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Abstract

Magnetic reconnection is a large part in driving solar outbursts, but how to explain
their sudden bursts after periods of relative calm is still not fully known. One possible
explanation is the often overlooked Hall effect, in which it becomes possible to explain
reconnection through a build up of energy through separated currents. More focus has
come on the Hall effect in recent years, as it seems it could be a powerful driver in this
area.

We build upon the pre-existing solar MHD model Bifrost, and add in the Hall term
in order to investigate this. Through a modification in Ohm’s law we allow for current
separation at inertial scales, and run tests for the effectiveness when compared with
normal ideal MHD models. The goal of this thesis is to measure the reconnected flux
from the Hall MHD model and see if it has a significant impact on reconnection rate.

Through following a tutorial laid out by Joseph D. Huba in his 2003 paper [3], we
perform both a whistler wave validation test, and a reconnection setup. We found that
the Hall effect indeed has a large impact on the amount of reconnected flux, which falls
in line with previous investigations.
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Chapter 1

Introduction

Shining bright in the sky, our sun is the largest and most astonishing part of our solar
system. A giant molten ball of plasma constantly emitting light and energy in huge
quantities, it is an immense force and brilliantly alluring. In addition to the constant
stream of radiation sent out from its surface, it occasionally has even stronger, violent
outbursts which send flowing supercharged streams of particles into space. These solar
flares are abnormally strong, even for the sun, and a big topic of interest. However
their mechanism is not yet fully understood. The surface of the sun is a big tangle
of magnetic forces, constantly shifting and twisting. Sometimes two strong opposing
fields start pushing against each other, vying for space, until they finally snap. The
fields rapidly change shape, like rubber bands being pulled too far, and this pushes
the surrounding plasma with tremendous force causing solar flares. Though it is the
part where these fields lie against each other that is not very clear. As they push, and
push against the other, what finally causes them to snap? They might keep pushing
for a very long time, seemingly in a stable and unchanging position, but then suddenly
letting loose all at once. It is theorised that there must be some sort of build-up of
energy within these areas which we simply cannot see and some catastrophic event that
sets the flare off.

This is where the Hall effect comes into play. It is a simple, yet oft overlooked, part
of Ohm’s law. It describes how a current of charged particles can generate an electric
field. Usually this part is disregarded in solar physics, as we assume the plasma which
makes up the sun to be very, very hot and the particle it consists of colliding often.
That would mean that the particles are tightly bound and not separable. This leaves
no room for any potential electric fields. However, it is possible that within the area
of strong opposing magnetic fields, this might actually be possible. Due to the wildly
different masses of electrons and ions, they are pushed around at different speeds, and
just in such an area they might be pushed in just the right way to separate out. This
would then produce an electric field. Energy would build up steadily, which after a
while would be strong enough to cause the opposing solar magnetic fields to snap and
reconnect.

Therefore I have in this thesis chosen to investigate whether this could be possible, by
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implementing this Hall effect into the strong solar simulation code Bifrost, and studying
its impact on reconnection rate. With access to modern high-tech computing power and
a simulation built for speed, I have a great opportunity to investigate this problem here
at the Institute of Theoretical Astrophysics at the University of Oslo. The Rosseland
Centre for Solar Physics (RoCS) group at the institute has all the tools required to
succeed. I will mainly be following the work by Joseph D. Huba [3], which goes through
all the required steps to go from a normal magnetohydrodynamic solver like Bifrost,
to a fully fledged Hall MHD setup. Configurations for validating our implementation
through detecting unique Hall wave modes and a reconnection setup are both included
and will be used as a guide.

We will start by covering background information required to understand these
themes in the theory section. Here we start by covering the very basics through single
particle motion 2.1. We do this because the underlying motion of electrons and protons
explain the origin of more complex phenomena which are useful in our later descrip-
tions. This naturally leads into the section on magnetohydrodynamics 2.2, where we
introduce the large scale description of astrophysical plasma. As the name suggests it
is a combination between hydrodynamics, fluids, and electromagnetic forces. It is the
foundation to which we add our modification, the Hall effect 3.1. Having moved into
the method section of the thesis, we cover where the Hall effect comes from and how
it is applied. Despite the simplistic description, it gives rise to a couple more complex
phenomena which we need to keep track of, its special whistler and Hall drift wave
modes. Then we go into a all-you-need-to-know section on the Bifrost code which we
use as a foundation in our simulation section 3.2, as well as how we implement our new
addition numerically. In order to check that we have successfully done as we should,
we describe how we test and compare our results against analytical solutions in the
validation section 3.3. Here we look for the aforementioned whistler waves, and valid-
ate that they behave as we expect them to. If they do, then we know our Hall MHD
model is correct. Having cemented that our code works as it should, we go through the
real deal in the experiment and discussion section 4. We describe and perform a setup
to simulate magnetic reconnection, as well as a method of measuring how much of an
impact the Hall effect has. We summarize our findings in the conclusion 5, and add any
possible improvement we could have done in the future work section 6.



Chapter 2

Theory

2.1 Single particle motion

A charged particle moving through electric and magnetic fields, E, B, get affected by
the Lorentz force, F, which can be linked to the particle acceleration using Newton’s
second law of motion

F = q(E + u×B) (2.1)
∂u

∂t
=

q

m
(E + u×B) (2.2)

where q, m, u is the charge, mass, and velocity of the particle respectively. Note how
we can split the force in two separate parts: qE and qu×B, meaning the contributions
from the electric and magnetic fields are fully independent of each other. While the
electric field provides a continious acceleration of the particle, the magnetic component
of the force is relying on the particle having acquired a velocity already – whether this
is from the electric field or another source is of no consequence.

2.1.1 Particle orbits

From the Lorentz force (2.1) we can see that magnetic forces always act perpendicular to
the direction of movement. This causes a charged particle moving through the magnetic
field to turn continuously in an orbital motion in the plane normal to the magnetic field.
The magnetic Lorentz force only acts in this plane, meaning all movement parallel to
the field does not affect the magnitude or direction of the magnetic Lorentz force.
Therefore it is helpful to separate the particle velocity u into two components: Field
parallel velocity u‖ such that u‖ ×B = 0 and field orthogonal velocity u⊥ which gives
u⊥×B = u×B. The magnetic orbit will have a radius r, known as the Larmor radius
or gyroradius, and a gyrofrequency ωc defined as: [7, p. 81-82]
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r =
u⊥
ωc

(2.3) ωc =
qB

m
(2.4)

As we can see the gyrofrequency and radius are effectively determined by the ratio
between the magnetic field strength and particle mass. Comparing electrons and pro-
tons/positive ions for the same field setup, we can see that the heavier ions will have
larger and slower orbits compared to the smaller and faster electron orbits due to their
mass difference mp >> me.

Figure 2.1: Illustration of the cycloid motion of a charged particle in a E ⊥ B field
configuration. From Somov [7].

In the presence of another external field accelerating the particle this orbit starts
to drift, causing a cycloid motion as illustrated in Figure 2.1 for an electric field. The
acceleration of the particle does not cause the speed of the particle to increase over
time, as the contributions are cancelled when the particle reaches the opposite side
of the cyclotron orbit and the forces are reversed. It does however cause the overall
movement to drift with a velocity vd, defined as: [7, p. 84]

vd =
1

q

F×B

B2
(2.5)

where the general force F is replaced with whichever external field affecting the
particle. For an electric field this is the electric Lorentz force component qE, and in a
gravitational field it becomes mg. The drift is normal to both the accelerating force and
the magnetic field, and changes direction based on the particle charge in the case of an
electric field. Note that this is only for the case where the external field is orthogonal
to the magnetic field, as we established earlier all motion u ‖ B is independent of the
gyromotion in the plane perpendicular to B.
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Figure 2.2: Illustration of the guiding centre approximation, from Piel [6].

In some cases the gyration of the charged particles can be ignored and an approx-
imate description of the centre of the gyration motion be treated. The guiding centre
approximation takes this approach, which requires that relevant scales are much larger
than the gyroradius. That leaves only the circular gyromotion and a drift velocity equi-
valent to shifting point of reference to the centre of the gyromotion. An illustration of
this shifted reference can be seen in Figure 2.2.

2.1.2 Plasma parameters

A collection of charged particles can be defined as a plasma. The plasma is characterised
by a certain parameters which describes the nature of the plasma. The plasma frequency
ωp is one of the main characteristics of a plasma. A plasma is generally assumed to be
quasi-neutral but if one imagines that the positively charged ions are collected in one
klocation and this produces an electric field, then they will be accelerated away from this
positive electric potential. The motion of all the ions will create a negative potential,
making them reverse direction, so an oscilation will be set up. This oscillation will have
a frequency which is called the plasma frequency. It has a different magnitude depending
on the mass of the oscillating particle (ions and electrons). Another important plasma
parameter is the Debye length. The Debye length is the length over which an electric
field is neutralised by the surrounding charged particles of opposite charge. These
parameters and a number of other parameters derived from these are shown below.
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Summary of basic plasma parameters, expressed in terms of the appropriate charges q,
masses M , densities n and temperatures T

ωp =

√
q2n

ε0M
λD =

√
ε0κT

q2n
ωpλD =

√
κT

M
= uThe

Np ≡ nλ3D

`c ∼ λDNp τc ∼ Np/ωp vc ∼ ωp/Np

Approximate expression for the resistivity ξ (with conductivity σ) of a fully ionized
plasma

ξ ≡ 1

σ
=

1

Npωpeε0

The present summary does not include the corrections due to the Spitzer logarithm,
and also some numerical factors are omitted.

2.2 Magnetohydrodynamics

Magnetohydrodynamics, abbreviated as MHD, is an approach and set of equations used
to describe electrically conductive fluids, often in the presence of an external magnetic
field. One such fluid is the astrophysical plasma which makes up the sun, giving MHD
a notable presence within the field of solar physics. Compared to other plasma descrip-
tions it is a relatively simple yet efficient method of understanding complex phenomena.
It’s efficient nature makes it a great candidate for numerical simulations such as our
own used in this thesis.

Several assumptions are made when applying the base MHD description to plasmas
regarding its physical properties and use cases. The plasma is assumed to be quasi-
neutral in that there is an even amount of positive and negative charges and that they
on the relevant scales neutralise each other making it very difficult to create large scale
electric fields. Because of the plasma parameters, MHD is generally applicable only on
large scales compared to the Debye length (see section 2.1.2). As the second part of
its name implies, MHD also assumes that the the plasma can be described as a fluid.
Fluid motions are dominated by collisions so MHD is only applicable on length scales
much longer than the mean free path. The frequent collisions also ensures the positive
and negative charges are mixed and can be treated as a single fluid. In the ideal case
infinite conductivity is also given, letting electrons flow without any resistance.

Variations on MHD exist however, where each of the assumptions mentioned are
removed. In the case where all the normal assumptions are used it is referred to as Ideal
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MHD. It is often used in theoretical investigations, but is too simplistic to be applied in
many real scenarios. Without resistivity there is no way the fluid can move across the
magnetic flux direction. This is known as the frozen-in flux theorem, and it is similar
to how the guiding centre approximation only allows independent particle movement
along field lines. Loosening the criteria of infinite conductivity leads to resistive MHD,
where some resistivity η 6= 0 lets the fluid flow across the magnetic field. For cases
with magnetic reconnection this is crucial. We know that the theoretical resistivity
in a plasma as it exists on the Sun is extremely low, but also observe that at crucial
times, the resistivity of the plasma in the solar atmosphere must increase dramatically
to allow for solar flares to occur. Another variation is Hall MHD, where we allow for
charge separation between ions and electrons. We go into more detail on this variation
in section 3.1.

At its core, MHD combines Navier-Stokes fluid dynamics and Maxwell’s equations
for electromagnetism. The fluid dynamics ensure physical quantities such as mass and
momentum are conserved, while others describe the electric and magnetic forces which
both affect the fluid and are created by the fluid. They are all expressed as partial
differential equations, which have to be solved either analytically or numerically to get
a description of plasma behaviour.

From fluid dynamics we get the mass continuity equation and the Cauchy momentum
equation respectively:

∂ρ

∂t
= −∇ · ρu (2.6)

∂ρu

∂t
= −∇ · (ρuu− τ)−∇P + J×B + ρg (2.7)

(2.8)

Here ρ is the mass density, u is the fluid velocity, τ is the Cauchy stress tensor, P is
the thermal gas pressure, J is the current density, B is the magnetic flux density, and
g is the gravitational acceleration. The momentum equation (2.7) can take on different
forms depending on the context in which it is used. Here we have added the Lorenz
force as part of the equation, and often situations may neglect gravity and the stress
tensor.

Two of Maxwell’s equations make up the core of the electromagnetic section of MHD,
Ampère’s law and Faraday’s law, along with Ohm’s law:

µ0J = ∇×B (2.9)
∂B

∂t
= −∇×E (2.10)

E = ηJ− u×B (2.11)

Where µ0 the the vacuum permeability/magnetic constant and η is the electrical
resistivity. Note how Ampère’s law is lacking the term µ0ε0

∂E
∂t which is normally present,
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where ε0 is the vacuum permittivity/electrical constant. The vacuum constants have
a relation µ0ε0 = 1/c2, which means that this term is only important when violent
changes in the electric field happens. The many charge carriers is assumed to be able to
keep electric fields relatively small, so the term is assumed to be negligible in comparison
to the other terms which allows us to ignore it. Often the three equations are combined
into the single induction equation:

∂B

∂t
= ∇× (u×B) +

η

µ0
∇2B (2.12)

This is done by finding the curl of Ohm’s law, inserting for J from Ampère’s law,
and inserting for ∇×E from Faraday’s law. The two terms on the right hand side are
the inductive term and the diffusive term respectively.

Finally, in addition to the previous equations we need a relation between temperature
and pressure to the other quantities. This is referred to as an equation of state (EOS),
and can be expressed as a gas equation or an energy equation. While this could be any
function, a typical choice could be the ideal gas law:

PV = nkBT (2.13)

Where V is volume, kB is the Boltzmann constant, and T is the plasma temperature.
In the perfect gas approximation we could also express this as P = ρ(γ − 1)e, where
γ is the heat capacity ratio/adiabatic index and e is the specific internal energy of the
plasma.



Chapter 3

Method

3.1 Hall

The Hall term appears as part of the generalized Ohm’s law, which is as follows: [3]

me

ne2
∂J

∂t
− 1

ne
∇Pe = E +

1

c
u×B− 1

nec
J×B− J/σ (3.1)

(3.2)

Where n = ni = ne is the plasma number density, Pe is the electron pressure, and σ
is the electrical conductivity. Assuming we have length scales larger than the electron
inertial length L >> c/ωpe, L >> re, where re is the electron Larmor radius, and large
conductivity σ → ∞ we can neglect the electron inertia, pressure, and conductivity
terms. This lets us simplify Ohm’s law to the expression:

E = −1

c
u×B +

1

nec
J×B (3.3)

Here we have both the classic Ohm’s law terms, as well as a new J ×B/nec com-
ponent. This is the Hall term. For further simplification we also introduce the Hall
velocity VH . It simplifies the expression as follows:

VH = − J

ne
(3.4)

E = −1

c
u×B− 1

c
VH ×B (3.5)

The Hall velocity can be thought of as the difference in velocity between the elec-
trons and ions. Due to their much heavier mass, we can view the ions as a relatively
motionless background compared with the electrons. Normally the electrons are bound
to the ions, but at scales between the electron and ion inertial length the electrons are
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locally uncoupled. The Hall velocity is then the electron velocity when compared to
this background, subtracting away any potential large scale drift.

In areas with awaiting magnetic reconnection, where strong opposing magnetic fields
push close to each other, the uncoupled electron flow induces an additional magnetic
field orthogonal to the background field. An illustration of this can be seen in Figure 3.1
where an influx of electrons into a reconnection area generate new magnetic fields. This
effect has been shown previously to have a significant effect on the reconnection rate
[3], and we describe our experiment for numerically simulating this in section 4.1.

Figure 3.1: Illustration of relevant fields and velocities for the Hall effect in a recon-
nection site. The background magnetic field Bsun generates a background electric field
Esun. Inflow of plasma uconv leads to a current jhall. This current is controlled by the
electrons due to the charge separation on inertial scales. Through the Hall effect a
magnetic field Bhall is induced by the current.

Due to the added Hall effect, we get two new wave modes introduced. These waves
are the whistler and Hall drift waves. They are much faster moving than all normal
MHD waves, and will need extra consideration in numerical implementations to resolve
properly. To do this we use their dispersion relations such that we can use their velocities
to choose suitable time steps for numerical integration. We start by splitting the Hall
contribution as part of the induction equation 2.12. Here we assume the limit where the
Hall velocity dominates the normal background, such that u = ui + VH ≈ VH , where
ui is the background ion velocity. We neglect the η∇2B term, due to our previous
assumption that σ →∞, η = 1/σ → 0:
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∂B

∂t
= ∇× (VH ×B) = −∇× (J/ne×B) (3.6)

∂B

∂t
= − 1

ne
∇× (J×B) +

1

n2e
∇n× (J×B) (3.7)

The dispersion relation for each wave mode is found by adding a perturbation in the
magnetic field and solving for the wave frequency. We show the whistler wave dispersion
solution method in section 3.3. The Hall drift waves are found similarly by perturbing
the Bz component of the magnetic field, and we refer to Huba [3] for the full solution
method. Each dispersion then is as follows:

ω =
k2zB

4πne
= kzVA

(
kzc

ωpi

)
(3.8)

ω =
kyB

4πne

1

n

∂n

∂x
= kyVA

(
c

Lnωpi

)
(3.9)

Where k is the wave number, VA is the Alfvèn velocity, and Ln = (∂ lnn/∂x)−1
is the density gradient scale length. Equations (3.24) and (3.9) are the whistler and
drift dispersions respectively. Note the difference in dependence on the wave number k,
where the whistler mode goes as the mode squared while the drift is linear. Details on
how we implement these into our time step can be found in section 3.2.1.

3.2 Simulation

Our experiments are simulated using the Bifrost code [2], a highly modular 3D frame-
work for solving the MHD equations as well as built-in full radiative transfer methods.
Its core use area is in solar simulations, where user input initial conditions on a Cartesian
grid of cells are advanced in time. Bifrost tracks four core quantities from which others
are derived: The mass density ρ, momentum ρu, magnetic flux density B, and internal
energy per unit volume e. The partial differential equations describing these variables
changes over time are implemented as

∂ρ

∂t
= −∇ · ρu (3.10)

∂ρu

∂t
= −∇ · (ρuu− τ)−∇P + J×B + ρg (3.11)

∂B

∂t
= −∇×E (3.12)

∂e

∂t
= −∇ · eu− P∇ · u +Q (3.13)

µJ = ∇×B (3.14)
E = ηJ− u×B, (3.15)
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for velocity u, stress tensor τ , gas pressure P , electric current density J, gravitational
acceleration g, electric field E, vacuum permeability/magnetic constant µ, and magnetic
diffusivity η. The quantity Q added to the energy equation is a connecting term for
other energy transfer systems, such as Bifrost’s radiative transfer or thermal conduction.
Note the different form of Faraday’s law (3.12) and Ohm’s law (3.15), where they are
missing each a factor c from the usual Gaussian representation. Since the electrical field
is only derived through the magnetic field, these factors are canceled for numerical ease.
To fulfill the set of MHD equations some equation of state (EOS) is also required, such
as the ideal gas law, and several possibilities are provided through the Bifrost code. We
assume an ideal gas as the EOS for all experiments in this thesis.

To ensure stability and efficient time evolution, two explicit methods for timestep-
ping are provided: The third-order Runge-Kutta scheme, and the third-order Hyman
timestepping scheme [4]. For the Runge-Kutta scheme the timestep is split in several
sub-steps which are then combined for an output third-order precision, whereas the Hy-
man timestepping uses a predictor-corrector scheme scaling to ensure Courant stability
conditions, also reaching a third order precision. We use the Hyman method for all our
tests here.

Calculations using spatial derivatives are optimized through using a staggered grid.
Values for tracked quantities in the simulation are placed at explicit coordinates through-
out the Cartesian grid, each point representing the cell which contains it. Naively one
might place a cells values equally for all variables, but this can be computationally
disadvantageous when involving derivatives. Bifrost by default uses a 6th order finite
differential scheme, which causes the derivatives to shift in place by half a grid cell
compared to the differentiated values. To avoid interpolating these values back in place
where spatial derivatives are used in computations, we instead define our core quantities
are initially shifted such that the derivatives fall into place where needed. This setup is
called a staggered grid, and Bifrost’s implementation is based on previous schemes by
Nordlund & Galsgaard [5], though with opposite coordinate shifts. A representation of
how variables are distributed by Bifrost in each cell can be seen in Figure 3.2.
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Figure 3.2: Schematic of how variables are staggered in comparison to each other in
Bifrost. The density ρ and internal energy e are volume centered and marked as a black
dot. The magnetic field B and momentum P = ρu components are face centered, where
each component Bx,By,Bz have been moved half a step down along their respective
axis x, y, z. This is different from the electric field E and current I which are edge
centered, and have been moved half a step down along the other two axes (e.g. Ex has
been moved half a step down y and z).

3.2.1 Hall implementation

In practice our Hall effect appears not as a part of Ohm’s law, but rather an addition to
Faraday’s law (3.12). As the electric field is not a core quantity in the Bifrost simulation,
rather a calculated quantity through the magnetic field, we need to connect the Hall
term back to the magnetic field. This is done through Faraday’s law as

EH =
1

ne
J×B = −VH ×B (3.16)

∂B

∂t
= −∇×E−∇×EH , (3.17)

where EH is the electric field stemming from the Hall effect, and E consists of any
other electrical fields. This is possible since the contributions from different electric
fields are independent of each other, and the Hall effect simply appears as another
addend. Note again the difference in a factor c from our previous Hall equations due to
Bifrost’s formulation. We also implement Courant criteria for the Whistler wave speed
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VHw and Hall Drift wave speed VHdw [1] to ensure stability, as they are much faster than
normal non-Hall speeds:

VHw = kV 2
A/ωi (3.18)

VHdw = V 2
A/(Lωi) (3.19)

Here k is the wave mode, VA is the Alfvén speed, L is the characteristic length
scale, and ωi is the ion plasma frequency. As the we require stability for the fastest
Whistler wave modes, we set k = 2π/δx where δx is the spatial resolution of the
numerical grid used. Whistler waves with higher wave numbers cannot be resolved, so
are not considered for the timestep criteria either. The whistler waves are extremely
fast. Compared to MHD wave speeds where the fastest are generally close to the Alfvén
speed, whistler speeds are proportional to V 2

A. To satisfy the general Courant condition
for these speeds would generally mean calculating several orders of magnitude more
timesteps.

3.3 Validation

In order to validate our code and stress it as much as possible, we use a known analytical
result for Hall MHD to compare with. Whistler waves are very far from standard MHD,
so any weakness or flaw in the implentation of the Hall term should show up clearly in
the propagation of the Whistler waves.

3.3.1 Whistler waves

We use a setup laid out by Huba [3] for detecting whistler waves. This is suitable for our
purposes as the waves should come as a direct result of the extra Hall term, meaning we
do not have to add any extra physics, and are easy to detect. The only requirement is
that the simulation should be of length scales small enough and timescales short enough
for the waves to be resolved.

First, we need to find an analytical expression for the wave dispersion to which
we can compare our results, again following the method of Huba [3]. This is done
by perturbing Faraday’s law of induction, having inserted the Hall electric field. We
assume a constant z-axis oriented background magnetic field B = B0êz, and sinusoidal
perturbations for x,y magnetic components δBx, δBy ∝ exp(ikzz − iωt):

∂δB

∂t
= − 1

ne
∇× (δJ×B) (3.20)

ωδB =
1

ne
(kzBδJxêx + kzBδJyêy) (3.21)

Here (3.21) is the linearized version of the perturbed equation (3.20). We further
expand this using Ampere’s law, δJ = c/(4π) · ∇× δB, giving the connected equations:
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ωδBx = −ick
2
zB

4πne
δBy (3.22)

ωδBy = i
ck2zB

4πne
δBx (3.23)

Which together are then solved to find the linear whistler wave dispersion:

ω =
k2zB

4πne
= kzVA

(
kzc

ωpi

)
(3.24)

Note how the dispersion relation dependency on the ion plasma frequency again
reiterates how the Hall effect is most relevant on small scales L < c/ωpi, where the
phase velocity will exceed even the normal MHD Alfvén velocity.

For the numerical setup we assume a homogeneous density and a fixed spatial resol-
ution. The magnetic perturbations in Bx and By are equal, but offset as sine and cosine
waves respectively. Precise numbers for important quantities are listed as follows:

• Number density n, n0 = 1012 cm−3.
• System size Lz = 20 cm, split into 120 points / 1D cells in z interval.

* Size in x and y directions are irrelevant, for computational efficiency they
are set to a single mesh point along each at x = y = 0.

• Plasma beta β = 10−4.
• Background magnetic field B = B0êz, with strength B0 = 1000 G.
• Perturbation size δB = 10 G, with x,y components

δBx = δBsin(2πmz/Lz) (3.25)
δBy = δBcos(2πmz/Lz) (3.26)

for wave mode number m.

Finally the temperature is to be kept constant, though we are not able to fulfill
this requirement as any resistive diffusion of the magnetic field is converted into heat
in Bifrost. Since we hope that there will be very little diffusion in this test, we expect
the effect to be noticeable but not severe as long as the wave is well resolved. The
consequences of this are further discussed as part of our test results, though we should
still expect to see numerical results which have correct relative sizes.

To compare our results with the analytical expression, we compute the frequency
as function of wave mode for the numerical whistler waves. Tracking the perturbed
variables Bx and By in time, we can perform a Fourier transform to extract the most
prominent frequencies. The analytical dispersion relation (3.24) tells us which frequen-
cies are to be expected for a given wave mode. Therefore we do multiple simulations for
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different initial perturbation modes and see if the detected frequencies match this rela-
tion. We can clearly see that we should expect the frequency to go as the mode number
squared, which holds up with the findings by Huba [3] as can be seen in Figure 3.3.

Figure 3.3: Comparison of analytical and simulated whistler wave frequency as function
of mode number, as found by Huba [3].

After running a simulation with the setup of initial conditions described in section
3.3, we were able to detect oscillations in the magnetic field. We tracked the changes
in magnetic field components Bx, By for all points in space over time, for all different
mode number setups. An example of this can be seen in Figure 3.4, in which we have
plotted the oscillations in By for some point in space as function of time. Note the slow
increase in mean field strength with time. This is common for all points in space and
for all wave modes and is likely due to an instability in the setup.
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Figure 3.4: Plot of magnetic field component By for a point in space in the plasma,
tracked over a time interval of 10−11 seconds. About 104 points in time are sampled,
giving a resolution of 10−15 seconds between each point. A wave mode of 2 was chosen
for this example as it has the clearest oscillation patterns over this interval.

The waves which we detected are a combination of various frequencies of oscillations,
due to the many different overlapping MHD wave modes. In order to check if our whistler
modes are part of these, we perform a discrete Fourier transform to break it down into
frequency components. The result of this can be seen in Figure 3.5, where we have
transformed the magnetic waves for a points in space for all mode numbers. Note the
cutoff frequency at f ≈ 1012 where we only consider frequencies higher than this. This
is because of the amount of lower frequency modes mixed in with the simulation. These
are not resolved due to the short time interval sampled, where the discrete Fourier
transform has a lower bound of 1/T = 1011 Hz. Likewise we have an upper bound of
N/T ≈ 1015 Hz, as oscillations faster than this are not resolved.
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Figure 3.5: Plot of the Fourier transformed magnetic oscillations detected in the whistler
wave experiment, for different wave modes. The vertical axis has been normalized by the
maximum amplitude of each mode’s frequency spectrum, in order to better compare the
most prominent frequencies for each. Note the logarithmic frequency axis, as it spans
five orders of magnitude. The vertical striped line at f ≈ 1012 Hz denotes our cutoff
frequency, where we only consider frequencies larger than this.

These results correspond with the analytical expression, meaning we successfully
managed to replicate the wave mode and frequency relation through our simulation.
As can be seen in Figure 3.6 the detected whistler wave frequencies follow the same
squared mode dependency as the analytical dispersion (3.24). Comparing our results
to Huba’s results shown in Figure 3.3, we can see that our frequencies are shifted up
by a few orders of magnitude. However our analytical results back this up, meaning it
is likely due to the deviations from the experiment description. The slight decrease in
frequency as a function of mode number might be caused by our inability to keep the
temperature constant. Our results still follow the expected quadratic growth, which
seems to indicate they are still valid.

The analytical curve has had this extra constant multiplied to it, meaning Figure 3.6
does not completely represent our results. We have done this because we are confident
this missing constant factor is not caused by a fault with our simulation, but rather
the processing of the signal. We cannot accurately measure our error due to not having
Huba’s results in making Figure 3.3, but estimating the relative difference between the
analytical and numerical results, our own curves differ by a factor of about 4π. This
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is a very, very common factor in converting between SI and Gaussian/CGS systems of
units, especially in an electromagnetic context. It is very likely that we have simply
missed this in a step somewhere in our calculations, since all other parts of the results
seem to be correct. Therefore we found it reasonable to reinstate this factor with the
assumption that it should be there, though it is worth keeping this in mind when judging
the accuracy of the simulation still since we have not been able to pinpoint the source.
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Figure 3.6: Plot comparing the analytical and simulated numerical results for whistler
wave dispersion as function of wave mode. Numerical points are calculated for even
mode numbers in range 2 to 16.

Despite some deviations, our results validate that our implementation of the Hall
effect correctly results in whistler modes of correct ratio. Due to being able to replicate
known analytical results, our Hall MHD simulation has reason to be trusted in other
numerical experiments where we might not have an already known comparison. At least
within reasonable use cases such as this thesis.
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Chapter 4

Experiment and discussion

Implementing Hall-MHD into the solar atmosphere code Bifrost had the primary goal
of investigating the Hall terms ability to speed up reconnection and possibly be the
trigger for the fast energy releases observed in flares in the solar atmosphere. The solar
atmosphere simulations are very complex and analysing such a simulation would be
too time consuming. We instead wanted to investigate if a simple reconnection setup
would actually show signs of a faster reconnection speed also when using Bifrost and
the implementation used.

4.1 Magnetic Reconnection

To compare reconnection speeds we used a simple setup that would maek it possible to
compare reconnection speeds both for Bifrost and another code but also between Bifrost
with and without the Hall term implemented. We again use a setup provided by Huba
[3], where we evolve a central magnetic island in time until we reach a reconnection
state.

The experiment is situated in the 2D x−y plane. As the Hall effect is only applicable
on inertial scales, our unit of length is characterized by the speed of light divided by
the plasma ion frequency c/ωpi. The simulation area is a rectangle with side lengths
Lx = 25.6c/ωpi and Ly = 12.3c/ωpi in x and y directions respectively. There are 100
grid points along x and 50 points along y. The z-axis is unimportant, especially since we
have periodic boundary conditions for x and z. For y we have a zero-gradient boundary
∂/∂y = 0.

The initial magnetic field is given by:

Bx(y) = B0 tanh(y/w), for ω = 0.5c/ωpi (4.1)

Other magnetic components By, Bz are assumed to be zero. This magnetic field is
then perturbed with a flux perturbation of the form:

φ = −φ0 cos(2πx/Lx) cos(πy/Ly) (4.2)
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Where we set φ0 = 0.1. Huba does not specify the units of this flux perturbation
however, and neither the magnetic field, so we will adjust this quantity later. It is also
not specified how this field is applied as a perturbation. Therefore we have assumed it
to be a vector potential where φ = φz. This means a perturbation to Bx and By would
become:

δBx = −∂φ
∂y

= −φ0
π

Ly
cos

(
2πx

Lx

)
sin

(
πy

Ly

)
(4.3)

δBy =
∂φ

∂x
= φ0

2π

Lx
sin

(
2πx

Lx

)
cos

(
πy

Ly

)
(4.4)

Where we then add these perturbation to the initial state of the system.
Other quantities are satisfied by balancing the magnetic and thermal pressure. We

also have a characteristic time scale for the system through the Alfvèn time τA =
(c/ωpi)/VA0 where VA0 is the global Alfvèn velocity based on B0. The inertial length
c/ωpi is defined by using the initial number density n = n0, while the density itself has
a lower floor of nb = n0/5. Finally the initial density n0, temperature T , and magnetic
field size B0 is decided by balancing the pressures such that the magnetic beta equals
one β0 = 8πn0T/B

2
0 = 1.

Figure 4.1: Magnetic field Bz component at time t ≈ 21τA, as shown by Huba [3]. Note
the zoomed in view, where the y-axis only shows field in interval ≈ ±1.5.

When comparing the expected results for Hall and non-Hall MHD in this experiment,
the biggest difference the the magnetic field in the z direction. Without the Hall effect
present there is no change in the magnetic field in this direction, and since we assume
no initial field Bz0 = 0 it would remain zero. Therefore this component is important to
look at as it is a pure product of our added physics. In Figure 4.1 we have an image
from Huba showing what the Bz magnetic component is expected to evolve into. This
has happened after a time t = 21τA, though we should not necessarily expect the exact
same amount of time to pass due to our different simulations. We keep this as a goal
for what our results should become.
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Figure 4.2: Comparison of reconnected flux as function of time between ideal and Hall
MHD, as presented by Huba [3]. Note the near linear increase in flux for Hall MHD
with time.

When choosing the density, temperature, and magnetic field strength, we based the
quantities on solar corona-like quantities. A density of n0 = 3.06 · 1010cm−3 and field
strength B0 = 10 Gauss gives a temperature of T = 106 K, which is acceptable for the
corona. Through testing we found the perturbation size of φ0 = 0.1 to be too small for
any formation in reasonable time, so it is set instead to φ0 = 1.0. A plot of the initial
magnetic field setup for Bx, By can be seen in Figure 4.3. We have no component in
Bz for t = 0, and is therefore not included.
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Figure 4.3: Initial state of the planar magnetic field. Top plot shows the Bx com-
ponent, while the lower shows the By component. Note how Bx consists of both the
background/initial field (4.1) as well as the perturbation (4.3), while the By field only
stems from the perturbation (4.4).

In Figure 4.4 we show how the Hall magnetic field changes over time until recon-
nection. At time t = τA to 3τA we get the initial induced field, which takes shape
as four clear quadrants in an oblong shape. A neutral patch in the middle grows as
the patches morph into sharper lines and connect to each other through the periodic
boundary. Secondary fields appear inside the previously neutral patch as well as outside
the surrounding lines for time t = 4τA to 6τA. Finally the central fields expand and
reconnect at time 9τA.
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Figure 4.4: Plot showing the evolution of the Hall magnetic field as function of time for
t = 1τA to 9τA. No plot is shown for t = 0, as there is no initial Bz field.

Looking closer at the final state, we can see resemblances to the results presented
by Huba. We show a close-up view of the plot for t = 9τA in Figure 4.5, where we
have cropped the y-axis to an interval y ∈ [−1.5, 1.5]. This is a similar state to the
field from 4.1. While the central region does not connect as clearly in our plot, the
left and right sections have the same field structure in terms of polarity, where we
can see a checkerboard-like pattern. Note how our field connected much faster when
compared with Huba. Without further testing we do not know for sure why this is, but
a probable cause is our different choices for the initial conditions. As no values for the
density, temperature, and magnetic field strength were provided, our choice might have
impacted the reconnection rate. Especially the perturbation size φ0 would likely affect
the rate of propagation of the fields.
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Figure 4.5: Close-up view of the Bz field at time t = 9τA.

The initial magnetic field is almost purely in the x-direction except for the central
pertubation. If reconnection takes place, the x-directed magnetic flux is converted to
y-directed flux when passing through the central current sheet. In this case the x-
boundary is periodic, which means that at most we will have a magnetic island forming
in the current sheet. The y-directed flux is created by the creation of this magnetic
island, so a measure of the reconnection rate is the amount of created magnetic flux in
the y-direction per unit time. Huba shows this amount by integrating By and plotting
it as a function of time in 4.2. Running a similar experiment should provide us with a
similar result.

Φ =

∫
Bydx (4.5)

Where we do a line integral of By in x, getting the total change in By along this
line. In Figure 4.2 Huba shows how the reconnected flux becomes much higher for Hall
MHD compared with ideal MHD in their experiment. We also calculate this property
in the same way.

Having calculated the reconnected flux for both with and without the Hall term, we
clearly show that it has a major impact in this area. This is in line with what we saw
presented by Huba. Comparing our plots in Figure 4.6 and Figure 4.2 we get a similar
linear increase in the Hall flux, albeit more noisy, and a very similar comparative size
between Hall and non-Hall flux at t = 20τA with each having roughly a 4 : 1 ratio.
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Figure 4.6: Plot of reconnected flux as a function of time for simulation including the
Hall term (full) and excluding the Hall term (dashed). Time is in units of τA.
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Chapter 5

Conclusion

We successfully managed to complete all our goals set out in this project. The im-
plementation of the Hall effect into the Bifrost simulation was completed, taking into
consideration all required steps of handling the fast whistler and hall drift modes. This
was validated when we managed to detect whistler modes with the same relation as
described by analytical results. Finally we performed a reconnection experiment and
showed how the Hall effect led to a significant increase in reconnected flux.

Through this project I have learned a great amount of practical skills and informa-
tion. I’ve learned about the Bifrost code, which gives large insight into high performance
computation and how it might be applied, through using and modifying it myself. I’ve
learned all about Hall MHD, both through its base MHD principles and equations, and
also how small changes like this can lead to greatly different results. Through imple-
menting and performing the whistler wave detection, I’ve learned to rigorously validate
and test my results. And finally through following the tutorial set out by Huba [3] I’ve
learned how to proceed with reproducing other people’s work for comparative analysis.



30 Conclusion



Chapter 6

Future work

The implementation of Hall MHD into the Bifrost code makes it possible to test the
effects of Hall MHD on top or possibly instead of the artificial numerical resistivity used
in Bifrost. At present the artificial resistivity is based on energy conservation, minimal
wave damping and code stabilisation. Most of the simulations that are performed with
Bifrost code have a spatial resolution much larger than the inertial length of the ions,
so in principle there should be no room for Hall MHD in the simulations typically
performed with Bifrost. However, a number of researchers have mentioned Hall MHD
as the answer to the catastrophic instability that leads to solar flares. The resistivity
calculated from collision rates of particles cannot explain the fast and large energy
release observed in solar flares, so some instability must happen inside the reconnection
region. Hall MHD could be the answer. An instability should initiate on small scale and
through an inverse cascade produce results on large scale. We could possible produce
believable simulations without having the full range of scales all the way from the ion
inertial scale to relevant solar atmosphere scales and in that way utilise the effects
of Hall MHD in typical Bifrost simulations. A comprehensive investigation into the
effects of Hall MHD with different resolutions in realistic atmosphere setups should be
investigated to see how large an effect the Hall term actually has when the ion inertial
range is not fully resolved, and what effect the tuning parameter vH has. Such an
investigation would be the obvious next step from a physical viewpoint.

The very small timestep required to resolve Whistler waves is a large concern. There
are ways to save computation time while still resolving the small timescales required.
To avoid using unnecessary extra computing power, it is possible to sub-cycle the Hall
term. That is possible because there is such a large difference between the timestep
required to resolve the Hall waves and the typical dynamical time of standard MHD. In
reality that means that in a typical timestep required by the Hall waves, the rest of the
terms in the PDEs are excedingly small. This allows us to take multiple steps in time
for the Hall effect between each full update, giving a compromise between the efficiency
of a larger time step and the detail of a smaller step.
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Figure 6.1: Schematic showing sub-cycling of the Hall term, from Huba [3].

While we could simply assume the slower variables to be constant as the Hall term
is sub-cycled, we can gain some precision by using a more complex scheme. As with
integration schemes there are many different varieties of sub-cycling schemes with dif-
fering orders of expected error, but a simple midpoint scheme detailed by Huba [3]
would most likely be sufficient. The main idea is to calculate the non-Hall time step
∆t and Hall time step ∆tH , then successively updating the magnetic field at Hall time
until it reaches the normal step length at time t + ∆t. Then this is averaged with the
previous magnetic field from time t to get a midpoint value at time t + ∆t/2. Finally
a normal full step in time is taken using this averaged magnetic field from t to t+ ∆t.
A schematic of this scheme can be seen in Figure 6.1.

Once these parameter studies of VH and resolution scale and the increase in efficiency
has been done, a full scale simulation should be undertaken. To compare the simulation
with and without the Hall term employed could be interesting for several reasons. Both
the total reconnected flux, the detailed and large scale topology of the field as well as
the effect of the faster reconnection would be interesting to investigate.
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