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Abstract

One inherent weakness of traditional reliability theory (see eqr 340) is that the

system and the components are always described just as functioning or failed. The first

attempts to replace this by a theory for multistate systems of multistate components

were made in the late 1970s. By the mid 1980s the basic theory in this area was

established. The objective of this article is to introduce concepts of multistate systems

and present some upper and lower bounds for the availabilities and unavailabilities,

to any level, in a fixed time interval. A series of applications of multistate reliability

theory have been suggested during the last years. For example, the theory enables one

to consider applications in electrical power generation systems, where the system state

is the amount of power generated by the system or in offshore gas pipeline networks

where the system state is the amount of gas delivered.
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1 Introduction

One inherent weakness of traditional reliability theory (see eqr 340) is that the system

and the components are always described just as functioning or failed. The first attempts

to replace this by a theory for multistate systems of multistate components were made in

the late 1970s in [1], [2] and [3]. This was followed up by independent work in [4], [5] and

[6] giving proper definitions of a multistate monotone system and of multistate coherent

systems and also of minimal path and cut vectors. Furthermore, in [7] upper and lower

bounds for the availabilities and unavailabilities, to any level, in a fixed time interval

were obtained for multistate monotone systems based on corresponding information on

the multistate components. These were assumed to be maintained and interdependent.

Such bounds are of great interest when trying to predict the performance process of the

system, noting that exact expressions are obtainable just for trivial systems. Hence by the

mid 1980s the basic multistate reliability theory was established. A review of the early

development in this area is given in [8]. Very recently probabilistic modelling of partial

monitoring of components with applications to preventive system maintenance has been

extended in [9] to multistate monotone systems of multistate components.

The theory was applied in [10] to an offshore electrical power generation system for two

nearby oilrigs, where the amounts of power that may possibly be supplied to the two oilrigs

are considered as system states. This application is also used to illustrate the theory in [9].

In [11] the theory was applied to the Norwegian offshore gas pipeline network in the North

Sea, as of the end of the 1980s, transporting gas to Emden in Germany. The system state

depends on the amount of gas actually delivered, but also to some extent on the amount

of gas compressed mainly by the compressor component closest to Emden. Recently the
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first book [12] on multistate system reliability analysis and optimization appeared. The

book also contains many examples of application of reliability assessment and optimization

methods to real engineering problems.

2 Basic concepts and basic bounds

Let S = {0, 1, . . . ,M} be the set of states of the system; the M + 1 states representing

successive levels of performance ranging from the perfect functioning level M down to the

complete failure level 0. Furthermore, let C = {1, . . . , n} be the set of components and Si

(i = 1, . . . , n) the set of states of the ith component. We claim {0,M} ⊆ Si ⊆ S. Hence,

the states 0 and M are chosen to represent the endpoints of a performance scale that

might be used for both the system and its components. Let xi (i = 1, . . . , n) denote the

state or performance level of the ith component and x = (x1, . . . , xn). It is assumed that

the state, φ, of the system is given by the structure function φ = φ(x). For the following

type of multistate systems a series of results can be derived.

Definition 1 A system is a multistate monotone system(MMS) iff its structure φ satis-

fies:

(i) φ(x) is non-decreasing in each argument

(ii) φ(0) = 0 and φ(M) = M (0 = (0, . . . , 0), M = (M, . . . , M)).

The first assumption roughly says that improving one of the components cannot harm the

system, whereas the second says that if all components are in the complete failure (perfect

functioning) state, then the system is in the complete failure (perfect functioning) state.
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We now impose some further restrictions on the structure function φ. The following

notation is needed:

(·i,x) = (x1, . . . , xi−1, ·, xi+1, . . . , xn),

S0
i,j = Si ∩ {0, . . . , j − 1} and S1

i,j = Si ∩ {j, . . . , M}.

Definition 2 Consider an MMS with structure function φ satisfying

(i) min
1≤i≤n

xi ≤ φ(x) ≤ max
1≤i≤n

xi .

If in addition ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,M}, ∃(·i,x) such that

(ii) φ(ki,x) ≥ j, φ(`i,x) < j, ∀k ∈ S1
i,j , ∀` ∈ S0

i,j , we have a multistate strongly coherent

system (MSCS),

(iii) φ(ki,x) > φ(`i,x) ∀k ∈ S1
i,j , ∀` ∈ S0

i,j , we have a multistate coherent system (MCS),

(iv) φ(Mi,x) > φ(0i,x), we have a multistate weakly coherent system (MWCS).

When M = 1, all reduce to the established binary coherent system(BCS) (see eqr 340).

The structure function min
1≤i≤n

xi

(
max
1≤i≤n

xi

)
is often denoted the multistate series (parallel)

structure.

Now choose j ∈ {1, . . . ,M} and let the states S0
i,j , (S

1
i,j) correspond to the failure

(functioning) state for the ith component if a binary approach is used. Condition (ii)

above means that for all components i and any level j, there shall exist a combination

of the states of the other components, (·i,x), such that if the ith component is in the

binary failure (functioning) state, the system itself is in the corresponding binary failure

(functioning) state. Loosely speaking, modifying [6], condition (ii) says that every level of

each component is relevant to the same level of the system, condition (iii) says that every
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level of each component is relevant to the system, whereas condition (iv) simply says that

every component is relevant to the system.

For a BCS one can prove the following practically very useful principle: Redundancy

at the component level is superior to redundancy at the system level except for a parallel

system where it makes no difference. Assuming Si = S (i = 1, . . . , n) this is also true for

an MCS, but not for an MWCS.

We now mention a special type of an MSCS. Define the indicators (j = 1, . . . ,M)

Ij(xi) = 1(0) if xi ≥ j(xi < j), and the indicator vector Ij(x) = (Ij(x1), . . . , Ij(xn)).

Definition 3 An MSCS is said to be a binary type multistate strongly coherent system

(BTMSCS) iff there exist binary coherent structures φj , j = 1, . . . ,M such that its struc-

ture function φ satisfies φ(x) ≥ j ⇔ φj(Ij ,x)) = 1 for all j ∈ {1, . . . ,M} and all x.

Choose again j ∈ {1, . . . ,M} and let the states S0
i,j(S

1
i,j) correspond to the failure (func-

tioning) state for the ith component if a binary approach is applied. By the definition

above φj will from the binary states of the components uniquely determine the corre-

sponding binary state of the system.

In what follows y < x means yi ≤ xi for i = 1, . . . , n, and yi < xi for some i.

Definition 4 Let φ be the structure function of an MMS and let j ∈ {1, . . . ,M}. A

vector x is said to be a minimal path (cut) vector to level j iff φ(x) ≥ j and φ(y) < j for

all y < x (φ(x) < j and φ(y) ≥ j for all y > x).

Definition 5 The performance process of the ith component (i = 1, . . . , n) is a stochastic

process {Xi(t), t ∈ [0,∞)}, where for each fixed t ∈ [0,∞) Xi(t) is a random variable
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which takes values in Si. The joint performance process for the components {X(t), t ∈

[0,∞)} = {(X1(t), . . . , Xn(t)), t ∈ [0,∞)} is the corresponding vector stochastic process.

The performance process of an MMS with structure function φ is a stochastic process

{φ(X(t)), t ∈ [0,∞)}, where for each fixed t ∈ [0,∞), φ(X(t)) is a random variable which

takes values in S.

Definition 6 The performance processes {Xi(t), t ∈ [0,∞)}, i = 1, . . . , n are indepen-

dent in the time interval I iff, for any integer m and {t1, . . . , tm} ⊂ I the random vectors

{X1(t1), . . . , X1(tm)}, . . . , {Xn(t1), . . . , Xn(tm)} are independent.

Definition 7 Let j ∈ {1, . . . ,M}. The availability, h
j(I)
φ and the unavailability, g

j(I)
φ to

level j in the time interval I for an MMS with structure function φ are given by

h
j(I)
φ = P [φ(X(s)) ≥ j ∀s ∈ I], g

j(I)
φ = P [φ(X(s)) < j ∀s ∈ I].

Note that h
j(I)
φ + g

j(I)
φ ≤ 1, with equality for the case I = [t, t].

As an example of the bounds for h
j(I)
φ and g

j(I)
φ given in [7], we give the following

theorem by first introducing the n×M matrices

P
(I)
φ =

{
p

j(I)
i

}
i=1,...,n

j=1,...,M

Q
(I)
φ =

{
q
j(I)
i

}
i=1,...,n

j=1,...,M

.

Note that according to [13] we don’t need to assume that each of the performance processes

of the components is associated in I.

Theorem 1 Let (C, φ) be an MMS with the marginal performance processes of its com-

ponents being independent in I. Furthermore, for j ∈ {1, . . . ,M} let yj
k = (yj

1k, . . . , y
j
nk),
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k = 1, . . . , nj (zj
k = (zj

1k, . . . , z
j
nk), k = 1, . . . ,mj) be its minimal path (cut) vectors to

level j. Define

`j′

φ (P (I)
φ ) = max

1≤k≤nj

n∏
i=1

p
yj

ik(I)
i

¯̀j′
φ (Q(I)

φ ) = max
1≤k≤mj

n∏
i=1

q
zj
ik+1(I)

i

`j∗

φ (P (I)
φ ) =

mj∏
k=1

n∐
i=1

p
zj
ik+1(I)

i
¯̀j∗
φ (Q(I)

φ ) =
nj∏

k=1

n∐
i=1

q
yj

ik(I)
i

Bj
φ(P (I)

φ ) = max
j≤k≤M

{
max[`k′

φ (P (I)
φ ), `k∗

φ (P (I)
φ )]

}
B̄j

φ(Q(I)
φ ) = max

1≤k≤j

{
max[¯̀k

′
φ (Q(I)

φ ), ¯̀k∗
φ (Q(I)

φ )]
}

Then

Bj
φ(P (I)

φ ) ≤ h
j(I)
φ ≤ inf

t∈I

[
1− B̄j

φ(Q([t,t])
φ )

]
≤ 1− B̄j

φ(Q(I)
φ )

B̄j
φ(Q(I)

φ ) ≤ g
j(I)
φ ≤ inf

t∈I

[
1−Bj

φ(P ([t,t])
φ )

]
≤ 1−Bj

φ(P (I)
φ ).

Here
∐n

i=1 ai
def= 1−

∏n
i=1(1− ai). By specializing M = 1 and I = [t, t] the bounds reduce

to the familiar ones from binary theory as given in [14].

3 An offshore electrical power generation system

The purpose of the offshore electrical power generation system considered in [9] and [10],

depicted in Figure 1, is to supply two nearby oilrigs with electrical power. Both oilrigs have

their own main generation, represented by equivalent generators A1 and A3 each having a

capacity of 50 MW. In addition oilrig 1 has a standby generator A2 that is switched into

the network in case of outage of A1 or A3. A2 also has a capacity of 50 MW. The control

unit, U , continuously supervises the supply from each of the generators with automatic

control of the switches. If for instance the supply from A3 to oilrig 2 is not sufficient,
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whereas the supply from A1 to oilrig 1 is sufficient, U can activate A2 to supply oilrig 2

with electrical power through the standby subsea cables L.

Figure 1. Outline of an offshore electrical power generation system

The components to be considered here are A1, A2, A3, U and L. We let the perfect

functioning level M equal 4 and let the set of states of all components be {0, 2, 4}. For

A1, A2 and A3 these states are interpreted as

0: The generator cannot supply any power;

2: The generator can supply maximum 25 MW;

4: The generator can supply maximum 50 MW.

Note that as an approximation we have chosen to describe supply capacity of the generators

using a discrete scale of three points. The supply capacity is not a measure of the actual

amount of power delivered at a fixed point of time.

The control unit U has the states

0: U will by mistake switch the main generators A1 and A3 off without switching A2

on;

2: U will not switch A2 on when needed;
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4: U is functioning perfectly.

The subsea cables L are actually assumed to be constructed as double cables transfer-

ring half of the power through each simple cable. This leads to the following states of L

0: No power is transferred;

2: 50% of the power is transferred;

4: 100% of the power is transferred.

Let us now for simplicity assume that the mechanism that distributes the power from

A2 to platform 1 or 2 is working perfectly, transferring excess power from A2 to platform 2

if platform 1 is ensured a delivery corresponding to state 4. Now let φ(A1, A2, A3, U, L) =

the amount of power that can be supplied to platform 2. In addition to the states taken

by A1, A2, A3, φ can also take the following states

1: The amount of power that can be supplied is maximum 12 · 5 MW;

3: The amount of power that can be supplied is maximum 37 · 5 MW.

Number the components A1, A2, A3, U, L successively 1, 2, 3, 4, 5. Then a little thought

leads to

φ(x) = I(x4 > 0) min(x3 + max(x1 + x2I(x4 = 4)− 4, 0)x5/4, 4),

noting that max(x1 + x2I(x4 = 4)− 4, 0) is just the excess power from A2 which one tries

to transfer to platform 2. This is obviously a multistate monotone system.

4 Related articles

eqr 113, eqr 126, eqr 340, eqr 343, eqr 346, eqr 347, eqr 349
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