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Abstract

In recent times, there have been developed biophysical advanced neuron mod-

els that accurately create detailed representations of the input-output rela-

tionship found in real neurons. However, these models require a lot of com-

putational resources, which may limit their applicability for modelling large-

scale neuronal systems. This thesis introduces three Multi-Task Learning

(MTL) methods to address this computational challenge; the MTL methods

were compared by loss and diversity metrics. We found that the Multi-gate

Mixture of Experts (MMoE) and Multi-gate Mixture of Experts with Exclusiv-

ity (MMoEEx) best predicted compartmental voltage values from a biophys-

ical Layer 5b Pyramidal Cell (L5b PC) neuron model. On the other hand,

the Multi-task Hard-parameter sharing (MH) method was subpar in perfor-

mance compared to the MMoE and MMoEEx. We also implemented the Loss-

Balanced Task Weighting (LBTW) algorithm into our MTL methods to im-

prove the prediction of the spiking behaviour of the neuron model; however,

we did not manage to predict spiking initiation in any of our models, which

is likely due to the spiking task being too different compared to the compart-

mental voltage values for our MTL methods to predict both simultaneously.
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Chapter 1

Introduction

1.1 Motivation

Neuroscience is a multidisciplinary field focused on understanding how the

nervous system is structured and how it functions. The advent of new tech-

nology, like advanced neural probes [1] and powerful supercomputers [2] [3]

has increased our ability to delve deeper into the underlying mechanisms be-

hind how the nervous system works. The Hodgkin and Huxley neuron model

[4] is arguably the most influential neuron model to date [5]. It explains how

action potentials are generated and propagated in neurons. Many of the most

advanced biophysical neuron models today still use the Hodgkin and Huxley

framework when modelling ionic currents [6] [7].

Complicated computational neuron models are now capable of recreating

spiking behaviour observed in experimental recordings to a large degree; we

will be looking at one of these models, namely a compartmental Layer 5b

(L5b) Pyramidal Cell (PC) model proposed by Hay et al. [6]. The model is fit-

ted to experimental data gathered from P36 Wistar rats. However, one of the

drawbacks of such complicated biophysical neuron models is that they involve

numerous computations of advanced cable equations, which are computation-

ally expensive; this is a significant bottleneck if we wish to run these models

in a reasonable amount of time. We will address this concern by implement-

ing Multi-Task Learning (MTL) models to learn ”functions” that represent the
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underlying mapping from input to output. We will employ MTL techniques

when training our neural networks to replicate the compartmental voltages

and spiking behaviour from the compartmental L5b PC model [6]. A similar

approach has already been attempted in Beniaguev et al. [8], but they only

focused on the prediction of spikes, while we will also be including compart-

mental voltage value predictions.

1.2 Multi-Prediction Neural Networks

We will be implementing three MTL methods with varying degrees of com-

plexity. The simplest model is a multi-task prediction model with one con-

volutional network as its base; the convolutional network is connected to

task specific feed forward neural networks that each predict a compartmental

voltage or the spike initiation prediction. We call this the Multi-task Hard-

parameter sharing (MH) model, where the bottom layer is shared between

all tasks and the top layers are task specific [9]. The two other MTL models

use a soft-parameter sharing mechanism that allows the tasks to train on dif-

ferent representations of the input data; here the base layer is composed of

multiple convolutional networks that are intra-systemically connected by gate

functions. The first soft-parameter MTL method is the Multi-gate Mixture-of-

Experts (MMoE) model [10]. The second soft-parameter MTL method is the

Multi-gate Mixture-of-Experts with Exclusivity (MMoEEx) model [11], which

introduces an exclusivity mechanism to induce diversity among the convolu-

tional networks. We will be comparing the different MTL methods to figure

out the model which is best suited to predict compartmental voltages and

spike initiation from the compartmental L5b PC models by Hay et al. [6].

A successful implementation of these methods can be quite impactful, as it

might allow people to run larger biophysically realistic simulations.
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1.3 Thesis Structure

Chapter 1 lays the foundation for the thesis by introducing the research ques-

tion and establishing the context of the work in relation to neuroscience.

Chapter 2 introduces the most important neuroscience concepts relevant to

this thesis. We begin by looking at the underlying mechanisms behind how

neurons communicate. Afterwards, we present the biophysical neuron mod-

els that produce the data on which we will train our deep neural networks

(DNNs).

Chapter 3 introduces the concepts and mechanisms behind our deep learn-

ing methods. Here we go over general machine-learning theory relevant to

the project and our three MTL prediction models. We also introduce a task-

balancing method and address diversity metrics. The software and hardware

used in this project are also highlighted in this chapter.

Chapter 4 contains the results of our simulations. Additionally, we conduct

an analysis and discussion of our findings to determine the best-performing

MTL method(s) by comparing weight distributions, loss values and diversity

metrics. Chapter 5 concludes our thesis with a summary of our findings and

suggestions for related future work.

3



Chapter 2

Neuroscience Background

In this chapter, we will examine some general neuroscience principles behind

the compartmental L5b PC model. Much of the theory in Chapter 2 is based

on popular textbooks in the field of neuroscience: chapters 2 and 3 in ”Princi-

ples of Computational Modelling in Neuroscience” by Sterrat, Graham, Gillies

and Willshaw [12], chapter 1 in ”Neuronal Dynamics” by Gerstner, Kistler,

Naud and Paninski [13], chapters 1, 9, 10 and 39 in ”Principles of Neural Sci-

ence” by Kandel, Koester, Mack and Siegelbaum [14], and, chapters 1 and 5

in ”Neuroscience” by Purves, Augustine, Fitzpatrick, Hall, LaMantia, McNa-

mara and Williams [15].

2.1 The Neuron

The neuron is regarded as the elementary processing unit in the brain. Neu-

rons are connected in complex patterns, sending signals to each other. In the

mammalian prefrontal cortex, we find pyramidal neurons. These pyramidal

neurons comprise around 10 000 cell bodies, connected in dense networks [13].

In a human brain, we have at least 100 billion neurons [15]. A neuron is often

characterised as having four distinct parts, namely the presynaptic terminals

[14], the soma/cell body, the axon and the dendrites [13]; see Figure 1.
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Figure 1: An illustration of a neuronal cell, with depictions of a neuron’s four
distinct parts: the soma, the axon, the dendrites and the presynaptic termi-
nals. The soma is the cell body positioned between the dendrites and the axon.
The nucleus is positioned inside the cell body. The axon extends out from the
soma until it reaches the presynaptic terminals. The dendrites branch into
tree-like structures called dendritic branches, which receive input from sur-
rounding neurons. Reproduced from [16].

A neuron receives synaptic input at its dendrites or, more specifically, den-

dritic branches. The dendrites handle all incoming synaptic input from prox-

imal neurons [13] and send the input to the cell body, where the synaptic

information from multiple different dendrites is processed. In PCs, we have

dendrites close and further away from the soma called basal and apical den-

drites, respectively; we also have oblique dendrites positioned between the

basal and apical dendrites [8]. The soma (also referred to as the cell body) is

the central processing unit and the metabolic centre of the nerve cell [13] [14].

The soma integrates incoming signals from surrounding neurons, and if the

input signals are ”strong” enough, an output signal is generated. The output

signal travels across the axon and is sent to adjacent neuronal cells. This out-

put signal is often referred to as an action potential. The neuron that sends

the signal is called the presynaptic cell, while the receiving neuron is called

the postsynaptic cell. One presynaptic neuron can connect to more than 10

000 postsynaptic neurons [13].
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2.1.1 Synapses

Neuronal cells require advanced methods to interact and communicate with

each other. Such communication occurs at the contacts between neurons, par-

ticularly at the synapses. We have primarily two types of synapses with fun-

damentally distinct transmission mechanisms; electric and chemical synapses.

Electrical synapses have gap junctions that allow electrical current to move

between presynaptic and postsynaptic cells; this electrical current will alter

the potential of the postsynaptic membrane, affecting the generation of signal

propagation in the postsynaptic cell [15].

In chemical synapses, there is a small gap known as the synaptic cleft,

which separates the presynaptic and postsynaptic cell membranes. If a strong

enough signal reaches the chemical synapse, it triggers a release of neuro-

transmitters from the presynaptic terminal into the synaptic cleft. Specific

ion channels will open in the postsynaptic cell when the neurotransmitters

reach the receptors in the receiving neuron. The activated ion channels will

cause ions from the extracellular fluid to flow into the postsynaptic cell. This

ion inflow changes the potential difference over the postsynaptic cell, even-

tually creating an electrical response from the chemical signal [13]; see Fig-

ure 2. The neurotransmitters sent to the receptors in the receiving neuron

can lead to either excitatory or inhibitory behaviour in the postsynaptic neu-

ron. Excitatory neurotransmitters increase the probability of signal transmis-

sion; inversely, inhibitory neurotransmitters decrease the probability of signal

transmission between neurons. Whether the neurotransmitter is excitatory

or inhibitory is determined by the perpetual concentration of ions inside and

outside of the neuronal cell or by the ionic permeability of the ion channels

affected by the neurotransmitters [15].

This thesis explores computational models based on neocortical pyramidal

neurons, characterised by the soma’s pyramidal shape and their apical and

basal dendrites [17]. Neocortical PCs are found in the cortical column, and

they work as important input-output units, which receive input from all six
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Figure 2: Illustration of a chemical synapse. The electrical signal is propa-
gated down the axon and eventually reaches the synapses. Here neurotrans-
mitters are released into the synaptic cleft. The neurotransmitters are then
transferred to the postsynaptic neuron through receptors at the dendrites.
The binding of neurotransmitters to the receptors can either lead to excita-
tory or inhibitory behaviour in the postsynaptic neuron. Image from Jonas
Verhellen created with Biorender.com.
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brain layers. This input is processed in the soma, and the related output is

forwarded to other parts of the brain [6]. In Section 2.5, we will examine a

model of a PC and study its response to synaptic input.

2.2 The Action Potential

It is possible to measure the voltage over the membrane of a neuron, and

observations have shown that there is an electrical potential difference over

the cell membrane called the membrane potential. Neurons have a resting

membrane potential of around Vm = �70mV when the neuron is not actively

sending or receiving signals to or from other neurons [18]. The resting mem-

brane potential Vr is a consequence of a slight separation in charge across the

neuron’s cell membrane, given that there are slightly more positive ions on

the extracellular side and negative ions on the cytoplasmic side. The charge

separation over the membrane of the cell is given by Vm:

Vm =Vi �Vo (2.1)

Where Vi is the potential inside the cell, and Vo is the potential outside the

cell. When the neuron is at rest, we define the outside potential Vo as zero; as a

result, the resting membrane potential is Vr =Vm =Vi when Vo = 0. There is no

net movement of charge over the cell membrane if the neuronal cell is at rest;

however, there is still a passive flux of ion species travelling through different

classes of resting ion channels, which play a role in information transmission

between neurons. The open channels in a resting nerve cell are permeable for

Na+, Cl� and K+ ions [14].

One of the most widespread signalling features in the nervous system is

the action potential, sometimes referred to as a spike [12]. Action poten-

tials occur when there are sequential changes in the permeability of Na+

and K+ over the cell membrane [14]. When membrane depolarization crosses

a threshold, we obtain an action potential, where the membrane potential

shoots up until it hits a peak, followed by a decrease back to the resting mem-
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brane potential [12] [19]; see Figure 3.

The threshold for action potential initiation varies among different neu-

ron types, but it is typically around �55mV [20]. The shape of the action

potential pulse is constant as it propagates along the axon. The amplitude

of the pulse is around 100 millivolts. It is not the shape of the action poten-

tial which matters most for information transmission, but the number and

timing of spikes [13]. For this reason, it is useful to focus on the timing of

spikes when modelling neurons since the shape of the action potential is not

the primary feature for communication between neurons. Following an action

potential, a neuron will enter a refractory period, where a neuron’s capacity

to generate another action potential is significantly reduced. This reduction

in firing capability constrains the nerve cell’s firing frequency, which restricts

the neurons’ information transmission capability [14].

It is possible to record the brain’s activity by measuring the extracellular

potential around a region of brain tissue. This is done by inserting a de-

vice (like the neuropixel probe) into the brain to record contributions from

spikes and ionic currents [1]. The spiking activity is extracted from the high-

frequency contributions. Measurements of spiking behaviour are often com-

bined with something called local field potentials, which we will return to in

Section 2.6.
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Figure 3: Depiction of an action potential. The red line illustrates the shape
of the action potential, and the corresponding channel activity for each phase
of the action potential is also depicted. The membrane potential ”shoots up”
when the membrane potential reaches a threshold of around �55mV ; this is
the depolarization phase. The membrane potential reaches a peak of around
30mV before it decreases back down. The refractory period is depicted as the
moment when the membrane potential goes slightly under the resting mem-
brane potential at around �80mV ; here, the possibility of a reoccurring action
potential is significantly reduced; this is the hyperpolarization phase. After
some time, the membrane potential will stabilise at the resting state again,
with a membrane potential at around �70mV . Image from Jonas Verhellen
created with Biorender.com.

2.3 The Hodgkin and Huxley Model

In the early 1950s, a series of groundbreaking experiments on action poten-

tials and ion conductances were made by Hodgkin and Huxley: ”A quantita-

tive description of membrane current and its application to conduction and

excitation in nerve” [4]. They wanted to find the underlying dynamics behind

the propagation of an action potential along the axon. Hodgkin and Huxley

used a voltage clamp method developed by Kenneth Cole [21] to intracellu-

larly record a giant squid axon [14]. This axon is responsible for the squid’s

jet propulsion and is ideal for experimentation due to its large size.

The primary ionic currents responsible for action potential initiation are
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Na+ and K+ ions. Hodgkin and Huxley could describe the ionic currents for

Na+ and K+ throughout the entire voltage extent during the action potential

by employing the voltage clamp technique. The currents INa for Na+ and IK for

K+ can be expressed as:

INa = gNa ⇥ (Vm �ENa)

IK = gK ⇥ (Vm �Ek)
(2.2)

Where ENa is the reversal potential for Na+, EK is the reversal potential for

K+, gNa and gK are the conductances for Na+ and K+, respectively. There are

also passive currents IL that flow through resting leakage channels:

IL = gL ⇥ (Vm �EL) (2.3)

Where gL is the leak conductance and EL is the reversal potential for the

leak currents. The conductance for the leak currents gL is constant, while

sodium and potassium conductances depend on the membrane potential [12].

The conductance of the cell membrane can be described by ionic channels

that permit certain ions to flow over the cell membrane. Hodgkin and Huxley

represented these ionic channels as gates that can either be open or closed,

where each gate has a certain number of gating particles that can be in a

closed or open position. All gating particles must be open for a particular ion

species to flow through the gate. We can express the conductance of potassium

current gK with the probability of a gating particle being open pn:

gk = ḡk p4
n (2.4)

Where ḡK is the maximum potassium conductance. The exponent of pn

relies on the number of gating particles; in our case, we have four gating

particles, meaning that the exponent is four. We have a similar expression for

sodium conductance:
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gNa = ḡNa p3
m ph (2.5)

Where ḡNa is the maximum sodium conductance, we have two probability

variables: an activation variable pm and an inactivation variable ph. The

Hodgkin-Huxley model describes the membrane potential Vs in a small section

of the giant squid axon as a differential equation:

Cm
dVs

dt
=�gL(V �EL)� ḡNa p3

m ph(V �ENa)� ḡK p4
n(V �EK)+ Ic (2.6)

Where t is time, Ic is the local circuit current, and Cm is the membrane

capacitance [4] [12]. The Hodgkin and Huxley model consists of four coupled

differential equations; the remaining three are for the different gate functions

pm, pn and ph, formulated in Appendix A. By implementing equation 2.6, we

can model the membrane potential over the giant squid axon during an action

potential and thus visualise the shape of the action potential. In Section 2.5,

we will look at a model incorporating the Hodgkin and Huxley formalism to

generate complicated compartmental L5b PC models, which generate the data

used to train our DNNs.

2.4 Biophysical Neuron Models with a Detailed

Morphology

Models in computational neuroscience vary a lot in complexity. Simpler mod-

els with less biological detail may be faster to simulate on a computer, but

a more biologically detailed model will likely produce more accurate results.

Ideally, we would like to optimise both our model’s precision and the simula-

tion’s speed. In complicated neuron models, we often divide the neuron into

many compartments and calculate a property for each compartment: see Fig-

ure 4. In our project, this property would be compartmental voltages and an

action potential initiation prediction in response to synaptic stimuli. These

properties are present in the L5b compartmental PC model [6], which we will
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discuss in Section 2.5.

Figure 4: Drawing of neuron morphology on the left and the corresponding
compartmental representation on the right. We can see that each branch of
the neuron is represented by a series of compartments. It is possible to cal-
culate a spectrum of values for these compartments; in this thesis, we will
examine potential values in each compartment specifically and a spike initia-
tion prediction. Image from Jonas Verhellen created with Biorender.com.

2.5 Compartmental Layer 5b Pyramidal Cell Model

This section will look at compartmental L5b PC models from ”Models of Neo-

cortical Layer 5b PCs Capturing a Wide Range of Dendritic and Perisomatic

Active Properties” by Hay, Hill, Schürmann, Markman and Segev [6]. These

models are based on neurons found in the mammalian cerebral cortex, specif-

ically in L5b. The two main mechanisms explored by Hay et al. [6] are the

dendritic and perisomatic active properties in L5b PCs. The dendritic active

properties refer to the electrical dynamics in the neuron’s dendrites, while

the perisomatic active properties concern the electrical dynamics around the

soma. Additionally, Hay et al. [6] looked at the interplay between the two

zones and how they influence one another. The study by Hay et al. fitted

a large set of experimental data from in vitro recordings of P36 Wistar rats;
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they identified features of somatic and dendritic spike patterns and quanti-

fied their statistical properties [6]. The L5b cell models are conductance-based

and use Hodgkin-Huxley formalism (see Section 2.3).

Figure 5: Morphology of an L5b neocortical PC. The study by Hay et al. [6]
employs a combination of experimental data and computational modelling to
capture the dynamics of the L5b PC. The black, blue and red electrodes rep-
resent the recording and stimulation sites used when collecting data. Repro-
duced from Figure 1 in Hay et al.[6].

L5b PCs are ideal for intracellular dendritic recordings due to the sizeable

thickness of their dendrites. L5b PCs have therefore been studied thoroughly

compared to many other neuron types. We have two primary spiking zones

in L5b PCs; in the area surrounding the cell body, we have perisomatic Na+

spikes, and at the distal apical dendrites 1 we have Ca2+ spikes. The two

spiking zones have been shown to interact with each other by in vitro exper-

iments, and it is, therefore, interesting to replicate both spiking zones in the

same model [6].

2.5.1 BAC Firing and Perisomatic Step Current Firing

The models by Hay et al. [6] use an automated fitting method called Multi-

Objective Optimisation (MOO) together with an evolutionary algorithm [22]

when fitting models to experimental data. They fit models to 20 features

gathered from experimental recordings, such as somatic and dendritic volt-

age responses. The authors emphasize two types of firing behaviours in their

1”Distal apical dendrites” refers to the farthest-reaching branches of the apical dendrites.
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neural models; BAC2 firing and perisomatic Na+ step current firing. BAC

firing occurs when an action potential initiated at the soma propagates into

the dendrites, where calcium channels generate calcium spikes [23]. Periso-

matic step current firing is essentially the firing pattern which arises when

the neuron is injected with depolarizing and hyperpolarizing current injec-

tions at the soma; one of the earliest adoptions of current injections into the

soma of a neuron was performed by Hodgkin and Huxley [4] (see Section 2.3).

Hay et al. aimed to develop acceptable models for both BAC firing and

perisomatic Na+ step current firing and incorporate the interplay between

the two firing zones. They began by fitting the two firing types separately

before trying to fit them jointly; first, they performed fitting of BAC firing tar-

gets, which led to some acceptable models; secondly, they tested these models

on the other type of firing, the perisomatic step current firing before select-

ing the model which performed best for both target behaviours. This two-step

method is how they optimised the features for both spiking zones [6]. The

membrane capacitance was constant for the soma, axon and dendrites, while

the specific membrane (leak) conductance was kept as a free parameter. They

used Hodgkin- Huxley formalism when modelling the ionic currents (see Sec-

tion 2.3):

I = ḡ · pxm
m pyh

h · (V �Er) (2.7)

where I is the ionic current, ḡ is the maximal conductance, Er is the re-

versal potential, V is the membrane potential for the ion involved, pm is the

activation variable, ph is the inactivation variable, xm is the number of activa-

tion variables and yh is the number of inactivation variables. They used ten

active ionic currents, incorporating kinetics from experimental literature.

2BAC: backpropagation action potential activated Ca2+ spike.
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2.5.2 Hay et al. Study: Key Takeaways

Hay et al. [6] created plausible models that captured important characteris-

tics observed in L5b PCs by optimising their models to reproduce both BAC fir-

ing and somatic step current firing properties. They used 20 experimentally-

based features and their experimental variability to characterise the target

behaviours of the two spiking zones. The proposed models from Hay et. al

[6] capture the main characteristics of L5b PCs. We will be using data gener-

ated by the ”Hay model” as our ground truth when we are training our deep

learning models (see Section 3.2).

This thesis uses deep learning methods to study the input-output relation-

ship from a model proposed by Hay et al. [6]. We want to learn the under-

lying mapping responsible for the transformation from input to output with-

out having to solve the cable equations in the complex biophysical L5b PC

models [24][25][26]. These cable equations are partial nonlinear differential

equations used to model the compartmental potentials in spatially extended

neuron models [12]. It can be challenging to understand and solve cable equa-

tions due to their spatial complexity [24] and the fact that they are composed

of a high-order structure of coupled differential equations [8].

2.6 Local Field Potential (LFP)

In this thesis, we will employ neural networks to estimate voltage values

within neural compartments; these compartmental voltage values enable the

computation of transmembrane currents in a neuron, which can subsequently

be utilized to estimate Local Field Potentials (LFPs). LFPs are low-frequency

signals that reflect the interaction between neurons in the brain and are char-

acterised by a frequency below 500 Hz [14] [27][28]. LFPs and action poten-

tials are often measured together in electrophysiological experiments using

micrometre-size electrodes [14] [29]. The local field potential measured at the

electrodes is generated from transmembrane current passing through cellu-
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lar membranes in the proximity of the electrode. The dominant component

for LFP contribution seems to be from synaptic inputs since it is an essen-

tial source for extracellular current [30]. There is an established forward-

modelling scheme based on multi-compartmental models to describe the con-

tribution from neuron model activity to the extracellular potential f(re, t) [28]:

f(re, t) =
1

4pk

Nc

Â
n=1

In(t)
|re � rn|

(2.8)

Where In(t) is the transmembrane current in compartment n, rn is the po-

sition of compartment n, re is the position of the tip of the electrode, Nc is the

number of compartments in the model and k is the extracellular conductiv-

ity. The variables In(t), rn and re are visualised in Figure 6. The dots inside

each compartment in Figure 6 represent the assumption that the transmem-

brane currents enter the extracellular space from a single point based on the

point source approximation. The superposition principle linearly combines

the multiple current sources to acquire one local field potential [31]. The value

of the conductivity k will depend on how easily the transmembrane current

can move through the extracellular medium, which is determined by separate

experiments [28].

A few assumptions and approximations must be fulfilled for equation 2.8

to hold true. One of these is the quasistatic approximation of Maxwell’s equa-

tions, where the electric (E) and magnetic (B) fields are essentially decoupled,

which means that the terms ∂E/∂ t and ∂B/∂ t can effectively be ignored when

calculating B and E, respectively [32]. We also have to assume an infinite

volume conductor, and the electric conductivity k has to be ohmic, isotropic,

homogenous and frequency independent [28].

In Figure 7, we can see the distribution of extracellular potentials across

a reconstructed L5b pyramidal neuron model. LFPs represent the summed

activity of multiple neurons, which means we can represent larger brain sec-

tions by calculating LFPs. Furthermore, calculating LFPs and the corre-

sponding dipole moments can be used to calculate measures such as EEG and
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Figure 6: Depiction of how In(t), rn and re from equation 2.8 are positioned
in relation to the neuron model and the electrode. The illustration depicts
the single excitatory apical input as the red triangle onto a pyramidal neu-
ron. The red dotted lines are the distance from the electrodes to the different
compartments. The black arrow over the red triangle represents the trans-
membrane current from the synapse, while the grey arrows along the neuron
represent the transmembrane return current [28]. Adapted from Einevoll et
al. [28] with permission.

MEG signals [33], which can give us valuable insight into how these measures

are related to each other. These simulated measures can then be compared

with experimental LFP, EEG and MEG signals, and if the experimental data

matches our simulations, it would indicate that our neuron model is accu-

rately predicting some aspects of brain activity; it could therefore be advan-

tageous to use our predicted compartmental voltage values from our DNNs to

estimate LFPs.
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Figure 7: Aa and Ab are L5 PCs, where Aa is activated by a single excitatory
synapse at one of the dendrites, and Ab is activated at the soma (the white
circle indicates the activation position). The insert in the top corner in Aa
is the shape of the injected current, the traces that start with a dot are the
extracellular potentials in the different neuron compartments, and the gray
contour lines are the LFP amplitudes. Reproduced from Einevoll et al. [28]
with permission.
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Chapter 3

Deep Artificial Neural Networks

In this chapter, we will explore the properties of our multi-task prediction

methods and present a task-balancing method called Loss-Balanced Task Weight-

ing LBTW. Additionally, we will introduce diversity metrics used to evalu-

ate the diversity of our data representations. This chapter aims to describe

the process of obtaining the underlying input-to-output mapping of the Hay

model [6] by implementing deep learning MTL methods. Parts of Chapter 3 is

based on chapter 3, 5, 6 and 9 in ”Deep Learning” by Goodfellow, Bengio and

Courville [34].

3.1 Characterise Input and Output Mapping

We want to map the input/output relationship from the ”Hay model” intro-

duced in Section 2.5. First, we will feed the input data used in the ”Hay

model” [6] to our DNNs. Then, we will adjust the networks’ weights accord-

ing to the ”Hay model” output. The process will be similar to that attempted

in the paper ”Single cortical neurons as deep artificial neural networks” by

Beniaguev, Segev and London [8]. We will, however, incorporate a different

architecture; the technical details of the architecture are explained in Section

3.7.

In practice, we will use MTL models to predict compartmental potential

values and the outgoing spikes of an L5b neuron model, which will give us
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insight into how the ionic currents behave in the neuron instead of only look-

ing at the spiking behaviour as they did in Beniaguev et al. [8]. One of the

primary advantages of employing neural networks over the conventional L5b

model lies in the immense computational speedup that can be achieved by

integrating a deep learning framework [8]. If the training of our neural net-

works are successful; we can generate a realistic overview of a section of a

cortical area using both compartmental potentials and spikes.

3.2 Single Cortical Neurons as Deep Artificial

Neural Networks

We will use an existing data set derived from the work of Beniaguev et al.

[8] when training our MTL models. The data set is generated in NEURON

and based on a L5b PC neuron model proposed in Hay et al. [6]. Beniaguev

et al.[8] trained a DNN on this data to reflect the input-output behaviour of

L5b cortical PCs by predicting the spiking properties of the neuron model.

The input consisted of synaptic activity in 1278 synapses over 639 compart-

ments, and the output consisted of outgoing spikes from the neuron. The DNN

should ideally recreate the input-output transformation of the L5 PC model

by changing the weights through a backpropagating learning algorithm (see

Section 3.6). In Beniaguev et al. [8] they began by fitting a single-layer neural

network to a Integrate and Fire (I&F) model as a proof of concept, where the

learning process found one positive and one negative class of weights, corre-

sponding to the excitatory and inhibitory synaptic inputs, respectively. The

simple DNN learned the input-output transformation of an I&F model with a

high degree of temporal accuracy [8].

Next, they applied the same framework to the L5 PC model [6], where

the excitatory and inhibitory synapses were uniformly distributed across the

dendritic tree. In this case, they had to increase the complexity of the neu-

ral network compared to the I&F model example. A Temporal Convolutional

Neural Network (TCN) with seven 128-channel layers and a time window
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of Tw = 153 ms was the first configuration that provided a satisfactory fit of

the input-output relationship. This TCN managed to predict the somatic sub-

threshold voltage and the action potentials with high precision on unseen test

data. The simulation speed for the neural network compared to the full L5

PC model was faster by several orders of magnitude, despite the considerable

size of the neural network [8].

Beniaguev et al. [8] produced a DNN model that predicts the neurons

spiking output at millisecond temporal resolution. They learned about the

mechanics that shape the input-output function by analysing the weight ma-

trices in their neural network. They found that the neural network gener-

alised well for different stimulation patterns, where the size of the neural

networks greatly influenced the generalisation capabilities; the deeper neu-

ral networks seemed to generalise better than networks with fewer layers [8].

We will train our networks on data from Beniaguev et al. [8]. In Beniaguev

et al. [8], they only predicted the spiking output of the neuron model; we will

attempt to predict both the voltages of the neuron compartments and spike

generation. Our input data consists of synaptic input and the previous volt-

age values for each compartment. Our output data are the compartmental

potential values and the outgoing spikes of the neuron.

3.3 Temporal Convolutional Neural Networks

The first section in our MTL models consists of the so-called ”experts” or

”shared bottom” in MH, which uses a generic TCN architecture, the temporal

block. We will use a TCN architecture based on ”An Empirical Evaluation

of Generic Convolutional and Recurrent Networks for Sequence Modeling” by

Bai, Kolter and Koltun [35]. In neural networks, it is common to use general

matrix multiplication for the hidden layers in a network. However, a convo-

lutional neural network is characterised as using the convolution operation

instead of matrix multiplication in one or more of the layers [34]. The convo-

lution operation utilizes kernels, which can essentially be described as filters.
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The output of the convolution operation is referred to as the feature map and

is given by the integral over the multiplication of the input and kernel func-

tion:

( f ⇤g)(t) =
Z •

�•
f (ad)⇤g(t �ad)dad (3.1)

Where t is time, ad represents the time delay (or age) of a measurement,

g(t�ad) is the kernel/weighting function and f (ad) is the input signal at a time

delay ad [34]. When time is discretized, we can rewrite the general convolution

operation as a sum:

( f ⇤g)(t) =
•

Â
�•

f (ad)⇤g(t �ad) (3.2)

This is the general definition of the convolution operation but the limits

of summation will of course change according to the dimensions of the input

data. In our project, we are working with sequential input data consisting

of binary synaptic inputs and 1-step delayed voltages at different time steps.

In ordinary convolutional networks, it is common to perform the convolution

on the elements surrounding both sides of the value we are looking at, which

is not the case in TCNs, where we instead would like to use causal convolu-

tions; when we perform our convolutional operations we only want to include

elements of time t and earlier, not elements from the future [35], which is

illustrated by the blue, red and green lines in Figure 8.

The output of the TCN must be the same length as the input, given that we

want to represent the whole time sequence and keep the temporal structure

of the data. We, therefore, add zero padding to the different hidden layers by

the formula (kernel size - 1) * dilation size, where the kernel size is ks = 10,

and the dilation size is given by d = 2i, i = 0,1,2; this will ensure that the

filter is applied to each element in the hidden layers and it means that we can

increase the dilation factor for each layer; see Figure 8 (in our final model we

use a kernel size of ks = 10 instead of ks = 2). We can see that zero padding

is added at the beginning of each layer to make sure that the receptive field
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Figure 8: Depicted is a TCN structure with kernel size ks = 2, meaning each
element has two connections to the elements in the previous layer. The blue,
red and green lines indicate the convolution operation between elements in
adjacent layers. We have dilation factors d = 1,2,4. The dilation factor tells us
how many elements we should skip from the previous layer when we perform
our convolutions. Consider the following example: the element given by time
step t in hidden layer 2 will skip the value from the previous time step t � 1
and instead perform the convolution with t and t � 2 in hidden layer 1, given
that d = 2 between the layers. The ”zero padding” length is given by (ks�1)⇤d,
which gives a padding of 1, 2 and 4 for layers 1, 2 and 3, respectively. We can
see that the causality condition is fulfilled, given that the output has the same
length as the input. This depiction is a simplified drawing using a kernel size
of ks = 2 instead of ks = 10 to represent the operations. Drawing by Sebastian
Amundsen.
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covers the whole input sequence to ensure causality [35]. By increasing the

dilation factor between each layer, we perform dilated convolutions, which

means we can extract valuable information from far-back past observations.

We want to rewrite equation 3.2, where we include dilated convolutions and

introduce the limits 0 to ks � 1, where the input function f is x, and we are

looking at element s of the sequence:

(x⇤g)(s) =
ks�1

Â
i=0

g(i) ·xs�d·i (3.3)

Where g(i) is the kernel/filter, ks is the kernel/filter size and s� d · i de-

scribes the direction of the past. By increasing the dilation factor d and the

filter size ks we can increase the receptive field, which means we can utilize

a broader range of inputs [35]. The structure of the experts is described by

a temporal block, where we use the following process: 1) Feed the input to a

1-dimensional convolutional network with weight normalization; 2) Add the

padding; 3) Give the padded data to a sigmoid function; 4) Feed the data from

the sigmoid function to the dropout function. These four steps are repeated in

a sequential framework; see Figure 9.

We use the sigmoid activation function, which is commonly used in neu-

ral networks; see Appendix B for sigmoid equation and plot. We also use

a method called dropout in our temporal block. The basic idea behind the

dropout method is to remove certain nodes in our network layers given some

probability, which could improve diversity in the network structure during

training, and consequently contribute to less likelihood of overfitting [36]. The

dropout function we are using will zero elements of the input tensor with a

probability of pz = 0.2. It is important to note that the dropout method is only

active when training our network and not during network evaluation (test-

ing). We have three temporal blocks in each expert (for MMoE/MMoEEx) and

in the shared bottom (for MH).

The experts/shared bottom will ”pick up” important characteristics in the

input data by ”sliding” learnable filters across the input. These filters can be
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TCN structure with kernel 

	 	 	 Normalized conv1D

	 	 	         Chomp1D

	 	 	          Sigmoid

	 	 	          Dropout

	 	 	 Normalized conv1D

	 	 	        Chomp1D

	 	 	         Sigmoid

	 	 	         Dropout

Temporal Block

Figure 9: Illustration of the temporal block, where each section receives input
from the previous section in sequential order. 1) The input data is first nor-
malized and sent through a 1- dimensional convolution layer. 2) The convo-
luted data is sent to a chopping function which adds padding. 3) The sigmoid
activation function is applied to the data. 4) The dropout function deactivates
certain nodes in the network to improve generalization. These four steps are
repeated one more time before receiving our output from the temporal block.
We have three of these temporal blocks in the experts and the shared bottom.
Drawing by Sebastian Amundsen.
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	 	 	 	 Input

	 	 	    Temporal block 1

	 	 	   Temporal block 2

	 	 	   Temporal block 3

	 	 	     Output for FFNN (32, 800)

(32, 8, 100) 

(32, 16, 100) 

(32, 32, 100) 

(32, 1918, 100) 

Figure 10: This figure depicts the three temporal blocks in the experts and
the shared bottom. For the input, the dimensions are given by (Batch size,
Features, Sequence length) and for the temporal blocks, the dimensions are
(Batch size, Number of channels, Sequence length). The input with dimen-
sions (32, 1918, 100) is sent to the first temporal block, where the 1918 fea-
tures are represented as 32 channels. In blocks 2 and 3, these channels are
reduced to 16 and 8, respectively. The final temporal block has dimensions
(32, 8, 100). Before sending the data to our FFNNs/towers, we need to flatten
the output, which gives dimensions (32, 800), where we have 32 batches with
800 elements/features. Drawing by Sebastian Amundsen.

seen as detectors, which look out for certain patterns. This pattern detection

process generates representations of the input called channels, which repre-

sent feature maps of the data. The channels in our convolutional networks

will decrease in size for each successive network. We have 32, 16 and 8 chan-

nels for the first, second and third temporal blocks. Each channel represents

a feature map, which is adjusted by applying the kernel to the time sequence

data. The dimensions of the components in the experts/shared bottom are

given in Figure 10. In the MH model, the data configuration is sent from

the shared bottom to feed-forward neural networks for further processing. By
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having multiple experts, we can obtain different configurations of the input

data, which can be beneficial for identifying features. In the MMoE/MMoEEx,

the different data configurations are sent from the experts to feed-forward

neural networks for further processing.

For deeper convolutional networks, it can be beneficial to incorporate resid-

ual connections that do not fit directly to the underlying mapping H (x) due

to the degradation problem that occurs when deeper networks start to con-

verge [37]. In ”Deep Residual Learning for Image Recognition” by He, Zhang,

Ren, and Sun [37], the authors propose a solution to this by introducing

a ”deep residual learning framework”, where they fit a residual mapping

F (x) := H (x)�x instead of fitting directly to the desired underlying mapping

H (x) [37]. Our TCN has few layers, so it is not necessary to implement such

a framework. However, it may be beneficial to implement a residual mapping

if one wants to increase the depth of the experts.

3.4 Feed Forward Neural Networks

The output from the experts/shared bottom is ”fed” to feed-forward neural

networks, which we refer to as towers. We have 641 towers in our deep learn-

ing models, each corresponding to a different task. Hopefully, the experts can

find diverse enough data representations to specialize in different tasks and

provide optimal input for each tower. For each task, we have a feed-forward

neural network consisting of three linear layers with the exponential linear

unit (ELU) activation function between each layer; see Appendix B for ELU

function and visualisation.

We have different sizes for our towers in the soft-parameter models and

hard-parameter models to make the sizes of the networks comparable; we,

therefore, increase the number of units in the hard-parameter sharing model.

For the hard-parameter model, the input layer has dimensions given by [TCN

Output Size, Number of Units] = [800, 25]. The second layer has dimen-

sions [Number of Units, Number of Units]= [25,25], and the third output layer
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has dimensions [Number of Units, Task Length]= [25,1]. For the MMoE and

MMoEEx model, we have 10 units instead of 25, which gives the architecture

[800, 10] ! [10, 10] ! [10, 1] for the soft-parameter sharing models. The fi-

nal output values from our towers are the predicted values we compare to the

target data. Figure 11 shows the towers’ structure. Our feed-forward neural

network uses the ADAM optimiser and backpropagation to update the layers’

weights, which will be discussed in Section 3.5 and 3.6, respectively.
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Figure 11: This is the feed-forward neural network structure we use for our
towers. We only drew a section of the network to illustrate the key compo-
nents of the full network. The dots represent the rest of the nodes in the
tower. The input from the experts consists of 800 elements with a batch size
of 32, which is given to the first input layer of 800 units. The hidden layer
has 25 units for the hard-parameter model and 10 for both soft-parameter
models. The output layer produces the prediction for the specific task of that
tower. The arrows represent the different weights between each node. These
weights will be adjusted by an optimiser and the backpropagation algorithm
when we are training our network (see Section 3.5 and 3.6). Drawing by Se-
bastian Amundsen.
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3.5 Loss Functions and Optimisers

The goal of our multi-task learning methods is to approximate transforma-

tion functions Xi(x) to target functions X⇤
i (x), where i = 0,1,2,3, .....,639,640.

Our target functions represent the transformation between input and output

data. As mentioned previously, the data consists of compartmental potential

values and spikes gathered from the precomputed data set by Beniaguev et

al. [8]. The difference between predicted and target values can be described

using loss functions. We want our predicted output values to be as close as

possible to the target values, which can be accomplished by minimizing the

loss function. Multiple loss functions exist; we use the Mean Squared Error

(MSE) function for the compartmental potential values and the Binary Cross

Entropy with Logits Loss (BCELL) function for the spikes.

We want to minimize both the MSE and the BCELL in our deep learning

models; we introduce backpropagation and the ADAM optimiser, which are

methods used to update the weights in our neural network. Backpropagation

is an algorithm which allows information from the loss function to propagate

back through the network. We want to compute the gradient of the cost func-

tion —J(w,b) with respect to the parameters we are trying to optimise; these

parameters are the weights w and the biases b.

3.5.1 Mean Squared Error (MSE)

We are using the MSE loss function when we compare our predicted potential

values with the target potentials. The MSE is given by:

MSE(ŷ,y) =
1
nb

nb

Â
i
(A(ŷ)� y)2

i (3.4)

Where nb is the batch size, A is the activation function, ŷ is the prediction,

and y is the target values. We apply the chain rule to 3.4 in order to obtain

expressions for the derivative of MSE in relation to w and b:
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The gradient of the MSE loss function is given by:
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(A(ŷ)� y)2

i
�
,

∂
∂b
� 1

nb

nb

Â
i
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(3.6)

The general expressions ∂A
∂ ŷ

∂ ŷ
∂w and ∂A

∂ ŷ
∂ ŷ
∂b will be calculated when we prop-

agate back through our network using the backpropagation algorithm (see

Section 3.6).

3.5.2 Binary Cross Entropy with Logit Loss (BCELL)

The BCELL function combines the sigmoid function (see Appendix B) with

the binary cross entropy loss. The sigmoid function’s purpose is to transform

the output from the towers to probabilities. These probabilities are then com-

pared to the binary probability of generating a spike using the cross entropy

loss. The BCELL loss function is given by:

BCELL(ŷ,y) =
1
nb

nb

Â
i
�
✓

yi · log
�
A(ŷi)

�
+(1� yi) · log

�
1�A(ŷi)

�◆
(3.7)

We also want an expression for the gradient of the BCELL loss function:
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Where A is the activation function. We need to apply the chain rule to 3.8:

∂BCELL
∂w

=
∂BCELL

∂A
∂A
∂ ŷ

∂ ŷ
∂w

=�
� y
A(ŷ) �

(1� y)
1�A(ŷ)

�∂A
∂ ŷ

∂ ŷ
∂w

(3.9)

We calculate the expression for the derivative with respect to the bias b

in the same way as above. We can now write a general expression for the

gradient of BCELL:

—BCELL(ŷ,y) =
✓
�
� y
A(ŷ) �

(1� y)
1�A(ŷ)

�∂A
∂ ŷ

∂ ŷ
∂w
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� y
A(ŷ) �
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∂ ŷ

∂ ŷ
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◆

(3.10)

As for the MSE function, the general expressions ∂A
∂ ŷ

∂ ŷ
∂w and ∂A

∂ ŷ
∂ ŷ
∂b will

be calculated when we propagate backwards through our network using the

backpropagation algorithm (see Section 3.6).

3.5.3 ADAM Optimiser

It is important to choose a suitable optimisation algorithm when we are learn-

ing the weights of our network. We use optimisation algorithms to find the

optimal values to minimize or maximize a function. In our case, we want

to minimize the loss function(s). We will be using an adaptive learning rate

optimisation algorithm called the Adaptive Moment Estimation (ADAM) al-

gorithm, which is introduced in ”ADAM: A Method For Stochastic Optimiza-
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tion” by Kingma and Ba [38]. There have to be set some requirements before

executing the ADAM algorithm; we set the learning rate h = 0.001, the expo-

nential decay rates r1 = 0.9 and r2 = 0.999, the stabilisation factor n = 1⇥10�8,

the weight decay L = 0.0001, the time step dt = 1 and define the initial weights

wi and biases bi. The ADAM algorithm is detailed in Algorithm 1.

Algorithm 1 ADAM Optimisation Algorithm [38][34]
Initialize time t = 0

Initialize moment variables q = 0 and r = 0

Initialize parameters wi and bi

Define inital paramters q(w,b)

while criteria is met do

Take minibatch sample of size nb from training set {x!,x2, .....,xnb}

with targets {y!,y2, .....,ynb}

Compute the gradient: G = 1/nb Ânb
i —q J(q)

t = t +dt

G = G+Lqt�dt

q = r1q+(1�r1)G

r = r2r+(1�r2)G2

Correct bias: q̂ = q/(1�r t
1)

Correct bias: r̂ = r/(1�r t
2)

Compute the update: Dq =�h q̂/(
p

r̂+n)

Update the parameters: q = q +Dq

end while

Here we have introduced the moment variable q (the mean) and r (the

uncentered variance) in conjunction with two exponential decay rates for the

moment estimates r1 and r2. These moment estimates of the mean and the

variance are initialized at zero, which means they are biased towards zero,

particularly at the initial time steps and when the weight decay L is small (in

our case). It is, therefore, beneficial to correct the biases in the momentum

with the terms r t
1 and r t

2 to obtain q̂ and r̂, where t refers to the iteration
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number [38].

The ADAM optimiser combines the AdaGrad [39] and the RMSProp [40]

method. The AdaGrad method works well with sparse gradients, which are

gradients where many components in the gradient vector are zero (or close to

zero). The RMSProp method works well for incremental learning and when

the underlying data distribution changes over time [38] (see [41] for incre-

mental learning). The ADAM optimiser combines the benefits of both of these

methods. The main differences between the ADAM and the RMSProp are: 1)

ADAM updates its parameters using a running average of the first q and sec-

ond r moment, while the RMSProp updates its parameters using momentum

on the rescaled gradient; 2) RMSProp does not have a bias- correction term

[38], while ADAM does. The main difference between AdaGrad and ADAM

concerns how they adjust the learning rate for each model parameter during

training: ADAM uses q and r to update the learning rate for each parameter,

while AdaGrad takes the square root of the sum of past gradients to adapt

the learning rate of the model parameters [39].

3.6 The Backpropagation Learning Algorithm

We have described how the weights and biases are updated in our deep learn-

ing models; the remaining part is to explain how to propagate back through

the network to update these parameters. This propagation method is referred

to as the backpropagation learning algorithm (backprop), and it is utilized in

both the experts and towers. We can see that the gradient of the cost functions

3.6 and 3.10 are not fully written out; this is because we need to calculate the

derivation term(s) in relation to the weights and biases for each node in ev-

ery layer that is propagated backwards to. The backpropagation calculus in

this section is based on chapter 2 in ”Neural Networks and Deep Learning”

by Nielsen [42]. This section will propose a general expression for the back-

propagation algorithm.
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3.6.1 Notation

We will introduce a neat notation to describe the general idea behind back-

prop, where the feed-forward neural network structure will be the reference

point for our explanations. We define our weights wl
jk as the lines from layer

l �1 to layer l, where j specifies the node in layer l and k is the node in layer

l � 1. The biases bl
j and activations al

j are defined similarly, where each node

has a bias bl
j and activation al

j. In our case, the activation function is the

ELU for our towers, and the Sigmoid (see Appendix B) for our experts, but

the general expression for al
j given an arbitrary activation function A is:

al
j = A

✓ K

Â
k

wl
jkal�1

j +bl
j

◆
(3.11)

Where K is the number of nodes in layer l. In Figure 12, we can see how

the weight from node 6 in layer 3 is connected to node 1 in layer 3. The figure

also depicts the activation at node 1 in layer 3 and the bias at node 5 in layer

2. We can rewrite equation 3.11 in a vectorized form:

al
j = A(wlal�1 +bl) (3.12)

Where there is a weight matrix wl 2 RK⇥M for the specific layer l, with K

defined as the number of nodes in layer l and M defined as the number of

nodes in layer l �1:

wl =

2

6666666664

wl
11 wl

12 · · · w1M

wl
21 w22 · · · w2M
... . . . . . . ...
... . . . . . . ...

wK1 wK2 · · · wKM

3

7777777775

(3.13)

This matrix gives that the entry in row j and column k is wl
jk. Note that

the dimensions of the matrix K ⇥M will change according to how many nodes

there are in each layer. In 3.12 there is also used vector representations for
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the bias bl and the activation al:

bl = (bl
1,b

l
2,b

l
3, .......,b

l
K)

al�1 = (al�1
1 ,al�1

2 ,al�1
3 , .......,al�1

M )
(3.14)

Where the elements (1,2,3, .......K) in the bias vector bl are the nodes in

layer l and the elements (1,2,3, .......M) in the activation vector al are the nodes

in layer l�1. We will introduce an abbreviation for the term inside the activa-

tion function: zl = wlal�1 +bl. There is also an error term e l
j, which represents

the errors corresponding to layer l:

e l
j ⌘

∂J
∂ zl

j
(3.15)

3.6.2 Method

We want to compute the partial derivatives ∂J/∂wl
jk and ∂J/∂bl

j for each layer

l in our network. To do this, we first have to introduce four key equations. We

begin by looking at the error vector eL that contains the errors for each node

j in the final output layer L:

eL =
∂J
∂aL � ∂aL

∂ zL (K1)

Where the Hadamard product � is used for the vector product. The er-

ror vector eL essentially becomes our initial condition, and we must go back

through the layers to compute the errors for the remaining layers. The gen-

eral expression for the error vector e l in layer l is given by the error vector

e l+1 in the upcoming layer l +1:

e l =

✓
(wl+1)T e l+1 � ∂aL

∂ zl

◆
(K2)

The weight matrix wl+1 determines how the activations of the nodes in
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Figure 12: Depiction of how the weight wl
jk, activation al

j and bias bl
j are po-

sitioned according to our indexing scheme. The weight is depicted as the con-
nection between node 6 in layer 2 and node 1 in layer 3. The activation at
node 1 in layer 3 and the bias at node 5 in layer 2 are also shown. It may be
confusing that the nodes in the second layer are indexed as 5 and 6; however,
the reasoning is based on the rationale that these nodes are positioned in the
middle of the second layer. Drawing by Sebastian Amundsen.

layer l contribute to the activations of the nodes in layer l +1. The transpose

of the weights (wl+1)T will essentially reverse the direction of the connections

so that we can propagate the error backwards by multiplying it with e l+1. In

equation K2 the Hadamard product is applied to the ∂aL

∂ zl term which essen-

tially propagates the error term (wl+1)T e l+1 in reverse through the activation

function A in layer l. We can now compute the error e l for each layer l by using

equation K1 as the initial condition for layer L and then repeat equation K2

for each consecutive layer (L�1,L�2,L�3, .....,2) in the network. It is impor-

tant to note that both e l and eL are vectors consisting of errors for all nodes

K in layer l and L, respectively, which means that we can access the specific

error at node j with the notation e l
j. The derivative of the cost function J(w,b)
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can now be expressed with respect to the bias bl
j at node j in layer l:

∂J
∂bl

j
= e l

j (K3)

Finally, we have an equation for the derivative of the cost function J(w,b)

with respect to the weights wl
jk:

∂J
∂wl

jk
= al�1

k e l
j (K4)

These four fundamental equations are everything needed to describe the

backprop process. We can now find the change in our cost function J(w,b) as we

adjust the weights and biases of the network. We begin by applying equation

K1 to the last layer in our neural network, which will give us the error in the

output layer L. We then recursively apply equation K2 for each prior layer l,

all the way down to the first layer in the network. We can then use equation

K3 and K4 to calculate the derivative of the cost function J(w,b) with respect to

the weights wl
jk and biases bl

j for each node j in every layer l, before applying

the ADAM algorithm (Algorithm 1) to update the weights and biases for

every node in the network, given that we now know the gradient of the cost

function for every node in the network. To summarize, we can apply these four

fundamental equations together with the optimiser to update the weights and

biases of our network based on the minimization of both the MSE (eq 3.4 for

potential prediction) and the BCELL (eq 3.7 for spike prediction) loss function.

3.7 Multi-Expert Multi-Prediction Neural Net-

works

One of the most common approaches in machine learning is the Single-Task

Learning (STL) archetype, where models predict tasks independently. STLs

can generate satisfactory results when predicting independent tasks. How-

ever, STLs may be insufficient when predicting correlated tasks with shared
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features; if two output targets are associated with the same input data, we

still have to train two separate independent models for each task [11]. We

can save resources and time if we share the underlying features across tasks.

In contrast to the STLs, we have the MTL models, which optimise a single

model to perform multiple related tasks simultaneously, hopefully improving

efficiency. Furthermore, MTL models appear ideal for our specific prediction

problem, given that we predict compartmental potentials dependent on the

same synaptic input (each compartment is stimulated separately at the same

time step t). Therefore, we will be looking at three different MTL models with

a varying degree of complexity; 1) The Multi-task Hard-parameter sharing

(MH) model proposed in ”Multitask Learning: A Knowledge-Based Source of

Inductive Bias” by Caruana [9]; 2) The Multi-gate Mixture-of-Experts (MMoE)

model proposed in ”Modeling Task Relationships in Multi-task Learning with

Multi-gate Mixture-of-Experts” by Ma, Zhao, Yi, Chen, Hong and Chi [10];

3) The Multi-gate Mixture-of-Experts with Exclusivity (MMoEEx) model pro-

posed in ”Heterogeneous Multi-task Learning with Expert Diversity” by Aoki,

Tung and Oliveira [11].

We can divide the MTL models into hard-parameter and soft-parameter

sharing models. The MH method is an example of a hard-parameter sharing

model, where the bottom layer of the neural network is shared between all

tasks, and the top layers are task-specific [11]. The soft-parameter sharing

models incorporate multiple experts in their bottom layer, which are shared

across tasks by a feature-sharing mechanism that allows tasks to train on

different feature representations. Both MMoE and MMoEEx are examples of

soft-parameter sharing methods. The sharing mechanism in these models is

called the gate function, which selects a subset of experts for each task, sub-

sequently enabling feature sharing [11]. The top layers of the soft-parameter

models are task specific.
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3.7.1 MH

The Multi-task Hard-parameter sharing (MH) model is the most fundamen-

tal of the three MTL models. The first section of the model consists of three

temporal blocks, which we refer to as the shared bottom. The temporal blocks

process the raw data (see Section 3.3), generating a feature representation.

The data is then sent to task-specific towers (see Section 3.4). The final out-

put will be either a voltage prediction or the spike prediction. Next, these

predicted values ŷ are compared with the target values y by producing a loss

value. The architecture is illustrated in Figure 13. After the data has passed

through the architecture, we use the ADAM optimiser and backpropagation

(see Section 3.5 and 3.6) to update the weights and biases for the feed-forward

neural networks and the shared bottom.

Figure 13: This is the architecture of the MH model. The shared bottom con-
sists of three temporal blocks, which generate a feature representation of the
data. The processed data is then sent to task-specific towers consisting of
feed-forward neural networks. The final output will be either a voltage pre-
diction or the spike prediction. Next, these predicted values are compared
with the target values. Finally, we use backpropagation and the ADAM op-
timiser to calculate the gradients of the loss function and adjust the weights
and biases in the shared bottom and the towers. Image from Jonas Verhellen
created with Biorender.com.

We refer to the shared bottom layer as a function ŝ, and the task-specific
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towers are defined as ht , where t = [0,1,2,3,4, ......,T ], where T is the number

of tasks. The output ŷt from each tower can be expressed as:

ŷt = ht(ŝ(x)) (3.16)

Where x is the input [10]. The final output of the MH model ŷt is the

voltages for each of the 640 compartments, in addition to a spike occurrence

prediction. One of the main advantages of the MH model is its scale invari-

ance to an increasing number of tasks, as the complexity of the shared bottom

does not change; it is only the number of task-specific towers that change in

accordance with the number of tasks being addressed. However, the method

can be susceptible to specialising in the tasks with the strongest signal and

consequently provide insufficient generalisation [11].

3.7.2 MMoE

The first soft-parameter MTL method we will look at is the Multi-Gate Mix-

ture of Experts (MMoE) model. In this model, we have multiple experts com-

bined with gates instead of only having one shared bottom, as we did in MH.

The experts will learn different input data representations, hopefully lead-

ing to greater generalization than we had in the hard-parameter model (MH).

The neural input is first sent to the gates of the MMoE network. The gates

determine the importance of each expert in relation to the given input data.

The data is then sent to the different experts in our network, where different

data configurations are generated (see Section 3.3).

Afterwards, we multiply the weights of the gates and the weights of the

experts to determine the experts that should have the highest contribution

to the combined output from the experts to one specific task. Finding the

optimal expert combination is done for every task we want to predict. The

features from the experts are then sent to task-specific towers that process

the data and make either a voltage value prediction or the spike initiation

prediction (see Section 3.4). The tower layout of the MMoE is identical to that
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Figure 14: Here we have an illustration of the MMoE model. The first section
of the MMoE consists of gates and experts. The neural input is sent to the
gates, which determine the importance of each expert concerning the neural
input data for every task. Afterwards, the data is processed by the tempo-
ral blocks in the experts, and different feature representations are generated.
These feature representations of the time sequence data are combined with
the weights in the gates and sent to task-specific towers, and the final output
is produced. The final output will be voltage predictions for the compartments
and a spike prediction. We compare the predicted values with the target val-
ues using a cost function. We then want to minimize the cost function J(w,b)
by adjusting the weights and biases of the network with the help of backprop-
agation and the ADAM optimiser. Image from Jonas Verhellen created with
Biorender.com.

in the MH model, where each task has a separate feed-forward neural net-

work. The predictions ŷ are compared with the target values y using the MSE

loss function for the compartmental voltages and the BCELL loss function

for the spike prediction. After the data has passed through the architecture,

we use the ADAM optimiser and backpropagation (see Section 3.5 and 3.6) to

update the weights and biases for the gates, experts and towers. The MMoE

architecture is depicted in Figure 14.

In MMoE, the experts are combined using gate functions. The gate func-

tion ĝt for each task t is given by:
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ĝt(x) = S(Mgtx) (3.17)

Where S is the softmax function and Mgt 2Rne⇥d f is a trainable matrix with

ne experts and feature dimension d f . The softmax function S(x) is given by:

S(x)i =
exi

ÂT
j ex j

(3.18)

Where x is the input tensor. The term in the denominator is the normal-

ization term, which ensures that the function’s output values sum to 1 and

that all values are in the range (0,1). The softmax function can be interpreted

as an extension of the sigmoid function (see Appendix B), where sigmoid is

used for binary classification while softmax applies to multiple classes T . The

combination of gates and experts is given by:

f t(x) =
ne

Â
i=1

ĝt(x)iŝi(x) (3.19)

Where we sum over the number of experts ne. The final output for a task t

is given by:

ŷt = ht( f t(x)) (3.20)

In practice, the gating networks can learn to interact with a select sub-

set of experts, and the MMoE can figure out which gates overlap with the

same experts. If tasks that share the same experts are not related, the gating

networks of these tasks will attempt to use different experts [10].

3.7.3 MMoEEx

The other soft-parameter model we will examine is the Multi-gate Mixture-

of-Experts with Exclusivity (MMoEEx) model. The architecture is almost

identical to the MMoE model; the only difference is that MMoEEx incorpo-

rates a method to increase expert diversity. In MMoE, the diversity among

the experts only stems from the random initialization of the experts and the
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assumption that the gates will provide sufficient diversity; this means that

there is no guarantee that the experts will be diverse enough to specialize in

the different tasks; the MMoEEx attempts to address this diversity concern.

In [11], they propose two properties to increase diversity among experts; ex-

clusivity and exclusion.

The exclusivity mechanism sets a portion of experts ane to be exclusively

connected to one task, where ne is the number of experts. The exclusivity term

a is defined in the range a 2 (0,1). Higher values of a mean more experts are

exclusive, while lower values mean fewer exclusive experts; a = 1.0 would

make all experts exclusive and a = 0 would mean all experts are shared. Ex-

clusive experts are randomly assigned to tasks, however; one of these tasks

can still be associated with other shared and exclusive experts. In practice, we

would probably make a handful of the experts exclusive while the rest remain

shared; this is at least true for our case where we set a = 0.1, which means

that 10 % of the experts are exclusive and the rest are shared between all

tasks. The exclusion mechanism randomly excludes connections between ex-

perts and tasks. Larger a values mean more connections are removed, while

lower a values mean fewer connections are removed; a = 1.0 would make ev-

ery expert lose one connection, and a = 0 means that no connections would be

removed.

Exclusivity and exclusion are mechanisms that close some gates for spe-

cific experts, which can increase diversity among experts. Other than the

exclusivity and exclusion properties, the rest of the MMoEEx architecture is

identical to the MMoE model; see Figure 15. Ideally, the diverse mechanisms

of the MMoEEx should boost the generalisation performance compared to the

traditional MMoE. It is important to note that the MMoE and the MMoEEx

have some scalability issues due to the fact that the size of the MTL network

tends to grow proportionally with the number of tasks [11]. One key differ-

ence in implementation for our models and the one proposed in Aoki at al.

[11] is that they used LSTMs for the experts while we used temporal blocks.

Furthermore, it is common to incorporate task balancing in MTL methods to
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Figure 15: Here we have an illustration of the Multi-gate Mixture of Experts
with Exclusivity (MMoEEx) model. The first section of the MMoEEx consists
of gates and experts. The neural input is sent to the gates, which determine
the importance of each expert in relation to the neural input data for every
task. MMoEEx also introduces an exclusivity mechanism where some ex-
perts are ”closed off” for certain tasks. The temporal blocks in the experts
process the neural input data and generate different feature representations.
These feature representations of the time sequence data are combined with
the weights in the gates and sent to task-specific towers, and the final output
is produced. The final output will be voltage predictions for the compartments
and a spike prediction. We compare the predicted values with the target val-
ues using a cost function. We then want to minimize the cost function by
adjusting the weights and biases of the network with the help of the ADAM
optimiser and backpropagation. Image from Jonas Verhellen created with
Biorender.com.
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reduce the possibility of certain tasks dominating the optimisation [11]. We

will attempt to implement one of these task-balancing methods and compare

the results with the ordinary MTL methods (see Section 3.8).

3.8 Loss-Balanced Task Weighting - LBTW

The main goal of task-balancing methods is to deal with negative transfer.

Negative transfer is characterised as a reduction in performance for one or

multiple tasks by the diversification of the network. In practice, for some

tasks, it could be better to utilize methods which do not use feature shar-

ing across tasks. To prevent negative transfer, we incorporate a method to

balance the task gradients and prevent any of them from dominating the

network. There are several different optimisation techniques we can im-

plement to reduce negative transfer; in [11], they proposed a Loss Balance

Task Weighting (LBTW) method [43], which is the method that we will imple-

ment in our MTL models. The LBTW method assesses the loss ratio between

the current and initial loss for each task and then dynamically changes the

weights of the different task losses to regulate task priority. The LBTW algo-

rithm is detailed in Algorithm 2 given that we have T tasks and a balance

parameter ab.

It is important to note that we need to perform an extra step for the voltage

losses Lŷvoltages before we can add it to the total loss. We need to take the mean

of the MSE for all the batches manually before we multiply the total ˆMSE

loss with the weights since the MSE function is squared (see equation 3.4).

Afterwards, we divide the loss by the length of the weights to normalize the

overall ˆMSE loss, and then we multiply the loss by the weights:

L =
ˆMSE(ŷvoltages,yvoltages) ·lt

kltk
+BCELL(ŷspikes,yspikes) ·lT (3.21)

Since the BCELL loss function has no squared terms, we can simply mul-
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Algorithm 2 Loss-Balanced Task Weighting (LBTW)
Given T task and parameter ab
Set the initial losses Lŷ to zero.
Set initial task weights lt to one.
for each epoch i do

for each batch in voltage predictions do
Calculate loss for spike: Lŷspike.
Multiply spike loss with weight lT .
for task t in (T-1) do

Calculate loss for each t: Lŷvoltage . 2 R
Multiply loss with weights lt .
if batch = 0 then

Set initial losses: L(0,i) 2 R.
end if
Updated task weights: lt =

✓
Lŷ,l
L0,i,l

◆ab

.

end for
Calculate total loss: Lŷ = Lŷvoltages ·lt +Lŷspike ·lT , where t 2 (T �1)

end for
end for

tiply it with the weights. The tasks that perform poorly in our network have

ratios Lŷ,l
L0,i,l

close to 1 and contribute more to the gradient and total loss of our

network. On the contrary, we have that tasks with ratios close to 0 contribute

less to the overall loss and gradient. The balancing parameter ab decides the

influence of the task-specific weights, and if we were to adjust ab towards 0;

the LBTW would essentially approach the standard MTL [43]. We will be

using ab = 0.5 in our neural network.

Task-balancing methods are ideal when certain tasks are sufficiently re-

lated. In our case, the compartmental potentials in proximity should be highly

correlated, and the far-apart compartments may have larger diversity. We

also have a binary classification task, the spiking prediction. Theoretically,

the spiking task could be subjected to negative transfer since it is not a re-

gression task like the compartmental potential values. It is interesting to

examine if implementing the LBTW method improves the spike prediction in

our MTL models.
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3.9 Diversity

It is interesting to study the diversity of the experts in our soft-parameter

MTL models. We will therefore be implementing a diversity measure so that

we can compare the diversity score of both the MMoE and the MMoEEX.

The diversity can be represented as a distance de between the experts output

fo8o 2 [0,1,2, ........,N], where N is the number of samples. If we consider the

experts i and j we get:

de
i, j =

s
N

Â
o=0

�
fi(xo)� f j(xo)

�
(3.22)

Where fi and f j are the learned representations of the output from expert

i and j. We keep all our distances de
i, j in a matrix D 2 RN⇥N We now want to

scale the distances de
i, j so they are in the range [0,1], which is done by dividing

the distances in D by the maximum distance in D. We use the mean entry in

D as our diversity score d̄e. We have that experts with di. j values close to 0 are

almost identical and experts with di. j values close to 1 are very diverse.

3.10 Implementation

3.10.1 Implementation and Dependencies

In this master thesis, we built upon existing code created by Jonas Verhellen

and Kosio Beshkov. The initial code included the implementation of the multi-

task soft-parameter models (MMoE and MMoEEx). In this thesis, we imple-

mented the hard-parameter method (MH) and the LBTW task-balancing al-

gorithm. Our MTL models are implemented in Python with the PyTorch and

numpy extensions. In addition, we use the Pytorch Lightning wrapper and

Hydra configuration files to streamline the deep learning training process.

The result figures in this thesis are made with Matplotlib and Seaborn. We

wrote code that can run on both CPU and GPUs. The code will be available

on GitHub: https://github.com/Jonas-Verhellen/LFDeep.
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3.10.2 Training and Tuning

The deep learning neural networks were trained on GPUs from the ML Nodes

cluster, provided by the University of Oslo [44]. We trained our models using

four RTX2080Ti cores on a machine equipped with 32 cores (AMD) and 128

RAM (GiB). Our computational resources were somewhat limited during this

project due to a concurrent course at UiO having the priority usage of the ma-

chine we were using. This constraint limited us to only running the models for

300 epochs; however, the loss values did seem to stabilise before this number.

In an upcoming publication by Jonas Verhellen, Kosio Beshkov, Torbjørn V.

Ness, Sebastian Amundsen and Gaute T. Einevoll, the models will be trained

for more than 300 epochs. The MH used ca. 3.15 seconds per iteration (s/it),

MMoE used ca. 4.03 s/it, and MMoEEx used ca. 4.04 s/it when running on

GPUs. For the MMoEEx, we utilized a probability exclusivity of 0.1, we also

tried to use 0.5, but it turned out to be too high, given that the loss flatlined

after a couple of epochs.
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Chapter 4

Results and Discussion

Our MTL methods undergo training for approximately 300 epochs, achieving

stable loss values quite a bit before this point. Considering this stabilisa-

tion of losses and the constraints of our computational resources (see Section

3.10.2), we focus our analysis on models trained for 300 epochs. We have

produced results for the models with and without the LBTW task-balancing

mechanism introduced in Section 3.8. The models without task balancing

are referred to as standard models, while the models with task balancing are

called balanced models. We intend to find the MTL model that performs best

in terms of task prediction. It is possible to employ a plethora of different

metrics to evaluate the accuracy of a model. However, we will mainly focus on

loss scores for the models and diversity metrics for the different experts.

We will compare our MTL models by analysing the progression of losses

for the balanced and standard model archetypes. We will create a plot dis-

playing both the raw data of loss values and a smoothed version for easier

interpretation. The smoothed function we are using is called ”exponential

weighted moving” (emw) [45]. It is also interesting to figure out which mod-

els perform best for specific task predictions, which can be accomplished by

studying the losses for individual compartments. In addition, we will study

the diversity of the experts in MMoE and MMoEEx for both the standard and

balanced models; this will give us insight into how well our models capture di-

verse data characteristics. We will also combine these diversity metrics with
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weight plots, which visualise which experts contribute most to specific tasks.

4.1 Loss Metric Evaluation

4.1.1 Standard Models

For the standard models, both MH and MMoEEx fluctuate around the same

training loss values around 0.50, while the MMoE model has a slightly lower

training loss, fluctuating around 0.40; see Figure 16; this indicates that the

MMoE has learned the patterns in the training data more effectively than

the MH and MMoEEx model. However, it is important to note that this does

not necessarily mean that the soft-parameter models perform better than the

hard-parameter model on unseen test data; therefore, we must evaluate the

models on a separate validation data set.

Figure 16: The training loss for the standard MH, MMoE and MMoEEx mod-
els.

Sometimes there is a discrepancy between training loss and validation loss

due to overfitting, which is when the model starts to fit the noise of the data.

We want a model that is neither too simplistic, failing to capture the underly-

ing patterns in the data, and not too complex, leading to the fitting of noise in

the data set [46]. For the validation data set, MMoE and MMoEEx stabilise at

losses around 0.60 and 0.57, respectively, and the MH model seems to stabilise
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at around 0.72; see Figure 16. Of the standard models, MMoEEx seems to per-

form the best, given that this method has the lowest validation loss. However,

there are indications that the MMoE outperforms MMoEEx for longer runs,

supported by unpublished work by Jonas Verhellen, Kosio Beshkov, Torbjørn

V. Ness, Sebastian Amundsen and Gaute T. Einevoll.

Figure 17: The validation loss for the standard MH, MMoE and MMoEEx
models.

Generally, the validation loss values are larger than the training losses,

which could indicate that we are slightly overfitting our models. It could be

that our models fit noise and outliers, as well as the underlying patterns of

the data; this could negatively impact how well our models perform on unseen

test data. However, it should be mentioned that since our models are trained

on the training set, they are expected to show somewhat superior performance

on this data compared to the validation set.

4.1.2 Balanced Models

We also trained networks using the LBTW task-balancing algorithm (see Sec-

tion 3.8). For the balanced models, MH and MMoEEx fluctuate around 0.50,

and MMoE has a training loss just under 0.50; see Figure 19. Here the train-

ing loss for the balanced MH and MMoEEx models seems to be similar to the

standard MH and MMoEEx models. In addition, the training loss for MMoE

seems to be slightly higher for the balanced archetype than for the standard
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archetype. In Figure 19, we have the validation loss for the balanced mod-

els. The validation loss stabilises at around 0.75 for the balanced MH, which

is slightly larger than the loss from the standard MH. The validation loss

for the balanced MMoE and MMoEEx stabilised around 0.65, which is higher

than the validation loss obtained for the standard models.

Figure 18: The training loss for the balanced MH, MMoE and MMoEEx mod-
els.

Figure 19: The validation loss for the balanced MH, MMoE and MMoEEx
models.

The validation losses for our MTL methods suggest that MMoE and MMoEEx

exhibit the strongest performance in predicting tasks. Whereas the MH model

exhibits somewhat subpar performance, as evidenced by its higher loss val-

ues than the soft-parameter models. There was only a minimal difference in
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performance between the standard and balanced models, where the balanced

models had slightly larger loss values compared to the standard models for

all MTL methods. It is important to note that evaluating the loss is only one

measure of assessing how well models perform. An additional measure is the

diversity metric (see Section 4.3), which can be used to assess the feature

learning capabilities of our experts in MMoE and MMoEEx.

4.2 Compartmental Losses

Our MTL methods will exhibit varying performance levels in predicting the

voltages of the different compartments in our neuron model. We will study

the compartmental validation losses to understand how accurately our MTL

methods predict the neurons’ different sections. We can divide the neuron

model into three main sections: the basal, oblique and apical parts of the neu-

ron [8]. By tracking the compartmental losses, we can determine if certain

MTL methods are more suited for simulating specific sections of the neuron.

This classification of methods can be helpful if the goal is to prioritize the pre-

diction of a specific neuron section, as one can select the model that performs

best for that part of the neuron. However, in this thesis, we are primarily

interested in finding the most accurate MTL method across all three sections

of the neuron.

4.2.1 Loss Distribution for MTL Models

The sections of the neuron model are depicted with the colours blue, orange

and green corresponding to the basal, oblique and apical area, respectively;

see Figure 20 for the standard models. Generally, the apical and oblique com-

partments have the lowest loss values, and the basal compartments have the

largest loss values. Most compartments have losses lower than 2, but a few

outliers have higher loss values than this. The MH seems to have most of

these outliers, while the MMoEEx has the least.

In Figure 21, we have the compartmental losses for the balanced models.
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Figure 20: Depicted are the compartmental voltage losses for the standard
MH, MMoE and MMoEEx. Generally, the apical and oblique compartments
have the lowest loss values, while the basal compartments have the highest
losses. By looking at the figure, it seems that MMoEEx has the lowest loss
values across compartments.

The apical and oblique compartments are generally the most accurate here,

while the basal compartments typically have the highest loss values. For

the balanced models, the MTL methods perform more similarly to each other

than the standard models, and it is hard to differentiate which of the MTL

methods performs the best. Generally, the compartmental losses are higher

for the balanced models than the standard ones, especially for the MMoEEx.

Looking at Figure 20 and 21, it seems that the standard MMoEEx outper-

form the other models concerning compartmental losses. However, it can be

challenging to determine the performance of the models regarding the specific

sections of the neuron by only looking at the figures above; we will therefore

look at plots with the area of the neuron on the x-axis and the loss values on

the y-axis in the upcoming section. These plots will hopefully give us deeper

insight into how our methods perform for the different parts of the neuron.
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Figure 21: Depicted are the compartmental voltage losses for the balanced
MH, MMoE and MMoEEx. Generally, the apical and oblique compartments
have the lowest loss values, while the basal compartments have the highest
losses. The MTL methods seem to perform pretty similarly across compart-
ments, and it is hard to differentiate the best-performing model by visually
analysing the figure.

4.2.2 Comparison of Standard and Balanced Models

In Figure 22, 23 and 24, we have plotted the compartmental losses for each

section of neuron given by the standard and balanced MTL methods. The

figures are not all that different when considering the shape of the swarm

plots. Generally, the basal section has the highest loss values, while the apical

and oblique sections have the lowest, in agreement with our observations from

Section 4.2.1. In addition, we can see fewer compartments in the oblique

area than in the basal and apical sections of the neuron. The standard model

compartments are depicted in blue, red and green for the MH, MMoE and

MMoEEx, respectively, and the balanced model compartments are displayed

as yellow for the MH, light blue for the MMoE and pink for the MMoEEx.

We can see that the loss values for the standard MH (Figure 22) are gener-

ally higher for the balanced MH than for the standard MH when considering

the apical and oblique sections of the neuron. However, the compartments in
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the basal section of the neuron perform pretty similarly for both the balanced

and standard MH. We introduce the term ”outlier compartmental loss val-

ues” to describe the compartments with elevated loss values compared to the

typical compartmental losses. These outlier compartments have larger loss

values for the standard MH than the balanced MH. These larger loss values

could come from the fact that the balancing mechanism constrains the task

predictions so that no single tasks dominate the learning process, which may

lead to less variation in loss values across compartments.

Figure 22: Depicted are the compartmental losses given by the different sec-
tions of the neuron for the MH method. The compartments for the standard
MH are represented as blue dots, while the compartments for the balanced
MH are depicted as yellow dots. We can see that the compartmental loss val-
ues for the basal section of the neuron perform similarly for the balanced and
standard MH. For the oblique and apical sections of the neuron, it seems that
the standard MH outperforms the balanced MH.

The compartmental loss values for the MMoE method (Figure 23) are sim-

ilar to those of the MH. Again, the standard models perform better than the

balanced models for the oblique and apical sections of the neuron, while the

standard and balanced MMoE perform similarly for the basal neuron section.

Interestingly, the outlier compartmental loss values are generally higher for

the balanced MMoE than for the standard MMoE, and there seem to be more
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outlier compartments for the balanced MMoE. This observation goes against

our previous proposal, namely that the balancing mechanism forces less vari-

ation across compartmental losses.

Figure 23: Depicted are the compartmental losses given by the different sec-
tions of the neuron for the MMoE method. The compartments for the standard
MMoE are represented as red dots, while the compartments for the balanced
MH are represented as light blue dots. The compartmental loss values are
generally higher for the balanced MMoE than for the standard MMoE for the
oblique and apical sections of the neuron; the compartmental losses are more
similar in the basal section for both MMoE archetypes.

The compartmental losses are more similar for the standard and balanced

MMoEEx (Figure 24) compared to the other MTL methods. Here the balanced

MMoEEx seems to outperform the standard MMoEEx for both the basal and

oblique sections of the neuron. However, the balanced MMoEEx seem to have

slightly more outlier compartments than the standard MMoEEx and the com-

partmental losses for the balanced MMoEEx still appear larger than the stan-

dard MMoEEx for the apical section.

The results from Section 4.2.1 and 4.2.2 indicate that the balanced MTL

methods have larger compartmental losses than the standard MTL methods,

specifically in the oblique and apical sections of the neuron. The balanced

models only seemed to reduce the number of outlier compartments in the MH
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Figure 24: Depicted are the compartmental losses given by the different sec-
tions of the neuron for the MMoEEx method. The compartments for the stan-
dard MMoEEx are represented as green dots, while the compartments for the
balanced MH are depicted as pink dots. Here the balanced MMoEEx seems
to outperform the standard MMoEEx for the basal and oblique sections of the
neuron. In contrast, the standard MMoEEx seems more accurate than the
balanced MMoEEx for the compartments in the apical section of the neuron.

model, but we found no such correlation for MMoE or MMoEEx. Our findings

indicate no concrete improvement in compartmental losses by implementing

the LBTW task-balancing mechanism (see Section 3.8). In this specific run

of simulations, the model with the lowest compartmental loss values was the

standard MMoEEx model. It is important to note that all models were trained

on 300 epochs, and the results could be different if we let our simulations go

on for longer.

4.3 Diversity

In Section 3.9, we introduced a method to calculate the diversity of the experts

in our soft-parameter models. The diversity metric can help us understand

how well our models capture diverse data characteristics. We calculated the

diversity score given by equation 3.22, as well as the determinant and per-
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manent of the distance matrix D between experts (see Section 3.9). The def-

inition of the permanent operation is almost the same as the determinant,

the only difference being that for the permanent operation, the entries in the

matrix are added when summing the different elements in the matrix, while

the determinant operation alternates between addition and subtraction when

totalling the elements in the matrix.

4.3.1 Standard Models

The diversity score for the standard MMoE and MMoEEx is given in Figure

25. We can see that the diversity score for the MMoE is initially at its max-

imum and begins to decrease until approximately 70 epochs. Afterwards, it

increases again, reaching a smaller peak at around 150 epochs. Finally, the

diversity decreases again and eventually stabilises after around 225 epochs.

The diversity score for the MMoEEx demonstrates fluctuations near its max-

imum value during the initial phase and after 100 epochs, with a noticeable

dip transpiring between these two periods. The final stabilised diversity fluc-

tuates around 0.59 for the MMoE and 0.64 for the MMoEEx.

Figure 25: The diversity score for the standard soft-parameter models.

We see a similar pattern for the diversity determinant as we did for the

diversity score; the only difference is that the shape is more pronounced for

the diversity determinant than for the diversity score; see Figure 26.
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Figure 26: The diversity determinant for the standard soft-parameter models.

The shape of the diversity permanent is as good as identical to the diver-

sity determinant; see Figure 27. However, the scale between the determinant

and permanent is evidently different, where the diversity permanent values

are significantly larger than the diversity determinant values; this is most

likely due to the fact that the permanent diversity metric does not include

negative values in its calculations while the diversity determinant does.

Figure 27: The diversity permanent for the standard soft-parameter models.

4.3.2 Balanced Models

We also calculated the diversity for the balanced models. Figure 28 gives the

diversity score for the balanced models. The diversity score for the MMoE

increases until 50 epochs, where the validation score is at its peak. Following
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this, the validation score decreases and reaches a stabilisation point, fluctu-

ating just under 0.60. The MMoEEx has a stable increase in diversity score

until around 60 epochs. Afterwards, it stabilises at just below 0.50. The diver-

sity score is generally lower for the balanced models than for the unbalanced

models.

Figure 28: The diversity score for the balanced soft-parameter models.

The shape of the ”diversity determinant curves” are similar to that of the

diversity score; see Figure 29. However, the diversity determinant for the bal-

anced MMoE and MMoEEx are surprisingly different in relation to scale; the

MMoEEx stabilises at a much lower value than the MMoE; this is not con-

sistent with our observations from the standard models, where the diversity

determinant is similar in terms of stabilised magnitude for both MMoE and

MMoEEx.

Figure 29: The diversity determinant for the balanced soft-parameter models.
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In Figure 30, we can see the diversity permanent for the balanced MMoE

and MMoEEx. The shape of the permanent metric curve is basically identical

to the shape of the determinant metric curve. Again, the magnitude of the

MMoE diversity is considerably larger than the MMoEEx.

Figure 30: The diversity permanent for the balanced soft-parameter models.

Generally, the diversity is higher for the standard models than the bal-

anced models, especially for the MMoEEx method; this can be explained by

the fact that in a balanced model, the tasks are all ”treated fairly”, mean-

ing that no tasks are supposed to dominate the learning process, which could

perhaps introduce a more similar prediction behaviour between experts, con-

sequently making them less diverse. In contrast, the unbalanced models may

overfit some tasks and underfit others, which could lead to certain experts

specialising in specific overfit and underfit tasks, which could contribute to

greater diversity among experts.

Our observations seem to indicate that the standard models are more

adept at creating diverse representations of the data within their experts.

Despite this, it appears that we do not require that much diversity to accu-

rately predict our tasks, supported by the fact that the balanced models with

lower diversity performed almost up to par with the standard models with

considerably higher diversity when we calculate the losses (see Section 4.1).
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4.4 Task Contribution from Experts

It is interesting to study which experts contribute most to various tasks. The

gates in our networks are multiplied by the expert weights. They are es-

sentially ”picking” the most relevant experts for specific tasks. We can plot

the weight distribution of the gates against the tasks to gain insight into

which experts contribute most to the different tasks. Figure 31 shows the

gate weight distribution for the standard models. Here we use E1, E2, E3, E4

and E5 as abbreviations for expert 1, expert 2, expert 3, expert 4 and expert

5, respectively. It is apparent that the experts specialise in different tasks; for

the MMoE model, E1 and E5 contribute most to the later tasks, while E2 spe-

cialise more in the earlier tasks. E3 seems to specialise more for tasks in the

middle. Interestingly, E1, E2, E3 and E4 seem to target the spiking task, as

evidenced by the sharp weight increase around task 641, which is the spiking

task. MMoEEx has similar weight distributions to MMoE for E1, E3 and E4,

while E2 focuses more on later tasks and E5 targets the earlier tasks and the

spiking task.

Figure 31: Weight distribution for standard models.
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The weight distributions for the balanced models are given in Figure 32.

The weight distributions for the balanced MMoE are really similar to that

of the standard MMoE. However, the balanced MMoEEx have a significantly

different weight distribution than the standard MMoEEx for E1 and E5; it

almost looks like these two experts have interchanged weight distributions

compared to the standard MMoEEx. There also seems to be more variabil-

ity in weight values for the balanced MMoEEx compared to the standard

MMoEEx in all experts, as evidenced by the distance between the weights

and smoothed functions.

Figure 32: Weight distribution for balanced models.

The weight distribution plots could maybe indicate that our tentative the-

ory in 4.3 could hold some merit, the hypothesis was that the balancing mech-

anism would facilitate more similar prediction behaviour among the experts.

We can see that the weight data is more ”scattered” in the balanced models

than the standard models, primarily for the MMoEEx, which could mean that

the experts are more generalized to a greater number of tasks, essentially

making our experts less diverse. The results from Section 4.3 and 4.4 seem

to indicate that the standard models are generally more diverse than the bal-
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anced models, especially for the MMoEEx model.

4.5 Spike Prediction

The main reason for implementing the balancing mechanism in our models

was to attempt to predict the spike initiation task. However, we did not man-

age to predict spike initiation for any of our models. The spiking task is likely

too different from the other compartmental voltage tasks for our MTL meth-

ods to predict it accurately. Interestingly, some of the experts in Figure 31

and 32 do have significant weight values for the spike prediction task (task

641), but it was not enough to generate accurate spike predictions. It could

very well be that the spike prediction task is too dissimilar compared to the

compartmental voltage predictions for our MTL method to predict it accu-

rately; however, there may be some structural changes we could make to our

networks in order to improve the spiking task’s predictability.

Implementing a task-balancing mechanism other than the LBTW may im-

prove the ability of our networks to predict the spiking task. For example, in

[11], they implement a task-balancing approach called MAML [47], which per-

haps could improve the spike prediction capabilities of our networks. It could

also be beneficial to increase the depth of our experts in order to improve task-

prediction accuracy. In Section 3.3, we introduced a residual learning frame-

work [37], which may be appropriate to incorporate if we add more depth to

our experts.

4.6 Model Selection

We have tested our MTL methods by looking at loss and diversity metrics, and

the methods were tested with and without the LBTW task-balancing mecha-

nism. Overall, we found that the soft-parameter models without task balanc-

ing had the lowest validation losses for the whole neuron and the compart-

mental loss values corresponding to the different sections of the neuron. We
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found that the balancing mechanism did not improve the compartmental volt-

age or spike predictions; this means that the task-balancing mechanism can

effectively be disregarded for our specific research question. The standard

soft-parameter models’ diversity was similar, and the balanced archetypes

had significantly lower diversity than the standard models. Even though the

standard MMoEEx outperformed the standard MMoEE in terms of accuracy

(lower loss values) for 300 epochs, unpublished work by Jonas Verhellen, Ko-

sio Beshkov, Torbjørn V. Ness, Sebastian Amundsen, and Gaute T. Einevoll

indicates that the MMoE model outperforms MMoEEx for longer runs. The

optimal MTL method for our research question would be the standard soft-

parameter sharing models, either the MMoE or the MMoEEx.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we implemented three MTL methods of different complexity

to predict the electrical activity of a compartmental L5b PC model [6]. We

employed a multi-task hard-parameter sharing model, MH, and two multi-

task soft-parameter sharing models, MMoE and MMoEEx. This study aimed

to map the input-output relationship from the L5b compartmental neuron

model using our proposed MTL methods in a computationally efficient way;

we wanted to predict both the spiking behaviour and the compartmental volt-

ages of the neuron model using DNNs instead of having to calculate the series

of cable equations and model dynamics found in biophysical neuron models.

Using our MTL methods, we successfully recreated the input-output re-

lationship from the compartmental L5b PC model [6]. However, the deep

learning models struggled to predict the neuron model’s spiking behaviour;

therefore, we decided to implement the LBTW task-balancing mechanism

to improve our networks’ prediction capabilities. Unfortunately, the task-

balancing mechanism did not ameliorate the spiking prediction capabilities

of the networks. Consequently, we primarily concentrated on assessing the

performance of the MTL approaches concerning predicting the compartmen-

tal voltages within the neuron model.

We compared the standard hard-parameter approach (MH) with the two
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standard soft-parameter methods (MMoE and MMoEEx) by employing loss

and diversity metrics. Additionally, we assessed the performance of the bal-

anced MTL archetypes by the same metrics. The standard MMoEEx method

exhibited the lowest total loss out of our MTL methods while having the

fewest outlier compartments concerning loss. The MH model exhibited the

highest loss out of our MTL methods; however, it is worth mentioning that

this model was the fastest to simulate and, consequently, the most computa-

tionally efficient model. Overall, the models with the task-balancing mech-

anism performed worse than the standard approaches concerning loss val-

ues. The diversity metric was similar for the standard soft-parameter mod-

els, while the balanced models had significantly lower diversity, especially the

balanced MMoEEx. Interestingly, all the soft-parameter models designated

some of their experts to fit the spiking task, but it was not enough to predict

the spiking behaviour of the neuron.

Generally, the balanced MTL methods performed worse than the standard

counterparts for both loss and diversity. Therefore, it is safe to assume that

the LBTW task-balancing algorithm is not directly applicable to our research

question. Our results indicate that the optimal MTL method for our project

would be the standard MMoEEX model. However, it is worth mentioning that

we only trained our networks for 300 epochs, and we may very well obtain dif-

ferent results if we let our simulations go on for longer; unpublished work by

Jonas Verhellen, Kosio Beshkov, Torbjørn V. Ness, Sebastian Amundsen and

Gaute T. Einevoll indicate that the standard MMoE outperforms MMoEEx

for longer runs. Based on this, it is safe to assume that either standard MTL

soft-parameter model is best suited for predicting compartmental voltages

from the L5b PC model.

5.2 Further Research

The MTL framework from this project can be used to effectively model com-

partmental voltage progression of biophysical advanced neuron models, not
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limited to the compartmental L5b PC model; our MTL framework can be ex-

tended to model other advanced neuron models, simultaneously reducing the

computational resources required for their simulation. In future research,

it would be intriguing to explore the possibility of implementing several dis-

tilled neuron models into networks in order to simulate sections of the brain.

We could, for example, implement our MTL framework to something like the

Allen V1 brain models for the primary visual cortex [48] and consequently

reduce the time it takes to run these models. The work done in this thesis

can significantly improve the computational efficiency in estimating synaptic

currents and local field potentials for neuron models when contrasted with

conventional modelling techniques.
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Appendix

A Hodgkin and Huxley Model Dynamics

Here we present the complete set of equations for the Hodgkin and Huxley

model. We introduced equation 2.6 in Section 2.3, which describes the mem-

brane potential over a small section of the giant squid axon. We have three

coupled differential equations that are used to adjust the gating variables pm,

ph and pn in equation 2.6. The potassium activation pn is given by:

∂ pn

∂ t
= an(1� pn)�bn pn

where

an = 0.1
Vs +55

1� e�(Vs+55)/10

bn = 0.125e�(Vs+65)/80

(A.1)

The sodium activation pm is given by:

∂ pm

∂ t
= am(1� pm)�bm pm

where

am = 0.1
Vs +40

1� e�(Vs+55)/10)

bm = 4e�(Vs+65)/18

(A.2)

We also have the sodium inactivation ph given by:
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∂ ph

∂ t
= ah(1� ph)�bh ph

where

ah = 0.07e�(Vs+65)/20

bh =
1

e�(Vs+35)/10 +1

(A.3)
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B Activation Functions

Sigmoid Function

The logistic sigmoid function s is given by:

s(x) =
1

1+ e�x (B.1)

Where x is the input data. The sigmoid function maps input to a value

between 0 and 1, useful when representing input as a probability. The output

of the sigmoid function is essentially constant for changes in input as long

as the input to the sigmoid function is either very positive or negative [34].

However, the output of the sigmoid function is susceptible to changes when

the input values are close to zero due to the steep slope of s around x = 0; see

Figure 33.

Figure 33: Plot of the sigmoid function s(x)|x 2 [�10,10] (see equation B.1).
We can see that the slope of the sigmoid function is very steep around x = 0
and flat at higher and lower x values, which means that the output is sen-
sitive to changes in input for values around 0 and insensitive to changes to
larger absolute input values. Calculated and plotted by Sebastian Amundsen
in Python.
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ELU Function

The ELU activation function ELU(x) is given by:

ELU(x) =

8
><

>:

x, if x � 0

b (ex �1), if x < 0
(B.2)

Where x is the input and b = 1.0. We can see that the ELU function is

linear when x � 0 and increases minimally for x < 0; see Figure 34.

Figure 34: Plot of the ELU function ELU(x)|x 2 [�10,10] (see equation B.2).
The red line indicates the crossing of zero on the y-axis, and the blue line is
ELU(x) as a function of the input. We can see a minimal increase in ELU(x)
for input values lower than x = 0 and a linear increase in ELU(x) for input
values larger than x = 0. Calculated and plotted by Sebastian Amundsen in
Python.
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C Code

The code for this project will eventually be publicly available through GitHub:

https://github.com/Jonas-Verhellen/LFDeep. The code used for this project’s

main calculations is provided below. The first script loads the data before we

run scripts two and three. After that, two and three calculate the different

MTL models. The fourth script contains the LBTW task-balancing mecha-

nism; the fifth is our program’s entry file and calls our functions.

Listing 1: spike.py
1 import logging

2 import numpy as np

3 import pytorch l ightning as pl

4 import torch

5 from torch import nn

6 from torch . u t i l s . data import Dataset , DataLoader , random split

7 from typing import Optional

8

9 logger = logging . getLogger ( name ) # Used to track what i s happening

,! in the program , makes i t much easier to debug the code .

10

11 c lass SpikeDataset ( Dataset ) :

12 def i n i t ( se l f , in path , target path ) :

13 super ( ) . i n i t ( )

14 s e l f . spike data = np . load ( in path ,mmap mode= ’ r+ ’ )

15 s e l f . target data = np . load ( target path , mmap mode= ’ r+ ’ ) [ : , : ,

,! None]

16

17 def l e n ( s e l f ) :

18 return len ( s e l f . spike data )

19

20 def ge t i t em ( se l f , idx ) :

21 data sample = torch . from numpy ( s e l f . spike data [ idx ] ) . f l o a t ( )

22 target sample = torch . from numpy ( s e l f . target data [ idx ] ) . f l o a t ( )

23 sample = { ’ data ’ : data sample , ’ target ’ : target sample}

24 return sample
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25

26 c lass SpikeDataModule ( pl . LightningDataModule ) : # This i s what i s used

,! as input data

27 def i n i t ( se l f , conf ig ) :

28 super ( ) . i n i t ( )

29 s e l f . prepare data per node = True

30 s e l f . in path = conf ig . in path

31 s e l f . target path = conf ig . target path

32 s e l f . batch size = conf ig . batch size

33 s e l f . num workers = conf ig . num workers

34

35 def setup ( se l f , stage : Optional [ s tr ] = None) :

36 i f stage == ” f i t ” or stage i s None :

37 t r a i n s e t f u l l = SpikeDataset ( s e l f . in path , s e l f .

,! target path )

38 t r a i n s e t s i z e = int ( len ( t r a i n s e t f u l l ) * 0 .9 )

39 v a l i d s e t s i z e = len ( t r a i n s e t f u l l ) − t r a i n s e t s i z e

40 s e l f . train , s e l f . val idate = random split ( t r a i n s e t f u l l , [

,! t r a i n s e t s i z e , v a l i d s e t s i z e ] )

41

42 i f stage == ” tes t ” or stage i s None :

43 s e l f . t es t = SpikeDataset ( s e l f . in path , s e l f . target path )

44

45 def train dataloader ( s e l f ) :

46 return DataLoader ( s e l f . train , batch size= s e l f . batch size ,

,! num workers= s e l f . num workers )

47

48 def val dataloader ( s e l f ) :

49 return DataLoader ( s e l f . validate , batch size= s e l f . batch size ,

,! num workers= s e l f . num workers )

50

51 def test dataloader ( s e l f ) :

52 return DataLoader ( s e l f . test , batch size= s e l f . batch size ,

,! num workers= s e l f . num workers )
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Listing 2: temporalconvolution.py
1 import torch

2 import torch . nn as nn

3 from torch . nn . u t i l s import weight norm

4 import torch . nn . funct ional as F

5 import pytorch l ightning as pl

6 torch . autograd . set detect anomaly ( True )

7

8 c lass Chomp1d( pl . LightningModule ) :

9 ” ” ” Pad by (k−1)*d on the two sides of the input for convolution ,

,! and then use Chomp1d to remove the (k−1)*d elements on the

,! r ight .

10 This would essent ia l l y be the same as removing the ” future elements

,! ” , which ensures causal i ty . We are sh i f t ing the output of

,! ordinary conv1d

11 by (k−2) / 2 , where k i s the kernel s ize . ” ” ”

12

13 def i n i t ( se l f , chomp size ) :

14 super (Chomp1d, s e l f ) . i n i t ( )

15 s e l f . chomp size = chomp size

16

17 def forward ( se l f , x ) :

18 return x [ : , : , : − s e l f . chomp size ] . contiguous ( )

19

20 c lass TemporalBlock ( pl . LightningModule ) :

21 ” ” ” Here we want to perform a weight normalization so that we are

,! capable of performing stochast i c gradient descent with

,! respect to our weight parameters .

22 Each of these temporal blocks cons is ts o f one net with two

,! convolutional layers and

23 one seperate convolutional layer which i s defined as the

,! downsample . ” ” ”

24

25 def i n i t ( se l f , n inputs , n outputs , kernel s ize , str ide ,

,! di lat ion , padding , dropout ) :

26 super ( TemporalBlock , s e l f ) . i n i t ( )

27 s e l f . conv1 = weight norm (nn . Conv1d ( n inputs , n outputs ,
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,! kernel s ize , s t r ide=stride , padding=padding , d i la t i on=

,! d i la t i on ) )

28 s e l f . chomp1 = Chomp1d( padding )

29 s e l f . sigmoid1 = nn . Sigmoid ( )

30 s e l f . dropout1 = nn . Dropout ( dropout )

31

32 s e l f . conv2 = weight norm (nn . Conv1d ( n outputs , n outputs ,

,! kernel s ize , s t r ide=stride , padding=padding , d i la t i on=

,! d i la t i on ) )

33 s e l f . chomp2 = Chomp1d( padding )

34 s e l f . sigmoid2 = nn . Sigmoid ( )

35 s e l f . dropout2 = nn . Dropout ( dropout )

36

37 s e l f . net = nn . Sequential ( s e l f . conv1 , s e l f . chomp1 , s e l f . sigmoid1

,! , s e l f . dropout1 , s e l f . conv2 , s e l f . chomp2 , s e l f . sigmoid2 ,

,! s e l f . dropout2 )

38 s e l f . downsample = nn . Conv1d ( n inputs , n outputs , 1) i f n inputs

,! != n outputs e lse None

39 s e l f . sigmoid = nn . Sigmoid ( )

40 s e l f . in i t weights ( )

41

42 def in i t weights ( s e l f ) :

43 ” ” ” I n i t i a l i z e the weights according to a normal d i s t r ibut ion .

44 Here we i n i t i a l i z e the two convolutional layers and possib ly a

,! downsample convolutinal layer . ” ” ”

45 s e l f . conv1 . weight . data . normal (0 , 0 .01)

46 s e l f . conv2 . weight . data . normal (0 , 0 .01)

47 i f s e l f . downsample i s not None :

48 s e l f . downsample . weight . data . normal (0 , 0 .01)

49

50 def forward ( se l f , x ) :

51 ’ ’ ’ Here we pass through our network and compute our output . ’ ’ ’

52

53 out = s e l f . net ( x )

54 res = x i f s e l f . downsample i s None else s e l f . downsample ( x ) # I f

,! the input does not have the same number of elements as

,! output −−> downsample .
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55 return s e l f . sigmoid ( out + res ) # We add the input to the output

,! .

56

57 c lass TemporalConvNet ( pl . LightningModule ) :

58 ’ ’ ’ Here we create our f u l l temporal convolutional neural network . (

,! Here the conf ig f i l e wi l l include a l l the i n i t i l a i z a t i o n

,! parameters ) . ’ ’ ’

59 def i n i t ( se l f , conf ig ) :

60 super ( TemporalConvNet , s e l f ) . i n i t ( )

61 s e l f . num inputs = conf ig . num inputs

62 s e l f . num channels = conf ig . num channels

63 s e l f . kerne l s ize=conf ig . kerne l s ize

64 s e l f . dropout=conf ig . dropout

65 layers = [ ]

66 num levels = len ( s e l f . num channels )

67 f o r i in range ( num levels ) :

68 d i l a t i o n s i z e = 2 ** i

69 in channels = s e l f . num inputs i f i == 0 else s e l f .

,! num channels [ i −1] # For f i r s t block we use input

,! length .

70 out channels = s e l f . num channels [ i ]

71 layers += [ TemporalBlock ( in channels , out channels , s e l f .

,! kernel s ize , s t r ide =1 , d i la t i on=d i l a t i o n s i z e ,

,! padding =( s e l f . kernel s ize −1) * d i l a t i o n s i z e ,

,! dropout= s e l f . dropout ) ]

72 s e l f . network = nn . Sequential (* layers )

73

74 def forward ( se l f , x ) :

75 ’ ’ ’ Pass through the whole temporal convolutional net and

,! generate an output . ’ ’ ’

76 out = s e l f . network ( x )

77 out = torch . f l a t t e n ( out , start dim =1) # Here we f la t t en the

,! output from the convolutional neural network .

78 return out
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Listing 3: mixtureofexperts.py
1 import hydra

2 import torch

3 import torch . nn as nn

4 import torch . nn . funct ional as F

5 import pytorch l ightning as pl

6 import torchmetrics

7 from omegaconf import OmegaConf

8 import numpy as np

9 from random import randint

10

11 c lass MH( pl . LightningModule ) :

12 ’ ’ ’ This i s the Multi task Hard− parameter sharing model . For this

,! model we only use one convolutional expert , defined as the

,! shared bottom . This means that

13 a l l o f the tasks wi l l use this shared bottom before the data i s

,! sent into the towers . ’ ’ ’

14 def i n i t ( se l f , conf ig ) :

15 super (MH, s e l f ) . i n i t ( )

16 s e l f . num tasks = conf ig . num tasks # This decides how many feed

,! forward neural networks we are going to feed our data to

,! .

17 s e l f . num units = conf ig . num units # Number of neurons in the

,! hidden layer of the towers .

18

19 s e l f . sequence len = conf ig . sequence len # Length of input

,! sequence .

20 s e l f . num features = conf ig . num features

21

22 s e l f . optimizer = OmegaConf . load ( hydra . u t i l s . to absolute path (

,! conf ig . optimizer ) )

23

24 s e l f . shared bottom = hydra . u t i l s . instant iate (OmegaConf . load (

,! hydra . u t i l s . to absolute path ( conf ig . expert ) ) )

25 s e l f . t cn output s ize = s e l f . shared bottom . num channels [ −1]* s e l f

,! . sequence len # Produces tcn output s ize : 8 * 100

26
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27 s e l f . i n p u t l i s t = nn . ModuleList ( [ nn . Linear ( s e l f . tcn output s ize

,! , s e l f . num units ) f or in range ( s e l f . num tasks ) ] )

28 s e l f . t o w e r s l i s t = nn . ModuleList (nn . Linear ( s e l f . num units , s e l f

,! . num units ) f or in range ( s e l f . num tasks ) )

29 s e l f . o u t p u t l i s t = nn . ModuleList ( [ nn . Linear ( s e l f . num units , 1)

,! f o r in range ( s e l f . num tasks ) ] )

30

31 # Now we want to define the metrics , which are used to evaluate

,! the performance of our model :

32 s e l f . l o s s f n = nn .MSELoss ( )

33

34 s e l f . l o s s fn sp i k e s = nn . BCEWithLogitsLoss ( )

35

36 s e l f . training metric = torchmetrics . MeanSquaredError ( )

37 s e l f . t ra ining metr ic spike = torchmetrics . Accuracy ( ) #task = ’

,! binary ’ )

38 s e l f . val idat ion metr ic = torchmetrics . MeanSquaredError ( )

39 s e l f . va l idat ion metr ic sp ike = torchmetrics . Accuracy ( ) #task = ’

,! binary ’ )

40 s e l f . tes t metr i c = torchmetrics . MeanSquaredError ( )

41 s e l f . tes t metr i c sp ike = torchmetrics . Accuracy ( ) #task = ’ binary ’ )

42

43 # Here we add an optional balancing method which we use the

,! adjust the losses of the d i f f e r e n t tasks .

44 s e l f . balancer = hydra . u t i l s . instant iate (OmegaConf . load ( hydra .

,! u t i l s . to absolute path ( conf ig . balancer ) ) )

45

46 def balanced loss funct ion ( se l f , predict ions , predict ions spike ,

,! targets , targets spike ) :

47 ” ” ” Here we want to create our own loss function which should

,! ca lcu late the loss for each compartment

48 I want to incorporate the MSE loss function . Here we wi l l also

,! be adding a balancer method (LBTW) .

49 (The dimensions of the predict ions tensor i s ( batch size ,

,! num tasks ) ” ” ”

50

51 lamb = torch . ones ( s e l f . num tasks ) # This i s the i n i t i a l lambda
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,! array .

52

53 task losses = torch . zeros ( s e l f . num tasks ) # Here we wi l l store

,! our task loss values .

54 with torch . no grad ( ) :

55 f o r batch in range ( predict ions . shape [ 0 ] ) :

56 l o ss sp ike = s e l f . l o s s f n s p ik es ( predic t ions spike [

,! batch ] , targets spike [ batch ] )

57 task losses [ −1] = loss sp ike * lamb[ −1]

58 s e l f . balancer . g e t i n i t i a l l o s s ( task losses [ −1] , s e l f .

,! num tasks −1)

59 f o r task in range ( s e l f . num tasks −1) :

60 l o ss = s e l f . l o s s f n ( predict ions [ batch , task ] ,

,! targets [ batch , task ] )

61 task losses [ task ] = loss * lamb [ task ] # Have to

,! ca lcu late the loss for each task .

62

63 i f batch == 0: # First batch :

64 s e l f . balancer . g e t i n i t i a l l o s s ( task losses [ task

,! ] , task )

65

66 s e l f . balancer .LBTW( task losses [ task ] , task )

67

68

69 s e l f . balancer .LBTW( task losses [ −1] , s e l f . num tasks −1)

70

71 weights = torch . Tensor ( s e l f . balancer . get weights ( ) )

72

73 lamb = weights

74

75 i f ( task losses != task losses ) . any ( ) :

76 ra ise ValueError ( ” Loss contains NaN values ” )

77 i f torch . i s i n f ( task losses ) . any ( ) :

78 ra ise ValueError ( ” Loss contains i n f i n i t e values ” )

79

80 weights = weights . to ( device=” cuda ” )

81 task losses = task losses . to ( device=” cuda ” )
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82 task losses . requires grad=True

83 mse loss = torch .mean( nn .MSELoss( reduce = False ) ( predict ions ,

,! targets ) , axis=0 ) # Mean over a l l the batches .

84

85 t o t a l l o s s = ( mse loss@weights [ : −1] / len ( weights [ : − 1 ] ) ) +

,! s e l f . l o s s fn sp ik es ( predict ions spike , targets spike ) *
,! weights [ −1]

86 t o t a l l o s s = t o t a l l o s s . to ( device=” cuda ” )

87

88 return t o t a l l o s s

89

90 def forward ( se l f , inputs , d ivers i ty = False ) :

91 ” ” ” This i s the function were we generate our output from a l l

,! the d i f f e r e n t tasks . ” ” ”

92 shared bottom outputs = s e l f . calculating shared bottom ( inputs )

93 i f torch .sum( torch . isnan ( shared bottom outputs ) ) :

94 print ( ’ found nanz ’ )

95 output = [ ]

96 f o r task in range ( s e l f . num tasks ) :

97 aux = s e l f . i n p u t l i s t [ task ] ( shared bottom outputs )

98 aux = F. elu ( aux )

99 aux = s e l f . t o w e r s l i s t [ task ] ( aux )

100 aux = F. elu ( aux )

101 aux = s e l f . o u t p u t l i s t [ task ] ( aux )

102 output . append ( aux ) # Here we append the output

,! corresponding to each s p e c i f i c task .

103

104 output = torch . cat ( [ x . f l o a t ( ) f or x in output ] , dim=1) # Links

,! togheter the given sequence tensors in the given

,! dimension .

105 return output

106

107 def calculating shared bottom ( se l f , inputs ) :

108 ” ” ” Calculating the shared bottom , where the act ivat ion

,! function i s ReLU. ” ” ”

109

110 aux = s e l f . shared bottom ( inputs ) # Here we c o l l e c t the l i s t
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,! cons ist ing of the shared bottom kernel .

111 shared bottom outputs = F. relu ( aux , inplace=False ) # Perform the

,! relu act ivat ion function on the reshaped output .

112

113 return shared bottom outputs

114

115 def compute element errors ( se l f , pred out , true out ) :

116 return torch .mean ( ( pred out −true out ) **2 ,0)

117

118 def tra in ing step ( se l f , batch , batch idx ) :

119 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

120 predict ions = s e l f ( data )

121 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] , targets

,! [ : ,639 , −1]

122 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,

,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )

123 l o ss = s e l f . ba lanced loss funct ion ( predict ions ,

,! predict ions spike , targets , targets spike ) # Here we

,! gather the balanced loss for each compartment .

124 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike }

125

126 def training step end ( se l f , outputs ) :

127 ” ” ” This i s ca l led af ter the tra in ing step method has been

,! ca l led for a l l batches in the current epoch . We

128 use i t f or logging before we move on to the next epoch . ” ” ”

129 s e l f . training metric ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets ’

,! ] )

130 s e l f . t ra ining metr ic spike (F . softmax ( outputs [ ’ pred ic t ions spike

,! ’ ] ) . int ( ) , outputs [ ’ targets spike ’ ] . int ( ) )

131 s e l f . log ( ’ l o ss / train ’ , outputs [ ’ l o ss ’ ] )

132 s e l f . log ( ’ metric / train ’ , s e l f . training metric )

133 s e l f . log ( ’ metric / train / spike ’ , s e l f . t ra ining metr ic spike )

134

135 def va l idat ion step ( se l f , batch , batch idx ) :
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136 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

137 with torch . no grad ( ) :

138 predict ions = s e l f ( data )

139 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] ,

,! targets [ : ,639 , −1]

140 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,

,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )

141 l o ss = s e l f . l o s s f n ( predict ions , targets ) + s e l f .

,! l o s s fn sp ik es ( predict ions spike , targets spike )

142 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike }

143

144 def val idat ion step end ( se l f , outputs ) :

145 element errors = s e l f . compute element errors ( outputs [ ’

,! predict ions ’ ] , outputs [ ’ targets ’ ] )

146 s e l f . val idat ion metr ic ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets

,! ’ ] )

147 s e l f . va l idat ion metr ic sp ike (F . softmax ( outputs [ ’

,! predic t ions spike ’ ] ) . int ( ) , outputs [ ’ targets spike ’ ] . int

,! ( ) )

148 s e l f . log ( ’ l o ss / val ’ , outputs [ ’ l o ss ’ ] )

149 s e l f . log ( ’ metric / val ’ , s e l f . va l idat ion metr ic )

150 s e l f . log ( ’ metric / val / spike ’ , s e l f . va l idat ion metr ic sp ike )

151 f o r i in range ( len ( element errors ) ) :

152 s e l f . log ( ’ metric / val / e lement errors ’+str ( i ) , element errors

,! [ i ] )

153

154 def t e s t s t ep ( se l f , batch , batch idx ) :

155 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

156

157 with torch . no grad ( ) :

158 predict ions = s e l f ( data )

159 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] ,

,! targets [ : ,639 , −1]

160 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,
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,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )

161 l o ss = s e l f . l o s s f n ( predict ions , targets ) + s e l f .

,! l o s s fn sp ik es ( predict ions spike , targets spike )

162 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike }

163

164 def test step end ( se l f , outputs ) :

165 s e l f . tes t metr i c ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets ’ ] )

166 s e l f . va l idat ion metr ic sp ike (F . softmax ( outputs [ ’

,! predic t ions spike ’ ] ) . int ( ) , outputs [ ’ targets spike ’ ] . int

,! ( ) )

167 s e l f . log ( ’ l o ss / t es t ’ , outputs [ ’ l o ss ’ ] )

168 s e l f . log ( ’ metric / t es t ’ , s e l f . tes t metr i c )

169 s e l f . log ( ’ metric / t es t / spike ’ , s e l f . t es t metr i c sp ike )

170

171 def conf igure opt imizers ( s e l f ) :

172 return hydra . u t i l s . instant iate ( s e l f . optimizer , s e l f . parameters

,! ( ) )

173

174 def on tra in s tar t ( s e l f ) :

175 s e l f . logger . log hyperparams ( s e l f . hparams , { ” metric / training ” :

,! 0 , ” metric / t es t ” : 0 , ” metric / val ” : 0} )

176

177 c lass MMoE( pl . LightningModule ) :

178 def i n i t ( se l f , conf ig ) :

179 super (MMoE, s e l f ) . i n i t ( )

180 s e l f . save hyperparameters ( )

181 s e l f . num tasks = conf ig . num tasks

182 s e l f . num experts = conf ig . num experts

183 s e l f . num units = conf ig . num units

184

185 s e l f . sequence len = conf ig . sequence len

186 s e l f . num features = conf ig . num features

187

188 s e l f . use expert bias = conf ig . use expert bias
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189 s e l f . use gate bias = conf ig . use gate bias

190 s e l f . optimizer = OmegaConf . load ( hydra . u t i l s . to absolute path (

,! conf ig . optimizer ) )

191

192 s e l f . expert kernels tcn = nn . ModuleList ( [ hydra . u t i l s .

,! instant iate (OmegaConf . load ( hydra . u t i l s . to absolute path (

,! conf ig . expert ) ) ) f o r in range ( s e l f . num experts ) ] )

193 s e l f . t cn output s ize = s e l f . expert kernels tcn [ 0 ] . num channels

,! [ −1]* s e l f . sequence len

194 s e l f . compressor = hydra . u t i l s . instant iate (OmegaConf . load ( hydra .

,! u t i l s . to absolute path ( conf ig . expert ) ) )

195

196 s e l f . i n p u t l i s t = nn . ModuleList ( [ nn . Linear ( s e l f . tcn output s ize

,! , s e l f . num units ) f or in range ( s e l f . num tasks ) ] )

197 s e l f . t o w e r s l i s t = nn . ModuleList (nn . Linear ( s e l f . num units , s e l f

,! . num units ) f or in range ( s e l f . num tasks ) )

198 s e l f . o u t p u t l i s t = nn . ModuleList ( [ nn . Linear ( s e l f . num units , 1)

,! f o r in range ( s e l f . num tasks ) ] )

199

200 i f s e l f . use expert bias :

201 ” ” ” Here we set a bias parameter for the experts that

,! pytoch l ightning keeps track of and updates . ” ” ”

202 s e l f . expert bias = nn . Parameter ( torch . zeros ( s e l f .

,! num experts , s e l f . t cn output s ize ) , requires grad=

,! True )

203

204 gate kernels = torch . rand ( ( s e l f . num tasks , s e l f . tcn output s ize

,! , s e l f . num experts ) ) . f l o a t ( )

205 s e l f . gate kernels = nn . Parameter ( gate kernels , requires grad=

,! True )

206

207 i f s e l f . use gate bias :

208 ” ” ” Set bias for the gates ” ” ”

209 s e l f . gate bias = nn . Parameter ( torch . zeros ( s e l f . num tasks ,

,! 1 , s e l f . num experts ) , requires grad=True )

210

211 s e l f . task bias = nn . Parameter ( torch . zeros ( s e l f . num tasks ) ,
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,! requires grad=True ) # Set task biases .

212

213 s e l f . l o s s f n = nn .MSELoss ( )

214 s e l f . l o s s fn sp i k e s = nn . BCEWithLogitsLoss ( )

215

216 s e l f . training metric = torchmetrics . MeanSquaredError ( )

217 s e l f . t ra ining metr ic spike = torchmetrics . Accuracy ( ) #task = ’

,! binary ’ )

218 s e l f . val idat ion metr ic = torchmetrics . MeanSquaredError ( )

219 s e l f . va l idat ion metr ic sp ike = torchmetrics . Accuracy ( ) #task = ’

,! binary ’ )

220 s e l f . tes t metr i c = torchmetrics . MeanSquaredError ( )

221 s e l f . tes t metr i c sp ike = torchmetrics . Accuracy ( ) #task = ’ binary ’ )

222

223 # Here we add an optional balancing method which we use the

,! adjust the losses of the d i f f e r e n t tasks .

224 s e l f . balancer = hydra . u t i l s . instant iate (OmegaConf . load ( hydra .

,! u t i l s . to absolute path ( conf ig . balancer ) ) )

225

226 def balanced loss funct ion ( se l f , predict ions , predict ions spike ,

,! targets , targets spike ) :

227 ” ” ” Here we want to create our own loss function which should

,! ca lcu late the loss for each compartment

228 I want to incorporate the MSE loss function . Here we wi l l also

,! be adding a balancer method (LBTW) .

229 (The dimensions of the predict ions tensor i s ( batch size ,

,! num tasks ) ” ” ”

230

231 lamb = torch . ones ( s e l f . num tasks ) # This i s the i n i t i a l lambda

,! array .

232

233 task losses = torch . zeros ( s e l f . num tasks ) # Here we wi l l store

,! our task loss values .

234 with torch . no grad ( ) :

235 f o r batch in range ( predict ions . shape [ 0 ] ) :

236 l o ss sp ike = s e l f . l o s s f n s p ik es ( predic t ions spike [

,! batch ] , targets spike [ batch ] )

94



237 task losses [ −1] = loss sp ike * lamb[ −1]

238 s e l f . balancer . g e t i n i t i a l l o s s ( task losses [ −1] , s e l f .

,! num tasks −1)

239 f o r task in range ( s e l f . num tasks −1) :

240 l o ss = s e l f . l o s s f n ( predict ions [ batch , task ] ,

,! targets [ batch , task ] )

241 task losses [ task ] = loss * lamb [ task ] # Have to

,! ca lcu late the loss for each task .

242

243 i f batch == 0: # First batch :

244 s e l f . balancer . g e t i n i t i a l l o s s ( task losses [ task

,! ] , task )

245 s e l f . balancer .LBTW( task losses [ task ] , task )

246 s e l f . balancer .LBTW( task losses [ −1] , s e l f . num tasks −1)

247

248 weights = torch . Tensor ( s e l f . balancer . get weights ( ) )

249

250 lamb = weights

251

252 i f ( task losses != task losses ) . any ( ) :

253 ra ise ValueError ( ” Loss contains NaN values ” )

254 i f torch . i s i n f ( task losses ) . any ( ) :

255 ra ise ValueError ( ” Loss contains i n f i n i t e values ” )

256

257 weights = weights . to ( device=” cuda ” )

258 task losses = task losses . to ( device=” cuda ” )

259 task losses . requires grad=True

260 mse loss = torch .mean( nn .MSELoss( reduce = False ) ( predict ions ,

,! targets ) , axis=0 )

261

262 t o t a l l o s s = ( mse loss@weights [ : −1] / len ( weights [ : − 1 ] ) ) +

,! s e l f . l o s s fn sp ik es ( predict ions spike , targets spike ) *
,! weights [ −1]

263 t o t a l l o s s = t o t a l l o s s . to ( device=” cuda ” )

264

265 return t o t a l l o s s

266

95



267 def forward ( se l f , inputs , d ivers i ty=False ) :

268 batch size = inputs . shape [ 0 ]

269 expert outputs = s e l f . ca l cu lat ing experts ( inputs )

270 gate outputs = s e l f . ca l cu lat ing gates ( inputs , batch size )

271 product outputs = s e l f . multiplying gates and experts (

,! expert outputs , gate outputs )

272

273 output = [ ]

274 f o r task in range ( s e l f . num tasks ) :

275 aux = s e l f . i n p u t l i s t [ task ] ( product outputs [ task , : , : ] )

276 aux = F. elu ( aux )

277 aux = s e l f . t o w e r s l i s t [ task ] ( aux )

278 aux = F. elu ( aux )

279 aux = s e l f . o u t p u t l i s t [ task ] ( aux )

280 output . append ( aux )

281

282 output = torch . cat ( [ x . f l o a t ( ) f or x in output ] , dim=1)

283 i f d ivers i ty :

284 return output , expert outputs

285 e l se :

286 return output

287

288 def ca l cu lat ing experts ( se l f , inputs ) :

289 ” ” ”

290 Calculating the experts

291 ” ” ”

292

293 f o r i in range ( s e l f . num experts ) :

294 aux = s e l f . expert kernels tcn [ i ] ( inputs )

295 i f i == 0:

296 expert outputs = aux . reshape (1 , aux . shape [ 0 ] , aux . shape

,! [ 1 ] )

297 e l se :

298 expert outputs = torch . cat ( ( expert outputs , aux . reshape

,! (1 , aux . shape [ 0 ] , aux . shape [ 1 ] ) ) , dim=0)

299

300 i f s e l f . use expert bias :
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301 f o r expert in range ( s e l f . num experts ) :

302 expert bias = s e l f . expert bias [ expert ]

303 expert outputs [ expert ] = expert outputs [ expert ] . add

,! ( expert bias [None , : ] )

304 expert outputs = F. relu ( expert outputs , inplace=False )

305 return expert outputs

306

307 def ca l cu lat ing gates ( se l f , inputs , batch size ) :

308 ” ” ”

309 Calculating the gates , g ˆ{k} ( x ) = act ivat ion (W {gk} * x + b ) ,

,! where act ivat ion i s softmax according to the paper T x n

,! x E.

310 gate outputs are found by doing a matrix mult ip l i cat ion between

,! the compressed inputs and the gate kernels

311 f o r index = 0 and between gate outputs and compressed inputs

,! f o r the remaining i n d i c i e s .

312 ” ” ”

313 compressed inputs = s e l f . compressor ( inputs )

314

315 f o r index in range ( s e l f . num tasks ) :

316 i f index == 0:

317 gate outputs = torch .mm( compressed inputs , s e l f .

,! gate kernels [ index ] ) . reshape (1 , batch size , s e l f

,! . num experts )

318 e l se :

319 gate outputs = torch . cat ( ( gate outputs , torch .mm(

,! compressed inputs , s e l f . gate kernels [ index ] ) .

,! reshape (1 , batch size , s e l f . num experts ) ) , dim

,! =0)

320

321 i f s e l f . use gate bias :

322 gate outputs = gate outputs . add ( s e l f . gate bias )

323

324 gate outputs = F. softmax ( gate outputs , dim=2) # Dim=2 −−>

,! Normalizes values along axis 2 .

325 return gate outputs

326
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327 def multiplying gates and experts ( se l f , expert outputs ,

,! gate outputs ) :

328 ” ” ”

329 Multiplying gates and experts

330 ” ” ”

331

332 f o r task in range ( s e l f . num tasks ) :

333 gate = gate outputs [ task ]

334 f o r expert in range ( s e l f . num experts ) :

335 gate output = gate [ : , expert ]

336 product = expert outputs [ expert ] * gate output [ : , None]

337 i f expert == 0:

338 products = product

339 e l se :

340 products = products . add ( product )

341 f ina l product = products . add ( s e l f . task bias [ task ] )

342

343 i f task == 0:

344 f ina l products = f ina l product . reshape (1 , f ina l product

,! . shape [ 0 ] , f ina l product . shape [ 1 ] )

345 e l se :

346 f ina l products = torch . cat ( ( f inal products ,

,! f ina l product . reshape (1 , f ina l product . shape [ 0 ] ,

,! f ina l product . shape [ 1 ] ) ) , dim=0)

347 return f ina l products

348

349 def compute diversity ( se l f , batch ) :

350 import pro jec t . u t i l s . d ivers i ty metr i cs as dm

351 batch = torch . reshape ( batch , [ batch . shape [ 0 ] , batch . shape [1 ]*
,! batch . shape [ 2 ] ] )

352 d ivers i ty matr ix = dm. divers i ty matr ix ( batch .T)

353 d i ve rs i t y s core = torch .mean( divers i ty matr ix )

354 diversity determinant = torch . l ina lg . det ( d ivers i ty matr ix )

355 diversity permanent = dm. permanent ( divers i ty matr ix )

356 return divers i ty score , diversity determinant ,

,! diversity permanent

357
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358 def compute element errors ( se l f , pred out , true out ) :

359 return torch .mean ( ( pred out −true out ) **2 ,0)

360

361 def tra in ing step ( se l f , batch , batch idx ) :

362 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

363 predict ions = s e l f ( data )

364 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] , targets

,! [ : ,639 , −1]

365 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,

,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )

366 l o ss = s e l f . ba lanced loss funct ion ( predict ions ,

,! predict ions spike , targets , targets spike ) # Here we

,! gather the balanced loss for each compartment .

367 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike }

368

369 def training step end ( se l f , outputs ) :

370 s e l f . training metric ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets ’

,! ] )

371 s e l f . t ra ining metr ic spike (F . softmax ( outputs [ ’ pred ic t ions spike

,! ’ ] ) . int ( ) , outputs [ ’ targets spike ’ ] . int ( ) )

372 s e l f . log ( ’ l o ss / train ’ , outputs [ ’ l o ss ’ ] )

373 s e l f . log ( ’ metric / train ’ , s e l f . training metric )

374 s e l f . log ( ’ metric / train / spike ’ , s e l f . t ra ining metr ic spike )

375

376 def va l idat ion step ( se l f , batch , batch idx ) :

377 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

378 with torch . no grad ( ) :

379 predict ions = s e l f ( data )

380 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] ,

,! targets [ : ,639 , −1]

381 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,

,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )

382 l o ss = s e l f . l o s s f n ( predict ions , targets ) + s e l f .
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,! l o s s fn sp ik es ( predict ions spike , targets spike )

383 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike , ’ current batch ’ : data}

384

385 def val idat ion step end ( se l f , outputs ) :

386 expert output = s e l f . ca l cu lat ing experts ( outputs [ ’ current batch

,! ’ ] )

387 element errors = s e l f . compute element errors ( outputs [ ’

,! predict ions ’ ] , outputs [ ’ targets ’ ] )

388 d ivers i ty score , diversity determinant , diversity permanent =

,! s e l f . compute diversity ( expert output )

389 s e l f . val idat ion metr ic ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets

,! ’ ] )

390 s e l f . va l idat ion metr ic sp ike (F . softmax ( outputs [ ’

,! predic t ions spike ’ ] ) . int ( ) , outputs [ ’ targets spike ’ ] . int

,! ( ) )

391 s e l f . log ( ’ l o ss / val ’ , outputs [ ’ l o ss ’ ] )

392 s e l f . log ( ’ metric / val ’ , s e l f . va l idat ion metr ic )

393 s e l f . log ( ’ metric / val / spike ’ , s e l f . va l idat ion metr ic sp ike )

394 f o r i in range ( len ( element errors ) ) :

395 s e l f . log ( ’ metric / val / e lement errors ’+str ( i ) , element errors

,! [ i ] )

396 s e l f . log ( ’ d ivers i ty / val / score ’ , d i ve rs i ty s core )

397 s e l f . log ( ’ d ivers i ty / val / determinant ’ , diversity determinant )

398 s e l f . log ( ’ d ivers i ty / val / permanent ’ , diversity permanent )

399

400 def t e s t s t ep ( se l f , batch , batch idx ) :

401 data , targets = batch [ ’ data ’ ] , batch [ ’ target ’ ]

402

403 with torch . no grad ( ) :

404 predict ions = s e l f ( data )

405 predict ions spike , targets spike = predict ions [ : , 6 3 9 ] ,

,! targets [ : ,639 , −1]

406 predict ions , targets = torch . cat ( [ predict ions [ : , : 6 3 9 ] ,

,! predict ions [ : , 640 ,None ] ] , 1 ) , torch . cat ( [ targets

,! [ : , : 639 , −1 ] , targets [ : ,640 , −1 ,None ] ] , 1 )
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407 l o ss = s e l f . l o s s f n ( predict ions , targets ) + s e l f .

,! l o s s fn sp ik es ( predict ions spike , targets spike )

408 return { ’ l o ss ’ : loss , ’ predict ions ’ : predict ions , ’ targets ’ :

,! targets , ’ pred ic t ions spike ’ : predict ions spike , ’

,! targets spike ’ : targets spike }

409

410 def test step end ( se l f , outputs ) :

411 s e l f . tes t metr i c ( outputs [ ’ predict ions ’ ] , outputs [ ’ targets ’ ] )

412 s e l f . tes t metr i c sp ike (F . softmax ( outputs [ ’ pred ic t ions spike ’ ] ) .

,! int ( ) , outputs [ ’ targets spike ’ ] . int ( ) )

413 s e l f . log ( ’ l o ss / t es t ’ , outputs [ ’ l o ss ’ ] )

414 s e l f . log ( ’ metric / t es t ’ , s e l f . tes t metr i c )

415 s e l f . log ( ’ metric / t es t / spike ’ , s e l f . t es t metr i c sp ike )

416

417 def conf igure opt imizers ( s e l f ) :

418 return hydra . u t i l s . instant iate ( s e l f . optimizer , s e l f . parameters

,! ( ) )

419

420 def on tra in s tar t ( s e l f ) :

421 s e l f . logger . log hyperparams ( s e l f . hparams , { ” metric / training ” :

,! 0 , ” metric / t es t ” : 0 , ” metric / val ” : 0} )

422

423 c lass MMoEEx(MMoE) :

424 def i n i t ( se l f , conf ig ) :

425 super (MMoEEx, s e l f ) . i n i t ( conf ig )

426 s e l f . prob exc lus iv i ty = conf ig . prob exc lus iv i ty

427 s e l f . type = conf ig . type

428

429 exc lus iv i ty = np . repeat ( s e l f . num tasks + 1 , s e l f . num experts )

430 to add = int ( s e l f . num experts * s e l f . prob exc lus iv i ty )

431 f o r e in range ( to add ) :

432 exc lus iv i ty [ e ] = randint (0 , s e l f . num tasks )

433

434 s e l f . exc lus iv i ty = exc lus iv i ty

435 gate kernels = torch . rand ( ( s e l f . num tasks , s e l f . tcn output s ize

,! , s e l f . num experts ) ) . f l o a t ( )

436
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437 f o r expert number , task number in enumerate ( s e l f . exc lus iv i ty ) :

438 i f task number < s e l f . num tasks + 1:

439 i f s e l f . type == ” exc lus iv i ty ” :

440 f o r task in range ( s e l f . num tasks ) :

441 i f task != task number :

442 gate kernels [ task ] [ : , expert number ] = 0.0

443 e lse :

444 gate kernels [ task number ] [ : , expert number ] = 0.0

445

446 s e l f . gate kernels = nn . Parameter ( gate kernels , requires grad=

,! True )
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Listing 4: taskbalancing.py
1 ” ” ”

2 Copyright ( c ) 2020−present , Royal Bank of Canada .

3 All r ights reserved .

4 This source code i s l i censed under the l i cense found in the

5 LICENSE f i l e in the root d irectory of th is source tree .

6 Task balacing approaches for multi−task learning

7 Two methods based on loss rat i o ca l led :

8 − DWA − Dynamic Weight Average

9 − LBTW − Loss Balanced Task Weighting

10 Written by Gabriel Ol iveira in pytorch

11 ” ” ”

12 import torch

13 import torch . nn as nn

14 import torch . nn . funct ional as F

15 from numpy. random import randint , binomial

16 import numpy as np

17 import hydra

18 from omegaconf import OmegaConf

19 from omegaconf import DictConfig , OmegaConf

20

21 c lass TaskBalanceMTL :

22 # Class for task balancing methods

23 def i n i t ( se l f , conf ig ) :

24 # Hyper parameters

25 s e l f . balance method = conf ig . balance method

26 s e l f .K = conf ig . n tasks

27 s e l f .T = conf ig . n tasks

28 s e l f . alpha balance = conf ig . alpha balance

29 s e l f . n tasks = conf ig . n tasks

30 s e l f . task rat ios = torch . zeros ( [ s e l f . n tasks ] )

31 s e l f . task weights = torch . zeros ( [ s e l f . n tasks ] )

32 s e l f . i n i t i a l l o s s e s = torch . zeros ( [ s e l f . n tasks ] )

33 s e l f . weight history = [ ]

34 s e l f . h i s t o r y l a s t = [ ]

35 f o r i in range ( s e l f . n tasks ) :

36 s e l f . weight history . append ( [ ] )
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37 s e l f . h i s t o r y l a s t . append ( [ ] )

38

39 # Setting weight method

40 s e l f . balance mode = conf ig . balance

41 i f s e l f . balance mode == ”DWA” :

42 print ( ” . . .DWA Weight balance ” )

43 i f s e l f . balance mode == ”LBTW” :

44 print ( ” . . .LBTW Weight balance ” )

45

46 def add loss h is tory ( se l f , task losses ) :

47 f o r i in range (0 , s e l f . n tasks ) :

48 s e l f . weight history [ i ] . append ( task losses [ i ] )

49

50 def last e lements history ( s e l f ) :

51 f o r i in range (0 , s e l f . n tasks ) :

52 s e l f . h i s t o r y l a s t [ i ] = s e l f . weight history [ i ] [ − 2 : ]

53

54 def compute ratios ( se l f , task losses , epoch ) :

55

56 f o r i in range (0 , s e l f . n tasks ) :

57 i f epoch <= 1:

58 s e l f . task rat ios [ : ] = 1

59 e lse :

60 before = ”−”

61 i f s e l f . h i s t o r y l a s t [ i ] [ −2] > −0.01 and s e l f .

,! h i s t o r y l a s t [ i ] [ −2] < 0 .01 :

62 before = s e l f . h i s t o r y l a s t [ i ] [ −2]

63 s e l f . h i s t o r y l a s t [ i ] [ −2] = 0.01

64

65 s e l f . task rat ios [ i ] = (

66 s e l f . h i s t o r y l a s t [ i ] [ −1] / s e l f . h i s t o r y l a s t [ i ] [ −2]

67 )

68

69 def sum losses tasks ( s e l f ) :

70 ratios sum = 0.0

71 f o r i in range (0 , s e l f . n tasks ) :

72 ratios sum += torch . exp ( s e l f . task rat ios [ i ] / s e l f .T)
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73 return ratios sum

74

75 def DWA( se l f , task losses , epoch ) :

76 s e l f . compute ratios ( task losses , epoch )

77 ratios sum = s e l f . sum losses tasks ( )

78

79 f o r i in range (0 , s e l f . n tasks ) :

80 s e l f . task weights [ i ] = max(

81 min ( ( s e l f .K * torch . exp ( s e l f . task rat ios [ i ] / s e l f .T) )

,! / ratios sum , 1 .5 ) ,

82 0 .5 ,

83 )

84

85 def get weights ( s e l f ) :

86 return s e l f . task weights

87

88 def g e t i n i t i a l l o s s ( se l f , losses , task ) :

89 s e l f . i n i t i a l l o s s e s [ task ] = losses

90

91 def LBTW( se l f , batch losses , task ) :

92 s e l f . task weights [ task ] = torch . fmax (

93 torch . fmin (pow( batch losses / s e l f . i n i t i a l l o s s e s [ task ] ,

,! torch . Tensor ( [ s e l f . alpha balance ] ) ) , torch . Tensor

,! ( [ 1 . 0 ] ) ) ,

94 torch . Tensor ( [ 0 . 0 1 ] ) ,

95 )
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Listing 5: main.py
1 import hydra

2 import logging

3 import pytorch l ightning as pl

4 from omegaconf import DictConfig , OmegaConf

5 logger = logging . getLogger ( name )

6 import torch

7 torch . cuda . empty cache ( )

8

9 @hydra . main ( conf ig path=” conf igs ” , config name=” defaults ” )

10 def main ( conf ig : DictConfig ) −> None :

11 torch . cuda . empty cache ( )

12 pl . seed everything (2509)

13 logger . in fo ( ” \n” + OmegaConf . to yaml ( conf ig ) )

14

15 # Instantiate a l l modules s pec i f i ed in the conf igs

16 model = hydra . u t i l s . instant iate ( conf ig . model )

17 data module = hydra . u t i l s . instant iate ( conf ig . data )

18

19 # Let hydra manage direcotry outputs

20 tensorboard = pl . loggers . TensorBoardLogger ( ” . ” , ” ” , ” ” , log graph=

,! True , default hp metric=False )

21 checkpoint cal lback = pl . cal lbacks . ModelCheckpoint ( save top k =2 ,

,! monitor=” loss / val ” , mode=”min” , filename=” sample−mh−{epoch

,! :02d}−{ v a l l o s s : . 2 f } ” , )

22 ear ly stopping cal lback = pl . cal lbacks . EarlyStopping ( monitor= ’ l oss /

,! val ’ , patience =500)

23 cal lbacks = [ checkpoint cal lback , ear ly stopping cal lback ]

24

25 trainer = pl . Trainer (**OmegaConf . to container ( conf ig . trainer ) ,

,! logger=tensorboard , cal lbacks=callbacks , a u t o l r f i n d=True ,

,! prec is ion =16 , acce lerator= ’ gpu ’ , devices =4 , strategy=”ddp” )

26 trainer . f i t ( model , datamodule=data module ) # This method c a l l s on

,! the forward function and uses dataloader as input .

27 trainer . tes t ( model , datamodule=data module ) # Optional

28

29
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30 i f name == ’ main ’ :

31 main ( )
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