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Abstract

In this work, new sets of multi-q ground states of the honeycomb J1-J2
Heisenberg model in the case of J1 = 2J2 were found by rewriting the Hamil-
tonian in a way that allows for a geometric interpretation of the ground states
of the J1-J2 honeycomb Heisenberg model. It was then investigated whether
these new obtained multi-q ground states are competitive with the spin spiral
ground states favoured by quantum fluctuations in a low temperature environ-
ment. This was achieved by calculating the partition function of the classical
perturbations of the multi-q ground states. The numerical evaluation reveals
that Coplanar states are more likely of being realized at low temperatures than
non-coplanar states, and among the coplanar states, the colinear states have the
highest probability of being realized at low temperatures. The most favoured
co-linear ground state is also a single-q spin spiral ground state which has pre-
viously been found to be the spin spiral ground state favoured by quantum
fluctuations.
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1 Introduction

Magnetic materials consists of atoms bonded together by electrons. These electrons
each have a spin, which gives rise to a magnetic momentum around the electrons.
The pairwise interactions between the spins in the material have an energy cost as-
sociated to them, which causes the internal energy of the material to depend on the
state of the spins. The magnetic properties of the material is therefore largely gov-
erned by the possible states of the spins in the material as well as their corresponding
energy cost. At low temperatures, the ground states largely governs the behaviour
of the system. In the case of all magnetic materials, the ground state is found by
minimizing all pairwise interactions between the spins in the material. In the case
of ferromagnetic materials, this is done by aligning the spins in the same direction.
Anti-ferromagnetic materials however, minimize the energy by having the spins align
in opposite directions. Some anti-ferromagnetic materials are frustrated, meaning
that it is impossible to simultaneously minimize all pairwise interactions between the
spins, which gives rise to a large amount of degenerate ground states. This frustration
is of academic interest as it has been shown to be an important mechanism in high
temperature superconductors [11, 1]. Frustrated magnets also give rise to interesting
low temperature phase transitions such as spin liquid phases [2].

The Heisenberg model is widely used to study magnetic materials where the elec-
trons are strongly bonded to the atoms, and the atoms are bonded together through
covalent bonds. In this case, the total spin of the electrons in the valance bond of
the atoms is important for the behaviour of the material. If the sum of the spins
is S = 1/2, the material behaves as a quantum system. When the total spin of the
valence bond electrons increases, the quantum effects diminish, and the system can
be approximated as a classical system. An example of a frustrated honeycomb anti-
ferromagnet with total spin (S = 3/2) is Bi3Mn4O12(NO3)[10].

Finding the ground states of a frustrated Heisenberg model has been shown to be
very difficult to do analytically. One commonly used method is the Luttinger-Tisza
method [6, 5], that reduces the number of Lagrange multipliers used when minimizing
the energy. The resulting Lagrange multipliers then yields a set of equations which
must be satisfied by all ground states, but are not sufficient to guarantee a ground
state. A well studied set of solutions to the Luttinger-Tisza method on two dimen-
sional lattices, are the single-q spin spiral states. These states are coplanar states
that only have a single contributing Fourier mode. In many cases, these are not the
only ground states of the system, as there might exist states with multiple contribut-
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ing Fourier modes (multi-q). These multi-q states are however largely unknown, and
therefore little is known about their contribution to the behaviour of frustrated mag-
netic systems. A known example of such multi-q states is the Skyrmion lattice state
[8, 9].

At low temperatures, the state which minimizes the free energy of the system
will be realized. Consequently, ground states with a high number of surrounding
low energy fluctuations will have a higher probability of being realized. Mulder et
al. (2010)[7] investigated the single-q spin spiral ground states of the honeycomb
J1-J2 Heisenberg model, where the spin spiral ground states favoured by quantum
fluctuations were mapped out. In the present work, new multi-q ground states of the
honeycomb J1-J2 Heisenberg model will be investigated. The aim of this investigation
is to see whether these new multi-q ground states are competitive with the favoured
spin spiral ground states described in Mulder et al. (2010)[7] in a low temperature
environment. This will be achieved by utilizing a method developed by Balla. et.
al. (2019) [3] to rewrite the Hamiltonian in a way that allows for a geometric inter-
pretation of the ground states of the J1-J2 honeycomb Heisenberg model. This way,
a parameterized set of new ground states is identified. The entropy of the classical
fluctuations around the ground states will then be calculated and compared to the
spin spiral ground states in order to identify the ground states with higher probability
of being realized at low temperatures.
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2 Crystalline structures

A large portion of solid substances are crystalline, which means that the atoms or
molecules are structured in a lattice. Since the electromagnetic force depends on
the distance between particles, it is natural that the properties of the solid largely
depends on the properties of its lattice. The simplest type of lattices are known as
Bravais lattices. In a Bravais lattice, all lattice points are equivalent in the sense that
their surroundings are equal. In three dimensions, a Bravais lattice is defined through
three linearly independent vectors a1, a2, and a3, which are known as the primitive
vectors of the lattice. Any lattice point p can then be associated with three unique
integers l, m, and n, such that p = la1 +ma2 + na3. An example of a Bravais lattice
is the cubic lattice, which has the primitive vectors

a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1) (1)

where the lattice spacing, the distance between lattice points, has been chosen to be
unity. In two dimensions only two primitive vectors are needed. An example of a two
dimensional Bravais lattice is the triangular lattice, which has primitive vectors

a1 = (1, 0), a2 =
1

2
(1,

√
3) (2)

Many crystalline materials do not have such a simple Bravais lattice structure.
An example of this is graphene, where the underlying crystalline structure is the hon-
eycomb lattice. The honeycomb lattice can be constructed by defining the two lattice
points p0 = (0, 0) and p1 = (0, 1/

√
3), and then using the primitive vectors in eq. (2)

to construct the two triangular Bravais lattices that arise from adding multiples of
the primitive vectors to p0 and p1. Figure 1 shows the construction of the honeycomb
lattice, where R is the vector translating from p0 to p1.

A general crystalline structure is defined through a cluster of points {pi}, which
is known as the basis of the lattice, and the primitive translation vectors a1, a2, and
a3. Any point p on the lattice can then be associated with a unique basis point
pj, and three unique integers l, m, and n, such that p = pj + la1 + ma2 + na3.
Here, j is referred to as the sub-lattice index, since it corresponds to points on the
Bravais lattice formed by applying the primitive translation vectors to the point pj.
In the case of the honeycomb lattice, the basis consists of two points p0 = (0, 0)
and p1 = (0, 1/

√
3), and the primitive translation vectors are equal to the primitive

vectors of the triangular lattice in eq. (2).
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Figure 1: The figure shows the honeycomb lattice. Here, a1 and a2 are the primitive
translation vectors of the lattice, R is the translation vector between the basis ele-
ments, and p0 and p1 are the two basis elements.

In the study of crystalline substances, the symmetries of the lattice are impor-
tant to the properties of the substance. This is because physical properties are often
invariant under symmetry operations. A symmetry operation is a transformation of
the lattice that keeps angles and distances between points constant, and does not
change the lattice. This means that a point that was a lattice point before the sym-
metry operation, remains a lattice point after the symmetry operation. An example
of a symmetry operation for the triangular lattice is a rotation by 60◦ around a lattice
point. A notable subset of the set of symmetry operations, is the point symmetry
group, which is a group that consists of symmetry operations that leave a point in
space fixed. Examples of possible point symmetry operations are rotations, inver-
sions, and reflections. An important property of the point symmetry group is that it
can be represented as a subset of the special orthogonal group. This means that every
point symmetry operation can be represented as a linear transformation in Euclidean
space.
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3 The Heisenberg model

3.1 The Heisenberg Hamiltonian

The Heisenberg model is used to describe the behaviour of magnetic materials. In
particular, it is used to describe materials where the electrons are strongly bonded to
the atoms. In this case, the atoms bond with other atoms through the overlapping
wave functions of the electrons in the valence shell of the atoms. Since the electrons
are localized around an atom, the spins can be seen as localized at the atom itself.
The that appears in the Heisenberg model is therefore the sum of the spins of the
valence electrons of the atom. Due to Hund’s rule, the valence electrons will occupy
equal spin states until all of the equal spin states in the valence shell are occupied. If
there are more valence electrons available, the opposite spin states will be filled with
the remaining electrons, causing the total spin to decrease. Materials with atoms with
small total spin, such as S = 1/2, will have strong quantum effects, while materials
with larger total spin will behave closer to a classical system. When the spin orbital
interaction is negligible, the spins only interact with other spins. This causes the spin
space to be independent of the physical lattice space, allowing for three dimensional
spin configurations on two dimensional lattices.

The Heisenberg model describes a material as a crystalline structure where each
lattice point has a spin associated to it, and all the lattice points have spins of equal
magnitude. The quantum Heisenberg Hamiltonian is given by the expression

Ĥ =
1

2

∑
i

∑
j

Ji,jŜ(ri) · Ŝ(rj) (3)

where Ji,j is the interaction energy between lattice points i and j, and Ŝ(ri) is the spin
operator corresponding to lattice point ri. When the spin of each atom is larger than
1/2, it is possible to approximate the quantum Heisenberg model as a classical model
as described above. In the classical Heisenberg model the spin operators become
classical spin vectors which are allowed to have any configuration in three dimensions.
The classical Heisenberg Hamiltonian is then given by the following expression:

H =
1

2

∑
i

∑
j

Ji,jS(ri) · S(rj) (4)

where S(ri) is the classical spin vector corresponding to lattice point ri.
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In order to simplify the Heisenberg model in eq. (4), we must make assumptions
about the interaction energy Ji,j. A common way of simplifying the model, is to let
Ji,j only depend on the translation vector between the lattice points ri and rj. This is
a reasonable assumption since it is expected that the atoms interact in the same way
when the surroundings are identical. Formally, this means that if there are lattice
points at both r and r+ u, the coupling between the spins at the lattice points only
depends on u. Using this, it is now possible to rewrite the Heisenberg Hamiltonian
in the following way:

H =
1

2

∑
i

∑
u

J(u)S(ri) · S(ri + u) (5)

It is also common to assume that J(u) is invariant under operations from the point
symmetry group of the lattice. This means that if T is a linear transformation that
represents an element of the point symmetry group, we have that

J(u) = J(Tu) (6)

Using this, it is possible to categorize the translation vectors based on whether they
are correlated through a point symmetry operation. Formally, we can consider the
point symmetry group of the lattice G and the set of all translation vectors on the
lattice U . A group action of G on U can then be defined by letting gu = Tgu, where
g ∈ G, u ∈ U , and Tg is the representation of g as a linear transformation. We
can then categorize U by considering the orbits of U under the action of G, where
the orbit of an element u ∈ U is the set of all translation vectors in U that can be
obtained by acting with a point symmetry operation on u. The orbit of u ∈ U can
thus be written as

Orb(u) = {gu | g ∈ G} (7)

An equivalent construction would be to consider the equivalence relation ∼ on U
defined by two vectors u,v ∈ U being equivalent if u = Tgv for some g ∈ G. The
equivalence classes of U under this relation, would then be equal to the orbits of U . It
follows from the definition of equivalence classes that the orbits of U form a disjoint
partition of U . Using this construction, we see that eq. (6) is equivalent to J(u) only
being dependent on the orbit of u. It is therefore possible to assign an interaction
energy to each orbit of U . If we consider the honeycomb lattice, a translation vector
with minimum magnitude would be the translation vector between the two points in
the basis. Since the point symmetry group of the honeycomb lattice include rotations
by 60◦, it follows that all of the translation vectors with minimum magnitude are
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Figure 2: First (green), second (red), and third (orange) nearest neighbour couplings
on the honeycomb lattice.

in the same orbit. This orbit containing all the translation vectors with minimum
magnitude, represents the nearest neighbour interactions on the honeycomb lattice.
Similarly if we consider the orbit of the primitive translation vector a1 in eq. (2), we
see that the orbit contains all second nearest neighbour interactions on the honey-
comb lattice. Figure 2 shows the first, second, and third neighbour interactions on
the honeycomb lattice.

It is reasonable to assume that orbits representing longer range interactions will
have significantly smaller contributions to the energy of the system then the orbits
representing shorter range interactions. It is therefore common to only consider a
small set of short range interactions in order to simplify the the system. A special case
of this is the J1-J2 model, which only includes nearest and second nearest neighbour
interactions. Here, all nearest neighbor interactions have an interaction energy of
J1, while all second nearest neighbour interactions have interaction energy J2. The
Hamiltonian then simplifies to

H = J1
∑
⟨i,j⟩

Si · Sj + J2
∑
⟨⟨i,j⟩⟩

Si · Sj (8)

where ⟨i, j⟩ denotes all nearest neighbour pairs and ⟨⟨i, j⟩⟩ denotes all second nearest
neighbour pairs.
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4 Ground states of the Heisenberg Hamiltonian

4.1 Single and multi-q states

The ground states of the Heisenberg model are important because they largely govern
the behaviour of the model at lower temperatures. While a general solution for the
ground states of the Heisenberg Hamiltonian has never been found, several methods
for finding ground states exist. One such method is to Fourier transform the spin and
interaction energy in eq. (5):

H =
1

2

∑
j

∑
u

J(u)S(rj) · S(rj + u) (9)

=
1

2Np

∑
j

∑
u

∑
q

∑
q′

∑
q′′

J(q′′)eia·q
′′
S(q)eiq·rj · S(q′)eiq

′·(rj+u) (10)

=
1

2Np

∑
j

∑
u

∑
q

∑
q′

∑
q′′

J(q′′)eiu·(q
′′+q′)S(q) · S(q′)eirj ·(q+q′) (11)

=
1

2Np

∑
q

∑
q′

∑
q′′

J(q′′)Npδq′′,−q′S(q) · S(q′)Npδq,−q′ (12)

=
Np

2

∑
q

J(q)S(q) · S(−q) (13)

where q, q′, and q′′ are wave numbers in Fourier space, Np is the number of atoms, δ
is the Kronecker delta, and

J(u) =
∑
q

J(q)eiq·u (14)

S(r) =
1√
Np

∑
q

S(q)eiq·r (15)

Single-q states then refer to states that only have a single Fourier mode in reciprocal
space. The spin spiral states on the honeycomb lattice are examples of single-q states.
They are given by the following expression:

S(r) = x̂ cos(q · r) + ŷ sin(q · r) (16)

on one sublattice, and as

S(r) = x̂ cos(q · r+ ϕR) + ŷ sin(q · r+ ϕR) (17)

11



on the other sublattice, where ϕR = q · R is the phase caused by the translation
between sub lattices, and x̂ and ŷ are the unit vectors in the x and y direction, re-
spectively..

From eq. (13) it follows that those single-q states that correspond to a q such
that J(q) is a global minimum, will be ground states of the Hamiltonian. The spin
spiral states in eqs. (16) and (17) have been widely studied, but there also exists a
large number of competing multi-q states consisting of multiple Fourier modes.

In the forthcoming, we will i) find several multi-q ground states of the honeycomb
lattice in real space, and ii) will then find the entropy of the classical fluctuations
around the ground states. Here, i) will be described in section 4.3, and ii) will be
described in section 5.

4.2 Rewriting the Hamiltonian

In order to find candidate multi-q states on the honeycomb grid, a method for rewrit-
ing Heisenberg Hamiltonians described in Balla et. al. (2019) [3] will be applied.
We start by considering the rewritten J1-J2 Heisenberg Hamiltonian, and then show
that it is equivalent to the J1-J2 Heisenberg Hamiltonian in eq. (8). The rewritten
Hamiltonian is given by the following expression:

H =
J2
2

∑
i

αS(ri) +
∑

u∈Orb(R)

S(ri + u)

2

− α2 − Z

 (18)

where Orb(R) is the orbit containing the nearest neighbor translation vectors, α is a
constant that can be used to adjust the ratio between J1 and J2, and Z is the number
of nearest neighbours, which is equal to 4 in the case of the honeycomb lattice. By
evaluating the square we see that each nearest neighbour and each second nearest
neighbour interaction is represented by a term in each square. However, since we
sum over all lattice points, each nearest neighbour interaction is counted twice, while
each second nearest neighbour interaction is counted once. If we then let α = J1/2J2
we obtain that eq. (18) is equivalent to eq. (8).

In general this method allows to sum over more orbits if it is of interest for the
lattice and material in question. It is also possible to sum over different sections of
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Figure 3: Blue outlines the hexagon shape which would be summed over in eq. (19).
Green and red shows the two shapes that are summed over in eq. (18).

lattice points as long as the resulting square includes all the interactions in the orbits
of interest. For example, it is possible to sum over the hexagons in the honeycomb
lattice, shown in blue in fig. 3, to generate a model containing both first, second and
third nearest neighbour couplings:

H =
∑
9

(S1 + S2 + S3 + S4 + S5 + S6)
2 − 6 (19)

where the length of the spins have been assumed to be unity for simplicity. Here,
S1-S6 refers to the spins in the hexagon, and the sum is over all the hexagons in the
honeycomb lattice. This leads to a Heisenberg model with couplings J1 = 2J2 and
J3 = J2. Here, J3 is the coupling between the lattice points on opposite sides of the
hexagon (see fig. 2), which are also the third nearest neighbour couplings on the
honeycomb grid.

4.3 Ground states on the Honeycomb lattice

In order to find candidate multi-q states, we focus on the J1− J2 model in eq. (18)
with α = 1, which means that J1 = 2J2. Writing out the terms in the equation results
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Figure 4: A co-linear ground state for J1 = 2J2. This state is a special case of the
state in fig. 6 where θ = 0, as well as a single-q spin spiral state where q = b2/2

in:

H =
J2
2

∑
i

(Si,0 + Si,1 + Si,2 + Si,3)
2 − 4 (20)

where it is summed over all the red and green shapes shown in fig. 3, and Si,0, Si,1,
Si,2, and Si,3 are the four points in the shape surrounding lattice point i. It follows
from eq. (20) that any state such that the spins in each shape sum to zero, is a
ground state of the Hamiltonian. An example of such a ground state is the co-linear
state shown in figure 7.

It is now possible to find ground states by first choosing four spin vectors which
sum to zero, and then find a pattern where each lattice point has three neighbouring
lattice points, each with one of the four chosen spin vectors. Figure 6 shows an exam-
ple of such a pattern, where a, b, c, and d are four vectors such that a+b+c+d = 0.
The box in the figure shows the periodicity of the state by outlining a periodic cell.

For each such pattern, we can now find a parameterized set of ground states by
applying a parameterized set of four vectors of equal length that sum to 0. In a plane,
four vectors summing to zero will always form a parallelogram. In three dimensions
this can be generalized by letting half of the parallelogram rotate freely around the
axis formed by the diagonal of the parallelogram as shown in fig. 5. We let θ be the
angle between a and the z-axis, while ϕ is the angle by which c and d have been
rotated around the z-axis. For ϕ = 0 we get that c = −a and d = −b. This gives
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Figure 5: The four vectors in the parameterization. The vectors a and b are fixed in
the xz-plane while the vectors c and d are equal to −a and −b rotated by ϕ around
the z-axis.

Figure 6: A ground state for J1 = 2J2. The black box outlines the periodic cell of
the state.
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the following parameterization:

a = (sin θ, 0, cos θ)

b = (− sin θ, 0, cos θ)

c = (cosϕ sin θ, sinϕ sin θ,− cos θ)

d = (− cosϕ sin θ,− sinϕ sin θ,− cos θ)

(21)

where θ ∈ [0, π], and ϕ ∈ [0, π]. It follows that the state in fig. 6 is a ground state
for all values of θ and ϕ. We see that when θ = 0, the state in fig. 6 is equal to the
state in fig. 7, and when θ = π/2 the state in fig. 6 is a coplanar state.

The pattern in fig. 6 is just an example of a pattern that gives a set of parame-
terized ground states. If we disregard periodicity in the a2 direction, it is possible to
create an infinite number of such patterns. In order to construct these patterns, we
start by pairing a, b, c, and d into two pairs P1 and P2, such that P1 = {a,b} and
P2 = {c,d}. We then require that S(r) = S(r + 2a1), that S(r) ̸= S(r + a1) (unless
a = b), and that S(r) is in the same pair as S(r+a1). Furthermore, it is also required
that if a point r is in sublattice 0, meaning the point is in the same sublattice as p0
in fig. 1, then S(r+R) = S(r+ a1). The last requirement is that S(r) and S(r+ a2)
must be in different pairs. We note that the pattern in fig. 6 fulfills all of the above
requirements.

Starting from the basis point p0, it is now possible to create a new pattern by
choosing a vector from P2, and then continuing to assign vectors to p0+na2, following
the rule that you must assign a vector from P1 if n is odd, and P2 if n is even. The
spins on the other lattice points, are uniquely defined through the above requirements.
This is true because translating by a1 is equivalent to alternating the vectors in the
same pair, while the spins in the other sublattice are given by S(r+R) = S(r+ a1).
From this it follows that for every lattice point along the p0+na1 line, we can choose
between two different vectors, where every choice leads to a different pattern. On
a finite lattice with NU number of points along the p0 + na1 line, obtain that the
number of patterns that can be constructed with the above construction is 2NU .

For each of these patterns there exists a parameterized set of ground states unique
to the pattern. While some ground states might overlap between the patterns or
with the set of spin spiral states, the ground states are unique multi-q states for the
majority of the values of ϕ and θ. The pattern in fig. 6 includes double-q states,
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meaning that there are two Fourier modes contributing to the state. We see that the
contributing reciprocal vectors q within the first Brillouin zone are Q, −Q, and 2Q,
where Q = b1/2 + 3b2/4. Here, b1 = 2π(1,−1/

√
3) and b2 = 2π(0, 2/

√
3) are the

reciprocal basis vectors of the honeycomb lattice, which are defined by the property
ai · bj = 2πδi,j. By choosing patterns with longer periodicity in the a2 direction, it
is possible to create ground states with an arbitrary number of contributing Fourier
modes.
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5 Order by disorder

5.1 Calculation of the ground state entropy

At low and finite temperatures, the system will favour ground states with higher
entropy. This means that ground states with a large number of low energy states
surrounding them will have a larger probability of being realized at low, but finite
temperatures. The ground state in fig. 6 is equal to one of the single-q ground states
favoured by quantum fluctuations when θ = 0 [7]. This makes the state in fig. 6
a good candidate for the entropy calculation as it becomes possible to compare the
entropy of the multi-q states with the single-q spin spiral states. We will therefore
focus on the ground state in fig. 6.

In the quantum case, the Holstein-Primakoff transformation would be used to
find the contribution of the quantum fluctuations to the ground state energy by
perturbing the spin operators with bosonic creation and annihilation operators [4].
In the classical case however, a similar analysis can be done by perturbing the spins
of the classical spin vectors, and taking the integral over the perturbations. The
perturbations of the spins must be in directions orthogonal to the spin vector of each
spin. In order to facilitate this calculation, we start by introducing the rotated spin
vectors S′

i, which are rotated in such a way that they always point in the z-direction:

Si = TiS
′
i (22)

where Si is the spin vector at lattice point i, S′
i = (0, 0, 1), and Ti is the rotation

matrix corresponding to lattice point i. We perturb the spins around the ground
state by adding perturbations to the x and y component of S′

i:

S′
i = (xi, yi,

√
1− x2

i − y2i )

where xi and yi are small perturbations to the spin S′
i. At low temperatures, only

small perturbations will contribute. We can therefore Taylor expand the z-component
to second order. This gives

S′
i ≈ (xi, yi, 1−

1

2
(x2

i + y2i )) (23)

In order to find the Hamiltonian as a function of the perturbations xi and yi, the
dot product between two spins is calculated:

Si · Sj = S′
iT

T
i TjS

′
j (24)
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When substituting equation (23) into equation (24), we only keep terms up to quadratic
order, which is consistent with the approximation in equation (23). Since the ground
state only has 4 possible spin directions, there are only 4 possible rotation matrices:

Ta =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Tb =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (25)

Tc =

− cos θ cosϕ − sinϕ cosϕ sin θ
− cos θ sinϕ cosϕ sinϕ sin θ

− sin θ 0 − cos θ

 Td =

− cos θ cosϕ − sinϕ − cosϕ sin θ
− cos θ sinϕ cosϕ − sinϕ sin θ

sin θ 0 − cos θ



where Ta, Tb, Tc, and Td denotes the rotation matrices corresponding to the spins
who have spin vector a, b, c, or d, respectively.

We now take advantage of the periodicity of the ground state to divide the lattice
into periodic cells shown in figure 7. Each spin Sj,l,m,n,δ can be represented by 5
indices, where the two first indices j and l give the position of the periodic cell along
the a1 and a2 axis respectively. The next two indices m and n, show the position of
the spin within the periodic cell, and δ is the sub-lattice index. The indices m and
n are defined such that the bottom left lattice point in each periodic cell has indices
m = 0 and n = 0, and m increases along the a1 axis, while n increases along the a2

axis.

By applying periodic boundary conditions, the Hamiltonian can now by rewritten
as a sum over the periodic cells. Here, each term includes all internal interactions as
well as the interactions between the respective periodic cell and half of it’s neighbour-
ing periodic cells. In this way, all interactions are accounted for when all periodic
cells are summed over. Figure 7 shows which periodic cells interact in each term. The
term in the Hamiltonian representing the indices of the middle cell will include the
interactions with the cells surrounded by blue, but will not include interactions with
the cells surrounded by red. Appendix A has the Hamiltonian written out in full.
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Figure 7: The term in the Hamiltonian representing the indices (j, k) will count the
interactions with the cells surrounded by blue, and will not include interactions with
the cells surrounded by red.

We can now Fourier transform with respect to j and l. This yields:

xj,l,m,n,δ =
1√
MN

∑
k1

∑
k2

xk1,k2,m,n,δe
2πi( jk1

M
+

lk2
N ) (26)

where M and N are the number of periodic cells along the a1 and a2 axes respectively.
The Fourier transform causes all terms linear of x and y in the Hamiltonian to cancel.
This needs to be since the existence of linear terms in the Hamiltonian implies that
there are perturbations with lower energy than the state we are perturbing around.
This leaves only quadratic and constant terms. The quadratic terms are then Fourier
transformed in the following way.∑

j

xjyj+v =
1

MN

∑
j

∑
k

∑
k′

xkyk′eij·kei(j+v)·k′
(27)

=
1

MN

∑
k

∑
k′

xkyk′MNδ(k+k′,0)e
iv·k′

(28)

=
1

2

∑
k

(
xky−ke

−iv·k + x−kyke
iv·k) (29)

where j = (j, l) is a vector containing the indices of the periodic cell, v is a vector
translating from one periodic cell to a neighbouring periodic cell, and k = 2π( k1

M
, k2
N
).
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Since xj ∈ R, we know that xk = x∗
−k. Since only quadratic terms remain, the

Hamiltonian can be written in the following way:

H = −16MNJ1 −
1

2

∑
k

x∗T
k Akxk (30)

where Ak is a hermitian 32× 32 matrix and xk is a vector containing all the xk,m,n,δ

and yk,m,n,δ with the same k. The free energy is independent of the ordering in xk

since any reordering will cause an equal reordering in the columns and rows of Ak.
Moving a row or a column of a matrix can only cause a sign change in the determinant,
but since both the columns and rows are moved in the same way, any sign change
will cancel out. In the calculations the i+1-th element of xk is given by the following
expression:

i = 16X + 8m+ 2n+ δ (31)

where X is one for xk,m,n,δ and zero for yk,m,n,δ. Since there are 16 lattice points in
each grid cell, xk ∈ C32. We can now calculate the partition function Z.

Z =

∫
Dxe−βH (32)

= e16MNJ1β

∫
Dx exp

(
−β

2

∑
k

x∗T
k Akxk

)
(33)

= e16MNJ1β
∏
k

(
1

β32 det(Ak/2π)

)
(34)

where Dx =
∏

k dxk, β = 1/(kBT ), and we have used that∫
Dx exp

(
−1

2
x∗TAx

)
=

√
1

det(A/2π)
(35)

We can then calculate the free energy per site f , using that

Z = exp(−16βMNf) (36)

The free energy per site then becomes:

f = −J1 +
1

16βMN

∑
k

(
ln (det(Ak/2π)) + ln

(
β32
))

(37)

Applying units such that the Boltzmann’s constant kB = 1, the entropy per site s
becomes

s = − ∂f

∂T
= − 1

16MN

∑
k

(
ln (det(Ak/2π)) + ln(T 32)− 32

)
(38)
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In order to find an analytical expression for Ak, the symbolic programming lan-
guage SageMath was used to find the expression for the Hamiltonian in real space.
The Fourier transform and extraction of the matrix coefficients of Ak posed a techni-
cal challenge since, to the best of the authors knowledge, no such Fourier transform
is intricit in any of the available symbolic programming languages such as eg. Sage-
Math, Maple, Mathematica and SymPy. To overcome this problem, a python program
was written in order to conduct these symbolic computations. Appendix A provides
further details of the calculation.

5.2 Singularities in the free energy

When calculating the free energy, we need the determinant of Ak to be positive, but
for certain values of k, we get that det(Ak) = 0. Such values of k will be referred to as
singularities since they cause the entropy to become infinite. Singularities of this form
are well known, and also appear in the case of spin spirals. In this case, the solution
is to subtract a reference entropy from the calculated entropy such that the zeros in
the determinant cancel out. The idea behind this, is to assume that every ground
state has the same set of perturbations that causes the entropy to go to infinity.
Subtracting a reference entropy will then cause only the entropy that corresponds to
the excitations of that ground state to remain. Mathematically, this means that if ξ
is a parameter of a parameterized set of ground states, and the Hamiltonian of the
perturbed states can be written as H = C −

∑
k x

T
kBk(ξ)xk/2 for some constant C,

and matrix Bk(ξ), we can study the quantity

S(ξ)− S(ξ0) =
∑
k

Sk(ξ)− Sk(ξ0) (39)

=
∑
k

ln

(
det(Bk(ξ0))

det(Bk(ξ))

)
(40)

where S(ξ) is the entropy of the ground state, Sk(ξ) is the entropy contribution from
the perturbation mode k, and ξ0 is a reference ground state. If the singularities are
the same in all the ground states, they will cancel in eq. (40). The difference in
entropy between the ground states and the reference state can then be used to find
the favoured ground states among the tested ground states.

For the present work, this method cannot be applied because the singularities are
not the same in every ground state. The numerical results show that there is a clear
difference between coplanar and non-coplanar states. The singularities of coplanar
states form two lines through k-space. These lines are defined through k1 = 0, and
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k2 = 2k1, respectively. In the case of non-coplanar states however, only the pertur-
bation modes k on the line k1 = 0 are singularities. This means that it is impossible
to remove all singularities by subtracting a reference entropy.

The singularities have a physical interpretation as they represent perturbations
to the ground state that do not change the energy of the system. For the calculation
above, this means that there exists some xk ̸= 0 such that Akxk = 0. The simplest
example of this is a global rotation of all spins, which in the calculation above, refers
to the case where k = 0 and all the entries of xk are equal. Another example for
coplanar states, that arise when θ = π/2, is any equal rotation of a and c. This can
be seen from the fact that a and c are parallel vectors in the case of a coplanar state.
This means that if a and c are rotated equally, they will still remain parallel, and
therefore sum to zero.

While the k-modes that have singularities do not change within the non-coplanar
and coplanar states, the multiplicities of the zero-eigenvalues do change. This means
that there are values of ϕ and θ where Ak(ϕ, θ) has fewer zero-eigenvalues than other
values of ϕ and θ for some k-mode. Since Ak is hermitian, and therefore diagonal-
izable, the dimension of the eigenspace of a given eigenvalue must be equal to the
multiplicity of that eigenvalue. The fact that the multiplicity of the zero-eigenvalue
varies for different coplanar states, implies that there are more perturbations for some
coplanar states that do not change the energy of the system. This poses the question
whether the eigenvalues which are only zero for some, but not all choices of ϕ and
θ, are important for the physics of the system. In order to study this, we note that
Ak(ϕ, θ) is a continuous function of ϕ and θ. This implies that the eigenvalues λi(θ, ϕ)
of Ak(θ, ϕ) are also continuous functions of ϕ and θ.

If there exists an eigenvalue λi of Ak such that λi(ϕ0, θ0) = 0, and λi(ϕ1, θ1) ̸= 0
for some ϕ0, θ0, ϕ1, and θ1, there must be choices of ϕ and θ such that λi is arbitrarily
close to 0. The eigenvector corresponding to λi will then represent a low energy exci-
tation around the ground state. In general, the area of ground states surrounding a
ground state with a larger number of zero eigenvalues, will have ground states with a
larger number of low energy excitations, leading to an increased entropy of the ground
states. The entropy of the parameterized ground states must therefore increase as
the ground state with the highest number of zero-eigenvalues is approached. As the
entropy increases, so does the probability of the ground states being realized at low
temperatures, which implies that the probability of a ground state being realized at
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low temperatures increases as you approach ground states with higher numbers of
zero eigenvalues.

In the numerical evaluation of the entropy, the determinant of Ak is assumed to be
zero if the eigenvalues of Ak are approximately the same magnitude as the machine
precision. More specifically, a limit of 10−15 was set, where if the eigenvalue was lower
it is assumed to be zero. Figure 8 shows the number of zero eigenvalues as a function
of ϕ and θ. We see that the ground state at θ = 0 has the most zero eigenvalues,
while the ground states at θ = π/2 have the second most zero eigenvalues. When
θ = 0, a and b will point in the z-direction, while c and d will point in the opposite
direction. The line of θ = 0 in the plot therefore only represents a single colinear
state. When θ = π/2, the ground states are coplanar in the xy-plane, and the point
defined by θ = π/2 and ϕ = 0, is a colinear state along the x-axis. The state θ = 0 is
a spin spiral state with q = b2/2, and is shown in fig. 7. The favoured ground states
among the parameterized set of ground states in fig. 6 are therefore the same as the
favoured spin spiral ground states found by Mulder et. al. (2010) [7], where it was
shown that the colinear spin spiral ground states were those favoured by quantum
fluctuations on the honeycomb J1-J2 Heisenberg model in the case where J1 = 2J2. It
should be noted that this comparison is physically reasonable only in the case where
the system can be approximated classically, i.e., for systems with larger spins.

24



Figure 8: The figure shows the total number of zero eigenvalues of Ak summed over
all k for each value of ϕ and θ

6 Summary and conclusion

In the present work, new multi-q ground states of the honeycomb J1-J2 Heisenberg
model were investigated. The aim of this investigation was to see whether these new
multi-q ground states are competitive with the favoured spin spiral ground states
described in Mulder et al. (2010)[7] in a low temperature environment. This was
achieved by utilizing a method developed by Balla. et. al. (2019) [3] to rewrite the
Hamiltonian in a way that allows for a geometric interpretation of the ground states
of the J1-J2 honeycomb Heisenberg model. This way, multiple parameterized sets of
new ground states were found.

Specifically, the Heisenberg Hamiltonian was rewritten to prove that if the sum
of a spin and its three nearest neighbors is zero for all spins, then the resulting con-
figuration must be a ground state of the J1-J2 Heisenberg model in the case where
J1 = 2J2. A method was then developed to construct a large number of such ground
states through the use of a parameterized set of four vectors that sum to zero. In
order to find which states are favoured by the system at low, but finite temperatures,
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a set of parameterized ground states, which includes one of the favoured ground states
of the spin spiral ground states, was investigated.

The entropy of the chosen set of ground states was then found by computing the
partition function of small perturbations of the ground states. Here, it was found that
there exists perturbations that do not change the energy of the perturbed state, which
causes the entropy to become infinite. For spin spirals, it is possible to remove such
singularities by subtracting a reference entropy. For the present ground states how-
ever, this is not possible because both the k-modes with singularities and the number
of zero-eigenvalues of Ak change for different values of the angles ϕ and θ. Due to the
continuity of the eigenvalues in ϕ and θ, the ground states in the region surrounding
a ground state with a higher number of zero eigenvalues, must have a higher number
of low energy excitations, which leads to a higher entropy of the surrounding ground
states. The number of zero eigenvalues of a ground state is thus indicative of the
amount of low energy excitations around the ground state. This means that ground
states with more zero eigenvalues have a higher probability of being realized in a low
temperature environment.

The numerical evaluation of the eigenvalues of Ak reveals that: i) Coplanar states
are more likely of being realized at low temperatures than non-coplanar states, and ii)
among the coplanar states, the colinear states have the highest probability of being
realized at low temperatures. The aim of this investigation was to see whether the new
obtained multi-q ground states are competitive with the favoured spin spiral ground
states described in Mulder et al. (2010)[7] in a low temperature environment. The
colinear states favoured in our investigation are the same states as the favoured states
found by Mulder et al. (2010) for the case J1 = 2J2. This leads to the conclusion
that the honeycomb Heisenberg model with J1 = 2J2 favours colinear states at low
temperatures.
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A Spin wave calculation

Taking all interactions into account, the full Hamiltonian becomes

H

16MN
= J1

∑
j

∑
k

(Sj,k,0,0,0 · (Sj,k,0,0,1 + Sj,k−1,1,3,1 + Sj,k−1,0,3,1)+

Sj,k,1,0,0 · (Sj,k,1,0,1 + Sj,k−1,1,3,1) + Sj,k,0,0,1 · (Sj,k,0,1,0 + Sj−1,k,1,1,0)+

Sj,k,1,0,1 · (Sj,k,0,1,0 + Sj,k,1,1,0) + Sj,k,0,1,0 · Sj,k,0,1,1 + Sj,k,1,1,0 · Sj,k,1,1,1+

Sj,k,0,1,1 · (Sj−1,k,1,2,0 + Sj,k,0,2,0) + Sj,k,1,1,1 · (Sj,k,0,2,0 + Sj,k,1,2,0)+

Sj,k,0,2,0 · Sj,k,0,2,1 + Sj,k,1,2,0 · Sj,k,1,2,1 + Sj,k,0,2,1 · (Sj−1,k,1,3,0 + Sj,k,0,3,0)+

Sj,k,1,2,1 · (Sj,k,0,3,0) + Sj,k,1,3,0)) + Sj,k,0,3,0 · Sj,k,0,3,1+

Sj,k,1,3,0 · Sj,k,1,3,1 + Sj,k,0,3,1 · Sj−1,k+1,1,0,0)+

J2
∑
j

∑
k

∑
δ

(Sj,k,0,0,δ · (Sj,k−1,0,3,δ + Sj,k−1,1,3,δ+

Sj,k,1,0,δ + Sj,k,0,1,δ + Sj−1,k,1,1,δ + Sj−1,k,1,0,δ)+

Sj,k,1,0,δ · (Sj,k−1,1,3,δ + Sj,k,1,1,δ + Sj,k,0,1,δ)+

Sj,k,0,1,δ · (Sj,k,1,1,δ + Sj,k,0,2,δ + Sj−1,k,1,2,δ + Sj−1,k,1,1,δ)+

Sj,k,1,1,δ · (Sj,k,0,2,δ + Sj,k,1,2,δ)+

Sj,k,0,2,δ · (Sj,k,1,2,δ + Sj,k,0,3,δ + Sj−1,k,1,3,δ + Sj−1,k,1,2,δ)+

Sj,k,1,2,δ · (Sj,k,0,3,δ + Sj,k,1,3,δ)+

Sj,k,0,3,δ · (Sj,k,1,3,δ + Sj−1,k+1,1,0,δ + Sj−1,k,1,3,δ))

The dot products are only calculated up to quadratic order. There are 6 possible
outcomes of the dot product. If S1 = a and S2 = b, the dot product becomes:

S1 · S2 = −1

2
x2
1 cos (θ)

2 + x1x2 cos (θ)
2 − 1

2
x2
2 cos (θ)

2 − 1

2
y21 cos (θ)

2−
1

2
y22 cos (θ)

2 +
1

2
x2
1 sin (θ)

2 − x1x2 sin (θ)
2 +

1

2
x2
2 sin (θ)

2

+
1

2
y21 sin (θ)

2 +
1

2
y22 sin (θ)

2 − 2x1 cos (θ) sin (θ)+

2x2 cos (θ) sin (θ) + y1y2 + cos (θ)2 − sin (θ)2

If S1 = a and S2 = c, the dot product becomes:

S1 · S2 = −x1x2 cos (ϕ) cos (θ)
2 − 1

2
x2
1 cos (ϕ) sin (θ)

2 − 1

2
x2
2 cos (ϕ) sin (θ)

2−
1

2
y21 cos (ϕ) sin (θ)

2 − 1

2
y22 cos (ϕ) sin (θ)

2 +
1

2
x2
1 cos (θ)

2 +
1

2
x2
2 cos (θ)

2+

28



1

2
y21 cos (θ)

2 +
1

2
y22 cos (θ)

2 − x2y1 cos (θ) sin (ϕ)− x1y2 cos (θ) sin (ϕ)+

x1 cos (ϕ) cos (θ) sin (θ)− x2 cos (ϕ) cos (θ) sin (θ)+

x1x2 sin (θ)
2 + y1y2 cos (ϕ) + x1 cos (θ) sin (θ)− x2 cos (θ) sin (θ)+

y1 sin (ϕ) sin (θ)− y2 sin (ϕ) sin (θ) + cos (ϕ) sin (θ)2 − cos (θ)2

If S1 = a and S2 = d, the dot product becomes:

S1 · S2 = −x1x2 cos (ϕ) cos (θ)
2 +

1

2
x2
1 cos (ϕ) sin (θ)

2 +
1

2
x2
2 cos (ϕ) sin (θ)

2 +
1

2
y21 cos (ϕ) sin (θ)

2+

1

2
y22 cos (ϕ) sin (θ)

2 +
1

2
x2
1 cos (θ)

2 +
1

2
x2
2 cos (θ)

2 +
1

2
y21 cos (θ)

2 +
1

2
y22 cos (θ)

2

− x2y1 cos (θ) sin (ϕ)− x1y2 cos (θ) sin (ϕ)− x1 cos (ϕ) cos (θ) sin (θ)

− x2 cos (ϕ) cos (θ) sin (θ)− x1x2 sin (θ)
2 + y1y2 cos (ϕ) + x1 cos (θ) sin (θ)

+ x2 cos (θ) sin (θ)− y1 sin (ϕ) sin (θ)− y2 sin (ϕ) sin (θ)− cos (ϕ) sin (θ)2 − cos (θ)2

If S1 = b and S2 = c, the dot product becomes:

S1 · S2 = −x1x2 cos (ϕ) cos (θ)
2 +

1

2
x2
1 cos (ϕ) sin (θ)

2+

1

2
x2
2 cos (ϕ) sin (θ)

2 +
1

2
y21 cos (ϕ) sin (θ)

2 +
1

2
y22 cos (ϕ) sin (θ)

2+

1

2
x2
1 cos (θ)

2 +
1

2
x2
2 cos (θ)

2+

1

2
y21 cos (θ)

2 +
1

2
y22 cos (θ)

2 − x2y1 cos (θ) sin (ϕ)−

x1y2 cos (θ) sin (ϕ) + x1 cos (ϕ) cos (θ) sin (θ) + x2 cos (ϕ) cos (θ) sin (θ)

− x1x2 sin (θ)
2 + y1y2 cos (ϕ)− x1 cos (θ) sin (θ)− x2 cos (θ) sin (θ)+

y1 sin (ϕ) sin (θ) + y2 sin (ϕ) sin (θ)− cos (ϕ) sin (θ)2 − cos (θ)2

If S1 = b and S2 = d, the dot product becomes:

S1 · S2 = −x1x2 cos (ϕ) cos (θ)
2 − 1

2
x2
1 cos (ϕ) sin (θ)

2 − 1

2
x2
2 cos (ϕ) sin (θ)

2−
1

2
y21 cos (ϕ) sin (θ)

2 − 1

2
y22 cos (ϕ) sin (θ)

2+

1

2
x2
1 cos (θ)

2 +
1

2
x2
2 cos (θ)

2+

1

2
y21 cos (θ)

2 +
1

2
y22 cos (θ)

2−

x2y1 cos (θ) sin (ϕ)− x1y2 cos (θ) sin (ϕ)− x1 cos (ϕ) cos (θ) sin (θ)
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+ x2 cos (ϕ) cos (θ) sin (θ) + x1x2 sin (θ)
2 + y1y2 cos (ϕ)−

x1 cos (θ) sin (θ) + x2 cos (θ) sin (θ)

− y1 sin (ϕ) sin (θ) + y2 sin (ϕ) sin (θ) + cos (ϕ) sin (θ)2 − cos (θ)2

If S1 = c and S2 = d, the dot product becomes:

S1 · S2 = x1x2 cos (ϕ)
2 cos (θ)2 + x1x2 cos (θ)

2 sin (ϕ)2 +
1

2
x2
1 cos (ϕ)

2 sin (θ)2+

1

2
x2
2 cos (ϕ)

2 sin (θ)2 +
1

2
y21 cos (ϕ)

2 sin (θ)2 +
1

2
y22 cos (ϕ)

2 sin (θ)2+

1

2
x2
1 sin (ϕ)

2 sin (θ)2 +
1

2
x2
2 sin (ϕ)

2 sin (θ)2 +
1

2
y21 sin (ϕ)

2 sin (θ)2+

1

2
y22 sin (ϕ)

2 sin (θ)2 + x1 cos (ϕ)
2 cos (θ) sin (θ)− x2 cos (ϕ)

2 cos (θ) sin (θ)+

x1 cos (θ) sin (ϕ)
2 sin (θ)− x2 cos (θ) sin (ϕ)

2 sin (θ) + y1y2 cos (ϕ)
2 − 1

2
x2
1 cos (θ)

2

− 1

2
x2
2 cos (θ)

2 − 1

2
y21 cos (θ)

2 − 1

2
y22 cos (θ)

2 + y1y2 sin (ϕ)
2

− x1x2 sin (θ)
2 − cos (ϕ)2 sin (θ)2 − sin (ϕ)2 sin (θ)2+

x1 cos (θ) sin (θ)− x2 cos (θ) sin (θ) + cos (θ)2

In order to further simplify notation, we use numbers for the first two indices as well.
Here, having index the first index equal to 1 means that the first index is j. If it is 0
it is equal to j − 1, and 2 means it’s equal to j + 1. The same applies to the l index.
Inserting the dot products in the Hamiltonian, we get:

H =
∑
j

−1

4
(J1 cos(ϕ)− J1)x

2
01111 sin(θ)

2 +
1

4
(J1 cos(ϕ) + J1)x

2
01121 sin(θ)

2−

1

4
(J1 cos(ϕ)− J1)x

2
01131 sin(θ)

2 − 1

4
(J1 cos(ϕ)− 3 J1)x

2
11130 sin(θ)

2−
1

4
(J1 cos(ϕ)− J1)y

2
01111 sin(θ)

2 +
1

4
(J1 cos(ϕ) + J1)y

2
01121 sin(θ)

2−
1

4
(J1 cos(ϕ)− J1)y

2
01131 sin(θ)

2 − 1

4
(J1 cos(ϕ)− 3 J1)y

2
11130 sin(θ)

2−

J1x01100 cos(θ) sin(θ) + J1x01101 cos(θ) sin(θ)−
1

2
(J1 cos(ϕ)− J1)x01110 cos(θ) sin(θ)−

1

2
(J1 cos(ϕ)− J1)x01111 cos(θ) sin(θ)−

1

2
(J1 cos(ϕ) + J1)x01120 cos(θ) sin(θ)−

1

2
(J1 cos(ϕ) + J1)x01121 cos(θ) sin(θ)+
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1

2
(J1 cos(ϕ)− J1)x01130 cos(θ) sin(θ) +

1

2
(J1 cos(ϕ)− J1)x01131 cos(θ) sin(θ)+

1

2
(J1 cos(ϕ) + 3 J1)x02100 cos(θ) sin(θ) +

1

2
(J1 cos(ϕ)− J1)x02101 cos(θ) sin(θ)+

1

2
(J1 cos(ϕ) + J1)x10030 cos(θ) sin(θ) +

1

2
(J1 cos(ϕ)− 3 J1)x10031 cos(θ) sin(θ)−

J1x10130 cos(θ) sin(θ) + 3 J1x10131 cos(θ) sin(θ) +
1

4
(2 J1 sin(θ)

2 − J1)x
2
01100+

1

4
(2 J1 sin(θ)

2 − J1)x
2
01101 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 2 J1)x
2
01110−

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 2 J1)x
2
01120 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 2 J1)x
2
01130−

1

4
((J1 cos(ϕ) + 3 J1) sin(θ)

2 − 3 J1)x
2
02100 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + J1)x
2
02101−

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − J1)x
2
10030 +

1

4
((J1 cos(ϕ)− 3 J1) sin(θ)

2 + 3 J1)x
2
10031−

1

2
(J1 sin(θ)

2 − J1)x
2
10130 −

3

2
(J1 sin(θ)

2 − J1)x
2
10131+

J1x
2
11000 + J1x

2
11001 + J1x

2
11010 + J1x

2
11011 + J1x

2
11020 + J1x

2
11021+

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 3 J1)x
2
11030 −

1

4
((J1 cos(ϕ)− 3 J1) sin(θ)

2 − J1)x
2
11031+

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 2 J1)x
2
11100 −

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 4 J1)x
2
11101−

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 − 2 J1)x
2
11110 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 4 J1)x
2
11111+

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 2 J1)x
2
11120 −

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 4 J1)x
2
11121+

1

4
((J1 cos(ϕ) + 5 J1) sin(θ)

2 − 2 J1)x
2
11131 +

1

4
(2 J1 sin(θ)

2 − J1)y
2
01100+

1

4
(2 J1 sin(θ)

2 − J1)y
2
01101 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 2 J1)y
2
01110−

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 2 J1)y
2
01120 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 2 J1)y
2
01130−

1

4
((J1 cos(ϕ) + 3 J1) sin(θ)

2 − 3 J1)y
2
02100 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + J1)y
2
02101−

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − J1)y
2
10030 +

1

4
((J1 cos(ϕ)− 3 J1) sin(θ)

2 + 3 J1)y
2
10031−

1

2
(J1 sin(θ)

2 − J1)y
2
10130 −

3

2
(J1 sin(θ)

2 − J1)y
2
10131+

J1y
2
11000 + J1y

2
11001 + J1y

2
11010 + J1y

2
11011 + J1y

2
11020 + J1y

2
11021+
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1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 3 J1)y
2
11030 −

1

4
((J1 cos(ϕ)− 3 J1) sin(θ)

2 − J1)y
2
11031+

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 2 J1)y
2
11100 −

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 4 J1)y
2
11101−

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 − 2 J1)y
2
11110 +

1

4
((J1 cos(ϕ)− J1) sin(θ)

2 + 4 J1)y
2
11111+

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 + 2 J1)y
2
11120 −

1

4
((J1 cos(ϕ) + J1) sin(θ)

2 − 4 J1)y
2
11121+

1

4
((J1 cos(ϕ) + 5 J1) sin(θ)

2 − 2 J1)y
2
11131 −

1

2
((2 J1 sin(θ)

2 − J1)x01100

− ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x01110 − ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x10030−
2 ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x10031 − ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x10130−

2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x10131)x11000 −

1

2
((2 J1 sin(θ)

2 − J1)x01101−

2 ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x01110 − ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x01111−
((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x10031 − ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x10131

+ 2 (2 J1 sin(θ)
2 − J1)x11000)x11001 −

1

2
((2 J1 sin(θ)

2 − J1)x01110−

((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x01120 − ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11000−

2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11001)x11010 −

1

2
((2 J1 sin(θ)

2 − J1)x01111

− 2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x01120 − ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x01121−
((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11001 + 2 (2 J1 sin(θ)
2 − J1)x11010)x11011

− 1

2
((2 J1 sin(θ)

2 − J1)x01120 − ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x01130

− ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11010 − 2 ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11011)x11020

− 1

2
((2 J1 sin(θ)

2 − J1)x01121 − 2 ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x01130−

((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x01131 − ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11011+

2 (2 J1 sin(θ)
2 − J1)x11020)x11021 −

1

2
((J1 cos(ϕ) + J1) cos(θ) sin(θ) + (2 J1 sin(θ)

2 − J1)x01130−

((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x02100 − ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11020−
2 ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11021)x11030−
1

2
((J1 cos(ϕ)− 3 J1) cos(θ) sin(θ) + (2 J1 sin(θ)

2 − J1)x01131

− 2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x02100 − ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x02101−
((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11021 + 2 (2 J1 sin(θ)
2 − J1)x11030)x11031
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− 1

2
((J1 cos(ϕ) + J1) cos(θ) sin(θ)− ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x10130−

2 ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x10131 + (2 J1 sin(θ)

2 − J1)x11000−
((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11010)x11100−
1

2
((J1 cos(ϕ) + J1) cos(θ) sin(θ)− ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x10131

+ (2 J1 sin(θ)
2 − J1)x11001 − 2 ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11010

− ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11011+

2 (2 J1 sin(θ)
2 − J1)x11100)x11101

+
1

2
((J1 cos(ϕ)− J1) cos(θ) sin(θ)− (2 J1 sin(θ)

2 − J1)x11010+

((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11020

+ ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11100 + 2 ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11101)x11110

+
1

2
((J1 cos(ϕ)− J1) cos(θ) sin(θ)− (2 J1 sin(θ)

2 − J1)x11011+

2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11020+

((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11021 + ((J1 cos(ϕ)− J1) sin(θ)

2 − J1 cos(ϕ))x11101−

2 (2 J1 sin(θ)
2 − J1)x11110)x11111 +

1

2
((J1 cos(ϕ) + J1) cos(θ) sin(θ)− (2 J1 sin(θ)

2 − J1)x11020+

((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11030 + ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11110+

2 ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11111)x11120+

1

2
((J1 cos(ϕ) + J1) cos(θ) sin(θ)− (2 J1 sin(θ)

2 − J1)x11021

+ 2 ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11030+

((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11031 + ((J1 cos(ϕ) + J1) sin(θ)

2 − J1 cos(ϕ))x11111−
2 (2 J1 sin(θ)

2 − J1)x11120)x11121−
1

2
((J1 cos(ϕ)− 3 J1) cos(θ) sin(θ) + (2 J1 sin(θ)

2 − J1)x11030−

((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11120

− 2 ((J1 cos(ϕ) + J1) sin(θ)
2 − J1 cos(ϕ))x11121)x11130−

1

2
((J1 cos(ϕ) + 5 J1) cos(θ) sin(θ) + (2 J1 sin(θ)

2 − J1)x11031

− ((J1 cos(ϕ)− J1) sin(θ)
2 − J1 cos(ϕ))x11121 + 2 (2 J1 sin(θ)

2 − J1)x11130)x11131

− 1

2
(J1x11000 cos(θ) sin(ϕ) + 2 J1x11001 cos(θ) sin(ϕ)+
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J1 sin(ϕ) sin(θ))y01110 −
1

2
(J1x11001 cos(θ) sin(ϕ) + J1 sin(ϕ) sin(θ))y01111

− 1

2
(J1x11010 cos(θ) sin(ϕ) + 2 J1x11011 cos(θ) sin(ϕ) + J1 sin(ϕ) sin(θ))y01120−

1

2
(J1x11011 cos(θ) sin(ϕ) + J1 sin(ϕ) sin(θ))y01121 −

1

2
(J1x11020 cos(θ) sin(ϕ)+

2 J1x11021 cos(θ) sin(ϕ)− J1 sin(ϕ) sin(θ))y01130 −
1

2
(J1x11021 cos(θ) sin(ϕ)−

J1 sin(ϕ) sin(θ))y01131 −
1

2
(J1x11030 cos(θ) sin(ϕ) + 2 J1x11031 cos(θ) sin(ϕ)−

J1 sin(ϕ) sin(θ))y02100 −
1

2
(J1x11031 cos(θ) sin(ϕ)− J1 sin(ϕ) sin(θ))y02101−

1

2
(J1x11000 cos(θ) sin(ϕ)− J1 sin(ϕ) sin(θ))y10030−

1

2
(2 J1x11000 cos(θ) sin(ϕ) + J1x11001 cos(θ) sin(ϕ)− J1 sin(ϕ) sin(θ))y10031

− 1

2
(J1x11000 cos(θ) sin(ϕ) + J1x11100 cos(θ) sin(ϕ))y10130−

1

2
(2 J1x11000 cos(θ) sin(ϕ) + J1x11001 cos(θ) sin(ϕ)+

2 J1x11100 cos(θ) sin(ϕ) + J1x11101 cos(θ) sin(ϕ))y10131−
1

2
(J1x01110 cos(θ) sin(ϕ) + J1x10030 cos(θ) sin(ϕ) + 2 J1x10031 cos(θ) sin(ϕ)

+ J1x10130 cos(θ) sin(ϕ) + 2 J1x10131 cos(θ) sin(ϕ) + J1x11010 cos(θ) sin(ϕ)

− J1y01110 cos(ϕ)− J1y10030 cos(ϕ)− 2 J1y10031 cos(ϕ)

− J1y10130 cos(ϕ)− 2 J1y10131 cos(ϕ)− J1y01100)y11000

− 1

2
(2 J1x01110 cos(θ) sin(ϕ) + J1x01111 cos(θ) sin(ϕ) + J1x10031 cos(θ) sin(ϕ)

+ J1x10131 cos(θ) sin(ϕ) + 2 J1x11010 cos(θ) sin(ϕ) + J1x11011 cos(θ) sin(ϕ)

− 2 J1y01110 cos(ϕ)− J1y01111 cos(ϕ)− J1y10031 cos(ϕ)

− J1y10131 cos(ϕ)− J1y01101 − 2 J1y11000)y11001

− 1

2
(J1x01120 cos(θ) sin(ϕ) + J1x11000 cos(θ) sin(ϕ) + 2 J1x11001 cos(θ) sin(ϕ)

+ J1x11020 cos(θ) sin(ϕ) + J1x11100 cos(θ) sin(ϕ)+

2 J1x11101 cos(θ) sin(ϕ)− J1y01120 cos(ϕ)− J1y11000 cos(ϕ)−

2 J1y11001 cos(ϕ)− J1y01110)y11010 −
1

2
(2 J1x01120 cos(θ) sin(ϕ)+

J1x01121 cos(θ) sin(ϕ) + J1x11001 cos(θ) sin(ϕ) + 2 J1x11020 cos(θ) sin(ϕ)+
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J1x11021 cos(θ) sin(ϕ) + J1x11101 cos(θ) sin(ϕ)− 2 J1y01120 cos(ϕ)−
J1y01121 cos(ϕ)− J1y11001 cos(ϕ)− J1y01111 − 2 J1y11010)y11011

− 1

2
(J1x01130 cos(θ) sin(ϕ) + J1x11010 cos(θ) sin(ϕ) + 2 J1x11011 cos(θ) sin(ϕ)+

J1x11030 cos(θ) sin(ϕ) + J1x11110 cos(θ) sin(ϕ) + 2 J1x11111 cos(θ) sin(ϕ)−
J1y01130 cos(ϕ)− J1y11010 cos(ϕ)− 2 J1y11011 cos(ϕ)− J1y01120)y11020

− 1

2
(2 J1x01130 cos(θ) sin(ϕ) + J1x01131 cos(θ) sin(ϕ) + J1x11011 cos(θ) sin(ϕ)+

2 J1x11030 cos(θ) sin(ϕ) + J1x11031 cos(θ) sin(ϕ) + J1x11111 cos(θ) sin(ϕ)−
2 J1y01130 cos(ϕ)− J1y01131 cos(ϕ)− J1y11011 cos(ϕ)− J1y01121 − 2 J1y11020)y11021

− 1

2
(J1x02100 cos(θ) sin(ϕ) + J1x11020 cos(θ) sin(ϕ) + 2 J1x11021 cos(θ) sin(ϕ) + J1x11120 cos(θ) sin(ϕ)

+ 2 J1x11121 cos(θ) sin(ϕ)− J1y02100 cos(ϕ)− J1y11020 cos(ϕ)−
2 J1y11021 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y01130)y11030

− 1

2
(2 J1x02100 cos(θ) sin(ϕ) + J1x02101 cos(θ) sin(ϕ) + J1x11021 cos(θ) sin(ϕ)+

J1x11121 cos(θ) sin(ϕ)− 2 J1y02100 cos(ϕ)− J1y02101 cos(ϕ)−
J1y11021 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y01131 − 2 J1y11030)y11031−
1

2
(J1x10130 cos(θ) sin(ϕ) + 2 J1x10131 cos(θ) sin(ϕ) + J1x11010 cos(θ) sin(ϕ)+

J1x11110 cos(θ) sin(ϕ)− J1y10130 cos(ϕ)− 2 J1y10131 cos(ϕ)−
J1y11010 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y11000)y11100−
1

2
(J1x10131 cos(θ) sin(ϕ) + 2 J1x11010 cos(θ) sin(ϕ) + J1x11011 cos(θ) sin(ϕ)+

2 J1x11110 cos(θ) sin(ϕ) + J1x11111 cos(θ) sin(ϕ)− J1y10131 cos(ϕ)−
2 J1y11010 cos(ϕ)− J1y11011 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y11001 − 2 J1y11100)y11101−
1

2
(J1x11020 cos(θ) sin(ϕ) + J1x11100 cos(θ) sin(ϕ) + 2 J1x11101 cos(θ) sin(ϕ)+

J1x11120 cos(θ) sin(ϕ)− J1y11020 cos(ϕ)− J1y11100 cos(ϕ)−
2 J1y11101 cos(ϕ)− J1 sin(ϕ) sin(θ)− J1y11010)y11110−
1

2
(2 J1x11020 cos(θ) sin(ϕ) + J1x11021 cos(θ) sin(ϕ) + J1x11101 cos(θ) sin(ϕ)+

2 J1x11120 cos(θ) sin(ϕ) + J1x11121 cos(θ) sin(ϕ)− 2 J1y11020 cos(ϕ)−
J1y11021 cos(ϕ)− J1y11101 cos(ϕ)− J1 sin(ϕ) sin(θ)− J1y11011

− 2 J1y11110)y11111 −
1

2
(J1x11030 cos(θ) sin(ϕ) + J1x11110 cos(θ) sin(ϕ)+
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2 J1x11111 cos(θ) sin(ϕ) + J1x11130 cos(θ) sin(ϕ)− J1y11030 cos(ϕ)

− J1y11110 cos(ϕ)− 2 J1y11111 cos(ϕ)− J1 sin(ϕ) sin(θ)− J1y11020)y11120−
1

2
(2 J1x11030 cos(θ) sin(ϕ) + J1x11031 cos(θ) sin(ϕ) + J1x11111 cos(θ) sin(ϕ)+

2 J1x11130 cos(θ) sin(ϕ) + J1x11131 cos(θ) sin(ϕ)− 2 J1y11030 cos(ϕ)−
J1y11031 cos(ϕ)− J1y11111 cos(ϕ)− J1 sin(ϕ) sin(θ)− J1y11021 − 2 J1y11120)y11121−
1

2
(J1x11120 cos(θ) sin(ϕ) + 2 J1x11121 cos(θ) sin(ϕ)− J1y11120 cos(ϕ)−

2 J1y11121 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y11030)y11130

− 1

2
(J1x11121 cos(θ) sin(ϕ)− J1y11121 cos(ϕ) + J1 sin(ϕ) sin(θ)− J1y11031 − 2 J1y11130)y11131 − 16 J1

Although the Fourier transform was also done analytically, the detailed expression
obtained from the Fourier transform of the Hamiltonian and the resulting 32 × 32
matrix is not given here, but can be obtained straightforwardly by applying the rules
in eq. 29 to the given Hamiltonian, or by requesting the program used for the symbolic
calculations from the author.
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