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Abstract

When an oil or gas field development project is evaluated, having a satisfactory production
model is very important. Since the first attempts in the 40’s, many different models have
been developed for this purpose. Such a model typically incorporates knowledge about the
geological properties of the reservoir. When such models are used in a total value chain analysis,
however, also economical and strategic factors need to be taken into account. In order to do
this, flexible modeling tools are needed. In this paper we demonstrate how this can be done
using hybrid system models. In such models the production is modeled by ordinary differential
equations representing both the reservoir dynamics as well as strategic control variables. The
approach also allows us to break the production model into a sequence of segments. Thus,
we can easily represent various discrete events affecting the production in different ways. The
modeling framework is very flexible making it possible to obtain realistic approximations to
real-life production profiles. At the same time the calculations can be done very efficiently. The
framework can be incorporated in a full scale project uncertainty analysis.

1 Introduction

Models for estimating reserves and predicting production in oil and gas reservoirs have been studied
extensively over many years. Many different models and methods have been suggested. A popular
technique is the decline curve analysis approach. This approach dates back to the pioneer paper by
[1] where the exponential, hyperbolic and harmonic curves were introduced. We will refer to these
decline functions as the Arps curves. More recent papers considers other types of decline curves,
and attempt to model the relation between the parameters of the curves and geological quantities.
See e.g., [7], [8], [9] and [12].

The purpose of the present paper is to develop production models that can be used in the broader
context of a total value chain analysis. In such an analysis the reservoir geology may be described
by structure models, sedimentary models and saturation models. Stochastic models, combined with
reservoir simulation, are applied to estimate the quantitative measures Stock Tank Original Oil In
Place, Original Gas In Place and the Recovery Factor of the reservoir. The geological models and
the quantitative measures are crucial to assess the quality, nature and prevalence of the oil resources
in the reservoir.

The knowledge gathered from sample drilling, seismic surveys and other analyses is assembled
and quantified in a full-scale reservoir model. The performance of the reservoir is assessed using some
reservoir simulation software. These tasks are executed by geologists, geophysicists, petroleum engi-
neers and other specialists. The output from a full-scale reservoir simulation includes oil production
profiles and important performance measures such as Gas-Oil Ratio and Water Cut. Production
profiles for gas- and water production may be derived from these performance measures.

In the present paper, we will assume that the properties of the reservoirs described above have
already been assessed. We will also assume that a full-scale reservoir simulation has been performed
and that output from such a simulation is given. A flexible modeling environment will be developed
where these assessments can be utilized. Thus, we will focus more on the mathematical and numerical
aspects of the modeling. This environment is intended to be used in the context of a total value
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chain analysis where economic and strategic factors are taken into account as well. We will focus on
single phased production, i.e., oil production only. Triple phased production, where oil production,
gas production and water production are modeled simultaneously, is left for future work.

Execution time performance is an important issue in total value chain analysis. Usually, a simula-
tion in a reservoir simulator takes hours, or even days. In the context of a total value chain analysis,
where uncertainty should be incorporated, such execution times are unacceptable. Optimization
problems, which also require low simulation execution time, are also relevant in total value chain
analysis. For a discussion of total value chain analysis, see [5].

The perspective of the present paper is early stage analysis, done before production data are
present. In the presence of production data many related problems may be studied using history
matching of production data, see e.g., [11]. These related problems will not be studied here.

The present paper presents three contributions to production profile modeling:

• Production profiles are modeled using a multisegment approach where the production profile
is decomposed into a combination of decline curves, one for each segment. This enables a
satisfactory fit to the output from the reservoir simulation.

• The production is modeled using ordinary differential equations representing both the reservoir
dynamics as well as strategic and economic control variables. This representation enables us
to incorporate various types of delay in production in the framework. At the same time the
calculations can be done very efficiently, so that the execution time remains acceptable even
when uncertainty is incorporated into the framework.

• In the proposed framework multiple production profiles are easily analyzed, and many opti-
mization problems may be studied. In this paper we will study subfields that share a central
process facility. Due to capacity constraints of the central process facility, the operator needs
to prioritize the production of the subfields.

2 Basic production profile functions

We start out by reviewing the classical decline function approach developed by [1]. For all the
following models we assume that the production starts at a given time t0. We denote the production
rate at time t ≥ t0 by q(t), and the corresponding cumulative production function at time t ≥ t0,
by Q(t).

Hyperbolic decline curves

The hyperbolic decline curve with initial production rate r0 > 0, scale parameter D > 0, and shape
parameter b ∈ (0, 1) has the following form:

q(t) = r0[1 + bD(t− t0)]−1/b. (2.1)

By integrating this function from t0 to t we get the corresponding cumulative production function:

Q(t) =
∫ t

t0

q(u)du =
r0

D(1− b)
[1− (1 + bD(t− t0))1−1/b]. (2.2)

We observe that the integral (2.2) converges as t →∞. Thus, if the production is allowed to continue
forever, the ultimate recovery volume is given by:

lim
t→∞

Q(t) =
r0

D(1− b)
. (2.3)

Normally, however, the production is stopped when the production rate reaches some suitable cut-off
level, say rc < r0. We can find the point of time when this happens by solving the equation q(t) = rc

with respect to t. The solution, denoted tc, is given by the following formula:

tc = t0 +
1

Db
[(

r0

rc
)b − 1]. (2.4)
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By inserting tc into (2.2), we get what we refer to as the technical recoverable volume, denoted by
Vr:

Vr = Q(tc) =
r0

D(b− 1)
[(

r0

rc
)b−1 − 1] (2.5)

Due to economical considerations, the actual recovered volume may be smaller than this number.
In this setting, however, we focus only on technical recoverable volumes.

Exponential decline curves

By letting b → 0 in (2.1) we get the exponential decline curve. This decline curve has the following
form:

q(t) = r0 exp(−D(t− to)). (2.6)

The corresponding cumulative production function is given by:

Q(t) =
∫ t

t0

q(u)du =
r0

D
[1− exp(−D(t− t0))]. (2.7)

As in the hyperbolic case, the integral (2.7) converges, and the ultimate recovery volume is given
by:

lim
t→∞

Q(t) =
r0

D
. (2.8)

Given a technical cut-off rate rc < r0, we solve the equation q(t) = rc with respect to t. The solution
in this case is given by the following formula:

tc = t0 +
1
D

ln(
r0

rc
). (2.9)

By inserting tc into (2.7), we get the technical recoverable volume:

Vr =
r0 − rc

D
. (2.10)

Harmonic decline curves

The other limiting case of (2.1) where b = 1 is called the harmonic decline curve. This curve has
the following form:

q(t) = r0[1 + D(t− t0)]−1, (2.11)

and the corresponding cumulative production function is given by:

Q(t) =
∫ t

t0

q(u)du =
r0

D
ln(1 + D(t− t0)). (2.12)

Note that the integral (2.12) does not converge as t →∞. Thus, in this case it does not make sense
to calculate the ultimate recovery volume. However, given a technical cut-off rate rc < r0, we can
still solve the equation q(t) = rc with respect to t. The solution in this case is given by the following
formula:

tc = t0 +
1
D

[
r0

rc
− 1]. (2.13)

By inserting tc into (2.12), we get the technical recoverable volume:

Vr =
r0

D
ln(

r0

rc
), (2.14)

In order to unify the different families of decline curves, it is convenient to introduce the following
function:

Ψ(x, z) =

{
zx−1

x if x 6= 0,

ln(z) if x = 0,
for all −∞ < x < ∞, and z ≥ 1. (2.15)
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It is easy to verify that Ψ is continuous in x for all z ≥ 1. By using this function we can easily
express both tc and Vr for all the three types of Arps curves:

tc = t0 +
1
D

Ψ(b,
r0

r1
), (2.16)

Vr = Q(tc) =
r0

D
Ψ(b− 1,

r0

r1
). (2.17)

3 Multisegmented production functions

Figure 3.1: Monthly production profile

While the Arps decline curves covers a broad range of cases, these curves should be used with
considerable caution. In many situations it may be necessary to use a combination of curves to
get a satisfactory fit. The curve illustrated in Figure 3.1 shows an oil production profile from a
real-life field. The curve was produced by using a full-scale reservoir model. As one can see, the
curve consists of several clearly separated segments with quite different characteristics. In order to
get an acceptable fit to this curve, the curve was divided into as many as 7 segments. For a similar
discussion see [2].

In the following we assume that the production rate function is continuous and strictly decreasing.
If this is not the case, the procedure needs to be modified slightly, but we skip these details here.
The objective is to approximate the production function by using segments of Arps curves. Usually
it is possible to do the segmentation of the curve simply by a visual inspection. We assume that this
is done here, and that s segments will be used. Let (t0, r0), (t1, r1), . . . , (ts, rs) denote the locations
of the segmentation points. Thus, the first segment runs between (t0, r0) and (t1, r1), the second
segment runs between (t1, r1) and (t2, r2), etc. For each segment we calculate the volume produced
within this segment. We denote these volumes by V1, . . . , Vs. Thus, we have:

Vi =
∫ ti

ti−1

q(t)dt, for i = 1, . . . , s. (3.1)
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In order to complete the curve fitting, we need to find scale parameters D1, . . . , Ds and shape
parameters b1, . . . , bs for the s segments. By applying (2.16) and (2.17), it follows that the parameters
for the ith segment, i.e., Di and bi must satisfy the following two equations:

Di =
1

ti − ti−1
Ψ(bi,

ri−1

ri
), (3.2)

Di =
ri−1

Vi
Ψ(bi − 1,

ri−1

ri
). (3.3)

Eliminating Di from these equations, we get the following equation for bi:

Ψ(bi,
ri−1
ri

)
Ψ(bi − 1, ri−1

ri
)

=
ri−1(ti − ti−1)

Vi
. (3.4)

We first note that since we have assumed that the production function is strictly decreasing, it
follows that ri−1 > ri. From this it can be shown that the left-hand side of (3.4) is an increasing
function of bi. Moreover, we get that:

lim
bi→−∞

Ψ(bi,
ri−1
ri

)
Ψ(bi − 1, ri−1

ri
)

= 1,

lim
bi→∞

Ψ(bi,
ri−1
ri

)
Ψ(bi − 1, ri−1

ri
)

=
ri−1

ri

Since the production function is strictly decreasing we also get that:

ri(ti − ti−1) < Vi < ri−1(ti − ti−1). (3.5)

By using (3.5) on the right-hand side of (3.4), we get that:

1 <
ri−1(ti − ti−1)

Vi
<

ri−1

ri
. (3.6)

Combining all this, we conclude that the equation (3.4) always has a unique solution. However,
we are not guaranteed that the resulting bi is a number between 0 and 1. If we insert bi = 0 and
bi = 1 into the left-hand side of (3.4) we get the following restrictions on the right-hand side of (3.4):

ln( ri−1
ri

)
1− ri

ri−1

≤ ri−1(ti − ti−1)
Vi

≤
( ri−1

ri
)− 1

ln( ri−1
ri

)
. (3.7)

Given that (3.7) holds, a perfect fit can be found. If (3.7) does not hold, some sort of compromise
is needed. If one insists on using curve segments of the Arps type, one could e.g., use the value
of bi within the interval [0, 1] which is closest to the optimal solution. Thus, if the optimal value
of bi is negative, we replace this by 0, i.e., we use an exponential curve segment. If on the other
hand the optimal value of bi is greater than 1, we replace this by 1, i.e., we use a harmonic curve
segment. In order to reduce the effect of using less than optimal shape parameters, one can use a
finer segmentation. Alternatively, one may consider using other types of curve segments as well.

Finally, having found the shape parameters for each of the segments, the scale parameters can
be calculated using either (3.2) or (3.3). Note, however, that if the optimal value of bi is outside of
the interval [0, 1], we will get different numbers for the scale parameter depending on which of these
equations we choose.

More specifically, if we calculate the scale parameter Di using (3.2), the length of the interval of
the curve segment will be (ti − ti−1). The volume under the curve segment, however, will not be
equal to Vi. If the optimal bi < 0, the resulting volume will be smaller than Vi, while if the optimal
bi > 0, the volume will be greater than Vi.
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If, on the other hand, Di is calculated using (3.3), the volume under the curve segment will be
Vi. The length of the interval of the curve segment, however, will not be equal to (ti − ti−1). If
the optimal bi < 0, the resulting length of the interval will be longer than (ti − ti−1), while if the
optimal bi > 0, the length of the interval will be shorter than (ti − ti−1).

Ultimately, the choice of equation depends on which of the numbers, volumes or interval lengths,
one considers to be most reliable. As a compromise, one could of course use both equations and let
the scale parameter be the average of the two resulting numbers. For the rest of the paper, however,
we have chosen to determine the scale parameters using (3.3). Note that this means that all the
segment intervals must be adjusted after the shape parameters are fitted, and the corresponding
scale parameters are calculated. More specifically, we keep the initial segmentation point, t0, fixed,
and adjust the other segmentation points recursively, using the following formula:

ti = ti−1 +
1
Di

Ψ(bi,
ri−1

ri
), i = 1, . . . , s. (3.8)

Having fitted all the curve segments, we can calculate the resulting production rate function and
cumulative production function. To do so, we introduce rate functions for the s segments, denoted
q1, . . . , qs and given by:

qi(t) =


ri−1[1 + biDi(t− ti−1)]−1/bi , 0 < bi < 1

ri−1 exp(−Di(t− ti−1)), bi = 0

ri−1[1 + Di(t− ti−1)]−1, bi = 1.

for all t ∈ [ti−1, ti]. (3.9)

We also introduce the cumulative production functions for the s segments, denoted Q1, . . . , Qs and
given by:

Qi(t) =


ri−1

Di(1−bi)
[1− (1 + biDi(t− ti−1))1−1/bi ], 0 < bi < 1

ri−1
Di

[1− exp(−Di(t− ti−1))], bi = 0
ri−1
Di

ln(1 + Di(t− ti−1)), bi = 1.

for all t ∈ [ti−1, ti]. (3.10)

Using the above function the combined production rate function, denoted q(t) as well as the combined
cumulative production function can be calculated using the following formulas:

q(t) =
s∑

i=1

qi(t) I(ti−1 ≤ t ≤ ti), (3.11)

and:

Q(t) =
s∑

i=1

[Qi(t) I(ti−1 ≤ t ≤ ti) + Vi I(t > ti)]. (3.12)

Stochastic production profiles

So far we have assumed that the production profiles are known functions. In a risk analysis, however,
one typically wants to include uncertainty into the model as well. In order to do so, one assesses
probability distributions for all the uncertain quantities in the production model, and evaluate the
risk by running a Monte Carlo simulation on the resulting stochastic model. In each iteration
each of the uncertain quantities get values sampled from their respective distributions. Thus, the
generated production functions may differ considerably from the one used in the curve fitting. In
principle all the segment parameters (including even the number of segments) may be considered
to be uncertain. Still it is often desirable to keep the overall shape of the function. This way we
ensure that the simulated production functions behaves essentially like real-life functions. In the
following discussion we assume that the number of segments, i.e., s and the shape parameters for
the segments, i.e., b1, . . . , bs are kept constant during the simulations.
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The main source of uncertainty is typically the segment volumes. Thus, to assess the production
uncertainty, we start out by specifying a suitable joint distribution for V1, . . . , Vs. Given these
volumes, we proceed to the next step by specifying a conditional joint distribution for the rates
at the segmentation points, i.e., r0, r1, . . . , rs. Given all these quantities, the scale parameters
D1, . . . , Ds are found by (3.3). The point of time when the production starts, i.e., t0 may be
subject to uncertainty related to the progress of the development project, drilling activities etc.
Thus, one will typically assess a separate uncertainty distribution for this quantity. The remaining
segmentation points, however, i.e., t1, . . . , ts, are calculated using (3.8). A Monte Carlo simulation
of the production can then be done using the following procedure:

Algorithm 3.1 For each simulation calculate the production rate function and the cumulative pro-
duction using the following steps:

Step 1. Generate V1, . . . , Vs using the specified joint distribution.

Step 2. Generate r0, r1, . . . , rs using the specified conditional joint distribution.

Step 3. Calculate D1, . . . , Ds using (3.3).

Step 4. Generate t0, and calculate t1, . . . , ts using (3.8).

Step 5. Calculate q(t) and Q(t) using (3.11) and (3.12).

In the remainder of this section we propose a framework for modeling production uncertainty
using the multisegmented production functions. We begin by considering volume uncertainty. To
obtain reasonable results it is important to ensure that total reservoir volume, denoted by V gets a
sensible distribution. Thus, it is often convenient to start out by assessing an uncertainty distribution
for this volume. The segment volumes are then obtained as fractions of V . That is,

Vi = Ki · V, i = 1, . . . , s, (3.13)

where Ki = Vi/V denote the fraction associated with the ith segment, i = 1, . . . , s. The joint dis-
tribution of K1, . . . ,Ks must be chosen so that Pr(

∑s
i=1 Ki = 1) = 1. A simple way of constructing

such a distribution is to start out with s independent nonnegative random variables, K̃1, . . . , K̃s,
and then obtain K1, . . . ,Ks by normalizing the K̃is so that their sum becomes 1. That is, we define:

Ki =
K̃i∑s

j=1 K̃j

, i = 1, . . . , s, (3.14)

This construction ensures that Pr(
∑s

i=1 Ki = 1) = 1 regardless of the distributions of the K̃is.
Thus, one has a large variety of distributions to choose from. In particular, it is well-known that
if K̃i is Gamma distributed with shape parameter αi and scale parameter β, for i = 1, . . . , s, the
resulting joint distribution of K1, . . . ,Ks is a Dirichlet distribution with parameters α1, . . . , αs. For
more on this see e.g., [4].

Alternatively, one can use a recursive approach where each segment volume is defined as a
fraction of the remaining volume. That is, let B1, . . . , Bs−1 be s− 1 independent random fractions,
i.e., random variables with values in [0, 1]. For convenience we also introduce Bs = 1 reflecting that
the last segment volume should always be equal to the remaining volume when all the other segment
volumes are subtracted from V . We can then define the segment volumes recursively as follows:

Vi = Bi · (V −
i−1∑
j=1

Vj), i = 1, . . . , s. (3.15)

By expanding the recursive formula the following alternative nonrecursive formula can be obtained:

Vi = Bi

i−1∏
j=1

(1−Bj) · V, i = 1, . . . , s. (3.16)
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By comparing (3.13) and (3.16) it follows that the relationship between the Kis and the Bis can be
expressed as:

Ki = Bi

i−1∏
j=1

(1−Bj), i = 1, . . . , s. (3.17)

Alternatively, by inserting (3.13) into (3.15) and solving for Bi we get the following inverse relation:

Bi =
Ki

1−
∑i−1

j=1 Kj

, i = 1, . . . , s. (3.18)

Note that since Bs = 1, it follows that:

Ks = 1−
s−1∑
j=1

Kj , (3.19)

or equivalently that
∑s

j=1 Kj = 1 as before.
Assuming that Bi has a density fi on [0, 1], for i = 1, . . . , s − 1, the resulting joint density of

K1, . . . ,Ks−1, denoted g(K1, . . . ,Ks−1), can be found using the standard change-of-variable formula.
Noting that the Jacobian of the inverse transformation (3.18) is triangular, it follows that g is given
by:

g(K1, . . . ,Ks−1) =
s−1∏
i=1

fi

(
Ki

1−
∑i−1

j=1 Kj

)
· 1

1−
∑i−1

j=1 Kj

. (3.20)

Assume in particular that Bi is Beta distributed with parameters αi and βi, i = 1, . . . , s− 1. Then
it follows that:

g(K1, . . . ,Ks−1) ∝
s−1∏
i=1

(
Ki

1−
∑i−1

j=1 Kj

)αi−1(
1−

∑i
j=1 Kj

1−
∑i−1

j=1 Kj

)βi−1

· 1

1−
∑i−1

j=1 Kj

, (3.21)

where the normalizing constant is the product of the standard Beta distribution normalizing con-
stants. By rearranging the terms it is easy to see that (3.21) can be written as:

g(K1, . . . ,Ks−1) ∝

[
s−1∏
i=1

Kαi−1
i

]
·

s−2∏
i=1

(1−
i∑

j=1

Kj)βi−(αi+1+βi+1)

 ·
1−

s−1∑
j=1

Kj

βs−1−1

. (3.22)

Inserting Ks = 1−
∑s−1

j=1 Kj and αs = βs−1, the density becomes:

g(K1, . . . ,Ks) ∝

[
s∏

i=1

Kαi−1
i

]
·

s−2∏
i=1

(1−
i∑

j=1

Kj)βi−(αi+1+βi+1)

 . (3.23)

In particular if βi = αi+1+βi+1, i = 1, . . . , s−2, we see that K1, . . . ,Ks once again becomes Dirichlet
distributed with parameters α1, . . . , αs. This special case is a well-known result as well. See [4] for
more details. In the following, however, we will not impose these restrictions on the parameters of
the Beta distributions and instead use the more general distribution given in (3.23).

We then turn to modeling production rate uncertainty, i.e., the joint distribution of r0, r1, . . . , rs.
Since the production function is assumed to be strictly decreasing, this distribution must be chosen
so that r0 > r1 > · · · > rs with probability one. A simple way to accomplish this is to introduce
random fractions C1, . . . , Cs with values in [0, 1], and use the following multiplicative model:

ri = Ci · ri−1, i = 1, . . . , s. (3.24)

If C1, . . . , Cs are independent, the ris will form a discrete time Markov chain. In addition to this
we need to specify a suitable distribution for r0. In general it may also be of interest to incorporate
some sort of (typically positive) dependence between the ris and the segment volumes. In many
cases, however, it may be sufficient to include dependence between V and r0.
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Examples

We close the section by illustrating the proposed models with a few examples. In order to show the
effect of uncertainty, we start out with a purely deterministic case, and then add increasing levels of
uncertainty. In all examples we consider a production function consisting of four segments. In Table
3.1 the parameters of the deterministic production function are listed. The volumes are specified in
KSm3, while the rates are in KSm3/day. In Figure 3.2 the resulting production rate function is
plotted.

Segment (i) 1 2 3 4
Volume (Vi) 3600.0 2200.0 1500.0 700.0
Initial rate (ri−1) 10.0 3.5 2.5 1.5
End rate (ri) 3.5 2.5 1.5 0.8
Shape parameter (bi) 0.0 0.5 0.5 1.0

Table 3.1: Parameter values for the deterministic production function

Figure 3.2: Deterministic production rate function

We then introduce uncertainty about the total volume, V and the initial production rate,
r0. As a joint distribution for V and r0 we have chosen a bivariate lognormal distribution with
Corr(ln(V ), ln(r0)) = 0.7. The means and standard deviations of this distribution are listed in Table
3.2.

Mean St.dev.
Total volume (V ) 8000.0 1600.0
Initial rate (r0) 10.0 2.0

Table 3.2: Parameter values for the stochastic volume, V , and initial rate, r0

At this stage we do not include uncertainty about the volume and rate fractions. Instead we just
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let these fractions be the same as in the deterministic model. That is, we let:

Bi =
Vi∑4

j=i Vj

, i = 1, . . . , 4, (3.25)

and:
Ci = ri/ri−1, i = 1, . . . , 4, (3.26)

where V1, . . . , V4 and r0, r1, . . . , rs are given in Table 3.1. The resulting fractions are listed in Table
3.3. In Figure 3.3 we have plotted five different realizations of resulting production rate function. We
observe that the shapes of the three curves are similar to the deterministic curve. The uncertainty,
however, affects both the initial rate and the total volume under the curve. Thus, the resulting
curves are not parallel to each other.

Segment (i) 1 2 3 4
Volume fractions (Bi) 0.450 0.500 0.682 1.000
Rate fractions (Ci) 0.350 0.714 0.600 0.533

Table 3.3: Volume and rate fractions

Figure 3.3: Five realizations of the production profile with stochastic V and r0

In the final example we introduce uncertainty about the volume and rate fractions as well. For all
fractions we use beta distributions. As mean values for these distributions we use the corresponding
fractions in the previous model, while the standard deviations are set to 0.1. In Figure 3.4 we have
plotted five different realizations of resulting production rate function. We observe that the shapes
of the three curves are still similar to the deterministic curve. However, the curves vary much more
than in the previous example.

Using Algorithm 3.1 we also ran 5000 simulations on the two uncertainty models, and calculated
means and standard deviations for each point on the production rate functions and cumulative
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Figure 3.4: Five realizations of the production profile with stochastic V , r0 and stochastic volume
and rate fractions

production functions. Using these numbers we calculated upper and lower bounds for the rates and
the cumulative values. As upper and lower bounds we used respectively the mean value plus and
minus the standard deviation.

In Figure 3.5 and Figure 3.6 we have plotted the deterministic production rate and cumulative
production together with the two corresponding sets of upper and lower bounds. The deterministic
curves lies between the upper and the lower curves. The segmentation points are clearly visible on
the deterministic production rate curve, while on the other curves these points have been smoothen
out.

Since both the stochastic models use the same uncertainty distribution for the initial rate, r0,
the two sets of upper and lower bounds on the production rates start out in the same points. As
the fraction uncertainties come into play, however, the interval between the upper and lower bound
is larger for the fully stochastic model than for the model without fraction uncertainty.

Similarly, since both stochastic models use the uncertainty distribution for the total Volume,
V , the upper and lower bounds on the cumulative curves converges to the same values as the time
increases. The interval between the upper and lower bound is generally larger for the fully stochastic
model than for the model without fraction uncertainty. However, the upper bounds appears to cross
each other.

4 Production profiles as differential equations

In the previous sections we started out by fitting the production rate function, and then used
this as the basis for calculating the cumulative production function. Since the Arps functions are
easy to handle analytically, all the necessary calculations can be done very efficiently using explicit
integration formulas like (3.12). This is especially convenient when the production model is part of
a Monte Carlo simulation model. As demonstrated in the previous section it is easy to incorporate
reservoir uncertainty into the model, and still keep the overall structure.
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Figure 3.5: Deterministic production rate (red curve), upper and lower bounds corresponding to the
first stochastic model (blue and green curves) and the second stochastic model (yellow and purple
curves)

In many cases, however, this approach becomes too static. Having a production model with a
fixed number of segments, makes it difficult to incorporate various types of production constraints,
random irregularities in the flow, maintenance operations etc. An important observation here is
that such external factors typically affect the short term production rate, but not the ultimate
recoverable volume. Thus, if say, a well has to be shut down temporarily for maintenance, the total
volume produced from this well may still be the same. The consequence of the operation is that the
production is delayed. In order to incorporate external factors into the model, we need to include
both the short term effect of the reduced production rate due to the maintenance operation, as well
as the long term effect of the delayed production. In principle it is possible to model such effects
by modifying the production rate function. However, it turns out to be far easier to do this by
establishing a feed-back loop between the production rate and the cumulative production. That is,
instead of modeling a simple one-way causal relation from the production rate to the cumulative
production, we model the dynamic two-way relation between these two functions in terms of a
differential equation. We will do this in two steps. In the first step we model the internal relation
between the production rate and the cumulative production assuming no external factors, while in
the second step we modify the internal relation by including external effects.

In general one can argue that the internal relation between the production rate and the cumulative
production is essentially time independent, except for the fact that we need to specify when the
production starts. Thus, if t0 denotes the point of time when the production starts, the relation
between the production rate function, q, and the cumulative production function, Q, should be of
the following form:

q(t) = f(Q(t)), for all t ≥ t0, (4.1)

with Q(t0) = 0 as a boundary condition. Provided that the function f satisfies the well-known
Lipschitz condition, there exists a unique solution to (4.1). See e.g., [3] for details about this. A
differential equation of the form given in (4.1), where the function f depends only on Q, is called a
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Figure 3.6: Deterministic cumulative production (red curve), upper and lower bounds corresponding
to the first stochastic model (blue and green curves) and the second stochastic model (yellow and
purple curves)

first order autonomous differential equation. Using standard numerical differential equation solvers,
like e.g., Runge-Kutta’s 4th order method, it is very easy to calculate the resulting production
rate and cumulative production regardless of the function f . For details see e.g., [6]. Thus, this
formulation allows us to work with many different functions. However, since the reservoir pressure
falls as the reservoir is emptied, the function f will typically be a decreasing function.

The Li-Horne model

As a first example we consider the following differential equation introduced in [7]. We will refer to
this as the Li-Horne model.

q(t) = a
1

Q(t)
− b. (4.2)

Note that with the boundary condition Q(t0) = 0, q(t0) is undefined. To avoid this problem, we
assume that Q(t0) > 0. It can be shown that this equation has the following unique solution:

a
b −Q(t)

a
b −Q(t0)

exp(
b

a
(Q(t)−Q(t0))) = exp(−b2

a
(t− t0)). (4.3)

A proof of this is given in the Appendix. By letting t →∞ the righthand side of (4.3) becomes zero.
Solving the resulting equation with respect to Q, shows that the ultimate recovery volume, Q(∞),
is a/b.

We observe the expression (4.3) is valid also when t0 = Q(t0) = 0, in which case the expression
becomes:

(
a

b
−Q(t)) exp(

b

a
Q(t)) =

a

b
exp(−b2

a
t). (4.4)

Moreover, by differentiating (4.4), is easy to verify that q(t) = a/Q(t) − b for all t > 0 in this case
as well.
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Finally, in the case, where a = b = 1, (4.4) becomes:

(1− y) exp(y) = exp(−t), (4.5)

which is the formula presented in [7].

Figure 4.1: Li-Horne Cumulative Production

In Figures 4.1, and 4.2 we have plotted the cumulative production function and the production
rate function for the Li-Horne model. We observe that production rate decreases very rapidly in the
beginning, and the flattens out. In [7] this function is used to model oil production in core samples by
spontaneous water imbibition. They also manage to link the constants a and b to specific properties
of the reservoir.

Differential equations for the Arps curves

We will now try to connect the differential equation approach to the Arps functions and the fitting
techniques discussed in the previous sections of this paper. Fortunately, it turns out that all the
Arps functions can easily be formulated as autonomous differential equations.

As in the previous sections we start out by considering the hyperbolic function. That is, let q(t)
be given by (2.1), and let Q(t) be given by (2.2). By rearranging the expression for Q, this can be
written as:

[1− D(1− b)
r0

Q(t)] = [1 + bD(t− t0)]1−1/b. (4.6)

By raising this equation to the power of 1/(1−b) and multiplying by r0, the right-hand side becomes
equal to q(t). Hence, we get the following differential equation:

q(t) = r0[1−
D(1− b)

r0
Q(t)]1/(1−b). (4.7)

The differential equation can also be written in the following form:

q(t) = r0(
D(1− b)

r0
)1/(1−b)[

r0

D(1− b)
−Q(t)]1/(1−b). (4.8)
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Figure 4.2: Li-Horne Production Rate

Recalling that by (2.3) the ultimate recoverable volume for this model is r0/(D(1− b)), we see that
the term [r0/(D(1 − b)) − Q(t)] in (4.8) is equal to the remaining part of the ultimate recoverable
volume at time t.

We then proceed in a similar fashion for the exponential function, in which q(t) is given by (2.6)
and Q(t) is given by (2.7). By rearranging the expression for Q(t) it is easy to see that we arrive
the following differential equation:

q(t) = r0[1−
D

r0
Q(t)], (4.9)

which in fact also can be obtained directly as a special case of (4.7) by letting b = 0. The differential
equation can also be written in a form analogous to (4.8) as follows:

q(t) = D[
r0

D
−Q(t)], (4.10)

where once again [r0/D − Q(t)] in (4.10) equals the remaining part of the ultimate recoverable
volume at time t.

Finally, we turn to the harmonic function, where q(t) and Q(t) are given by (2.11) and (2.12)
respectively. By applying the same technique as above it is easy to show that this model can be
represented by the following differential equation:

q(t) = r0 exp(−DQ(t)
r0

). (4.11)

Differential equations for multisegment profiles

The differential equation approach can also be extended to the more general situation where the
production rate function consists of s segments. For each segment we assume that we have fitted a
model in terms of a differential equation. As before we denote the production rate function and the
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cumulative production function for the ith segment by qi and Qi respectively. Moreover, we assume
that the relations between these functions are given by:

qi(t) = fi(Qi(t)), for i = 1, . . . , s. (4.12)

In order to connect these models, we need to specify a switching rule describing when to switch from
one model to the next one. Such a switched system is a special case of so-called hybrid systems.
For an introduction to switched systems, see e.g., [10]. One possible way to specify a switching rule,
would be to calculate the switching points, t1, . . . , ts as we did in the previous section, and then
switch from model to model as we pass these points. This is called a time-dependent switching rule.
In this case, however, it turns out to be more convenient to use the state of the process, represented
by the cumulative volume as a basis for the switching rule. This is called a state-dependent switching
rule. As in the previous sections we denote the volumes produced in the s segments by V1, . . . , Vs

respectively. Moreover, the production rate function and the cumulative production function of the
combined profile are denoted by q and Q respectively. The switching rule, σ : R+ → {1, . . . , s} maps
the state value, i.e., Q onto the corresponding segment index, and is given by the following:

σ(Q) =



1 if 0 ≤ Q ≤ V1

· · ·

k if
∑k−1

i=1 Vi < Q ≤
∑k

i=1 Vi

· · ·

s if
∑s−1

i=1 Vi < Q ≤
∑s

i=1 Vi

(4.13)

By using this switching rule, the combined differential equation can be written as:

q = fσ(Q)(Q−
∑

i<σ(Q)

Vi). (4.14)

Modeling time dependent effects in production profiles

So far we have shown that all the models introduced in the previous sections, can be described
equivalently in terms of differential equations. Still, in itself this reformulation does not simplify
anything. In fact, it does not make much sense to use this approach at all whenever exact, explicit
solutions, like those presented in the previous sections, are available. The main advantage with the
differential equation approach, however, is that it allows us to model complex interactions between
the pure production models and other models affecting the production in various ways, and still
keep the physical relation between the production rate and the cumulative production intact. We
will illustrate how this can be done, by considering a few examples.

Assume as above that we have fitted a production model in terms of a differential equation in
the form (4.1). In the following we will refer to the function f as the state-dependent part of the
production model. In a real-life situation there may be other things that affect the production
rate as well. One such thing may be the production capacity. Capacity limitations are typically
not functions of the production state, but rather functions of time. Thus, we let c(t) denote the
production capacity at time t ≥ t0. A model combining both the state-dependent part and the
capacity limitation can then be written as:

q(t) = min(c(t), f(Q(t))), for all t ≥ t0. (4.15)

The capacity function should of course always be nonnegative. Apart from that, however, in prin-
ciple any measurable function can be used. As long as f satisfies the Lipschitz condition, so will
the combined function. Normally, however, a typical capacity function would be a step function
representing e.g., the combined production capacity from the available wells at a given point of
time. Thus, each time a well is put in production, the capacity jumps up, while each time a well
drops out, the capacity jumps down.
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Figure 4.3: Production rate with (green curve) and without (red curve) capacity limitations

Figure 4.4: Cumulative production with (green curve) and without (red curve) capacity limitations

In the simplest cases the capacity function can be modeled as a deterministic step function. As
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an example consider the deterministic production function with parameters listed in Table 3.1. We
then combine this state-dependent function with a deterministic capacity function. The capacity
function is partitioned into four segments. We consider a situation where the wells are put in
production sequentially, and never drops out. The beginning of each segment corresponds to the
point of time when a new well is put in production. Thus, the capacity values should form an
increasing sequence. Moreover, the capacity values are assumed to be constant within each segment.
The segment capacities (in KSm3) and durations (in Days) are listed in Table 4.1. The last segment
of the c function is assumed to last throughout the remaining lifetime of the field, so for simplicity
the duration of this segment is set to ∞.

Segment (i) 1 2 3 4
Capacities 1.5 3.0 4.5 6.0
Durations 100 100 100 ∞

Table 4.1: Segment capacities and durations

We calculated the production rates and the cumulative production for the two models using a
standard Runge-Kutta’s 4th order differential equation solver. The results are plotted in Figure
4.3 and Figure 4.4. We observe that the two curves are quite different in the beginning when the
c function is the dominating term of (4.15). As the state-dependent part becomes dominating,
however, the two curves become identical except for a time lag. This lag occurs since the capacity
constraints slows the production down in the early stages. This lag is seen in the cumulative curves
as well. Still the two cumulative curves end up at the same point corresponding to the total volume
of the field.

Figure 4.5: Five realizations of the production profile with stochastic durations

More generally, both the capacity part and the state-dependent part can be stochastic. In order
to focus on the effect of a stochastic capacity, we keep the state-dependent part deterministic for
now, and include only uncertainty about the capacity. More specifically we consider two cases. In
the first case we let the durations of each segment be stochastic, while the capacity values are kept
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Figure 4.6: Five realizations of the production profile with stochastic durations and capacity values

constant. For simplicity the durations are assumed to be independent and lognormally distributed
with means 100 and standard deviations 50. In Figure 4.5 we have plotted five different realizations
of this model.

In the second case we also include uncertainty about the capacity values. To get an increasing
sequence of capacity values for the four segments, we used a simple additive model, where the
capacity at a given point of time is equal to a sum of independent stochastic variables, and where
the number of terms in the sum is equal to the number of wells in production at that given point
of time. All the terms where assumed to be lognormally distributed with means 1.5 and standard
deviations 0.5. In Figure 4.6 we have plotted five different realizations of this model.

Comparing the two plots, we see that while all the curves in the first plot are just lagged versions
of the same curve, the curves in the second plot are far more widespread. Still the later stages of
the production profiles are not affected as much by the capacity uncertainty, which of course is no
surprise.

Using Runge-Kutta’s 4th order method we also ran 5000 simulations on the two uncertainty
models, and calculated means and standard deviations for each point on the production rate functions
and cumulative production functions. Using these numbers we calculated upper and lower bounds
for the rates and the cumulative values. As in the previous section we used the mean value plus and
minus the standard deviation as upper and lower bounds respectively.

In Figure 4.7 and Figure 4.8 we have plotted respectively the deterministic production rate and
the cumulative production together with the two corresponding sets of upper and lower bounds.
Compared to Figure 3.5 and Figure 3.6 we see that the effect of the capacity uncertainty is much
less noticeable. In particular, the cumulative curves all converges to the same point, i.e., the fixed
total volume.

As we have seen, the capacity function allows us to incorporate variable production constraints
related to major changes in the operational settings, e.g., corresponding to wells being put in or
out of production. However, when running an oil field, the production rate is also affected by short
term irregularities. To include such phenomena into the production model, it is more natural to
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Figure 4.7: Deterministic production rate (red curve), upper and lower bounds corresponding to the
first stochastic model (blue and green curves) and the second stochastic model (yellow and purple
curves)

use a continuous time stochastic process. More specifically, we introduce a stochastic process {r(t)}
such that for any given point of time t, r(t) represents the fraction of the production rate that is
actually produced at this point of time. This process is referred to as the regularity process. When
this process is incorporated into the model, the resulting differential equation becomes:

q(t) = r(t) ·min(c(t), f(Q(t))), for all t ≥ t0. (4.16)

As long as r(t) is measurable almost surely, we can easily extend our framework to cover this
situation. Since r(t) is supposed to be a fraction, a model for this process should be such that
Pr(r(t) ∈ [0, 1]) = 1 for all t. In fact to get a realistic model, one should typically choose an even
smaller interval for r(t). As an example we consider a case where r(t) is uniformly distributed on
[a, b] for each t, where 0 ≤ a < b ≤ 1. In order to incorporate some time dependence into the
model, r(t) is obtained as a transformation of a Gaussian process. More specifically, let {U(t)} be
a gaussian process such that:

E[U(t)] = 0 for all t ≥ 0,

Cov[U(s), U(t)] = ρ|t−s| for all s, t ≥ 0,

where ρ ∈ (−1, 1). Furthermore, let Φ denote the cumulative distribution function for the standard
normal distribution. It is then easy to see that we can transform this process into the desired
regularity process using the following formula:

r(t) = a + (b− a) · Φ(U(t)) (4.17)

In order to compute the resulting stochastic production rate and cumulative production, we used
a stochastic version of Runge-Kutta’s 4th order method. The main adjustment to the standard
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Figure 4.8: Deterministic cumulative production (red curve), upper and lower bounds corresponding
to the first stochastic model (blue and green curves) and the second stochastic model (yellow and
purple curves)

algorithm is that in order to get the correct time dependence, one must make sure that the U(t)-
values are reused in the look-ahead steps.

As an example we consider a case where we use the same deterministic state-dependent function
and capacity function as we did in our previous examples. The regularity process is modeled as
described above with a = 0.9, b = 1.0 and ρ = 0.8. In Figure 4.9 we have plotted the resulting
production rate together with the corresponding curve without the regularity process. By including
r(t) into the differential equation the resulting production rate becomes much more noisy. The long
term effect of this is that the production is slowed down by 5% on average. Thus, the production
is slightly delayed compared to the deterministic curve. In the cumulative curve the noise is evened
out so the only visible effect of r(t) is the production delay.

5 Multiple production profiles

In many cases it is of interest to model the production from several subfields simultaneously. Com-
mon capacity constraints are often imposed on subfields belonging to a larger field or group of fields.
Such constraints may for example be the total capacity at a processing facility. We will now show
how such a situation can be managed within our framework. More specifically, we assume that
we have a field consisting of n subfields. The production from these subfields are processed on a
common processing facility with a given processing capacity per unit of time.

We start out by modeling the potential production from each the subfields given no common
capacity constraints. The potential production rate function for subfield i at time t is denoted by
qpot
i (t) and is expressed as:

qpot
i (t) = gi(t, Qi(t)), i = 1, . . . , n, (5.1)

where Qi(t) represents the cumulative production function of subfield i at time t, and gi represents
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Figure 4.9: Production rate with (red curve), and without (green curve) the regularity process

Figure 4.10: Cumulative production with (red curve), and without (green curve) the regularity process

both the time and state dependent parts of the model for subfield i. Thus, gi may include segments,
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time dependent subfield constraints and regularity as explained in the previous section.
The processing capacity at time t is denoted by K(t). To ensure that the total production does

not exceed K(t), the production from each subfield has to be restricted in some way. This can be
done by introducing choke factors for each of the subfields. Thus, let ai(t) ∈ [0, 1] denote the choke
factor for the ith subfield at time t, i = 1, . . . , n. The resulting production from the ith subfield at
time t is then given by qi(t) = ai(t)q

pot
i (t), i = 1, . . . n. In order to satisfy the processing constraint,

the choke factors must be chosen so that:
n∑

i=1

ai(t)q
pot
i (t) ≤ K(t) for all t ≥ 0. (5.2)

Clearly there are an infinite number choices for the choke factors. Typically, one would be
interested in finding choke factors that are optimal with respect to some suitable criterion. E.g.,
one could try to maximize the total discounted production from all the subfields. Solving such
optimization problems can be difficult, especially when uncertainty is included in the model, so this
is beyond the scope of the present paper. Instead we will present some possible ad. hoc. strategies
for the choke factors.

The symmetric strategy. When using the symmetric strategy, the available process capacity
is shared proportionally between the different fields. If the current production exceeds the process
capacity of the central processing facility, the production of every field is scaled down with a common
choke factor. That is, we let

ai(t) =
K(t)∑n

j=1 qpot
j (t)

, i = 1, . . . , n, (5.3)

where K(t) denotes process capacity of the central processing facility.

The priority strategy. For this strategy the fields are prioritized initially according to some
suitable criterion. Let π = (π(1), . . . , π(n)) be the permutation vector representing the order at
which the fields are prioritized. That is, field number π(1) is given the highest priority, field number
π(2) is given the second highest priority, etc. The choke factors are then defined as:

aπ(1)(t) = min{1,
K(t)

qpot
π(1)(t)

}, (5.4)

aπ(2)(t) = min{1,
K(t)− aπ(1)(t)q

pot
π(1)(t)

qpot
π(2)(t)

}},

· · ·

aπ(n)(t) = min{1,
K(t)−

∑n−1
j=1 aπ(j)(t)q

pot
π(j)(t)

qpot
π(n)(t)

}}.

Note that if qpot
π(i)(t) = 0 for some i and t, the corresponding choke factor is undefined in (5.4). To

avoid this problem, we simply replace the corresponding choke factor by 1 in such cases.

The fixed maximal quota strategy. Sometimes it may not be possible to adjust the choke factors
continuously. Instead one have to choose fixed maximal production rates for the subfields initially,
and use the same values throughout the lifeime of the field. More specifically, assume that the ith
subfield is given a fixed maximal quota κi for the entire production period, i = 1, . . . , n. The resulting
production from the ith subfield at time t is then given by qi(t) = min{κi, q

pot
i (t)}, i = 1, . . . n. In

order to satisfy the processing constraint, the quotas must be chosen so that:

n∑
i=1

κi ≤ K(t), for all t ≥ 0. (5.5)

In particular, if K(t) = K for all t the quotas should be chosen so that their sum is equal to K.
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Regardless of which strategy one chooses for the choke factors, it is easy to run simulations on
all the subfields simultaneously. The fact that we now have a set of n ordinary differential equations
instead of just one, does not cause any problems. All the calculations can still be done using e.g., a
standard Runge-Kutta’s 4th order differential equation solver.

5.1 An example with different choices of production quota constraints

In this example we will study both continuous control constraints and quota model constraints. This
case study is based on real reservoir simulation data from two actual fields. We assume that two
fields share a central processing facility. In one of the fields water is injected into the reservoir to
maintain reservoir pressure. We will refer to this field as the maintenance field. In the other field
the reservoir is depleted without water being injected. This field is referred to as the depletion field.
In most cases water or gas will be injected into the reservoir to maintain reservoir pressure if it is
economically viable to do so. However, some times there are good reasons not to inject water or gas
into the reservoir, for example if the field of interest is too small.

Table 5.1 summarizes the characteristics of the production rates of the two fields. The depletion
field is described by a production rate curve with two segments, while the maintenance field has a
production rate curve with four segments. Table 5.2 states the characteristics of the field capacities
of the two fields. The capacity of the central processing facility is assumed to be 2500 Sm3/d in this
example. Production is assumed to commence immediately in both fields. Finally, Table 5.3 states
the regularity parameters selected in this example. Figure 5.1 illustrates the simulation profile and
the matched profile comparison of the production rate for the depletion field and the maintenance
field.

Figure 5.2 show the results of implementing three different choices of constraints in our prototype.
Symmetry constraints are illustrated in the upper left panel in Figure 5.2 and priority constraints
are illustrated in the upper right panel. The maintenance field is prioritized throughout the entire
production period. As a contrast to these continuous control constraints we have also implemented
a constant quota model. In such a model the quotas of each field is decided once and for all before
the production commences. The lower panel in Figure 5.2 shows the results of an implementation of
a constant quota model where the maintenance field receives a constant quota of 1800 Sm3/d while
the depletion field receives a constant quota of 700 Sm3/d. As we can see from these three figures
the production rates of the two fields are quite different depending on what constraints are being
implemented.

An important issue is how our choice of constraints impacts the total cumulative production.
The left panel in Figure 5.3 shows total cumulative production for the three choices of constraints.
Since the fields will be emptied regardless of the choice of constraints, we are ultimately interested in
selecting the constraints that maximizes the discounted production and the net present value. From
Figure 5.3 we can see that the priority constraints yields the highest discounted production value.
The constant quota model yields the poorest discounted production value, while the discounted
production of the symmetry constraints is a little lower than the discounted production of the
priority constraints.

The initial choice of quotas in the constant quota clearly has a tremendous impact on the dis-
counted production. To optimize discounted production with respect to initial quotas we let the
constant quotas of the maintenance field and the depletion field vary between 0 and 2500 which is the
capacity of the central processing facility. The right panel in Figure 5.3 illustrates discounted pro-
duction as a function of the constant quota assigned to the maintenance field. We can see from the
right panel in Figure 5.3 that by assigning a quota of 2058 Sm3/d to the maintenance field and 442
Sm3/d to the depletion field the discounted production is maximized. In Table 5.4 the discounted
production values are summarized for the different strategies. We can see that when the constant
quota model is optimized with respect to constant quota, its discounted production is almost as
high as the discounted production of the symmetry constraints. The priority constraints yields the
highest discounted production regardless of whether the constant quota model is optimized.

To give some intuition on the economic values of the different choices, Table 5.5 summarizes the
net present value of the different choices of constraints. The net present value is calculated using
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an oil price of 55 USD per barrel of oil, which reflects the spot price level of Brent at the time
the article is written. The oil price has fluctuated considerably in the past. Table 5.6 shows the
difference in net present value in USD between the priority constraints and the quota constraints
for some different choices of oil price.

Field Segm. Start rate Stop rate Segm. Shape
i ri−1 ri vol. Vi param.

(Sm3/d) (Sm3/d) (KSm3) bi

Depletion 1 3995 1395 315.3 0.0
Depletion 2 1395 100 1182.5 0.8

Maintenance 1 9995 5525 993.2 0.0
Maintenance 2 5525 2919 2437.8 0.7
Maintenance 3 2919 1693 1062.3 1.0
Maintenance 4 1693 45 2681.8 0.5

Table 5.1: Parameter values for the production rates of the depletion field and the maintenance field.

Field Capacity End of epoch
(Sm3/d) (Days)

Depletion 1395 230
Maintenance 5525 180

Table 5.2: Parameter values for the field capacities of the depletion field and the maintenance field.
In both cases the epoch considered starts at production start.

Field Minimum Maximum Correlation
regularity regularity factor ρ

Depletion 0.95 1.0 0.8
Maintenance 0.95 1.0 0.8

Table 5.3: Parameter values for the regularity parameters of the depletion field and the maintenance
field.

Disc. Prod.
Symmetry constraints 6,656.7
Priority constraints 6,678.9
Constant (1800, 700 Sm3/d) 6,594.3
Constant (2058, 442 Sm3/d) 6,657.5

Table 5.4: Discounted production values (KSm3) for the different strategies.

6 Conclusions

In the present paper we have demonstrated that production profile models based on hybrid systems
are both fast and flexible. Thus, this approach is particulary useful in the context of total value
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Net Present Value
Symmetry constraints 2,303
Priority constraints 2,310

Constant (1800, 700 Sm3/d) 2,281
Constant (2058, 442 Sm3/d) 2,303

Table 5.5: Net present values in 1, 000, 000 USD for the different strategies.

Oil price in USD per barrel
20 30 40 50 60 70 80

2,692 4,038 5,384 6,730 8,075 9,421 10,767

Table 5.6: Difference in net present value in 1, 000 USD between priority constraints and optimized
quota constraints for different choices of oil price.

chain analysis of large-scale development projects. Hybrid systems allow us to model multisegment
production profiles, foreseen and unforeseen delays in production, as well as multiple production
profiles. Furthermore, this paper has studied different allocation strategies for subfields with common
capacity constraints.

A natural next step is to optimize these allocation strategies. The inclusion of uncertainty in the
analysis of multiple production profiles with common capacity constraints is also an important issue
that needs to be treated and studied. Furthermore, it is also important to incorporate gas and water
production into the model framework. As a consequence the complexity of the model will increase
and the transparency may decrease. Bearing in mind that parsimonious modeling is a virtue these
consequences are not desired. All the same we believe it is of great value to be able to incorporate
gas and water production into the framework since these aspects are essential in the context of a
total value chain analysis.

Finally, the framework can be used to analyze a wide range problems that arise in the context
of total value chain analysis. Such problems could include crucial investment decisions regarding
infrastructure on the platform, i.e. capital expenditure decisions. Another problem that could be of
interest to analyze is the economic effect of different production plan schedules, such as the issue of
phasing in and phasing out different subfields of a major field.
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Figure 5.1: The simulation profile and the matched profile comparison for the depletion field (left
panel) and the maintenance field (right panel). In both panels the green curve represents the produc-
tion rate from the simulation software, while the red curve represents the production rate from our
model.
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Figure 5.2: The production rate of the depletion field (green graph) and the maintenance field (red
graph) for different choices of constraints. The upper left panel illustrates continuous control with
symmetry constraints. The upper right panel illustrates continuous control with priority constraints,
where the maintenance field is being prioritized throughout the entire production period. The lower
panel illustrates quota model with constant constraints. The maintenance field receives a constant
quota of 1800Sm3/day while the depletion field receives a constant quota of 700Sm3/day. In all
panels the x-axis represents days and the y-axis represents Sm3/day.
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Figure 5.3: The left panel illustrates total cumulative production for the three choices of constraints.
Total cumulative production curves for priority constraints and symmetry constraints are illustrated
by the red and blue graph, respectively. The green graph illustrates total cumulative production for
the quota constraints model where the quota is 1800Sm3/d for the maintenance field and 700Sm3/d
for the depletion field. The right panel illustrates discounted production as a function of the constant
quota assigned to the maintenance field.
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7 Appendix: Solution to the Li-Horne Differential Equation

In this section we show how to solve the differential equation corresponding to the production model
introduced in [7]. We denote the cumulative production function at time t ≥ t0 by y(t). For given
positive constants a and b, the Li-Horne differential equation can be written as:

dy

dt
= a

1
y(t)

− b, (7.1)

with the boundary condition that y(t0) = y0. Note first that if y0 = 0, the derivative is undefined
for t = t0. Thus, we assume that y0 > 0.

Before we solve the equation, we verify the existence and uniqueness of a solution by showing
that the equation satisfies the well-known Lipschitz condition. In order to do so, we introduce the
function f = f(t, y), defined as:

f(t, y) = a
1

y(t)
− b. (7.2)

We claim that f is Lipschitz on the set R = {(t, y) : t ≥ t0, y ≥ y0}. That is, for all t ≥ t0 and
y1, y2 ≥ y0, there exists a K such that:

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2|. (7.3)

This follows since:

|f(t, y1)− f(t, y2)| = a| 1
y1
− 1

y2
| = a

y1y2
|y1 − y2| ≤

a

y2
0

|y1 − y2|. (7.4)

In order to solve the differential equation (7.1), we multiply both sides of the equation by y(t)dt
and rewrite it in the following differential form:

(
a

b
− y)dt− y

b
dy = 0. (7.5)

This equation can be reduced to an exact differential equation by multiplying by a suitable integrat-
ing factor, Q(t, y). (See e.g., [3] for details about this technique.) It turns out that the following
function can be used for this purpose:

Q(t, y) = exp(
b2

a
t +

b

a
y). (7.6)

After multiplying the equation by Q(t, y), the equation can be written in the following form:

M(t, y)dt + N(t, y)dy = 0, (7.7)

where:

M(t, y) = (
a

b
− y) exp(

b2

a
t +

b

a
y), (7.8)

N(t, y) = −1
b
y exp(

b2

a
t +

b

a
y).

It is easy to verify that M and N satisfy the requirement for an exact differential. Specifically, we
get that:

∂M

∂y
=

∂N

∂t
= − b

a
y exp(

b2

a
t +

b

a
y). (7.9)

We then proceed by looking for a function F (t, y) such that:

∂F

∂t
= M(t, y), (7.10)

∂F

∂y
= N(t, y).
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By (7.8) F must satisfy:

F (t, y) =
∫

M(t, y)dt = (
a

b2
)(

a

b
− y) exp(

b2

a
t +

b

a
y) + φ(y), (7.11)

for some suitable function φ. By differentiating the expression (7.11) with respect to y and comparing
the result to N(t, y), it follows that φ must be a constant. Hence, the equation linking t and y must
have the following form:

(
a

b2
)(

a

b
− y) exp(

b2

a
t +

b

a
y) = C, (7.12)

for some constant C, or equivalently:

(
a

b
− y) exp(

b2

a
t +

b

a
y) = D, (7.13)

for some constant D. Using the boundary condition y(t0) = y0, we get that D is given by:

D = (
a

b
− y0) exp(

b2

a
t0 +

b

a
y0). (7.14)

By inserting (7.14) into (7.13), we get the following relation between t and y:

a
b − y

a
b − y0

exp(
b

a
(y − y0)) = exp(−b2

a
(t− t0)). (7.15)
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