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Abstract

The Stochastic Series Expansion (SSE) method with the Directed Loop updates allows
for efficient simulation of quantum spin lattice systems at finite temperatures. Here we
develop a new approach for sampling response functions in the SSE framework to calcu-
late transport properties in the linear regime. This procedure is based on an imaginary
time representation of the SSE configurations. It allows us to bypass the calculation of
hypergeometric functions present in existing approaches, and to write a sampling algo-
rithm with linear complexity. As so, we are able to perform accurate calculations for
the DC spin conductivity, in the low temperature regime, for spin-S XXZ chains. Cal-
culations for the heat conductivity and the spin-Seebeck coefficient are possible but have
large standard deviations. We are able to reproduce results from Bosonization for the
spin conductivity in spin-1/2 XXZ chains. We extend these calculations to spin-1 and
spin-3/2 XXZ chains, and found different types behaviours of the conductivity between
integer and half-integer spin chains. Furthermore, an extrapolation to the large spin limit
is also performed, showing good agreement with the spin conductivity in classical spin
systems.
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Chapter 1

Introduction

The field of low-dimensionality magnetism has developed into an active area of solid-
state physics. Its origins can be traced back to 1925 when Ernst Ising investigated a
one-dimensional (1D) version of a spin model [1], now known as the Ising model, as
a means of explaining paramagnetic-ferromagnetic phase transitions, and to 1932 when
Hans Bethe wrote his seminal paper [2] describing the Bethe ansatz (BA) method to find
the exact ground state of the antiferromagnetic Heisenberg model, for the 1D case. In
the 1970s, it became clear that 1D models could also be relevant to real materials [3] and,
later in the 1980s, significant discoveries on fundamental properties of antiferromagnetic
chains [4, 5, 6] increased interest in the field. In short, low-dimensional systems offer a
unique opportunity to study ground and excited states of quantum models, possible new
phases of matter, and the interplay between quantum and thermal fluctuations.

Since the 1990s, much of the research efforts on 1D systems have been devoted to
studying the dynamical and transport properties. These efforts first began with the
seminal work of Castella et al. [7], when they showed that integrable models1, such as
the spin-1/2 XXZ or Hubbard chains, exhibit ideal conducting behaviour. Subsequently,
many studies were developed relating integrability to transport properties [8, 9, 10]. It
was shown that integrable systems exhibit ballistic transport, i.e. a transport regime in
which particles or excitations propagate without scattering. Although integrable models
are fully solvable by the BA, the accurate calculation of their transport properties has
always been a major challenge [11].

It is important to stress that the field was not only driven by theoretical questions
but also by experiments [12, 13, 14], which showed that 1D quantum magnets show a
large contribution from magnetic excitations to the thermal conductivity. Research about
transport in 1D systems is especially important in the field of spintronics [15] and has
seen many applications in quantum computing and in mesoscopic devices [16].

1Models that have an infinite number of conserved quantities and can be solved exactly either analyt-
ically by fermionization or via the BA.
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The basic approaches to calculate transport properties of 1D models are either by
Bosonization [17, 18, 19], which is only valid for the low temperature regime, or through
exact diagonalization (ED) techniques. Although ED allows us to calculate practically
any observable or correlation function in equilibrium, it can only be performed for small
systems. To circumvent this, Monte Carlo (MC) methods, like the Stochastic Series Ex-
pansion (SSE) [20, 21], offer a good alternative as they provide essentially exact results for
equilibrium thermodynamics on large systems. MC calculations of transport coefficients
have been carried out for some models [10, 22, 23, 24, 25].

Many studies for the spin-1/2 XXZ chain have been carried out using ED and MC
approaches [25, 22, 8, 26, 27, 28]. It is known that the thermal and spin conductivities are
divergent at zero frequency and thus transport is ballistic [9]. At low temperatures, for
gapless phases, it is known that the heat conductivity is proportional to the temperature
and there is a finite spin conductivity coefficient. For gapped phases, the spin conductivity
is zero in the low temperature limit, as magnetic excitations require a finite amount of
energy. Appling a magnetic field breaks the spin-reversal symmetry and gives rise to
magnetothermal effects, which are captured by the spin-Seebeck coefficient. Studies in
this regime are more scarce [29, 30, 24]. For S > 1/2, studies focus more on the high
temperature limit transport or on the real time spin dynamics [31, 32, 33].

This work has two main goals. The first one is to develop a more computationally
efficient method for computing transport coefficients in the SSE framework based on the
imaginary time representation of the SSE configurations. The second goal is to apply the
developed sampling method to spin-S XXZ chains. Primarily, we aim to uncover possible
differences between transport in S = 1/2, 1, 3/2 chains and try to get an estimate of the
transport properties in the large S limit. Secondly, we wish to expand the knowledge of
magnetothermal properties of S = 1/2, 1, 3/2 chains.

We begin this work with a discussion about magnetic interactions, modelled by the
Heisenberg exchange, and the different ground states of the spin-S XXZ chain, with
emphasis on differences between integer and half-integer spin chains, in Chapter 2. In
Chapter 3, we present the SSE method with the Directed Loop updates. The necessary
background in linear response theory and magnetic transport is presented in Chapter 4,
alongside the procedure of the measurement of the transport coefficients in the XXZ chain.
In Chapter 5 the derivation formulas to sample the transport coefficients is presented using
the new sampling approach in the imaginary time representation of SSE. In Chapter 6,
we present the results for the transport coefficients obtained with SSE. Chapter 7 is the
conclusion.

2



Chapter 2

Magnetic Interactions and Spin Models

In this Chapter, the basic properties of magnetic interactions are explored through
the Heisenberg exchange. The ground states of different phases, low-level excitations and
phase transitions are discussed. The spin-S XXZ model is introduced along with a short
discussion of the ground state properties for different parameters with emphasis on the
spin gap for integer spin values. Symmetries of the model are discussed and associated
currents are derived.

2.1 Magnetic Interactions

Magnetism is a phenomena that can only be described correctly by a quantum me-
chanical approach [34]. Magnetic moments are caused by the motion of electrons around
the nucleus, orbital angular momenta, and by the intrinsic angular momenta of the elec-
tron, called spin. Due to the Pauli exclusion principle, which states that each electronic
orbit can be occupied by only two electrons of opposite spin, in a large fraction of ele-
ments, the magnetic moment of electrons cancels out. However, in some elements such as
transition metal atoms (iron, cobalt and nickel, for example), due to partially filled shells
and a weak spin-orbit coupling, a magnetic moment arises from the spin of the electrons.
In other elements, such as rare earth elements, the spin-orbit coupling is not weak and
must be taken into account and the magnetic moments arise then as combinations of or-
bital angular momenta and spin. Interactions between the atomic moments in insulators
happen when the partially filled shells in neighbouring atoms partially overlap. In 1928,
Werner Heisenberg, proposed a simple model for the magnetic interactions [35]. In it, he
considered only the isotropic spin-spin interaction,

H = JSi · Sj

known as Heisenberg exchange. Here Si and Sj are the spin operators and J is referred
to as the exchange integral/constant. For J < 0, alignment of spins is favoured. This

3



2.1. Magnetic Interactions

is known as a ferromagnetic interaction. Conversely, if J > 0, anti-alignment of spins is
favoured. This is called an antiferromagnetic interaction.

A ferromagnetic interaction allows for all of the spins to be aligned in the same di-
rection. Thus the state |↑↑ . . .⟩ or |↓↓ . . .⟩ will have maximum ferromagnetic ordering.
For an antiferromagnetic system, the states |↑↓↑↓ . . .⟩ and |↓↑↓↑ . . .⟩ will have maximum
antiferromagnetic ordering. This state is called the Néel state. Writing the exchange
interaction as H = −J

[
Sz
i S

z
j +

1
2

(
S+
i S

−
j + S−

i S
+
j

)]
1, we can see that the ferromagnetic

state is an eigenstate of the interaction while the Néel state is not. When acting on the
perfect Néel state, the raising and lowering operators flip pairs of spins causing local de-
formities. Thus, fully antiferromagnetic ordering is destroyed by quantum fluctuations,
whereas a ferromagnetic state is a ground state even in the presence of off-diagonal inter-
actions. The amount of ordering in the true ground state of an antiferromagnetic system
depends strongly on the details of the lattice and of the considered interaction types.

Low-energy excitations in a ferromagnetic system are superpositions of single over-
turned spins, i.e. a magnon, or domains of completely flipped spin, since the cost of their
interactions lies at the boundary between the two domains. Ferromagnetic magnons have
S = 1. As they can be thought of as a collectively oscillation of spins with q ↣ 0, they
require no minimum amount of energy, meaning that ferromagnetic systems are gapless
systems. In contrast, low-energy excitations in an antiferromagnetic ground state are two
domain walls. Acting with a single S− operator on one of the Néel states will create a
so-called antiferromagnetic magnon, where three spins will be ferromagnetically aligned.
By repeated action of the Hamiltonian, this state will decay into two domain walls where
we have two S = 1/2 quasi-particles, known as spinons. Antiferromagnetic excitations
are also gapless.

2.1.1 Phase Transitions

The temperature at which a phase transition occurs is called the critical temperature,
denoted by Tc. The transition is characterized by a non-analytic change in the order
parameter, which is non-zero in the ordered phase T < Tc and zero in the disordered phase
T > Tc. Phase transitions can be further divided into first-order and continuous. First-
order phase transitions are characterised by the exchange of heat and by the existence of a
coexistence of phases. Continuous phase transitions are often associated with the breaking
of the system’s symmetry2. Transitions that occur at zero temperature, by varying some
non-thermal parameter, are called quantum phase transitions.

The Mermin–Wagner theorem [37] states that a continuous symmetry of a quantum

1Here the spin ladder operators S+ and S− are defined as S+ = Sx + iSy and S− = Sx − iSy.
2Transitions like the Kosterlitz–Thouless transition in the 2D XY model [36], are continuous phase

transitions which do not break symmetry.
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Chapter 2. Magnetic Interactions and Spin Models

system, with short-range interactions, can not be broken at T ≥ 0 in one dimension
neither at T > 0 in two dimensions. So, in a 1D Heisenberg system, with short-range
interactions, there is no magnetic ordering, therefore we can expect no phase transition.
In higher dimensions, we can expect phase transitions at T = 0 in 2D systems and T ≥ 0

in 3D systems.
Ferromagnetic and antiferromagnetic phase transitions are measured by different order

parameters. Since a ferromagnetic interaction favours alignment of spins a good order
parameter to measure ferromagnetic ordering is the magnetization m. Antiferromagnetic
interactions favours anti-alignment of neighbouring spin, and thus we use the staggered
magnetization ms as it measures sublattice magnetization. The formulas for m and ms

read

m =
1

N

N∑
i=1

Sz
i , ms =

1

N

N∑
i=1

(−1)iSz
i .

As we can see, they are maximum for the respective ground states, i.e. equal to ±1.
Another noteworthy aspect is the behaviour of the magnetic fluctuations or magnetic
susceptibility, χ. It is defined as the response of the magnetization to an applied magnetic
field. For a ferromagnetic system, the magnetic susceptibility diverges as T → Tc. On
the other hand, for an antiferromagnetic system, it is maximum at T = Tc, and goes to a
constant at T = 0.

2.2 The spin-S XXZ Model

The XXZ model is a generalization of the Heisenberg exchange, and belongs to a more
general class of spin Hamiltonians, called the XYZ model. The spin-S XXZ model de-
scribes the neighbour-neighbour interactions of a 1D chain of N localized spin-S particles,
through the following Hamiltonian,

H = J
N∑
i=1

(
Sx
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1

)
− h

N∑
i=1

Sz
i ,

where the ∆ parameter sets an uniaxial anisotropy along the z-axis and h is an optional
applied magnetic filed along the z-axis. Sα

i are the local spin operators in the α = x, y, z

direction (we choose ℏ = 1). Using the ladder operators, S+ and S−, the Hamiltonian
becomes

H = J

N∑
i=1

[
1

2

(
S+
i S

−
i+1 + S−

i S
+
i+1

)
+∆Sz

i S
z
i+1

]
− h

N∑
i=1

Sz
i . (2.1)

Note that setting ∆ = 1 and h = 0, we recover the Heisenberg model. Putting ∆ = 0, we
have the XY model. For S = 1/2 this model is interesting as it can be mapped to a chain
of free fermions, through the Jordan-Wigner (JW) transformation, and solved exactly
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2.2. The spin-S XXZ Model

Figure 2.1: Ground state phase diagram of the S = 1/2 XXZ chain as a function of magnetic
anisotropy ∆ and applied magnetic field h. Figure taken from [40].

[38, 39]. The ferromagnetic (J < 0) and antiferromagnetic (J > 0) phases of the model
can be related through some symmetries. By performing a rotation around the z-axis of
every-other spin, followed by setting ∆ → −∆, we can map the ferromagnetic case to
the antiferromagnetic one, and vice-versa. Without loss of generality, we can set J > 0

and let the value of ∆ dictate the phase of the system. In the antiferromagnetic case,
the choice of boundary conditions and number of spins can also affect some properties
of the model. By choosing periodic boundary conditions (PBC), if N is odd, we have
a frustrated system. To illustrate this, consider the simplest case N = 3, for S = 1/2.
For the first and second spins, we can choose them to be antiparallel, |↑↓ .⟩ or |↓↑ .⟩.
In either case, choosing the third one to be up or down, will result in degenerate states
with two possible orientations. When using open boundary conditions (OBC), we do not
encounter frustration, for any N , as the interaction energy between the last and first spin
is not taken into account. Frustration is never encountered for the ferromagnetic phase,
in this model.

2.2.1 Ground State Phase Diagram

Figure 2.1 shows the ground state diagram of the spin-1/2 XXZ chain. As can be
seen, sufficiently strong magnetic fields can cause the ground state of the system to lose
its properties and turn in to an XY or ferromagnetic ground state. The field at which
this transition occurs is called the critical or saturation field hc. For the boundary of
the XY and ferromagnetic phases hc1(∆) = J(1 + ∆). For the boundary between the
antiferromagnetic and XY phases, the critical field is given in terms of the triplet gap
energy hc2 = Eg(∆) [40]. For |∆| ≤ 1, the model is gapless, i.e. there is no minimum
required energy for a magnetic excitation. If the applied field is bigger than the saturation
field hc1 , there will be a gap in the excitation spectrum. For |∆| > 1, the system is gapped.

The ground state behaviour of antiferromagnetic chains with integer spin and half-
integer spin is very different. In the 1980s, Haldane discovered that the ground state of
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Chapter 2. Magnetic Interactions and Spin Models

Figure 2.2: Ground state phase diagram of the S = 1 XXZ chain as a function of magnetic
anisotropy ∆(Jz) and easy-axis anisotropy D. Figure taken from [40].

integer spin chains is gapped for a range of ∆ values [5, 6]. This gives rise to the Haldane
phase, which is a symmetry protected topological phase only detectable by the non-local
string order parameter [41]. It is characterized by the presence of two free spin-1/2 (for
a spin-1 chain) particles at the edges of the chain. The Haldane phase is a gapped phase
[42]. This gap decreases exponentially as the spin number is increased. Furthermore, this
phase is only realized for limited range of ∆ > 0 values. For S = 1, the Haldane phase
was found to exist for the interval ∆ ≈ 0 to ∆ ≈ 1.2 [43].

For S > 1/2 it becomes interesting to add an uniaxial single-ion or easy-axis anisotropy
term to the Hamiltonian,

HD = D

N∑
i=1

(Sz
i )

2, (2.2)

where D is called the easy-axis anisotropy. Depending on the sign of D, different spin pro-
jections will be energetically favourable. If D < 0, ordering along the z-axis is preferred,
so states with Sz = ±S are energetically favourable, and if D > 0 states with Sz = 0

are preferred. The ground state phase diagram for the spin-S XXZ chain with easy-axis
anisotropy was studied in [44, 41] using Bosonization. For the S = 1 case, the ground
state phase diagram was computed numerically in [45, 43], as shown in Figure 2.2. We
can interpret spin-1 chains as diluted spin-1/2 chains [41]. The site is empty if Sz = 0, or
occupied by a spin-1/2 particle if Sz = ±1. Then the Néel phase can be interpreted as a
AF spin-ordered solid, i.e. a phase which is characterized with long-range correlation of
particle positions, and their spin have long-range antiferromagnetic order. The Haldane
phase corresponds to the AF spin-ordered fluid phase, where there is antiferromagnetic
order but no order in position of particles. The antiferromagnetic order vanishes for the
XY1 gapless phase, which is described as spin-disordered fluid. The gapless XY2 phase
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2.2. The spin-S XXZ Model

is described as a spin-disordered solid, where order in the position of particles is restored.
The large-D phase can be characterized as a gas of bound pairs of particles with opposite
spin. Some studies for S = 2 using density matrix renormalization group (DMRG) show
that the Haldane phase is reduced, in favour of the XY1 phase, to a smaller range of ∆
values [46, 47].

2.2.2 Symmetries and Currents

When studying dynamical properties of systems, we are often interested in the trans-
port of conserved quantities. More specifically, we are interested in quantities Q that are
conserved, that is [Q,H] = 0 and can be expressed as a sum of local quantities around
a site i, Q =

∑
i qi. If Q is not conserved, we can not necessarily speak of transport as

Q is not transported from one place to another. Instead it is created and destroyed at
different sites.

The XXZ model has many symmetries [48]. The most interesting ones from the point
of view of transport are the invariance under time translations, which states that the total
energy must be conserved [eiHt, H] = 0, or that [H,H] = 0, and the invariance under the
rotations along the z-axis, which conserves the total magnetization or spin [Sz, H] = 0.
From this, the quantities of interest are H and m =

∑
i S

z
i . The Hamiltonian is associated

with thermal or energy transport and the magnetization to spin transport.
Before deriving the current expressions, it is useful to define the local Hamiltonian

operators hi, such that H =
∑N

i=1 hi with

hi = J

[
1

2

(
S+
i S

−
i+1 + S−

i S
+
i+1

)
+∆Sz

i S
z
i+1

]
− hSz

i .

The definition of a local current density jQi , associated with a conserved quantity Q,
is given by the continuity equation and the time evolution equation for an operator in the
Heisenberg picture,

∂qi
∂t

= −∇ · jQi ,
∂qi
∂t

= i[H, qi],

respectively. Since we consider a 1D chain, only one of the spatial derivatives, in the
continuity equation, gives a non-zero result. If we consider the sites of the chain to be
along the x-axis, and choose a lattice spacing equal to unity (a = 1), the spacial derivative
may be written as ∇ · jQi = jQi − jQi−1. Therefore, by combining the two equations, the
local current density is be defined as

jQi − jQi−1 = i[qi, H]. (2.3)

Positive transport along the chain is defined as transporting the conserved quantity Q in
the positive x direction. We can further define the total current J (Q) as

JQ =
∑
i

jQi .

8



Chapter 2. Magnetic Interactions and Spin Models

The conservation of the total magnetization gives rise to a spin current density JS. So
Q = m and qi = Sz

i . Using Equation (2.3), we see that Sz
i does not necessarily commute

with the local Hamiltonian operators at sites i− 1 and i,

jSi − jSi−1 = i ([Sz
i , hi−1] + [Sz

i , hi]) .

The local current density at site i can be given by jSi = i[Sz
i , hi]

3, so

jSi = i
J

2

(
S+
i S

−
i+1 − S−

i S
+
i+1

)
.

The total spin current density is then given as

JS = i
J

2

∑
i

(
S+
i S

−
i+1 − S−

i S
+
i+1

)
. (2.4)

By the form of jSi , we notice that the spin current measures the difference between mag-
netic excitations (magnons) moving to the left and right along the chain.

The conservation of the total energy generates a heat or energy current density JH . So
Q = H and qi = hi. This quantity will not commute with the local Hamiltonian operators
at sites i− 1 and i+ 1,

jHi − jHi−1 = i ([hi, hi−1] + [hi, hi+1]) .

The local heat current density at site i can be written as jHi = i[hi, hi+1], such that

jHi = i
J2

2
Sz
i+1

(
S−
i S

+
i+2 − S+

i S
−
i+2

)
+ J∆

(
Sz
i j

S
i+1 + jSi S

z
i+2

)
− hjSi .

It is important to note that the heat current density is comprised of an energy and a spin
contribution jHi = jEi − hjSi . In finite magnetic fields, the spin current couples to the
energy current and there is a contribution to the heat current due to spin transport. The
total thermal current density becomes

JH =
∑
i

[
i
J2

2
Sz
i+1

(
S−
i S

+
i+2 − S+

i S
−
i+2

)
+ J∆

(
Sz
i j

S
i+1 + jSi S

z
i+2

)
− hjSi

]
. (2.5)

These are the currents that govern the transport of heat and spin in the XXZ chain.
In Chapter 4, we will use these currents to compute the transport coefficients associated
with each current.

3This definition is not unique. We can always add a divergence free quantity or observable, like a
constant.
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Chapter 3

Stochastic Series Expansion

In this Chapter we will present an overview of the Stochastic Series Expansion method,
i.e. the basic set up of the series expansion formalism, how to derive expressions for
expectation values and sampling routines, diagonal updates and the directed loop updates.
Towards the end of the Chapter, the method will be applied to the spin-S XXZ model,
where comparisons with exact diagonalisation results, for small systems, are presented
along side with a brief discussion of finite size effects.

3.1 Series Expansion of the Partition Function

The Stochastic Series Expansion (SSE) method is a Monte Carlo (MC) algorithm to
simulate quantum lattice models. The main idea is to perform a high-temperature series
expansion of the partition function Z. The first iteration was developed by Handscomb
in the early 1960s to solve the S = 1/2 Heisenberg ferromagnet [49, 50]. He noticed that
the Heisenberg exchange interaction between two spins, Hij = Si · Sj, is a permutation
operator, and traces of powers of these operators can be easily evaluated analytically.
Using the Metropolis MC method [51], these traces can be sampled efficiently and vari-
ous thermodynamic expectation values can be estimated. This method however, is very
limited as it suffers of sign problems for the Heisenberg antiferromagnet, as the traces are
a mixed product of positive and negative terms. This was eventually solved on bipartite
lattices [52], but the formulation of the method performed worse than the path-integral
based methods [53]. Although path-integral based approaches still had sign problems
for some systems (namely fermionic and frustrated systems), the community was fast to
dismiss series expansion methods due to their worse overall performance.

In the early 1990s, Sandvik and Kurkijärvi [20] realized that the traces could also
be sampled in an imaginary time expansion, by introducing some convenient basis. This
gave arise to the Stochastic Series Expansion method. Despite of sign problems still being
present, this method does not suffer errors originated from the Suzuki–Trotter expansion
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3.1. Series Expansion of the Partition Function

and time discretisation. It is in fact an exact method and any errors are due to the
limited amount of samples or poor design of the random number generator used. In
the later decade, the method gained recognition by the scientific community and many
improvements were proposed, namely the general Directed Loop update sampling scheme
by Sandvik and Syljuåsen [21, 54].

The starting point for the SSE method is the power series expansion of the partition
function

Z = Tr{e−βH} =
∑
α

∞∑
n=0

(−β)n
n!

⟨α|Hn |α⟩ ,

where the trace is written as a sum over the diagonal elements in a complete basis {|α⟩}.
Decomposing the Hamiltonian into bond operators, such as H =

∑
a

∑
bHa,b, where a

is the type of the operator and b is the bond at which it acts at, we can then repre-
sent the powers of the Hamiltonian Hn as a sum the string operator Sn. The operator
string encodes the bond and type of the Hamiltonian operator that acts on the system at
propagation step p

Sn = l1, l2, . . . , ln = [a1, b1], [a2, b2], . . . , [an, bn]

Here ai ∈ {1, 2} denotes the type of the operator (diagonal/off-diagonal) and bi ∈
{1, . . . , Nb}. We can then write the partition function as

Z =
∑
α

∞∑
n=0

∑
Sn

(−β)n
n!

⟨α|
n∏

i=1

Hli |α⟩ .

We can now think of the operator string as a propagation of the state |α⟩ in imaginary
time indexed by p = {0, . . . , n}, where |α⟩ = |α(0)⟩ = |α(n)⟩. So the propagated state by
the p first operators is given by

|α(p)⟩ =
p∏

i=1

Hli |α⟩ .

Defining a weight function W (α, Sn) as

W (α, Sn) =
(−β)n
n!

⟨α|
n∏

i=1

Hli |α⟩ , (3.1)

and using importance sampling methods we can sample the {α, Sn} space. One may notice
that the weight function is cyclically permutable, meaning thatW (α, Sn) = W (α(p), Sn(p)),
where Sn(p) is the index sequence lp+1, . . . , ln, l1, . . . , lp.

This kind of sampling is only possible however if W is a positive definite weight,
such that we do not encounter sign problems [55]. Therefore we can write the bond
decomposition of the Hamiltonian with an explicit negative sign H = −∑bHb, making
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Chapter 3. Stochastic Series Expansion

sure, at the same time that Hb ≥ 0. For negative diagonal terms we can add a suitable
constant to the Hamiltonian guaranteeing that H1,b ≥ 0. Signs appearing from the off-
diagonal part of the Hamiltonian are often difficult to avoid, limiting the class of methods
that can be explored by these types of methods.

3.2 Expressions for Expectation Values

Having developed a framework where we can represent quantum lattice models as a
power series expansion of the partition function, we now need a way to sample physical
quantities. Unlike classical Monte Carlo methods, getting expectation values for thermo-
dynamic properties is more challenging in the SSE, as the quantities we want to measure
might not commute with the Hamiltonian operator. We will start by writing the thermal
average of an operator A

⟨A⟩ = 1

Z
Tr{Ae−βH}.

In the SSE framework we can write this as

⟨A⟩ = 1

Z

∑
α

∞∑
n=0

∑
Sn

(−β)n
n!

⟨α|
n∏

i=1

HliA |α⟩ .

Using the defined weights W (α, Sn), in Equation (3.1), our objective is now to find a
function A(α, Sn), from which the average can be estimated using importance sampling
in the {α, Sn} space

⟨A⟩ =
∑

α

∑∞
n=0

∑
Sn
A(α, Sn)W (α, Sn)∑

α

∑∞
n=0

∑
Sn
W (α, Sn)

≡ ⟨A(α, Sn)⟩W .

Here ⟨.⟩W represents the average over the SSE configurations.
Since the operator string Sn is cyclically permutable, we can evaluate the average of

A(α, Sn) over all of the states in the imaginary time propagation

⟨A⟩ =
〈
1

n

n−1∑
p=0

A(α(p), Sn(p))

〉
W

. (3.2)

Using the averaged A improves the statistics of the simulation. Furthermore, it will allow
for some formal simplifications, as we will see.

We can divide the class of possible operators A into diagonal and off-diagonal operators
in the chosen basis for the SSE computations. In most cases, if A is diagonal, finding
A(α, Sn) proves to be an easy task. Let us consider the case where

A |α(p)⟩ = a(p) |α(p)⟩ .
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Then we clearly have that A(α, Sn) = a(0), and then,

⟨A⟩ =
〈
1

n

n−1∑
p=0

a(p)

〉
W

. (3.3)

If A is off-diagonal the situation is generally more complicated. It is however possible in
most cases to decompose A in to sums and products of Hamiltonian operators. For the
case where A = Hk,

⟨A⟩ = ⟨Hk⟩ =
1

Z

∑
α

∞∑
n=0

∑
Sn

(−β)n
n!

⟨α|
n∏

i=1

HliHk |α⟩ .

This can be thought of sequences of operators of length n + 1 which have Hk as Hl0 , so
clearly, A(α, Sn) = −n/βδl0,k, and

⟨Hk⟩ =
〈
−1

β

n−1∑
p=0

δlp,k

〉
W

=
−⟨N(k)⟩W

β
,

where N(k) is the number of Hamiltonian operators Hk in the operator string Sn. The
energy of the system E is then given as

E = ⟨H⟩ = −⟨n⟩W
β

, (3.4)

and the specific heat C is
C =

〈
n2
〉
W

− ⟨n⟩2W − ⟨n⟩W .

For a product of m operators we get

⟨A⟩ =
〈

m∏
i=1

Hki

〉
=

1

(−β)m
〈

(n− 1)!

(n−m)!
N(k1, . . . , km)

〉
W

,

where N(k1, . . . , km) denotes the number of ordered subsequences k1, . . . , km in Sn.
Let us now consider an imaginary time dependent product of two operatorsA2(τ)A1(0) =

eτHA2e
−τHA1. Taylor-expanding the exponentials, the ensemble average is

⟨A2(τ)A1(0)⟩ =
1

Z

∑
α

∞∑
n=0

∞∑
m=0

(τ − β)n(−τ)m
n!m!

⟨α|HnA2H
mA1 |α⟩ .

Changing to a summation over string of operators and summing over all of the positions
of A2 in the operator string,

⟨A2(τ)A1(0)⟩ =
1

Z

∑
α

∞∑
n=0

n∑
m=0

∑
Sn

(τ − β)n−m(−τ)m
(n−m)!m!

⟨α|
n∏

i=m+1

HliA2

m∏
i=1

HliA1 |α⟩ . (3.5)
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If A1 and A2 are diagonal operators,

⟨A2(τ)A1(0)⟩ =
〈

n−1∑
p=0

n∑
m=0

(β − τ)n−mτm

βn

(n− 1)!

(n−m)!m!
a2(p+m)a1(p)

〉
W

,

where the states |α(p)⟩ are periodic, i.e. |α(p+ n)⟩ = |α(p)⟩. For A1 = Hk1 and A2 = Hk2 ,

⟨Hk2(τ)Hk1(0)⟩ =
〈

n−2∑
m=0

(β − τ)n−2−mτm

βn

(n− 1)!

(n− 2−m)!m!
N(k1, k2;m)

〉
W

,

where N(k1, k2;m) is the number of times the indices k1 and k2 appear in the operator
string with m operators in-between.

Integrating the imaginary time correlation function from 0 to β gives a Kubo integral.
In the diagonal case∫ β

0

dτ ⟨A2(τ)A1(0)⟩ =
〈

β

n(n+ 1)

(
n−1∑
p=0

a1(p)
n−1∑
p=0

a2(p) +
n−1∑
p=0

a1(p)a2(p)

)〉
W

.

For the Hamiltonian terms product,∫ β

0

dτ ⟨Hk2(τ)Hk1(0)⟩ =
1

β
⟨N(k1)N(k2)⟩W .

Having derived the equations according to [56], we can now measure any kind of
operator in the SSE method, provided that off-diagonal ones can be decomposed into
a sum or product of Hamiltonian operators. Derivations of other operators sich as the
spin-stiffness ρs can be found in [57].

3.3 Sampling Sub-Routines

The most important part of any MC method is the way the configuration is updated.
Here we present two methods for sampling the SSE configurational space {α, Sn}. One is
the diagonal updates, where we insert or remove a diagonal operator in Sn. The other is
the Directed Loop updates.

To sample the {α, Sn} space, it is useful to truncate the series expansion at a maximum
power n = M and insert M − n identity operators, H0,0 = 1, in the operator sequence
such that all indices in the operator string have a corresponding operator. We can then
write the partition function as

Z =
∑
α

∑
SM

βn(M − n)!

M !
⟨α|

M∏
i=1

Hli |α⟩ , (3.6)

where n is now the number of bond operators, i.e. the number of elements in SM for which
Hli ̸= H0,0. From the last section, we know that ⟨n⟩ = βNb|Eb|, where Eb is the energy
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per bond, and that the width of this distribution is approximately ⟨n⟩1/2. Thus, M can
be chosen so that n never reaches the cut-off during the simulation, avoiding truncation
errors. We do this by gradually adjusting M during the simulation such that M = anmax,
where a > 1 and nmax is the maximum n reached by the simulation. In practice, a ≈ 1.33.

It is also useful to define bond states at propagation time p as
∣∣αbp(p)

〉
.

3.3.1 Diagonal Updates

This type of update was introduced in the first version of the SSE method. It is
very effective since, in all systems, we can add a constant to the diagonal elements of
the Hamiltonian, ensuring that they are positive. As so, there are no restrictions on the
number or the positions of these operators in order to ensure a positive definite config-
urational weight. We can therefore insert/remove diagonal operators from the operator
string, without any practical problems, ensuring detailed balance. This type of update
allows us to sample different values of n, since we either increase it by 1 (insertion) or
decrease it by 1 (removal).

The detailed balance equation reads as

W (s)P (s→ s′) = W (s′)P (s′ → s), (3.7)

where W (s) is the weight of the configuration s and P (s → s′) is the probability of
transitioning from the configuration s to s′. By taking the Metropolis choice, we can
write the probability of changing configuration as

P (s→ s′) = max

{
W (s′)

W (s)
, 1

}
.

Choosing W (s) as in Equation (3.6), we then have

W (α′, S ′
M)

W (α, SM)
= βn−n′ (M − n′)! ⟨α′|∏M

i=1Hl′i
|α′⟩

(M − n)! ⟨α|∏M
i=1Hli |α⟩

For the insertion of a diagonal operator at propagation time p in bond b, [0, 0]p →
[1, b]p, the operators strings only differ at lp = [0, 0]p and l′p = [1, b]p, and n′ = n+1. Then
the probability is given as

P ([0, 0]p → [1, b]p) =
Nbβ

〈
αbp(p)

∣∣H1,b

∣∣αbp(p)
〉

M − n
.

Here we multiplied the expression by the number of bonds Nb, since we have to randomly
choose a bond b to insert the operator out of Nb bonds. Similarly, for the removal of a
diagonal operator, [1, b]p → [0, 0]p, we have

P ([1, b]p → [0, 0]p) =
M − n+ 1

Nbβ
〈
αbp(p)

∣∣H1,b

∣∣αbp(p)
〉 .
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These are the equations governing the diagonal updates sub-routine. In practice, we
apply this update for every propagation time p where we encounter an identity H0,0 or a
diagonal H1,b operator.

3.3.2 Directed Loop Updates

The Directed Loop updates was developed in [21] and further generalized in [54].
Unlike the diagonal update, where we change the expansion order n, in the directed loop
update, we focus on sampling configurations where off-diagonal operators are changed,
at fixed n. The directed loop is a non-local update which allows for better sampling
at lower temperatures avoiding the low temperature slowdown, which allows for more
accurate simulations in these regimes. For this update, we disregard the identity operators
introduced before and work again with the operator string Sn.

Before describing the algorithm, we need to introduce the graphical and vertex repre-
sentations of an SSE configuration. An SSE configuration is described by an initial state
|α⟩ and an operator string Sn, which propagates the initial state. In Figure 3.1a, we have
represented the propagation of a four site system where the initial state is represented in
the bottom row and the propagation is portrayed above. Here, the state of each particle
is labelled by an integer value. This is the graphical representation of the SSE configu-
ration. We can recast this representation into a picture where each operator is depicted
as a four-legged vertex, Figure 3.1b. Each leg now contains the information of the state
and is connected to two other legs, one at the same vertex and another at another vertex.
We can map this onto a linked list, also known as the vertex list, where the connections
between the every leg on every vertex are encoded.

In general, a vertex has Nlegs which depend in the given interaction. For example, for
a two-body interaction a vertex will have 4 legs. All of the vertices for a given system
can be constructed by all of the non-zero entries in the Hamiltonian one bond operator,
⟨αb(p)|Hb |αb(p− 1)⟩. The value of this entry is the weight W (v) of the vertex. With this,
our original weight, Equation (3.1), can be described as the product of all of the vertex
weights. Since n is constant, we can ignore the combinatorial prefactor in Equation (3.1).

With the vertex representation mapped onto a linked list, loop update can be started.
First, we randomly select an initial entrance leg e1 in the s0 configuration, which has some
state s0(e1) = s0. Then we propose a new state su for this leg. An exit leg is chosen,
according to some probability table, given the entrance leg, vertex type and proposed
state. This probability table will be given by the solutions of the directed loop equations.
With this, we determine the new state of the exit leg and progress in the linked list to
the leg which the exit leg links to. Then, to not create impossible configurations, we
require that the new state at the new entrance leg is the same state as the new state at
the exit leg. Using the probability table, we again choose a new exit leg, given the state
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Figure 3.1: (a) Operator sequence for a four-site system with n = 4. Each column of the figure
represents one site and the states on each site are labelled by an integer. The operators are
shown as black rectangles. A propagated state can be read as a row of encircled states. (b) The
same operator sequence shown in (a) but in the vertex representation. All of the operators have
become four-legged vertices. Each leg carries the information about the state and is connected
to another leg in another vertex through the dashed lines.

of entrance leg, and update its value. This process repeats until we close the loop, i.e.
until one of the exit legs connects to the initial entrance leg e1 through the vertex list.

Let us now take a look at the equations governing the directed loop update. We start
with the general equation for the detailed balance, Equation (3.7). For the loop update,
the probability of changing the configuration s ≡ s0 to s′ ≡ sn, after n steps, can be
written as

P (s→ s′) =
∑

all paths

R(s0, e1)Ps(s
0(e1) = s0 → su)

P (s0, e1 → s1, x1)P (s
1, e2 → s2, x2) . . . P (s

n−1, en → sn, xn),

where R(s0, e1) is the probability for choosing the vertex leg e1 as the initial entrance leg
in the s0 configuration and Ps(s

0(e1) = s0 → su) is the probability for choosing a specific
new state su at the entrance leg. During the loop construction, we traverse the vertex list,
so the entrance(exit) leg on the visited vertex i is denoted by ei(xi). We also denote si as
the full configuration after i changes and si(ei) as the state of leg ei on the configuration
si. Then, P (si−1, ei → si, xi) is the probability, given the full configuration si−1 and the
entrance leg ei, to exit on leg xi as we update the configuration, i.e. si−1(xi−1) = si(ei). For
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Chapter 3. Stochastic Series Expansion

the reverse probability, we can change the states in reverse order. Thus, the probability
for the reverse process, can be written as

P (s′ → s) =
∑

all paths

R(sn, xn)Ps(s
n(xn) → sn−1(xn))

P (sn, xn → sn−1, en)P (s
n−1, xn−1 → sn−2, en−1) . . . P (s

1, x1 → s0, e1).

Requiring that detailed balance holds in the change of a single vertex, we have

W (si−1)P (si−1, ei → si, xi) = W (si)P (si, xi → si−1, ei). (3.8)

Comparing this expression with the one for detailed balance for the whole process, it is
required that must also hold

R(s0, e1)Ps(s
0(e1) → s1(e1)) = R(sn, xn)Ps(s

n(xn) → sn−1(xn)).

Since e1 and xn refer to different legs on the same link, the state changes Ps should be
opposite of each other. So if R(s0, e1) is chosen to be uniform, we have detailed balance.
In addition to this, we should require that the path always exits a vertex∑

xi

∑
si(xi)

P (si−1, ei → si, xi) = 1, (3.9)

where we sum over all possible exit legs and state changes on this leg.
Equation (3.8) involves a ratio between the weights of two configurations that differ

only in one vertex. Since the full configuration weight is a product over the individual
weights of every vertex, we can simplify Equation (3.8) to consider only the information
corresponding to the updated vertex in step i. We define v as the state configuration of
a single vertex, W (v) as its weight and a as

P (vi−1, ei → vi, xi) =
a(vi−1, ei → vi, xi)

W (vi−1)
,

such that, Equations (3.8) and (3.9) are expressed as

a(vi−1, ei → vi, xi) = a(vi, xi → vi−1, ei), (3.10)∑
xi

∑
vi(xi)

a(vi−1, ei → vi, xi) = W (vi−1). (3.11)

These are called the directed loop equations. Solving these for every vertex type, will
give us the allowed transitions, i.e. which type of state changes on the entrance leg are
possible, and their respective probabilities.

To solve the directed loop equations, we start by selecting a reference vertex and label
its weight W1. We choose an entrance leg on this vertex and label is as leg 1, and the rest
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Figure 3.2: Updating vertex with weight W1 with a +1 update on the entrance leg (lower left
leg). The conservation law is such that the sum of the states below equals the sum of the states
above.
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Figure 3.3: Updating vertex with weight W2 with the entrance leg as the lower right leg. The
update is such, that by exiting through the lower left leg, we recuperate vertex with weight W1.

of the legs as 2, 3, . . . , n = Nlegs. Then, we pick a specific way of changing the entrance
leg. The system conservation laws will dictate how to update the configuration. In Figure
3.2 show an example is shown on how to update a vertex given an update +1 on the
entrance leg, and a conservation law which states that the sum of state above must equals
sum of state below. The equation

W1 = a11 + a12 + . . .+ a1n

determines the probability, when in the vertex with weight W1, to exit on the different
legs, given the specific update on the entrance leg, leg 1. Here aij denotes the probability
to enter in leg i and exit in leg j on the vertex with weight Wi. The vertex generated by
exiting at leg 2, updating vertex W1, is labelled W2 and its equation is

W2 = a21 + a22 + . . .+ a2n.

The update process in the vertex with weight W2 is such that a12 = a21. This means
that by starting at W2, entering through the second leg, exiting through the first leg and
updating the vertex, we should get vertex W1 back, such as depicted in Figure 3.3. So, the
update process for vertex W2 is given by the update process through which by entering
through leg 2 and exiting through leg 1 we arrive at W1. To get W3, we start at vertex W1

and exit through leg 3. Similarly we can also start at vertex W2 and exit at leg 3. This
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Chapter 3. Stochastic Series Expansion

results in the same vertex as W1 and W2 only differ in legs 1 and 2, and by updating W2

by exiting on leg 3 we are undoing the change in leg 2. Performing the same procedure
for the rest of the n legs, we get the following linear system


a11 a12 . . . an1

a12 a22 . . . an2
...

...
...

...
a1n a2n . . . ann



1

1
...
1

 =


W1

W2

...
Wn

 . (3.12)

The matrix on the left hand side is a real symmetric n × n matrix with non-negative
entries which determine the probabilities for the loop update. The diagonal elements aii
are determined by entering and exiting the vertex through the same leg, the so-called
bounce process. In solving this linear system, one would like to minimize the bounce
process, since it does not update the configuration, leading to a less efficient algorithm.

Although we present here a set of n = Nlegs equations, for many models, the number
of equations is often reduced. This is due to some updates leading to non allowed vertices,
as a consequence of the conservation law. In that case, all matrix entries concerning the
disallowed vertex are set to zero, reducing the dimensionality of the matrix.

Due to the large number of unknown variables compared to the known quantities, there
are many solutions for the directed loop equations [54]. An easy and general solution to
the equation is the heat-bath solution [58, 21]. Here we set

aij =
WiWj

W1 +W2 + . . .+Wn

,

so,

P (i→ j) =
Wj

W1 +W2 + . . .+Wn

.

This solution is general, works for every case, and it is easy to implement. However, as it
does not treat bounce process any differently, it does not perform very well [21].

A more general approach is to solve the system for every n while minimizing the
bounces. The system, Equation (3.12), contains n(n + 1)/2 equations. Setting all of
the diagonal elements (bounce probabilities) to zero, we have a system with n(n − 1)/2

equations. For n ≤ 3, the system has only one well defined solution. When n > 3, there
are many solutions, and often we have to include bounces. In short, following [54], one
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bounce-free solution to the system of equations for general n is given as

a12 = (W1 +W2 −W3 −W4)/2,

a13 = (W1 −W2 +W3 −W4)/2,

a23 = (−W1 +W2 +W3 +W4)/2,

a14 = W4 −W5/2,

a15 = (W5 −W6)/2, . . . ,

a1,n−1 = (Wn−1 −Wn)/2,

a1n = Wn/2,

a45 = W5/2,

a56 = W6/2,

an−1,n = Wn/2.

Here we assume that −W1 +W2 +W3 + . . .+Wn ≥ 0 and W1 ≥ W2 ≥ W3 ≥ . . . ≥ Wn.
When a bounce free solution is not possible, again, there are many approaches. One that
generalizes to larger n, is to bounce off of the vertex with the largest weight W1. For this,
we set

a11 = W1 − (W2 +W3 + . . .+Wn),

a1,i = ai,1 = Wi, i = 2, . . . , n.

3.3.3 A Monte Carlo Cycle

One Monte Carlo cycle/sweep (MCS) is defined by a sweep of diagonal updates in
all positions of SM where possible, followed by the construction of the vertex linked list,
the construction of Nl loops and the eventual update of SM . During the update of SM ,
we can pick a random state for the particles which are untouched by any (non-identity)
operator in SM with a probability of 1/Nstates, while preserving ergodicity. If we are in
the thermalisation phase of our simulation, we also adjust the expansion cut-off M by
setting M = a×n (usually 1.2 ≤ a ≤ 1.5) and the number of loops Nl. Nl is updated such
that, in average, 2M (or 2 ⟨n⟩) vertices are visited during each MCS. For this we need to
keep record of the number of vertices visited per MCS, disregarding bounces, since they
do not update the configuration. If, however, the thermalisation process has ended, we
are free to sample the desired thermodynamic quantities with the derived estimators. It
is important to keep Nl fixed during the sampling part, so we do not create bias in our
measurements [21].
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3.4 SSE Applied to the spin-S XXZ Model

In Chapter 2, we discussed the spin-S XXZ model. We can rewrite the XXZ Hamil-
tonian as

H = −J
Nb∑
b=1

(H1,b −H2,b) ,

where H1,b and H2,b denote the diagonal and off-diagonal parts of the interaction at bond
b. J is given in antiferromagnetic units J > 0 and

H1,b = −∆Sz
i(b)S

z
j(b) +

h

2J

(
Sz
i(b) + Sz

j(b)

)
,

H2,b =
1

2

(
S+
i(b)S

−
j(b) + S−

i(b)S
+
j(b)

)
.

Here bond b connects the spins on sites i(b) and j(b). It can be useful to define H+
2,b and

H−
2,b as

H+
2,b =

1

2
S+
i(b)S

−
j(b), H−

2,b =
1

2
S−
i(b)S

+
j(b).

For the S = 1/2 case, these terms are equivalent, i.e. acting on the respective two-body
state, they will have the same contribution to the Hamiltonian. However, for S > 1/2,
they can have different contributions. This is useful for computing the winding numbers
[57], for example.

The SSE method requires that Ha,b ≥ 0, for a = 1, 2. For the diagonal part, we can
simply add and subtract a constant C, such that H1,b ≥ 0. For a general spin number S
it is easy to see that C ≥ |∆|S2 + hS/J . So,

C = C0 + ϵ, C0 = |∆|S2 + hS/J,

and ϵ ≥ 0 is a constant added so that certain bond operators have a value bigger than zero.
Having a finite ϵ has shown to improve sampling in some cases [21]. For the spin-1/2 XXZ
model, the minimum values for ϵ were thoroughly analysed in [21]. Adding this constant
will raise the energy levels, so the only observable that changes is the energy. To restore
the energies for the XXZ model, we need to add JCNb to the energy expectation value
defined previously. For the off-diagonal part, on bipartite lattices, we can rotate every
other spin around the z-axis by an angle of π, changing the its sign. To show this, let us
consider a bond b where the spin on site i(b) is rotated. This will change the operators
on site i(b) as

Sz
i(b) → eiπS

z
i(b)Sz

i(b)e
−iπSz

i(b) = Sz
i(b),

S+
i(b) → eiπS

z
i(b)S+

i(b)e
−iπSz

i(b) = −S+
i(b),

S−
i(b) → eiπS

z
i(b)S−

i(b)e
−iπSz

i(b) = −S−
i(b).
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3.4. SSE Applied to the spin-S XXZ Model

Thus, we have shown that rotating one spin per bond will change the sign of the off-
diagonal part of the Hamiltonian. Doing this only changes values of observables that
depend on the values of the ladder operators. Using this trick, for bipartite lattices, the
sign of ∆ will dictate if we have a ferromagnetic (< 0) or antiferromagnetic (> 0) system.

Then, Hamiltonian simulated by the SSE method is given by,

H = −J
Nb∑
b=0

Hb

where Hb = H1,b +H2,b and

H1,b = C −∆Sz
i(b)S

z
j(b) +

h

2J

(
Sz
i(b) + Sz

j(b)

)
,

H2,b =
1

2

(
S+
i(b)S

−
j(b) + S−

i(b)S
+
j(b)

)
.

It is assumed that J = 1 unless stated otherwise. Note that for OBC sites 1 and N will
only have a contribution of h/2J to the energy as the bond between them is removed.

3.4.1 Observables

The XXZ model is a physics rich model, thus there are many interesting observables
we can measure [56, 57]. Here we define some of the basic ones for magnetic systems.
These are magnetizations and susceptibilities.

The average magnetization per spin is given by

m =
1

N

N∑
i=1

Sz
i .

The staggered magnetization ms is defined by rotating one of the sub-lattices, on a bi-
partite lattice, around the x-axis by an angle of π, or equivalently by taking the Fourier
transform of the magnetization at q = π. It reads

ms =
1

N

N∑
i=1

(−1)iSz
i .

A susceptibility is a linear response function of the form

χAB =
∂A(b)

∂b

∣∣∣∣
b=0

where b is the prefactor of a field term B, added to the Hamiltonian and A is the operator
whose response to this perturbation we want to measure. Such susceptibility is given by

χAB =

∫ β

0

dτ ⟨A(τ)B(0)⟩ − β ⟨A⟩ ⟨B⟩ .
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Figure 3.4: (a) Mean energy per particle as a function of uniaxial anisotropy, for h = 0. The
value of the coupling constant is set to J = 3/(S(S+1)) so that the energy scale is the same for
each spin value. (b) Mean magnetization per particle as a function of applied magnetic field, for
∆ = 1. The system size is N = 6, with PBC, and the temperature is β = 128. Three different
spin values are shown S ∈ {1/2, 1, 3/2}. ED results are show in black lines. SSE calculations
were done with 10 bins, each with 104 MCS. Statistical errors are smaller than the size of the
symbols.

The most common susceptibility is the magnetic susceptibility, where the perturbation is
given by the Zeeman term −bM , and the measured quantity is the magnetization. Since
the magnetization is a conserved quantity, we can write the magnetic susceptibility as

χ = Nβ
(〈
m2
〉
− ⟨m⟩2

)
.

Another interesting susceptibility is the staggered susceptibility, where we measure the
response of the staggered magnetization to an applied staggered magnetic field. Since the
staggered magnetization is not conserved, we get

χs = N

∫ β

0

dτ ⟨ms(τ)ms(0)⟩ −Nβ ⟨ms⟩ ⟨ms⟩ .

All of these quantities can be sampled using the SSE method by applying the formulas
derived in Section 3.2.

3.4.2 Code Verification

Any implementation of a MC method should always be verified by comparing results
for small systems with exact diagonalization (ED) approaches. When implemented cor-
rectly, the SSE method should always be exact. This meas that the deviation between
the average values computed by SSE and the exact values should be purely statistical
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3.4. SSE Applied to the spin-S XXZ Model

caused by the finite number of samples. As most of the time we do not have access to
its exact value, we can measure the the standard error or the standard deviation of the
mean of some quantity O by MC [59]. One approach of estimating the standard error is to
use the binning method. Here we accumulate statistics for the mean value of O through
performing Nb independent simulations, each with M MCS, and then we can compute its
standard deviation. The averaged value of O over the Nb bins is

⟨O⟩ = 1

Nb

Nb∑
i=1

⟨O⟩i .

The standard error can then be computed by

σO =
1

Nb

Nb∑
i=1

(⟨O⟩i − ⟨O⟩)2. (3.13)

One could also use methods like bootstrap or blocking to estimate the standard error by
performing just one simulation [59]. These approaches however require that we store the
sampled values of O each MCS.

It is important to test the program for a different range of parameters and large
systems. In this section we test the implementation for different S, ∆ and h values,
for a small system, and on the next section we show some finite size effects at lower
temperatures for larger systems.

Computations of the energy and magnetization, per particle, for a system with 6

sites and PBC, are shown in Figure 3.4. The calculations are performed at an inverse
temperature β = 128 such that we can approximate the ground state properties of the
system. The chosen coupling constant is J = 3/(S(S + 1)) so the energy scale is the
same for all spin numbers. We can see that all of the computed quantities by SSE appear
to coincide with the ED solution. Furthermore, for the ferromagnetic regime, Figure
3.4a, the approximated ground state energies are linear and follow the Ising ground state
energy relation EIsing = J∆S2. Moreover, in Figure 3.4b, for higher spin numbers, the
m(h) curve is smoother, as a result of a higher number of degrees of freedom. We can
thus conclude that our implementation of the SSE method is working as intended.

3.4.3 Finite Size Effects

When performing any type of thermodynamic simulations, all calculations are carried
out for finite lattices where the effects of size need to be considered. When studying
critical behaviour, i.e. phase transitions, or properties at very low temperatures, finite
size effects come to have a big impact. The finite size of the system often result in
discretization of the energy levels. This affects the distribution and spacing of the energy
levels in the excitation spectrum, leading to finite size effects. Due to this discretization
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Figure 3.5: (a) Mean energy per particle as a function of temperature and system size L. (b)
Uniform susceptibility as a function of temperature and system size L. Insets show the behaviour
at low temperatures. SSE calculations were performed for a spin-1/2 Heisenberg chain, with 20

bins, each with 105 MCS. Statistical errors may be smaller than the size of the symbols.

of the energy levels, energy gaps may emerge in the excitation spectrum that are absent
in the thermodynamic limit. The presence of such gaps can affect the system’s physical
properties. Since the excitation energy of thermal fluctuations is approximately β−1, at
low temperatures, the thermal energy might not be enough to excite the system, due to
the presence of finite size gaps. So thermodynamic averages become skewed from the
thermodynamic limit value or simply vanish as there are no reachable excitations. To
minimize this, we can increase the system size, such that the gap between the energy
levels becomes smaller. In general, we can determine the properties of the infinite size
system from a finite size system at inverse temperature β if the gap between energy levels
∆E ≈ L−1 is smaller than the available thermal energy Eth ≈ β−1. The precise finite size
gap between energy levels will also depend on the Hamiltonian parameters ∆ and h.

In Figure 3.5a, we can see the mean energy as function of temperature for different
system sizes L. At higher temperatures, the different systems appear to behave similarly.
However, at low temperatures T < 0.2, as seen in the inset, we start to see a deviation
as the system size decreases. These are the finite size effects at low temperatures, as
described earlier. For the case of the uniform susceptibility, it is known that it should
approach its zero temperature value with an infinite slope. At zero temperature, from
low-energy field theory, the uniform susceptibility should go to χ(0) = 1

Jπ2 (≈ 0.101, for
J = 1) [60]. As we can see in Figure 3.5b, this is not the case. Instead for smaller
systems χ goes, exponentially, to zero for finite temperatures. This is due to excitation
gaps caused by the finite size of the system. Note that it is possible to estimate the
finite size gaps from the results in Figure 3.5b since the susceptibility goes to zero as the
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finite size gap becomes smaller than T . Before the decay, the values follow a trend to the
aforementioned value.
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Chapter 4

Magnetic Transport in the Linear
Regime

In this Chapter, we preset a general overview of linear response theory and define
magnetic transport coefficients in terms of the kinetic matrix entries. We also present our
approach to calculate the transport coefficients for the XXZ chain, using step perturba-
tions in the chain. For Section 4.1 we will follow the book by Pottier [61].

4.1 Linear Response Theory

Linear response theory is a general framework, developed in the 1950s, that allow us
to represent physical measurements in a mathematical way. All physical measurements
of a macroscopic many-body system are, in practice, the measurement of the response
of the system, to an applied force at position r and time t, at some other position r′ at
time later time t′ > t. One can also measure the response of the whole system to an
uniform perturbation, as it is the case of the magnetic susceptibility, for example. When
this external force is small, it will take the system slightly out of equilibrium allowing
us to measure its response in a linear regime, i.e. truncating a series expansion. We can
relate the system’s response to correlation functions of the unperturbed (or equilibrium)
system through the Kubo formula.

Let us consider a system described by a Hamiltonian H in thermal equilibrium. The
density operator ρ of the system is defined by

ρ =
1

Z
e−βH ,

where Z = Tr
(
e−βH

)
is the partition function. At some time t0, we subject the system to

an external field a(t), t > t0. The external perturbation is described by the Hamiltonian

Hext(t) = −a(t)A. (4.1)
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Here A represents the conjugate physical observable to the field a(t). It is now convenient
to work in the interaction picture (Heisenberg’s picture with respect to the unperturbed
Hamiltonian H). Here the subscripts S and I denote the Schrödinger and interaction
pictures, respectively. The states and operators are time dependent in the interaction
representation,

|ψI(t)⟩ = eiHt |ψS(t)⟩ ,
BI(t) = eiHtBSe

−iHt.

The time evolution operator from time t0 to t is given by

U(t, t0) = T exp

(
−i
∫ t

t0

dt′Hext
I (t′)

)
,

where T is the time ordering operator. The density operator in the interaction picture is

ρI(t) = e−iHtρS(t)e
iHt,

and ρI(t < t0) = ρ is the density operator of the unperturbed system. Note that the
result of measuring an observable is independent of the representation we are working in.

4.1.1 The Kubo Formula

Having introduced the form of the perturbation and the interaction picture, our ob-
jective now is to calculate the response of some observable B to the perturbation Hext(t).
This is defined by the change in quantity B, from its equilibrium value, due to having a
field a(t) applied, δ ⟨B(t)⟩a = ⟨B(t)⟩a − ⟨B⟩. We start by writing the thermal average of
the quantity B as

⟨B(t)⟩a = Tr (ρI(t)BI(t)) = Tr
(
U(t, t0)ρI(t0)U

†(t, t0)BI(t)
)
.

From now on, we assume that every time dependency is given in the interaction picture.
Taylor expanding the time evolution operator and truncating the expansion at first order
terms we have

⟨B(t)⟩a ≈ ⟨B⟩+ i

∫ t

t0

dt′ Tr
(
ρ[Hext(t′), B(t)]

)
.

Taking the limit t0 → −∞, the response of B to the field a(t) is written as

δ ⟨B(t)⟩a =
∫ ∞

−∞
dt′ χ̃BA(t− t′)a(t′), (4.2)

where
χ̃BA(t) = iΘ(t) ⟨[B(t), A]⟩ ,
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is the Kubo formula for the linear response function. The thermodynamical average is
taken with respect to the equilibrium density operator ρ. This is the main result of linear
response theory. The Kubo formula relates an integral of a correlation function of the
system in equilibrium. The response function χ̃BA is a general quantity which describes
the time dependent response of quantity B to a field coupled to a quantity A, without
specifying the form of the field a(t). Furthermore, we can see that it obeys the causality
principle. This is, letting t = t−t0, where t0 is the time for which we apply a perturbation,
the response function of the system is zero for any t < t0.

We can simplify the expression for the response function. We start by rewriting the
commutator ⟨[B(t), A]⟩ = Tr ([A, ρ]B(t))

[A, e−βH ] = e−βH

∫ β

0

dλ eλH [H,A]e−λH .

Using the time evolution equation Ȧ = i[H,A], the Kubo formula is given by

χ̃BA(t) = Θ(t)

∫ β

0

dλ
〈
eλHȦe−λHB(t)

〉
.

We define

K̃BA(t) =
1

β

∫ β

0

dλ ⟨A(−iλ)B(t)⟩

as the Kubo canonical correlation function, where A(−iλ) = eλHAe−λH is the time evo-
lution of A in imaginary time −iλ. The response function of a system at thermal equi-
librium, at temperature T , is expressed in terms of the canonical correlation function of
B with Ȧ,

χ̃BA(t) = βΘ(t)K̃BȦ(t). (4.3)

Equation (4.3) allows for a simpler evaluation of the response function without having to
calculate the expectation value of a commutator.

For the case of a non-uniform perturbation,

Hext = −
∫
dr a(r, t)A(r),

the change in quantity B is given by

δ ⟨B(r, t)⟩a =
∫
dr′
∫ ∞

−∞
dt′ χ̃BA(r, t; r

′, t′)a(r′, t′).

The Kubo formula is

χ̃BA(r, t; r
′, t′) = iΘ(t− t′) ⟨[B(r, t), A(r′, t′)]⟩ .

Note that the response function depends both on the time and positions difference, not
on their absolute values. As we can see, the response of a non-uniform perturbation is
non-local but still obeys the causality principle.
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4.1.2 Generalized Susceptibility

Usually, when measuring responses, it is convenient to measure the response of the
system to a perturbation with a certain frequency ω. For example, in an optical exper-
iment, it is useful to know the response of the system as a function of the frequency
of the incident electromagnetic wave. Equation (4.2) defines a convolution between the
response function χ̃BA(t) and the driving field a(t). So, using the Convolution Theorem,
the Fourier transform of Equation (4.2) is

δ ⟨B(ω)⟩a = χBA(ω)a(ω),

where χBA(ω) and a(ω) are the Fourier transforms of χ̃BA(t) and a(t), respectively.
χBA(ω) is called the generalized susceptibility

χBA(ω) =

∫ ∞

0

dt eiωtχ̃BA(t). (4.4)

The integral in Equation (4.4) may not converge. In that case, a generalized suscep-
tibility may not exist as a function, however, it can exist as a distribution. This is, it is
the limit of a convenient sequence of functions. By defining z = ω + iϵ, with ϵ > 0, the
generalized susceptibility is defined

χBA(ω) = lim
ϵ→0+

χBA(ω + iϵ)

and
χBA(z) =

∫ ∞

0

dt χ̃BA(t)e
izt (4.5)

is the Fourier-Laplace transform of the response function. Due to the fact that the re-
sponse function χ̃BA(t) is causal, χBA(z) is analytic on the upper half of the complex
plane.

Since a(t) is a real field and A is a Hermitian operator, χ̃BA must be a real quantity.
Let us look at the properties of its Fourier transform χBA(ω). We can write the generalized
susceptibility as χBA(ω) = χ′

BA(ω) + iχ′′
BA(ω), where χ′

BA and χ′′
BA denotes the real and

imaginary parts of χBA, respectively. We can write the imaginary part as

χ′′(ω) = − i

2
[χ(ω)− χ∗(ω)]

= − i

2

∫ ∞

−∞
dt eiωt[χ̃(t)− χ̃(−t)].

We can see that χ′′(ω) is not invariant under time reversal t → −t. Since the dynamics
of microscopic systems are typically invariant under time reversal, χ′′(ω) must arise from
dissipative processes. Thus it is usually called the dissipative part of the response function.
It is also an odd function. The real part χ′(ω) can be written as

χ′(ω) =
1

2

∫ ∞

−∞
dt eiωt[χ̃(t) + χ̃(−t)].
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Chapter 4. Magnetic Transport in the Linear Regime

It is invariant under time reversal and it is usually called the reactive part of the response
function. It is also an even function.

4.2 Magnetic Transport

Spin transport occurs when the system is subjected to a gradient in the magnetic field
∇h, and heat transport is driven by a temperature gradient ∇T . These phenomena can
be described by a system of equations relating the currents and driving fields, such as(

JS

JH

)
=

(
LSS LSH

LHS LHH

)(
∇h

−∇T/T

)
.

This is called the phenomenological matrix, where all of the relations between the cur-
rents and the driving fields are encapsulated. The matrix entries Lij are know as kinetic
coefficients and they are related to the transport coefficients. The diagonal kinetic co-
efficients describe the spin and heat transport. The coefficients LSH and LHS describe
the creation of a spin current due to a thermal gradient and of a heat current due to a
magnetic field gradient, respectively. From nonequilibrium thermodynamics [61], we can
derive the following relations

Lii ≥ 0, LiiLjj ≥
1

4
(Lij + Lji)

2 .

Furthermore, if the driving fields obey time reversal symmetry, we can relate the off-
diagonal terms through the Onsager reciprocity relations. For this case, the Onsager
relation reads

LSH = LHS.

From Chapter 2, we know that the heat and spin currents are coupled in the presence of
an applied uniform magnetic field. In the case where h = 0, the system obeys spin-reversal
symmetry. So, as there is no preferred direction for the magnetization, the application
of a temperature gradient will not cause a magnetic current, so the off-diagonal elements
of the kinetic matrix will be zero [9]. For finite h, the spin-reversal symmetry is broken,
and a temperature gradient will now cause a magnetization parallel to the field, and the
off-diagonal entries can be non-zero [9, 62, 24]. These are related to the magnetothermal
effects.

Transport coefficients are defined as proportionality constants between the currents
and driving fields. One well known example is the Fourier’s law of heat conduction. It
relates the heat current to a gradient in temperature, in the absence of a spin current, by

JH = −κ∇T, (4.6)

where κ is the thermal conductivity coefficient. For the XXZ chain, we can define three
other coefficients. Namely, the spin conductivity and the spin-Seebeck and Peltier effects.
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4.2. Magnetic Transport

The spin conductivity σ is the proportionality constant between the spin current and
gradient in the magnetic field, in the absence of a temperature gradient,

JS = σ∇h. (4.7)

The spin-Seebeck effect η is associated to the creation of a spin current due to a tem-
perature gradient. This spin current arises due to an increase in entropy resulting from
an increase in temperature and results in an induced gradient in the magnetic field. The
Seebeck effect is defined as the ratio between the temperature and field gradients, when
the spin current is zero,

∇h = η∇T. (4.8)

Similarly, the Peltier effect π is associated to the creation of a heat current due to a
gradient in the magnetic field. It is defined as the ratio between the heat and spin
currents, when the temperature gradient vanishes,

JH = πJS. (4.9)

The spin-Seebeck and Peltier effects are also known as magnetothermal effects. Moreover,
sometimes the spin-Seebeck coefficient is known as the thermomagnetic power of the
material.

Relating the four transport coefficients to the kinetic matrix entries is a straight for-
ward process. When ∇T = 0,

JS = LSS∇h, JH = LHS∇h.

From Equations (4.7) and (4.9), we see that

σ = LSS,

π =
LHS

LSS

.

Furthermore, when JS = 0,

∇h =
1

T

LSH

LSS

∇T, JH = LHS∇h− 1

T
LHH∇T.

Using Equations (4.6) and (4.8)

η =
1

T

LSH

LSS

,

κ =
1

T

(
LHH − LSHLHS

LSS

)
.

From the Onsager relation π = Tη.
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∆h

sites
bonds

x+ 3x+ 2
x+ 2

x+ 1
x+ 1

x
x

x− 1
x− 1

x− 2
x− 2

∇h

Figure 4.1: Schematic representation of the perturbation in the magnetic field. The dotted line
represents a global gradient while the dashed line represents a local gradient given in the form
of a step discontinuity.

4.3 Transport Coefficients

Having defined the transport coefficients in terms of the kinetic matrix entries, we are
now interested on how to measure them in the XXZ chain using the linear response theory
formalism. For this, we first need to define the driving fields in the form of perturbations to
the unperturbed Hamiltonian coupled to a field. Let us begin by writing the Hamiltonian
of the XXZ chain as H =

∑
nHn,n+1, where

Hn,n+1 =
1

2

(
S+
n S

−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1 − hSz

n.

In Chapter 2, we saw that there are two currents in this model, the spin current JS,
Equation (2.4), and the heat current JH , Equation (2.5). The heat current can be written
in therms of the energy current JE and the spin current JS, JH = JE−hJS. In the linear
regime, these currents will couple to the driving forces, either a gradient in the magnetic
field or a gradient in temperature. There are two main approaches to represent these. The
most common approach is to define a gradient along each site of the chain, as shown in
the dotted line in Figure 4.1. In this case, we measure the response of the whole system
to the perturbation. An equivalent approach is to introduce a local gradient at some
site y, as depicted in the dashed line in Figure 4.1. This way, we measure the response
of the system at some site x due to the perturbation at site y. From the computational
side, the first method involves the computation of a total current correlation function [24],
which might be challenging to compute for a large system. Using the second approach, we
calculate correlations functions of the local current densities and perturbation operators
[22]. So, we will opt for the latter approach, as it is easier to compute with MC.
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4.3. Transport Coefficients

4.3.1 Local gradient perturbations

The local gradient perturbations have the form of a step discontinuity, Figure 4.1. Here
we define the perturbation Hamiltonian H i

x = Ai
xF

i, which introduces a perturbation at
bond x with a perturbation observable Ai

x coupled to a driving field F i; here i ∈ {S,H}.
This approach was first presented by Kim Louis and Claudius Gros for the MC calculation
of the spin conductivity of the spin-1/2 XXZ model [22].

We can write the local perturbation in the magnetic field at bond x by setting a site
dependent magnetic field. This takes the form of a step function, which can be written
as

h(n) = h+Θ[n− (x+ 1)]∇h,

where Θ[n] is the discrete Heaviside step function1. We take the perturbation to lie in
the middle of the bond x, which connects sites x and x+1, as shown in Figure 4.1 by the
dashed line. Inserting this in the Hamiltonian, we get a perturbation of the form

AS
x =

∑
n>x

Sz
n, (4.10)

with a driving field F S = ∇h. For the local gradient in temperature, the procedure is not
so straight forward as the temperature is not a field that we can add to the Hamiltonian.
Instead, we write a site dependent temperature of the form β(n) = β+Θ[n− (x+1)]∇β.
We take temperature gradient to lie on site x + 1, so at the endpoint of bond x. This
increases the temperature in bonds x+ 1, x+ 2, . . .. Writing the Boltzmann factor as

exp

(
−
∑
n

β(n)Hn

)
= exp

(
−β
(
H +

∇β
β

∑
n>x

Hn,n+1

))
,

we can clearly see that the perturbation is given by

AH
x =

∑
n>x

Hn,n+1, (4.11)

with a driving force FH = ∇β/β = −∇T/T .
Before we derive the formulas to compute the kinetic coefficients in the linear response

framework, it is useful to derive two relations between the time derivatives of the pertur-
bations and the local current densities. From Chapter 2, we know that the local currents
can be defined as

jSn = i[Sz
n, Hn], jHn = i[Hn, Hn+1].

We are now interested in relating these to the time derivatives of the local perturbations
AS

x and AH
x . Let us start with the perturbation in the magnetic field. Using Heisenberg’s

1Here we define Θ[n] = 0 if n < 0, Θ[n] = 1/2 if n = 0 and Θ[n] = 1 if n > 0, with n ∈ Z.
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Chapter 4. Magnetic Transport in the Linear Regime

equation of motion for an operator, we have

ȦS
x = −i

N∑
n=x+1

[Sz
n, H] = −i

N∑
n=x+1

([Sz
n, Hn] + [Sz

n, Hn−1]) .

Using the definitions of the currents, we get

ȦS
x =

N∑
n=x+1

(
jSn−1 − jSn

)
.

Under OBC, (jSN = 0) we see that

ȦS
x = jSx . (4.12)

Following the same procedure for the perturbation in the temperature, we arrive at

ȦH
x = jHx . (4.13)

4.3.2 Kinetic Coefficients as Response Functions

In linear response theory, the kinetic coefficient Lij is defined as the dynamical response
of the local density current operator jix at some site x to perturbation of the form F j at
some site y, with i, j ∈ {S,H}. In the Fourier space

jix(ω) = Lij(ω)F
j(ω).

This way, the kinetic coefficient Lij(ω) is the real part of the generalized susceptibility of
the current operator jix to the perturbation operator Aj

y. More generally, one can write
the analytical continuation of Lij(ω) to the upper part of the complex plane, Lij(z), with
ω + iϵ = z, Im{z} ≥ 0. The limit (ω)z → 0 is called the DC response regime, where we
measure the response of the system due to a static field. So the kinetic coefficient Lij in
the DC regime is defined as

Lij = lim
z→0

Re i

∫ ∞

0

dt eizt
〈
[jix(t), A

j
y]
〉
. (4.14)

This is known as the Green-Kubo formula for the calculation of the kinetic coefficients.
Here we are left with the freedom of taking z → 0 by any path in the upper part of the
complex plane.

By partial integration of Equation (4.14), and using the relations described in Equa-
tions (4.12) and (4.13), we arrive at

Lij(z) = Re

{
i

(
−
〈
[Ai

x, A
j
y]
〉
− iz

∫ ∞

0

dt eizt
〈
[Ai

x(t), A
j
y]
〉)}

.
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4.3. Transport Coefficients

Since Ai
x and Aj

y are always Hermitian operators, then we have [Ai
x, A

j
y] = iO, where O is

also an Hermitian operator. With i, j ∈ {S,H}, we have four possible cases to evaluate
the value of this commutator. We find that

[AS
x , A

S
y ] = 0,

[AH
x , A

H
y ] = −ijHmax(x,y),

[AS
x , A

H
y ] = −ijHy+1 if x < y,

[AS
x , A

H
y ] = ijHx if x > y.

In any case, we are left with the expectation value of a local heat current. Since the total
heat current JH is conserved, then the flux of jHn at some site is 0 and

〈
jHn
〉
= 0, for all

n. Using the relation Re ab = Re aRe b− Im a Im b, and restricting ourselves to Re z = 0,
we have

Lij(z) = − Im z Im

(∫ ∞

0

dt eizt
〈
[Ai

x(t), A
j
y]
〉)

. (4.15)

According to its definition, the value of the kinetic coefficients might depend on the actual
choice of x and y. However, in the limit z → 0, it can be shown that the value of the
coefficient is independent of this choice [22]. This way, Equation (4.15) allows us to
compute the kinetic matrix entries by computing a real time correlation function of the
perturbation operators Ai.
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Chapter 5

Transport in the SSE formalism

In this Chapter, we focus on the computation of the kinetic coefficients and conse-
quently the transport coefficients using the SSE MC method. We start by introducing
a more MC friendly formula for Lij, which is equivalent to Equation (4.15), at the Mat-
subara frequencies ω = ωM , and discuss the known approaches to compute it with the
SSE. Then, we present our new approach, where we use another MC sampling method to
sample combinatorial factors from the series expansion. With this, we are able to derive
a more efficient sampling scheme for Lij.

5.1 Sampling Lij(ωM) with MC

Equation (4.15) allows for the calculations of the kinetic coefficients through an in-
tegral of a real time correlation function of the perturbation operators. Due to the ill-
defined problem of the analytic continuation from imaginary time to real time, using this
expression in a MC scheme would prove difficult. Instead, at the imaginary Matsubara
frequencies ωM = 2πM/β, M ∈ N, we can find an equivalent expression in imaginary
time τ = −it (τ ∈ [0, β]) [22]

Lij(ωM) = ωM Re

∫ β

0

dτ eiωM τ
〈
Ai

x(τ)A
j
y

〉
. (5.1)

In Appendix A we show that Equations (4.15) and (5.1) are equivalent for ω = ωM . As
we are interested in the values of the transport coefficients as ω → 0, we are now left with
the problem of extrapolating Lij(ω) from the Matsubara frequencies ωM to ω = 0.

In the series expansion formalism, Equation (5.1) becomes

Lij(ωM) =
ωM

Z

∑
α

∞∑
n=0

n∑
k=0

Re

∫ β

0

dτ eiωM τ (τ − β)n−k(−τ)k
(n− k)!k!

×

∑
Sn

⟨α|
n∏

i=k+1

HliA
i
x

k∏
i=1

HliA
j
y |α⟩ .

(5.2)
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There are two main approaches to sample Equation (5.2) using the SSE method. One can
simply sample

〈
Ai

x(τ)A
j
y

〉
for an array of τ values, with τ ∈ [0, β], using Equation (3.5),

as in [22]. Employing an integration method, like Simpson’s method, on the sampled
points the integral in Equation (5.1) can be calculated. To minimize truncation errors,
we can sample the correlation function for a larger number of τ values. This approach
is a O(n2 ∗ nτ ) procedure, where n is the expansion order and nτ is the number of τ
values. As n ≈ Nβ, performing this calculation for large systems at low temperatures,
becomes very inefficient. Another approach is to solve the integral in Equation (5.2), such
that we eliminate the τ dependence. We can either do this by approximating with a MC
integration method or solve it analytically. The former introduces truncation errors and
involves the computation of factorials. The latter, yields an expression [63]

Re

∫ β

0

dτ eiωM τ (τ − β)n−k(−τ)k =βn+1Γ(k + 1)Γ(n− k − 1)

Γ(n)
×

2F3

(
k + 1

2
,
k + 2

2
;
1

2
,
n

2
,
n+ 1

2
;−M2π2

)
,

where Γ(n+ 1) = n! is the gamma function and 2F3 is a hypergeometric function defined
by

2F3(a1, a2; b1, b2, b3; z) =
∞∑
n=0

(a1)n(a2)n
(b1)n(b2)n(b3)n

zn

n!
,

where (a)n denotes the rising factorial. This provides an exact expression for the compu-
tation of Lij(ωM), however it is still computationally expensive. Again, it scales as O(n2),
moreover for each iteration we have to compute 2F3. So calculations for large systems at
lower temperatures become inviable [63].

5.2 Imaginary Time Representation of SSE

Here we present the imaginary time representation of the SSE method. In this rep-
resentation we substitute the combinatorial factors that come from the series expansion
by products of integrals over imaginary times. This set of times is assigned to the Hamil-
tonian operators in the operator string. The series expansion of the partition function is
given as

Z =
∑
α

∞∑
n=0

(−β)n
n!

∑
Sn

⟨α|
n∏

i=1

Hli |α⟩ .

Now, we assign an imaginary time τi ∈ (0, β) to each of the Hamiltonian operators Hli

in the operator string Sn. Replacing the combinatorial weight (−β)n/n! as a product of
imaginary time integrals, the partition function becomes

Z =
∑
α

∞∑
n=0

(−1)n
∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1
∑
Sn

⟨α|
n∏

i=1

Hli |α⟩ .

40



Chapter 5. Transport in the SSE formalism

operator string time state H operator

τ0 = 0 |α(0)⟩

21

31

32

23

13

12

τ1
|α(1)⟩

Hl1

21

21

32

32

13

13

τ2
|α(2)⟩

Hl2

21

21

32

32

13

13

τ3
|α(3)⟩

Hl3

31

21

23

32

12

13

τ4
|α(4)⟩

Hl4

τ5 = β

Figure 5.1: Operator sequence for a four-site system with n = 4. Each column of the figure
represents one site and the states on each site are labelled by an integer. The operators are shown
as black rectangles. On the right hand side of the graphical representation o the operator string,
the assigned times to the Hamiltonian operators and the propagated states are labelled. The
times τ0 = 0 and τn+1 = β are assigned to the first and last states in the expansion, respectively.

The new configuration weight is defined as

Wτ (α, Sn, {τ}) = (−1)n ⟨α|
n∏

i=1

Hli |α⟩ , (5.3)

where {τ} = {τ1, . . . , τn} is the set of imaginary times assigned to each of the Hamiltonian
operators in Sn. In Figure 5.1, we can see a graphical representation of one possible SSE
configuration with weight Wτ . Here, τ0 = 0 and τn+1 = β are the times of the first and
last states in the propagation, |α(0)⟩ and |α(n)⟩ respectively. Moreover, it is important
to note that the propagated state |α(k)⟩ only exists between the Hamiltonian operators
Hlk and Hlk+1

, respectively. Equivalently, it exists between the imaginary times τk and
τk+1.

5.2.1 Expressions for Expectation Values

To derive expressions for operators in the configuration weight defined in Equation
(5.3) we follow a similar procedure as in Section 3.2. Our objective is to find a function
A(α, Sn, {τ}), such that

⟨A⟩ = ⟨A(α, Sn, {τ})⟩Wτ
=

1

Z

∑
α

∞∑
n=0

∑
Sn

∫ β

0

dτn . . .

∫ τ2

0

dτ1A(α, Sn, {τ})Wτ (α, Sn, {τ}).

Then, A is sampled through randomly assigning imaginary times τi to each Hli in Sn

and evaluating the expression for A(α, Sn, {τ}). In Chapter 3, we saw that, because
Sn is cyclically permutable, we can average the propagated A(α(p), Sn(p)) to get better
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5.2. Imaginary Time Representation of SSE

statistics. Equivalently, as τ ∈ [0, β], we can average the imaginary time evolution of the
average value of A. So,

⟨A⟩ = 1

β

∫ β

0

⟨A(τ)⟩ . (5.4)

Let us consider the case where A is a diagonal operator. In the series expansion and
using Equation (5.4),

⟨A⟩ = 1

β

〈
n!

βn

n∑
k=0

∫ β

0

dτ
(β − τ)n−kτ k

(n− k)!k!
A(k)

〉
W

, (5.5)

where A(k) = A |α(k)⟩ is the value of the operator A after propagation step k. We now
wish to rewrite the combinatorial factor as a product of imaginary time integrals. The
combinatorial factor counts how many ways we can position A(τ) in the operator string
given the expansion order n. This weight is then proportional to the times that the state
|α(k)⟩ exists. So, τ is set to be some time between τk and τk+1. In integral form,

I =

∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1 (Θ(τ − τk)−Θ(τ − τk+1)) ,

where Θ(x) is the Heaviside step function. It is easy to prove this integral identity. We
start by integrating until the τk integral,

I =

∫ β

0

τn . . .

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
(Θ(τ − τk)−Θ(τ − τk+1)) .

Taking a closer look at the τk integral,∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
(Θ(τ − τk)−Θ(τ − τk+1))

=

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
Θ(τ − τk)︸ ︷︷ ︸

τ can be either > or < than τk+1

−Θ(τ − τk+1)

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
= Θ(τk+1 − τ)

τ k

k!
.

Solving the rest of the integrals, we arrive at

I =
(β − τ)n−kτ k

(n− k)!k!
.

Inserting this identity in Equation (5.5) and integrating over τ ,

⟨A⟩ = 1

β

〈
n∑

k=0

(τk+1 − τk)A(k)

〉
Wτ

.

Now let us consider the case where A = Ha. Following the same procedure as in
Chapter 3 and using Equation (5.4), we arrive at an expression

⟨Ha⟩ = − 1

β

〈
n!

βn

n−1∑
k=0

∫ β

0

dτ
(β − τ)n−1−kτ k

(n− 1− k)!k!
δlk+1,a

〉
W

, (5.6)
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Since the Hamiltonian operators only exist at the time they are assigned to, we can replace
the combinatorial factor by the following identity

I =

∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1δ(τ − τk+1).

To prove this, we start by integrating until the τk+1 integral,

I =

∫ β

0

dτn . . .

∫ τk+2

0

dτk+1

τ kk+1

k!
δ(τ − τk+1) =

τ k

k!

∫ β

0

dτn . . .

∫ τk+3

0

dτk+2Θ(τk+2 − τ ′)

=
(β − τ)n−1−kτ k

(n− 1− k)!k!
.

Here the Heaviside step function is introduce such that we assigned τ ′ to τk+1, and thus
τk+2 > τ ′. Inserting this identity in Equation (5.6) and integrating over τ ,

⟨Ha⟩ = − 1

β

〈
n∑

k=1

δlk,a

〉
Wτ

Furthermore, one can derive expressions for imaginary time products of expectation
values and their integrals can be derived. In this case, the integral identities would have to
contain information about the imaginary times of the two operators. In the next section,
we focus on deriving the formula for the kinetic coefficients using the framework developed
here.

5.3 Expressions for Lij(ωM) in the Imaginary Time Rep-
resentation of SSE

Using the formalism developed in the last section, we now derive the formulas to sample
Lij(ωM) in the imaginary time representation of SSE. It is possible to write Equation (5.1)
as

Lij(ωM) = ωM Re
∑
a>x

∑
b>y

∫ β

0

eiωM τ ⟨Oa(τ)Ob⟩ ,

where Oa and Ob are spin operators Sz
a and/or Hamiltonian bond Ha operators. So, in

general, we want to calculate an integral of the form

I =

∫ β

0

dτ f(τ) ⟨Oa(τ)Ob⟩ ,

with f(τ) = Re eiωM τ . Using Equation (5.4), it is possible to write I as a sum of two
parts,

I =
1

β

∫ β

0

dτ ′′
∫ β

0

dτ ′ (⟨Oa(τ
′′)Ob(τ

′)⟩+ ⟨Ob(τ
′′)Oa(τ

′)⟩) f(τ ′′ − τ ′)Θ(τ ′′ − τ ′). (5.7)

Using this relation, now we may derive the formulas for Lij, i, j ∈ {S,H}, using the
formalism developed in the last section.
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5.3.1 Expression for LSS

For the spin kinetic coefficient LSS, Oa = Sz
a and Ob = Sz

b . Using Equation (5.7), in
the SSE, ISS can be sampled using

ISS =
1

β

〈
n∑

k=0

n−k∑
l=0

∫ β

0

dτ ′′
∫ β

0

dτ ′Ckl(τ
′′, τ ′)×

f(τ ′′ − τ ′) [Sz
a(l + k)Sz

b (k) + Sz
b (l + k)Sz

a(k)]

〉
W

,

(5.8)

where

Ckl(τ
′′, τ ′) =

(β − τ ′′)n−k−l(τ ′′ − τ ′)lτ ′k

(n− k − l)!k!l!
Θ(τ ′′ − τ ′)

is the combinatorial factors from the series expansion. Our objective now is to replace
Ckl(τ

′′, τ ′) with a product of n integrals over the imaginary times τi. As we have seen in
the last section, diagonal operators are weighted by the time interval of which the state
they act on exist. In this case, it mean that τ ′ is set to be between τk and τk+1, and τ ′′ is
set to be between τk+l and τk+l+1. In integral form,

Ckl(τ
′′, τ ′) =

∫ β

0

dτn . . .

∫ τ2

0

dτ1(Θ(τ ′′ − τk+l)−Θ(τ ′′ − τk+l+1))×

(Θ(τ ′ − τk)−Θ(τ ′ − τk+1))Θ(τ ′′ − τ ′).

The proof can be found in Appendix B. Using this relation, the integrals in Equation
(5.8), with f(τ) = Re eiωM τ , follow

Ik,l = Re

∫ β

0

dτ ′′
∫ β

0

dτ ′(Θ(τ ′′ − τk+l)−Θ(τ ′′ − τk+l+1))×

(Θ(τ ′ − τk)−Θ(τ ′ − τk+1))Θ(τ ′′ − τ ′)eiωM (τ ′′−τ ′).

There are now two cases we need to consider. First, the case where l = 0, in which we
sample Sz

a and Sz
b at the same propagation step k, and the second case where l ̸= 0. For

l = 0,

Ik,0 =
1

ω2
M

(1− cos(ωM(τk+1 − τk))) .

For l ̸= 0,

Ik,l = Re

(
eiωM τk+l+1 − eiωM τk+l

iωM

e−iωM τk+1 − e−iωM τk

−iωM

)
.

Rewriting Equation (5.8),

ISS =
1

β

〈
n∑

k=0

n−k∑
l=1

[
Re

(
eiωM τk+l+1 − eiωM τk+l

iωM

e−iωM τk+1 − e−iωM τk

−iωM

)
×

(Sz
a(l + k)Sz

b (k) + Sz
b (l + k)Sz

a(k))

]
+ 2

n∑
k=0

1

ω2
M

(1− cos(ωM(τk+1 − τk)))S
z
a(k)S

z
b (k)

〉
Wτ

.

(5.9)
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This equation allows us to sample LSS(ωM) using the weights Wτ . For this expression we
only have to compute trigonometric functions which, from a computational standpoint,
are inexpensive. However, this relation still scales as O(n2), hindering the performance
of computations at low temperatures. Let us define

Ka =
n∑

k=0

eiωM τk+1 − eiωM τk

iωM

Sz
a(k). (5.10)

Now we show that ReKaK
∗
b is an equivalent way of writing the summations in Equation

(5.9).

KaK
∗
b =

n∑
k′=0

n∑
k′′=0

eiωM τk′+1 − eiωM τk′

iωM

e−iωM τk′′+1 − e−iωM τk′′

−iωM

Sz
a(k

′)Sz
b (k

′′)︸ ︷︷ ︸
=gab(k′,k′′)

=
n∑

k′=0

n∑
k′′=k′+1︸ ︷︷ ︸

let k′ = k and k′′ = l

gab(k
′, k′′) +

n∑
k′′=0

n∑
k′=k′′+1︸ ︷︷ ︸

let k′ = l and k′′ = k

gab(k
′, k′′) +

n∑
k′=0

n∑
k′′=0

δk′,k′′gab(k
′, k′′)

=
n∑

k=0

n−k∑
l=1

(
eiωM τk+l+1 − eiωM τk+l

iωM

e−iωM τk+1 − e−iωM τk

−iωM

)
(Sz

a(l + k)Sz
b (k) + Sz

b (l + k)Sz
a(k))

+
n∑

k=0

2

ω2
M

(1− cos(ωM(τk+1 − τk)))S
z
a(k)S

z
b (k)

So, the expression for LSS(ωM) in the imaginary time representation of the SSE is
given as

LSS(ωM) =
ωM

β

∑
a>x

∑
b>y

⟨ReKaK
∗
b ⟩Wτ

, (5.11)

with Ka defined in Equation (5.10). Therefore, by expressing the kinetic coefficient as the
SSE average of ReKaK

∗
b , the computational complexity of the algorithm is improved from

O(n2) to O(n). This enables faster sampling times large systems at low temperatures.

5.3.2 Expression for LHH

Here we follow a similar procedure as for the spin kinetic coefficient LSS. The heat
kinetic coefficient LHH involves the integral IHH

ab =
∫ β

0
dτf(τ) ⟨Ha(τ)Hb⟩. In the SSE,

this integral can be sampled by

IHH =
1

β

〈
n−2∑
k=0

n−2−k∑
l=0

∫ β

0

dτ ′′
∫ β

0

dτ ′C ′
kl(τ

′′, τ ′)×

f(τ ′′ − τ ′)
[
δlk+l+2,aδlk+1,b + δlk+1,aδlk+l+2,b

]〉
W

,

(5.12)
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with

C ′
kl(τ

′′, τ ′) =
(β − τ ′′)n−2−k−l(τ ′′ − τ ′)lτ ′k

(n− 2− k − l)!k!l!
Θ(τ ′′ − τ ′). (5.13)

Using a similar approach as in Section 5.2, we can replace this combinatorial weight by
setting τ ′ to τk+1 and τ ′′ to τk+l+2, such that

C ′
kl(τ

′′, τ ′) =

∫ β

0

dτn . . .

∫ τ2

0

dτ1δ(τ
′′ − τk+l+2)δ(τ

′ − τk+1)Θ(τ ′′ − τ ′).

The proof can again be found in Appendix B. Using this relation and f(τ) = Re eiωM τ ,
the integrals in Equation (5.12), follow

Re

∫ β

0

dτ ′′
∫ β

0

dτ ′δ(τ ′′ − τk+l+2)δ(τ
′ − τk+1)Θ(τ ′′ − τ ′)eiωM (τ ′′−τ ′) = Re eiωM (τk+l+2−τk+1).

Defining p = k + 1 and q = k + l + 2 and inserting this result in Equation (5.12),

ISS =
1

β

〈
n−1∑
p=1

n∑
q=1+p

Re eiωM (τq−τp)
[
δlq ,aδlp,b + δlp,aδlq ,b

]〉
Wτ

, (5.14)

In the same manner as for LSS, let us define

Ga =
n∑

p=1

eiωM τpδlp,a. (5.15)

Now we show that the summations in Equation (5.14) can be written as in terms of
ReGaG

∗
b .

GaG
∗
b =

n∑
p′=1

n∑
p′′=1

eiωM (τp′−τp′′ )δlp′ ,aδlp′′ ,b︸ ︷︷ ︸
=g′a,b(p

′,p′′)

=
n−1∑
p′=1

n∑
p′′=p′+1︸ ︷︷ ︸

let p′ = p and p′′ = q

g′a,b(p
′, p′′) +

n−1∑
p′′=1

n∑
p′=p′′+1︸ ︷︷ ︸

let p′ = p and p′′ = q

g′a,b(p
′, p′′) +

n∑
p′=1

n∑
p′′=1

δp′,p′′g
′
a,b(p

′, p′′)

=
n−1∑
p=1

n∑
q=1+p

eiωM (τq−τp)
[
δlq ,aδlp,b + δlp,aδlq ,b

]
+

n∑
p=1

δlp,aδlp,b

This way, the kinetic coefficient LHH(ωM) can be sampled in the imaginary time repre-
sentation of the SSE by the expression

LHH(ωM) =
ωM

β

∑
a>x

∑
b>y

⟨ReGaG
∗
b − Cab⟩Wτ

and n ≥ 2, (5.16)

where Cab =
∑n

p=1 δlp,aδlp,b. Note again that this is an O(n) procedure.
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5.3.3 Expressions for LSH and LHS

Similar expressions for LSH(ωM) and LHS(ωM) can be derived using the same pro-
cedures. Here we will not go through their full derivation, instead we go over the steps
that differ from the derivations of LSS and LHH . Since now we do not have a correlation
function of spin-spin or Hamiltonian-Hamiltonian operators, the imaginary times τ ′ and
τ ′′ will either correspond to a spin operator or to a Hamiltonian operator. So the integral
identity will involve a delta function and a Heaviside step function. The combinatorial
factor in this case reads

C ′′
kl(τ

′, τ ′′) =
(β − τ ′′)n−1−k−l(τ ′′ − τ ′)lτ ′k

(n− 1− k − l)!k!l!
Θ(τ ′′ − τ ′). (5.17)

Depending on whether τ ′ is assigned to the spin or the Hamiltonian operator, this com-
binatorial factor can be substituted by∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1(Θ(τ ′′ − τk+l+1)−Θ(τ ′′ − τk+l+2))δ(τ
′ − τk+1)Θ(τ ′′ − τ ′),

or ∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1δ(τ
′′ − τk+l+1)(Θ(τ ′ − τk)−Θ(τ ′ − τk+1))Θ(τ ′′ − τ ′).

In Appendix B, we show that both of these expressions are equivalent to Equation (5.17).
Following the same procedure as for LSS and LHH , in the imaginary time representation
of the SSE LSH(ωM) and LHS(ωM) can be sampled by

LSH(ωM) = −ωM

β

∑
a>x

∑
b>y

⟨ReKaG
∗
b⟩Wτ

, (5.18)

LHS(ωM) = −ωM

β

∑
a>x

∑
b>y

⟨ReGaK
∗
b ⟩Wτ

,

where Ka and Ga are defined in Equations (5.10) and (5.15), respectively. Note that
n ≥ 1.

5.4 Code Verification

Having derived all of the equations to sample the kinetic coefficients using the imagi-
nary time representation of SSE, we now validate our implementation of such equations
and sampling procedure. For this, we compare the results from SSE simulations to ED
results for three different systems, XY, Heisenberg and XY with h = 0.5, with L = 6

and OBC. In Figure 5.2, we see the kinetic coefficients LSS, LHH and LSH for the first
30 Matsubara frequencies and two pairs of x and y values. These results are at inverse
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Figure 5.2: (a) Spin kinetic coefficient LSS as a function of the Matsubara frequencies ωM ,
for the XY chain. (b) Heat kinetic coefficient LHH as a function of the Matsubara frequencies
ωM , for the Heisenberg model. (c) Off-diagonal coefficient LSH as a function of the Matsubara
frequencies ωM , for the XY chain in a magnetic field h = 0.5. We present calculations for a
system of L = 6 spin-1/2 particles, with OBC, at inverse temperature β = 32 and for two different
values of x with y = 2. ED calculations are presented in the black lines. SSE calculations were
performed with 20 bins and 107 MCS. Statistical errors may be smaller than the size of the
symbols.

temperature β = 32. In general the SSE calculations agree with results from ED. One can
notice that the standard deviations (given by the error bars) of LHH and LSH , Figures
5.2b and 5.2c, respectively, increase for larger Matsubara frequencies. However, the ED
results are well within the confidence interval (approximately two standard deviation)
of the SSE calculations, thus it is possible to conclude that the sampling method and
implementation are working as intended.

As it is important to test the implementation for larger systems as well, here we
present some results for chains with L = 256. We again consider the same systems, XY,
Heisenberg and XY with h = 1. Figure 5.3 shows the calculated kinetic coefficients as
a function of the Matsubara frequencies for two pairs of x and y. Calculations for LSS

remain still very accurate. Moreover, unfortunately, calculations for LHH and LSH have
large standard deviations.

The standard error estimated through the binning procedure, Equation (3.13), can be
written as [59]

σO =
σ√
M
,

where σ is the standard deviation of the estimator for quantity O and M is the number
of MCS in each bin. One possible reason for the large error bars in Figures 5.3b and
5.3c might be that of the estimators of LHH and LSH , have an inherently high standard
deviation σ. This allied to the fact that their values are close to zero, will result in a high
uncertainty. To mitigate this we could run calculations with a larger number of MCS.
However, to reduce the error by a factor of 10, we would need to 100 times more MCS,
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Figure 5.3: (a) Spin kinetic coefficient LSS as a function of the Matsubara frequencies ωM ,
for the XY chain. (b) Heat kinetic coefficient LHH as a function of the Matsubara frequencies
ωM , for the Heisenberg model. (c) Off-diagonal coefficient LSH as a function of the Matsubara
frequencies ωM , for the XY chain in a magnetic field h = 1. We present calculations for a
system of L = 256 spin-1/2 particles, with OBC, at inverse temperature β = 128 and for two
different values of x with y = 127. SSE calculations were performed with 100 bins and 105 MCS.
Statistical errors are sometimes smaller than the size of the symbols.

which will increase the computation time hundredfold. As each of the calculations in
Figure 5.3 took approximately 3h per bin on an AMD chip with 128 cores, we would need
about 12 days of computation time per bin to reduce the error by a factor of 10. As this
becomes very impractical to do for larger systems and especially for larger spin values,
we will mostly focus on the behaviour of the spin kinetic coefficient (and thus the spin
conductivity) for the rest of this work.
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Chapter 6

Results and Discussion

In this Chapter, we present results for the transport coefficients, mainly the spin con-
ductivity, calculated using the SSE method with imaginary time sampling, using Equation
(5.1). The results are also discussed. We start by providing an overview of the practi-
cal aspects of extrapolating the kinetic coefficients to ω = 0, such as finite size effects,
dependence on the sites of measurement x and perturbation y, temperature dependence
and the extrapolation procedure itself.

Afterwards, we present results for the XXZ chain. We start by introducing the Jordan
Wigner transformation for the spin-1/2 XY chain through which we are able to obtain
exact results for the spin conductivity and spin-Seebeck coefficient. We compare our
MC calculations to the exact results and discuss results for larger spin values. Then, we
introduce the Bosonization of the spin-1/2 XXZ chain and compare its results for the spin
conductivity to our MC results. Calculations for larger spin values are also presented and
discussed. Then we present results for spin-1 and spin-3/2 XXZ chains as a function of the
easy-axis anisotropy. We end our discussion with an estimation of the spin conductivity
in the large S limit.

6.1 Initial Considerations

Equation (5.2) allows us to calculate the kinetic coefficients through MC at Matsubara
frequencies ωM = 2πM/β. With the calculated values of Lij(ωM) we want to perform an
extrapolation to the DC regime, that is to ω = 0. There are however, some pitfalls one
can encounter when performing these extrapolations to the DC regime. As the spacing
between the Matsubara frequencies scales linearly with temperature T , it becomes difficult
to get reliable extrapolations to the zero frequency regime at higher temperatures, as due
to the low density of Matsubara frequencies. So, this limits us to the low temperature
regime. In this regime, finite size effects are more pronounced, as the energy of thermal
excitations can become smaller than the minimal required energy for an excitation. It is
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Figure 6.1: Spin kinetic coefficient LSS as a function of the Matsubara frequencies and of
spatial separation between the site of perturbation y and of measurement of the current x. The
presented results are for the XY chain with L = 256 at inverse temperature β = 128. SSE
calculations were performed with 20 bins and 105 MCS. Statistical errors are smaller than the
size of the symbols.

thus crucial that we study a large enough system such that size effects are mitigated, for
the given temperature and model parameters.

We will now discuss the finite size effects of the spin kinetic coefficient and its de-
pendence on the sites of perturbation y and measurement of the current x. Afterwards,
we will go through the procedure for performing a reliable extrapolation to ω = 0 and
evaluating its error from imperfect (with a standard deviation) MC data.

6.1.1 Dependence on x− y

The kinetic coefficient is defined as the linear response of the current operator at site
x due to a perturbation at site y. As so, we are interested in measuring the current
operator at sites x ≥ y. Figure 6.1 shows the dependence of the spin kinetic coefficient
LSS on the difference between the perturbation and measurement sites x − y. Here, the
perturbation site y to lies in the bond at the middle of the chain, y = L/2 − 1. We can
see that the value of LSS decreases exponentially for small small frequencies when the
spatial separation between the perturbation and current measurement is increased. As
so, we focus on measurements of the kinetic coefficients for x− y ≤ 1 with y = L/2− 1,
for the rest of our discussion.

6.1.2 Finite Size Effects

Figure 6.2a shows the spin kinetic coefficient LSS, for the first 30 Matsubara frequen-
cies, as a function of the system size L, for the XY chain at β = 128. We see that the
convergence with the system size L is fast. Moreover, for lower frequencies and small
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Figure 6.2: Spin kinetic coefficient LSS as a function of the Matsubara frequencies ωM and the
system size L, for the (a) XY chain and the (b) isotropic Heisenberg chain at inverse temperature
β = 128, with x = y. SSE calculations were performed with 100 bins and 105 MCS. Statistical
errors are smaller than the size of the symbols.

system sizes LSS approaches zero, as seen for the L = 32, 64 curves, for example. These
curves start to approach zero for frequencies close to the finite energy gap between energy
levels of the system, i.e. ω ≈ ∆E [23]. For the case of the XY chain, ω ≈ −2πJ/L.
From this relation, it is possible to set lower limit L > Jβ on the system size needed to
calculate LSS at the first Matsubara frequency without any finite size effects. For the
system presented in Figure 6.2a, we would need a chain with L > 128. So a system of
L = 192, would be sufficient to reproduce the infinite size limit behaviour of the spin
kinetic coefficient. As the gap in the finite size energy spectrum has proven to be propor-
tional to the anisotropy parameter ∆ [64], we investigate the finite size effects of the spin
kinetic coefficient for the isotropic Heisenberg chain (∆ = 1), as shown in Figure 6.2b. In
this case, the convergence with L is slower. So, the system size we would need in order
to perform calculations in the thermodynamic limit is larger than in the XY case. From
Figure 6.2b it is possible to see that L ≳ 512.

As so it is possible to conclude that, in order to estimate the transport coefficients in
the thermodynamic limit for a wide range of model parameters, we would need calculations
of the kinetic coefficients for systems with L ≥ 512. So, for the rest of this section,
we compute the kinetic coefficients for systems with L = 512 at inverse temperatures
β = 64, 128. From this we can gauge some possible (low) temperature dependence of the
transport coefficients in the thermodynamic limit.
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Figure 6.3: Extrapolation of the spin kinetic coefficient LSS to ω = 0, from the first 10

Matsubara frequencies and two set of values for x and y. The dots are the results from the MC
calculation and the black lines are a 4th order polynomial fit to the MC data. Inset shows the
behaviour of the fitted lines from the bootstrap procedure near the extrapolation point ωM = 0.
The presented results are for the XY chain with L = 512 at inverse temperature β = 128. SSE
calculations were performed with 100 bins and 105 MCS. Statistical errors may be smaller than
the size of the symbols.

6.1.3 Extrapolations to ω = 0

Assuming that we have selected a combination of system size and temperature such
that it finite size effects are minimized, performing the extrapolation to ω = 0 becomes a
simple task. The procedure we employ here is based on fitting a polynomial of degree p to
the calculated values of Lij(ωM), for x− y ≤ 1, and calculate the ω = 0 point of the two
fitted polynomials. As the MC data has error bars, i.e. a standard deviation, we must
take it into account when performing these extrapolations. For this, we bootstrap the
extrapolation procedure. For this, each bootstrap cycle we draw a new set of points for
Lij(ωM) from a normal distribution using their MC mean and variance. This is shown in
Figure 6.3. Here we see the polynomial fit of degree 4 to the first 10 Matsubara frequencies
for LSS. For illustrative purposes, we show 20 bootstrap cycles depicted in the grey lines.

As we can see in the inset of Figure 6.3, there seem to be some lines in the bootstrap
which exhibit some oscillatory behaviour near the extrapolation point ω = 0. This is
known as Runge’s phenomenon and happens we interpolating a set of equispaced points
using a polynomial [65]. To minimize the impact of this effect in our estimation, instead
of taking the mean of bootstrapped extrapolations, we take their median [23]. Another
way of mitigating this effect is to fit the polynomial only to the first few Matsubara
frequencies. As so, the rest of the presented results are obtained through a polynomial of
degree 4 to the first 10 Matsubara frequencies.
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6.2 Spin-1/2 XY Chain

It is important to consider the spin-1/2 XY chain in detail as it can be solved exactly
through the JW transformation [38, 39]. The JW transformation maps the XXZ Hamil-
tonian to a Hamiltonian describing a systems of spinless fermions on a lattice. For this,
we write the spin operators as

S+
i = c†ie

iπ
∑i−1

n=1 c
†
ncn , Sz

i = ni −
1

2
.

Here c†i (ci) creates(destroys) a fermion at site i and ni = c†ici counts the number of
fermions at site i. These obey the canonical commutation relations {ci, c†i} = 1 and
{ci, ci} = 0. Due to the Pauli exclusion principle, each site can either be unoccupied or
have one fermion. When a fermion is present at site i, ni = 1, in the spin formalism
it corresponds to having Sz

i = 1/2, and vice-versa. In the JW formalism, the XXZ
Hamiltonian, Equation (2.1), reads

H = J
N∑
i=1

[
1

2

(
c†ici+1 + cic

†
i+1

)
+∆

(
c†ici −

1

2

)(
c†i+1ci+1 −

1

2

)]
− h

N∑
i=1

(
c†ici −

1

2

)
.

(6.1)
Here the magnetic field h is interpreted as the chemical potential µ. When ∆ = 0 (XY
model), the fermionic chain becomes non-interacting and thus it is possible to solve it
analytically. For PBC and letting N → ∞, the full energy spectrum for ∆ = 0, in the
Fourier space, is given by the dispersion relation

E(k) = J cos(k)− h.

At zero temperature, the chemical potential is called the Fermi energy EF , and all of the
states with E(k) ≤ EF are occupied. For strong fields, h > J , all of the fermion levels are
occupied. For the case of h < −J , all of the fermionic levels are vacant. Note that h = ±J
corresponds to the saturation field hc1 defined in Chapter 2. In the JW formalism, the spin
transport is interpreted as a transport of spinless charged particles due to a gradient in
the electro-chemical potential ∇µ. If the fermion states are fully empty or fully occupied,
we can expect this transport to be zero. The spin conductivity of the XY chain can
then be exactly evaluated at any temperature and frequency. Following [22], the DC spin
conductivity of the spin-1/2 XY model at inverse temperature β can be written as

σJW =
1

4π
(tanh(E(0)β/2)− tanh(E(π)β/2)). (6.2)

At zero temperature, the spin conductivity is σJW = Θ(J − h)/(2π). As is expected, it
vanishes for h > J , i.e. fully occupied fermion states. The spin-Seebeck coefficient can
also be computed in the thermodynamic limit using the JW transformation. Following
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Figure 6.4: Spin conductivity (a) and spin-Seebeck coefficient (b) as a function of the applied
magnetic field, for the spin-1/2 XY chain with L = 512. The black dashed line is the solution in
the thermodynamic limit, at inverse temperature β = 128, given by the JW transformation for
both the spin conductivity and spin-Seebeck coefficient. The MC calculations were done with
105 MCS and 25 bins. Statistical errors are sometimes smaller than the size of the symbols.

[30], in the low temperature limit

ηJW =



− π2h
6(J2−h2)β

+O(β−3) for h < hc1

−g(3)
g(1)

+O(β−1) for h = hc1

2(J − h)β +O(1) for h > hc1

,

where g(n) = (1− 21−n/2)Γ(1 + n/2)ζ(n/2)1. For h = hc1 , the spin-Seebeck coefficient is
ηJW ≈ −1.897376. The zero temperature limit of spin-Seebeck coefficient is ηJW = 0 for
h < hc1 and ηJW = −∞ for h > hc1 .

The spin conductivity is related to the transport of magnetic excitations along the
chain in the presence of an applied magnetic field gradient. In the low temperature
regime, we can expect the conductivity for gapped phases to vanish, if the thermal energy
is less than the energy of the gap. On the other hand, for gapless phases, as excitations
do not have a minimum amount of required energy, we expect it to be finite.

In Figure 6.4a, we can see the magnetic field dependence of the spin conductivity for
the spin-1/2 XY chain. SSE data and exact JW results are both presented. We see that
for h > hc1 , the spin conductivity is zero as predicted by Equation (6.2). One can also see
that at h/hc1 = 0.75, the MC calculated values deviate from the exact value. The same

1Note that Γ(x) is the Gamma function and ζ(x) is the Riemann zeta function.
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Figure 6.5: Spin conductivity as a function of the applied magnetic field, for the (a) spin-1
and the (b) spin-3/2 XY chains with L = 512. The MC calculations were done with 105 MCS
and 25 bins. Statistical errors are sometimes smaller than the size of the symbols.

can be seen, although not as pronounced, for the point h/hc1 = 0.5. It is possible that
this is caused by an effect of the extrapolation procedure to ω = 0.

Figure 6.4b shows the spin-Seebeck coefficient for the spin-1/2 XY chain at different
magnetic fields. Due to the bad scaling of the standard deviation of LSH with the number
of MCS, the error bars in the calculation of η are large. The low temperature results
from the JW chain are within the confidence interval of the MC results. Furthermore,
looking at the point h = hc1 , the MC calculated spin-Seebeck coefficient is η ≈ −2 ± 6.
From JW, ηJW ≈ −1.897376. Although the values are close, the uncertainty in the MC
value is too high to give any precise conclusions. Despite of this, it can be concluded that
our approach of sampling the transport coefficients through SSE works well for the spin
conductivity.

6.2.1 Spin-S XY Chains

Now we turn to the behaviour of the spin conductivity of spin-S XY chains with an
applied magnetic field. For general spin-S, the saturation field hc1 will also depend on the
value of the spin number hc1(S,∆) = 2JS(1 + ∆). As in the spin-1/2 case, the ground
state for the case of strong fields h > hc1 is also gapped. Therefore, at low temperatures,
we expect that the spin conductivity will vanish there.

Figures 6.5a and 6.5b show the spin conductivity as a function of the applied magnetic
field, for the spin-1 and spin-3/2 XY chains, respectively. We can observe that, for both
spin values and in the case of strong fields h > hc1 , the spin conductivity goes to zero as
expected. In addition, the magnitude of the conductivity increases with the spin number.
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6.3. Spin-1/2 XXZ chain

This is due to a larger number of magnetic excitations being available to the system.
For example, for a spin-1 system, there are 3 possible one particle excitations, with one
of them even carrying S = 2 (from |−1⟩ to |+1⟩). Generally, the spin conductivity of
spin-1 and spin-3/2 XY chains has a similar behaviour to the spin conductivity for the
spin-1/2 XY chain. But unlike the spin-1/2 case, the way the conductivity vanishes at
h → hc1 for the spin-1 and spin-3/2 cases is different, as evidenced by the shape of the
σ(h) curves. This is possibly due to different scattering mechanisms, originating from the
larger number of degrees of freedom.

Moreover, in spin-1 chains at the point ∆ = 0, h = 0 there is a quantum phase transi-
tion between the XY and Haldane phases. At this point, there are increased correlations
in the system and so this might cause the spin conductivity to be lower than for small
finite fields, as seen in Figure 6.5a.

6.3 Spin-1/2 XXZ chain

At low temperatures, the general behaviour of interacting 1D fermionic systems can
be captured by the Luttinger liquid model [66]. This model assumes a linearized energy
spectrum at the Fermi surface, i.e. at k = ±kF , which allows for well defined excitations
near the Fermi surface. These excitations can be quantized and are of bosonic nature, al-
lowing us to rewrite the Hamiltonian using bosonic field operators. In this representation,
interactions, which usually are a product of four fermion operators, become quadratic and
thus easy to diagonalize. It is possible to apply this technique to the spin-1/2 XXZ chain
in order to derive a formula for the spin conductivity in the low temperature regime.

Following [66], the Luttinger liquid Hamiltonian in the bosonic language reads

H =
1

2π

∫
dx
(
vK(πΠ(x))2 +

v

K
(∇ϕ(x))2

)
,

where ϕ(x) is a bosonic field, Π(x) is the canonically conjugate momentum and they obey
[ϕ(x),Π(x′)] = iδ(x − x′). The quantities v and K are a velocity and a dimensionless
parameter, respectively, which are model specific. Usually, K is known as the Luttinger
liquid parameter. Generally, K < 1 for repulsive interactions and K > 1 for attractive
ones. For the spin-1/2 XXZ chain, v and K are related through

vK = vF = J sin(kF ),
v

K
= vF

(
1 +

2∆

πvF
[1− cos(2kF )]

)
.

Note that these relations are only valid in the perturbative regime from the free fermions
case, i.e. they are only valid for small anisotropies |∆| ≤ 1. Since the spin-1/2 XXZ chain
is exactly solvable via the BA, one can find exact expressions for v and K. For the case
of zero magnetic field, the analytical solution reads

K =
π

2(π − θ)
, v = J

π

2

√
1− (∆/J)2

θ
,

58



Chapter 6. Results and Discussion

−1.0 −0.5 0.0 0.5 1.0

∆

0.0

0.2

0.4

0.6

0.8

σ

Apel and Rice

β =64.0

β =128.0

Figure 6.6: Spin conductivity as a function of the anisotropy parameter ∆ for the spin-1/2
XXZ chain L = 512, with h = 0. The black dashed line shows the conductivity of the Luttinger
liquid model by Apel and Rice [17]. The MC calculations were performed with 105 MCS and 25

bins. Statistical errors are smaller than the size of the symbols.

where θ = arccos(∆/J). Using this formalism, Apel and Rice, in the 1980s, derived a
general relation for the conductivity of the Luttinger liquid model [17]. It relates the
conductivity to the Luttinger liquid parameter K, and reads

σLL =
1

2π
K.

The spin conductivity of the spin-1/2 XXZ chain, at low temperatures, is thus

σLL =
1

4(π − θ)
.

This formula is only valid for the regime |∆| ≤ 1, or 0 ≤ θ ≤ π. For the non-interacting
case, i.e. ∆ = 0 or equivalently θ = π/2, the spin conductivity of the Luttinger liquid
has the same value as from the JW solution, σ = 1/(2π). Furthermore, it is easy to see
that as θ → π, the conductivity goes to infinity. This corresponds to the ferromagnetic
Heisenberg point, i.e. ∆ = −1. Since the ground state of this phase is the maximally
ordered ferromagnetic state, one excitation (one overturned spin) is allowed to propagate
freely in the chain under the repeated action of the current operator, Equation (2.4),
when a gradient in the magnetic field is applied. This suggests that the ferromagnetic
Heisenberg point shows the behaviour of an ideal conducting state, i.e. ballistic transport.
For the cases not covered by the Luttinger liquid solution, at large anisotropies, we would
expect that, at low temperatures, the conductivity will vanish as they are gapped systems.

Figure 6.6 shows the spin conductivity for the spin-1/2 XXZ chain as a function
of the anisotropy parameter calculated by SSE. The formula by Apel and Rice for the
conductivity of the Luttinger liquid is also showed. We see that generally our MC approach
is able to reproduce well the results from Bosonization. However, as we approach the
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6.3. Spin-1/2 XXZ chain

ferromagnetic Heisenberg point, the MC data slightly deviates from the Luttinger liquid
solution. This is most likely due to finite size effects as when we decrease the temperature,
the MC results approach the analytical solution. Furthermore, capturing the behaviour of
the singularity of spin conductivity at the ferromagnetic Heisenberg point is a difficult task
when performing numerical calculations for finite systems. Instead, a large temperature
dependence is observed in the MC calculated values at this point, which we interpret
as signs of a singularity. For values |∆| > 1, it is expected that at zero temperature
the conductivity is zero. In our case, due to the finite temperature nature of our MC
calculations and presumably by the existence of a very small energy gap, the conductivity
for ∆ > 1 is non-zero. In the end, we can conclude that our MC approach works well for
the calculation of the spin conductivity at different anisotropy strengths.

6.3.1 Spin-S XXZ Chain

Having checked that the MC sampling of the spin conductivity works for the spin-1/2
XXZ chain at different interaction strengths, we now turn to spin-1 and spin-3/2 chains.
In the spin-1 chain, between ∆ ≈ 0 and ∆ ≈ 1.2, there exists a gapped phase, the Haldane
phase. The gap energy Eg has been shown to depend on the value of ∆ [67, 68]. In the low
temperature regime, we expect that the conductivity vanishes when the gap energy Eg is
higher than the available thermal energy. Exact calculations for Eg in the XY phase are
scarce. General consensus is that at the antiferromagnetic point Eg = 0.4105(2) [69], and
that the Eg decreases exponentially as ∆ → 0 [67, 68]. Following [68], the gap energies
at ∆ = 0.3 and 0.4 are Eg ≈ 0.005 and Eg ≈ 0.015, respectively. So for the inverse
temperature of β = 128 (Eth ≈ 0.008), we expect the conductivity to vanish for some
∆ ≳ 0.3.

Figure 6.7a shows the spin conductivity for the spin-1 XXZ chain for various anisotropy
strengths ∆. We see that for negative anisotropies, the spin conductivity of spin-1 chains
has a similar behaviour to the conductivity of spin-1/2 chains. Furthermore, we can
still identify traces of a possible divergence at ∆ = −1, due to the large temperature
dependence of the conductivity at that point. However, for positive anisotropies, the
behaviour of the conductivity for spin-1 differs from the spin-1/2 chains, as is expected by
the existence of the Haldane gap. Moreover, we observe that the conductivity vanishes for
∆ > 0.5. Yet, this result does not quite coincide with our prediction. This is likely due to
errors caused by the extrapolation to ω = 0 or due to the precision in the calculated values
for the energy of the Haldane gap as a function of ∆ in [68]. Based on magnetization
data as a function of the applied magnetic field, we could estimate the energy of the gap
given the strength of the field at which the magnetization is not zero. But this is beyond
the scope of this work.

For a spin-3/2 chain, Figure 6.7b, the behaviour of the spin-1/2 chain is recovered, as
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Figure 6.7: Spin conductivity as a function of the anisotropy parameter ∆ for the (a) spin-1
and (b) spin-3/2 XXZ chains L = 512, with h = 0. The MC calculations were performed with
105 MCS and 25 bins. Statistical errors are sometimes smaller than the size of the symbols.

there is no gapped phase for |∆| ≤ 1. Spin conductivity becomes larger as we approach
ferromagnetic interactions. We can also see that there are traces of a divergence at the
ferromagnetic Heisenberg point.

6.3.2 Adding Easy-Axis Anisotropy

Now we add an interaction with a crystal field resulting in the easy-axis anisotropy
term as described in Equation (2.2). As this term is proportional to the spin operator in
the z direction squared, its effects become interesting for spin numbers S ≥ 1. Depending
on the sign of D different spin projections will be energetically favoured, for example
Sz = 0 for positive D and Sz = ±1 for negative D, for S = 1. The ground state phase
space for the spin-1 chains was discussed in Chapter 2, Figure 2.2. The only gapless phases
are the XY1 and XY2 phases. These phases exist for negative values of the anisotropy and
easy-axis anisotropy parameters. Following [43], the XY1 phase is realized for 0 ≤ ∆ ≤ 1

and for a wide range of D values. On the other hand, the XY2 phase is realized for a
small range of anisotropy values −0.1 ≲ ∆ ≲ 0. At ∆ = 0, the transition between the
XY1 and XY2 phase happens for D ≈ −2. For positive ∆, we have the gapped Haldane
phase. For spin-3/2 chains the Haldane phase is not present so the XY1 phase is extended
to positive ∆ values [44]. The XY2 phase is still present for a small range of negative ∆

and D values. Our objective now is to investigate how the spin conductivity changes in
the different phases raised by introducing an easy-axis anisotropy term.

Figure 6.8a shows the spin conductivity of a spin-1 XXZ chain as a function of the
easy-axis anisotropy for some values of the anisotropy parameter. For D ≳ 1, the system
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Figure 6.8: Spin conductivity as a function of the easy-axis anisotropy D for the (a) spin-1
and (b) spin-3/2 for the XXZ chains with L = 512 at inverse temperature β = 128. Results for
different values of ∆ are presented. The MC calculations were performed with 105 MCS and 25

bins. Statistical errors are sometimes smaller than the size of the symbols.

is in the gapped large-D phase, so the spin conductivity vanishes. Conversely, when D

is decreased, the conductivity increases and starts to depend on the value of ∆. As the
anisotropy favours ferromagnetic interactions, the spin conductivity increases, resulting
in a possible divergence at the ferromagnetic Heisenberg point, ∆ = −1. For ∆ =

−0.25, −0.5, the spin conductivity increases until D ≈ −2, −1, respectively. This is
when the phase changes to the ferromagnetic phase. At his point the magnitude of the
conductivity is about two times as large as for the D = 0 point. For the XY chain, the
conductivity is unaffected by value the parameter D. When ∆ = 0, states with Sz = 0 are
energetically favoured due to the vanishing interaction in the z directions. As so, adding
an easy-axis anisotropy interaction results in a zero contribution to the energy. Therefore,
states with Sz = 0 are still preferred and the conductivity remains unchanged. MC results
for the XY2 phase, due to the larger error bars, are less conclusive. Nonetheless we can
still see that the conductivity increases with decreasing D.

In Figure 6.8b we can see the spin conductivity for a spin-3/2 XXZ chain as a function
of the easy-axis anisotropy for some values of ∆. For ∆ ≤ 0, similar behaviour to spin-1
chains is observed. For ∆ > 0, the spin-3/2 XXZ chain has finite conductivity for D
values in the XY1 phase. Furthermore, as D is increased, the conductivity becomes less
dependent on the value of ∆. In this regime, states with Sz = ±1/2 are preferred, so the
system is likely to exhibit similar behaviour to spin-1/2 chains. Without results for larger
D values, it is difficult to take strong conclusions. By further extending the calculations
for larger values of D, we could gauge a possible ∆ dependency of the conductivity and
compare with results for spin-1/2 XXZ chains.
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Figure 6.9: Dependence of the DC spin conductivity of spin-S XXZ chains on the spin number
S. Results are presented for the Heisenberg (∆ = 1) and XY (∆ = 0) chains at the inverse tem-
perature β = 128. The MC calculations were performed with 105 MCS and 25 bins. Statistical
errors are sometimes smaller than the size of the symbols.

For both cases in Figure 6.8, results for the XY2 phase have larger standard devia-
tions than results for other phases. This is due to an unoptimized sampling of the SSE
configuration space by the Directed Loop algorithm in this regime. In the code used to
compute the results, the vertex updates only change the state on the entrance legs by ±1.
Since in the XY2 phase states with Sz = ±S are preferred, vertex updates which change
the entrance leg by ±2S will lead to a more efficient sampling of the SSE configuration
space, reducing the overhaul correlation between successive configurations each MCS.
With this, results for the XY2 phase would probably have lower standard deviations, and
more concrete conclusions could have been taken.

6.4 Dependence on the Spin Number S

As we have seen in Figures 6.6 and 6.7, as we increase the spin number S, the mag-
nitude of the spin conductivity also increases. Figure 6.9 show the spin conductivity as
a function of the spin number for the Heisenberg and XY chains. We see that due to
the Haldane gap, the conductivity for the Heisenberg chain at integer spins are zero. For
half-integer spin values and for the XY chain, the conductivity increases with S.

Now, we try to get an estimate of the value of the spin conductivity in the S → ∞
limit, this is, in the classical spin limit. For this we can fit a polynomial to the spin
conductivity values as a function of 1/S, and extrapolate to 1/S = 0. For the Heisenberg
chain, this is not a straight forward procedure due to the zero values at integer spins.
As this gap decreases exponentially for large S values [42], we ignore these values and
perform the extrapolation for the conductivity values only at half-integer spins. Fitting
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Figure 6.10: Spin conductivity of spin-S XXZ chains as a function of 1/S, for half-integer
S. Results are presented for the Heisenberg (∆ = 1) and XY (∆ = 0) chains at the inverse
temperature β = 128. The black lines are second order polynomial fits to the MC calculated
points.

a polynomial of degree 2, as shown in Figure 6.10, we obtain the following values for the
conductivity in the classical spin limit: σ = 1.37±0.06 for the XY chain and σ = 0.5±0.3

for the Heisenberg chain.
Although the result for the XY chain is accurate, the one for the Heisenberg chain

has a large standard deviation. This is also due to an unoptimized SSE sampling for
chains with larger S by only considering vertex update types of ±1, as descried in the
last section. If other types of updates would have been considered, the extrapolation to
the large S regime would have been more accurate. Nonetheless, our result agrees with
results for the conductivity of classical spin systems. For example, [70] obtained σ ≈ 0.65

for the classical isotropic Heisenberg antiferromagnet.

64



Chapter 7

Conclusion

The goal of this work was to develop a method, in the SSE framework, to efficiently
sample transport coefficients, and to apply it to the computation of transport coefficients
for spin-S XXZ chains, with S = 1/2, 1, 3/2, to find possible differences of transport in
chains with larger spin number.

By introducing an imaginary time representation of the SSE configurations, were an
imaginary time is randomly assigned to each Hamiltonian bond operator in the operator
string, we were able to derive a new sampling routine to sample the kinetic coefficients.
This method improves upon known approaches as it is more computationally efficient, i.e.
scales linearly with the expansion order O(n), and does not require the calculation of any
factorials or hypergeometric functions. This allows us to efficiently compute some of the
kinetic coefficients at low temperatures and for large systems through the SSE method.

Calculations of the kinetic coefficients LSS, LHH and LSH for small systems agree with
ED results, proving our approach to be accurate. However, calculations for larger systems
show large standard deviations in the estimated values of LHH and LSH . As a precise
estimation of the kinetic coefficients is needed to reliably perform the extrapolation to
ω = 0, we decided to mostly focus our results on the DC spin conductivity σ, which is
related to the coefficient LSS.

Results for the spin conductivity of spin-1/2 XXZ chains agree well with both exact
results from the JW transformation and results from Bosonization. Spin-1 chains, at low
temperatures, show zero conductivity in the Haldane phase, but maintain the general
behaviour of spin-1/2 chains for ferromagnetic interactions. The conductivity of spin-3/2
chains is similar to spin-1/2 chains. Generally the magnitude of the conductivity increases
with the spin number S.

Adding an easy-axis anisotropy D term, certain spin projections are favoured for
systems with S ≥ 1. For negative D in the XY1 phase, the spin conductivity for both
spin-1 and spin-3/2 chains increases as the interaction favours ferromagnetic alignment,
whilst for positive D it decreases until it vanishes in the gapped large-D phase. Results
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for the XY2 phase are somewhat inconclusive.
In the end, estimations for the spin conductivity in the large spin limit (S → ∞)

were obtained for the XY and Heisenberg chains. For the XY model we estimate the spin
conductivity to be σ = 1.37 ± 0.06, and for Heisenberg chain we estimate σ = 0.5 ± 0.3,
which shows good agreement with previous results [70]. For future work, it would prove
interesting to verify the estimate for the spin conductivity in the S → ∞ for the XY chain
to a classical calculation.

Beyond the improvements mentioned in the results section, further improvements
would include the development of a more computationally efficient way of implementing
the sampling procedures for the other kinetic coefficients, such that accurate calculations
of LHH and LSH will also be possible. With this, calculations for the heat conductivity
and spin-Seebeck coefficient could become viable. In addition, for large S, one could try
to use the coarse-grained loop algorithms approach by Harada and Kawashima [71], which
might improve overall performance. One could also try to derive a formula to estimate
the Drude weights [9] directly through SSE. This can prove useful in relating physics of
non-integrable systems to those of integrable ones.
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Appendix A

Equivalence of Equations (4.15) and
(5.1)

In this Appendix, we show that Equations (4.15) and (5.1) are equivalent at ω =

ωM . First we start with the spectral representation, in terms of Hamiltonian eigenstates
H |n⟩ = En |n⟩, of the integral in Equation (4.15). Since z = iω, with ω ≥ 0, we have

I1 =

∫ ∞

0

dt e−ωt
〈
[Ai

x(t), A
j
y]
〉

=
1

Z

∑
n

e−βEn

∫ ∞

0

dt e−ωt
(
⟨n| eiHtAi

xe
−iHtAj

y |n⟩ − ⟨n|Aj
ye

iHtAi
xe

−iHt |n⟩
)

=
1

Z

∑
n,m

e−βEn

∫ ∞

0

dt e−ωt
(
⟨n| eiHtAi

xe
−iHt |m⟩ ⟨m|Aj

y |n⟩ − ⟨n|Aj
y |m⟩ ⟨m| eiHtAi

xe
−iHt |n⟩

)
.

Interchanging n↔ m in the second term,

I1 =
1

Z

∑
n,m

∫ ∞

0

dt e−ωt
(
e−βEn − e−βEm

)
ei(En−Em)t ⟨n|Ai

x |m⟩ ⟨m|Aj
y |n⟩

=
1

Z

∑
n,m

⟨n|Ai
x |m⟩ ⟨m|Aj

y |n⟩
(
e−βEn − e−βEm

)︸ ︷︷ ︸
Cnm

1

ω − i(En − Em)
.

Following a similar procedure for the integral in Equation (5.1), we arrive at

I2 =
1

Z

∑
n,m

Cnm
1

iωM + (En − Em)

Inserting the spectral representation of both integrals in Equations (4.15) and (5.1),
we have

Lij(ω) = ω
1

Z

∑
n,m

Cnm Im
1

ω − i(En − Em)
= ω

1

Z

∑
n,m

Cnm
(En − Em)

ω2 + (En − Em)2
,

Lij(ωM) = ωM
1

Z

∑
n,m

CnmRe
1

iωM + (En − Em)
= ωM

1

Z

∑
n,m

Cnm
(En − Em)

ω2
M + (En − Em)2

.

So we have shown that Equations (4.15) and (5.1) are equivalent for ω = ωM .
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Appendix B

Proof of Integral Identities Used in
Chapter 5

In this Appendix, we go through the proof for the four integral identities used in
Chapter 5. These relate the combinatorial factors involved in calculating the kinetic
coefficients in the series expansion formalism to a product of imaginary time integrals.

B.1 Identity for LSS

From the series expansion of LSS we get the following combinatorial factor

Ckl(τ
′, τ ′′) =

(β − τ ′′)n−k−l(τ ′′ − τ ′)lτ ′k

(n− k − l)!k!l!
Θ(τ ′′ − τ ′).

We now show that this can be rewritten as∫ β

0

dτn . . .

∫ τ2

0

dτ1(Θ(τ ′′−τk+l)−Θ(τ ′′−τk+l+1))(Θ(τ ′−τk)−Θ(τ ′−τk+1))Θ(τ ′′−τ ′). (B.1)

We start by integrating until the integral of τk, which leads to∫ β

0

dτn . . .

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
(Θ(τ ′′−τk+l)−Θ(τ ′′−τk+l+1))(Θ(τ ′−τk)−Θ(τ ′−τk+1))Θ(τ ′′−τ ′).

Taking a closer look at the τk integral, we have∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
Θ(τ ′ − τk)︸ ︷︷ ︸

τ ′ can be > or < than τk

−Θ(τ ′ − τk+1)

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
=

Θ(τk+1 − τ ′)

∫ τ ′

0

dτk
τ k−1
k

(k − 1)!
+ Θ(τ ′ − τk+1)

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!

−Θ(τ ′ − τk+1)

∫ τk+1

0

dτk
τ k−1
k

(k − 1)!
= Θ(τk+1 − τ ′)

τ ′k

k!
.
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B.2. Identity for LHH

Inserting this results in the original relation and integrating until the τk+l integral,

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+2

0

dτk+1(Θ(τ ′′ − τk+l)−Θ(τ ′′ − τk+l+1))Θ(τk+1 − τ ′)Θ(τ ′′ − τ ′) =

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+l+1

0

dτk+l
(τk+l − τ ′)l−1

(l − 1)!
(Θ(τ ′′ − τk+l)−Θ(τ ′′ − τk+l+1))Θ(τk+l − τ ′)Θ(τ ′′ − τ ′).

Following the same procedure as for the τk integral, the τk+l integral yields∫ τk+l+1

0

dτk+l
(τk+l − τ ′)l−1

(l − 1)!
(Θ(τ ′′−τk+l)−Θ(τ ′′−τk+l+1))Θ(τk+l−τ ′) = Θ(τk+l+1−τ ′′)

(τ ′′ − τ ′)l

l!
.

Inserting this back in to the identity and solving the rest of the integrals, we have

(τ ′′ − τ ′)l

l!

τ ′k

k!
Θ(τ ′′ − τ ′)

∫ β

0

dτn . . .

∫ τk+l+2

0

dτk+l+1Θ(τk+l+1 − τ ′′) =

(β − τ ′′)n−k−l(τ ′′ − τ ′)lτ ′k

(n− k − l)!k!l!
Θ(τ ′′ − τ ′) = Ckl(τ

′, τ ′′).

Just as we wanted to show, the combinatorial factor Ckl(τ
′, τ ′′) can be written in terms

of the integral identity in Equation (B.1).

B.2 Identity for LHH

From the series expansion of LHH we get the following combinatorial factor

C ′
kl(τ

′, τ ′′) =
(β − τ ′′)n−2−k−l(τ ′′ − τ ′)lτ ′k

(n− 2− k − l)!k!l!
Θ(τ ′′ − τ ′).

We now show that this can be rewritten as∫ β

0

dτn . . .

∫ τ2

0

dτ1δ(τ
′′ − τk+l+2)δ(τ

′ − τk+1)Θ(τ ′′ − τ ′). (B.2)

We start by integrating until the τk+1 integral. As a results, we have∫ β

0

dτn . . .

∫ τk+2

0

dτk+1

τ kk+1

k!
δ(τ ′′ − τk+l+2)δ(τ

′ − τk+1)Θ(τ ′′ − τ ′) =

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+3

0

dτk+2Θ(τk+2 − τ ′)δ(τ ′′ − τk+l+2)Θ(τ ′′ − τ ′).

The Heaviside function was introduced as a result of setting τ ′ to τk+1. Then we require
that τk+2 > τ ′. Integrating until the τk+l+2 integral,

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+l+3

0

dτk+l+2
(τk+l+2 − τ ′)l

l!
Θ(τk+l+2 − τ ′)δ(τ ′′ − τk+l+2)Θ(τ ′′ − τ ′) =

(τ ′′ − τ ′)l

l!

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+l+4

0

dτk+l+3Θ(τk+l+3 − τ ′′)Θ(τ ′′ − τ ′).

70



Appendix B. Proof of Integral Identities Used in Chapter 5

Solving the rest of the integrals, we obtain

(β − τ ′′)n−2−k−l(τ ′′ − τ ′)lτ ′k

(n− 2− k − l)!k!l!
Θ(τ ′′ − τ ′) = C ′

kl(τ
′, τ ′′),

Just as we wanted to show.

B.3 Identity for LSH and LHS

From the series expansion of LSH or LHS we get the following combinatorial factor

C ′′
kl(τ

′, τ ′′) =
(β − τ ′′)n−1−k−l(τ ′′ − τ ′)lτ ′k

(n− 1− k − l)!k!l!
Θ(τ ′′ − τ ′).

We now show that this can be rewritten as either∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1(Θ(τ ′′− τk+l+1)−Θ(τ ′′− τk+l+2))δ(τ
′− τk+1)Θ(τ ′′− τ ′), (B.3)

or ∫ β

0

dτn . . .

∫ τ3

0

dτ2

∫ τ2

0

dτ1δ(τ
′′ − τk+l+1)(Θ(τ ′ − τk)−Θ(τ ′ − τk+1))Θ(τ ′′ − τ ′). (B.4)

In the last two sections we implicitly showed the procedures for integrating a delta
function or a Heaviside step function. These can be applied to these identities as well.
Since they are similar, we show the proof for the first one, Equation (B.3). We start by
integrating until the τk+1 integral,∫ β

0

dτn . . .

∫ τk+2

0

dτk+1

τ kk+1

k!
(Θ(τ ′′ − τk+l+1)−Θ(τ ′′ − τk+l+2))δ(τ

′ − τk+1)Θ(τ ′′ − τ ′) =

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+3

0

dτk+2Θ(τk+2 − τ ′)(Θ(τ ′′ − τk+l+1)−Θ(τ ′′ − τk+l+2))Θ(τ ′′ − τ ′).

Integrating until the τk+l+1 integral and applying the same procedure as in Section B.1,
we get

(τ ′′ − τ ′)l

(l)!

τ ′k

k!

∫ β

0

dτn . . .

∫ τk+l+3

0

dτk+l+2Θ(τk+l+2 − τ ′′)Θ(τ ′′ − τ ′).

Solving the rest of the integrals, we obtain

(β − τ ′′)n−1−k−l(τ ′′ − τ ′)lτ ′k

(n− 1− k − l)!k!l!
Θ(τ ′′ − τ ′) = C ′′

kl(τ
′, τ ′′).

Just as we wanted to show.
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