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Abstract

We change the approach for computing posterior distributions in Bayesian
Generalized Nonlinear Models. We replace MCMC with variational Bayes,
and approximate the posterior distribution with mean-field, or through
utilization of normalizing flows. Step by step, we go through the theory
behind BGNLM, variational inference and normalizing flows. We also show
the calculations needed to understand the new implementation, and provide
a Python framework for training and testing BGNLMs. Through a series of
applications we demonstrate that we are able to make accurate predictions,
and get easily obtainable measures for the uncertainty of the predictions.
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CHAPTER 1

Introduction

According to Breiman (2001)), there are two broad approaches to data
analysis: the data modelling culture, which focuses on understanding the
data’s generating process, and the algorithmic modelling culture, which
emphasizes accurate predictions and utilizes techniques like neural networks
or random forests. However, as datasets become increasingly large and
complex, there is a growing need for models that not only make accurate
predictions but also provide clear and understandable explanations for
those predictions. One reason for this is the General Data Protection
Regulation (European Parliament , which requires organizations to
explain decisions made by automated systems to individuals affected by
them.

To address this need, Hubin, Storvik and Frommlet introduced
a class of regression models called Bayesian Generalized Nonlinear Mod-
els (BGNLM), which provide flexible models with high interpretability.
BGNLMs are based on generalized linear models (Nelder and Wedderburn
1972), where the distribution of the observations is assumed to be from the
exponential family, and the mean parameter is a nonlinear function of the
covariates. In BGNLM, the specific modeling of this nonlinear dependency
incorporates ideas related to neural networks. While neural networks can
be difficult to interpret, BGNLMs are designed to retain good predictive
abilities while remaining relatively simple, interpretable, and transparent.

However, as with most Bayesian approaches, BGNLMs can be computa-
tionally expensive, restricting their usage to relatively small problems with
few observations and covariates. The fitting algorithm proposed by Hubin,
Storvik and Frommlet is a special case of Markov Chain Monte Carlo

(MCMC) called Genetically Modified Mode Jumping Markov Chain Monte
Carlo (GMJMCMC). To improve computation times for datasets with many



observations, Lachmann (2021)) implemented a subsampling GMJMCMC.
Nevertheless, BGNLMs still struggle to scale well to datasets with many
covariates.

To address this challenge, in this thesis, we propose a new fitting algorithm
that combines ideas from variational inference and normalizing flows.

In Chapter 2, we provide a detailed description of BGNLMs, GMJMCMC,
variational inference, and normalizing flows. In Chapter 3, we present
the algorithm used for inference, and in Chapter 4, we apply our new
implementation to different datasets. In Chapter 5, we conclude and discuss
suggestions for further research.

Notation

Throughout the thesis, we will use bold letters or symbols, such as x or @
to denote vectors or sets, while x and y are generally used for scalars. Bold
capital letters, such as W are used to denote matrices. We will use p(-) or
q(+) to denote arbitrary distribution functions. If we are concerned with the
parameters of these functions, we use subscript to denote the parameters,
e.g pe(+), unless specified otherwise.



CHAPTER 2

Background

2.1 Generalized Linear Models (GLM)

In order to provide some context, it is appropriate to start with an
introduction to the Generalized Linear Model (Nelder and Wedderburn
1972, GLM). Despite its simplicity, it is a very powerful tool for data
analysis and is widely used in many fields. There are entire books written
on the GLM, but we will be very brief and provide a high-level overview of
some useful concepts.

The GLM extends the linear regression model to handle response variables
that have a non-normal distribution. It is a flexible model that can be used
for a wide range of data types, including binary, count, and continuous data.
A key component of the GLM is the exponential family. The exponential
family is a collection of probability distributions that can be written on the
form

F(yl€) = Aly) exp[n(€)B(y) — C(€)],

where A is a function that depends only on y, £ is a set of parameters, n is
a vector-valued function of &, B is a vector valued function of y, and C is a
function of &, typically referred to as the normalizing constant.

These distributions include the normal, binomial, Poisson, and exponential
distributions, among others. In a GLM, the response variable is assumed to
come from a distribution within this family.

Another important component of the GLM is the link function. The link
function maps the linear predictor to the mean of the response variable:

h(p) = XB7,
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where X € R™P is a matrix of covariates, and 8 € RP is a set of
coefficients. There are several commonly used link functions, depending on
the distribution of the response variable. These include the logistic, log, and
identity link functions. The GLM can then be written as

Yip, &~ f(yln, 9), (la)
h(ﬂ) - 60 -+ Z ﬁjl’j. <1b)

Where f(-|u, ¢) is the density or mass of a probability distribution from the
exponential family with mean p and dispersion parameter ¢, and h(u) is
the link function relating the mean to the covariates.

Bayesian GLMs and variable selection

The GLM can also be put into a Bayesian setting. This involves using
Bayesian methods to estimate the model parameters 8, and possibly the
dispersion parameter ¢. In the context of variable selection, it is common to
introduce a binary 7, € {0, 1} to indicate whether or not the corresponding
B; is non-zero and should be included in the model. In such a setting, prior
distributions are placed on the model parameters 3, v and possibly ¢, which
are then updated using the data.

Bayesian GLMs provide several advantages over frequentist GLMs. For
example, Bayesian GLMs allow for the incorporation of prior knowledge
or belief into the analysis. They also provide a full posterior distribution
for the parameters, which can be used for parameter estimation, model
comparison, and prediction.

2.2 (Bayesian) Neural Networks

Since we will need a description of neural networks later, it is appropriate
to give a brief introduction here.

A neural network is a type of machine learning model inspired by the
structure and function of the human brain. It consists of layers of
interconnected nodes, or neurons, that are trained on input data to make
predictions or classifications. The standard approach to training a neural
network involves defining an objective function depending on the target
variable, and using gradient-based optimization methods to iteratively adjust
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the weights of the neurons in order to minimize the objective function.
This process is known as backpropagation (Linnainmaa ; Rumelhart,
Hinton and Williams , and it allows the network to learn patterns and
relationships in the input data.

In the standard approach, one uses a fixed set of weights and biases in the
neural network. The output of each layer is determined by the input to
that layer multiplied by the weights, plus the bias term, passed through an
activation function. We can write an arbitrary layer in the network as

=1

= o045 W), =1
=1

where n(=1 is the dimension of the previous layer, u~" is the output of
the previous layer, W§~l) is the weights and bg-l) is the bias and o® is the
activation function.

In the Bayesian approach to neural networks, the weights of the neurons
are treated as random variables with prior distributions. One then uses
Bayes’ theorem to compute the posterior distribution over the weights
and biases given the training data. The goal is to compute the posterior
distribution over the weights given the observed data, which can be used for
prediction and uncertainty quantification. This approach allows for more
robust and interpretable predictions, as well as the ability to incorporate prior
knowledge into the model. The output of each layer is now a distribution
over possible values, rather than a single deterministic value. We can write
this mathematically as

PO, 6) = [ [ pauh, wh bO)p(w, b [€)dbdw.
w Jb

Where p(u|u=1 €) is the posterior distribution over the output of layer
[, given the input to that layer and a set of prior hyperparameters &,
p(u® a1 w® bW®) is the likelihood of the output given the input and
the weights and biases, and p(w®, b®|£) is the prior distribution over the
weights and biases.

In practice, Bayesian neural networks are computationally expensive and
difficult to implement, but they have shown promise in various applications.
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2.3 Bayesian Generalized Nonlinear Models
(BGNLM)

We will now turn our attention to what is the main model in this thesis:
Bayesian Generalized Nonlinear Models. It was developed by Hubin, Storvik
and Frommlet (2021)), with the purpose of providing flexible models with high
interpretability. This class is based on the GLM where the distribution of the
observations is assumed to come from the exponential family and the mean
parameter is a nonlinear function of the input variables. More specifically,
we model the relationship between between p explanatory variables and a
response variable based on n samples from a data set. For i = 1,....n, let
Y; denote the response data and let x; = (21, ..., Z;;) be the corresponding
vector of covariates.

The model framework is similar to the GLM, with the added freedom of
including a flexible class of nonlinear transformations to the covariates.
These nonlinear transformations Fj;(x, o) for j = 1,.., ¢ are called features
and will be properly presented shortly. The BGNLM is defined through:

Y, ¢ ~ fylp, ¢), (2a)
(i) = Bo+ 3 1BiFi(x, o). (2b)

Where f(-|u, ¢) is the density or mass of a probability distribution from the
exponential family with mean p and dispersion parameter ¢, and h(u) is
a link function relating the mean to the features. The features enters the
model with coefficients 8; € R for j = 1,...,¢q. The formulation presented
includes all possible ¢ features but uses a binary variable v; € {0,1} to
indicate whether or not the corresponding features are to be included in the
model.

Features

To make sense of the model definition in Equation , a specification of
the features Fj(x, ;) j = 1, .., ¢ is required. In addition, we shall define the
process defining the full hierarchy of the features.

A feature is defined as a nonlinear transformation, transforming one or
more of the covariates through a function or a series of functions. The
model firstly needs to specify which functions G = ¢y, ..., gi to consider. In
principle, any function can be part of G as long as it has R as domain and
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range within R. However, continuous and differentiable functions will make
the optimisation easier.

The feature generating process begins with the input variables x as features,
ie. Fj(x;) = x;; for j € 1,...,p. In a recursive setting, we denote the set
of features included in the model at a given level of recursion as A and
the number of features in it as |A|. Assume that at a certain point, a
set of features F(-, a), k € A is generated. Then, we define the following
transformations to generate new features for the next step:

gi(ag + > kea, it Fr(x, ai™))  projection,
Fi(x,a5) = S gj(Fp(x, o)) modification, (3)
Fi(x, o Fy(x, ™) k,l € A multiplication.

The first transformation called projection has similar definition to that used
in neural networks, but the activation function g; is now selected from G.
The linear combination is taken over a subset of features Fj(-, o), k € A;
where A; C A and |A;| > 1. Note that we differ between the parameters that
defines the current projection, a?“t and the parameters that is contained in
the previously defined features nested inside the projection, a".

The modifications and multiplications are included to allow for more
parsimonious models. Note that a?“t = () for both. Modifications allow
for nonlinear transformations of existing features, while multiplications
corresponds to interactions in the language of statistics. The latter is
allowed to select the same feature more than once. As noted in Hubin,
Storvik and Frommlet , both of these transformations can be seen as
a special case of projections. Modifications are a projection where |A4;| = 1,
and multiplications can be seen as a special case of two projections with the
exp(z) and log(x) transformations. This allows limiting BGNLM to include
only modifications and multiplications.

Feature properties

The depth, d;, of a feature F} is determined by the minimum number of
nonlinear transformations applied recursively to generate it. For example, if a
feature F; is defined as Fj(x, aj) = h(u(v(z1)) + w(xz)), for some nonlinear
functions h,u,v,w, then its depth is 3. Conversely, if a multiplication
operation is applied, the depth is defined as one plus the sum of the depths
of the operands. For example, Fj(x, o) = xou(z1) has depth dy of 2, using
that the depth of a linear component is zero. Hubin, Storvik and Frommlet
shows that the number of features grows super-exponentially with

7
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depth, and in practice limiting the depth to be small even for problems with
few covariates.

The local width, lwj, of a feature is the number of previously defined features
used to generate a new feature. The value of lw; depends on the type of
operation used: |A;| for a projection, 1 for a modification, and 2 for a
multiplication. The operations count, oc;, of a feature is the total number of
algebraic operations used in its representation. For instance, Fj(x, o) = x
has oc; = 0, while Fj(x, a;) = v(u(x)) has oc; = 2.

Three strategies for optimizing o parameters

In the context of the general projection transformation, the o; parameters
must be determined. Hubin, Storvik and Frommlet proposes three
strategies for optimization. These strategies aim to find a; values that result
in high explanatory power for Fj(x, ), independent of the other features
involved in the model. The strategies are as follows:

Strategy 1, (optimize then transform, naive) is the simplest method
for determining o;.

h(p) = a2 + > ol Fu(x, aj).
kEA;

The a;'-” parameters are fixed from the nested features, and the maximum
likelihood estimates for a9** are calculated by using Model (1) directly,
without considering the nonlinear transformation g;(-). This approach
has several benefits. The nonlinear transformation g;(-) is not involved in
the calculation of am‘t allowing for easy application to multiple nonlinear
transformations 81multaneously. Additionally, non-differentiable functions,
such as decision tree characteristic functions or the ReLLU function, can be
used. Maximum likelihood estimation for generalized linear models creates
a convex optlmlzatlon problem, and the resulting a"“t values are unique.
However, fixing o and neglecting the activation functlon g;(+) may result
in a feature—generating process that is not optimal in terms of prediction
accuracy.

Strategy 2, (transform then optimize, concave) In Strategy 1, the
weights am‘t are estimated based on a;” Now, the optimization is performed
after the transformation g;(+) is applied. This means that the weights are
calculated as maximum likelihood estimates for the following model:

h(p) = ( O“t+ > aom (x ai”)).

keA;
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If h=*(g;(+)) is a concave function, this strategy creates a simple optimization,
with uniquely defined estimates. However, if gradient based optimizers
are desired, this restricts h7'(g;(-)) to be continuous and differentiable in
relevant regions which excludes certain non-linear functions from the model.
Otherwise, gradient-free optimization techniques must be utilized.

Strategy 3, (transform then optimize, deep) Similar to Strategy 2,
parameters are estimated as maximum likelihood estimates using Model
(2b)). However, in this strategy, the outer a;?“t and nested oz;” are jointly
estimated. This means that the optimization is performed with respect
to parameters across all layers. All involved nonlinear functions must
be continuous and differentiable in relevant regions to enable the use of
gradient-based optimizers. One major disadvantage of this strategy is that
previous parameter specifications cannot be utilized; all parameters must
be recomputed. Additionally, even if all g;-functions are concave, there is
no assurance of finding a unique global optimum of the feature. If gradient-
free optimizers are used, the problem becomes extremely computationally
demanding. In addition, different local optima define features with the same
structural configuration.

Bayesian model specifications

The feature generating process described above gives rise to a extremely
large and flexible feature space that is prone to overfitting. In order to
avoid this, we will use a Bayesian approach with priors that favours a simple
structure. We assume that the o parameters are deterministic and specified
through one of the strategies presented above. A more general setting with
priors on as is discussed in Hubin, Storvik and Frommlet but not
included here.

We will also mainly use the same priors as presented in the original paper.
They start by defining three hard constrains in order to avoid problems with
overfitting.

Constraint 1. The depth of any feature is less than or equal to D.
Constraint 2. The width of any feature is less than or equal to L.
Constraint 3. The number of features in a model is less than or equal to

Q.

The first constraint provides a finite feature space, while the second and
third constraints further limits the number of features and models.
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In order to incorporate model into a Bayesian framework, it is necessary
to assign prior probabilities to all parameters. For ease of notation, the
symbol p(+) is used to represent a general prior, with its arguments specifying
the relevant parameters.

The unique structure of a particular model is determined by the vector
v = (71,---,7g). Our first step will be to establish the prior probabilities for

: .
p(y) < I(|v| < Q) l:[

Here, the number of features included in the model, || = 39_, ;, is limited
by the maximum allowed number of features per model, ). The factors
p(7;) are used to assign lower prior probabilities to more complex features.

Specifically, we use
p(%) _ a’YjC(Fj(',aj)), (4)

with 0 < a < 1 and c¢(F;(-, ¢;)) > 0 being a non-decreasing measure of the
complexity of feature j.

This means that if two models differ in just one feature, with one of them
being larger, then the prior probability of the larger model will be less
than that of the smaller model. The larger the model, the more it will
be penalized. The parameter a and the complexity measure c¢(Fj(-, o))
hence play a crucial role in determining the quality of the model prior. For
example, if a is chosen as e™" and c¢(F}(-, o)) as log g4, where d; represents
the depth of F}, then for v; = 1, the result would be

geFiC e — 1

dd;

The contribution of a feature to the prior probability of a model will then
be inversely proportional to the total number of features having the same
depth. This means that more complex features with higher depths will
have smaller prior probabilities. This resembles the Bonferroni correction in

multiple testing (Bogdan, Ghosh and Tokdar [2008; Scott and Berger 2006)).

However, computing the number of features ¢; in BGNLM involves nontrivial
recursions and can be challenging. To avoid this, we consider an alternative
approach based on the geometric distribution, as suggested by Fritsch and
Ickstadt . This approach corresponds to penalizing on the number of
operations involved in each feature. That is, we use the operations count
oc; of a feature as a complexity measure for BGNLM, which is a ungenerous
property that grows smoothly with increased complexity.

10
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The choice of parameter a remains a question. We will borrow from Hubin,
Storvik and Frommlet and mainly use a = e~? for prediction and
a = e~ 9" for model identification, inspired by modifications of AIC and
BIC, respectively.

In order to finish constructing the Bayesian model, the priors for the
components of B where v; = 1, and, if necessary, the prior for the dispersion
parameter ¢, need to be specified. We will mainly rely on a Gaussian prior
for all 8; which is conjugate for the Gaussian likelihood, resulting in a closed
form for the posterior in those cases. However, Hubin, Storvik and Frommlet
(2021)) considers different approaches, including using Jeffrey’s prior and
mixtures of g-priors.

Bayesian inference

Posterior marginal probabilities for the model structures are given by

p(Y)p(yly)
S yem (Y)Y 1Y)’
where p(y|vy) is the marginal likelihood of y for a specific v in the space

of possible models M. The posterior inclusion probability for a feature
Fi(x, o) is

p(vly) =

p(y; =1ly) = > p(vly).

yivi=1

Since the posterior inclusion probability contains s sum over 29 possible
models, an integral of high dimension over the coefficients 8 and an integral
over the hyperparameters n it is not possible to compute exactly.

Hubin, Storvik and Frommlet circumvented these issues by splitting
the problem into two different problems. The main points at issue in their
approach is to calculate the marginal likelihoods p(y|v) for a specific model,
and to search through the space of possible models v € M. For efficient
search through the space of models they suggest a special case of Markov
Chain Monte Carlo (MCMC) which will be presented shortly.

Based on the results of the computations, the posterior marginal probabilities
can then be estimated as

p(v)p(y|v) .
S ere PP O €MD ©)

pvly) =

11
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where the model space is restricted to a appropriate subset of the model
space, M* C M. p(y|v) is an estimate (or exact calculation) of the marginal
likelihood given model «. The marginal likelihood can be written as

pyl) = [ plylnv)p(niy)n,

m

where 7 for a given model is the set of regression coefficients {f;,7 : v; = 1}
for the features to be included, and possibly, the dispersion parameter ¢.
If we assume that the a;’s are fixed and estimated according to one of
the strategies presented, the BGNLM becomes equal to the GLM
where exact calculations of the marginal likelihoods are available through
utilization of conjugate priors. If other priors are to be considered, the
marginal likelihoods can be substituted with numerical approximations such
as simple Laplace approximations (Tierney and Kadane or integrated
nested Laplace approximations (Rue, Martino and Chopin [2009).

2.4 Genetically Modified MUMCMC
(GMJMCMC)

We will in this section give a high level overview of the algorithmic approach
used by Hubin, Storvik and Frommlet (2021)), and extended by Lachmann
, to calculate the posterior . However, as this thesis is not necessarily
concerned with such methods, we will be very brief. More details are
presented in Hubin, Storvik and Frommlet and Lachmann (2021)).

We start with a short introduction to MCMC.

MCMC and the Metropolis-Hastings Algorithm

It is a common problem in Bayesian statistics that the posterior distribution
is complicated and difficult to sample from. Different methods have been
suggested over the years, and some of the most used methods belongs to the
class of algorithms called Markov Chain Monte Carlo. A Markov chain is
defined as a sequence of random variables X7, X5, ... where the distribution
or mass of X; only depends on the previous state X;_;. It can be shown
that if such a process is recurrent, irreducible and aperiodic, there exists a
stationary distribution 7(-) such that the probability of being in a given state
remains unchanged over time (Hastings . The idea behind MCMC
is to construct a Markov chain with stationary distribution equal to the
posterior of interest and then obtain samples of this distribution through
recording the states of the chain.

12



2.4. Genetically Modified MUMCMC (GMJMCMC)

One of the most common MCMC algorithms is the Metropolis-Hastings
algorithm. It is a widely used MCMC algorithm that generates samples from
7(+) using a proposal distribution g(z*|z). The algorithm accepts proposed
new samples z* based on the current sample x with a probability calculated
using the Metropolis-Hastings ratio:

(") q(z|z") }
m(z)q(z*|z)

If the proposed new sample x* is rejected, the algorithm then stays in state
x.

Tmp (2, 2*) = min {1,

The practical implementation of the algorithm requires careful consideration
of various factors to optimize its performance, such as the design of an
appropriate proposal distribution. The proposal distribution should closely
resemble the target distribution while maintaining a high acceptance rate to
avoid the algorithm getting stuck and unable to escape the current location.

Mode Jumping MCMC (MJMCMC)

Figure 2.1: Illustration of a mode jumping proposals. Figure is
reprinted from Lachmann (2021))

Using standard MCMC algorithms to sample from complicated multi-modal
distributions can be difficult to do. This is because the proposal distribution

13
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needs to strike a balance between thoroughly exploring modes and being
able to transition to other modes. If the proposal distribution makes mostly
small steps, it will explore the current location thoroughly but may not
escape it, while a proposal that suggests large jumps may end up in points
of low probability with respect to the target distribution.

To address this problem, Tjelmeland and Hegstad introduced Mode
Jumping proposals. Starting from the current state x, they generate the new
proposal via a two intermediate states X and X};. In order to be able to
calculate the acceptance probability, two backwards intermediate states are
also visited to get the reverse path (see Figure . They recommend using
mode jumping proposals only a fraction of the time, with regular Metropolis-
Hastings kernels generating the remaining proposals. They demonstrate the
effectiveness of the algorithm in exploring complicated target distributions
with multiple modes through various examples.

While the original MJMCMC algorithm was designed for continuous
variables, Hubin, Storvik and Frommlet adapted it for use with
discrete binary variables, as is the context for the problem of variable
selection. In addition, MJMCMC requires all features defining the model
to be predifined, which is simply too computationally demanding for a
BGLNM.

GMJMCMC

Exploring the entire feature space of a BGNLM using MJMCMC is not
straightforward due to two main issues. Firstly, the model space of size 29
increases exponentially with the number of features q. Secondly, ¢ grows
super-exponentially with the depth of the features. As a result, it is typically
not feasible to predefine the features as it would require a large amount of
computing time and memory. To address these problems, Hubin, Storvik and
Frommlet used a modification of MJMCMC they called Genetically
Modified MJMCMC (GMJMCMC). This algorithm embeds MJMCMC into

a genetic programming framework.

To initialize the chain, they start by performing marginal testing on the
covariates, to obtain a subset, Sy. This subset can be thought of as the
first population. Generation of subsequent populations are then done in an
iterative procedure, where features with low marginal probability in each
iteration are replaced to obtain the next generation (Algorithm . Each &;
contains a different set of features and forms a different search space. This

14
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results in a dynamic evolution of the population, allowing for different parts
of the full model space to be explored without predefining features.

Algorithm 1 GMJMCMC
Require: S,
Run MJMCMC within the search space of Sy for N;,,;; iterations and
initialize &
fort=1,...,T—1do
Run MJMCMC within the search space of S; for N, iterations.
Generate a new population &, 1.
end for
Run MJMCMC within the search space of Sy for Ny;,,q iterations.

MCMC with data subsampling

MCMC algorithms such as Metropolis-Hastings are extremely useful for
sampling from complicated posterior distributions, but as the amount of
data is increasing, so does computational time. With the trend being ever
increasing data sets, both in terms of observations and variables, it seems
that such traditional methods are deemed to be replaced. Quiroz, Kohn
et al. [2019, who were the first to propose subsampling for MCMC, note that
this is unfortunate. Since although MCMC samplers might be slow, they
are guaranteed to converge towards the true posterior.

In an attempt to speed up MCMC algorithms, two main paths are being
explored. Distributed MCMC that works by running multiple chains
in parallel, with each chain using just a partitioning of the data, and
subsampling MCMC. The problem with the former approach is how to
combine the result of each chain to make inference on the complete data set.
Subsampling MCMC however, aims to estimate the likelihood for all the
data based on a only a subsample in each step in the chain. This approach
is similar to batch methods used in e.g Stochastic Gradient Decent (Robbins

1951).

In Hubin, Storvik and Frommlet they implement a distributed version
of GMJMCMC. While, in his Master’s thesis, Lachmann utilizes
subsampling techniques on GMJMCMC. We will in this thesis attempt to
suggest another way for computation of the posterior (5)). The method is
popularly called variational inference, and some important topics regarding
our implementation will be discussed in the remainder of this chapter.
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2.5. Variational Inference

2.5 Variational Inference

Variational Bayesian methods, or mean-field methods, was first applied to
neural networks (Hinton and Camp Peterson and Anderson and
later extended to a more general setting (Jordan et al. . It has become
an increasingly popular technique in machine learning, particularly in deep
learning, due to its ability to scale to large datasets and high-dimensional
models.

In variational inference, the problem of computing a difficult posterior
distribution is transformed into an optimization problem that can be solved
using numerical methods. The main idea is to approximate the true posterior
distribution with a simpler distribution that belongs to a family of known
parametric distributions. This simpler distribution is popularly called the
variational distribution, and the parameters of this distribution are optimized
to minimize the distance between the true posterior distribution and the
variational distribution.

The optimization problem is formulated as a minimization of some
discrepancy measure between the true posterior and the variational
distribution. The most common choice, and the one we use, is the Kullback-
Leibler (KL) divergence (Csiszar [1975)). However, other measures such as
f-divergence (Rényi and integral probability measures (Sriperumbudur
et al. has been applied.

KL divergence

The KL divergence can be thought of as a loss function that measures
the amount of information lost when the variational distribution is used
to approximate the true posterior distribution. By minimizing the KL
divergence, we will tune the variational parameters to produce a distribution
that is as close as possible to the true posterior.

The variational parameters, which we will denote 6, are parameters or latent
variables and are treated equally in all settings. Let p(x) be the marginal (or
joint) distribution of some variable x (target, not to be confused with data),
and let go(x) be a variational distribution parametrized by 6. The reversed
KL divergence, used to fit the approximation to the target distribution, is
then defined as:

KL]gs(x)||p(x /q ) log qg(x)dx

p(x)
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2.5. Variational Inference

By rewriting the KL divergence, we obtain:

KLl (0 Ip(x)] = [ a0(x)10g |g0(x) = log p(x0)|x

= Egx) [log qo(x) — 10gp(x)}

Minimizing the above expression will then be done with respect to 6. It
is typically done in an iterative procedure, using gradient decent or other
optimization techniques.

Mean-field variational inference

Mean-field approximations are the most traditional and widely used
technique in variational inference for computationally efficient approximation
of complex posterior distributions. This approach is based on the mean-
field assumption, which assumes that the posterior distribution can be
factorized into a product of independent distributions. Specifically, for a set
of parameters, @, and target variable x, the variational distribution can be
written as:

do(x) = 1_1 @,(z2),

where Dy denotes the dimension of x.

This assumption simplifies the optimization problem, as we only need
to optimize each individual distribution in the product, rather than the
entire posterior approximation. That is, minimization of the KL-divergence
between the approximate posterior distribution and the target distribution
is done by optimizing the parameters ¢; in each individual distribution in
the product. This optimization can be done using gradient descent or other
optimization algorithms.

Although mean-field variational inference is a powerful technique, it also
has several drawbacks. For instance, it assumes that the target distribution
is factorizable. This assumption may not hold for complex models with
strong dependencies between the parameters. In addition, the quality of the
approximation depends heavily on the choice of the variational distribution.
If this distribution is not flexible enough to capture the true posterior
distribution, the approximation may be poor.

17



2.6. Normalizing Flows

Various methods has been used to produce increasingly flexible variational
distributions. In the next sections, we will discuss a class of popular such
techniques.

2.6 Normalizing Flows

The term normalizing flows was first coined by Tabak and Vanden-Eijnden
and Tabak and Turner in the context of classification and
density estimation. It has since then seen a lot of development and interest.
A nice overview of different methods can be found in Papamakarios, Nalisnick
et al. (2021). For ease of notation, we here let p(-) or ¢(-) denote arbitrary
distributions. Later, when the parameters of these distributions are relevant,
we will go back to using subscript for parameters.

The concept of normalizing flows involves creating flexible probability
distributions over continuous random variables. Consider vector x € R”,
and suppose the aim is to define the joint distribution of x. Using the flow-
based modeling approach we will transform a real vector u € R”, sampled
from simple base distribution g(u), into x through a transformation 7'

x =T(u) where u~ g(u). (7)

The transformation 7" must be a diffeomorphism and hence differentiable
and invertible and 7! must be also be differentiable. The density of x is
then well-defined and can be obtained by change of variables

p(x) = q(u) |det Jr(u)|™' where u=T""(x).

Jr(u) € RP*P is the Jacobian, the matrix of all partial derivatives, of 7.
Equivalently, we can write p(x) in terms of the Jacobian of 7!

p(x) = q(T™'(x)) [det Jr- (x)]. (8)

The log-density is then

log p(x) = log ¢(u) — log

det JT(u)‘. 9)

A useful property of the differentiable and invertible transformations is that
they are composable, and that the resulting composistion is differentiable and
invertible. This means that we can chain together multiple transformations
Ti,...,Tk to obtain T' =T} o - -- o T where each T} transforms z,_; into

18



2.6. Normalizing Flows

Z, assuming zg = u and zx = X. Thus, the term "flow" refers to the
path taken from a set of samples from ¢(u) as they undergo a sequence
of transformations 71, ..., Tx. The term "normalizing" stems from the fact
that the inverse flow, through Tx', ..., Ty ', transforms a set of samples
from p(x) into a set of samples from the designated density g(u), effectively
"normalizing" them into a proper density (Papamakarios, Nalisnick et al.

2021).

In terms of its abilities, a flow-based model offers two functions: generating
samples from the model with Equation and determining the model’s
density through Equation . Generating samples requires the capacity to
sample from ¢(u) and compute the forward transformation 7. On the other
hand, evaluating the model’s density necessitates computing the inverse
transformation 7! and its Jacobian determinant, as well as determining
the density ¢(u).

Constructing a flow

As discussed previously, the normalizing flows are composable, meaning we
can construct a flow by composing a finite number of transformations 7}

T=To---0Tk.

The objective is to utilize simple transformations as basic components,
each having an easily invertible Jacobian determinant, to form a more
sophisticated transformation with greater expressiveness than any of its
individual components. The forward and inverse evaluations, as well as
the computation of the Jacobian determinant, will be restricted to the
sub-flows. Respectively, with zy = u and zx = x, the forward and backward

evaluations are:
Zp — Tk;(zk—l) for k = 1, ...,K,

7,1 =T, "(z,) fork=K, ., 1

The Jacobian log-determinant is calculated as

K
=Y log |det Jr, (z41)|.

k=1

K
H det JTk (Zk—l)

k=1

log |det Jr(zg)| = log

In practical terms, we implement either T}, or T}, ' using a neural network,
parameterized by ¢, which we represent as fg, . This means that we can
use the model fg, to carry out either T}, where it takes z;_; as input and
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Zr_
Zy —> Tl i» T2 ﬁ»& TK > Zg

! ! |

log|det.Jr, (zo)| + log|detJr, (z1)| + --- + log|detJr, (zKx—1)| = log|detJr(zo)]

Figure 2.2: This figure is inspired by Papamakarios, Nalisnick
et al. (2021)) and illustrates a flow composed of K transformations.

produces z; as output, or 7} ! where it takes z; as input and produces
Z,—1 as output. Regardless, we must ensure that the model is reversible and
has a tractable Jacobian determinant. Ensuring that fg, is reversible and
explicitly computing its inverse are not equivalent concepts. Although the
inverse of fg, is certain to exist in some implementation, precise computation
can be costly or impractical.

As discussed above, the forward transformation 7" is utilized for sampling,
while the inverse transformation 7~ is utilized for density evaluation. If the
inverse of fg, is not efficient, either density evaluation or sampling will be
slow or impractical. We should also specify what we mean with "tractable
Jacobian determinant'. Although we can always compute the Jacobian
matrix of a differentiable function, calculating its determinant explicitly can
be computationally expensive. For flow-based models, the computation of
the Jacobian determinant should be no more linear time with respect to the
input dimension.

Normalizing flows provide a powerful framework for generative modeling by
transforming a simple distribution to a complex one via a series of invertible
and tractable transformations. By using neural networks as building
blocks, we can construct a normalizing flow with high expressiveness and
computational efficiency. Composable transformations allow for both efficient
density evaluation and sampling. However, designing transformations with
tractable Jacobian determinants is not always straightforward, and it requires
careful consideration to balance between expressiveness and computational
efficiency.

Inference for Flow-based Models

Similarly to fitting any probabilistic model, fitting a flow-based model g, (x)
to a target distribution p(x) can be done by minimizing the discrepancy
between them. This minimization will be done with respect to the model’s
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2.6. Normalizing Flows

parameters w = {¢, 9P} where ¢ are the parameters of the flow Ty and )
are the parameters of the base distribution py(u).

Our discrepancy measure is the KL-divergence, and we will here separate
between forward- and reversed KL-divergence. Fitting a model using forward
KL-divergence is equivalent to maximum likelihood estimation, while the
reverse KL-divergence is commonly used by Bayesians in the context of
variational inference.

Forward KL-divergence

The forward KL-divergence between the target distribution p(x) and the
flow model ¢, (x) can be written as

L(w) = KL[p()]]qw (x)]

= —E,x [long( )} + constant
= —Ep(x){logp¢( '(x)|%p) + log |det ], _1( )\] + constant.

Using the forward KL-divergence is well suited for situations where we can
obtain samples from the target distribution, but are unable to evaluate
the the density p(x). If we are able to sample {x;}}¥, from p(x), we can
estimate the expectation above by Monte Carlo:

1 N
N 12::1 [10gp¢ Ttb (xi)) + log |detJT¢:1(Xi)‘] + constant.

Minimizing this Monte Carlo estimate is then equivalent to fitting the flow-
based model to the samples through maximum likelihood estimation, and
the parameters can e.g. be optimized by gradient-based methods.

When using the forward KL-divergence for inference, we need to compute
the inverse flow, T ! its Jacobian determinant and the density qp(u), as
well as computing the derivative of all three if we are using gradient-based
optimization.

Reversed KL-divergence

The standard way of performing variational inference is through minimization
of the reversed KL-divergence. Here, the target density p(x) will hence be a
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2.6. Normalizing Flows

posterior distribution of interest. We have the following expression:

L(w) = KL gy (x)||p(x)]
= ]Eqw(x) [1Og ) (X) - log p(X)}
= B, log py (u) — log |det /7, ()] — log py (T (w)))]

Where we have used a change of variables in order to express the expectation
with respect to u. In order to use the reversed KL-divergence, we need to
evaluate the target density. However, since the target density is the posterior,
we let p(x) = p*(x)/C, where p*(x) is likelihood x prior and C' = [ p*(x)dx is
the intractable normalizing constant, and rewrite the reverse KL-divergence
as

L(w) = By, (] log py (1) — log |det.Jz, ()| — log p*(T(u)))| + constant.

In practice, we minimize £(w) with a gradient-based method. Since we are
taking expectation with respect to to the base distribution, p,(u), we can
easily use Monte Carlo to obtain an unbiased estimate of the gradient of
L(w) with respect to ¢. Let {u}Y; be samples from py(u). The gradient
with respect to ¢ can then be estimated as

N
> [V¢ log |detJr, (w;)| + Vg 1ogp*(T¢(ui)}.

i=1

1
Vol(w) ~ —

Relationship between forward and reverse KL-divergence

As an alternative, one can think of the target p(x) as the base distribution
and the inverse flow as inducing a distribution g (u). Intuitively, gj(u) is
the distribution that x will follow when passed through the inverse flow 7.
Since the target distribution and the base distribution uniquely determines
each other when given the flow transformation, the induced distribution
q3(u) is equal to the base g, (u) if and only if the target p(x) is equal to the
flow g, (u). Therefore, we can think of fitting the flow model to the target
as fitting the induced distribution to the base and vice versa.

In Papamakarios, Pavlakou and Murray 2018, they indeed show that

KL{g (¥)[[p(x)] = KLgy (w)][ g5 (w)],
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2.7. Autoregressive Flows

which means that fitting the induced distribution g (u) to the base gy (u)
through forward KL-divergence (maximum likelihood) is equivalent to fitting
the flow model to the target via reversed KL-divergence.

2.7 Autoregressive Flows

In the next sections, we will be discussing the autoregressive flows. They
are one of the most widely used classes of normalizing flows due to its
effectiveness in density estimation and its simplicity of implementation.

We will mainly be concerned with efficient construction of the flow
components, fg . We simplify the notation and drop ¢ from f4 and
call it fi as it should be clear what we mean by this. We will also denote
the input of the model as z and the output as z’ regardless of whether the
model implements the forward or the inverse flow.

In an autoregressive flow, f; has the following form:

2 =17(2;;h;) where h; = ¢(z-),

where 7 is referred to as the transformer and ¢; as the i-th conditioner. The
transformer is required to be a strictly monotonic function of the input z;. It
is parameterized by h;, and specifies how the flow changes z; to give output
zi. The conditioners determines the parameters of the transformer. They
take as input only the indices of the input less than ¢, giving rise to the
autoregressive structure. Each conditioner can in principle be implemented
as an arbitrary function of z_; that outputs h;. However, if each ¢;(z-;) is
a different model it would scale very poorly with dimensionality D. It is
therefore common practice to share parameters across conditioners, or to
combine the conditioners into a single model.

Since the transformer is monotonic, it is also invertible. Given output z; we
can compute the input z through

2 = T_l(z;; h;) where h; = c¢;(z;).

Since z; does not depend on z-;, the partial derivative of z, with respect to
zj is zero for j > i. A key property of these transformations is therefore
that the Jacobian is lower triangular. This makes the computation of the
Jacobian determinant easily tractable, as the determinant of any triangular
matrix is equal to the product of the diagonal.
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/ !/ / !/ / / / /! !
21| *2 Zi—1| % ZD 2| %2 Zi—1| # Zp
A
Y
hz hz
G > T & >(r—1
A A A

Y

21| %2 | -+ |*Fi-1| % | - |%D 21z -+ =izl z |l --- |zp

Figure 2.3: Illustration of the i-th step of a normalizing flow. Left:
Forward flow. Right: Inverse flow.

The Jacobian of the transformer is

(‘?;1 (Zla hl) 0

Jfk<z> - )

L<Z) 3271—3 (ZD; hD)

and the log determinant can then be computed as

= log

D or
Haz Z“ ZlOg Zm )

i=1

log ’det 0 (2)

Implementing the autoregressive flow comes down to choice of transformer
and conditioner. Any type of transformer can in practice be paired with
any type of conditioner and numerous combinations are represented in the
literature. For our implementation, we follow the Inverse Autoregressive
Flow (IAF) from Kingma, Salimans, Jozefowicz et al. . They suggest
pairing an affine transformer with a masked conditioner.

Affine Transformers

Perhaps the simplest transformers used within autoregressive flows belongs
to the class of afine functions. We will restrict our transformer 7 to be on
this form:

7(zi;hy) = a2 + i, where  h; = {«y;, 5}

It can be thought of as a location-scale transformation, where (3; defines
the location and «; the scale. The transformation is invertible if and only
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2.7. Autoregressive Flows

if a; # 0, which can be guaranteed by letting «; = exp @&;, where &; is
an unconstrained parameter. The derivative of an affine transformer with
respect to z;, is «;, and the log determinant is:

D D
log ‘det Jfk(z)’ = log|ay| =D a.
i=1 i=1

While affine transformers have analytical tractability, their expressivity is
limited. To illustrate why, let z follow a Gaussian distribution. Then, each z;
conditioned on z_; will also follow a Gaussian distribution. That is, a single
affine transformation of a multivariate Gaussian results in a distribution
whose conditionals p(z}|z'-;) are also Gaussian by necessity. This problem
is often addressed by stacking multiple layers of affine transformers, but the
expressive powers of the final flow still remains unknown (Papamakarios,

Nalisnick et al. 2021]).

Masked conditioners

As mentioned above, it is common practice to implement conditioners that
shares parameters, and that is exactly what makes masked conditioners
attractive. This approach uses a single, typically feed forward neural network
that takes input z and outputs the whole sequence (hy,...,hp) in one pass,
only requiring obedience with respect to the autoregressive structure: output
h; can only depend on z_;.

In constructing such a network, one takes an arbitrary neural network
and removes connections until there is no path from input z; to outputs
(hy,...,h;). This is done trough a technique called masking, where each
weight matrix is multiplied with a binary matrix of the same size. The
connections that are to be removed will correspond to a zero-entry in the
mask matrix, and all other connections will remain unmodified. The masked
network will have the same architecture and size as the original network,
retaining the computational properties.

A key advantage of masked autoregressive flows is that they are efficient
to evaluate. Given z, the parameters (hy, ..., hp) are computed in a singe
neural network pass where each dimension can be computed in parallel via
2l =7(z,hy).

A main disadvantage is however that the inverse is not as efficient to
evaluate. This is because parameters h; that are needed to obtain the
inverse z; = 7 !(z/, h;) cannot be computed until (21, ...,2,_1) have been
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obtained. That is, we must compute h; to obtain z;, hy to obtain z, and so
on until zp have been obtained. Despite computational issues related to the
inversion, the masked conditioner remains one of the most used technique
for implementing autoregressive flows. Especially, it is useful for situations
where the dimension of the data is not too large or where inverting the flow
is not needed. Examples of autoregressive models with masking include IAF
(Kingma, Salimans, Jozefowicz et al. , MAF (Papamakarios, Pavlakou
and Murray and NAF (Cao, Titov and Aziz . Masking has also
been used in non-flow autoregressive models such as MADE (Germain et al.
2015)). The former is the transformer in our implementation and the latter
is our choice for conditioner. They will also be the topics in the following
sections.

2.8 Masked Autoencoders for Distribution
Estimation (MADE)

Masked autoencoders for distribution estimation was first introduced by
Germain et al. (2015]). The original paper has nothing to do with normalizing
flows, but it is an easy to implement autoregressive model and is widely
used.

We are here assuming a Gaussian model. Given a set of variables {z}2,,
the goal of the autoencoder is to learn the hidden statistical structure that
generated them. Borrowing the notation from Germain et al. (2015)), this
autoencoder can be written as a neural network in the following way:

h(z) = g(b + Waz),
z' = ¢+ Vh(z),

where h(z) is a representation of the hidden structure we wish to learn, W
and V are matrices, b and c are vectors and g is a nonlinear activation
function.

In order to satisfy the autoregressive property, we will need to modify the
autoencoder. Since output z; can only depend on inputs z.; it means that
inputs z-; can not be used to compute z,. MADE solves this problem with
masking. In short, masking corresponds to setting at least one connection
in matrix W or V to 0. One way to do this is to elementwise-multiply each
matrix with a binary matrix called a mask matrix. The entries of the mask
matrix are zero if we wish to remove the corresponding connection. We now
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write
h(z) = g(b + (W o MW)z),
7 =c+ (VoMY)h(z), (10)

where ® denotes elementwise multiplication.

p(z1]z2,23)  p(22) p(23]22)

w R
Wi I%iZMWI C)

Figure 2.4: This figure is borrowed from Germain et al. .
Left: Standard three hidden layer autoencoder. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed.

The problem at hand is how to create the masks matrices. Germain et
al. start by assigning an integer m between 1 and D — 1 to each
neuron in the hidden layer. The k-th hidden unit’s number, m(k), defines
the maximum number of inputs connected to that neuron. The reason for
disallowing m(k) = 1 and m(k) = D is to make sure that hidden units
are not constant or depend on all input units and hence not be able to
model any of the conditionals p(z4|z<4). The mask matrices that governs the
connections between all layers except the last one follows these constraints,
and are encoded in the following way:

1 ifm(k) >d,

MY, = 1Lysa =
o (k)2d {O otherwise,

for d € {1,...,D} and k € {1,..., K}. In the last layer of connections,
we need to make sure that the d-th output unit is only connected to z_g.
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Therefore, we must make sure that hidden units that are connected to the
d-th output unit have m(k) < d and hence connected to at most d — 1 input
units. The output mask matrix can hence be encoded as

1 ifd > m(k)
MV — 1 m f— o ’
d.k d>m(k) {() otherwise.

2.9 Inverse Autoregressive Flows (IAF)

Inverse Autoregressive Flows was first introduced by Kingma, Salimans,
Jozefowicz et al. (2017)). It is well known to scale well to high dimensional
latent spaces, and plays a central role in our implementation in the next
chapter. We will here go through their reasoning and borrow from their
notation.

We again assume a Gaussian model. Let y = {y;}7, be a variable modeled by

a computationally efficient Gaussian version of an autoregressive conditioner,

such as MADE. We denote the output of this conditioner [p(y), o (y)] as

a function of y, which elements [1;(y<;),0i(y<;)] are the predicted mean

and standard deviation of the i-th element of y. Due to the autoregressive

str%cture, the Jacobian is lower triangular with zeros on the diagonal. That
M do;

. _ _ s
18, By o, 0 for j >4

When sampling from such a model, one can transform a noise vector
€ ~ N(0,I) into the corresponding vector y: yo = o + 09 ® €, and
for i > 0, y; = ni(y<i) + 0i(y<i) - €. This is often referred to as the local
reparametrization trick (LRT), explained in detail by Kingma, Salimans and
Welling . Since traditional variational inference requires sampling from
the posterior, this setup is not relevant for direct use in application. However,
the inverse transformations are interesting for inference through 