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Abstract: Consider a uniformly strongly consistent statistical functional. We present
a new method for extracting limit distributions of the type “the last time” and “the
number of times” an error larger than ε is committed for Hadamard differentiable
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1. Introduction

It is of great interest to study the differential calculus of statistical functionals
based on empirical processes, as it can painlessly yield useful approximations
of complex estimators using functional delta methods.

The only randomness of statistical functionals originates from the empirical
process. This means we can figure out by how much and where our functional
errs if we know this for the empirical process. We present a framework to
extend known characteristics of the errors committed by empirical processes
to Hadamard-differentiable statistical functionals and give several examples.
Specifically, we investigate the asymptotic distribution of Nε, the last time an
ε-error is committed and Qε, the number of errors larger than ε.

These sizes are of interest in statistical estimation theory. Hjort & Fenstad
(1992) showed that in most real valued estimators, the limit of ε2Nε depends
only on the asymptotic variance, which thus gives new motivation to its use as a
benchmark for the efficiency of an estimator. We will show that the Hadamard-
differential plays an analogous rôle for a large class of statistical functionals.
Further, once the limit distribution of Nε is extracted, it can readily be applied
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to create sequential fixed-volume confidence regions in the style of Section 8F
of Hjort & Fenstad (1992).

Hadamard-differentiability respects a chain-rule, so our results can often be
extended in a tree structure. Our main example regards the hierarchy of

Nelson-Aalen 7→ Kaplan-Meier 7→ Quantile estimator under censoring

which are Hadamard-differential maps of each other.
We now turn to an explanation of the general heuristics used in both our and

previously known results, then briefly summarize past developments. Further,
section 2 presents our new results. Most proofs are in Appendix A. We continue
with applications in Section 3 and end with Appendix B which states and proves
a needed result for the multivariate empirical process.

Consider a variable Dn, typically some distance or precision measure asso-
ciated with n observed data points. Assume Pr{Dn → 0} = 1 and Zm(u) =
√
mDbmuc

L−−−−→
m→∞

Z(u) in each Skorokhod space D[a, b] for each interval 0 <

a < b. Let Nε = max{n : Dn > ε}, which is a.s. finite from the assumed a.s.
convergence. In many cases we have

Pr
{
ε2Nε ≥ y

} ·= Pr

{
max
n≥m

√
mDn ≥

√
y

}
= Pr

{
max
u≥1

Zm(u) ≥ √
y

}
,

where m = by/ε2c. This is close to showing ε2Nε
L−−−→

ε→0
{maxu≥1 Z(u)}2 -

as in Hjort & Fenstad (1992). The same argument can be extended to other
functionals than Nε. Hjort & Fenstad (1992) also considered Qε = #{n : Dn >
ε}, using the same heuristics.

Asymptotics of this type was initialized by Stute (1983), which was limited to
a certain class of real valued M -estimators, and greatly generalized in Hjort &
Fenstad (1992). Barbe et al. (1998) looked at a certain class of mixing processes,
and Atlagh et al. (2005) regarded real valued asymptotically linear estimators.
However, the only previously known results for stochastic processes are found
in Hjort & Fenstad (1992). They were also the only ones which so far has
considered other functionals, such as their Qε. As for statistical applications,
Barbe et al. (1998) applied the Nε convergence to stopping times for the Gibbs-
sampler and Hjort & Fenstad (1992) found confidence regions with shrinking
boundaries and tests with power one.

We also mention that Hjort & Fenstad (1992) showed that their treatment
of the empirical process can be extended to related estimators and gave the
Crámer-von Mises statistic as an example. Although our results is a develop-
ment of this, their method would not work without a detailed analysis of each
individual statistical functional. As we only use the differential structure in our
approximation results, our perspective allows us to give very general conditions
for our results and is further simple to apply. Hjort & Fenstad (1992) also gave
results for functional differentiable real-valued estimators, but did not regard
any functional differentiable estimators that are stochastic processes.
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2. Main results

We will be concerned with stochastic processes in the Skorokhod-space D of
all cádlág functions (that is, right continuous functions with left hand limits)
and will utilize two different metrizations. We will primarily use the uniform
norm as the metric of choice for weak convergence, and secondarily use the
Skorokhod topology as an auxiliary tool. For the uniform case, we will use
the ball σ-field generated by all ε-balls, as used in Gill (1989), due to Dudley.
We will also be using the Hadamard-differentiability and delta method of Gill
(1989). The needed definitions and results follows the discussion given after
Equation (2.1) As for the Skorokhod-space, we will utilize a multivariate gener-
alization given in Bickel & Wichura (1971) which allows multidimensional time
needed by estimators based on a multivariate empirical process. The multivari-
ate Skorokhod-space will only be used in Appendix B, as weak convergence in
the uniform metric and the multivariate Skorokhod metric is equivalent if the
target variable is continuous, see Bickel & Wichura (1971, section 3).

Let F1, F2, . . . be a sequence of stochastic processes (with respect to the ball
σ-field) on D(T ) which converges strongly to a deterministic F . Here D(T )
is the space of all cádlág functions indexed by a given hypercube T ⊆ Rq.
We will allow vector valued functions and set |F | := max1≤i≤p |F i| when F =
(F 1, F 2, . . . , F d) ∈ Rd. Suppose further that

Km(s, t) =
√
m
{
Fbsmc(t)− F (t)

}
has a continuous weak limit K(s, t) (with respect to Dudley’s weak convergence
definition). For a given linear and continuous functional φ′F (α) on D, write

√
n[φ(Fn)− φ(F )] = φ′F (

√
n[Fn − F ]) +Rn (2.1)

where Rn is a remainder. If φ is Hadamard-differentiable and φ′F (α) is its

differential, Gill (1989) gives Rn
P−−−→

n→∞
0 in his Theorem 3 - the functional

delta method. For examples on how to compute Hadamard-differentials, see
Gill (1989) and section 5.2 of Shao (2003).

The following is our basic approximation result, and will also present the
setting for which our results are valid. We defer the proof to Appendix A.

Lemma 2.1. Let φ : B1 7→ B2 where B1, B2 are two linear subspaces of D(T )d

and T ⊆ Rq is a hypercube. Assume that F1, F2, . . . are stochastic processes
indexed by D(T )d which converge uniformly to F a.s. and that ‖φ(Fn)−φ(F )‖∞
converge almost surely to zero. Suppose φ is Hadamard-differentiable at each
Km and at the weak limit K, tangentially to a subspace of D(T )d which includes
F . Then

√
m supn≥m ‖φ(Fn)−φ(F )‖∞ and supn≥m ‖φ′F (

√
m[Fn −F ])‖∞ have

the same asymptotic distribution.

Note that we do not impose the i.i.d. setting on our variables, yet we will not
investigate any non-i.i.d. variables in our examples. The assumption ‖φ(Fn)−
φ(F )‖∞

a.s.−−−→
n→∞

0 is motivated by the fact that we are interested in e.g. the last

time ‖φ(Fn) − φ(F )‖∞ > 0, as described in the introduction. Instead of this
assumption, we could also have required φ to be continuous (w.r.t. the uniform
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norm). This would transfer the a.s. convergence of the empirical process to our
functional, but is stronger than our assumptions.

Theorem 2.2. Assume the setting of Lemma 2.1 and that
√
m[Fbmsc(t)− F (t)] L−−−−→

m→∞
K(s, t) (2.2)

for some continuous K, where s ∈ (0, 1] and t ∈ T . Assume that φ′F is continu-
ous at K(s, t), where φ′F treats s as a given constant (so it is still a functional
of D(T )d). Assume further that for any δ > 0 we have

lim
c→∞

lim sup
m→∞

Pr

{
sup

n≥cm
‖φ′F (

√
m[Fn − F ])‖∞ ≥ δ

}
= 0. (2.3)

We then have that

ε2Nε
L−−−→

ε→0

(
sup

0≤s≤1
sup

t
|φ′F {KF (s, ·)}(t)|

)2

,

where the notation is intended as a reminder as to that φ′F regards s as an
index.

Proof. Notice that Pr
{
ε2Nε > y

}
= Pr

{
supn≥m ‖φ(Fn)− φ(F )‖∞ > ε

}
=

Pr
{√

m supn≥m ‖φ(Fn)− φ(F )‖∞ >
√
y0

}
wherem := by/ε2c and y0 = ε2by/ε2c

(which goes uniformly to y as ε→ 0). By Lemma 2.1 we only have to be con-
cerned with the weak convergence of φ′F (

√
m[Fn − F ]). Now notice that by

invoking the continuous mapping theorem on both of the supremum and φ′F in
conjunction with the assumed tail-inequality given in Equation (2.3), we get

sup
s≥1

sup
t
|φ′F (

√
m[Fbmsc(·)− F (·)])(t)| L−−−−→

m→∞
sup
s≥1

sup
t
|φ′F {KF (s−1, ·)}(t)|

= sup
0≤s≤1

sup
t
|φ′F {KF (s, ·)}(t)|, (2.4)

by Theorem 4.2 of Billingsley (1968), which completes the proof. �

We will apply this when Fn is the empirical process. Thus K will be a
Kiefer-process, as given in Appendix B.

Our method is simple to apply. This simplicity resides in the following result.
The proof is given in Appendix A.

Lemma 2.3. Assuming the setting of Lemma 2.1. If for any δ > 0,

lim
c→∞

lim sup
m→∞

Pr

{√
m sup

n≥cm
‖Fn − F‖∞ ≥ δ

}
= 0 (2.5)

we also have that for any δ > 0,

lim
c→∞

lim sup
m→∞

Pr

{
sup

n≥cm
‖φ′F (

√
m[Fn − F ])‖∞ ≥ δ

}
= 0. (2.6)

Our results and techniques are strong enough to tackle other properties of
the errors as well. Define Qε(a) by the number of times φ(Fn) is further than ε
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away from φ(F ) (w.r.t. the uniform norm) among n ≥ a/ε2. Hjort & Fenstad
(1992) shows that we can write

Qε(a) =
∫ ∞

ba/ε2c
I
{
‖φ(Fbsc)− φ(F )‖∞ > ε

}
ds.

The following Theorem shows that our machinery is still valid in this case,
and is proved in Appendix A.

Theorem 2.4. Assume the setting and assumptions of Theorem 2.2. We then
get

ε2Qε(a)
L−−−→

ε→0
Q(a) =

∫ ∞

a
I
{
‖φ′F {K(s, ·)}(t)‖∞ ≥ 1

}
dt.

3. Applications

To illustrate the potential of our method, we will consider several examples.
We will only regard the limit distributions of Nε and not Qε” as this is entirely
analogous.

Example 3.1. First of all, consider the identity map φ = ι, which is linear and
thus obviously Hadamard-differentiable. The differential is given by φ′F (α) = α,
which is obviously continuous. This returns us to the empirical process result
of Hjort & Fenstad (1992).

As Hadamard-differentiability follows a chain-rule (see Gill, 1989)) we can
extend results in a hierarchical manner, as the following example shows.

Example 3.2. We now look at the Nelson-Aalen and Kaplan-Meier estimat-
ors of survival analysis. Let X1, . . . Xn be i.i.d. life times with c.d.f. G and
C1, . . . , Cn i.i.d. censoring times with c.d.f. H and bivariate c.d.f. F . Note
that we are under the rather restrictive assumption of simple random censor-
ing. We will also use the following more natural assumption on the time. We
will let time end at τ = K−1(1), where 1−K = (1−G)(1−H). Uniform strong
consistency is given in e.g. Theorem 1 of Shorack & Wellner (1986, Chapter
7.3).

This example reveal both the power and the bottleneck of our method. On
the one hand, the extraction of a rather complex limit result is reduced to the
computation of Hadamard-differentials. On the other hand is the limitations
imposed by the empirical process theory of Appendix B; it only handles the
i.i.d. case. If we were to use a more general empirical process, our results would
be more powerful and could potentially be used with more general censoring
mechanisms.

We observe (Z1,∆1), . . . , (Zn,∆n) where Zi = Xi∧Ci and ∆i = I {Xi ≤ Ci}.
The cumulative hazard function is

Λ(t) :=
∫

[0,t]

1
Pr{Z ≥ x}

dPr {Z ≤ x,∆ = 1} .

This can be written as a functional of the bivariate cumulative distribution
function F = FX,∆(x, δ) = Pr {X ≤ x,∆ ≤ δ} as

φ(FX,∆)(t) =
∫

[0,t]

1
1− FX,∆(x, δ)|δ=1

d(FX,∆(x, δ)|δ=1 − FX,∆(x, δ)|δ=0).
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Let Fn be the bivariate empirical c.d.f.. The Nelson-Aalen estimator can then
be written as φ(Fn). Notice that φ can be decomposed into simpler maps, so
we can use the chain-rule. Let A ∈ D[R2] and regard the sequence of maps

A 7→ (A,A) 7→ (1−A(x, δ)|δ=1, A(x, δ)δ=1 −A(x, δ)|δ=0)

7→ (
1

1−A(x, δ)|δ=1
, A(x, δ)δ=1 −A(x, δ)|δ=0)

7→
∫

[0,t]

1
1−A(x, δ)|δ=1

d(A(x, δ)|δ=1 −A(x, δ)|δ=0),

in which the first two maps are linear and continuous (and thus Hadamard-
differentiable), and the two last ones are Hadamard-differentiable by Lemma 3 of
Gill (1989) on the domain {(A,B) :

∫
|dA| <∞, B > 0} under the assumption

that 1/A is of bounded variation. We will thus assume that this is true for
(A(x), B(x)) = (Pr{Z ≥ x}, P r{Z ≤ x,∆ = 1}). van der Vaart & Wellner
(1996, example 3.9.19) state that the derivative map of the composition of
the last two maps is ψA,B(α, β) =

∫
[0,t](1/B)dα −

∫
[0,t](β/B

2)dA, where the
first integral is interpreted in a partial integration fashion if α is of unbounded
variation. The composition of the first two maps has differential ϕ′A(α) =
(α(x, 1), α(x, 1) − α(x, 0)). From the chain-rule (Gill, 1989), we can conclude
that

φ′FX,∆
(α)(t) = ψ′ϕ(FX,∆) ◦ ϕ

′
FX,∆

(α)(t)

=
∫

[0,t]

1
F (x, 1)− F (x, 0)

dα(x, 1)−
∫

[0,t]

α(x, 1)− α(x, 0)
F (x, 1)− F (x, 0)

dF (x, 1).

This is a continuous map, and we invoke Theorem 2.2 w.r.t. the bivariate em-
pirical process convergence and tail bounds of Appendix B to conclude that

ε2Nε(Λ) L−−−→
ε→0

(
sup

0≤s≤1
sup

0≤t≤τ

∣∣∣∣∣
∫

[0,t]

1
F (x, 1)− F (x, 0)

dK(s−1, x, 1) −

∫
[0,t]

K(s−1, x, 1)−K(s−1, x, 0)
F (x, 1)− F (x, 0)

dF (x, 1)

∣∣∣∣∣
)2

.

We continue with the Kaplan-Meier estimator and notice that it can be writ-
ten as Kn = 1−Ψ(−Λ̂n), where Λ̂n is the Nelson-Aalen estimator and

Ψ(A)(s, t] = π
s<u≤t

(1 + dA(u))

where π is product integration (see Andersen et al. (1992) for details). Its
Hadamard-differential is given by Lemma 3.9.30 of van der Vaart & Wellner
(1996) as

Ψ′
A(α)(t) = α(t) +

∫
(0,t]
π
(0,s)

(1 + dA)dA(s)[α(t)− α(s)] +
∫

(0,t]
α(r−)dA(r)

×π
(r,t]

(1+dA)+
∫ ∫

0<s<r≤t
π
(0,s)

(1+dB)dB(s)[h(r−)−h(s)]π
(r,t]

(1+dA)dA(r),
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where α ∈ D may be of unbounded variation. Using the chain rule of Hadamard-
differentiation, we can regard the Kaplan-Meier estimator as Ψ ◦−φ(Fn). This
yields

ε2Nε(K) L−−−→
ε→0

(
sup

0≤s≤1
sup

0≤t≤τ

∣∣∣Ψ′
−φ(F ) ◦ −φ

′
F {K(s−1, ·)}(t)

∣∣∣)2

,

where the Kiefer-process still has three-dimensional time.
Continuing even further, let us regard the quantile estimator under censor-

ing, using the inverse Kaplan-Meier functional. It is strongly consistent. We
will treat the quantile p ∈ (0, 1) as given. The quantile estimator under cen-
soring is even uniformly strongly consistent for varying quantiles by Theorem
18.4.1 of Shorack & Wellner (1986) if the observations have a density f and
f(F−1) is continuous. The Hadamard-differentiability (tangentially to the set
of functions that are continuous at F−1(p)) of Φ(T )(p) = T−1(p) = inf{x :
T (x) ≥ p} is secured if f(F−1) is also strictly positive, see Gill (1989, Corol-
lary 2). The differential is given as Φ′

F (α) = −α(F−1(p))/f(F−1(p). Assuming
K = 1−Ψ(−φ(FX,∆)) is continuous at F−1(p), we can conclude that the quantile
estimator can be written as Φ ◦ (Ψ ◦ −φ(Fn)) and

ε2Nε(K−1(p)) L−−−→
ε→0

(
sup

0≤s≤1
|Φ′

Ψ◦−φ(F ) ◦Ψ′
−φ(F ) ◦ −φ

′
F {K(s−1, ·)}|

)2

using the chain rule. This limit is rather complex once written out, and it seems
implausible that it would be found using other techniques.

The following example shows consistency between our and known results in
a non-trivial case.

Example 3.3. Let us consider the quantile estimator ξ̂pn = F−1
n (p), which is

a.s. converging to ξp = F−1(p). By the Bahadur-representation (Serfling, 1980,
Theorem 2.5.1) or the Lipschitz differentiability of the quantile function, it can
be seen using section 4 or section 3.C of Hjort & Fenstad (1992) that

ε2Nε
L−−−→

ε→0

p(1− p)
f(ξp)2

(
sup

0≤s≤1
|Ws|

)2

. (3.1)

Using the Hadamard-differentiability (discussed in Example 3.2) of ξ̂pn = Φ(Fn) =
F−1

n (p) we get that

ε2Nε
L−−−→

ε→0

(
sup

0≤s≤1

∣∣∣∣KF (s, ξp)
f(ξp)

∣∣∣∣)2

,

which is seen to be equal in distribution to the limit of eq. (3.1) by the covariance
structure of the Kiefer process given by eq. (B.1). Notice that

Cov (KF (s1, ξp),KF (s2, ξp)) = (s1 ∧ s2)(F (ξp)− F (ξp)2) = (s1 ∧ s2)p(1− p),

which means KF (s, ξp) =D

√
p(1− p)Ws as they are both Gaussian.

Example 3.4. As a final example, we note that the functionals

φ1(T )(x) =
T (x+ δ)− T (x− δ)

2δ
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and

φ2(T,G) = T −G

are both linear and continuous, thus Hadamard differentiable with differen-
tial equal to them selves. When φ1 is applied to the empirical process or the
Kaplan-Meier functional, we get a density estimator. And when φ2 is applied
to two empirical processes or Kaplan-Meier estimators (assuming independence
of the observations) we get a test statistic for the null hypothesis of equality in
distribution. Both of the statistical functionals conform to the assumptions of
Theorem 2.2.

4. Discussion

This paper extends the empirical process results of Hjort & Fenstad (1992)
to a much larger class of functionals. As the class of Hadamard-differentiable
functionals is vast, we could have given several even more complex examples.
The main restrictions of our results are the empirical process theory used and
the strict measurability conditions imposed by the weak convergence theory we
use. As indicated by the survival analysis example, it would be very interesting
to use a more general empirical process theory. We further conjecture that
our measurability conditions could be loosened considerably by using the weak
convergence theory of Hoffmann-Jørgensen as described in e.g. van der Vaart &
Wellner (1996). Further, it would be interesting to see if the first-order results
of this paper could be extended to second-order results in the style of Hjort &
Fenstad (1995).

During the work with this paper, two new functionals were thought of. Let
Rε(a, b, c) (for ratio) be given by

Rε(a, b, c) =

∫∞
ba/ε2c I

{
bε < ‖φ(Fbsc)− φ(F )‖∞ < cε

}
ds∫∞

ba/ε2c I
{
‖φ(Fbsc)− φ(F )‖∞} > ε

}
ds

, (4.1)

which was kindly suggested by Professor Nils Lid Hjort. Further, let

Mε(a) =

∫∞
ba/ε2c ‖φ(Fbsc)− φ(F )‖∞I

{
‖φ(Fbsc)− φ(F )‖∞ > ε

}
ds∫∞

ba/ε2c I
{
‖φ(Fbsc)− φ(F )‖∞} > ε

}
ds

, (4.2)

be the average size of the errors larger than ε among n ≥ a/ε2. We conjecture
that

ε−1Mε(a)
L−−−→

ε→0

1
Q(a)

∫ ∞

a
‖φ′F {K(s, ·)}(t)‖∞I

{
‖φ′F {K(s, ·)}(t)‖∞ ≥ 1

}
dt,

and

Rε(a, b, c)
L−−−→

ε→0

1
Q(a)

∫ ∞

a
I
{
b ≤ ‖φ′F {K(s, ·)}(t)‖∞ ≤ c

}
dt.

under the assumptions of Theorem 2.2. To prove this, we could follow the
procedure used for Nε and Qε.
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Appendix A. Proofs

The following probabilistic observation will be needed for the proof of Lemma
2.1.

Lemma A.1. Let (Xn)∞n=1 be a sequence of non-negative random variables that

converges a.s. to zero with the additional property that f(n)Xn
P−−−→

n→∞
0, where

f : N 7→ R is an arbitrary positive and strictly increasing function. We then
also have

f(n) sup
m≥n

Xm
P−−−→

n→∞
0. (A.1)

Proof. Use S̄ to note the complement of a given set S. Let ε > 0 and

Aε
n := {ω ∈ Ω : f(n)Xn(ω) ≥ ε}.

The assumed convergence in probability is equivalent to Pr{Aε
n} →n→∞ 0 for

any given ε > 0. Now set Bε
n := {ω ∈ Ω : f(n) supm≥nXm ≥ ε}. Let Ω∗ be the

set of unit measure where Xn → 0. We show that Pr
{
(Āε

n \ B̄ε
n)
⋂

Ω∗} → 0,
which implies Pr{B̄ε

n} → 1 since Pr{Āε
n} → 1 and B̄ε

n ⊆ Āε
n. Observe that

(Āε
n \ B̄ε

n)
⋂

Ω∗ =
{
ω ∈ Ω∗ : Xn(ω) < ε/f(n), sup

m≥n
Xn(ω) ≥ ε/f(n)

}
.

As ω ∈ Ω∗, where there is convergence, there exists a finite index m(n)
sup where

supm≥nXn(ω) is reached by the non-negativeness of Xn. Notice that X
m

(n)
sup

≥

ε/f(n) implies X
m

(n)
sup

≥ ε/f(m(n)
sup) by the monotonicity of f(·). This gives{

ω ∈ Ω∗ : Xn(ω) <
ε

f(n)
, X

m
(n)
sup

≥ ε

f(n)

}
⊆

{
ω ∈ Ω∗ : Xn(ω) <

ε

f(n)
, X

m
(n)
sup

≥ ε

f(m(n)
sup)

}
= (Āε

n \ Āε

m
(n)
sup

)
⋂

Ω∗.

As m(n)
sup is just an increasing subsequence of N, the sequence {Aε

m
(n)
sup

} ⊆ {Aε
n}

will also converge in probability to zero. Since ε was arbitrary, the convergence
of Equation (A.1) follows. �
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Note that the needed measurability conditions are included in the assump-
tions of the delta-method as given in Gill (1989), so we need not stress this in
the proofs.
Proof of Lemma 2.1. Define Qn = Rn/

√
n. Notice that φ(Fn) − φ(F ) =

φ′F (Fn − F ) +Qn from the assumed linearity of φ′F . This implies

Pr

{√
m sup

n≥m
‖φ(Fn)− φ(F )‖∞ < y

}
= Pr

{√
m sup

n≥m
‖φ′F (Fn − F ) +Qn‖∞ < y

}
.

From the triangle inequality of both the supremum over n and T , the difference
between

√
m supn≥m ‖φ′F (Fn − F ) +Qn‖∞ and

√
m supn≥m ‖φ′F (Fn − F )‖∞ is

dominated by
√
m supn≥m ‖Qn‖∞. They will thus have the same asymptotic

distribution if we can show that
√
m supn≥m ‖Qn‖∞

P−−−→
n→∞

0. Note that from

assumption of Hadamard-differentiability, we have
√
n‖Qn‖∞

P−−−→
n→∞

0 per defin-

ition, so that Lemma A.1 reduces the problem to show that ‖Qn‖∞
a.s.−−−→

n→∞
0 is

true. We assumed ‖φ(Fn)−φ(F )‖∞
a.s.−−−→

n→∞
0 and since φ′F is continuous with re-

spect to the uniform norm (this is an assumption of Hadamard-differentiability
in Gill (1989)), we also get that ‖φ′F (Fn−F )‖∞

a.s.−−−→
n→∞

‖φ′F (0)‖∞ = 0 from the

assumption ‖Fn − F‖∞
a.s.−−−→

n→∞
0. Now notice that

0 ≤ ‖Qn‖∞ = ‖Qn + φ′F (Fn − F )− φ′F (Fn − F )‖∞
≤ ‖Qn + φ′F (Fn − F )‖∞ + ‖φ′F (Fn − F )‖∞

= ‖φ(Fn)− φ(F )‖∞ + ‖φ′F (Fn − F )‖∞
a.s.−−−→

n→∞
0,

which completes the proof. �

Proof of Lemma 2.3. We will gain the limit in Equation (2.6) by extending
Equation (2.5)) from the continuity of φ′F .

To shorten notation, letH i
m(s, t) :=

√
m[F i

bmsc(t)−F
i(t)], where F i is defined

by the i’th row-element of the vector F . Let further Hm(s, t) :=
√
m[Fbmsc(t)−

F (t)]. Now, let δ > 0 and define

Bδ
c,m :=

{
ω ∈ Ω :

√
m max

1≤i≤d
sup

n≥cm
sup
t∈T

|F i
n(t)− F i(t)| < δ

}
=

{
ω ∈ Ω : max

1≤i≤d
sup
s≥c

sup
t∈T

|H i
m(s, t)| < δ

}
=

{
ω ∈ Ω : max

1≤i≤d
H i

m([c,∞), T ) ⊆ (−δ, δ)
}
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and

Aδ
c,m :=

{
ω ∈ Ω : sup

n≥cm
‖φ′F (

√
m[Fn − F ])‖∞ < δ

}
=

{
ω ∈ Ω : sup

s≥c
sup
t∈T

|φ′F {Hm(s, t)}| < δ

}
=

{
ω ∈ Ω : φ′F {Hm([c,∞), T )} ⊆ (−δ, δ)

}
.

As φ′F is continuous with respect to the uniform norm, we can choose a l that is
so large that max1≤i≤dH

i
m([c,∞), T ) ⊆ (− δ

l ,
δ
l ) implies φ′F {Hm([c,∞), T )} ⊆

(−δ, δ). Thus, Aδ/l
c,m ⊆ Bδ

c,m which gives P{Aδ/l
c,m} ≤ Pr{Bδ

c,m}. We now use the
assumption given by Equation (2.5). This applies for all elements of the vector
F = (F 1, F 2, . . . , F q). This gives, for some ∆ > 0, that

0 ≤ lim
c→∞

lim sup
m→∞

Pr

{
max
1≤i≤d

sup
n≥cm

‖
√
m[F i

n − F i]‖∞ ≥ ∆
}

≤ lim
c→∞

lim sup
m→∞

Pr

 ⋂
1≤i≤d

{ sup
n≥cm

‖
√
m[F i

n − F i]‖∞ ≥ ∆}

 = 0.

By using ∆ = δ/l we get

lim
c→∞

lim sup
m→∞

Pr

{√
m sup

n≥cm
‖φ′F (Fn − F )‖∞ ≥ δ

}
= 0,

which completes the proof. �
We need the following Lemma to prove Theorem 2.4.

Lemma A.2. We have that∫ ∞

bamc/m
I
{√

m‖φ(Fbmtc)− φ(F )‖∞ > 1
}
dt (A.2)

and ∫ ∞

bamc/m
I
{
‖φ′F (

√
m[Fbmtc − F ])‖∞ > 1

}
dt (A.3)

have the same asymptotic distribution.

Proof. Let A = bamc/m. Observe that for γ ∈ (0, 1) and a, b ≥ 0 we have
that

I{a+ b ≥ 1} ≤ I{a ≥ 1− γ}+ I{b ≥ γ}.

By the definition of Hadamard-differentiability, we have that
√
m[φ(Fbmtc) −

φ(F )] =
√
mφ′F (Fbmtc−F )+

√
mQbmtc. This implies that the difference between
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Equation (A.2) and Equation (A.3) can be written as∫ ∞

A
I
{√

m‖φ′F (Fbmtc − F ) +Qbmtc‖∞ ≥ 1
}
−I
{√

m‖φ′F (Fbmtc − F )‖∞ > 1
}
dt

≤
∫ ∞

A
I
{√

m‖φ′F (Fbmtc − F )‖ ≥ 1− γ
}
− I

{√
m‖φ′F (Fbmtc − F )‖∞ > 1

}
+ I

{√
m‖Qbmtc‖∞ ≥ γ

}
dt

=
∫ ∞

A
I
{
1− γ ≤

√
m‖φ′F (Fbmtc − F )‖ ≤ 1

}
+ I

{√
m‖Qbmtc‖∞ ≥ γ

}
dt,

from the triangle inequality of the uniform norm. We will first bound the
integral of the first addend, then the integral of the second. We know that√
m‖φ′F (Fbmtc−F )‖∞

a.s.−−−→
t→∞

0 from the continuity of both φ′F and the supremum-
mapping. Let Ω∗

m be the unit-measure set where we do have this convergence.
Let

Lm(1/2) := sup
n≥m

sup
{
t ≥ 0 :

√
n‖φ′F (Fbntc − F )‖ ≥ 1/2

}
,

which is finite on
⋂

n≥m Ω∗
n and decreasing. Assume γ < 1/2 and observe that

this gives∫ ∞

A
I
{
1− γ ≤

√
m‖φ′F (Fbmtc − F )‖ ≤ 1

}
dt

=
∫ Lm(1/2)

A
I
{
1− γ ≤

√
m‖φ′F (Fbmtc − F )‖ ≤ 1

}
dt,

which reduces our bounding procedure to a finite area. Note that the Lm(1/2)
depends on m. As it is a decreasing sequence, this will not cause any problems:
we can rather use Lm0(1/2) for some large m0. As φ′F (

√
m[Fbmtc−F ]) converges

weakly to φ′F (Kt(s)), which is continuous, the modulus of continuity in the
multivariate Skorokhod-space of Bickel & Wichura (1971) converge to zero in
probability. In specific, the same is true for the Skorokhod modulus of continuity
in t alone. Call this w′′(δ). Let δ > 0 and choose m so large and γ so small,
that Bγ,m(δ) := {ω : w′′(γ) < δ} measures up close to one. Assume we are in
(
⋂

n≥m Ω∗
n) ∩Bγ,m(δ). This gives∫ Lm0 (1/2)

A
I
{
1− γ ≤

√
m‖φ′F (Fbmtc − F )‖ ≤ 1

}
dt ≤ (Lm0(1/2)−A)δ,

where δ can be made arbitrarily small by choosing γ small enough. This com-
pletes the bounding procedure of the first addend. For the second, define
Dm(γ) = {ω ∈ Ω :

√
m supt≥1 ‖Qbmtc‖∞ < γ}. By the proof of Lemma 2.1,

the measure of Dm(γ) converges to unity for any γ > 0. As γ < 1/2, we then
get that

∫∞
A I{

√
m‖Qbmtc‖∞ > 1} dt = 0 in Dm(γ). Thus, we can bound the

difference between Equation (A.2) and Equation (A.3) in Dm(γ)∩(
⋂

n≥m Ωn)∩
Bγ,m(δ) by choosing m large enough and δ and γ small enough. As all these
sets are asymptotically of unit measure, we have convergence in probability. �
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Proof of Theorem 2.4. As in Hjort & Fenstad (1992), we use

ε2Qε =
∫ ∞

bamc/m
I
{√

m‖φ(Fbmtc)− φ(F )‖∞ > 1
}
dt.

By the previous Lemma, we only have to be concerned with the structurally
simpler ∫ ∞

bamc/m
I
{
‖φ′F (

√
m[Fbmtc − F ])‖∞ > 1

}
dt.

By the Continuous Mapping Theorem, the result is obvious if we limit the
integral to the finite region [bamc/m, c] where c is large. To show that this
suffices, we show a tail inequality parallel to eq. (2.3). By Lemma 2.3, this is
simple. Choose m and c so large that supn≥cm ‖φ′F (

√
m[Fn − F ])‖∞ ≥ 1 with

probability less than η. This means that the tail above c is zero with probability
larger than 1− η.

Appendix B. Multivariate empirical processes

We now provide the needed asymptotics for empirical processes with multidi-
mensional time. That is, processes in some subspace of D(T ), typically T = Rq.
We will use the multidimensional generalization of Skorokhod-space given in
Bickel & Wichura (1971). All of their results use T = [0, 1]q. This will be
sufficient, as our results are also valid when T is more general by considerations
of the inverse transformation of the cumulative distribution function F (which
may be entirely arbitrary), see Remark 1 of Csörgo (1981).

Let t = (t1, . . . , tq) ∈ Rq. Define the multivariate empirical process by
Fn(t) = 1

n

∑n
i=1 Zi(t), where Zi(t) = IC(t)(Xi) −Q(C(t)) and C(t) = Πp[0, tp].

Theorem 1 in Chapter 1.4 of Borovkov (1998) gives

‖Fn(t)− F (t)‖∞ = sup
t
|Fn(t)− F (t)| a.s.−−−→

n→∞
0,

needed to initialize a discussion on Nε-related functionals. To use Theorem
2.2 in conjunction with Lemma 2.3, we need both convergence of the partial
sum process of Equation (2.2) and the asymptotically negligible tail described
by Equation (2.5). Define Gn(t) =

√
nFn(t) = 1

n1/2

∑n
i=1 Zi(t) and Xn(s, t) =

( bnsc
n )1/2Gbnsc(t) = 1

n1/2

∑bnsc
i=1 Zj(t), where s ∈ [0, 1] and t ∈ T .

Theorem B.1. In the current setting, assume each element in Xi is independ-
ent and that T = [0, 1]q. We then have Xn(s, t) L−−−→

n→∞
X, where X is a Dq+1

dimensional continuous Gaussian zero mean process with

Cov (X(s1, t1), X(s2, t2)) = (s1 ∧ s2)Γ(t1, t2), (B.1)

where Γ(t1, t2) = Cov (Z1(t1), Z1(t2)) (it is thus a Kiefer process). Further we
have that

Pr

{
sup

0≤s≤1,t∈[0,1]q
|Xm(s, t)| ≥ b

}
≤ A/b4 (B.2)

for some universal constant A.
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Proof. The convergence is Theorem 6 in Bickel & Wichura (1971) combined
with the comment on empirical processes following its proof. As commented
in the proof of the Theorem in section 4 of Hjort & Fenstad (1992), the tail-
bound (B.2) is found by Bickel & Wichura’s Theorem 1 in conjunction with
their inequality (1). �

We mention that the Kiefer process is continuous as it is a continuous trans-
formation (see Csörgo & Révés, 1975) of a Brownian Sheet. Specifically,

K(t1, t2, . . . , tp−1, s) =D W (t1, t2, . . . , tp, s)− (Πp
i=1ti)W (1, . . . , 1, s).

The continuity of a Brownian sheet is given in e.g. Khoshnevisan (2002, The-
orem 3.2.1.).

We will be concerned with vectors of multivariate empirical processes and
we will use |F (t)| = max1≤i≤m |F i(t)| in this context. The previous Theorem
gives us the weak convergence required by Equation (2.2) if we use the product
topology and assume that all observations are independent. Now we only need
the tail inequality of Equation (2.5).

Lemma B.2. In the current multidimensional and multivariate setting, we
have that

lim
c→∞

lim sup
m→∞

Pr

{
√
m sup

n≥cm
sup

t∈[0,1]q
|Fn(t)− F (t)| ≥ δ

}
= 0.

Proof. Notice that

Pr

{
sup

n≥cm
sup

t∈[0,1]q
max
1≤i≤d

|F i
n(t)− F i(t)| ≥ δ

}

≤ Pr

{
max
1≤i≤d

sup
n≥cm

sup
t∈[0,1]q

|F i
n(t)− F i(t)| ≥ δ

}

≤ Pr

 ⋂
1≤i≤d

[ω ∈ Ω : sup
n≥cm

sup
t∈[0,1]q

|F i
n(t, ω)− F i(t, ω)| ≥ δ]


which can be made arbitrarily small by the one dimensional case, which in turn
is implied by Equation (B.2). �
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