
Combining Variational Bayes and
GMJMCMC for Scalable Inference on
Bayesian Generalized Nonlinear
Models

Philip Sebastian Hauglie Sommerfelt
Master’s Thesis, Spring 2023

This master’s thesis is submitted under the master’s programme Data Science,
with programme option Data Science, at the Department of Mathematics,
University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

We change the approach for computing posterior distributions in Bayesian
Generalized Nonlinear Models. We replace MCMC with variational Bayes,
and approximate the posterior distribution with mean-field, or through
utilization of normalizing flows. Step by step, we go through the theory
behind BGNLM, variational inference and normalizing flows. We also show
the calculations needed to understand the new implementation, and provide
a Python framework for training and testing BGNLMs. Through a series of
applications we demonstrate that we are able to make accurate predictions,
and get easily obtainable measures for the uncertainty of the predictions.

i

Acknowledgements

I have received a lot of support and encouragement when writing this thesis.
Especially, I would like to thank Aliaksandr Hubin for immense support,
and for lending me his expert knowledge throughout the process. He has
provided invaluable insight, and assisted me through longer days towards
the end.

In addition, I would like to thank Terje Kvernes for providing me with the
computational resources needed. Every bit of code used in this thesis ran
smoothly on a powerful GPU managed by him.

Lastly, I offer my sincere thanks to family and friends for their encouragement
and patience. I would not have been able to write this thesis without them.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1

2 Background 3
2.1 Generalized Linear Models (GLM) 3
2.2 (Bayesian) Neural Networks 4
2.3 Bayesian Generalized Nonlinear Models (BGNLM) 6
2.4 Genetically Modified MJMCMC (GMJMCMC) 12
2.5 Variational Inference . 16
2.6 Normalizing Flows . 18
2.7 Autoregressive Flows . 23
2.8 Masked Autoencoders for Distribution Estimation (MADE) 26
2.9 Inverse Autoregressive Flows (IAF) 28
2.10 Optimization algorithms 30

3 Contribution and further specifications 33
3.1 The genetic algorithm . 33
3.2 The model in each generation 34
3.3 Considerations . 41

4 Applications and Results 44
4.1 Simulation Studies . 44
4.2 Real Data Applications 50

iii

Contents

5 Conclusion 58

Bibliography 65

iv

CHAPTER 1

Introduction

According to Breiman (2001), there are two broad approaches to data
analysis: the data modelling culture, which focuses on understanding the
data’s generating process, and the algorithmic modelling culture, which
emphasizes accurate predictions and utilizes techniques like neural networks
or random forests. However, as datasets become increasingly large and
complex, there is a growing need for models that not only make accurate
predictions but also provide clear and understandable explanations for
those predictions. One reason for this is the General Data Protection
Regulation (European Parliament 2016), which requires organizations to
explain decisions made by automated systems to individuals affected by
them.

To address this need, Hubin, Storvik and Frommlet (2021) introduced
a class of regression models called Bayesian Generalized Nonlinear Mod-
els (BGNLM), which provide flexible models with high interpretability.
BGNLMs are based on generalized linear models (Nelder and Wedderburn
1972), where the distribution of the observations is assumed to be from the
exponential family, and the mean parameter is a nonlinear function of the
covariates. In BGNLM, the specific modeling of this nonlinear dependency
incorporates ideas related to neural networks. While neural networks can
be difficult to interpret, BGNLMs are designed to retain good predictive
abilities while remaining relatively simple, interpretable, and transparent.

However, as with most Bayesian approaches, BGNLMs can be computa-
tionally expensive, restricting their usage to relatively small problems with
few observations and covariates. The fitting algorithm proposed by Hubin,
Storvik and Frommlet (2020) is a special case of Markov Chain Monte Carlo
(MCMC) called Genetically Modified Mode Jumping Markov Chain Monte
Carlo (GMJMCMC). To improve computation times for datasets with many

1

observations, Lachmann (2021) implemented a subsampling GMJMCMC.
Nevertheless, BGNLMs still struggle to scale well to datasets with many
covariates.

To address this challenge, in this thesis, we propose a new fitting algorithm
that combines ideas from variational inference and normalizing flows.

In Chapter 2, we provide a detailed description of BGNLMs, GMJMCMC,
variational inference, and normalizing flows. In Chapter 3, we present
the algorithm used for inference, and in Chapter 4, we apply our new
implementation to different datasets. In Chapter 5, we conclude and discuss
suggestions for further research.

Notation
Throughout the thesis, we will use bold letters or symbols, such as x or θ
to denote vectors or sets, while x and y are generally used for scalars. Bold
capital letters, such as W are used to denote matrices. We will use p(·) or
q(·) to denote arbitrary distribution functions. If we are concerned with the
parameters of these functions, we use subscript to denote the parameters,
e.g pθ(·), unless specified otherwise.

2

CHAPTER 2

Background

2.1 Generalized Linear Models (GLM)
In order to provide some context, it is appropriate to start with an
introduction to the Generalized Linear Model (Nelder and Wedderburn
1972, GLM). Despite its simplicity, it is a very powerful tool for data
analysis and is widely used in many fields. There are entire books written
on the GLM, but we will be very brief and provide a high-level overview of
some useful concepts.
The GLM extends the linear regression model to handle response variables
that have a non-normal distribution. It is a flexible model that can be used
for a wide range of data types, including binary, count, and continuous data.
A key component of the GLM is the exponential family. The exponential
family is a collection of probability distributions that can be written on the
form

f(y|ξ) = A(y) exp
[
η(ξ)B(y)− C(ξ)

]
,

where A is a function that depends only on y, ξ is a set of parameters, η is
a vector-valued function of ξ, B is a vector valued function of y, and C is a
function of ξ, typically referred to as the normalizing constant.
These distributions include the normal, binomial, Poisson, and exponential
distributions, among others. In a GLM, the response variable is assumed to
come from a distribution within this family.
Another important component of the GLM is the link function. The link
function maps the linear predictor to the mean of the response variable:

h(µ) = XβT ,

3

2.2. (Bayesian) Neural Networks

where X ∈ Rn×p is a matrix of covariates, and β ∈ Rp is a set of
coefficients. There are several commonly used link functions, depending on
the distribution of the response variable. These include the logistic, log, and
identity link functions. The GLM can then be written as

Y |µ, ϕ ∼ f(y|µ, ϕ), (1a)

h(µ) = β0 +
p∑
j=1

βjxj. (1b)

Where f(·|µ, ϕ) is the density or mass of a probability distribution from the
exponential family with mean µ and dispersion parameter ϕ, and h(µ) is
the link function relating the mean to the covariates.

Bayesian GLMs and variable selection
The GLM can also be put into a Bayesian setting. This involves using
Bayesian methods to estimate the model parameters β, and possibly the
dispersion parameter ϕ. In the context of variable selection, it is common to
introduce a binary γj ∈ {0, 1} to indicate whether or not the corresponding
βj is non-zero and should be included in the model. In such a setting, prior
distributions are placed on the model parameters β, γ and possibly ϕ, which
are then updated using the data.

Bayesian GLMs provide several advantages over frequentist GLMs. For
example, Bayesian GLMs allow for the incorporation of prior knowledge
or belief into the analysis. They also provide a full posterior distribution
for the parameters, which can be used for parameter estimation, model
comparison, and prediction.

2.2 (Bayesian) Neural Networks
Since we will need a description of neural networks later, it is appropriate
to give a brief introduction here.

A neural network is a type of machine learning model inspired by the
structure and function of the human brain. It consists of layers of
interconnected nodes, or neurons, that are trained on input data to make
predictions or classifications. The standard approach to training a neural
network involves defining an objective function depending on the target
variable, and using gradient-based optimization methods to iteratively adjust

4

2.2. (Bayesian) Neural Networks

the weights of the neurons in order to minimize the objective function.
This process is known as backpropagation (Linnainmaa 1970; Rumelhart,
Hinton and Williams 1986), and it allows the network to learn patterns and
relationships in the input data.

In the standard approach, one uses a fixed set of weights and biases in the
neural network. The output of each layer is determined by the input to
that layer multiplied by the weights, plus the bias term, passed through an
activation function. We can write an arbitrary layer in the network as

u
(l)
j = σ(l)

(
b

(l)
j +

n(l−1)∑
i=1

u
(l−1)
i w

(l)
ij

)
, j = 1, ..., n(l),

where n(l−1) is the dimension of the previous layer, u(l−1) is the output of
the previous layer, w(l)

j is the weights and b
(l)
j is the bias and σ(l) is the

activation function.

In the Bayesian approach to neural networks, the weights of the neurons
are treated as random variables with prior distributions. One then uses
Bayes’ theorem to compute the posterior distribution over the weights
and biases given the training data. The goal is to compute the posterior
distribution over the weights given the observed data, which can be used for
prediction and uncertainty quantification. This approach allows for more
robust and interpretable predictions, as well as the ability to incorporate prior
knowledge into the model. The output of each layer is now a distribution
over possible values, rather than a single deterministic value. We can write
this mathematically as

p(u(l)|u(l−1), ξ) =
∫

w

∫
b

p(u(l)|u(l−1), w(l), b(l))p(w(l), b(l)|ξ)dbdw.

Where p(u(l)|u(l−1), ξ) is the posterior distribution over the output of layer
l, given the input to that layer and a set of prior hyperparameters ξ,
p(u(l)|u(l−1), w(l), b(l)) is the likelihood of the output given the input and
the weights and biases, and p(w(l), b(l)|ξ) is the prior distribution over the
weights and biases.

In practice, Bayesian neural networks are computationally expensive and
difficult to implement, but they have shown promise in various applications.

5

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

2.3 Bayesian Generalized Nonlinear Models
(BGNLM)

We will now turn our attention to what is the main model in this thesis:
Bayesian Generalized Nonlinear Models. It was developed by Hubin, Storvik
and Frommlet (2021), with the purpose of providing flexible models with high
interpretability. This class is based on the GLM where the distribution of the
observations is assumed to come from the exponential family and the mean
parameter is a nonlinear function of the input variables. More specifically,
we model the relationship between between p explanatory variables and a
response variable based on n samples from a data set. For i = 1, ..., n, let
Yi denote the response data and let xi = (xi1, ..., xip) be the corresponding
vector of covariates.

The model framework is similar to the GLM, with the added freedom of
including a flexible class of nonlinear transformations to the covariates.
These nonlinear transformations Fj(x,αj) for j = 1, .., q are called features
and will be properly presented shortly. The BGNLM is defined through:

Y |µ, ϕ ∼ f(y|µ, ϕ), (2a)

h(µ) = β0 +
q∑
j=1

γjβjFj(x,αj). (2b)

Where f(·|µ, ϕ) is the density or mass of a probability distribution from the
exponential family with mean µ and dispersion parameter ϕ, and h(µ) is
a link function relating the mean to the features. The features enters the
model with coefficients βj ∈ R for j = 1, ..., q. The formulation presented
includes all possible q features but uses a binary variable γj ∈ {0, 1} to
indicate whether or not the corresponding features are to be included in the
model.

Features
To make sense of the model definition in Equation (2b), a specification of
the features Fj(x,αj) j = 1, .., q is required. In addition, we shall define the
process defining the full hierarchy of the features.

A feature is defined as a nonlinear transformation, transforming one or
more of the covariates through a function or a series of functions. The
model firstly needs to specify which functions G = g1, ..., gk to consider. In
principle, any function can be part of G as long as it has R as domain and

6

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

range within R. However, continuous and differentiable functions will make
the optimisation easier.

The feature generating process begins with the input variables x as features,
i.e. Fj(xi) = xij for j ∈ 1, ..., p. In a recursive setting, we denote the set
of features included in the model at a given level of recursion as A and
the number of features in it as |A|. Assume that at a certain point, a
set of features Fk(·,αk), k ∈ A is generated. Then, we define the following
transformations to generate new features for the next step:

Fj(x,αj) =


gj(αoutj,0 + ∑

k∈Aj
αoutj,k Fk(x, αink)) projection,

gj(Fk(x,αink)) modification,
Fk(x,αink)Fl(x,αinl) k, l ∈ A multiplication.

(3)

The first transformation called projection has similar definition to that used
in neural networks, but the activation function gj is now selected from G.
The linear combination is taken over a subset of features Fk(·,αk), k ∈ Aj

where Aj ⊆ A and |Aj| > 1. Note that we differ between the parameters that
defines the current projection, αoutj and the parameters that is contained in
the previously defined features nested inside the projection, αinj .

The modifications and multiplications are included to allow for more
parsimonious models. Note that αoutj = ∅ for both. Modifications allow
for nonlinear transformations of existing features, while multiplications
corresponds to interactions in the language of statistics. The latter is
allowed to select the same feature more than once. As noted in Hubin,
Storvik and Frommlet (2021), both of these transformations can be seen as
a special case of projections. Modifications are a projection where |Aj| = 1,
and multiplications can be seen as a special case of two projections with the
exp(x) and log(x) transformations. This allows limiting BGNLM to include
only modifications and multiplications.

Feature properties

The depth, dj, of a feature Fj is determined by the minimum number of
nonlinear transformations applied recursively to generate it. For example, if a
feature Fj is defined as Fj(x,αj) = h(u(v(x1)) + w(x2)), for some nonlinear
functions h, u, v, w, then its depth is 3. Conversely, if a multiplication
operation is applied, the depth is defined as one plus the sum of the depths
of the operands. For example, Fk(x,αk) = x2u(x1) has depth dk of 2, using
that the depth of a linear component is zero. Hubin, Storvik and Frommlet
(2021) shows that the number of features grows super-exponentially with

7

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

depth, and in practice limiting the depth to be small even for problems with
few covariates.

The local width, lwj , of a feature is the number of previously defined features
used to generate a new feature. The value of lwj depends on the type of
operation used: |Aj| for a projection, 1 for a modification, and 2 for a
multiplication. The operations count, ocj , of a feature is the total number of
algebraic operations used in its representation. For instance, Fj(x,αj) = x
has ocj = 0, while Fj(x,αj) = v(u(x)) has ocj = 2.

Three strategies for optimizing α parameters
In the context of the general projection transformation, the αj parameters
must be determined. Hubin, Storvik and Frommlet (2021) proposes three
strategies for optimization. These strategies aim to find αj values that result
in high explanatory power for Fj(x,αj), independent of the other features
involved in the model. The strategies are as follows:

Strategy 1, (optimize then transform, naive) is the simplest method
for determining αj.

h(µ) = αoutj,0 +
∑
k∈Aj

αoutj,k Fk(x,αink).

The αinj parameters are fixed from the nested features, and the maximum
likelihood estimates for αoutj are calculated by using Model (1) directly,
without considering the nonlinear transformation gj(·). This approach
has several benefits. The nonlinear transformation gj(·) is not involved in
the calculation of αoutj , allowing for easy application to multiple nonlinear
transformations simultaneously. Additionally, non-differentiable functions,
such as decision tree characteristic functions or the ReLU function, can be
used. Maximum likelihood estimation for generalized linear models creates
a convex optimization problem, and the resulting αoutj values are unique.
However, fixing αinj and neglecting the activation function gj(·) may result
in a feature-generating process that is not optimal in terms of prediction
accuracy.

Strategy 2, (transform then optimize, concave) In Strategy 1, the
weights αoutj are estimated based on αinj . Now, the optimization is performed
after the transformation gj(·) is applied. This means that the weights are
calculated as maximum likelihood estimates for the following model:

h(µ) = gj

(
αoutj,0 +

∑
k∈Aj

αoutj,k Fk(x,αink)
)

.

8

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

If h−1(gj(·)) is a concave function, this strategy creates a simple optimization,
with uniquely defined estimates. However, if gradient based optimizers
are desired, this restricts h−1(gj(·)) to be continuous and differentiable in
relevant regions which excludes certain non-linear functions from the model.
Otherwise, gradient-free optimization techniques must be utilized.

Strategy 3, (transform then optimize, deep) Similar to Strategy 2,
parameters are estimated as maximum likelihood estimates using Model
(2b). However, in this strategy, the outer αoutj and nested αinj are jointly
estimated. This means that the optimization is performed with respect
to parameters across all layers. All involved nonlinear functions must
be continuous and differentiable in relevant regions to enable the use of
gradient-based optimizers. One major disadvantage of this strategy is that
previous parameter specifications cannot be utilized; all parameters must
be recomputed. Additionally, even if all gj-functions are concave, there is
no assurance of finding a unique global optimum of the feature. If gradient-
free optimizers are used, the problem becomes extremely computationally
demanding. In addition, different local optima define features with the same
structural configuration.

Bayesian model specifications
The feature generating process described above gives rise to a extremely
large and flexible feature space that is prone to overfitting. In order to
avoid this, we will use a Bayesian approach with priors that favours a simple
structure. We assume that the α parameters are deterministic and specified
through one of the strategies presented above. A more general setting with
priors on αs is discussed in Hubin, Storvik and Frommlet (2021) but not
included here.

We will also mainly use the same priors as presented in the original paper.
They start by defining three hard constrains in order to avoid problems with
overfitting.

Constraint 1. The depth of any feature is less than or equal to D.

Constraint 2. The width of any feature is less than or equal to L.

Constraint 3. The number of features in a model is less than or equal to
Q.

The first constraint provides a finite feature space, while the second and
third constraints further limits the number of features and models.

9

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

In order to incorporate model (2b) into a Bayesian framework, it is necessary
to assign prior probabilities to all parameters. For ease of notation, the
symbol p(·) is used to represent a general prior, with its arguments specifying
the relevant parameters.

The unique structure of a particular model is determined by the vector
γ = (γ1, ..., γq). Our first step will be to establish the prior probabilities for
γ:

p(γ) ∝ I(|γ| ≤ Q)
q∏
j=1

p(γj).

Here, the number of features included in the model, |γ| = ∑q
j=1 γj , is limited

by the maximum allowed number of features per model, Q. The factors
p(γj) are used to assign lower prior probabilities to more complex features.
Specifically, we use

p(γj) = aγjc(Fj(·,αj)), (4)
with 0 < a < 1 and c(Fj(·,αj)) ≥ 0 being a non-decreasing measure of the
complexity of feature j.

This means that if two models differ in just one feature, with one of them
being larger, then the prior probability of the larger model will be less
than that of the smaller model. The larger the model, the more it will
be penalized. The parameter a and the complexity measure c(Fj(· ,αj))
hence play a crucial role in determining the quality of the model prior. For
example, if a is chosen as e−1 and c(Fj(· ,αj)) as log qdj

, where dj represents
the depth of Fj, then for γj = 1, the result would be

ac(Fj(· ,αj)) = 1
qdj

.

The contribution of a feature to the prior probability of a model will then
be inversely proportional to the total number of features having the same
depth. This means that more complex features with higher depths will
have smaller prior probabilities. This resembles the Bonferroni correction in
multiple testing (Bogdan, Ghosh and Tokdar 2008; Scott and Berger 2006).

However, computing the number of features qd in BGNLM involves nontrivial
recursions and can be challenging. To avoid this, we consider an alternative
approach based on the geometric distribution, as suggested by Fritsch and
Ickstadt (2009). This approach corresponds to penalizing on the number of
operations involved in each feature. That is, we use the operations count
ocj of a feature as a complexity measure for BGNLM, which is a ungenerous
property that grows smoothly with increased complexity.

10

2.3. Bayesian Generalized Nonlinear Models (BGNLM)

The choice of parameter a remains a question. We will borrow from Hubin,
Storvik and Frommlet (2021) and mainly use a = e−2 for prediction and
a = e−log n for model identification, inspired by modifications of AIC and
BIC, respectively.

In order to finish constructing the Bayesian model, the priors for the
components of β where γj = 1, and, if necessary, the prior for the dispersion
parameter ϕ, need to be specified. We will mainly rely on a Gaussian prior
for all βj which is conjugate for the Gaussian likelihood, resulting in a closed
form for the posterior in those cases. However, Hubin, Storvik and Frommlet
(2021) considers different approaches, including using Jeffrey’s prior and
mixtures of g-priors.

Bayesian inference
Posterior marginal probabilities for the model structures are given by

p(γ|y) = p(γ)p(y|γ)∑
γ′∈M p(γ ′)p(y|γ ′) ,

where p(y|γ) is the marginal likelihood of y for a specific γ in the space
of possible models M. The posterior inclusion probability for a feature
Fj(x,αj) is

p(γj = 1|y) =
∑

γ:γj=1
p(γ|y).

Since the posterior inclusion probability contains s sum over 2q possible
models, an integral of high dimension over the coefficients β and an integral
over the hyperparameters η it is not possible to compute exactly.

Hubin, Storvik and Frommlet (2021) circumvented these issues by splitting
the problem into two different problems. The main points at issue in their
approach is to calculate the marginal likelihoods p(y|γ) for a specific model,
and to search through the space of possible models γ ∈ M. For efficient
search through the space of models they suggest a special case of Markov
Chain Monte Carlo (MCMC) which will be presented shortly.

Based on the results of the computations, the posterior marginal probabilities
can then be estimated as

p̂(γ|y) = p(γ)p̂(y|γ)∑
γ′∈M∗ p(γ ′)p̂(y|γ ′)I(γ ∈M∗), (5)

11

2.4. Genetically Modified MJMCMC (GMJMCMC)

where the model space is restricted to a appropriate subset of the model
space,M∗ ⊂M. p̂(y|γ) is an estimate (or exact calculation) of the marginal
likelihood given model γ. The marginal likelihood can be written as

p(y|γ) =
∫
ηm

p(y|η,γ)p(η|γ)dη,

where η for a given model is the set of regression coefficients {βj, j : γj = 1}
for the features to be included, and possibly, the dispersion parameter ϕ.
If we assume that the αj’s are fixed and estimated according to one of
the strategies presented, the BGNLM (2b) becomes equal to the GLM (1b)
where exact calculations of the marginal likelihoods are available through
utilization of conjugate priors. If other priors are to be considered, the
marginal likelihoods can be substituted with numerical approximations such
as simple Laplace approximations (Tierney and Kadane 1986) or integrated
nested Laplace approximations (Rue, Martino and Chopin 2009).

2.4 Genetically Modified MJMCMC
(GMJMCMC)

We will in this section give a high level overview of the algorithmic approach
used by Hubin, Storvik and Frommlet (2021), and extended by Lachmann
(2021), to calculate the posterior (5). However, as this thesis is not necessarily
concerned with such methods, we will be very brief. More details are
presented in Hubin, Storvik and Frommlet (2021) and Lachmann (2021).
We start with a short introduction to MCMC.

MCMC and the Metropolis-Hastings Algorithm
It is a common problem in Bayesian statistics that the posterior distribution
is complicated and difficult to sample from. Different methods have been
suggested over the years, and some of the most used methods belongs to the
class of algorithms called Markov Chain Monte Carlo. A Markov chain is
defined as a sequence of random variables X1, X2, ... where the distribution
or mass of Xt only depends on the previous state Xt−1. It can be shown
that if such a process is recurrent, irreducible and aperiodic, there exists a
stationary distribution π(·) such that the probability of being in a given state
remains unchanged over time (Hastings 1970). The idea behind MCMC
is to construct a Markov chain with stationary distribution equal to the
posterior of interest and then obtain samples of this distribution through
recording the states of the chain.

12

2.4. Genetically Modified MJMCMC (GMJMCMC)

One of the most common MCMC algorithms is the Metropolis-Hastings
algorithm. It is a widely used MCMC algorithm that generates samples from
π(·) using a proposal distribution q(x∗|x). The algorithm accepts proposed
new samples x∗ based on the current sample x with a probability calculated
using the Metropolis-Hastings ratio:

rmh(x, x∗) = min
{

1,
π(x∗)q(x|x∗)
π(x)q(x∗|x)

}
.

If the proposed new sample x∗ is rejected, the algorithm then stays in state
x.
The practical implementation of the algorithm requires careful consideration
of various factors to optimize its performance, such as the design of an
appropriate proposal distribution. The proposal distribution should closely
resemble the target distribution while maintaining a high acceptance rate to
avoid the algorithm getting stuck and unable to escape the current location.

Mode Jumping MCMC (MJMCMC)

Figure 2.1: Illustration of a mode jumping proposals. Figure is
reprinted from Lachmann (2021)

Using standard MCMC algorithms to sample from complicated multi-modal
distributions can be difficult to do. This is because the proposal distribution

13

2.4. Genetically Modified MJMCMC (GMJMCMC)

needs to strike a balance between thoroughly exploring modes and being
able to transition to other modes. If the proposal distribution makes mostly
small steps, it will explore the current location thoroughly but may not
escape it, while a proposal that suggests large jumps may end up in points
of low probability with respect to the target distribution.

To address this problem, Tjelmeland and Hegstad (2001) introduced Mode
Jumping proposals. Starting from the current state x, they generate the new
proposal via a two intermediate states X∗

0 and X∗
k . In order to be able to

calculate the acceptance probability, two backwards intermediate states are
also visited to get the reverse path (see Figure 2.1). They recommend using
mode jumping proposals only a fraction of the time, with regular Metropolis-
Hastings kernels generating the remaining proposals. They demonstrate the
effectiveness of the algorithm in exploring complicated target distributions
with multiple modes through various examples.

While the original MJMCMC algorithm was designed for continuous
variables, Hubin, Storvik and Frommlet (2020) adapted it for use with
discrete binary variables, as is the context for the problem of variable
selection. In addition, MJMCMC requires all features defining the model
to be predifined, which is simply too computationally demanding for a
BGLNM.

GMJMCMC
Exploring the entire feature space of a BGNLM using MJMCMC is not
straightforward due to two main issues. Firstly, the model space of size 2q
increases exponentially with the number of features q. Secondly, q grows
super-exponentially with the depth of the features. As a result, it is typically
not feasible to predefine the features as it would require a large amount of
computing time and memory. To address these problems, Hubin, Storvik and
Frommlet (2021) used a modification of MJMCMC they called Genetically
Modified MJMCMC (GMJMCMC). This algorithm embeds MJMCMC into
a genetic programming framework.

To initialize the chain, they start by performing marginal testing on the
covariates, to obtain a subset, S0. This subset can be thought of as the
first population. Generation of subsequent populations are then done in an
iterative procedure, where features with low marginal probability in each
iteration are replaced to obtain the next generation (Algorithm 1). Each St
contains a different set of features and forms a different search space. This

14

2.4. Genetically Modified MJMCMC (GMJMCMC)

results in a dynamic evolution of the population, allowing for different parts
of the full model space to be explored without predefining features.

Algorithm 1 GMJMCMC
Require: S0

Run MJMCMC within the search space of S0 for Ninit iterations and
initialize S1
for t = 1, .., T − 1 do

Run MJMCMC within the search space of St for Nexpl iterations.
Generate a new population St+1.

end for
Run MJMCMC within the search space of ST for Nfinal iterations.

MCMC with data subsampling
MCMC algorithms such as Metropolis-Hastings are extremely useful for
sampling from complicated posterior distributions, but as the amount of
data is increasing, so does computational time. With the trend being ever
increasing data sets, both in terms of observations and variables, it seems
that such traditional methods are deemed to be replaced. Quiroz, Kohn
et al. 2019, who were the first to propose subsampling for MCMC, note that
this is unfortunate. Since although MCMC samplers might be slow, they
are guaranteed to converge towards the true posterior.

In an attempt to speed up MCMC algorithms, two main paths are being
explored. Distributed MCMC that works by running multiple chains
in parallel, with each chain using just a partitioning of the data, and
subsampling MCMC. The problem with the former approach is how to
combine the result of each chain to make inference on the complete data set.
Subsampling MCMC however, aims to estimate the likelihood for all the
data based on a only a subsample in each step in the chain. This approach
is similar to batch methods used in e.g Stochastic Gradient Decent (Robbins
1951).

In Hubin, Storvik and Frommlet (2021) they implement a distributed version
of GMJMCMC. While, in his Master’s thesis, Lachmann (2021) utilizes
subsampling techniques on GMJMCMC. We will in this thesis attempt to
suggest another way for computation of the posterior (5). The method is
popularly called variational inference, and some important topics regarding
our implementation will be discussed in the remainder of this chapter.

15

2.5. Variational Inference

2.5 Variational Inference
Variational Bayesian methods, or mean-field methods, was first applied to
neural networks (Hinton and Camp 1993; Peterson and Anderson 1987) and
later extended to a more general setting (Jordan et al. 1999). It has become
an increasingly popular technique in machine learning, particularly in deep
learning, due to its ability to scale to large datasets and high-dimensional
models.

In variational inference, the problem of computing a difficult posterior
distribution is transformed into an optimization problem that can be solved
using numerical methods. The main idea is to approximate the true posterior
distribution with a simpler distribution that belongs to a family of known
parametric distributions. This simpler distribution is popularly called the
variational distribution, and the parameters of this distribution are optimized
to minimize the distance between the true posterior distribution and the
variational distribution.

The optimization problem is formulated as a minimization of some
discrepancy measure between the true posterior and the variational
distribution. The most common choice, and the one we use, is the Kullback-
Leibler (KL) divergence (Csiszar 1975). However, other measures such as
f-divergence (Rényi 1961) and integral probability measures (Sriperumbudur
et al. 2009) has been applied.

KL divergence
The KL divergence can be thought of as a loss function that measures
the amount of information lost when the variational distribution is used
to approximate the true posterior distribution. By minimizing the KL
divergence, we will tune the variational parameters to produce a distribution
that is as close as possible to the true posterior.

The variational parameters, which we will denote θ, are parameters or latent
variables and are treated equally in all settings. Let p(x) be the marginal (or
joint) distribution of some variable x (target, not to be confused with data),
and let qθ(x) be a variational distribution parametrized by θ. The reversed
KL divergence, used to fit the approximation to the target distribution, is
then defined as:

KL[qθ(x)||p(x)] =
∫

qθ(x) log qθ(x)
p(x) dx.

16

2.5. Variational Inference

By rewriting the KL divergence, we obtain:

KL[qθ(x)||p(x)] =
∫

qθ(x) log
[
qθ(x)− log p(x)

]
dx

= Eqθ(x)

[
log qθ(x)− log p(x)

]

Minimizing the above expression will then be done with respect to θ. It
is typically done in an iterative procedure, using gradient decent or other
optimization techniques.

Mean-field variational inference
Mean-field approximations are the most traditional and widely used
technique in variational inference for computationally efficient approximation
of complex posterior distributions. This approach is based on the mean-
field assumption, which assumes that the posterior distribution can be
factorized into a product of independent distributions. Specifically, for a set
of parameters, θ, and target variable x, the variational distribution can be
written as:

qθ(x) =
Dx∏
i=1

qθi
(xi),

where Dx denotes the dimension of x.

This assumption simplifies the optimization problem, as we only need
to optimize each individual distribution in the product, rather than the
entire posterior approximation. That is, minimization of the KL-divergence
between the approximate posterior distribution and the target distribution
is done by optimizing the parameters θj in each individual distribution in
the product. This optimization can be done using gradient descent or other
optimization algorithms.

Although mean-field variational inference is a powerful technique, it also
has several drawbacks. For instance, it assumes that the target distribution
is factorizable. This assumption may not hold for complex models with
strong dependencies between the parameters. In addition, the quality of the
approximation depends heavily on the choice of the variational distribution.
If this distribution is not flexible enough to capture the true posterior
distribution, the approximation may be poor.

17

2.6. Normalizing Flows

Various methods has been used to produce increasingly flexible variational
distributions. In the next sections, we will discuss a class of popular such
techniques.

2.6 Normalizing Flows
The term normalizing flows was first coined by Tabak and Vanden-Eijnden
(2010) and Tabak and Turner (2013) in the context of classification and
density estimation. It has since then seen a lot of development and interest.
A nice overview of different methods can be found in Papamakarios, Nalisnick
et al. (2021). For ease of notation, we here let p(·) or q(·) denote arbitrary
distributions. Later, when the parameters of these distributions are relevant,
we will go back to using subscript for parameters.

The concept of normalizing flows involves creating flexible probability
distributions over continuous random variables. Consider vector x ∈ RD,
and suppose the aim is to define the joint distribution of x. Using the flow-
based modeling approach we will transform a real vector u ∈ RD, sampled
from simple base distribution q(u), into x through a transformation T

x = T (u) where u ∼ q(u). (7)

The transformation T must be a diffeomorphism and hence differentiable
and invertible and T −1 must be also be differentiable. The density of x is
then well-defined and can be obtained by change of variables

p(x) = q(u) |det JT (u)|−1 where u = T −1(x).

JT (u) ∈ RD×D is the Jacobian, the matrix of all partial derivatives, of T .
Equivalently, we can write p(x) in terms of the Jacobian of T −1

p(x) = q(T −1(x)) |det JT−1(x)|. (8)

The log-density is then

log p(x) = log q(u)− log
∣∣∣∣det JT (u)

∣∣∣∣. (9)

A useful property of the differentiable and invertible transformations is that
they are composable, and that the resulting composistion is differentiable and
invertible. This means that we can chain together multiple transformations
T1, ..., TK to obtain T = T1 ◦ · · · ◦ TK where each Tk transforms zk−1 into

18

2.6. Normalizing Flows

zk, assuming z0 = u and zK = x. Thus, the term "flow" refers to the
path taken from a set of samples from q(u) as they undergo a sequence
of transformations T1, ..., TK . The term "normalizing" stems from the fact
that the inverse flow, through T −1

K , ..., T −1
1 , transforms a set of samples

from p(x) into a set of samples from the designated density q(u), effectively
"normalizing" them into a proper density (Papamakarios, Nalisnick et al.
2021).

In terms of its abilities, a flow-based model offers two functions: generating
samples from the model with Equation (7) and determining the model’s
density through Equation (8). Generating samples requires the capacity to
sample from q(u) and compute the forward transformation T . On the other
hand, evaluating the model’s density necessitates computing the inverse
transformation T −1 and its Jacobian determinant, as well as determining
the density q(u).

Constructing a flow
As discussed previously, the normalizing flows are composable, meaning we
can construct a flow by composing a finite number of transformations Tk

T = T1 ◦ · · · ◦ TK .

The objective is to utilize simple transformations as basic components,
each having an easily invertible Jacobian determinant, to form a more
sophisticated transformation with greater expressiveness than any of its
individual components. The forward and inverse evaluations, as well as
the computation of the Jacobian determinant, will be restricted to the
sub-flows. Respectively, with z0 = u and zK = x, the forward and backward
evaluations are:

zk = Tk(zk−1) for k = 1, ..., K,

zk−1 = T −1
k (zk) for k = K, ..., 1.

The Jacobian log-determinant is calculated as

log |det JT (z0)| = log

∣∣∣∣∣∣
K∏
k=1

det JTk
(zk−1)

∣∣∣∣∣∣ =
K∑
k=1

log |det JTk
(zk−1)|.

In practical terms, we implement either Tk or T −1
k using a neural network,

parameterized by ϕk which we represent as fϕk
. This means that we can

use the model fϕk
to carry out either Tk, where it takes zk−1 as input and

19

2.6. Normalizing Flows

z0 T1 T2 · · · TK zK

log|detJT1(z0)|+ log|detJT2(z1)| + · · · + log|detJTK
(zK−1)| = log|detJT (z0)|

z1 z2 zK−1

Figure 2.2: This figure is inspired by Papamakarios, Nalisnick
et al. (2021) and illustrates a flow composed of K transformations.

produces zk as output, or T −1
k , where it takes zk as input and produces

zk−1 as output. Regardless, we must ensure that the model is reversible and
has a tractable Jacobian determinant. Ensuring that fϕk

is reversible and
explicitly computing its inverse are not equivalent concepts. Although the
inverse of fϕk

is certain to exist in some implementation, precise computation
can be costly or impractical.

As discussed above, the forward transformation T is utilized for sampling,
while the inverse transformation T −1 is utilized for density evaluation. If the
inverse of fϕk

is not efficient, either density evaluation or sampling will be
slow or impractical. We should also specify what we mean with "tractable
Jacobian determinant". Although we can always compute the Jacobian
matrix of a differentiable function, calculating its determinant explicitly can
be computationally expensive. For flow-based models, the computation of
the Jacobian determinant should be no more linear time with respect to the
input dimension.

Normalizing flows provide a powerful framework for generative modeling by
transforming a simple distribution to a complex one via a series of invertible
and tractable transformations. By using neural networks as building
blocks, we can construct a normalizing flow with high expressiveness and
computational efficiency. Composable transformations allow for both efficient
density evaluation and sampling. However, designing transformations with
tractable Jacobian determinants is not always straightforward, and it requires
careful consideration to balance between expressiveness and computational
efficiency.

Inference for Flow-based Models
Similarly to fitting any probabilistic model, fitting a flow-based model qω(x)
to a target distribution p(x) can be done by minimizing the discrepancy
between them. This minimization will be done with respect to the model’s

20

2.6. Normalizing Flows

parameters ω = {ϕ,ψ} where ϕ are the parameters of the flow Tϕ and ψ
are the parameters of the base distribution pψ(u).

Our discrepancy measure is the KL-divergence, and we will here separate
between forward- and reversed KL-divergence. Fitting a model using forward
KL-divergence is equivalent to maximum likelihood estimation, while the
reverse KL-divergence is commonly used by Bayesians in the context of
variational inference.

Forward KL-divergence

The forward KL-divergence between the target distribution p(x) and the
flow model qω(x) can be written as

L(ω) = KL[p(x)||qω(x)]
= −Ep(x)

[
log qω(x)

]
+ constant

= −Ep(x)
[

log pϕ(T −1
ϕ (x)|ψ) + log |detJT−1

ϕ
(x)|

]
+ constant.

Using the forward KL-divergence is well suited for situations where we can
obtain samples from the target distribution, but are unable to evaluate
the the density p(x). If we are able to sample {xi}Ni=1 from p(x), we can
estimate the expectation above by Monte Carlo:

L(ω) ≈ − 1
N

N∑
i=1

[
log pψ(T −1

ϕ (xi)) + log |detJT−1
ϕ

(xi)|
]

+ constant.

Minimizing this Monte Carlo estimate is then equivalent to fitting the flow-
based model to the samples through maximum likelihood estimation, and
the parameters can e.g. be optimized by gradient-based methods.

When using the forward KL-divergence for inference, we need to compute
the inverse flow, T −1

ϕ , its Jacobian determinant and the density qψ(u), as
well as computing the derivative of all three if we are using gradient-based
optimization.

Reversed KL-divergence

The standard way of performing variational inference is through minimization
of the reversed KL-divergence. Here, the target density p(x) will hence be a

21

2.6. Normalizing Flows

posterior distribution of interest. We have the following expression:

L(ω) = KL
[
qω(x)||p(x)

]
= Eqω(x)

[
log qω(x)− log p(x)

]
= Epψ(u)

[
log pψ(u)− log |detJTϕ(u)| − log pϕ(T (u)))

]
.

Where we have used a change of variables in order to express the expectation
with respect to u. In order to use the reversed KL-divergence, we need to
evaluate the target density. However, since the target density is the posterior,
we let p(x) = p∗(x)/C, where p∗(x) is likelihood×prior and C =

∫
p∗(x)dx is

the intractable normalizing constant, and rewrite the reverse KL-divergence
as

L(ω) = Epψ(u)
[

log pψ(u)− log |detJTϕ(u)| − log p∗(Tϕ(u)))
]

+ constant.

In practice, we minimize L(ω) with a gradient-based method. Since we are
taking expectation with respect to to the base distribution, pψ(u), we can
easily use Monte Carlo to obtain an unbiased estimate of the gradient of
L(ω) with respect to ϕ. Let {u}Ni=1 be samples from pψ(u). The gradient
with respect to ϕ can then be estimated as

∇ϕL(ω) ≈ − 1
N

N∑
i=1

[
∇ϕ log |detJTϕ(ui)|+∇ϕ log p∗(Tϕ(ui)

]
.

Relationship between forward and reverse KL-divergence

As an alternative, one can think of the target p(x) as the base distribution
and the inverse flow as inducing a distribution q∗

ϕ(u). Intuitively, q∗
ϕ(u) is

the distribution that x will follow when passed through the inverse flow T −1.
Since the target distribution and the base distribution uniquely determines
each other when given the flow transformation, the induced distribution
q∗
ϕ(u) is equal to the base qψ(u) if and only if the target p(x) is equal to the

flow qω(u). Therefore, we can think of fitting the flow model to the target
as fitting the induced distribution to the base and vice versa.

In Papamakarios, Pavlakou and Murray 2018, they indeed show that

KL[qω(x)||p(x)] = KL[qψ(u)||q∗
ϕ(u)],

22

2.7. Autoregressive Flows

which means that fitting the induced distribution q∗
ϕ(u) to the base qψ(u)

through forward KL-divergence (maximum likelihood) is equivalent to fitting
the flow model to the target via reversed KL-divergence.

2.7 Autoregressive Flows
In the next sections, we will be discussing the autoregressive flows. They
are one of the most widely used classes of normalizing flows due to its
effectiveness in density estimation and its simplicity of implementation.

We will mainly be concerned with efficient construction of the flow
components, fϕk

. We simplify the notation and drop ϕ from fϕk
and

call it fk as it should be clear what we mean by this. We will also denote
the input of the model as z and the output as z′ regardless of whether the
model implements the forward or the inverse flow.

In an autoregressive flow, fk has the following form:

z′
i = τ(zi; hi) where hi = ci(z<i),

where τ is referred to as the transformer and ci as the i-th conditioner. The
transformer is required to be a strictly monotonic function of the input zi. It
is parameterized by hi, and specifies how the flow changes zi to give output
z′
i. The conditioners determines the parameters of the transformer. They

take as input only the indices of the input less than i, giving rise to the
autoregressive structure. Each conditioner can in principle be implemented
as an arbitrary function of z<i that outputs hi. However, if each ci(z<i) is
a different model it would scale very poorly with dimensionality D. It is
therefore common practice to share parameters across conditioners, or to
combine the conditioners into a single model.

Since the transformer is monotonic, it is also invertible. Given output z′
i we

can compute the input z through

zi = τ−1(z′
i; hi) where hi = ci(z<i).

Since z′
i does not depend on z>i, the partial derivative of z′

i with respect to
zj is zero for j > i. A key property of these transformations is therefore
that the Jacobian is lower triangular. This makes the computation of the
Jacobian determinant easily tractable, as the determinant of any triangular
matrix is equal to the product of the diagonal.

23

2.7. Autoregressive Flows

z1 z2 · · · zi−1 zi · · · zD

z′
1 z′

2 · · · z′
i−1 z′

i · · · z′
D

ci τ
hi

z1 z2 · · · zi−1 zi · · · zD

z′
1 z′

2 · · · z′
i−1 z′

i · · · z′
D

ci τ−1
hi

Figure 2.3: Illustration of the i-th step of a normalizing flow. Left:
Forward flow. Right: Inverse flow.

The Jacobian of the transformer is

Jfk
(z) =


∂τ
∂z1

(z1; h1) 0
. . .

L(z) ∂τ
∂zD

(zD; hD)

 ,

and the log determinant can then be computed as

log
∣∣∣det Jfk(z)

∣∣∣ = log

∣∣∣∣∣∣
D∏
i=1

∂τ

∂zi
(zi; hi)

∣∣∣∣∣∣ =
D∑
i=1

log

∣∣∣∣∣∣ ∂τ

∂zi
(zi; hi)

∣∣∣∣∣∣.
Implementing the autoregressive flow comes down to choice of transformer
and conditioner. Any type of transformer can in practice be paired with
any type of conditioner and numerous combinations are represented in the
literature. For our implementation, we follow the Inverse Autoregressive
Flow (IAF) from Kingma, Salimans, Jozefowicz et al. (2017). They suggest
pairing an affine transformer with a masked conditioner.

Affine Transformers
Perhaps the simplest transformers used within autoregressive flows belongs
to the class of affine functions. We will restrict our transformer τ to be on
this form:

τ(zi; hi) = αizi + βi, where hi = {αi, βi}.

It can be thought of as a location-scale transformation, where βi defines
the location and αi the scale. The transformation is invertible if and only

24

2.7. Autoregressive Flows

if αi ̸= 0, which can be guaranteed by letting αi = exp α̃i, where α̃i is
an unconstrained parameter. The derivative of an affine transformer with
respect to zi, is αi, and the log determinant is:

log
∣∣∣det Jfk

(z)
∣∣∣ =

D∑
i=1

log |αi| =
D∑
i=1

α̃i.

While affine transformers have analytical tractability, their expressivity is
limited. To illustrate why, let z follow a Gaussian distribution. Then, each z′

i

conditioned on z<i will also follow a Gaussian distribution. That is, a single
affine transformation of a multivariate Gaussian results in a distribution
whose conditionals p(z′

i|z′
<i) are also Gaussian by necessity. This problem

is often addressed by stacking multiple layers of affine transformers, but the
expressive powers of the final flow still remains unknown (Papamakarios,
Nalisnick et al. 2021).

Masked conditioners
As mentioned above, it is common practice to implement conditioners that
shares parameters, and that is exactly what makes masked conditioners
attractive. This approach uses a single, typically feed forward neural network
that takes input z and outputs the whole sequence (h1, ..., hD) in one pass,
only requiring obedience with respect to the autoregressive structure: output
hi can only depend on z<i.

In constructing such a network, one takes an arbitrary neural network
and removes connections until there is no path from input zi to outputs
(h1, ..., hi). This is done trough a technique called masking, where each
weight matrix is multiplied with a binary matrix of the same size. The
connections that are to be removed will correspond to a zero-entry in the
mask matrix, and all other connections will remain unmodified. The masked
network will have the same architecture and size as the original network,
retaining the computational properties.

A key advantage of masked autoregressive flows is that they are efficient
to evaluate. Given z, the parameters (h1, ..., hD) are computed in a singe
neural network pass where each dimension can be computed in parallel via
z′
i = τ(zi, hi).

A main disadvantage is however that the inverse is not as efficient to
evaluate. This is because parameters hi that are needed to obtain the
inverse zi = τ−1(z′

i, hi) cannot be computed until (z1, ..., zi−1) have been

25

2.8. Masked Autoencoders for Distribution Estimation (MADE)

obtained. That is, we must compute h1 to obtain z1, h2 to obtain z2 and so
on until zD have been obtained. Despite computational issues related to the
inversion, the masked conditioner remains one of the most used technique
for implementing autoregressive flows. Especially, it is useful for situations
where the dimension of the data is not too large or where inverting the flow
is not needed. Examples of autoregressive models with masking include IAF
(Kingma, Salimans, Jozefowicz et al. 2017), MAF (Papamakarios, Pavlakou
and Murray 2018) and NAF (Cao, Titov and Aziz 2019). Masking has also
been used in non-flow autoregressive models such as MADE (Germain et al.
2015). The former is the transformer in our implementation and the latter
is our choice for conditioner. They will also be the topics in the following
sections.

2.8 Masked Autoencoders for Distribution
Estimation (MADE)

Masked autoencoders for distribution estimation was first introduced by
Germain et al. (2015). The original paper has nothing to do with normalizing
flows, but it is an easy to implement autoregressive model and is widely
used.

We are here assuming a Gaussian model. Given a set of variables {z}Di=1,
the goal of the autoencoder is to learn the hidden statistical structure that
generated them. Borrowing the notation from Germain et al. (2015), this
autoencoder can be written as a neural network in the following way:

h(z) = g(b + Wz),
z′ = c + Vh(z),

where h(z) is a representation of the hidden structure we wish to learn, W
and V are matrices, b and c are vectors and g is a nonlinear activation
function.

In order to satisfy the autoregressive property, we will need to modify the
autoencoder. Since output z′

i can only depend on inputs z<i it means that
inputs z>i can not be used to compute z′

i. MADE solves this problem with
masking. In short, masking corresponds to setting at least one connection
in matrix W or V to 0. One way to do this is to elementwise-multiply each
matrix with a binary matrix called a mask matrix. The entries of the mask
matrix are zero if we wish to remove the corresponding connection. We now

26

2.8. Masked Autoencoders for Distribution Estimation (MADE)

write

h(z) = g(b + (W⊙MW)z),
z′ = c + (V⊙MV)h(z), (10)

where ⊙ denotes elementwise multiplication.

W1

W2

V

= MW1

= MW2

= MV

3 1 2

2 1 2 2

1 2 2 1

3 1 2

p(z1|z2, z3) p(z2) p(z3|z2)

Figure 2.4: This figure is borrowed from Germain et al. (2015).
Left: Standard three hidden layer autoencoder. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed.

The problem at hand is how to create the masks matrices. Germain et
al. (2015) start by assigning an integer m between 1 and D − 1 to each
neuron in the hidden layer. The k-th hidden unit’s number, m(k), defines
the maximum number of inputs connected to that neuron. The reason for
disallowing m(k) = 1 and m(k) = D is to make sure that hidden units
are not constant or depend on all input units and hence not be able to
model any of the conditionals p(zd|z<d). The mask matrices that governs the
connections between all layers except the last one follows these constraints,
and are encoded in the following way:

MW
k,d = 1m(k)≥d =

1 if m(k) ≥ d,

0 otherwise,

for d ∈ {1, ..., D} and k ∈ {1, ..., K}. In the last layer of connections,
we need to make sure that the d-th output unit is only connected to z<d.

27

2.9. Inverse Autoregressive Flows (IAF)

Therefore, we must make sure that hidden units that are connected to the
d-th output unit have m(k) < d and hence connected to at most d− 1 input
units. The output mask matrix can hence be encoded as

MV
d,k = 1d≥m(k) =

1 if d ≥ m(k),
0 otherwise.

2.9 Inverse Autoregressive Flows (IAF)
Inverse Autoregressive Flows was first introduced by Kingma, Salimans,
Jozefowicz et al. (2017). It is well known to scale well to high dimensional
latent spaces, and plays a central role in our implementation in the next
chapter. We will here go through their reasoning and borrow from their
notation.

We again assume a Gaussian model. Let y = {yi}Di=1 be a variable modeled by
a computationally efficient Gaussian version of an autoregressive conditioner,
such as MADE. We denote the output of this conditioner [µ(y),σ(y)] as
a function of y, which elements [µi(y<i), σi(y<i)] are the predicted mean
and standard deviation of the i-th element of y. Due to the autoregressive
structure, the Jacobian is lower triangular with zeros on the diagonal. That
is, ∂µi

∂yj
= ∂σi

∂yj
= 0 for j ≥ i.

When sampling from such a model, one can transform a noise vector
ϵ ∼ N (0, I) into the corresponding vector y: y0 = µ0 + σ0 ⊙ ϵ0, and
for i > 0, yi = µi(y<i) + σi(y<i) · ϵi. This is often referred to as the local
reparametrization trick (LRT), explained in detail by Kingma, Salimans and
Welling (2015). Since traditional variational inference requires sampling from
the posterior, this setup is not relevant for direct use in application. However,
the inverse transformations are interesting for inference through normalizing
flows. Assume σi > 0 for all i. Inverting the given transformation yields

ϵ = y− µ(y)
σ(y) ,

where the subtraction and division are elementwise.

A key property of the inverse transformation is again the simple Jacobian
determinant. Due to the autoregressive structure, we have ∂µi

∂yj
= ∂σi

∂yj
= 0 for

j ≥ i, resulting in ∂ϵi
∂yi

= 0 for j ≥ i, and the diagonal elements are ∂ϵi
∂yi

= σi.
Hence the log-determinant is simply

28

2.9. Inverse Autoregressive Flows (IAF)

x Encoder NN

σ0 µ0

ϵ × + z0

h Autoregressive NN

σ1 µ1

× + z1 zK−1

Autoregressive NN

σK µK

× + zK

· · ·

· · ·

· · ·

Figure 2.5: Illustration of an Inverse Autoregressive Flow. Here,
x is transformed into zK through a series of autoregressive neural
networks.

log det
∣∣∣∣ dϵ

dy

∣∣∣∣ =
D∑
i=1
−log σi(y).

Constructing the IAF
To initialize a chain of flows, Kingma, Salimans, Jozefowicz et al. (2017)
uses a encoder neural network that takes input x and outputs µ0, σ0 and h.
Here, they use h as an additional input to each step in the flow. We then
draw a random sample ϵ ∼ N(0, I) and initialize the chain with

z0 = µ0 + σ0 ⊙ ϵ.

Then, following previous logic, constructing the flow is done by composing
K of the following transformations

zk = µk + σk ⊙ zk−1, (11)

where a different neural network that takes input zk−1 and h, and outputs
µk and σk is used at each step (see Figure 2.5). These neural networks
are autoregressive with respect to zk−1, such that the Jacobian dzk

dzk−1
is

triangular with σk on the diagonal.

The Jacobian log-determinant of the k-th step is

log
∣∣∣∣ ∂zk
∂zk−1

∣∣∣∣ =
D∑
i=1

log σi ,

29

2.10. Optimization algorithms

and, still assuming a Gaussian model, we can get the log density of the last
iterate through (9):

log p(zK) = −
D∑
i=1

1
2ϵ2

i + 1
2log(2π) +

K∑
k=0

log σk,i

.

The flexibility of this distribution, and its potential to closely fit the true
posterior will increase with the depth of the chain and with the expressiveness
of the autoregressive neural networks within each step.

For numerical stability, Kingma, Salimans, Jozefowicz et al. (2017) suggest
the following setup in each iteration:

mk, sk ← AutoregressiveNN[k](zk, h),
σk = sigmoid(sk),
zk = σk ⊙ zk−1 + (1− σk)⊙mk.

2.10 Optimization algorithms
A key part of any machine learning model is the technique used for
optimization of its parameters. Over the years, many different such
algorithms have been suggested, and a thorough investigation of the most
influential can be found in Bottou, Curtis and Nocedal (2018). Since it is
such an important topic and has great influence on our model, we will end
this chapter with a short overview.

Any optimization problem can be formulated as finding the maximum or
minimum value of some objective function, f . In our case, as we are trying to
find the values for some parameter set, ξ, that minimizes some loss function,
we can formalize optimization problem as

minimizeξ f(ξ).

There are different ways to approach such problems, depending on the
function f . Searching for an optimum is however generally done in an
iterative procedure.

30

2.10. Optimization algorithms

Gradient free optimizers
If the gradient of f is not tractable or costly to compute, we can use gradient
free optimizers. Included in this category is Greedy Search, Simulated
Annealing, and Genetic Algorithms, amongst others. Such methods typically
have slow convergence rate and low computational cost in each iteration.

If the possible number combinations is too large, we will not be able to find
an optimal solution within a reasonable amount of time. However, if we are
able to evaluate the objective function at any time, these methods will work
and are guaranteed to converge towards a local optimum.

First-order methods
If the gradient of f with respect to ξ is tractable, first-order methods such
as gradient decent (GD) will often speed up the convergence. However, since
such methods requires calculation of the gradient in each iteration they also
come with a higher computational cost in each iteration.

In traditional GD, a step proportional to the negative gradient is taken in
each iteration. One starts with a initial guess ξ0 and updates the guess
according to

ξt+1 = ξt − η ∇ξf(ξt),

where, η is referred to as the learning rate.

Due to potentially high computational cost for computing the gradient,
Robbins (1951), came up with Stochastic Gradient Descent (SGD). Here,
the gradient is replaced with an unbiased estimate, ∇̃ξf(ξt). This produces
noisy steps in the path towards the minimum, and SGD might take more
steps to converge. However, as the computation of the stochastic gradients
are generally much faster, this approach often leads to less time to converge
if the full gradient is costly to compute. In the original paper, they suggested
using only one observation for each iteration, but this can lead to too much
variance causing slow convergence. Typically, the gradient is updated using
a batch of observations in each iteration.

Careful consideration should also be given to choosing the right learning
rate. If it is too small, convergence will be slow. On the other hand, if the
learning rate is too large, one might make too big steps and risk "jumping"
over the optimum. To deal with these issues, momentum and acceleration
methods have been developed (Rumelhart, Hinton and Williams 1986). Such

31

2.10. Optimization algorithms

methods has a dynamic learning rate, depending on the steepness of the
gradient, allowing for larger updates if the gradient is very steep and smaller
updates if the gradient is less steep.

If ξ contains many different parameters, as is the case in in deep learning, the
gradient may vary in many different magnitudes. This makes the problem of
defining a single global learning rate for all parameters very challenging, and
the need for methods with different learning rates for different parameters
is apparent. Hinton, Srivastava and Swersky (2018) was the first to propose
such methods, and they called it RMSprop.

Recent developments have lead to the Adaptive moment estimation (Kingma
and Ba 2017, Adam). It works by combining ideas related to momentum
and RMSprop, and has shown to generalize well to a wide range of machine
learning applications.

Second-order methods
If the second-order derivative (i.e the Hessian) of f is tractable, one can use
second order methods to further speed up convergence rate. Such methods
are scale-invariant, meaning we do not have to scale the input variables.
However, as they generally require a lot of computation in each iteration
and scale very poorly with the dimension of the parameter space, they are
seldom used for machine learning purposes.

The most prominent of second-order optimization methods is Newton’s
Methods (Battiti 1992). In each iteration, these methods takes a step
according to

ξt+1 = ξt + ηtst,

where st satisfies : ∇2f(ξt)st = −∇f(ξt).

In practical terms, this means that such methods even require inversion of
the Hessian. Therefore, Bottou, Curtis and Nocedal (2018) highlights that
if the Hessian is not positive-definite, second-order methods might not even
work where first-order methods do.

32

CHAPTER 3

Contribution and further
specifications

In this chapter we will combine the theory from the previous chapter. The
BGLM (1b) and BGNLM (2b) will be trained using a combination of a
genetic algorithm and variational inference, and we show the calculations
needed to implement a mean-field and a flow-based approximate posterior
of the parameters. In the next chapter we present results.

In order to evaluate the capabilities of a variational inference approach
applied to BGNLM, we have developed a Python library (GitHub link).
Here, the implemented methods for training and testing a BGNLM with
mean-field approximations or with a flow-based approximations can be
found.

3.1 The genetic algorithm
To explore the vast space of different features in a BGNLM, we use a genetic
algorithm similar to that found in Hubin, Storvik and Frommlet (2021).

The algorithm begins with all p covariates as features, making the first
generation equivalent to a Bayesian generalized linear model (1b). We refer
to this first population as S0. For subsequent populations after S0, we allow
the size of each population, q∗, to be greater than p, which speeds up the
exploration of different features.

The process of choosing which features should be part of the next generation
is done in two steps. First, we estimate the marginal inclusion probabilities
and retain all members of St with an inclusion probability above some
threshold ρdel. Members with inclusion probability less than ρdel are retained

33

https://github.com/sebsommer/BGNLM

3.2. The model in each generation

with a low probability proportional to their marginal inclusion probability.
The features that are removed are replaced with new features generated
randomly by projection, modification, multiplication through (3), or by a
selecting a input variable. The generated features that are already present
or linearly dependent with a feature in St will not be included in the next
population, St+1. Thus, the members of the next population are all the high
probability features from St plus the newly generated features.
When replacing features, the replacement is generated randomly by the
projection transformation with probability Ppr, modification transformation
with probability Pmo, or multiplication transformation with probability Pmu,
or by an input variable with probability Pin, where Ppr+Pmo+Pmu+Pin = 1.
This implementation allows us to exclude a certain transformation by setting
Ppr, Pmu, Pmo, or Pin to zero. If a projection or a modification is added, a
nonlinearity is chosen from G with probabilities PG.

Algorithm 2 GMSVI
Require: S0, ρdel, T

Estimate the marginal inclusion probabilities, κ, using VI on S0
Evaluate the loss of S0
Replace features Fk : κk > ρdel, but keep with some probability.
Generate extra features to obtain S1
for t = 1, .., T do

Estimate κ using VI on St
Evaluate the loss of St
if t < T then

Replace features Fk : κk > ρdel to obtain St+1
end if

end for
Make inference on model in generation with the smallest loss

Within each population there are two main questions: what features in the
population are relevant for prediction, and how good are the predictions made
by the current population (evaluated on a validation set). The validation
loss of every generation is recorded, and in the end inference is done on the
best generation.

3.2 The model in each generation
In the genetic algorithm explained above, we essentially fix the a subset
of features in each generation t ∈ 1, ..., T with a population of features

34

3.2. The model in each generation

St = {Ft1 , ..., Ftq∗} ⊆ {F1, ..., Fq}. This makes each population equal to a
Bayesian GLM with Ft1 , ..., Ftq∗ acting as covariates. We will, for ease of
notation, denote vj as the values of feature Fj.

In practice, we use the vj ’s as inputs to a Bayesian neural network with one
hidden layer and aim to estimate the posterior weights in the hidden layer,
β = (βt1 , ..., βtq∗). We let binary model vector, denoted γ = (γt1 , ..., γtq∗),
be independent Bernoulli random variables with the probability of success
parameters κ = (κt1 , ..., κtq∗).

The hidden layer of our neural network consists of a linear predictor. This
linear predictor of the current population will be denoted as u and takes
the following form

ui = b +
q∗∑
j=1

vijγjβj, i = 1, ..., n,

where n is the number of observations in the training set.

This model implementation is essentially a simplified version of the LBBNN
from Skaaret-Lund, Hubin and Storvik (2023), where we use a single hidden
layer with n nodes. We will make use of the calculations provided in their
paper throughout this section.

Bayesian Inference
One of the one main motivations behind Bayesian methods is that we are
able to take into account parameter and model uncertainty. By doing
inference through a posterior predictive distribution, we will average over
all possible parameters β and γ.

For a new observation, ỹ, and given data, D, the predictive distribution is

p(ỹ|D) =
∑
γ

∫
β

p(ỹ|β,γ,D)p(β,γ|D)dβ.

However, since the posterior p(β,γ|D) is intractable, we replace this
with an approximation qθ(β,γ), with θ denoting the parameters of the
approximation.

35

3.2. The model in each generation

The mean-field approximation
The first and simplest option for approximate posterior is the mean-field
Gaussian. It is commonly used in Bayesian neural networks, and is usually
defined over the weights. In an arbitrary generation, this becomes

qθ(β) =
q∗∏
j=1
N (µ̃j, σ̃2

j).

where the goal is to estimate µ̃j and σ̃j for all j.

This is extended to include binary inclusion variables in Hubin and Storvik
(2019):

qθ(β|γ) =
q∗∏
j=1

[
γjN (µ̃j, σ̃2

j) + (1− γj)δ(βj)
]
,

qκ̃j
(γj) = Bernoulli(κ̃j),

where δ(·) is Dirac’s delta function with zero mass everywhere except at
zero where it has a "spike".

However, this distribution will typically not be flexible enough to approxim-
ate the true posterior, and the need a more flexible distribution is apparent.
This is why we continue to follow Skaaret-Lund, Hubin and Storvik (2023)
and adopt the Multiplicative Normalizing Flow (Louizos and Welling 2017,
MNF).

The flow approximation
We now introduce a latent variational distribution qω(z) in order to model
dependencies. Here, ω = {ϕ,ψ}, where ϕ and ψ are the parameters of
the flow and the base distribution, respectively. For a illustration of the
difference between the mean-field and flow model, see Figure 3.1.

The variational posterior of the flow models is given

qθ(β|γ) =
q∗∏
j=1

[
γjN (zjµ̃j, σ̃2

j) + (1− γj)δ(βj)
]
,

qκ̃j
(γj) = Bernoulli(κ̃j).

36

3.2. The model in each generation

β1 β2 · · · βq∗

µ1 µ2 µq∗

σ2
1 σ2

2 σ2
q∗

κ1 κ2 κq∗

β1 β2 · · · βq∗

µ1 µ2 µq∗

σ2
1 σ2

2 σ2
n

κ1 κ2 κq∗

z

Figure 3.1: Illustration of difference between mean-field and flow
based approximate posterior.

This is a simplified version of Skaaret-Lund, Hubin and Storvik (2023),
which is again similar to MNF from Louizos and Welling (2017). The main
difference from MNF is the introduction of the binary variable, γ. We
will transform the variational posterior with normalizing flows by applying
transformations to the weights through a latent z.

The flow is following the inverse autoregressive flow (Kingma, Salimans,
Jozefowicz et al. 2017, (11)) with numerically stable updates. The chain of
flows is initialized by z0 which is derived from the input features, and each
flow component, fϕk

, is a MADE (Germain et al. 2015, (10)), to retain an
autoregressive structure.

Following this setup, we will sample a z = zK from the last iterate of the
flow, which log density is given as

log qω(z) = log qψ(z0)−
K∑
k=1

log
∣∣∣∣det ∂fϕk

∂zk−1

∣∣∣∣,
where the base, qψ(z0), is another Gaussian distribution.

Calculation of the KL-divergence
For the mean-field model, we are comparing two normal densities, leading
to a relatively straightforward computation of the KL-divergence:

37

3.2. The model in each generation

KL(qθ(β,γ)||p(β,γ)) =
q∗∑
j=1

[
κ̃j

(
log σj

σ̃j
− 1

2 + log κ̃j
κj

+
σ̃2
j + (µ̃j − µj)2

2σ2
j

)

+ (1− κ̃j) log 1− κ̃j
1− κj

]
,

where σj, κj and µj are samples from their respective priors.

For the flow model, things get a bit more complicated. First, we need to
marginalize out z from the joint posterior.

qθ(β,γ) =
∫

q(β,γ, z)dz.

However, as this is not tractable, we will use the approximation found in
Skaaret-Lund, Hubin and Storvik (2023), first suggested by Louizos and
Welling (2017). They start by turning it into a log density:

log qθ(β,γ) = log qθ(β,γ|z) + log qω(z)− log qω(z|β,γ),

leading to the following expression for the KL-divergence

KL[qθ(β,γ)||p(β,γ)] = Eqθ(β,γ,z)

[
KL[qθ(β,γ, z)||p(β,γ)]

+ log qω(z)− log qω(z|β,γ)
]
.

Since qω(z|β,γ) is intractable and difficult to compute numerically, we will
also follow Ranganath, Tran and Blei (2016) and introduce an auxilliary
distribution r(z|β,γ) to reach the following upper bound on the KL
divergence:

KL[qθ(β,γ)||p(β,γ)] ≤ Eqθ(β,γ,z)

[
KL[qθ(β,γ|z)||p(β,γ)]

+ log qω(z)− log r(z|β,γ)
]
, (12)

38

3.2. The model in each generation

where we have that

KL(qθ(β,γ)||p(β,γ)) =
q∗∑
j=1

[
κ̃j

(
log σj

σ̃j
− 1

2 + log κ̃j
κj

+
σ̃2
j + (µ̃jzj − µj)2

2σ2
j

)

+ (1− κ̃j) log 1− κ̃j
1− κj

]

and
log qω(z) = log qψ(z0)−

K∑
k=1

log
∣∣∣∣det ∂fϕk

∂zk−1

∣∣∣∣.
For the last term, r(z|β,γ), we will use an inverse normalizing flow to make
this distribution flexible. We will utilize a setup leading to a Gaussian
distribution:

r(zB|β,γ) =
q∗∏
j=1
N (νj, τ 2

j),

where the dependence on β and γ is defined similarly to Skaaret-Lund,
Hubin and Storvik (2023):

ν = d1 ⊙ tanh(eT (β ⊙ γ)),
log τ 2 = d2 ⊙ tanh(eT (β ⊙ γ)).

Here, d1, d2 and e are trainable parameters with dimensionality q∗, ⊙
denotes the elementwise multiplication and tanh is the hyperbolic tangent
function.

This implementation hence requires that we must use two normalizing flows;
one to get from z0 to z = zK and one to get from z = zK to zB. Finally, for
the last term in (12) we get

log r(z|β,γ) = log r(zB|β,γ) +
B∑
t=K

log
∣∣∣∣det ∂zt

∂zt−1

∣∣∣∣.
For the biases, we assume that they are independent of the weights and of
each other and use the standard normal prior with a mean-field Gaussian

39

3.2. The model in each generation

approximate posterior for both models. The KL-divergence can be calculated
as

KL(q(b)||p(b)) = log σb
σ̃b
− 1

2 + σ̃2
b + (µ̃b − µb)2

2σ2
b

,

where σb and µb are samples from their respective priors.

The local reparametrization trick
One downside of our novel implementation is that each optimization step
in training requires sampling of all γj’s and βj’s, to compute the linear
predictor u. Due to the binary nature of the γj’s, we will also need a
continuous relaxation. In Hubin and Storvik (2019), relaxations of γjs has
been proposed trough the Concrete distribution (Maddison, Mnih and Teh
2016), which was replaced with the local reparametrization trick (LRT) in
Skaaret-Lund, Hubin and Storvik (2023). LRT is more computationally
attractive, but it is important to note that this is also an approximation.
The general idea behind the LRT is that if we have a sum of independent
Gaussian random variables, the sum will also be Gaussian. In our case, we
have a mixture of independent Gaussians, but the central limit theorem still
holds, as long as Lindeberg’s condition (Lindeberg 1922) is satisfied.
Sampling with LRT corresponds to drawing a random sample ϵi from the
standard normal and approximating ui through

ui = E(ui) +
√

Var(ui) · ϵi, fori = 1, ..., n.

In our mean-field approximation, we can compute this means and variances
as

E(ui) = E
[
b +

∑
j

vjγjβj
]

= µ̃b +
∑
j

vijκ̃jµ̃j,

Var(ui) = Var
[
b +

∑
j

vijγjβj
]

= σ̃2
b +

∑
j

v2
ijκ̃j

(
σ̃2
j + (1− κ̃j)µ̃2

j

)
.

For the flow, the mean and the variance of ui can be computed as

E(ui) = µ̃b +
∑
j

vijκ̃jµ̃jzj,

40

3.3. Considerations

Var(ui) = σ̃2
b +

∑
j

v2
ijκ̃j

(
σ̃2
j + (1− κ̃j)µ̃2

jzj
)
.

Here, it is important to note that z affects both the mean and variance of
the approximation. In Louizos and Welling (2017) it only influences the
mean.

Algorithm 3 SVI
Require: v, ytrain, µ, σ, κ, µb, σb.
µ̃, σ̃, κ̃, µ̃b, σ̃b ← Initialize.
for i = 1, .., epochs do

for j = 1, ..., batches do
v∗, y∗

train ← Sample a batch.
u∗ ← Sample linear predictor
Evaluate the loss of the linear predictor.
Calculate the gradient of the KL-divergence w.r.t µ̃, σ̃, κ̃, µ̃b, σ̃b.
Update hyperparameters using Adam.

end for
end for

3.3 Considerations
Before presenting the results, we must discuss some considerations that are
to be made when training a BGNLM.
First, it is important to consider which nonlinear functions should be part
of G. Composing a diverse set of transformations will allow for exploration
of lavish models. However, as we have used the same datasets as Hubin,
Storvik and Frommlet (2021), we mainly used the same nonlinear functions.
Second, it is important to consider whether or not to include all
transformations (3). Including projections create more flexible models,
but will increase training time due to the additional optimization of the
weight parameters within each projection, α. Excluding projections also
puts our model into a fully Bayesian framework, which can be desirable.
Third, we must choose how many generations to run. If we train for too
many generations the algorithm will be very time consuming, and if we
use too few generations we might not be able too consider some important
features.
Fourth, we must choose how many features to include in each generation.
We found that it was beneficial to include as many features as possible as

41

3.3. Considerations

this will allow for fast exploration of different features. However, having too
many features will possibly make feature generation time consuming as we
require that the features in each population are not collinear.

In addition to these, there are some important considerations to be made
regarding the algorithmic properties.

Scaling/normalizing
We will in regard to scaling/normalizing try to follow existing literature.
However, there are a lot to say about scaling/normalizing input data in
neural networks. We will therefore merely present our approach without to
much discussion, and refer to the literature for explanations.

Bottou, Curtis and Nocedal (2018) highlights that first-order optimization
methods are not scale invariant. In practical terms, this means that if the
input variables are not scaled properly, it may lead to very noisy gradients
causing optimization to be slow or even fail to converge. Thus, we must
specify a scaling strategy.

In a simple linear regression, it can be shown (Lecun et al. 1998) that the
Hessian of the mean squared error with respect to the regression parameters,
is exactly the covariance matrix of the input data. This means that if the
Hessian is close to the identity, the optimization problem becomes much
easier (Lecun et al. 1998). Therefore, one might desire that the input data
has covariance matrix equal to the identity, and the process for doing this is
known as data whitening. However, as this is often costly and might even
lead to poor performance (Wadia et al. 2021), it is common practice in
neural networks to standardize the input variables to have zero mean and
unit standard deviation. This will at least give some benefits of identity
covariance, and enhance the performance of first-order methods such as
Adam.

The most natural choice in our implementation is hence to normalize the
features to have mean equal to zero and standard deviation equal to one,
and we will mainly use this strategy. That is, we normalize all the original
covariates, xj, as well as all the transformed values vj in each generation.
This strategy corresponds to what is known as Layer Normalization (Ba,
Kiros and Hinton 2016) in neural networks. Another prominent strategy
known as Batch Normalization (Ioffe and Szegedy 2015) could also be
considered. However, this is more costly and are shown to generally not
improve performance in fully connected neural networks such as ours (Ba,
Kiros and Hinton 2016).

42

3.3. Considerations

It is important to note that this approach may cause bad performance. If
the covariates, x, are normalized before transforming through a nonlinear
function, and the outputs of the nonlinear functions are also normalized, we
may loose important information along the way.

Tuning parameters/initialization
There are a lot of tuning parameters in this model that can be changed
in order to enhance performance. We must consider batch sizes, epochs,
learning rate- and parameter initialization, prior parameters, etc. If we are
using the flow-based approximate posterior, we must also consider number
of flow components and the depth and width of each component.

To be clear, careful considerations was given to these things when testing our
implementation, and a lot of tuning was done. Hence, we will present the
different settings used in different applications when providing the results in
the next chapter.

However, some things are unchanged throughout the next chapter. Namely,
the prior for β, and the initialization of β, γ and b. The prior for βj,
j = 1, ..., q∗ is the standard normal in all settings, and for initialization we
used, for j = 1, ..., q∗:

µ̃j ∼ uniform(−0.01, 0.01),
σ̃j = log(ρj + 1), where ρj ∼ uniform(−5,−4),
κ̃j = sigmoid(λj), where λj ∼ uniform(1.5, 2.5),
µ̃b ∼ uniform(−0.01, 0.01),
σ̃b = log(ρb + 1), where ρb ∼ uniform(−5,−4).

As parameter initialization can have great influence on the results, we must
admit that this could need some more attention. It will however be left to
future work.

43

CHAPTER 4

Applications and Results

4.1 Simulation Studies
In testing of our novel algorithms, we will start with three simulation studies.
We will here mainly be interested in variable selection and model detection.
That is, we will be concerned with the accuracy of our approximate posteriors
rather than accuracy of predictions.
In all studies, we test both algorithms using N = 100 simulation runs. To
evaluate the performance, we report estimates for the power (Pow), the
false discovery rate (FPR) and the estimated number of false positives (FP).
These measures are defined as follows:

Pow = 1
N

N∑
l=1

I(γ̂lj∗ = 1); FDR = 1
N

N∑
l=1

∑
j I(γj = 0, γ̂lj = 1)∑

j I(γ̂lj = 1) ,

FP = 1
N

N∑
l=1

∑
j ̸=j∗

I(γ̂lj = 1).

Here, γ̂lj is used to denote if the algorithm chose to include variable j.
We here used a threshold of 0.3, meaning that all variables with marginal
inclusion probability above 0.3 are regarded as positives.

Independent Normal Data with Varying Noise
The model in the first two studies is a simple Bayesian GLM with normal
response and identity link function. The goal is here to evaluate our novel
algorithms in their ability to perform variable selection. The model is defined
as

44

4.1. Simulation Studies

X ∼ N (0, I),
y ∼ N (XβT , σ2I).

We used a fixed β:

β = (0, 0, 0, 0, 0, 1.5,−4, 3,−0.2, 1, 0, 0, 0, 0, 0,−2, 1.3, 0.3,−0.8, 3),

and let the noise, σ2, vary. X is here simulated from the standard normal
with n = 15, 000 observations and p = 20 covariates.

The goal was then to determine which xj corresponded to a nonzero
coefficient βj. That is, for this β, we were trying to evaluate how well
our algorithms did in estimating γ:

γ = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1).

In addition, we were interested in finding credible intervals for β to see if
they contain the true values. The latter can be found in the Appendix.

For the model prior, we used κj = e−2 ≈ 0.135 for all j. For both algorithms,
we used a batch size of 1000 and 300 epochs. The flow-based approximate
posterior was computed using K = 2 components with 2 hidden layers of
size 75 for each component.

(a) Flow (b) Mean-field

Figure 4.1: Pow, FP and FPR for mean-field and flow-based
approximate posterior for different values of σ2. The dashed lines
represents the best and worst values between the 100 runs.

45

4.1. Simulation Studies

The figure shows that both models did well in terms of model recovery in
this rather simple study. The model with flow-based approximate posterior
was however able to recover the model for higher noise level, and with overall
fewer false positives. It is also important to note that both has perfect
power for all noise levels, indicating that our models included all the correct
variables throughout.

Correlated data
For our next simulation study, we used the same GLM as in the first study.
However, we now fixed the noise at σ2 = 1. To make it harder for our
algorithms to separate between which covariates that contributed to the
response, we made one of the "false" covariates, depend on one of the "true"
covariates. To be specific, we defined a dependence of x6 on x3 in the
following way:

x3 = αx6 + (1− α)x3,

for 0 < α < 1.

Since both algorithms were able to detect the true model for σ2 = 1 in the
previous study, we expected they would do it again in this study. Indeed,
the power remained constant at 1 as before, and we only report the expected
number of false positives (FP). As expected, all false positives now came
from a false detection of x3. This is why the scale of the y-axis is changed
in Figure 4.2 (y-axis here goes from 0 to 0.1).

For both algorithms, we used a batch size of 1000 and 300 epochs. Here,
we tried different Ks for the flow approximate posterior to see if more
components improved the results. However, results were similar for K = 5
and K = 10 and K = 50, and we only show results for K = 2 components
with 2 hidden layers of size 75 for each component.

46

4.1. Simulation Studies

Figure 4.2: False Positives for correlated data. Upper x-axis is
Pearson’s correlation coefficient between x3 and x6 for different
values of α (lower x-axis). Dashed lines represents the best and
worst of the 100 runs.

As is evident from Figure 4.2, the mean-field approximate posterior
implementation did not do a very good job of excluding x3 here, and
was only able to detect the true model for a rather low correlation (α = 0.1).
However, as it is based on an assumption of independent covariates, this
result is not very surprising.

In contrast, the results for the algorithm with flow-based approximate
posterior are rather uplifting. It was able to detect the true model almost
every time for α = 0.6 and almost half the time for α = 0.7. This study
indicates that our flow-based approximations are working as intended, as
we are able to perform variable selection even though two variables are
correlated.

47

4.1. Simulation Studies

ART Study
In further evaluating our algorithms, we will take advantage of the
simulation design from the ART study, which was created to assess fractional
polynomials models using a large breast cancer dataset (Schmoor, Olschewski
and Schumacher 1996). The ART study includes six continuous predictors
(x1, x3, x5, x6, x7, x10) and four categorical predictors (x2, x4, x8, x9). The
categorical predictors consist of an ordered three-level variable (x4), an
unordered three-level variable (x9), and two binary variables (x2 and x8).

The correlation structure and predictor distribution in the ART study
are considered realistic and accurate, and Royston and Sauerbrei (2008)
provides further details on the design. For comparison, we use the frequentist
multivariate fractional polynomials (MFP), which was fitted with the R
package mfp (Heinze, Ambler and Benner 2022) and GMJMCMC modified
to include fractional polynomials (Hubin and De Bin 2022). The values in
Figure 4.3 are borrowed from their (unpublished/submitted for publication)
paper. The inclusion of this study is also inspired by their work. We ran all
methods 100 times, and report the median result.

The model used to compute the response in the original simulation study is
given by

y = x0.5
1 + x1 + x3 + x4a + x−0.2

5 + log(x6 + 1) + x8 + x10 + ϵ,

where x4a represents the second level of the categorical predictor x4, and
ϵ ∼ N (0, σ2). The instances used in the study are available online.

However, at noted in Hubin and De Bin (2022), this model is limited in its
ability to fully investigate the properties of the algorithms being evaluated.
For instance, the model misspecification of x−0.2

5 makes it impossible to
evaluate how frequently the algorithm selects the true model.

The model is therefore modified by introducing a fractional polynomial
effect of −1 for x5 and changing the effect of x3 from linear to a fractional
polynomial of degree 2 with powers of −0.5. This is done to make the search
for the true model more challenging. The new model is given by

y = |x1|0.5+x1+|x3|−0.5+|x3|−0.5 log(|x3|+ε)+x4a+x−1
5 +log(|x6|+ε)+x8+x10+ϵ,

where again x4a is the second level of x4 and ϵ ∼ N (0, σ2). Here, we used a
small number, ε = 10−5, for numerical stability.

The definition of fractional polynomials allows for transformations that
belong to either G0 = {x}, G1 = {x−2, x−1, x0.5, log x, x0.5, x3} or G2 =

48

4.1. Simulation Studies

{x−2 log x, x−1 log x, x−0.5 log x, log x log x, x0.5 log x, x log x, x2 log x,
x3 log x}.

We did not allow for interactions or projections, or modifications of already
transformed variables. To be more specific, we set Pmu = 0, Ppr = 0,
Pmo = 1/2 and Pin = 1/2. If, at a given time, the algorithm chose
modification, it was only allowed to modify the features that were not
already modifications. A transformation from either G0, G1 or G2 (with
PG0 = PG1 = PG2 = 1/3) was then selected.

For the model prior, κk was chosen to be κk = exp(− log n) for k : Fk ∈ G0,
κk = exp(−(1 + log 2) log n) for k : Fk ∈ G1 and κk = exp(−(1 + log 4) log n)
for k : Fk ∈ G2. Hence, this prior heavily penalizes the depth of features.

Figure 4.3: FDR and power on art study with varying noise for
different algorithms. Plotted values are the median results of 100
runs.

This time, the performance metrics were slightly modified. We still report
power and false positive rate, but they are now separated into two categories:

49

4.2. Real Data Applications

strict and soft. Strict is used to indicate whether or not the algorithms
were able to detect the actual fractional polynomial used to simulate y, with
right variable and right transformations, while soft indicates if the correct
variable x was detected, but not the correct transformation.

From Figure 4.3 it is interesting to note the difference between our
implementations and GMJMCMC. For higher noise, GMJMCMC does not
include any variables (low power and low FPR), while BGNLM_FLOW and
BGNLM_MF includes too many variables (high power and high FPR). For
less noise, GMJMCMC were able to detect the right variables but included
the incorrect transformations, while BGNLM_FLOW included most of the
right variables, with right transformations. Overall, both BGNLM_FLOW
and BGNLM_MF are doing quite well in this study; strict power is high,
and strict FDR is low as desired. In fact, BGNLM_FLOW rarely had a
false detection for lower noise.

The only obvious weakness of our implementations is (soft) power for less
noise. After inspecting the results, we found that this is due to the inability
to detect x3 as a true variable. For higher noise, we were unable to dislike
anything, resulting in a lot of false positives. For less noise, we filtered out
the false variables and transformations, but were unable to retain x3 as a
positive. We suspect that this is a side effect of our normalization strategy.
Since we are normalizing variables before and after transforming, it leads to
a weakened signal coming from the transformations of x3 when generating
the response.

4.2 Real Data Applications
We will in this section apply our novel algorithms on real world datasets.
Here, we use the same datasets as in Hubin, Storvik and Frommlet (2021).
This allows us to compare our variational approximate posteriors with
posteriors computed by GMJMCMC, and evaluate whether or not our
methods are able to get similar results.

Binary Classification
For binary classifications, we consider a BGNLM (1b) with response variable
coming from a Bernoulli distribution. We use the logit link function and
dispersion parameter ϕ = 1. This is hence comparable to classical logistic
regression. We use the model prior corresponding to (4) with a = e−2

and c(Fj(·, ·)) = log(ocj + 1)− ε, for j = 1, ..., q∗. By using this prior, we

50

4.2. Real Data Applications

practically force all original covariates to be in the model by assigning them
a prior probability close to 1 (oc = 0).

Predictions are made by applying the logit function to the linear predictor:

ŷ∗
i = I(1

1 + eui
≥ 0.5),

where ui is sampled directly using the LRT described in the previous chapter.

We here used, in both applications, nonlinear functions form
G = {gauss(x), sigmoid(x), sin(x), cos(x), tanh(x), tan−1(x), log(|x|+ ε),
exp(x), |x|7/2, |x|5/2, |x|1/3}, selected with uniform probability. In addition,
we allowed for both multiplications and projections and let Pmu = Pmo =
Ppr = Pnew = 1/4.

We compare our implementations with various classification algorithms:
tree-based (TXGBOOST) and linear gradient boosting (LXGBOOST),
penalized likelihood (LASSO and (RIDGE), deep fully connected neural
networks (DEEPNETS), random forests (RFOREST), naive Bayes classifier
(NBAYES), logistic regression (LR) and GMJMCMC (BGNLM and
BGNLM_PRL). Here, BGNLM_PRL (Hubin, Storvik and Frommlet 2021)
is implemented using distributed data GMJMCMC. To properly compare,
the same data were used for training and testing for all algorithms, and
the algorithms with a stochastic component were trained N = 100 times.
We report the median of different statistics, as well as the minimum and
maximum values across the 100 runs.

To evaluate the different algorithms, we use the accuracy (ACC), false
positive rate (FPR) and false negative rate (FNR) on the test set. In a
given run, these are defined as

ACC =
∑
i I(ŷ∗

i = y∗
i)

np
; FPR =

∑
i I(ŷ∗

i = 1, y∗
i = 0)∑

i I(y∗
i = 0) ,

FNR =
∑
i I(ŷ∗

i = 0, y∗
i = 1)∑

i I(y∗
i = 1) ,

where np is the size of the test data and y∗
i is the i-th test sample.

Wisconsin Breast Cancer data set

This data set was first introduced by Mangasarian, Street and Wolberg (1995).
It contains digitized images of fine needle aspirates (FNA) of breast mass

51

4.2. Real Data Applications

from 569 patients (357 benign and 212 malignant tissues). Ten real-valued
characteristics are considered: radius, texture, perimeter, area, smoothness,
concavity, concave points, symmetry and fractal dimension. For each of
these characteristics, the mean, standard deviation and the mean of the
three largest values per image were computed, resulting in 30 explanatory
variables.

To properly compare our implementation with Hubin, Storvik and Frommlet
2021, we used the same samples for training and testing. In their paper, a
randomly selected 25% of the images was selected as training data while
the reminding 75% were used as a test set.

Since the size of the training data is relatively small, we found it beneficial
to use only one batch trained for 1000 epochs in each generation. Both
BGNLM_MF and BGNLM_FLOW was trained for 15 generations, where
the number of features in each population was 130 and the maximum
operations count of any feature was 10.

Algorithm ACC FNR FPR
BGNLM_MF 0.9789 (0.9765,0.9836) 0.0503 (0.0377,0.0503) 0.0037 (0.0037,0.0075)
BGNLM_FLOW 0.9765 (0.9742,0.9812) 0.0503 (0.0440,0.0629) 0.0037 (0.0000,0.0112)
BGNLM_PRL 0.9742 (0.9695,0.9812) 0.0479 (0.0479,0.0536) 0.0111 (0.0000,0.0184)
RIDGE 0.9742 (-,-) 0.0592 (-,-) 0.0037 (-,-)
BGLM 0.9718 (0.9648,0.9765) 0.0592 (0.0536,0.0702) 0.0074 (0.0000,0.0148)
BGNLM 0.9695 (0.9554,0.9789) 0.0536 (0.0479,0.0809) 0.0148 (0.0037,0.0326)
DEEPNETS 0.9695 (0.9225,0.9789) 0.0674 (0.0305,0.1167) 0.0074 (0.0000,0.0949)
LR 0.9671 (-,-) 0.0479 (-,-) 0.0220 (-,-)
LASSO 0.9577 (-,-) 0.0756 (-,-) 0.0184 (-,-)
LXGBOOST 0.9554 (0.9554,0.9554) 0.0809 (0.0809,0.0809) 0.0184 (0.0184,0.0184)
TXGBOOST 0.9531 (0.9484,0.9601) 0.0647 (0.0536,0.0756) 0.0326 (0.0291,0.0361)
RFOREST 0.9343 (0.9038,0.9624) 0.0914 (0.0422,0.1675) 0.0361 (0.0000,0.1010)
NBAYES 0.9272 (-,-) 0.0305 (-,-) 0.0887 (-,-)

Table 4.1: Accuracy (ACC), false negative rate (FNR), and false
positive rate (FPR) of various classification algorithms. The values
in parentheses represent the smallest and largest values from the
100 runs, respectively. TThe contents of this table is taken from
Hubin, Storvik and Frommlet 2021 and the results from 100 runs of
BGNLM_MF and BGNLM_FLOW were added.

The above table shows that NBAYES and RFOREST was the worst per-
formers. NBAYES predicted too many many false positives and RFOREST
too many false negatives. All of the algorithms based on linear features are
among the best performing methods, indicating that nonlinearities are not
of primary importance in this dataset. Nevertheless, all versions of BGNLM
are amongst the best performing algorithms. BGNLM_MF performed best

52

4.2. Real Data Applications

in terms of median accuracy, while BGNLM_FLOW and BGNLM_PRL
did slightly worse over the 100 runs. Interestingly, BGNLM_MF shows
great consistency in this application with median FPR equal to its best, and
median FNR equal to its worst.

Spam Classification

The Spambase dataset (Cranor and LaMacchia 1998) consists of emails
classified as either spam or non-spam. The emails were collected from a
variety of sources and manually labeled by humans as either spam or non-
spam. The dataset contains a total of 4, 601 instances, with 1, 813 spam and
2, 788 non-spam emails. Each email instance in the dataset is represented
by 57 features, which include things like the frequency of certain words,
the use of all capital letters, and the presence of certain characters such as
exclamation points and dollar signs. The data were randomly split into a
training set of 1536 emails, with the remanding 3065 emails being used for
testing.

Both BGNLM_FLOW and BGNLM_MF was trained using a batch size of
512 and 600 epochs for 15 generations. The size of each population was set
to 200, and maximum operations count for all features was 10.

Algorithm ACC FNR FPR
TXGBOOST 0.9465 (0.9442,0.9481) 0.0783 (0.0745,0.0821) 0.0320 (0.0294,0.0350)
RFOREST 0.9328 (0.9210,0.9413) 0.0814 (0.0573,0.1174) 0.0484 (0.0299,0.0825)
BGNLM_MF 0.9303 (0.9251,0.9362) 0.1042 (0.0857,0.1143) 0.0478 (0.0414, 0.0531)
BGNLM_FLOW 0.9297 (0.9225,0.9368) 0.1076 (0.0941,0.1227) 0.0468 (0.0383, 0.0584)
DEEPNETS 0.9292 (0.9002,0.9357) 0.0846 (0.0573,0.1465) 0.0531 (0.0310,0.0829)
BGNLM_PRL 0.9251 (0.9139,0.9377) 0.0897 (0.0766,0.1024) 0.0552 (0.0445,0.0639)
BGNLM 0.9243 (0.9113,0.9328) 0.0927 (0.0808,0.1116) 0.0552 (0.0465,0.0658)
LR 0.9194 (-,-) 0.0681 (-,-) 0.0788 (-,-)
BGLM 0.9178 (0.9168,0.9188) 0.1090 (0.1064,0.1103) 0.0528 (0.0523,0.0538)
LASSO 0.9171 (-,-) 0.1077 (-,-) 0.0548 (-,-)
RIDGE 0.9152 (-,-) 0.1288 (-,-) 0.0415 (-,-)
LXGBOOST 0.9139 (0.9139,0.9139) 0.1083 (0.1083,0.1083) 0.0591 (0.0591,0.0591)
NBAYES 0.7811 (-,-) 0.0801 (-,-) 0.2342 (-,-)

Table 4.2: Accuracy, false negative rate (FNR), and false positive
rate (FPR) of various classification algorithms. The values in
parentheses represent the smallest and largest values from the
100 runs, respectively. The contents of this table is taken from
Hubin, Storvik and Frommlet 2021 and the results from 100 runs of
BGNLM_MF and BGNLM_FLOW were added.

Table 4.2 shows the results for the different algorithms. Once again, NBAYES
was the worst performer due to too many false positives. However, this

53

4.2. Real Data Applications

time TXGBOOST and RFOREST performed the best, and the models with
linear features are amongst the worst. This indicates that nonlinearities
are important for this dataset. Both BGNLM_FLOW and BGNLM_MF
are however still amongst the top-performing algorithms and have similar
performance.

Prediction of metric outcome
For prediction of a metric outcome, we consider a BGNLM with Gaussian
response and identity link function. We assumed homoscedasticity and let
ϕ = σ2 where σ2 is the variance of y.
Predictions are now made according to

ŷ∗
i = ui,

where ui is sampled directly using the LRT described in the previous chapter.
Here, we used both a = e−2 and a = e− logn for the model priors in Equation
(4). In Table 4.3, these are marked as AIC and BIC, respectively. The
complexity measure, c(Fj(·, ·)), is still log(ocj + 1) − ε, resulting in prior
probability close to 1 for linear terms. Nonlinearities were selected from
G = {sigmoid(x), log(|x| + 1), exp(−|x|), |x|7/2, |x|5/2, |x|1/3} with uniform
probability, and we used all transformations with Pmu = Pmo = Ppr =
Pnew = 1/4.
We still compare our implementations with different algorithms, all with
the same training- and testing data. However, since the Bayes classifier and
logistic regression are not well suited for this task, we replace these with
Bayesian linear regression, fitted with variational inference (VARBAYES)
(Carbonetto and Stephens 2012) and a simple Gaussian regression (GR).
Methods with a stochastic component were again run N = 100 times, and
we report the median, worst and best results of three different statistics.
The statistics are now the root mean squared error (RMSE), mean absolute
error (MAE) and Pearson’s correlation coefficient between the data and the
predicted values (CORR). These are defined as follows:

RMSE =

√√√√∑np

i (ŷ∗
i − y∗

i)2

np
; MAE =

∑np

i |ŷ∗
i − y∗

i |
np

,

CORR =
∑np

i (ŷ∗
i − ¯̂y∗)(y∗

i − ȳ∗)√∑np

i (ŷ∗
i − ¯̂y∗)2

√∑np

i (y∗
i − ȳ∗)2

,

54

4.2. Real Data Applications

Abalone Age

The abalone age dataset (Nash et al. 1994) has served as a benchmark dataset
for prediction algorithms for almost three decades. It contains information
about abalone, a type of sea snail, and their physical measurements. The
dataset consists of 4, 177 instances, with each instance representing a single
abalone. There are eight features for each abalone, including measurements
of the shell length, diameter, height, and weight, as well as the sex of the
abalone. The target variable is the age of the abalone, which is typically
determined by counting the number of rings on their shells. Many of the
covariates in the dataset are correlated (see the Appendix for correlation
matrix). Intuitively, it is easy to see that weight is positively correlated with
height etc.

We again use the same data for training and testing across all algorithms. A
randomly selected 3177 instances were used for training, and the remaining
1000 were used for testing. Both BGNLM_MF and BGNLM_FLOW was
trained using a batch size of 500 for 600 epochs. We ran for 15 generations,
and the number of features in each population was set to 50, with a maximum
operations count of 10 for each feature. The flow-based approximate posterior
was again computed using K = 2 components with two hidden layers of 75
nodes for each component.

Algorithm RMSE MAE CORR
BGNLM_FLOW (AIC) 1.9561 (1.9375,1.9755) 1.4218 (1.4113,1.4371) 0.7815 (0.7761,0.7841)
BGNLM_PRL (BIC) 1.9573 (1.9334,1.9903) 1.4467 (1.4221,1.4750) 0.7831 (0.7740, 0.7895)
BGNLM_FLOW (BIC) 1.9622 (1.9456,1.9986) 1.4273 (1.4149,1.4589) 0.7799, (0.7703,0.7838)
BGNLM (BIC) 1.9690 (1.9380,2.0452) 1.4552 (1.4319,1.5016) 0.7803 (0.7616,0.7882)
BGNLM_PRL (AIC) 1.9720 (1.9328,2.0081) 1.4548 (1.4377,1.4903) 0.7795 (0.7693,0.7893)
BGNLM_MF (BIC) 1.9894 (1.9494,2.0085) 1.4661 (1.4299,1.4817) 0.7746 (0.7698,0.7847)
BGNLM_MF (AIC) 1.9896 (1.9630,2.0071) 1.4672 (1.4417,1.4836) 0.7744 (0.7698,0.7813)
BGNLM (AIC) 2.0046 (1.9573,2.0560) 1.4821 (1.4471,1.5209) 0.7707 (0.7566,0.7831)
RFOREST 2.0352 (2.0020,2.0757) 1.4924 (1.4650,1.5259) 0.7633 (0.7530,0.7712)
BGLM 2.0758 (-,-) 1.5381 (-,-) 0.7522 (-,-)
LASSO 2.0765 (-,-) 1.5386 (-,-) 0.7514 (-,-)
VARBAYES 2.0779 (-,-) 1.5401 (-,-) 0.7516 (-,-)
GR 2.0801 (-,-) 1.5401 (-,-) 0.7500 (-,-)
LXGBOOST 2.0880 (2.0879,2.0880) 1.5429 (1.5429,1.5429) 0.7479 (0.7479,0.7479)
TXGBOOST 2.0881 (2.0623,2.1117) 1.5236 (1.4981,1.5438) 0.7526 (0.7461,0.7590)
RIDGE 2.1340 (-,-) 1.5649 (-,-) 0.7347 (-,-)
DEEPNETS 2.1466 (1.9820,3.5107) 1.5418 (1.3812,3.1872) 0.7616 (0.6925,0.7856)

Table 4.3: Root mean squared error (RMSE), mean absolute error
(MAE), correlation (CORR) of various regression algorithms. The
values in parentheses represent the smallest and largest values of
the 100 runs, respectively. The contents of this table is taken from
Hubin, Storvik and Frommlet 2021 and the results from 100 runs of
BGNLM_MF and BGNLM_FLOW were added.

55

4.2. Real Data Applications

DEEPNETS was the worst performer for this dataset with remarkably
varying results. However, Hubin, Storvik and Frommlet (2021) admits
that not much effort was put into tuning the DEEPNETS. Again,
BGNLM_FLOW did slightly better than BGNLM_PRL over the 100
runs. In contrast to GMJMCMC, our flow implementation worked
better with modified-AIC prior, with the worst run of BGNLM_FLOW
(AIC) comparable to the median of BGNLM_PRL (AIC). In addition,
BGNLM_FLOW had overall lower MAE, while BGNLM_PRL reports
predictions that are more correlated with the test set.

The mean-field approximate posterior did well but not great in this applic-
ation. Overall, BGNLM_MF did better than the BGNLM implemented
without using distributed data and with AIC-like prior. However, it was not
able to predict as well as the flow model, presumably due to high correlations
in the dataset.

Figure 4.4: Predictions of abalone age (y-axis). Plot shows 100
randomly sampled predictions and the respective test values from
an arbitrary run of BGNLM_FLOW (AIC). Dashed lines are 95%
credible predictive intervals.

56

4.2. Real Data Applications

In Figure 4.4 we illustrate the ability to evaluate the uncertainty of
predictions made by our models. Mean and variance is available through
calculations shown in previous chapter, and predictions are sampled using
the local reparametrization trick.

57

CHAPTER 5

Conclusion

In this thesis, we have implemented a new method to make inference
on BGLMs and BGNLMs. We have shown that this method was able
to do Bayesian model selection and model averaging. In addition, we
have performed feature generation through a genetic algorithm. Our
implementation of mean-field and flow-based approximate posteriors are
able to estimate the marginal inclusion probabilities of predictive features
as well as give uncertainty measures for the regression coefficients in both
BGLM and BGNLM. Through a series of applications we have shown that
our implementation is competitive with GMJMCMC (Hubin, Storvik and
Frommlet 2020), and even outperforms GMJMCMC on multiple real world
datasets. All though we were not successful in testing our implementations
on a larger dataset, and leave that to future work, we are certain that the
proposed method is able to scale.

Yet, there are multiple limitations to consider. First, we tried to recover
Kepler’s third law, which was one of the applications in Hubin, Storvik
and Frommlet (2021). It seems our implementations fail when the signal
coming from nonlinear structures are weak. One solution to this could
be to implement a second-order optimization technique. However, this
would severely increase training times. Second, we must admit that our
implementation is not fully Bayesian since the α-parameters inside the
projections are not estimated in a Bayesian manner. Rather, we used the
practical approach of fixing parameters within projections before applying
a nonlinearity. It is a computationally efficient strategy but not entirely
Bayesian, and we and suggest improving upon this by implementing the
other suggested strategies.

A topic for future research involves comparing the computation times of
the different implementations with GMJMCMC. Since computation times

58

are highly dependent on hardware and efficient implementation, we were
not able to properly do this. Another topic for future research is related to
the priors. All though the model prior was listed as possible weakness in
Hubin, Storvik and Frommlet (2021), we adopted their approach inspired
by modifications of AIC and BIC. They worked well for the applications
presented here but there are other priors that should be considered. We will
hence extend the suggestion of modifying the model prior, possibly with a
hyperprior on a. Another topic for future research involves the parameter
initialization. We used a strategy similar to zero-initialization. The approach
again worked fine for the applications here, but other strategies should also
be considered.

In the Appendix we have included some plots that did not make it to Chapter
4. These include credible intervals for regression coefficients in the two first
simulation studies, and correlation plot for the Abalone dataset.

All code for running and plotting the different applications can be found on
https://github.com/sebsommer/BGNLM. At the time of writing this is not
a finished Python library, but we aim to finalize the development in short
time.

59

https://github.com/sebsommer/BGNLM

The Appendix

60

Figure 5.1: Uncertainty plots for β-parameters for an arbitrary
run of simulation study 1 using flow-based approximate posterior.
Black lines are the true values.

61

Figure 5.2: Uncertainty plots for β-parameters for an arbitrary
run of simulation study 1 using mean field approximate posterior.
Black lines are the true values.

62

(a) Flow (b) Mean-field

Figure 5.3: Uncertainty plots for β3 for an arbitrary run of
simulation study 2. Black lines are the true values. With γ3 fixed
we are still able to recover the true value of β3 due to strong signal
(low noise).

63

Figure 5.4: Correlation plot for abalone data set. Categorical
variable ’Sex’ is excluded.

64

Bibliography

Adya, M. and Collopy, F. (1998). ‘How effective are neural networks at
forecasting and prediction? A review and evaluation’. In: Journal of
Forecasting vol. 17, no. 5-6, pp. 481–495.

Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016). Layer Normalization. arXiv:
1607.06450 [stat.ML].

Battiti, R. (Mar. 1992). ‘First- and Second-Order Methods for Learning:
Between Steepest Descent and Newton’s Method’. In: Neural Computation
vol. 4.

Bogdan, M., Ghosh, J. K. and Tokdar, S. T. (2008). ‘A comparison of the
Benjamini-Hochberg procedure with some Bayesian rules for multiple
testing’. In: Beyond Parametrics in Interdisciplinary Research: Festschrift
in Honor of Professor Pranab K. Sen. Institute of Mathematical Statistics,
pp. 211–230.

Bottou, L., Curtis, F. E. and Nocedal, J. (2018). Optimization Methods for
Large-Scale Machine Learning. arXiv: 1606.04838 [stat.ML].

Breiman, L. (Oct. 2001). ‘Random Forests’. In: Machine Learning vol. 45,
pp. 5–32.

Cao, N. D., Titov, I. and Aziz, W. (2019). Block Neural Autoregressive Flow.
arXiv: 1904.04676 [stat.ML].

Carbonetto, P. and Stephens, M. (2012). ‘Scalable Variational Inference for
Bayesian Variable Selection in Regression, and Its Accuracy in Genetic
Association Studies’. In: Bayesian Analysis vol. 7, no. 1, pp. 73–108.

Cranor, L. F. and LaMacchia, B. A. (Aug. 1998). ‘Spam!’ In: Commun.
ACM vol. 41, no. 8, pp. 74–83.

Csiszar, I. (1975). ‘I-Divergence Geometry of Probability Distributions
and Minimization Problems’. In: The Annals of Probability vol. 3, no. 1,
pp. 146–158.

65

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1904.04676

Bibliography

Dinh, L., Sohl-Dickstein, J. and Bengio, S. (2017). Density estimation using
Real NVP. arXiv: 1605.08803 [cs.LG].

European Parliament (2016). ‘General Data Protection Regulation’. In:
vol. 119, no. 1, pp. 1–88.

Fritsch, A. and Ickstadt, K. (2009). ‘Improved criteria for clustering based
on the posterior similarity matrix’. In: Bayesian Analysis vol. 4, no. 2,
pp. 367–391.

Germain, M. et al. (2015). MADE: Masked Autoencoder for Distribution
Estimation. arXiv: 1502.03509 [cs.LG].

Goodfellow, I. J., Bengio, Y. and Courville, A. (2016). Deep Learning.
http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press.

Hansen, L. and Sargent, T. J. (May 2001). ‘Robust Control and Model
Uncertainty’. In: American Economic Review vol. 91, no. 2, pp. 60–66.

Hastings, W. K. (Apr. 1970). ‘Monte Carlo Sampling Methods using Markov
Chains and their Applications’. In: Biometrika vol. 57, no. 1, pp. 97–109.

Heinze, G., Ambler, G. and Benner, A. (2022). ‘mfp: Multivariable Fractional
Polynomials’.

Hinton, G., Srivastava, N. and Swersky, K. (2018). ‘Lecture6a: Neural
Networks for Machine Learning’.

Hinton, G. E. and Camp, D. van (1993). ‘Keeping the neural networks
simple by minimizing the description length of the weights’. In: Annual
Conference Computational Learning Theory.

Hinton, G. E., Srivastava, N., Krizhevsky, A. et al. (2012). Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:
1207.0580 [cs.NE].

Hubin, A. and De Bin, R. (July 2022). ‘On a genetically modified mode
jumping MCMC approach for multivariate fractional polynomials’. In.

Hubin, A. and Storvik, G. (2019). Combining Model and Parameter
Uncertainty in Bayesian Neural Networks. arXiv: 1903.07594 [stat.ML].

Hubin, A., Storvik, G. and Frommlet, F. (Mar. 2020). ‘A Novel Algorithmic
Approach to Bayesian Logic Regression (with Discussion)’. In: Bayesian
Analysis vol. 15, no. 1.

Hubin, A., Storvik, G. and Frommlet, F. (2021). Flexible Bayesian Nonlinear
Model Configuration.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv: 1502.03167
[cs.LG].

Jordan, M. I. et al. (1999). ‘An Introduction to Variational Methods for
Graphical Models’. In: Machine Learning vol. 37, pp. 183–233.

66

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1502.03509
http://www.deeplearningbook.org
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1903.07594
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

Bibliography

Kanter, J. M. and Veeramachaneni, K. (2015). ‘Deep feature synthesis:
Towards automating data science endeavors’. In: 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for Stochastic
Optimization. arXiv: 1412.6980 [cs.LG].

Kingma, D. P., Salimans, T., Jozefowicz, R. et al. (2017). Improving
Variational Inference with Inverse Autoregressive Flow. arXiv: 1606.04934
[cs.LG].

Kingma, D. P., Salimans, T. and Welling, M. (2015). Variational Dropout
and the Local Reparameterization Trick. arXiv: 1506.02557 [stat.ML].

Lachmann, J. (2021). ‘Subsampling Strategies for Bayesian Variable Selection
and Model Averaging in GLM and BGNLM’. In.

Lecun, Y. et al. (1998). ‘Gradient-based learning applied to document
recognition’. In: Proceedings of the IEEE vol. 86, no. 11, pp. 2278–2324.

Lindeberg, J. W. (1922). ‘Eine neue Herleitung des Exponentialgesetzes in
der Wahrscheinlichkeitsrechnung’. In: Mathematische Zeitschrift vol. 15,
pp. 211–225.

Linnainmaa, S. (1970).
Louizos, C. and Welling, M. (2017). Multiplicative Normalizing Flows for

Variational Bayesian Neural Networks. arXiv: 1703.01961 [stat.ML].
Maddison, C. J., Mnih, A. and Teh, Y. W. (2016). ‘The Concrete Distribution:

A Continuous Relaxation of Discrete Random Variables’. In: CoRR
vol. abs/1611.00712. arXiv: 1611.00712.

Mangasarian, O. L., Street, W. N. and Wolberg, W. H. (1995). ‘Breast
Cancer Diagnosis and Prognosis via Linear Programming’. In: Operations
Research vol. 43, no. 4, pp. 570–577.

Nalisnick, E., Anandkumar, A. and Smyth, P. (2015). A Scale Mixture
Perspective of Multiplicative Noise in Neural Networks. arXiv: 1506.03208
[stat.ML].

Nash, W. et al. (Jan. 1994). ‘7he Population Biology of Abalone (Haliotis
species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast
and Islands of Bass Strait’. In: Sea Fisheries Division, Technical Report
No vol. 48.

Nelder, J. A. and Wedderburn, R. W. M. (1972). ‘Generalized Linear Models’.
In: Journal of the Royal Statistical Society: Series A (General) vol. 135,
no. 3, pp. 370–384. eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.
2307/2344614.

Papamakarios, G., Nalisnick, E. et al. (2021). Normalizing Flows for
Probabilistic Modeling and Inference. arXiv: 1912.02762 [stat.ML].

Papamakarios, G., Pavlakou, T. and Murray, I. (2018). Masked Autoregressive
Flow for Density Estimation. arXiv: 1705.07057 [stat.ML].

67

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1506.02557
https://arxiv.org/abs/1703.01961
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1506.03208
https://arxiv.org/abs/1506.03208
https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2344614
https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2344614
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1705.07057

Bibliography

Peterson, C. and Anderson, J. R. (1987). ‘A Mean Field Theory Learning
Algorithm for Neural Networks’. In: Complex Systems, no. 1, pp. 995–1019.

Quiroz, M., Kohn, R. et al. (2019). ‘Speeding Up MCMC by Efficient Data
Subsampling’. In: Journal of the American Statistical Association vol. 114,
no. 526, pp. 831–843.

Quiroz, M., Villani, M. et al. (2018). Subsampling MCMC - An introduction
for the survey statistician. arXiv: 1807.08409 [stat.ME].

Ranganath, R., Tran, D. and Blei, D. M. (2016). Hierarchical Variational
Models. arXiv: 1511.02386 [stat.ML].

Razi, M. A. and Athappilly, K. (2005). ‘A comparative predictive analysis
of neural networks (NNs), nonlinear regression and classification and
regression tree (CART) models’. In: Expert Syst. Appl. vol. 29, pp. 65–74.

Refenes, A. N., Zapranis, A. and Francis, G. (1994). ‘Stock performance
modeling using neural networks: A comparative study with regression
models’. In: Neural Networks vol. 7, no. 2, pp. 375–388.

Rényi, A. (1961). ‘On measures of entropy and information’. In: Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics. Vol. 4.
University of California Press, pp. 547–562.

Rezende, D. J. and Mohamed, S. (2016). Variational Inference with
Normalizing Flows. arXiv: 1505.05770 [stat.ML].

Robbins, H. E. (1951). ‘A Stochastic Approximation Method’. In: Annals of
Mathematical Statistics vol. 22, pp. 400–407.

Royston, P. and Sauerbrei, W. (2008). ‘Multivariable Model-Building:
A Pragmatic Approach to Regression Analysis based on Fractional
Polynomials for Modelling Continuous Variables’. In.

Rue, H., Martino, S. and Chopin, N. (2009). ‘Approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace
approximations’. In: Journal of the Royal Statistical Society Series B
vol. 71, no. 2, pp. 319–392.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). ‘Learning
representations by back-propagating errors’. In: Nature vol. 323, pp. 533–
536.

Schmoor, C., Olschewski, M. and Schumacher, M. (1996). ‘Randomized
and Non-Randomized Patients in Clinical Trials: Experiences with
Comprehensive Cohort Studies’. In: Statistics in Medicine vol. 15, no. 3,
pp. 263–271.

Scott, J. and Berger, J. (July 2006). ‘An exploration of aspects of Bayesian
multiple testing’. In: Journal of Statistical Planning and Inference vol. 136,
pp. 2144–2162.

68

https://arxiv.org/abs/1807.08409
https://arxiv.org/abs/1511.02386
https://arxiv.org/abs/1505.05770

Bibliography

Skaaret-Lund, L., Hubin, A. and Storvik, G. (2023). Sparsifying Bayesian
neural networks with latent binary variables and normalizing flows.

Sriperumbudur, B. K. et al. (2009). On integral probability metrics, phi-
divergences and binary classification. arXiv: 0901.2698 [cs.IT].

Tabak, E. and Turner, C. (Feb. 2013). ‘A family of nonparametric density
estimation algorithms’. English (US). In: Communications on Pure and
Applied Mathematics vol. 66, no. 2, pp. 145–164.

Tabak, E. G. and Vanden-Eijnden, E. (2010). ‘Density estimation by dual
ascent of the log-likelihood’. In: Communications in Mathematical Sciences
vol. 8, no. 1, pp. 217–233.

Tierney, L. and Kadane, J. B. (1986). ‘Accurate Approximations for Posterior
Moments and Marginal Densities’. In: Journal of the American Statistical
Association vol. 81, no. 393, pp. 82–86.

Tjelmeland, H. and Hegstad, B. K. (2001). ‘Mode Jumping Proposals in
MCMC’. In: Scandinavian Journal of Statistics vol. 28, no. 1, pp. 205–223.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9469.00232.

Wadia, N. S. et al. (2021). Whitening and second order optimization both
make information in the dataset unusable during training, and can reduce
or prevent generalization. arXiv: 2008.07545 [cs.LG].

69

https://arxiv.org/abs/0901.2698
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9469.00232
https://arxiv.org/abs/2008.07545

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Generalized Linear Models (GLM)
	(Bayesian) Neural Networks
	Bayesian Generalized Nonlinear Models (BGNLM)
	Genetically Modified MJMCMC (GMJMCMC)
	Variational Inference
	Normalizing Flows
	Autoregressive Flows
	Masked Autoencoders for Distribution Estimation (MADE)
	Inverse Autoregressive Flows (IAF)
	Optimization algorithms

	Contribution and further specifications
	The genetic algorithm
	The model in each generation
	Considerations

	Applications and Results
	Simulation Studies
	Real Data Applications

	Conclusion
	Bibliography

