still
need to be identified and handled. Eckerstorfer et al., (2019) presented an
average false alarm rate of 45.9% where the main source of falsely detected
debris was the transition from wet to dry snow conditions. This transition is
known to produce a relative increase in backscatter due to different dielectric
properties in wet and dry snow (Eckerstorfer and Malnes, 2015).

1.2 Motivation and aim

Avalanche activity is a good indicator of avalanche danger. SatSkred provides a
unique opportunity for near-real-time automatic avalanche detection and can be
used to evaluate the accuracy of avalanche forecasts. A better understanding
of when and where avalanches occur is gained by consistently monitoring
avalanche-prone areas. It is more time efficient, and the algorithm remotely
monitors all areas. This provides valuable information when mitigating loss of
life and damaged infrastructure. However, the algorithm needs improvement to
handle false detections. We aim that the detection accuracy will be improved
by discerning a pattern for false detections and suggesting concepts to prevent
these. The developers can then use our findings to improve the automatic
detection system.

1.3 Objectives, research questions and hypothesis

In the RGB-composites used for avalanche detection, a relative increase in
backscatter, in the case of an avalanche, is visible in green. The main reason
for over-detecting in Sentinel-1 SAR images is the transition from wet to dry
snow, leading to an overall increase in backscatter. Still, the phenomenon
is unrelated to increased avalanche activity as the snowpack stabilises. The
main objective of this study is to analyse if a greenness indicator can assist
in finding false positives. A greenness indicator is introduced to monitor the
relative change in backscatter by quantifying the band values in a RGB-change
detection image. The greenness indicator is anticipated to explain the specific
backscatter change in a pixel between the acquisition dates. We hypothesise
that RGB-composites containing detections would exhibit an increased mean
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1.3. Objectives, research questions and hypothesis

greenness from the non-avalanche terrain to the avalanche terrain due to this is
where avalanche debris is detected. Following, the mean greenness is expected
to increase further from the avalanche terrain to the detection area, given
a higher concentration of greenness. Furthermore, we anticipate a higher
greenness in the detection area relative to the surrounding areas of undisturbed
snow. Both RGB-composites with false and true detections are hypothesised to
contain elevated greenness values between the zones; otherwise, no detections
would have been identified.

We will conduct a zonal greenness analysis on scenarios in the dataset with
high avalanche activity. We aim to answer the following research questions:

• By our greenness indicator, can we distinguish between the zones, as our
hypothesis indicates?

• Can we separate between true and false detections based on mean
greenness in zones or the contrast between zones?

• And if so, can we use our results to declare the detections in an unseen
RGB-change detection image as true or false?
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CHAPTER 2

Theoretical background

2.1 Avalanche types

A snow avalanche (hereafter avalanche) is a rapid downhill movement of snow
debris, ice and rocks on a slope. Avalanches are classified according to their
failure type, liquid water content or size. The two main failure types of
avalanches are loose-snow and slab avalanches, seen in Figure 2.1 (McClung
and Schaerer, 2006).

Figure 2.1: Illustration of a) loose-snow avalanche and b) slab avalanche failure
mechanisms. a) Failure occurs in a single starting point, and results in a
triangular shape when entraining snow downhill the slope. b) Failure occurs in
a weak layer, resulting in the release of a cohesive slab. The crown indicates
the starting point. Modified graphic from McClung and Schaerer (2006).

A loose-snow avalanche occurs in a relatively cohesionless surface layer (Figure
2.1a). A single point or area of new, dry or wet snow breaks away from the
surrounding snow and starts sliding. The downhill movement forms a triangular
shape. Snow accumulates into the flow as the sides spread, constantly increasing
the mass. Loose-snow avalanches releases when the slope is steep enough to
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2. Theoretical background

overcome the cohesion and friction between the snow crystals (McClung and
Schaerer, 2006).

A slab avalanche occurs when a cohesive layer of snow releases due to a failure in
an underlying, weak layer (Figure 2.1b). The slab releases when the weak layer
is unable to support its weight, i.e., if the gravitational force working on the
slab is large enough to overcome the friction at the bed surface (Schweizer et al.,
2015). The result is a block of snow entirely cut out by propagating fractures
in the snow. Slab avalanches can be triggered by a person or an external force,
e.g., a snowmobile or skier, gradual loading from precipitation, or changed
snowpack properties due to surface warming (McClung and Schaerer, 2006).

2.1.1 Liquid water content

Avalanches are also classified by the presence or absence of liquid water content
(LWC) in the snow, i.e., a wet or dry avalanches. The LWC is defined as
the amount of water in the liquid phase within the snow, originating from
either melt or rain (Fierz et al., 2009). The snow is classified from dry to
soaked, depending on the range of LWC (Table 2.1). The presence of LWC
and a (large) part of the snowpack being isothermal are prerequisites for the
formation of wet-snow avalanches (Schweizer et al., 2015).

Table 2.1: Definition of snow based on liquid water content. The LWC range
refers to volume fraction (Fierz et al., 2009).

Term Wetness index LWC range [%]
Dry 1 0

Moist 2 0-3
Wet 3 3-8

Very wet 4 8-15
Soaked 5 >15

2.2 Avalanche path

An avalanche path indicates an area where avalanches occur (McClung and
Schaerer, 2006). The path can be divided into three parts; the starting zone,
the track and the runout zone shown in Figure 2.2.

The starting zone, or the release area, is where the initial failure in the snowpack
occurs, and the snow begins to move. The upper limit of a starting zone is
defined by the initiation point of a loose-snow avalanche or the crown of a
slab avalanche (Figure 2.1). The track is where the snow is transported and
accumulates mass as it moves downhill. This zone differs in majority depending
on the size of the avalanche. The track is a significant terrain feature for large
avalanches. For smaller avalanches, the track can be challenging to define. The

6



2.3. Formation of avalanches

Figure 2.2: Illustration of an avalanche path, indicating the starting zone,
track and runout zone. The figure is obtained from Schweizer et al., 2015.

avalanche speed accelerates to its maximum on the track before decelerating. In
the runout zone, the deceleration of the avalanche is rapid, debris is deposited,
and the avalanche stops (McClung and Schaerer, 2006).

2.3 Formation of avalanches

The formation of an avalanche is a complex interaction between three main
contributing factors: terrain, meteorological conditions and physical parameters
of the snowpack (Schweizer et al., 2015). The terrain is the only time-constant
factor. Areas with a slope >30◦ are considered possible release areas for
avalanches (Lied et al., 2003). Most slab avalanches occur in slopes between
35◦ to 45◦, while dry loose snow avalanches occur between 30◦ to 60◦. For
steeper slopes, avalanches are rare. Avalanches in slopes less steep than 30◦

happen less frequently and are often wet avalanches (McClung and Schaerer,
2006). Other topographic attributes such as forest cover, aspect, curvature and
roughness of terrain are other important factors in the formation of avalanches.

2.3.1 Meteorological conditions

The most important meteorological conditions contributing to avalanche
formation are precipitation, wind, air temperature and solar radiation
(Schweizer et al., 2015).
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2. Theoretical background

Precipitation

Precipitation, in the form of new snow, is closely related to avalanche danger
and is the strongest forecasting parameter. The probability of an avalanche
increases with an increased precipitation rate, whereas the amount of new snow
needed for an avalanche to occur differs depending on each situation. Snow
storms are often critical, as heavy extra loading in a short time can lead to
natural releases. Precipitation, in the form of rain, increases the probability of
avalanches. The rain saturates the snowpack, leading to a decrease in cohesion
and increased pore pressure and strain. Hence, rain can critically decrease
stability in a short time. This can lead to wet avalanches forming on less steep
slopes (Lied et al., 2003).

Wind

Wind contributes to the transport and deposition of snow. Wind transports
snow by rolling, saltation and suspension (Figure 2.3). The wind strength
needed for snow drift depends on surface hardness and temperature. Less wind
speed is needed for cold and soft surfaces. Snowdrift increases with the 3rd
power of the wind speed (Lied et al., 2003).

Figure 2.3: Illustration of wind-transported snow. Wind erodes the surface
depending on wind speed, resulting in the transportation of snow particles:
rolling (large snow particles), saltation (medium snow particles) and suspension
(small snow particles).
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2.4. Avalanche size classification

Temperature and solar radiation

Temperature is the most decisive contributor to avalanche formation, as snow
has low thermal conductivity. Changes in air temperature mainly affect the
snow surface. An increase in air temperature after a storm may lead to
snowpack instability by decreasing the stiffness of the slab while increasing
the shear stress between the slab and the weak layer. Inside the snowpack,
the rate of temperature change is important. A high-temperature gradient in
the snowpack leads to kinetic crystal growth and the formation of weak layers.
When the snowpack is exposed to warming leading to an increased snowpack
temperature, instability factors happen immediately. Factors stabilizing the
snowpack are delayed. This demonstrates how sensitive the avalanche formation
is to temperature changes. Solar radiation contributes to surface warming. This
will speed up the metamorphose of the snow crystals in favour of loose-snow
avalanches (Schweizer et al., 2003).

2.3.2 Snowpack stratigraphy

The seasonal snowpack consists of layered snow that forms due to new snow,
wind deposition and snow metamorphism within the snowpack. Each layer
can be characterised by its thickness, crystal form and hardness. Snowpack
stratigraphy is the key to the formation of dry slab avalanches. Additional
loading and temperature increases will not affect the stability if the snowpack
lacks existing weaknesses (Schweizer et al., 2003). Examination of the snowpack
is necessary to discover weaknesses. Figure 2.4 illustrates an example of a
snowpack stratigraphy assessment, called a snow profile. This way, properties
of the different layers are assigned, and weaknesses are discovered.

2.4 Avalanche size classification

The Norwegian Avalanche Warning Services (NAWS) use the same avalanche
size classification as the European avalanche warning services (EAWS).
Avalanche sizes are classified from 1 to 5. Table 2.2 provides each size with
descriptive characteristics.
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Table 2.2: Avalanche size classification used by the Norwegian Avalanche Warning Services. An avalanche size is mainly
classified by its damage potential.

Size Description Potential damage Runout Classification Path Length Volume
1 Small Unlikely to bury a person Stops within steep slopes 10-30 m < 100 m3

2 Medium May bury, injure or kill a
person. Typical skier-triggered
avalanche

May reach the end of the
relevant steep slope

50 - 200 m < 1000 m3

3 Large May bury and destroy cars,
damage trucks, destroy small
buildings and break a few trees.

May cross flat terrain (below
30◦) over a distance of less than
50 m

Several 100 m < 10,000 m3

4 Very large May bury and destroy trucks
and trains, may destroy fairly
large buildings and small areas
of forest

Crosses flat terrain (well below
30◦) over a distance of more
than 50 m. May reach valley
floor.

1-2 km < 100,000 m3

5 Extreme May devastate the landscape
and has catastrophic destruct-
ive potential

Reaches valley floor. Largest
known avalanche

> 2 km > 100,000 m3
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2.5. Avalanche Forecasting in Norway

2.5 Avalanche Forecasting in Norway

Avalanche forecasting is an important tool for mitigation of loss of life
and property. A regional avalanche forecast service based on international
standards was launched in January 2013 on Varsom.no. The service was
developed in collaboration between NVE, MET, The Norwegian Public Roads
Administration, Norwegian National Rail Administration and Norwegian
Geotechnical Insitute (NGI), and is today operated by the first three (Müller
et al., 2013).

Figure 2.4: Example of a snow profile registered with Varsom RegObs. A
weak layer is seen at 7.8 cm depth below a melt-freeze crust. An extended
column test resulted in an initiated fracture in the weak layer (ECTN11). The
temperature gradient is shown in a red line in y-direction. The right-sided
panel shows the information on the crystal form, size, and depth of the layer.
The field observation was done by M. Flaten on a field trip to Finse, Norway,
March 2022. Altitude 1230 m.a.s.l., exposition East.

An avalanche forecast is created in a three-step process. First, snowpack- and
weather data are collected to describe the present situation. Field observations
are made and reported to RegObs by trained observers who assess the snow
stability and the potential avalanche hazard. Then, weather forecasts are
included to predict the influence on the current situation. Lastly, the avalanche
danger is forecasted for 24 and 48 hours. The forecasts are issued daily on
Varsom.no during the winter season and are updated when necessary based
on changing conditions. The daily forecast contains the expected danger
level for the region of interest, typical avalanche problems and exposed terrain.
Avalanche danger is the potential for an avalanche to cause damage to something
of value (Statham et al., 2018). The avalanche danger level is given as a number
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2. Theoretical background

between 1 and 5, from low to very high. An avalanche problem describes which
structures of the snowpack and snow types are likely to release an avalanche
and is an important factor in avalanche forecasts. The problems put context to
the given danger level in a region, e.g., new snow, wind-drifted snow, persistent
weak layers, wet snow and gliding snow. Both the avalanche danger scale and
avalanche problems in Norwegian avalanche forecasting are based on European
standards.

2.6 Remote sensing

Remote sensing is the process of obtaining information about an object or
phenomenon from a distance. Various platforms, sensors, and resolutions
characterize remote sensing systems. Generally, the platforms are categorized
as ground-based, airborne or space-borne. Reflected and emitted radiation
are measured by a sensor attached to a platform (e.g., a satellite or aircraft).
This technology allows for monitoring and assessing changes in the Earth’s
surface without direct physical contact. The sensors can be passive or active.
A passive sensor only measures the radiation naturally emitted by a target,
e.g., an optical sensor. An active sensor emits and measures a target’s reflected
energy, e.g., LiDAR and Radar. An optical sensor depends on daylight and
specific meteorological conditions to operate sufficiently. A radar covers the
microwave region of the electromagnetic spectrum and operates on frequencies
ranging from 300 MHz - 300 GHz (wavelength of 1 mm - 1 m) (Figure 2.5).
This implies that radar signals can penetrate through clouds and thus operate
despite any meteorological conditions (Lillesand et al., 2015).

Figure 2.5: Figure of the electromagnetic spectrum with the range of frequencies
and wavelengths of electromagnetic radiation. Optical sensors and LiDAR use
the visible light and infrared ranges, while radars operate on the microwave
range. Figure is obtained from Eckerstorfer et al., (2016).

2.6.1 Synthetic Aperture Radar

SAR is short for Synthetic Aperture Radar and is an imaging radar attached to
a platform, i.e., a satellite. Signals are transmitted in sequences while the radar
antenna receives the backscattered signals. As the satellite moves, the received
signals construct a synthetic aperture longer than the physical antenna length.

12



2.7. Sentinel 1

This attribute allows SAR to be an imaging radar. The resulting radar image
represents a measure of the reflectivity of a scene. SAR systems operate on
different frequency ranges (bands) depending on the purpose. Penetration of
the surface can occur at a certain level, depending on wavelength and frequency.
The longer wavelength, the further it can penetrate, and the imaged media
(e.g., vegetation, dry soil, ice and snow) can be seen as a volume. Examples of
frequency bands and their applications are C-band; operating at 7.3-3.75 GHz
with wavelengths of 4-8 cm, e.g., used for agriculture, ocean or ice monitoring
and L-band; operating at 2-1 GHz and wavelengths of 15-30 cm, often used
for foliage penetration and subsurface imaging. For high-resolution imaging,
high frequencies are required (Moreira et al., 2013).

2.6.2 Geometric distortion in SAR images

Images of scenes with strong topography may be exposed to geometric distor-
tions: e.g., foreshortening, shadow and layover (Figure 2.6). Foreshortening is
due to the compression of backscatter in sensor-facing slopes. This happens
when the signal is transmitted and received simultaneously, thus noting the
same distance of the object. This results in narrow, bright bands being dis-
played in sensor-faced slopes. Layover occurs where mountains, high trees or
buildings are in the way of the signal. The returned signal from the slope is
received at the same as the return behind the slope, resulting in a "geometric
flip" of the slope in the SAR image. Shadow often appears in areas behind
mountains. This occurs when the angle behind the mountain is steeper than
the incident angle, and the sensor cannot image the back. Shadows are seen as
black features in the SAR image and contain no information (Weydahl et al.,
2011).

2.7 Sentinel 1

The Sentinel-1 mission was developed by the European Commission (EC) and
the European Space Agency (ESA) in the frame of The Global Monitoring for
Environment and Security (GMES), today known as the Copernicus program
(Torres et al., 2012). The goal was to offer free and openly accessible data for
environmental and security monitoring. Sentinel-1 provides SAR imaging for
different applications, including mapping of land surfaces, monitoring sea-ice,
surveillance of marine environments and monitoring land surface motion risks
(Attema et al., 2012). The mission consists of two satellites, Sentinel-1A and
Sentinel-1B, launched in 2014 and 2016, each with an operational lifespan of
seven years. Sentinel-1 operates in a near-polar, sun-synchronous circular orbit
at 693km height and 98.18 degrees inclination. Each satellite has a 12-day
repeat cycle at the Equator with 175 orbits per cycle (Eckerstorfer et al., 2018;
ESA, 2023b). The two satellites map the global landmasses in the same orbit
every 6 days. Sentinel-1 A and B carry a right-side-looking single C-band SAR
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2. Theoretical background

Figure 2.6: Illustration of geometric distortions in SAR images. The figure
shows how layover, shadow and foreshortening (compression) may appear based
on look angle and flying direction. The figure is obtained from Weydahl et al.,
(2011).

instrument operating with a centre frequency of 5.405 GHz and an incident
angle range of 20-46 degrees (ESA, 2023c). As of today, Sentinel-1A is the
only operational satellite. Sentinel-1B was considered lost in August 2022 after
a failure affecting the power supply to the C-SAR antenna. Sentinel-1C will
replace the operational span of 1B, and is planned to launch in the second
quarter of 2023 (ESA, 2023a).

2.8 Avalanche detection in SAR images

SAR imaging for avalanche detection has been widely studied over the past
decades. Space-borne SAR remote sensing was first introduced by Wiesmann
et al., (2001). The study showed that increased backscatter in ERS1/2 SAR
data resulting from rough, compacted avalanche debris could be used to detect
a single avalanche. A change detection algorithm was constructed to identify
the temporal change in backscatter between two SAR scenes; a reference image
and an activity image intersecting as a RGB-composite. Martinez-Vazquez
and Fortuny-Guasch (2006; 2008) were the first to show how ground-based
SAR imaging could identify signatures of avalanches in the coherence image
in two consecutive SAR images. An automated change detection scheme
was developed by combining thresholding and morphological filters to a large
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amount of differential coherence of consecutive SAR images. The possible
candidates of avalanches were classified based on statistics extracted from the
whole image and local characteristics.

Malnes et al., (2013) studied the performance of high-resolution Radarsat-
2 Ultrafine Mode images on avalanche detection. Their results proved the
possibility of visual identification of avalanche debris from single backscatter
images due to high backscatter contrasts between debris and surrounding
undisturbed snow. This was further studied in Eckerstorfer and Malnes
(2015), where the researchers manually identified and classified 467 features as
avalanche debris. Further, Landsat-8 optical remote sensing data and fieldwork
validated 37% of the features as avalanches.

Malnes et al., (2015) were the first to demonstrate the potential for detecting
avalanche debris in Sentinel-1A images. In their study they identified 489
avalanches by utilizing the relative backscatter change from a reference to an
activity image. This was further studied in Eckerstorfer et al., (2017; 2022;
2019).

2.8.1 Detectability of avalanche debris

Radar backscatter quantifies how much of the signal is returned and measured
by the sensor. The signal emitted from an active sensor will be reflected or
scattered depending on the surface roughness. Figure 2.7 illustrates a scenario
with three different surface roughnesses. For a smooth surface, the emitted
radar signal will be totally reflected. With increasing surface roughness,
the signal will be scattered. The rougher surface, the more signal will be
backscattered and measured at the sensor. The backscatter coefficient is a
measure of the returned signal. The signal can penetrate dry snow surfaces,
but not wet snow surfaces (Weydahl et al., 2011). This affects the backscatter
coefficient (Figure 2.8).

Figure 2.7: Illustration of how the backscattered signal increases with increasing
surface roughness. In a) a totally, smooth surface is seen, leading to a total
reflection of the signal, while b) and c) show increased surface roughness
resulting in scattering of the signal and increased backscatter registered at the
sensor. The figure is obtained from Weydahl et al., (2011).
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2. Theoretical background

Ulaby et al., (1986) provided a study of an electromagnetic model for
undisturbed snow. Their results showed how the physical parameters of the
snowpack, e.g., snow depth, snow density, crystal size, liquid water content and
surface roughness, affected the total backscatter coefficient. The backscatter
generated from the ground surface is the biggest contributor to dry snow.
Backscatter generated at the air-snow interface and from volume scatter inside
the snowpack also contributes to backscatter. The biggest contributor to
backscatter for wet snow is the air-snow interface due to no penetration in the
snowpack.

Figure 2.8: Qualitative model of the backscatter coefficient and its biggest
contributors of a) dry, undisturbed snow, b) dry debris, c) wet, undisturbed
snow, and d) wet debris, proposed by Eckerstorfer and Malnes (2015). The main
contributors are a) ground surface scattering, b) air-snow surface scattering,
c) air-snow surface scattering and d) increased air-surface scattering due to
rougher surfaces. The figure is obtained from Eckerstorfer and Malnes (2015).
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2.8. Avalanche detection in SAR images

A similar model for disturbed snow (debris) is not yet fully studied. Eckerstorfer
and Malnes (2015) proposed a qualitative interpretation of relative backscatter
signals in dry and wet avalanche debris. Their study showed significantly
different means between undisturbed and disturbed snow. The proposed model
(Figure 2.8) is founded on the model for undisturbed dry and wet snow from
Ulaby et al., (1986) and is based on the change in backscatter characteristics due
to changes in the snow surface from undisturbed to disturbed snow. The theory
for undisturbed snow is shown in Figure 2.8a and 2.8c. Figure 2.8b shows the
case for dry avalanche debris. From increased volume backscatter (increased
snow depth) and increased backscatter at the air–snow surface intersection
(increased roughness), it follows an increase of the total backscatter coefficient
(σT ). In the case of wet avalanche debris, the roughness of the avalanche debris
is likely to determine the total backscatter coefficient (σT ).

Snow temperature is also shown to affect the backscatter. The study from
Baumgartner et al., (1999) done on ground-based radars with C, X and Ku
bands shows that snow with low-temperature results in higher backscatter
compared to snow with high temperature. As stated by Vickers et al., (2016),
images with wet snow are predicted to decrease backscatter relative to an
image with dry snow.

2.8.2 Automatic avalanche detection algorithm

Eckerstorfer et al., (2017) presented a complete, two-year avalanche activity
record from a Norwegian avalanche forecasting region using Sentinel-1 SAR
images. The change detection method first introduced by Wiesmann et al.,
(2001) was used to combine two radar backscatter images of similar geometry
and track into one RGB-composite. The reference image was used as input in
the red and blue bands, while the activity image was used as input in the green
band. As a result, an increase in relative backscatter appears as green features,
while a decrease in relative backscatter appears as purple features. Avalanche
debris was manually identified based on localised backscatter increase in runout
zones. Manual identification of avalanche debris is time-consuming due to
the high amount of data, and the development of an automated method was
suggested.

Automation of the change detection method was further studied and developed
in Vickers et al., (2016; 2017) and Eckerstorfer et al., (2019). Vickers et al.,
(2016) presented an algorithm based on the change detection method to identify
potential avalanche debris. Further, the potential avalanches were classified as
avalanche or non-avalanche pixels using the K-means unsupervised clustering
method. The results showed a probability of detection (POD) over 60%,
depending on chosen threshold, compared to manual detections. The algorithm
was further developed in Vickers et al., (2017) to account for varying snow
conditions in the Sentinel-1 images leading to different backscatter thresholds
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2. Theoretical background

for avalanche debris classification. The results did not show a significant
improvement in POD but indicated a possibility for similar performance levels
in larger detection areas influenced by changing meteorological conditions.

Further development of the algorithm was seen in Eckerstorfer et al., (2019).
The K-clustering was replaced with a segmentation module combined with
filtering to improve the detection results and process larger volumes of data.
The results showed an average probability of detection of 64.7%., an average
false alarm rate of 45.9% and a true skill score (TSS = POD-FAR) of 0.213.
Today the algorithm outputs polygons, representing detected avalanches, with
information on size, release time and time accuracy approximately 10 minutes
after Sentinel-1 data is downloaded.

2.9 Limitations and sources of errors

The algorithm still needs improvement in order to work as an operational
monitoring system. A transition from wet to dry snow conditions between
the acquisition dates is known to be the biggest source for over-detecting
of avalanches (Eckerstorfer et al., 2019). Wet snow has a lower backscatter
coefficient compared to dry snow (Eckerstorfer and Malnes, 2015). As a result,
the RGB-composite is composed of coherent green areas that may be detected
as avalanche debris by the algorithm. In such a scenario, where air temperature
changes from above to below freezing point, avalanche activity is less likely
due to the assumed stabilizing of the snowpack. In Eckerstorfer et al., (2019),
this was handled by manual deletion, which is not ideal when we aim for
remote detection of avalanches. Another suggested source of falsely detected
avalanches is changes in agricultural areas, man-made infrastructure, glaciers,
debris flow channels and rock falls, as it is not possible to determine from
C-band SAR data if an area consists of dry snow or no snow (Eckerstorfer et
al., 2019).

The automatic change detection algorithm exhibits several points of limitation.
Sentinel-1 SAR images have a pixel resolution of 20x20 meters. To reduce
false alarms, a minimum of 10 pixels were used as a threshold for detections,
limiting the detection possibility for small avalanches (Eckerstorfer et al., 2019).
Further, avalanche detection is not possible in radar shadow and layover, which
limits the attainable detection area in mountainous regions. Another major
limitation is the availability of Sentinel-1 images. Due to the recent loss of
Sentinel-1B, the availability of SAR images was reduced.
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CHAPTER 3

Data and study area

3.1 Study area

We focused on data from the two forecasting regions Lyngen and Romsdal.
Region Lyngen is located in the county Troms and Finnmark and covers Lyngen
and parts of Tromsø municipality. The size of the region is 2157 km2, whereas
604 km2 consists of avalanche release zone (28% of the total area). Lyngen is
well known by backcountry skiers for its many, high mountain tops, ranging
from sea level up to 1841 m.a.s.l.

Figure 3.1: Map of the avalanche forecasting region Lyngen, located in Northern
Norway. The avalanche release zone is highlighted in red.
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3. Data and study area

Romsdal is located in Møre and Romsdal county. The size of Romsdal is 4462
km2, with an avalanche release zone of 751 km2 (16.8% of the total area).
Romsdal ranges from sea-level up to 2002 m.a.s.l.

Figure 3.2: Map of the avalanche forecast region Romsdal, located in Western
Norway. The avalanche release zone is highlighted in red.

3.2 Data access

The following subsections provide an overview of the data used in this thesis
and how the data can be accessed.

3.2.1 SatSkred data

A geodatabase with exported SatSkred detections was provided by NVE. The
geodatabase contained a shapefile with a total of 135999 spatially distributed
polygons, each representing a potential avalanche debris detection in Norway
from the winter seasons 2018/19, 2019/20 and 2020/21. Each polygon is
described by several attributes, e.g., avalanche forecast region, registration
time and size of the area. An overview of all attributes used for the description
is seen in the Appendix (Table A1). Only detections from our two study
regions, Lyngen and Romsdal, were considered in this thesis. An overview of
the data can be seen in Section 3.4.
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3.2.2 RGB composites

RGB-composites (also referred to as change detection images) covering Lyngen
and Romsdal were provided by NVE. Each change detection image has a
describing file name, including the reference and activity acquisition dates
and track. Two examples of RGB-composites are seen in Figure 3.3 and 3.4.
Original SAR images can be accessed through the Copernicus Open Access
Hub.

3.2.3 Digital elevation model

A digital elevation model (DEM) with 10x10m pixel resolution for Lyngen
and Romsdal was obtained by NVE. The DEM is a representation of the
topographic surface of the bare ground.

3.2.4 Masks and maps

Multiple masks have been used in our QGIS analysis for both visual and
practical consideration:

• Basemap Norway: used for navigation and visuals. Can be accessed
from kartkatalog.geonorge.no

• Susceptibility map: raster layer containing mapped release and runout
zones in Norway. Can be accessed from kartkatalog.geonorge.no (NVE)

• Water and glacier masks: Vector layers containing ocean
and lake (Vanndirektiv kystvann og innsjø) downloaded from ht-
tps://nedlasting.nve.no/gis/. Glacier mask obtained from NVE

• Slope mask: for visuals, obtained from NVE

• Shadow mask: for visuals, obtained from NVE

• Cardinal direction mask: for visuals, obtained from NVE

3.2.5 Meteorological data

Meteorological data were obtained from Varsom Xgeo. Varsom Xgeo is an
expert tool for preparedness, monitoring and warning of floods, landslides
and avalanches. Data from weather stations and models are compiled with
events and field observations. Xgeo allows for viewing and downloading gridded
weather data, both historical observations from weather stations, observation-
based interpolated data and modelled weather data. For the interpretation
of images as potential true or false detections, we chose to view weather data
based on location. For our case studies, datasets containing air temperature
(3 hours average), wind speed (3 hours average) and daily precipitation were
downloaded for three altitudes in respective areas (Table 3.1).
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3. Data and study area

Figure 3.3: Example of a RGB-composite from Lyngen. The image shows
contiguous green areas in the valleys, indicating increased backscatter. The
change detection image was composed of SAR-images from 18. January 2019
(T0) and 24. January 2019 (T1) from track 168.
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3.2. Data access

Figure 3.4: Example of a RGB-composite from Lyngen. The image is mostly
purple in the valleys, indicating a decrease in backscatter. Green features are
visible in multiple places, indicating potential avalanche debris (red arrows).
The change detection image was composed of SAR-images from 5. January
2019 (T0) and 11. January 2019 (T1/) from track 160.
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3. Data and study area

Table 3.1: Altitudes and coordinates for weather data obtained from Xgeo,
used in case studies. Coordinates with reference from UTM zone 33N.

Area Altitude (masl.) Coordinates (X,Y)
L1 32 667758,7703740
L1 671 665133,7707868
L1 1244 663504,7710344
R3 135 122451,6952555
R3 687 126324,6952840
R3 1685 126578,6946617

3.3 Software

3.3.1 Python

Python is a free, general-purpose programming language. In this study, Python
was used for the analysis of datasets and the creation of plots. Python version
3.10.10 was used. All codes and other data regarding the thesis are made
available on github.com/NVE/satskred/tree/master/greenness. The following
packages were used:

• NumPy for mathematical operations

• pandas for data analysis and manipulation tool

• matplotlib for creating plots and visualisation of data, mostly editing
the already plotted data by fixing the plots

• seaborn for creating plots and visualisation of the data

3.3.2 QGIS

QGIS (previously known as Quantum GIS) is a free, open-sourced geographical
information system. It allows for creating, editing, visualising and analysing
geospatial data for both vector- and raster data. QGIS was used for analysing
and interpreting of RGB-composites, zonal greenness analysis and creation of
maps. For this study QGIS version 3.24.2 was used.
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3.4. Description of dataset

3.4 Description of dataset

Figure 3.5: Distribution of detections per season, separated by region. The
season with the most detections was the season 2019/20.

The dataset of automatically detected avalanches (hereafter detections)
contained a total of 22475 detections from Lyngen and Romsdal. The detections
were distributed over the three winter seasons 2018/19, 2019/20 and 2020/21,
with a total of 12163 and 10312 detections in Lyngen and Romsdal, respectively
(Figure 3.5).

Figure 3.6: Distribution of acceptance quality in dataset, separated by region.
Most detections have acceptance quality B, while the fewest have acceptance
quality A.

.
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3. Data and study area

Figure 3.7: Distribution of temporal precision for detections in Lyngen and
Romsdal. 71% of the dataset has a temporal precision equally or below 12
hours.

.

Each detection was registered with a quality A, B or C by the automatic change
detection algorithm based on different criteria in a test filter. Quality C was
used for detections flagged with river, >= 30% glacier, >= 20% agriculture,
>= 20% urban areas or a temporal precision of 48 hours or more. Quality
B was used for detections with better conditions than quality C but without
overlapping with a known avalanche path. Quality A was used for detections
with better conditions than quality B, meaning some overlapping with a known
avalanche path in the detected area. Figure 3.6 shows that the most frequent
acceptance quality of the detected features was "Quality B". A potential
detection was removed if the detected area consisted of over 95% glacier or
agriculture.

The temporal precision describes the time from the avalanche release to the
registration date. Figure 3.7 shows that a precision of six hours was most
frequent in Romsdal, while 12 hours was the most frequent in Lyngen. The
distribution of the detection area is visualised in Figure 3.8. The distributions
of slope and elevation of detections are seen in Figure 3.9.
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3.4. Description of dataset

Figure 3.8: Distribution of detection area. Bin size = 5000 m2. The histogram
shows a left-skewed peak at 10000 m2. The mean detection area is 33647 m2.
The median detection area is 22095 m2.

The distributions of the number of detected avalanches in Lyngen and Romsdal
are seen in Figure 3.10 and 3.11, respectively. When a feature was detected
and accepted as avalanche debris, it was registered with two-time stamps; the
registration date and the avalanche date. The registration date refers to the
date and time of the activity image, T1. The algorithm estimates the avalanche
release date by taking input from other available S1-images of similar tracks
between T0 and T1, looking for changes in temporal backscatter. Suppose an

Figure 3.9: Left: Distribution of mean slope for detections in the dataset. Bin
size = 2. Right: Distribution of altitude for detections in dataset. Bin size =
50.
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3. Data and study area

Figure 3.10: Distribution of detections in Lyngen. Bin size = 10 detections. A
peak is seen in the first bar of both figures. Top: Distribution of detections
per estimated avalanche release date. Bottom: Distribution of numbers of
detections per acquisition date.

Figure 3.11: Distribution of detections in Romsdal. Bin size = 10 detections.
A peak is seen in the first bar of both figures. Top: Distribution of detections
per estimated avalanche release date. Bottom: Distribution of the number of
detections per acquisition date.
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image from a crossing track did not exhibit the change in backscatter as seen
between T0 and T1. In that case, its timestamp would be used as a reference
for the avalanche date, with a temporal precision depending on the time frame
between the avalanche date and T1. This way, the time of the avalanche is
excluded within the first time frame, between T0 and the avalanche date.

Table 3.2 provides statistics of the number of detections in Lyngen and Romsdal,
per change detection image. The dataset containing detections from Lyngen
originates from 279 RGB-composites. The maximum number of detections
in one image was 468, with a median of 12 and a mean of 43.59 detections.
Likewise, the dataset for detections in Romsdal originates from 247 RGB-
composites. The maximum number of detections in one image was 269, while
the median and mean is 19 and 41.75, respectively. For further analysis in this
thesis, we will inspect images with "many" detections. As seen in Chapter 4, we
have chosen to inspect change detection images containing the top 15% of all
detections. This threshold is 84.3 and 96 in Lyngen and Romsdal, respectively.

Table 3.2: Statistics of the number of detections per acquisition date in Lyngen
and Romsdal

Lyngen Romsdal
Count 279 247
Min 1 1

Mean 43.59 41.75
Standard deviation 74.54 55.29

Median 12 19
85% 84.3 96.0
Max 468 269
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CHAPTER 4

Method

4.1 Quantification of backscatter: Greenness Indicator

As explained in Section 2.8.2, a RGB-composite is composed of two radar
images with similar geometry and track; the reference image is input in the
red and blue bands, and the activity image is input in the green band. Pixels
exhibiting a relative increase in backscatter will appear as green, while pixels
exhibiting a relative decrease will appear as purple. If there is no change
in backscatter the pixel will appear grey. Each individual pixel has values
from the red, green and blue bands, each ranging from 0-255. Specific weather
conditions can also lead to an overall increase or decrease of backscatter relative
to the reference image, thus the whole image will be affected by green or purple
colours (Section 2.8.1).

We hypothesise that how "green" a specific area in a RGB-composite is can
predict of whether the detections are potentially true or false. We aimed
to develop a quantification and simplification of the raster band values in
the composed RGB images, a so-called Greenness Indicator. Inspired by
the normalised difference vegetation index, the following Greenness Indicator
method was put forward (Equation 4.1).

GI = bandG − bandB

bandG + bandB
(4.1)

The GI is calculated for each pixel in a RGB-composite using the raster
calculator in QGIS, transforming each pixel and its band value to a number
between -1 and +1. Zero equals no change in backscatter, -1 to maximum
negative greenness (decrease in backscatter) and +1 to maximum positive
greenness (increase in backscatter). Thus, the higher increase of relative
backscatter, the higher value of GI. With this approach, we can explain how
"green" a defined geographical area in a RGB-composite is, i.e., how much the
relative backscatter has changed.
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4.2 QGIS: Zonal greenness analysis

In the previous section, an approach combining backscatter values from the
reference and activity image was proposed. Our hypothesis states that we
should see an increase in greenness from both non-avalanche terrain to avalanche
terrain and from avalanche terrain to detection area. We conducted a zonal
greenness analysis in QGIS to explore this hypothesis among potential true
and potential false (positive) detections in a selection of RGB images with
"many" detections. This section describes the methodology in each step of the
zonal greenness analysis.

4.2.1 Selection of RGB-composites

To establish a threshold for "many" detections in a RGB-image, several
approaches have been considered. In our dataset, the detections originate from
in total 247 and 259 RGB change detection images in Romsdal and Lyngen,
respectively. In the following analysis, we have decided to consider and inspect
RGB-composites containing the top 15% of detections as many detections.
Based on this, the threshold for many detections are 96 and 84 (Table 3.2).
From Table 4.1 we see that the top 15% of the RGB-composites contain a
total of 5901 and 8040 detections in Romsdal and Lyngen, respectively, equal
a coverage of 57.2% and 66.1% of total detections in the SatSkred dataset.

Table 4.1: Table illustrating the coverage of total detections in the dataset by
inspecting the top 15% of images containing the most detections. The selected
threshold covers 57% and 66% of the total detections in Romsdal and Lyngen,
respectively.

Lyngen Romsdal
No. RGB-images 279 247
No det. total 12163 10312
No det. top 15% 8040 5901
% of dataset 66.10 57.22

Eight change detection images were selected and analysed from each region,
chosen from the upper and lower boundaries of images with many detections.
The in total of 16 RGB-composites are listed in the Appendix (Table A2.)

4.2.2 Areas

To account for local variations of detectability in RGB-composites covering
the regions, we decided to split up the regions into smaller areas. A total of 12
polygons, six in each region, were drawn randomly in areas with many visible
detections in QGIS. The resulting smaller areas can be seen in Figure 4.1.
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Each polygon represents a smaller area of a maximum of 20 x 20 km within
the respective region. The sizes of each area can be seen in Table 4.2. By
choosing to inspect smaller areas, we will get more data points originating from
the same change detection image, as well as having the ability to interpret
separate parts of a RGB-composite as a potentially true or false detection. For
an overview of the number of detections in each smaller area, see Appendix
(Table A3).

Table 4.2: The size of areas L1-L6 and R1-R6. The largest area is L1 in Lyngen,
while the smallest is R6 in Romsdal.

Area Size [km2]
L1 279.4
L2 186.2
L3 129.4
L4 230.4
L5 138.2
L6 99.3
R1 271.8
R2 168.9
R3 244.6
R4 217.7
R5 201.9
R6 48.4

4.2.3 Zones

Four zones were created in each area to prepare for zonal greenness analysis:

• Zone 1 = NONE: Non-avalanche terrain

• Zone 2 = AT: Avalanche terrain

• Zone 3 = DET: Automatic detected avalanche debris

• Zone 4 = B40: Buffer zone around the automatically detected avalanche
debris

NONE was created by subtracting the avalanche runout- and water/glacier
mask from the area polygon. The zone covers flat areas without overlying
release areas. AT was created by cropping the avalanche runout mask to
the smaller area polygons, resulting in one zone for each area with only the
avalanche terrain. NONE and AT will in this part of the analysis be considered
stationary zones, as they do not change depending on each individual RGB-
composite. DET was created by cropping the vector files containing the
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Figure 4.1: Map of the in total 12 selected areas in Lyngen and Romsdal. Top:
Lyngen, area L1 - L6. Bottom: Romsdal, area R1 - R6. Green features inside
each area represent the detections from the selected RGB-composites in the
zonal greenness analysis (Table A3).
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detection polygons. This was done on vector files with detection polygons
separated by registration date. The resulting DET-zones mark the areas for
detections in each RGB-composite.

B40 was decided to be a buffer zone with 40 meters width around the detection
polygons. We wanted the buffer zone to be statistically similar in size with DET
(Figure A1, Table A4). By choosing 40 meters width, we got a surrounding
buffer area of 2 pixels (relative to the RGB-composites). The buffer (including
DET) was created by the QGIS tool "Buffer", chosen to have a 40 meters width
and the rest of the default settings. Further, a subtraction of DET was done to
ensure B40 just as an outline of the detections. DET and B40 are also included
in AT. An example of zones from area L4 in Lyngen is shown in Figure 4.2.

Figure 4.2: Example from L5 illustrating the four zones. DET and B40 are
from the RGB-composite with activity reference 04/05/2019 16:07 (Table A2).

4.2.4 Interpretation of RGB change detection images

Smaller areas of the RGB-composites have been interpreted as a potentially
true or false detection. Firstly, the change detection image itself was analysed
for local differences. Similar trends were seen in most of the selected images.
Following, an interpretation was based on how each RGB-composite looked.
Some were clearly either true or false, others more unsure. Weather data
from Varsom Xgeo and observations from RegObs were used to confirm the
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interpretation from the RGB-image or help interpret the unsure ones. Results
from interpretation analysis for each specific area and image can be viewed
in the Appendix (Table A5, A6). The following two examples show the
interpretation of 11/12/2019 16:15 in area L1, Lyngen, and02/04/2019 17:11
in area R4, Romsdal.

Example 1: Potential false detection

Figure 4.3: Example of potentially false detections, North-East in L1. Red
outlines show bright, green features without clear contrast to the surrounding
area. Weather data from 671 masl. indicates below-freezing temperatures
at both acquisition dates, but transitioned from above to below freezing
temperatures on the day of the reference acquisition date. Some new snow fell
on the day and the day before the reference acquisition date.

The example shows a "green" image with no clear contrast between the detected
and surrounding area (Figure 4.3). The temperature transitioned from above
to below zero earlier on the day of the reference acquisition date, and we
believe that the snow surface may still be wet, at least for lower altitudes.
According to RegObs, no observations of avalanches and instability have been
seen between the acquisition dates. This detection scenario is interpreted as
false based on the RGB-composite and a possible transition from wet to dry
snow surface.

Example 2: Potential true detection

The second example shows a more purple change detection image (Figure
4.4). Here the detections are more visible as green features with high contrast
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Figure 4.4: Example of potentially true detections, North-West in R4. The red
outlines show bright and green detections in high contrast to the surrounding
areas. The temperature was above zero on both acquisition dates. A period of
warmer temperatures together with a heavy new snow event is seen in the first
days after the reference acquisition date.

to surrounding purple pixels. Large amounts of new snow after a day with
warm weather and snow melt are known to contribute to avalanche activity.
Furthermore, RegObs reported of unstable snow due to persistent weak layers
and observations of avalanches, which confirms the overall picture. Based on
how the change detection image looks in the areas of investigation, weather
data and snow observations, these detections are classified as potentially true.

4.2.5 Zonal statistics

The plugin Zonal Statistics in QGIS can be used to analyse the statistical
results of a thematic classification. This allows for calculating several statistical
values of the pixels of a raster layer within a polygonal vector layer. Chosen
statistics were count (number of pixels containing a value) and sum (pixel
greenness sum inside a polygon). Outputs of the zonal statistics were saved as
.csv files with specific names for area, zone and image, for further formatting.

4.3 Formatting of results

Vector layers contain multiple features (e.g., multiple detection polygons or
buffer zones). The zonal statistics were calculated individually for each feature.
An algorithm was used to add the total count and sum, and further calculate
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the mean zonal greenness for each .csv file. Each resulting mean zonal greenness
was stored in a DataFrame (hereafter referred to as the dataset). Each row in
the dataset represents the results from an area within a RGB-composite. In the
columns, the interpretation of the data point as true or false, mean greenness
values in the four zones (NONE, AT, DET and B40) and the mean greenness
contrasts (AT-NONE, DET-AT, DET-B40 and B40-AT) were stored.

4.3.1 High-influential data points

With six smaller areas and a total of 8 RGB-composites in each region, the
initial number of rows in the dataset was 96. A total of six areas consisted
of zero detections in DET, and the rows were further removed. During the
analysis, we experienced complications with data points exhibiting low pixel
count in DET, indicating few detections. Figure 4.5a illustrates how greenness
and pixel count varies a lot within the same image, region and area. The
figures indicates that when comparing mean greenness in zones, data points
originating from just a few detections can be problematic and skew the results.

Our dataset contains several points which originate from just a few detections,
mainly in R2, R5 and R6 (Table A3). Figure 4.5b shows the distribution of
pixel count in DET from our analysis dataset. The figure shows a left-skewed
distribution with high variation of data points based on pixel count. To avoid
this problem, we have excluded data points with pixel count below the lower
quartile (< 25%). The cutoff threshold is at 751.5 pixels (Table A7), which
equals a detection area of 0.3006 km2 at a 20 x 20 meters pixel resolution.
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(a) (b)

Figure 4.5: a) Example of how greenness and pixel count may vary within the
same RGB-composite. Activity acquisition date 09/12/2019 05:11, Lyngen.
The estimated avalanche release date was 06/12/2019 05:11. b) Boxplot with
the distribution of DET pixel count in the mean zonal greenness dataset.
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CHAPTER 5

Results

5.1 High-influential data points

As explained in the previous chapter, data points with a detection area
consisting of less than 751.5 pixels have been removed to avoid biases in
the analysis. This way, we ensure that all data points in the analysis consist
of a minimum detected area, in favour of comparing means. Figure 5.1 shows
how the excluded and included data points are distributed among potentially
true and false data points in the four zones. An example of which data points
are removed for mean greenness in AT and DET is seen in Figure 5.2.

5.2 Zonal greenness analysis

After the cutoff, the analysis consists of N=67 data points, where 26 are
potentially true and 41 are potentially false (Table 5, 6). Each data point
represents the mean greenness of a particular zone in a specific area. The mean
greenness indicates the relative change in backscatter from a RGB-composite,
where 1 indicates the maximum increase and -1 indicates the maximum decrease
in relative backscatter change. Described statistics from the zonal greenness
analysis are displayed in Table 5.1. The count depends on the number of pixels
containing a data value in the greenness raster. The sum is the total of data
values from the greenness raster. The mean greenness value is then calculated
as the sum divided by the count (Section 4.3). In the following sections, an
analysis of the 67 data points are seen.

5.2.1 Mean greenness in zones

Figure 5.3 shows the KDE distribution of mean greenness among the four
zones. The result shows an increase in mean greenness from NONE to AT and
from AT and B40 to DET. DET and B40 have wider distributions resulting in
smaller peaks.
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5. Results

Figure 5.1: Distribution of excluded and included potentially true and false
data points. The <25% data points are removed in the following analysis.

Figure 5.2: Illustration of included and removed data points in a plot for mean
greenness in AT and mean greenness in DET.
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5.2. Zonal greenness analysis

Table 5.1: Statistics from the zonal greenness analysis, N=67. The table
includes statistics on the count, the sum and the mean greenness in the four
distinct zones. A similar table with statistics when including high influential
data points is seen in the Appendix (Table A7).

NONE AT
count sum GI count sum GI

no. obs 67 67 67 67 67 67

mean 90416.12 813.41 0.0084 319879.39 9518.35 0.0314

std 56974.16 13716.59 0.1307 104806.10 28031.55 0.0837

min 35517.00 -60895.73 -0.4095 126017.00 -56919.70 -0.1557

25% 54755.00 -2694.50 -0.0352 250365.94 -2683.00 -0.0091

50% 81207.00 1248.98 0.0216 281995.86 13309.11 0.0471

75% 101904.00 4995.05 0.0591 400974.93 23617.45 0.0789

max 256975.00 41936.52 0.3339 543593.85 118900.23 0.2332

DET B40
count sum GI count sum GI

no. obs 67 67 67 67 67 67

mean 2378.03 1223.93 0.5108 2957.46 689.21 0.2491

std 1327.30 816.35 0.1484 1728.77 447.65 0.1161

min 783.00 298.44 0.2390 929.00 52.22 0.0405

25% 1455.50 695.65 0.4201 1760.00 353.20 0.1346

50% 2020.00 1013.45 0.5002 2311.00 612.45 0.2634

75% 2901.00 1461.53 0.6161 3666.00 902.32 0.3324

max 6429.00 4673.68 0.8601 8549.00 2311.40 0.4752
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Figure 5.3: KDE-plot visualising the distribution of mean greenness in the
four zones. An increase is seen from NONE to AT, B40 and DET. DET has a
small overlap with NONE and AT, compared with B40.

Figure 5.4: Distributions of the mean greenness in the four zones visualised in
boxplots, separated between potentially true and false detections. Medians are
shown with lines inside each box. The lower and upper quartiles are shown
as each box border. The upper and lower whisker displays the interquartile
range.
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The distribution of mean greenness in the zones with separation between
potential true and false detections is visualised in Figure 5.4. Potentially false
detections have a higher mean greenness in NONE and AT than potentially
true and lower mean greenness in DET and B40. Both NONE and AT are
affected by outliers, more noticeable for false detections. The lowest range is
seen in AT. The widest ranges are seen in DET and B40. A wider IQR is seen
for potentially true detections in DET and B40. The notch, describing the
95% confidence interval for the median, is significantly wider for potentially
true detections in all four zones.

Figure 5.5: Three-parted pair plot of mean greenness values in zones. Upper
diagonal shows scatterplots of data and belonging correlation. On the diagonal,
a KDE-plot shows the distribution between true and false. The lower diagonal
shows a linear regression model for subcategories true and false. The shadowed
area shows a 95% confidence interval for the LRM, created by bootstrapping.

The upper diagonal in Figure 5.5 shows a strong correlation between mean
greenness in NONE vs AT (0.85) and DET vs B40 (0.74). The lower diagonal
shows a similar trend for true and false detections for NONE vs AT. Similar
trends are also seen in DET vs B40. However, a more "layered" linear regression
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model is displayed. The mean greenness in DET has low correlation with
NONE and AT. The related linear regression model shows an inverse trend
for DET vs NONE; potentially false detections show a positive trend, whereas
the potentially true detections present a slightly negative trend. The linear
regression model for DET vs AT illustrates a severe layered trend between
potentially true and false detections. Moderate correlation is seen in B40 vs
AT and B40 vs NONE, both with positive trends.

Figure 5.6: 4-dim plot showing the relationship between zonal mean greenness.
The y-axis illustrates greenness in avalanche terrain. The x-axis shows greenness
in the detection area. Greenness in non-avalanche terrain is displayed as point
size. Greenness in the buffer area is shown as colour intensity. Plotted
separately for true (top) and false (bottom) data points.

The relationship between mean greenness in all four zones, plotted separately
for true and false data points, are seen in Figure 5.6. The colour intensity
tends to increase in the x-direction, while point size increases in the y-direction
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for both true and false data points. Thus, greenness in NONE increases
with increasing mean greenness in AT, and greenness in B40 increases with
increased greenness in DET. This is related to the correlation between the
above-mentioned zones, seen in Figure 5.5. True data points have a higher
DET greenness than false data points. Except for the seven data points with
low greenness in B40, true data points generally have a mean greenness in
the detection area above 0.53. False data points generally have lower mean
greenness than 0.6. False data points also have higher greenness in NONE and
AT than true data points.

5.2.2 Zonal contrasts

Figure 5.7: KDE-plot visualizing the distributions of the mean greenness
contrasts from non-avalanche terrain to avalanche terrain (AT - NONE),
avalanche terrain to the detected area (DET - AT), buffer area to detected
area (DET - B40), and avalanche terrain to buffer area (B40 - AT).

In the following section, mean greenness contrasts between the zones have
been analysed. Figure 5.7 illustrates the distributions of the mean greenness
contrasts between zones. The lowest greenness contrast is between NONE
and AT, with a peak slightly above zero. The distribution is also the most
narrow. Further, a left-skewed peak at ≈ 0.2 is seen for the mean greenness
contrast between B40 to DET, along with a broader distribution. The mean
greenness contrast between AT and B40 has a right-skewed peak at ≈ 0.26
and an even wider distribution. The widest distribution is seen in the mean
greenness contrast between AT and DET, with a peak ≈ 0.4.
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Figure 5.8: Distributions of the mean greenness contrasts visualised in boxplots,
separated between potentially true and false detections. Medians are shown
with lines inside each box, with a 95% C.I. illustrated by the notch. The lower
and upper quartiles are shown as each box border, resulting in the interquartile
range (IQR). The lower and upper whisker illustrates the minimum and
maximum. The figure illustrates the contrasts between zones.

Figure 5.8 shows separate distributions of zonal contrasts for potentially true
and false detections. The median mean greenness contrast is remarkably
higher for potentially true detections in all zonal contrasts except AT-NONE.
Both contrasts in DET-AT and DET-B40 show a good separation between
potentially true and false detections. A contrast of 0.48 or higher between the
detected area and the avalanche terrain excludes 78% of the potentially false
detections while including 73% of the true detections. Similarly, a contrast
of 0.25 between the buffer area and the detected area excludes 83% of the
potentially false detections and includes 92% of the true detections. 73% of
the potentially true data points had a contrast above 0.48 in DET-AT and
0.25 in DET-B40, while 76% of the potentially false data points had a contrast
of less than 0.48 in DET-AT and 0.25 in DET-B40.

The upper diagonal in Figure 5.9 shows that the contrast AT-NONE correlates
the lowest with the three other zonal contrasts. The related linear regression
models on the lower diagonal show layered, positive trends with increased
DET-AT and DET-B40. When plotted against B40-AT, the potentially false
detections have a strong negative trend. The highest correlations are seen in
DET-AT vs DET-B40 and DET-AT vs B40-AT, with equally strong, positive
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5.2. Zonal greenness analysis

Figure 5.9: Three-parted pair plot of mean greenness contrasts between zones.
Upper diagonal shows a scatterplot of data and belonging correlation. A
KDE plot shows the distribution between true and false on the diagonal. The
lower diagonal shows a linear regression model for subcategories true and false.
The shadowed area shows a 95% confidence interval for the LRM, created by
bootstrapping.

trends in the related linear regression models on the lower diagonal. B40-AT
vs DET-B40 has a weak correlation. DET-AT vs DET-B40 and B40-AT vs
DET-B40 show good separation between true and false datapoints on the
diagonal.

Figure 5.10 indicates a strong relationship between greenness in DET against
greenness contrasts in DET-AT, DET-B40 and B40-AT. DET vs DET-B40
and B40 vs DET-B40 show good separation between potentially true and false
data points on the diagonal, where B40 vs DET-B40 has the lowest correlation
in the figure.

Figure 5.11 demonstrates the relationship between the mean zonal greenness
contrasts. The point sizes, i.e., the contrast in NONE-AT, are distributed
randomly in the plot. The contrast in AT-DET tends to increase when the
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Figure 5.10: Scatterplot between each zonal greenness (y-axis) and the four
zonal contrasts (x-axis).

contrast also increases in AT-B40, and B40-DET. True data points generally
have a contrast higher than 0.25 in DET-B40. False data points generally have
a contrast lower than 0.27.
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Figure 5.11: 4-dimensional plot showing the relationship between zone contrasts
for true data points. The y-axis shows the contrast between the buffer zone
and the detection zone. The x-axis shows the contrast between avalanche
terrain and the buffer zone. The contrast between avalanche terrain and the
detected area is shown in colour intensity. The contrast between non-avalanche
terrain and avalanche terrain is shown in point size.
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5.3 Case study

The preceding section has presented findings indicating that it is possible to
distinguish between potentially true and false detections based on the contrast
between the buffer area and the detected area, as well as between the avalanche
terrain and the detected area (Figure 5.8).

A case study was performed on eight previously unseen RGB composites to
assess the influence of varying meteorological conditions between T0 and T1
on zonal greenness contrasts. The aim was to determine if the threshold values
from the zonal greenness analysis could be applied to differentiate between
potentially true and false detections in further images, based on the observed
contrasts.

Weather data were obtained for three different altitudes (lower, middle and
higher) in both areas, as explained in Section 3.2.5. Air temperatures were
analysed for reference and activity acquisition dates to interpret wet or dry
snow conditions. The influence of wind and precipitation was interpreted with
qualitative statements. Three change detection images were identified as wet
to dry transition (case A) and three others as no transition (case B). All cases
were selected from available RGB-composites that matched the qualification
criteria for many detections (Section 4.2.1). It should be noted that no cases
of dry-wet snow conditions were found. Table 5.2 provides an informative
overview of the cases and the meteorological influences.

Case A: Transition from wet (T0) to dry (T1) snow

Case A1 presents a scenario from area L1, with five detections (Figure 5.12,
Table 5.2). The air temperatures decreased from above to below zero for higher
altitudes. Stronger winds and precipitation influenced the activity acquisition
date. The RGB-composite comprises large, green areas where the relative
backscatter has increased. The detections are seen mainly in the SW direction,
with low contrast to the surrounding area.

Case A2 is located in R3, with 21 detections (Figure 5.13, Table 5.2). The
air temperatures decreased from above to below zero for lower altitudes.
Strong winds influenced both the reference and activity acquisition dates. The
reference acquisition date was influenced by precipitation. The RGB-composite
shows coherent green areas at specific altitudes, best-seen top left around the
mountain top. This may be due to the transition of wet to dry snow at the
same altitude. The detections are unusually shaped and placed. In lower areas,
some reduced backscatter is visible in purple.

Case A3 is located in R3, with 8 detections (Figure 5.14, Table 5.2). The
air temperature at the middle altitude transitioned from above to below zero.
No wind or precipitation of significance influenced the acquisition dates. The
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RGB-composite shows coherent areas of increased backscatter, especially in
the S and SE directions. Two of the detections were detected in a relatively
purple area.

Case B: Similar snow conditions in T0 and T1

Case B1 is located in area L1, where 35 detections occurred (Figure 5.15, Table
5.2). The air temperatures were below zero at all altitudes for both acquisition
dates. No wind of significance on the acquisition dates. The reference
acquisition date was influenced by precipitation. The RGB-composite is
relatively green, with little contrast between the detections and the surrounding
area.

Case B2 is located in area L1, with 49 detections (Figure 5.16, Table 5.2). The
air temperatures were below zero at all altitudes for both acquisition dates.
Strong winds and precipitation influenced the reference acquisition date. The
RGB-composite is highly affected by reduced backscatter in lower altitudes.
Some coherent areas with increased backscatter are seen in higher altitudes
and inside valleys. The detections are tongue-shaped and often most in high
contrast to the surrounding area with decreased backscatter.

Case B3 is located in R3, with 44 detections (Figure 5.17, Table 5.2). The air
temperature in the higher altitudes was below zero at both acquisition dates.
Both the reference and activity acquisition dates were under strong influence
of wind and precipitation. The RGB-composite shows mainly a reduction or
no change in backscatter.
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Table 5.2: Acquisition dates and meteorological conditions in reference and activity image in the case studies. The influence
of wind and precipitation is interpreted from the last 24 hours before acquisition dates. Wind is defined as moderate (<10
m/s) and strong (>10 m/s). Precipitation is defined as yes or no. Temperatures and the resulting transition are seen for each
altitude (higher, middle and lower).

Case Date Date Wind Wind Prec. Prec. Altitude T. (ref) T. (act) Trans.
(ref) (act) (ref) (act) (ref) (act) [masl.] [◦C] [◦C]

1244 5.7 -2.0 wet-dry
A1 19/05/19 05:09 31/05/19 05:11 moderate strong no yes 671 7.7 2.6 wet-wet

32 7.6 2.7 wet-wet
1685 -1.0 -9.6 dry-dry

A2 08/02/20 05:55 14/02/20 05:54 strong strong no yes 687 3.0 -7.7 wet-dry
135 3.3 -3.2 wet-dry
1685 -4.5 -11.2 dry-dry

A3 03/04/19 17:02 09/04/19 17:03 moderate moderate no no 687 2.4 -2.2 wet-dry
135 5.5 3.6 wet-wet
1244 -7.3 -10.2 dry-dry

B1 24/04/20 05:20 30/04/20 05:19 moderate moderate yes no 671 -8.3 -6.4 dry-dry
32 -3.2 -8.2 dry-dry

1244 -8.7 -12.5 dry-dry
B2 11/01/19 16:06 16/01/19 16:07 strong moderate yes no 671 -5.0 -9.6 dry-dry

32 -4.7 -9.2 dry-dry
1685 -4.0 -8.1 dry-dry

B3 09/05/20 05:46 15/05/20 05:46 strong strong yes yes 687 0.3 -1.3 dry-dry
135 2.3 -0.2 wet-wet
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5.3. Case study

Figure 5.12: Case A1, located in L1, Lyngen. The RGB-composite is composed
of two images with a 12-day return period. Detections are shown with red
outlines. Avalanche release time is marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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Figure 5.13: Case A2, located in R3, Romsdal. Detections are shown with red
outlines. Avalanche release times are marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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Figure 5.14: Case A3, located in R3, Romsdal. Detections are shown with red
outlines. Avalanche release times are marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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Figure 5.15: Case B1, located in L1, Lyngen. Detections are shown with red
outlines. Avalanche release times are marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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Figure 5.16: Case B2, located in L1, Lyngen. Detections are shown with red
outlines. Avalanche release time is marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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Figure 5.17: Case B3, located in R3, Romsdal. Detections are shown with red
outlines. Avalanche release times are marked with AR. The temperature, wind
and precipitation between the acquisition dates are plotted for three altitudes.
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5.3.1 Zonal greenness in cases

The mean zonal greenness values have been calculated for the cases in A and
B. The results from each zone and each contrast are shown in Table 5.3. To
compare with the separation thresholds of 0.48 (DET-AT) and 0.25 (DET-B40),
two plots have been created for our cases showing the DET-B40 and DET-AT
contrasts. In the next chapter, each case will be discussed to see if we can
determine a RGB-composite as a potentially true or false detection based on
the contrasts between DET and B40 or AT.

Table 5.3: Mean greenness values and greenness contrasts from our case studies

Case NONE AT DET B40
A1 0.2579 0.1772 0.8888 0.7895
A2 0.0035 -0.0262 0.2986 0.1034
A3 0.0986 0.1070 0.2952 0.0775
B1 0.0736 0.1042 0.6295 0.4070
B2 -0.1593 -0.0470 0.4182 0.1409
B3 -0.0752 -0.0335 0.7429 0.3498

AT-NONE DET-AT DET-B40 B40-AT
A1 -0.0807 0.7116 0.0992 0.6123
A2 -0.0297 0.3249 0.1952 0.1296
A3 0.0083 0.1882 0.2178 -0.0295
B1 0.0306 0.5253 0.2225 0.3028
B2 0.1123 0.4652 0.2773 0.1879
B3 0.0417 0.7765 0.3931 0.3834

Figure 5.18 shows how the contrasts (DET-AT and DET-B40) for case A
(wet to dry transition) interact with the threshold results from Section 5.2.2.
A1 shows high contrast between the detection zone and avalanche terrain
(0.71, Table 5.3), and low contrast between the detection zone and buffer zone
(0.10, Table 5.3). The case places itself high above the threshold for DET-
AT and below the threshold for DET-B40. The two contradictory contrasts
are due to high greenness values in all zones (relative to Figure 5.4). In A2
the contrasts between detections and avalanche terrain (0.32, Table 5.3) and
between detections and buffer zone (0.20, Table 5.3) are placed below the two
thresholds. The zonal greennesses are not significantly high, especially in DET,
resulting in a lack of potential for high contrasts. The same scenario is seen in
A3, with the contrast between detections and avalanche terrain (0.19, Table
5.3), and detections and avalanche terrain (0.22, Table 5.3), both below the
threshold. Generally, case A has low contrasts in DET-B40, which fits when
compared to the potentially false detections.

A similar figure is seen in Figure 5.19, for case B (no transition). B1 has a
contrast above the threshold value in DET-AT (0.53, Table 5.3) and below

61



5. Results

Figure 5.18: The figure illustrates how the mean zonal greenness contrasts from
case A are distributed based on the separation value of 0.48 in DET-AT and
0.25 in DET-B40. The separation values are marked with grey dashed lines.
The boxplot in Figure 5.8 is reused transparently, with plotted case contrasts
as green or red crosses depending on placement relative to the thresholds of
true or false. Case A1 has a contrast above 0.48 in DET-AT and below 0.25 in
DET-B40. Case A2 and A3 has contrasts below all threshold values.
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Figure 5.19: The figure illustrates how the mean zonal greenness contrasts from
case B are distributed based on the separation value of 0.48 in DET-AT and
0.25 in DET-B40. The separation values are marked with grey dashed lines.
The boxplot in Figure 5.8 is reused transparently, with plotted case contrasts
as green or red crosses depending on placement relative to the thresholds of
true or false. Case B1 has a contrast above 0.48 in DET-AT and below 0.25 in
DET-B40. Case B2 has a contrast below 0.48 in DET-AT and above 0.25 in
DET-B40. Case B3 has both contrasts above the threshold values.
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in DET-B40 (0.22, Table 5.3). As a result of high greenness in the buffer
zone (0.41, Table 5.3), the contrast between the detection area to the buffer
zone is low. In B2, the contrast between detections and avalanche terrain
(0.47, Table 5.3) is slightly below the threshold for DET-AT. The contrast
between detections and buffer zone (0.28, Table 5.3) is above the threshold
for DET-B40. In this case, a negative greenness is seen in both non-avalanche
and avalanche terrain, i.e., a reduction of backscatter. In B3, both contrasts
are well above the threshold, with contrasts of 0.78 and 0.39 in DET-AT and
DET-B40, respectively (Table 5.3). Here the greenness in the detection zone
is high (0.74, Table 5.3).
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CHAPTER 6

Discussion

In this thesis, we wanted to be able to filter out potentially true and false
detections of avalanche debris. By developing a greenness indicator, we were
able to quantify the relative backscatter change between a reference and an
activity image to a number between -1 and 1. Here 0 indicates no change in
backscatter, -1 indicates a maximum decrease in backscatter and 1 indicates a
maximum increase. This was used to explain how "green", i.e., how much the
backscatter increased, in four defined zones in a total of 12 smaller areas in
the avalanche forecasting regions Lyngen and Romsdal: non-avalanche terrain,
avalanche terrain, detection polygons and 40 meters buffer zone surrounding
each detection polygon. We interpreted the detections as potentially true or
false by analysing S1 SAR change detection images combined with weather data
and snow observations. This was done to explore if we could use estimates of
greenness to separate between potentially true and false detections to improve
the detection algorithm. Both mean zonal greenness values and mean zonal
greenness differences have been analysed and will, in the following sections, be
discussed.

If we expect no detections of avalanche deposits, we would expect similar
greenness trends in all four zones. Likewise, we would expect an increase
in greenness from non-avalanche terrain to avalanche terrain if we expect
the avalanche terrain to contain detections. Further, we would expect an
increase from the avalanche terrain to the detection zone, as this area is
(mostly) significantly smaller and more concentrated (of greenness) than the
avalanche terrain. A 40-meter buffer zone was created around each detection
polygon. This was done to investigate the possibility of lower contrasts between
the possible avalanche debris and the surrounding, untouched snow for false
detections.

We chose to inspect 16 change detection images among images with many
detections. All images with many detections, also potentially false detections,
have, in one way or another, an increased value of greenness in the detection
zone, or else there should not be any false detections in the first place.
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6.1 Results from zonal greenness analysis

The results in Figure 5.3 show, in favour of our hypothesis, that the greenness
increases in the four zones. As expected, a small increase in greenness is seen
from NONE to AT, as the AT also contains the detected avalanche debris.
Overall, the increase from NONE to AT is small compared to the increase
from NONE to DET. This can be explained by AT being many times larger
than the size of DET (Table 5.1). The results also show increased greenness
from AT to B40 and B40 to DET. An ideal situation would be no increase
from AT to B40, as the last mentioned represent a snippet of the AT. This
implicates data with elevated greenness in the buffer zone.

The median distribution of mean greenness for potentially false data points
in NONE and AT are slightly higher than the potentially true data points
(Figure 5.4). Especially AT shows an elevated greenness among potentially
false detections, whereas potentially true detections have similar medians in
NONE and AT. Theoretically, a transition from wet to dry snow conditions
increases relative backscatter (Eckerstorfer and Malnes, 2015; Vickers et al.,
2016). This is known as the biggest source of false detections (Eckerstorfer et
al., 2019). This can explain the elevated greenness in both NONE and AT for
potentially false detections. The potentially true data points have a higher
median distribution for DET and B40. Especially DET shows a good separation
between potentially true and false data points, where the lower quartile for
true overlaps with the median false (Figure 5.4). One surprising, noticeable
feature is how potentially true detections have a higher mean greenness in B40
than false.

Figure 5.5 shows how the zonal greennesses are related and how the trends
for separated potentially true and false data points are distributed. NONE vs
AT and DET vs B40 strongly correlate, indicating zone dependency. When
the mean greenness in NONE or DET increases, so does the mean greenness
in AT and B40, respectively. The strong, dependent relationship between the
zones is also seen in Figure 5.6, where increased mean greenness in NONE is
mostly related to increased values in AT and the same for DET and B40. A
non-existence relationship exists between AT and DET, and NONE and DET,
indicating independence of mean greenness in detections compared to NONE
and DET.

Similar figures were made for mean greenness differences to explore the contrasts
between the zones (Section 5.2.2). Figure 5.7 implies that the smallest contrast
is seen between non-avalanche terrain and avalanche terrain. The widest
distribution and highest contrast are seen from AT to DET. This can be
explained by the high values of mean greenness in DET compared to AT, as
seen in Figure 5.4. Figure 5.8 shows how the zonal differences are distributed
among potentially true and false detections. DET-AT and DET-B40 show great
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separation between the potentially true and false detections. The previous
high mean greenness in B40 for true detections is neglected due to the high
greenness in DET, resulting in a separation between true and false where the
lower quartile for true overlaps with the upper whisker for false. Furthermore,
the median greenness difference between AT and B40 is higher for false than
true.

The increase from NONE to AT has a weak correlation to the three other zonal
greenness differences (Figure 5.9). An explanation for this can be the layered
and different trends for true and false, seen in the linear regression models.
The two highest correlated differences can be seen for DET-AT vs DET-B40
and DET-AT vs B40-AT. An explanation for this dependence may be the high
correlation between DET and B40 (Figure 5.5).

Similarly, DET-B40 and B40-AT have a weak correlation but separate the
potentially true and false data points (Figure 5.9). This figure shows that an
increase in B40-AT mainly includes false data points. The potentially true
data points are first included when DET-B40 is above 0.2. The relationship
between B40-AT and DET-B40 is further explored in Figure 5.10. Here we
can see that B40 has a non-existing correlation to DET-B40. This shows
independence between variables and good separation between the potentially
true and false data points. The weak correlations between AT-NONE and
other zonal differences are again seen in Figure 5.11 where the point size is
randomly distributed compared to the colour intensity, indicating a strong
relationship between DET-AT and B40-AT and DET-B40.

The good separations between potentially true and false detections in DET-AT
and DET-B40 are one of the most important findings in this study (Figure 5.8).
This result indicates that a threshold could be introduced in the detection
algorithm to filter out potentially falsely detected avalanches. The thresholds
were drawn in the gap between the potentially true and false detection boxes. A
threshold of 0.48 between the detected area and the avalanche terrain excluded
78% of the potentially false detections in our dataset while including 73% of the
potentially true detections. Similarly, a threshold of 0.25 between the buffer
area and the detected area excluded 83% of the potentially false detections
while including 92% of the potentially true detections. It was found that 73% of
the potentially true data points had contrasts above 0.48 in DET-AT and 0.25
in DET-B40, while 76% of the potentially false data points had contrasts of less
than 0.48 in DET-AT and 0.25 in DET-B40. The threshold was further studied
and tested on six previously unseen RGB-change detection images. This will
be discussed in the next section in combination with changing meteorological
conditions between the acquisition dates.
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6.2 Evaluation of threshold values

A threshold of 0.48 and 0.25 managed to exclude 78% and 83% of the potentially
false detections in DET-AT and DET-B40, respectively. We wanted to test
the thresholds for the potential of accepting an unseen change detection image
as a potentially true detection. By defining two cases, case A and case B, we
were able to explore the thresholds on scenarios with changing meteorological
conditions. Case A consisted of three RGB-composites exhibiting a transition
from wet to dry snow surface between the two acquisition dates. Similarly, case
B consisted of three RGB-composites with similar snow conditions on both
acquisition dates. Our results show that if we only considered the threshold
between DET-AT as a criterion for a potentially true detection, A1, B1, and
B3 would be accepted as true detections. Likewise, if we only considered
the threshold between DET-B40 as a criterion for true declaration, B2 and
B3 would be accepted as true detections. If we considered both thresholds a
criterion, solely B3 would be declared a true detection (Figure 5.18, 5.19).

Interpretation of weather plots and each RGB-composite were conducted to
validate our results. All scenarios in case A showed more or less coherent,
green areas with the detected polygons in low contrast to the surrounding
terrain. A1 had extremely high greenness in all zones and was also our case
with the highest air temperature change between the acquisition dates (Figure
5.12, Table 5.3). A2 and A3 had similar greenness values in the detection
area (Figure 5.13, 5.14, Table 5.3). All the scenarios in A are suggested to
be false detections due to transitioning from wet to dry snow. B1 showed
similarities with A1 and is interpreted as false based on the greenness values
in the RGB-composite (Figure 5.15, Table 5.3). B2 exhibited two days with
heavy snowfall and strong wind, favourable for avalanche release (Figure 5.16).
The detections were also in clear contrast to the surrounding area, which was
also seen in case B3 (Figure 5.17, Table 5.3). Both B2 and B3 are interpreted
as true detections.

Case B2 and B3 are the only cases with contrasts above the threshold values
in DET-B40 and are interpreted as the only potentially true detections. The
high contrasts in DET-AT for A1 and B1 indicate sensibility to the chosen
threshold, especially for RGB-composites with elevated greenness values in all
zones. As these are interpreted as potentially false detections, cautiousness
must be provided if declaring an image based on only this threshold.

6.3 Influence of changing meteorological conditions on
greenness

Dry snow exhibits a higher backscatter coefficient than wet snow (Eckerstorfer
and Malnes, 2015). As a result, a RGB-composite composed of images where
the snow conditions have transitioned from wet to dry between the acquisition
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6.3. Influence of changing meteorological conditions on greenness

dates, are likely to exhibit elevated greenness values in all zones. This scenario
was best seen in the case of A3, with no influence of wind or precipitation,
and had high greenness values in all zones (Table 5.3). A similar scenario
with wet-to-dry transition and increased greenness in all zones was seen in the
case of A1, although with some precipitation the two days before the activity
acquisition date (Table 5.3). The results from A1 and A3 are consistent with
Eckerstorfer and Malnes (2015). However, case A2 showed decreased greenness
in AT and a modest increase in NONE (Table 5.3). One explanation for this
could be a reducing effect from the precipitation event two days before the
activity acquisition date. However, it is hard to establish if the precipitation
was rain or snow due to shifting air temperatures these days.

In the case of B1, we saw an increase of greenness in NONE and AT, similar
to A3, but the weather conditions are different (Figure 5.15). First, the air
temperatures were stable, below the freezing point. Nevertheless, an increase
in greenness was seen. This could be explained by the small precipitation
event the day before and on the day of reference acquisition; if in the form of
snow, this could have smoothed the surface, resulting in a relative increase
in backscatter at the activity acquisition date. B2 and B3 show backscatter
reductions in NONE and AT (Table 5.3). This phenomenon is related to the
dry-to-wet transition (Vickers et al., 2016). In these cases, we do not have
such a transition. From our observations in B2, a large amount of new snow
is seen at the reference acquisition date and the day after. Similarly, B3 has
small precipitation events throughout the period between acquisition dates.
Depending on when, relative to the time of acquisition, a large amount of new
snow in combination with strong winds can smooth the surface roughness. This
influence was also seen in Antonova et al., (2016), where a study on TerraSAR
X-band backscatter values decreased due to a snow event.

6.3.1 Differences in greenness due to acquisition conditions

Each RGB-composite comprises two SAR images with similar tracks and
geometries, with a 6- or 12 days revisit frequency. A change detection image
composed of two images with a 12-days interval may be subject to larger
changes in snow properties that affect the greenness values compared to a
6-days interval image. This could explain the highly elevated mean greenness
values in all zones in case A1 (Table 5.3). Compared to the other cases, case
A1 is the only case with a 12-days acquisition interval. Throughout the 12
days, the area was under the influence of several days of melting and nights of
freezing, which could result in a rough, crusty surface with the potential of
increased backscatter values in the activity image.

The temporal change detection method detects possible areas of avalanche
deposits where increased backscatter has occurred between the acquisition
dates. As explained earlier, each detection has an estimated avalanche release
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date based on other available Sentinel-1 images. Each RGB-composite can have
one or more estimated avalanche release dates. This enables an opportunity for
differences in greenness within an image. An avalanche occurring subsequent
to the reference acquisition date is expected to exhibit greater weathering
effects on its surface, compared to an avalanche occurring prior to the activity
acquisition date. Thus, greenness values could differ despite being in the same
RGB-composite, depending on when the avalanche occurred. The effect on
the greenness of detections with different avalanche release dates within the
same RGB-composite was not studied extensively. However, we can determine
that individual detections in a RGB-composite do contain diverse greenness
values despite having equally estimated avalanche release dates (Figure 4.5).

6.4 Evaluation of the greenness method

We chose to consider the top 15% of change detection images as many detections
in each respective region, related to a coverage of 66.1% and 57.2% of the total
detections in the dataset for Lyngen and Romsdal, respectively. This equals
a threshold considered as many as 84 detections or more in Lyngen, and 96
or more in Romsdal. For a reference, the maximum number of detections in
one RGB-composite is 468 in Lyngen and 269 in Romsdal. The in total 16
change detection images used in our analysis were selected randomly among
images with many detections. This led to that images with detections barely
above the limit, yielding few detections in the smaller areas used for the
analysis. When removing the lower quartile of high influential data points,
the affected data points were mostly from the smallest areas with the fewest
detections in the RGB-composites. Alternative methods for choosing images
with many detections could be considering only the top images with the most
detections or the outliers in the histograms in Figure 3.10 and 3.11. This would
potentially fix the problem with few detections in some areas. Nevertheless,
this is not guaranteed, e.g., due to placement of areas, avalanche terrain or
other spatio-temporal factors regarding when and where avalanches occur).
On another note, what is meant by many is a matter of definition. With a
median of respectively 12 and 19 detections per change detection image in
Lyngen and Romsdal, respectively, most of the data has fewer detections. Thus,
while a lower threshold may be feasible, it may not significantly contribute to
our analysis due to insufficient data, and a higher threshold may prove more
advantageous.

The interpretation of true and false images is subject to certain limitations.
This process is undertaken manually by an untrained student, albeit with
the aid of supervisors. On the other side, all available resources for verifying
the accuracy of these assessments have been utilized. The images have been
meticulously examined, utilizing weather data and RegObs. An additional
contentious issue pertains to determining the threshold for the number of
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6.4. Evaluation of the greenness method

true detections necessary to confirm the validity of a change detection image.
For instance, if an area contains 100 detections, of which 90 are deemed false
positives, valuable information may still be contained within the 10 genuine
detections.

The choice of creating smaller areas was deemed necessary to facilitate the
identification of potentially true and false detections, which can be arduous to
discern within extensive images, given the potential for local variations within
large areas. The placement of these smaller areas was randomly determined
within areas that exhibited numerous visual detections. Initially, we considered
utilizing two smaller areas in each region. However, we eventually expanded
this to six smaller areas to allow for the reusability of data from selected images.
In hindsight, if we had the opportunity to reconsider, we might have preferred
fewer areas in each region and instead opted to incorporate additional images
as this could provide more insightful results. However, such a choice would
be more time-consuming, and our selection of the number of RGB-composites
and areas has provided results.

We chose to delineate four distinct zones, namely non-avalanche terrain
(NONE), avalanche terrain (AT), detection area (DET), and a buffer zone of
40 meters (B40). Notably, we have not distinguished the detection areas within
the avalanche terrain. This approach has both advantages and disadvantages.
On the one hand, it enables us to observe a discernible increase from the non-
avalanche terrain to the avalanche terrain, as the avalanche terrain contains
the detections. Otherwise, NONE and AT are hypothesised to be more similar,
as neither zone contains detections. The size of AT is substantial enough
to exhibit a noticeable difference from the detection area. Alternatively, the
removal of the detections from the avalanche terrain mask could be useful to
explore differences in greenness values between the non-avalanche terrain and
the avalanche terrain, as the latter often is located in higher altitudes. As
seen in the case studies, a transition from wet to dry snow conditions is not
necessarily conditioned to all altitudes. This could provide valuable insight
into potentially increased backscatter values for higher altitudes. However, the
difference between NONE and AT is relatively minimal.

The decision to select a buffer zone of 40 meters is based on our aim to have an
area comparable to the detection zone in terms of size and statistical properties,
as well as divisible by 20 meters to match the pixel resolution of 20 x 20 meters.
Initially, we explored by using a buffer zone of 60 meters, and also a buffer
zone of 120 meters was considered. It may be worth exploring how our results
change by using a larger buffer zone, as this would encompass a greater area
of the terrain around the detection polygon.
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CHAPTER 7

Conclusion

SatSkred allows for the automatic detection of avalanche debris. By utilizing
the temporal backscatter change between two Sentinel-1 SAR images, avalanche
deposits are detectable due to the increased surface roughness leading to a
high relative backscatter. The transition from wet to dry snow conditions is
known to produce many false detections, resulting from a relative increase in
backscatter.

We have successfully developed a greenness indicator as a proxy for increased
backscatter values that quantifies the band values in a change detection image
(RGB-composite). The RGB-composite is composed of two S1 images with
similar geometry and track, originating from a 6- or 12-day cycle. The greenness
indicator provides each pixel in the RGB-composite with a value between -
1 (maximum decrease) and 1 (maximum increase), explaining the relative
backscatter change in each individual pixel. Following, a zonal greenness
analysis was conducted on scenarios in the dataset with high avalanche activity.
The greenness indicator was used to calculate the mean greenness in four zones:
non-avalanche terrain, avalanche terrain, detection area and a 40-meter buffer
zone surrounding each detection polygon. The mean greenness values were
further analysed to discern whether the greenness indicator could contribute
to filtering false detections from true detections.

The findings of our study demonstrate a correlation between the greenness
values in the non-avalanche terrain and the avalanche terrain, as well as between
the detection area and the buffer zone. Further, our results indicate that a
greenness contrast of minimum 0.25 between the buffer zone and detection
area, and 0.48 between the avalanche terrain and detection area, effectively
eliminate numerous false detections in our dataset. Moreover, a case study was
conducted on previously unanalysed RGB-composites to test our threshold
values. The snow conditions defined the cases between the two acquisition
dates as a wet-to-dry transition (case A) and no transition (case B). The
contrast values were analysed in context with meteorological data and the
interpretation of RGB-composites.
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7. Conclusion

The results from our case studies suggest that the greenness threshold of 0.48
between the detection area and avalanche terrain is more sensitive to accept
falsely detected avalanche deposits in RGB-composites influenced by a high
increase in relative backscatter. The greenness threshold of 0.25 between the
detection area and the buffer zone is believed to be more successful in classifying
the rightful detections as true or false. As evidenced by our zonal greenness
analysis and case studies, the threshold excluded 83% of the potentially false
detections and included 92% of the potentially true detections. Compared to
the contrast threshold between the buffer zone and detection area, 78% of false
detections were excluded, and 73% of true detections were included.

Our approach is somewhat successful in filtering potentially false detections
from potentially true detections, and is believed to be important in a further
development of the automatic change detection algorithm. Still, further testing
is considered necessary. One suggestion is to evaluate the threshold values
on a large set of previously analysed RGB-composites containing both true
and false detections. This could be done similarly to the method for quality-
flagging in the original detection algorithm. Additionally, even lower threshold
values could be considered, although this would most likely include more false
detections.
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Appendix

Informative tables

This section provides informative tables regarding the attributes used to
describe each detection by the SatSkred algorithm, chosen RGB-composites
for the greenness analysis and an overview of the number of detections in each
area and RGB-composite.
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Table 1: Overview of SatSkred attributes used to describe each auto-detected
avalanche debris. Description is translated to English.

Attribute Description
OBJECTID Unique number for each feature in dataset
skredTidspunkt Date and time for predicted avalanche release time
Dato Date for predicted avalanche release time
Tidsnøyaktighet Temporal precision in hours or days
registrertDato Date and time for registration of detection
registrertAv Registered by
Kvalitet Acceptance quality
objektType Type of object
X x-coordinate of detection
Y y-coordinate of detection
skredID Unique number for each detection
ansvarligInstitusjon Responsible institution
eksposisjonUtlopsomr Cardinal direction
snittHelningUtlopssomr Mean slope for detection
maksHelningUtlopsomr Maximum slope for detection
minHelningUtlopsomr Minimum slope for detection
Høyde Height
noyHoydeStoppSkred Height of debris
baneFlagg Flag for lane
veiFlagg Flag for road
elvenettFlagg Flag for river
bebyggelseProsent Percentage developed areas
jordbrukProsent Precentage agriculture
breProsent Precentage glacier
kjenteSkredlopProsent Percentage known avalanche paths
regions_id Four-digits region ID
Varslingsregion Name of forecast region
safeName Name of forecast region
SHAPE_Length Length of detection
SHAPE_Area Area of detection
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Table 2: Overview of the selected images for the Zonal Greenness Analysis. Image names include time stamp for activity
image (T1), reference image (T0) and track number. The total number of detections (tot_det) made in the NAWS region and
number of detections covered by the smaller areas (area_det) are shown as a coverage percentage.

Image name [T1, T0, track] Region tot_det area_det Coverage[%]
rgb_t1_20190409T161447_t0_20190403T161514_track_131_copol_VV Lyngen 266 134 50.36

rgb_t1_20190504T160704_t0_20190422T160703_track_058_copol_VV Lyngen 468 3 15 67.31

rgb_t1_20191209T051158_t0_20191203T051112_track_095_copol_VV Lyngen 318 221 69.5

rgb_t1_20191211T161522_t0_20191205T161437_track_131_copol_VV Lyngen 120 86 71.67

rgb_t1_20200104T161521_t0_20191229T161436_track_131_copol_VV Lyngen 247 157 63.56

rgb_t1_20200331T052030_t0_20200325T051921_track_168_copol_VV Lyngen 187 110 58.82

rgb_t1_20201109T051205_t0_20201103T051119_track_095_copol_VV Lyngen 132 106 80.30

rgb_t1_20210217T155915_t0_20210211T155819_track_160_copol_VV Lyngen 455 345 75.82

rgb_t1_20190402T171106_t0_20190327T171046_track_117_copol_VV Romsdal 196 93 47.45

rgb_t1_20190503T170313_t0_20190421T170312_track_044_copol_VV Romsdal 150 93 62.00

rgb_t1_20200110T054656_t0_20200104T054631_track_037_copol_VV Romsdal 96 66 68.75

rgb_t1_20200214T171052_t0_20200208T171109_track_117_copol_VV Romsdal 142 113 79.58

rgb_t1_20200403T170318_t0_20200328T170234_track_044_copol_VV Romsdal 129 69 53.49

rgb_t1_20200503T170236_t0_20200427T170319_track_044_copol_VV Romsdal 103 60 58.25

rgb_t1_20200514T171125_t0_20200508T171054_track_117_copol_VV Romsdal 269 128 47.58

rgb_t1_20200527T170237_t0_20200521T170320_track_044_copol_VV Romsdal 246 104 42.28
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Table 3: Distribution of detections per image and area. Header refers to T1 timestamp in Table A2. For full details of time
(HH:MM:SS) for acquisition date see Table A2. AM and PM are used as a reference to time to save space.

Area 091219AM 090419PM 040519PM 040120PM 091120AM 170221PM 310320AM 111219PM Tot
L1 80 49 81 50 41 90 24 16 431

L2 13 23 36 16 5 53 21 19 186

L3 60 21 45 33 9 40 21 8 237

L4 26 17 59 21 18 73 21 12 247

L5 23 16 45 22 11 57 17 21 212

L6 19 8 49 15 22 32 6 10 161

Total 221 134 315 157 106 345 110 86 1471

Area 020419PM 030519PM 140520PM 030420PM 100120AM 270520PM 140220PM 030520PM Tot
R1 23 28 23 21 6 17 24 0 142

R2 6 5 19 7 6 8 2 15 68

R3 21 16 31 10 28 18 18 14 156

R4 40 30 43 27 25 28 52 14 259

R5 0 12 6 0 1 25 3 15 62

R6 3 2 6 4 0 8 14 2 39

Total 93 93 128 69 66 104 113 60 726
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Buffer zone

We wanted our buffer zone to be of similar size and statistics as the zone
containing detections. Statistics of the area to buffer zones with widths of 20,
40, 60 and 120 meters were compared against the the area of detections of a
total of 2659 individual detections, originating from four RGB-composites in
each region (Figure 1, Table 4). The width of 40 meters was chosen based
on the most similar average, in combination with a higher maximum area. A
width of 20 meters would have been more similar to the median area, but we
would have missed larger areas.

Figure 1: Histogram showing distribution of different widths on buffer zones
compared to detections. B20 = 20 meters buffer, etc.

Table 4: Statistics of different widths on buffer zones. All values are in m2.

DET B20 B40 B60 B120

count 2659.00 2659.00 2659.00 2659.00 2659.00
mean 32481.61 20037.59 40144.38 61937.78 140072.38
std 29795.44 12524.60 22728.71 32211.73 59247.22
min 488.00 301.00 574.00 3035.00 24662.00
25% 11765.50 11262.75 24167.50 39229.00 97839.00
50% 21310.00 16291.50 33399.00 52660.00 123682.00
75% 42458.00 25089.25 49727.50 75667.50 166530.00
max 275985.00 105700.00 197634.00 284848.00 535668.00
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Dataset from zonal greenness analysis

This section provides an overview of the dataset resulting from the zonal
greenness analysis. The table containing potentially true data points is seen
in Table 5, while the table containing potentially false data points is seen in
Table 6. Statistics from the analysis dataset containing the high-influential
data points are seen in Table 7.

Table 5: Zonal greenness results from analysis over potentially true detections.
Data points considered as HIDP are not included.

T1 Area NONE AT DET B40
02.04.2019 17:11 R1 0.0455 0.0056 0.6995 0.1970
02.04.2019 17:11 R3 -0.1274 -0.0744 0.5874 0.0895
02.04.2019 17:11 R4 -0.2024 -0.1030 0.7058 0.1394
04.05.2019 16:07 L1 -0.0625 -0.0318 0.7696 0.3838
04.05.2019 16:07 L2 -0.0492 0.0427 0.6328 0.2932
04.05.2019 16:07 L3 0.0062 0.0242 0.6328 0.2932
04.05.2019 16:07 L4 0.0363 0.0968 0.6953 0.4131
04.05.2019 16:07 L5 -0.0812 0.0445 0.6617 0.3723
04.05.2019 16:07 L6 -0.1181 0.0316 0.6196 0.2933
09.12.2019 05:11 L1 0.0241 -0.0264 0.4336 0.0735
09.12.2019 05:11 L2 0.0532 -0.0175 0.3011 0.0404
09.12.2019 05:11 L3 0.0050 -0.0029 0.4297 0.1088
09.12.2019 05:11 L4 0.0045 0.0102 0.2779 0.0994
09.12.2019 05:11 L5 0.0116 0.0104 0.2736 0.0739
09.12.2019 05:11 L6 0.0007 -0.0073 0.3827 0.0994
10.01.2020 05:46 R3 0.0278 0.0123 0.4279 0.1298
10.01.2020 05:46 R4 0.0787 0.0836 0.6426 0.2634
03.04.2020 17:03 R1 0.0706 0.0893 0.7587 0.4751
03.04.2020 17:03 R3 0.0792 0.1000 0.7503 0.4752
03.04.2020 17:03 R4 0.1724 0.1518 0.7040 0.4391
14.05.2020 17:11 R1 -0.2810 -0.1557 0.7883 0.3654
14.05.2020 17:11 R2 0.1744 0.1232 0.7315 0.3197
14.05.2020 17:11 R3 0.0007 -0.0110 0.7135 0.3197
14.05.2020 17:11 R4 0.0053 0.0048 0.8601 0.4092
27.05.2020 17:02 R3 -0.2649 0.1127 0.6126 0.1913
27.05.2020 17:02 R4 -0.4095 -0.0896 0.5404 0.2404
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Table 6: Zonal greenness results from analysis over potentially false detections.
Data points considered as HIDP are not included.

T1 Area NONE AT DET B40
09.04.2019 16:14 L1 0.0150 0.0368 0.5754 0.3036
09.04.2019 16:14 L2 0.1708 0.0916 0.5506 0.4298
09.04.2019 16:14 L3 0.0505 0.0583 0.5757 0.3533
09.04.2019 16:14 L4 0.0533 0.0491 0.5096 0.3202
09.04.2019 16:14 L5 0.0269 0.0393 0.5385 0.3834
03.05.2019 17:03 R1 0.0036 0.0356 0.4171 0.2147
03.05.2019 17:03 R3 -0.2268 -0.1180 0.4500 0.1090
03.05.2019 17:03 R4 -0.3241 -0.1386 0.4241 0.0748
11.12.2019 16:15 L1 0.3339 0.2332 0.5833 0.3807
11.12.2019 16:15 L2 0.2598 0.2114 0.4704 0.3276
11.12.2019 16:15 L4 0.2238 0.1429 0.4704 0.3276
11.12.2019 16:15 L5 0.2635 0.1436 0.4377 0.2637
11.12.2019 16:15 L6 0.2378 0.2137 0.5476 0.3383
04.01.2020 16:15 L1 0.0770 0.0614 0.5027 0.2621
04.01.2020 16:15 L2 0.0216 0.0616 0.3576 0.2223
04.01.2020 16:15 L3 0.0086 0.0794 0.4024 0.2253
04.01.2020 16:15 L4 0.0648 0.0549 0.4514 0.2451
04.01.2020 16:15 L5 0.0794 0.0553 0.4957 0.3276
04.01.2020 16:15 L6 0.0190 0.0471 0.5140 0.2915
14.02.2020 17:10 R1 0.0941 0.0927 0.5258 0.3809
14.02.2020 17:10 R3 0.0093 -0.0115 0.3486 0.0712
14.02.2020 17:10 R4 0.0815 0.0880 0.4230 0.2183
31.03.2020 05:20 L1 0.0289 0.0594 0.4577 0.2651
31.03.2020 05:20 L2 0.0424 0.0846 0.5550 0.3373
31.03.2020 05:20 L3 -0.0615 0.0848 0.4736 0.3073
31.03.2020 05:20 L4 0.0891 0.0784 0.5002 0.2865
31.03.2020 05:20 L5 0.0353 0.0675 0.4509 0.3103
31.03.2020 05:20 L6 0.0502 0.0749 0.7029 0.3577
03.05.2020 17:02 R2 -0.1325 -0.1457 0.5252 0.3022
03.05.2020 17:02 R3 -0.0926 -0.0837 0.5491 0.1894
09.11.2020 05:12 L1 -0.0226 -0.1086 0.4251 0.1667
09.11.2020 05:12 L3 -0.0214 -0.0727 0.3592 0.1596
09.11.2020 05:12 L4 -0.0368 0.0009 0.3406 0.1543
09.11.2020 05:12 L5 -0.0335 0.0154 0.4350 0.2064
09.11.2020 05:12 L6 -0.0627 -0.0722 0.3788 0.1970
17.02.2021 15:51 L1 0.0156 0.0638 0.3673 0.1289
17.02.2021 15:51 L2 -0.1009 0.0721 0.3516 0.1292
17.02.2021 15:51 L3 0.0308 0.0548 0.2800 0.1272
17.02.2021 15:51 L4 0.0274 0.0632 0.2851 0.1040
17.02.2021 15:51 L5 0.0299 0.0737 0.2790 0.1215
17.02.2021 15:51 L6 0.0366 0.0677 0.2390 0.1141
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Table 7: Statistics from the zonal greenness analysis with N=90 observations.
The table includes statistics on the count, the sum and the mean greenness
in the four distinct zones. High influential data points (<25%) were removed,
equal to a cutoff threshold of 751.5 pixels in DET pixel count.

NONE AT
count sum GI count sum GI

no. obs 90 90 90 90 90 90

mean 97820.66 -966.60 -0.0015 277656.24 7097.80 0.0206

std 68448.55 20553.10 0.1609 123405.53 27281.00 0.1047

min 33115.00 -90247.41 -0.4181 72265.30 -56919.70 -0.2582

25% 41685.75 -3460.66 -0.0622 194709.78 -5432.24 -0.0257

50% 83137.00 1227.65 0.0175 260951.87 8689.72 0.0380

75% 111530.25 5340.63 0.0678 372066.45 22049.74 0.0791

max 256975.00 72966.63 0.5043 543593.85 118900.23 0.3265

DET B40
count sum GI count sum GI

no. obs 90 90 90 90 90 90

mean 1882.39 962.98 0.5026 2342.39 541.97 0.2285

std 1429.83 835.75 0.1521 1832.04 467.85 0.1846

min 33.00 30.49 0.1835 40.00 -158.32 -0.7196

25% 751.50 376.68 0.4029 1084.00 192.69 0.1293

50% 1641.00 781.41 0.4976 1973.00 479.42 0.2488

75% 2549.00 1339.94 0.5864 3160.00 795.56 0.3309

max 6429.00 4673.68 0.9237 8549.00 2311.40 0.7176
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