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Abstract: Standard use of Cox’s regression model and other relative
risk regression models for censored survival data requires collection of
covariate information on all individuals under study even when only
a small fraction of them die or get diseased. For such situations risk
set sampling designs offer useful alternatives. For cohort data, methods
based on martingale residuals are useful for assessing the fit of a model.
Here we introduce grouped martingale residual processes for sampled
risk set data, and show that plots of these processes provide a useful
tool for checking model-fit. Further we study the large sample properties
of the grouped martingale residual processes, and use these to derive a
formal goodness-of-fit test to go along with the plots. The methods are
illustrated using data on lung cancer deaths in a cohort of uranium
miners.
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1. Introduction

Cox regression is central to modern survival analysis, and it is the method
of choice when one wants to assess the influence of risk factors and other
covariates on mortality or morbidity. A number of methods, both graphical
methods and formal tests, have been proposed to assess the goodness-of-fit
of Cox’s model; see e.g. the recent textbooks by Hosmer and Lemeshow [10],
Klein and Moeschberger [12], and Therneau and Grambsch [22].

One important tool for checking the fit of Cox’s regression model is
the martingale residuals introduced by Barlow and Prentice [4]. Therneau,
Grambsch and Fleming [23] proposed to use a smoothed plot of the these
residuals versus a covariate as a means to detect its correct functional form,
while Grambsch, Therneau and Fleming [7] suggested a similar, improved
plot; see [22, Section 5.7] for a review and further discussion. Another ap-
proach was taken by Aalen [2]. In the context of his additive model [1], he
proposed to plot martingale residual processes, aggregated over groups of in-
dividuals, versus time as an omnibus procedure to check the fit of a model.
Aalen’s idea was implemented for Cox’s regression by Grønnesby and Bor-
gan [8], who also derived a formal goodness-of-fit test to go along with the
graphical procedure.

The commonly used methods for inference in Cox’s regression model, in-
cluding the methods for goodness-of-fit, require collection of covariate infor-
mation on all individuals under study. This may be very expensive in large
epidemiologic cohort studies of a rare disease. Risk set sampling designs,
where covariate information is collected for all failing individuals (cases),
but only for a sample of the non-failing ones (controls) then offer useful
alternatives which may drastically reduce the resources that need to be al-
located to a study for data collection and checking.

In the present paper we will use the counting process framework of Bor-
gan, Goldstein and Langholz [5] to generalize the martingale residual pro-
cesses to sampled risk set data. In this context it does not seem feasible to
obtain graphical procedures analogous to the smoothed martingale residual
plot [23] or the related plot of Grambsch et al. [7]. However, we may still
generalize the grouped martingale residual processes plots of Grønnesby and
Borgan [8] and the accompanying goodness-of-fit test. In doing this we will
not restrict ourselves to Cox’s regression model, but consider a general class
of relative risk regression models.

The outline of the paper is as follows. In section 2 we introduce the class
of relative risk regression models, describe the type of failure time data
considered for the cohort, and review how the cohort data may be formu-
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lated by means of counting processes. Then we outline how the martingale
residuals and grouped martingale residual processes follow naturally from
the counting process formulation. Section 3 is devoted to risk set sampling.
We first introduce a general framework for risk set sampling [5], describe
how it specializes for simple random and counter-matched sampling, and
review methods for inference for sampled risk set data. Then we outline how
sampled risk set data can be described by processes counting jointly the
occurrence of failures and the sampling of controls, and we use this counting
process formulation to generalize the grouped martingale residual processes
and accompanying goodness-of-fit test of Grønnesby and Borgan [8] to sam-
pled risk set data. An illustration for a study of lung cancer death in a cohort
of uranium miners is provided in section 4, while proofs are collected in sec-
tion 5. In section 6 we briefly explain how the results extend to matched
risk set sampling designs, while some concluding comments are given in the
final section 7. Throughout the paper we will without further references use
standard results for counting processes [3, 6].

2. Cohort data

We consider a cohort of n individuals, and denote by α(t; zi) the haz-
ard rate at time t for an individual i with vector of covariates zi(t) =
(zi1(t), . . . , zip(t))T. Here the time-variable t may be age, time since em-
ployment, or some other time-scale relevant to the problem at hand, where
we throughout assume that t ∈ (0, τ ] for a given terminal study time τ . A
covariate may be time-fixed or time-dependent; in the latter case its value
at time t is assumed to be known “just before” time t, i.e., the covariate
is assumed to be predictable. We assume that the covariates of individual i
are related to its hazard rate by the relative risk regression model

α(t; zi) = c(β0, zi(t))α0(t). (2.1)

Here c(β0, zi(t)) is a relative risk function, β0 = (β01, . . . , β0p)T is a vector
of regression coefficients describing the effect of the covariates, while the
baseline hazard rate α0(t) is left unspecified. Throughout we use β0 to denote
the vector of true regression coefficients, while we use β as an argument in
the partial likelihood and similar quantities. We normalize the relative risk
function by assuming c(β0,0) = 1. Thus α0(t) corresponds to the hazard
rate of an individual with all covariates identically equal to zero. For the
exponential relative risk function c(β0, zi(t)) = exp(βT

0 zi(t)), formula (2.1)
gives the usual Cox regression model. Other possibilities include the linear
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relative risk function c(β0, zi(t)) = 1 + βT
0 zi(t) and the excess relative risk

model c(β0, zi(t)) =
∏p

j=1(1 + β0j zij(t)).
The individuals in the cohort may be followed over different periods of

time, i.e., our observations may be subject to left-truncation and right cen-
soring. It is a fundamental assumption throughout that the left truncation
and right censoring are independent in the sense that the additional knowl-
edge of which individuals have entered the study or have been censored
before any time t do not carry information on the risks of failure at t; see
[3, Sections III.2-3] and [11, Sections 1.3 and 6.2] for a general discussion on
the concept of independent censoring.

We let t1 < t2 < · · · be the times when failures are observed and, assuming
that there are no tied failures, denote by ij the individual who fails at tj .
The risk set Rj is the collection of all individuals who are under observation
“just before” time tj . In particular the case ij is a member of Rj . Then the
vector of regression parameters in (2.1) is estimated by β̂, the value of β
maximizing Cox’s partial likelihood, while the cumulative baseline hazard
rate A0(t) =

∫ t
0 α0(u)du is estimated by the Breslow estimator

Â0(t) =
∑

tj≤t

1∑
l∈Rj

c(β̂, zl(tj))
,

e.g. [3, Section VII.2].
In order to define the martingale residuals, we first need to review some

basic facts on counting processes, (cumulative) intensity processes and mar-
tingales. To this end, introduce the processes

Ni(t) =
∑

tj≤t

I{ij = i}; i = 1, 2, . . . , n; (2.2)

counting the number of observed events for individual i in (0, t] (which is 0
or 1 for survival data). The intensity processes λi of the counting process Ni

is given heuristically by λi(t)dt = P (dNi(t) = 1 |Ht−), where dNi(t) is the
increment of Ni over the small time interval [t, t + dt), and Ht− denotes all
information available to the researcher “just before” time t. Then by (2.1)
and the independent censoring assumption,

λi(t) = Yi(t) α(t; zi) = Yi(t) c(β0, zi(t))α0(t), (2.3)

with Yi(t) a left-continuous at risk indicator for individual i. Thus R(t) =
{i |Yi(t) = 1} is the risk set at time t, and n(t) = |R(t)| is the number at
risk “just before” time t. Note that Rj = R(tj).
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Corresponding to λi, we define the cumulative intensity process

Λi(t) =
∫ t

0
λi(u) du =

∫ t

0
Yi(u) c(β0, zi(u))α0(u) du. (2.4)

By standard results on counting processes, it then follows that Mi(t) =
Ni(t) − Λi(t); i = 1, 2, . . . , n; are local square integrable martingales. If we
insert the maximum partial likelihood estimator β̂ for β0 and the increment
dÂ0(u) of the Breslow estimator for α0(u)du in (2.4), we get the estimated
cumulative intensity processes

Λ̂i(t) =
∫ t

0
Yi(u) c(β̂, zi(u)) dÂ0(u) =

∑

tj≤t

Yi(tj) c(β̂, zi(tj))∑
l∈Rj

c(β̂, zl(tj))
,

and the martingale residual processes M̂i(t) = Ni(t)− Λ̂i(t). Evaluating the
martingale residual processes at t = ∞ we arrive at the martingale residuals
M̂i = M̂i(∞) first considered by Barlow and Prentice [4].

Following Aalen [2], Grønnesby and Borgan [8] considered the grouped
martingale residual processes, obtained by aggregating the individual mar-
tingale residual processes M̂i(t) over groups of individuals. Specifically, as-
sume that we have some grouping of the individuals, typically based on the
values of one or two covariates, and denote the groups by J = 1, . . . , G.
We will allow the grouping of the individuals to depend on time. Thus an
individual may move from one group to another as time passes, as will often
be the case when the grouping is performed on the basis of one or more
time-dependent covariates. It is a prerequisite, however, that the informa-
tion used for grouping at time t is available “just before” time t, i.e., the
grouping must be based on the “history” Ht−. Then, if we denote by J (u)
the set of all individuals who belong to group J at time u, the group J
martingale residual process takes the form

M̂J(t) =
∫ t

0

∑

i∈J (u)

dM̂i(u) = NJ(t)−
∑

tj≤t

∑
i∈Rj∩J (tj)

c(β̂, zi(tj))
∑

l∈Rj
c(β̂, zl(tj))

. (2.5)

Here NJ(t) =
∫ t
0

∑
i∈J (u) dNi(u) is the observed number of failures in group

J in (0, t], while the last term on the right-hand side of (2.5) is an estimate
of the expected number of failures in that group if the relative risk regression
model (2.1) holds true. In section 4 we illustrate how a plot of the grouped
martingale residual processes provides a useful tool for checking the fit of
the model.
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For the special case of an exponential relative risk function, Grønnesby
and Borgan [8] studied the large sample properties of the grouped martin-
gale residual processes. The corresponding results for a general relative risk
function, may be obtained as a special case of the results for sampled risk set
data given in section 3.5 below. There we also derive a formal goodness-of-fit
test based on the grouped martingale residual processes.

3. Risk set sampling designs

In sections 3.4 and 3.5 below we will see how martingale residuals may be
defined for risk set sampling designs. Before we do that, however, we will
review the framework for risk set sampling of Borgan et al. [5] and generalize
some of their results to the situation with a general relative risk function.

3.1. A model for risk set sampling

For risk set sampling one selects, whenever a failure occurs, a (typically
small) number of controls for the failing individual. The set consisting of
these controls together with the failing individual (the case) is called a sam-
pled risk set. In order to describe in general terms how the sampling of
controls is performed, we need to introduce the “cohort and sampling his-
tory” Ft−, which contains information about events in the cohort (i.e. Ht−)
as well as on the sampling of controls, up to, but not including, time t. Based
on the parts of this history that are available to the researcher, one decides
on a sampling strategy for the controls. Such a strategy may be described
in probabilistic terms as follows. Let P be the power set of {1, 2, . . . , n},
i.e. the set of all subsets of {1, 2, . . . , n}, and let Pi = {r : r ∈ P, i ∈ r}.
Then, given Ft−, if an individual i fails at time t, we select the set r ∈ Pi

as our sampled risk set with (known) probability πt(r | i). Thus, if Yi(t) = 1,
then πt(r | i) is a probability distribution over sets r ∈ Pi. For notational
convenience we let πt(r | i) = 0 whenever Yi(t) = 0.

It turns out to be useful to have a factorization of the sampling probabil-
ities πt(r | i). To this end we introduce

πt(r) = n(t)−1
∑

l∈r

πt(r | l), (3.1)

and note that

∑

r∈P
πt(r) = n(t)−1

n∑

l=1

∑

r∈Pl

πt(r | l) = n(t)−1
n∑

l=1

Yl(t) = 1.
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Thus πt(r) is a probability distribution over sets r ∈ P. We also introduce

wi(t, r) =
πt(r | i)
πt(r)

, (3.2)

and get the factorization

πt(r | i) = wi(t, r) πt(r). (3.3)

Note that the above framework allows the sampling probabilities to de-
pend in an arbitrary way on events in the past, i.e., on events that are
contained in Ft−. The sampling probabilities may, however, not depend on
events in the future. For example, one may not exclude as a potential control
for a current case an individual that subsequently fails. Also note that the
selection of controls is done independently at the different failure times, so
that subjects may serve as controls for multiple cases, and cases may serve
as controls for other cases that failed when the case was at risk. A basic as-
sumption throughout is that not only the truncation and censoring, but also
the sampling of controls, are independent in the sense that the additional
knowledge of which individuals have entered the study, have been censored
or have been selected as controls before any time t do not carry information
on the risks of failure at t.

3.2. Two common sampling designs

The most common risk set sampling design is simple random sampling; the
classical nested case-control design [24]. For this design, if individual i fails
at time t, one selects m − 1 controls by simple random sampling from the
n(t) − 1 non-failing individuals at risk. In probabilistic terms the design is
given by

πt(r | i) =
(

n(t)− 1
m− 1

)−1

I { |r| = m, r ⊂ R(t)}

for any set r ∈ Pi. Here the factorization (3.3) applies with

πt(r) =
(

n(t)
m

)−1

I { |r| = m, r ⊂ R(t)} ; r ∈ P;

wi(t, r) =
n(t)
m

I{i ∈ r}. (3.4)

To select a simple random sample, the only piece of information needed
from Ft− is the at risk status of the individuals. Often, however, some ad-
ditional information is available for all cohort members, e.g., a surrogate
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measure of the exposure of main interest may be available for everyone.
Langholz and Borgan [13] have developed an “exposure” stratified design
which makes it possible to incorporate such information into the sampling
process in order to obtain a more informative sample of controls. For this
design, called counter-matching, one applies the additional piece of informa-
tion from Ft− to classify each individual at risk into one of say, S, strata.
We denote by Rs(t) the subset of the risk set R(t) which belongs to stratum
s, and let ns(t) = |Rs(t)| be the number at risk in this stratum just before
time t. If individual i fails at t, we want to sample our controls such that the
sampled risk set contains a prespecified number ms of individuals from each
stratum s; s = 1, . . . , S. This is obtained as follows. Assume that the failing
individual i belongs to stratum s(i). Then for s 6= s(i) one samples randomly
without replacement ms controls from Rs(t). From the case’s stratum s(i)
only ms(i) − 1 controls are sampled. The failing individual i is, however,
included in the sampled risk set so this contains a total of ms from each
stratum. Even though it is not made explicit in the notation, we note that
the classification into strata may be time-dependent. A crucial assumption,
however, is that the information on which the stratification is based has
to be known “just before” time t. In probabilistic terms, counter-matched
sampling may be described as follows. For any set r ∈ Pi which is a subset
of R(t) and satisfies |r ∩Rs(t)| = ms for s = 1, . . . , S, we have

πt(r | i) =





(
ns(i)(t)− 1
ms(i) − 1

) ∏

s 6=s(i)

(
ns(t)
ms

)



−1

.

For counter-matched sampling the factorization (3.3) applies with

πt(r) =

{
S∏

s=1

(
ns(t)
ms

)}−1

I(|r ∩Rs(t)| = ms; s = 1, . . . , S); r ∈ P;

wi(t, r) =
ns(i)(t)
ms(i)

I{i ∈ r}.

Other sampling designs for the controls are discussed in [5] and [14]. Note
that also the full cohort study is a special case of our general framework in
which the full risk set is sampled with probability one, i.e., πt(r | i) = I{r =
R(t)} for all i ∈ R(t), and πt(r | i) = 0 otherwise.
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3.3. Inference for sampled risk set data

As in section 2 we denote by t1 < t2 < · · · the times when failures are
observed, and let ij be the individual who fails at tj . As described above,
the sampled risk set R̃j is selected according to a sampling distribution
πtj (r | ij) specified by the researcher, and it consists of the case ij and its
controls. Covariate information is collected on the cases and their controls,
but are not needed for the other individuals in the cohort. It was shown
by Borgan et al. [5] that from sampled risk set data one may estimate the
vector of regression parameters in (2.1) by β̂, the value of β maximizing the
partial likelihood

L(β) =
∏
tj

c(β, zij (tj))wij (tj , R̃j)∑
l∈ eRj

c(β, zl(tj))wl(tj , R̃j)
. (3.5)

We note that (3.5) is similar to the full cohort partial likelihood. In fact,
the full cohort partial likelihood is the special case of (3.5) in which the
entire risk set is sampled with probability one and all weights are unity.
Note that for simple random sampling, the weights (3.4) are the same for
all individuals and hence cancel from (3.5) giving partial likelihood of Oakes
[19].

The maximum partial likelihood estimator β̂ enjoys similar large sample
properties as ordinary maximum likelihood estimators. Specifically β̂ is ap-
proximately multinormally distributed around the true parameter vector β0

with a covariance matrix that may be estimated as I(β̂)−1, the inverse of
the expected information matrix

I(β̂) =
∑
tj





S(2)
eRj

(β̂, tj)

S
(0)
eRj

(β̂, tj)
−




S(1)
eRj

(β̂, tj)

S
(0)
eRj

(β̂, tj)



⊗2





. (3.6)

Here

S
(0)
eRj

(β̂, tj) =
∑

l∈ eRj

c(β̂, zl(tj))wl(tj , R̃j), (3.7)

S(1)
eRj

(β̂, tj) =
∑

l∈ eRj

ċ(β̂, zl(tj))wl(tj , R̃j), (3.8)

S(2)
eRj

(β̂, tj) =
∑

l∈ eRj

ċ(β̂, zl(tj))⊗2

c(β̂, zl(tj))
wl(tj , R̃j),
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where ċ(β, zi(t)) = ∂c(β, zi(t))/∂β, and v⊗2 of a column vector v equals
the matrix vvT. The main steps in the proofs of these properties for the
situation with a general relative risk function are given in section 5.1. For
the special case of Cox’s regression model, detailed proofs are provided by
[5].

3.4. Counting process formulation and martingale residuals

To derive the partial likelihood (3.5) and study the asymptotic properties
of the maximum partial likelihood estimator, Borgan et al. [5] expressed the
sampled risk set data by means of the processes

N(i,r)(t) =
∑

j≥1

I{tj ≤ t, (ij , R̃j) = (i, r)} (3.9)

counting the observed number of failures for individual i in (0, t] with asso-
ciated sampled risk set r. These counting processes are also key for deriving
the martingale residual processes for sampled risk set data.

From the counting processes N(i,r)(t) we may aggregate over sets r ∈ Pi

to recover the counting process (2.2) registering the observed failures for the
ith individual, i.e., Ni(t) =

∑
r∈Pi

N(i,r)(t). In a similar manner we may for
a set r ∈ P aggregate over individuals i ∈ r to obtain the process

Nr(t) =
∑

i∈r

N(i,r)(t) =
∑

j≥1

I{tj ≤ t, R̃j = r} (3.10)

counting the number of times in (0, t] the sampled risk set equals the set r.
The assumption that not only truncation and censoring, but also the

sampling of controls, are independent ensures that the intensity processes
of the counting processes Ni are given by (2.3), not only w.r.t. the “cohort
history” Ht−, but also w.r.t. the “cohort and sampling history” Ft−. From
this and (3.3) it follows that the intensity process λ(i,r)(t) of the counting
processes (3.9) takes the form

λ(i,r)(t) = λi(t)πt(r| i) = Yi(t)c(β0, zi(t))wi(t, r)πt(r)α0(t). (3.11)

Therefore by general results for counting processes

M(i,r)(t) = N(i,r)(t)− Λ(i,r)(t) (3.12)

with

Λ(i,r)(t) =
∫ t

0
λ(i,r)(u)du =

∫ t

0
Yi(u)c(β0, zi(u))wi(u, r)πu(r)α0(u)du

(3.13)
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are local square integrable martingales. As for cohort data, we will insert
estimates for β0 and α0(u)du in (3.13) to obtain an estimated cumulative
intensity process Λ̂(i,r)(t). For β0 we insert the maximum partial likelihood
estimator β̂, and for α0(u)du we insert dÂ0r(t), where

Â0r(t) =
∑

tj≤t, eRj=r

1∑
l∈r c(β̂, zl(tj))wl(tj , r)πtj (r)

. (3.14)

Thus we get the estimated cumulative intensity process

Λ̂(i,r)(t) =
∫ t

0
Yi(u)c(β̂, zi(u))wi(u, r)πu(r)dÂ0r(u)

and the corresponding martingale residual processes

M̂(i,r)(t) = N(i,r)(t)− Λ̂(i,r)(t). (3.15)

The martingale residual processes (3.15) are of little use in their own right,
in fact most of them will be identically equal to zero. But they provide the
building blocks for the grouped martingale residual processes for sampled
risk set data.

3.5. Grouped martingale residual processes and a chi-squared
goodness-of-fit test

As in section 2, we assume that we have a grouping of the individuals into
G groups, and denote by J (u) the set of all individuals who belong to group
J at time u; J = 1, . . . , G. Then the group J martingale residual process for
sampled risk set data corresponding to (2.5) is given by

M̂J(t) =
∫ t

0

∑

i∈J (u)

∑

r∈Pi

dM̂(i,r)(u) =
∫ t

0

∑

i∈J (u)

dNi(u)−
∫ t

0

∑

r∈P

∑

i∈r∩J (u)

dΛ̂(i,r)(u),

which may be rewritten as

M̂J(t) = NJ(t)−
∑

tj≤t

∑
i∈ eRj∩J (tj)

c(β̂, zi(tj)) wi(tj , R̃j)
∑

l∈ eRj
c(β̂, zl(tj))wl(tj , R̃j)

(3.16)

with NJ(t) =
∫ t
0

∑
i∈J (u) dNi(u). As for cohort data, these grouped mar-

tingale residual processes may be interpreted as observed minus expected
number of events in the given groups.
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In section 5.2 we note that, if we could have used the true value β0 instead
of its estimate β̂ in (3.16), then the grouped martingale residual processes
would have been martingales. However, since the regression coefficients have
to be estimated, the grouped martingale residual processes are only approx-
imately martingales. In section 5.2 we also show that, properly normalized,
the vector of grouped martingale residual processes (M̂1, . . . , M̂G)T converges
weakly to a mean zero multivariate Gaussian process. Further the covariance
between M̂I(s) and M̂J(t) can be estimated by

σ̂IJ(s, t) = φ̂IJ(0, s ∧ t, β̂)− ψ̂I(0, s, β̂)T I(β̂)−1 ψ̂J(0, t, β̂), (3.17)

where

φ̂IJ(s1, s2, β̂) =
∑

s1<tj≤s2

S
(0)
eRjI

(β̂, tj)

S
(0)
eRj

(β̂, tj)



δIJ −

S
(0)
eRjJ

(β̂, tj)

S
(0)
eRj

(β̂, tj)



 (3.18)

with δIJ a Kronecker delta, and

ψ̂J(s1, s2, β̂) =
∑

s1<tj≤s2





S(1)
eRjJ

(β̂, tj)

S
(0)
eRj

(β̂, tj)
−

S
(0)
eRjJ

(β̂, tj)S
(1)
eRj

(β̂, tj)

S
(0)
eRj

(β̂, tj)2



 . (3.19)

Here S
(0)
eRjJ

(β̂, tj) and S(1)
eRjJ

(β̂, tj) are given by expressions similar to (3.7)

and (3.8), but with the summation restricted to individuals l ∈ R̃j ∩ J (tj).
As will be illustrated in section 4, a plot of the grouped martingale residual

processes is a useful tool for assessing the fit of the relative risk regression
model (2.1). In addition the grouped martingale residual processes may be
used to derive formal goodness-of fit tests. In section 7 we briefly discuss
different possible goodness-of-fit tests. Here we restrict our attention to a
simple chi-squared test based on a comparison of observed and expected
number of events in the G groups in K disjoint time intervals. To this end
let 0 = a0 < a1 < · · · < aK−1 < aK = τ be a partitioning of the study time
interval, and introduce (for H = 1, 2, . . . , K and J = 1, 2, . . . , G)

M̂HJ = M̂J(aH)− M̂J(aH−1) = OHJ − EHJ . (3.20)

Here OHJ = NJ(aH)−NJ(aH−1) is the observed number of events in group
J in time interval H, while

EHJ =
∑

aH−1<tj≤aH

∑
i∈ eRj∩J (tj)

c(β̂, zi(tj))wi(tj , R̃j)
∑

l∈ eRj
c(β̂, zl(tj))wl(tj , R̃j)



Ø. Borgan and B. Langholz/Martingale residuals for sampled risk set data 13

is the corresponding expected number under model (2.1). The martingale
residual processes (3.16) sum to zero at any given time t. To derive a chi-
squared goodness-of-fit test, we therefore disregard the contribution from
one of the groups, say the first group, and consider the K(G − 1)-vector
M̂ with elements M̂HJ for H = 1, 2, . . . ,K; J = 2, 3, . . . , G. By the large
sample distributional results for the grouped martingale residual processes
summarized in connection with (3.17), it follows that M̂ is approximately
mean zero multinormally distributed in large samples when model (2.1)
holds true. Its covariance matrix may be estimated by the matrix Σ̂ =
{σ̂LI,HJ} with elements

σ̂LI,HJ = Ĉov(M̂LI , M̂HJ)

= δLH φ̂IJ(aH−1, aH , β̂)− ψ̂I(aL−1, aL, β̂)TI(β̂)−1ψ̂J(aH−1, aH , β̂);

H, L = 1, 2, . . . , K; J, I = 2, 3, . . . , G; where δLH is a Kronecker delta. There-
fore a goodness-of-fit test may be based on the statistic χ2 = M̂T Σ̂−1 M̂,
which is approximately chi-squared distributed with K(G − 1) degrees of
freedom in large samples when model (2.1) holds true.

Large sample results for the grouped martingale residual processes and
the goodness-of-fit test for full cohort data, are the special cases of the above
results in which the sampled risk set equals the full risk set with probability
one and all weights are unity. In particular for cohort data with exponential
relative risk function and only one time interval (i.e. K = 1), the test statistic
χ2 specializes to the goodness-of-fit statistic of Grønnesby and Borgan [8].

May and Hosmer [18] showed how the test of Grønnesby and Borgan
can be obtained as the score test for the addition of categorical grouping
variables. A similar result holds here as well. More specifically, consider the
extension of model (2.1) where an individual i who belongs to group J at
time t ∈ (aH−1, aH ] has a hazard rate of the form

α(t; zi) = c(β0, zi(t)) eγHJ α0(t); (3.21)

J = 2, 3, . . . , G. Then by some straightforward, but tedious algebra along
the lines of [18, Appendix A] one may show that the goodness-of-fit statistic
χ2 is algebraically equivalent to the score test for the hypothesis that all the
additional K(G− 1) parameters γHJ in (3.21) are equal to zero.

4. An illustration

To illustrate the use of the grouped martingale residual processes and the
accompanying goodness-of-fit test, we will use data on lung cancer death
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among a cohort of uranium miners from the Colorado Plateau. The cohort
was assembled to study the effects of radon exposure and smoking on lung
cancer risk and has been described in detail in earlier publications; e.g. [9].
The cohort consists of 3,347 Caucasian male miners recruited between 1950
and 1960 and was traced for mortality outcomes through December 31, 1982,
by which time 258 lung cancer deaths were observed. Exposure data include
radon exposure, in working level months (WLM), and smoking histories,
in number of packs of cigarettes (20 cigarettes per pack) smoked per day.
We consider age as the basic time scale and summarize radon and smoking
data into cumulative exposures lagged by two years. Thus we consider the
covariates z(t) = (zi1(t), zi2(t))T, where zi1(t) is cumulative radon exposure
measured in working level months (WLM) up to two years prior to age
t, and zi2(t) is cumulative smoking in number of packs smoked up to two
years prior to t. Although covariate information is available on all cohort
subjects, in order to illustrate the methods we selected simple random and
counter-matched samples with three controls per case. These data sets are
denoted 1:3 simple random and counter-matched samples, respectively. The
23 tied failure times were broken randomly so that there was only one case
per risk set. Counter-matching was based on radon exposure grouped into
four strata according to the quartiles of the cumulative radon exposure for
the cases [14, Section 5], and one control was sampled at random from each
stratum except the one of the case.

As has been the case in previous analyzes of these data (cf. [14] and its
references), the excess relative risk model was used. Thus the hazard rate
for miner i is assumed to take the form

α(t; zi) = [1 + β01 zi1(t)] [1 + β02 zi2(t)]α0(t). (4.1)

For the 1:3 simple random data, the estimated radon excess relative risk
(with standard error) is β̂1 = 0.556 (0.215) per 100 WLMs cumulative radon
exposure, while the smoking excess relative risk is β̂2 = 0.276 (0.093) per
1000 packs of cigarettes smoked. For the 1:3 counter-matched data, the
estimates become β̂1 = 0.420 (0.137) and β̂2 = 0.205 (0.068).

Figure 1 shows the grouped martingale residual processes (3.16) for both
data sets when the individuals are aggregated over groups defined by cumula-
tive radon exposure (group I: below 500 WLMs; group II: 500–1500 WLMs;
group III: above 1500 WLMs), while Table 1 summarizes the observed and
expected number of lung cancer deaths in the three radon exposure groups
for ages below and above 60 years. From the plots and the table it is seen that
more lung cancer deaths than expected occur in the high exposure group
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Fig 1. Grouped martingale residual processes for the uranium miners based on a
1:3 simple random sample (upper panel) and a 1:3 counter-matched sample (lower
panel). Grouping is done according to cumulative radon exposure: Group I: below
500 WLMs; group II: 500–1500 WLMs; group III: above 1500 WLMs.
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Table 1
Observed and expected number of lung cancer deaths.

Exposure Observed Expected numbers
groupa numbers 1:3 simple 1:3 counter-matched

Below 60 years of age
Group I 30 30.7 35.5
Group II 39 45.9 48.4
Group III 81 73.4 66.1

Above 60 years of age
Group I 27 27.7 25.3
Group II 45 36.1 36.9
Group III 36 44.2 45.8
a) Group I: below 500 WLMs; group II: 500–1500 WLMs;

group III: above 1500 WLMs.

(group III) below the age of 60 years, while fewer cases than expected occur
above this age, the pattern being most pronounced for the counter-matched
data. The chi-squared goodness-of-fit statistic with 2(3− 1) = 4 degrees of
freedom based on the observed and expected numbers of Table 1 takes the
values 10.5 and 14.2, respectively, for the 1:3 simple random sample and the
1:3 counter-matched sample, with corresponding P-values 0.032 and 0.007.
Thus our analysis shows that the excess relative risk model (4.1), where the
effect of radon depends linearly on cumulative exposure, is too simplistic.

The lack of fit is further illustrated in Table 2 for the 1:3 simple random
sample. The table shows relative risks within radon exposure categories for
individuals below and above 60 years of age, as well as the relative risks
predicted by the excess relative risk model (4.1). Prior to age 60 years,
lung cancer mortality rates increase faster than linear with radon exposure
level while after age 60, the dose response is quite a bit slower than linear.
There are a number of possible ways one might choose to accommodate this
pattern of rates. One could simply accommodate the variation in a model
that allows for changing shape of the dose response curve with age. But,
since miners tended to experience the larger exposures at earlier ages, the
observed change in exposure response curve shape with age may well be due
to the time since exposure. Thus, a biologically appealing approach would
be to summarize the exposure history in a way that accounts for the time
since exposure (latency) and, perhaps, rate of exposure. In fact, it has been
found that latency effects are a significant component in describing radiation
exposure and lung cancer risk in the Colorado Plateau miners, e.g. [17, 15].
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Table 2
Relative risks within categories of cumulative radon exposure by age at lung cancer death

and relative risks predicted by the excess relative risk model (4.1). 1:3 simple random
sampling.

Radon Mean exposure Relative risks Relative risksc

exposure within for categorical predicted by

categorya categoryb model model (4.1)

Below 60 years of age

Group I 180 1 1
Group II 896 2.35 2.99
Group III 2885 10.91 8.51

Above 60 years of age

Group I 187 1 1
Group II 923 3.89 3.01
Group III 3034 5.61 8.76

a) Group I: below 500 WLMs; group II: 500–1500 WLMs;

group III: above 1500 WLMs.

b) Mean among controls.

c) Computed at category mean, normalized to mean of first category.

It is, however, beyond the scope of this paper to pursue such alternative
models. Here we are content with the above illustration of how the grouped
residual process plots play a useful role by identifying model lack of fit and
by suggesting candidate changes that may yield a better fitting model.

5. Outline of proofs for sampled risk set data

In this section we give an outline of the proofs of the large sample properties
of the maximum partial likelihood estimator β̂ and the grouped martingale
residual processes for sampled risk set data when we have a general relative
risk function. Formal proofs may be written out along the lines of [5], that
gives detailed proofs of the large sample properties of the maximum par-
tial likelihood estimator for the special case of an exponential relative risk
function.

5.1. Large sample properties of β̂

The estimator β̂ is the solution to U(β) = 0, where U(β) = ∂ log L(β)/∂β
is the vector of score functions, and L(β) is the partial likelihood (3.5). Using
counting process notation, the vector of score functions may be expressed
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as

U(β) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β, zi(u))
c(β, zi(u))

− S(1)
r (β, u)

S
(0)
r (β, u)

}
dN(i,r)(u),

where τ is the terminal study time, and

S
(0)
r (β, u) =

∑

l∈r

Yl(u) c(β, zl(u))wl(u, r), (5.1)

S(1)
r (β, u) =

∑

l∈r

Yl(u) ċ(β, zl(u))wl(u, r). (5.2)

Further the observed partial information matrix I(β) = −∂U(β)/∂βT be-
comes

I(β) =
∑

r∈P

∑

i∈r

∫ τ

0

∂

∂βT

{
S(1)

r (β, u)

S
(0)
r (β, u)

− ċ(β, zi(u))
c(β, zi(u))

}
dN(i,r)(u). (5.3)

If we evaluate the score function at β0, we find by some straightforward
algebra [using (3.12) and (3.13)]:

U(β0) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β0, zi(u))
c(β0, zi(u))

− S(1)
r (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u). (5.4)

Here the integrands are predictable processes. Thus the score function is a
sum of (vector-valued) stochastic integrals when evaluated at the true value
of the regression coefficients. If, on the right hand side of (5.4), we replace the
upper limit of integration by t, we get a stochastic process. This stochastic
process is a martingale with a predictable variation process that evaluated
at τ becomes

〈U(β0)〉 (τ) =
∑

r∈P

∑

i∈r

∫ τ

0

{
ċ(β0, zi(u))
c(β0, zi(u))

− S(1)
r (β, u)

S
(0)
r (β, u)

}⊗2

λ(i,r)(u)du.

Using (3.11), we get after some straightforward algebra that

〈U(β0)〉 (τ) =
∑

r∈P

∫ τ

0
Vr(β0, u) S

(0)
r (β, u) πu(r) α0(u)du, (5.5)

where

Vr(β, u) =
S(2)

r (β, u)

S
(0)
r (β, u)

−
(

S(1)
r (β, u)

S
(0)
r (β, u)

)⊗2

(5.6)
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with S
(0)
r (β, u) and S(1)

r (β, u) given by (5.1) and (5.2), respectively, and

S(2)
r (β, u) =

∑

l∈r

Yl(u)
ċ(β, zl(u))⊗2

c(β, zl(u))
wl(u, r).

If we insert dN(i,r)(u) = λ(i,r)(u)du + dM(i,r)(u) [cf. (3.12)] and use (3.11)
in (5.3), we find after some algebra that the observed information matrix
evaluated at β0 may be decomposed as

I(β0) = 〈U(β0)〉 (τ)+
∑

r∈P

∑

i∈r

∫ τ

0

∂

∂βT

{
S(1)

r (β0, u)

S
(0)
r (β0, u)

− ċ(β0, zi(u))
c(β0, zi(u))

}
dM(i,r)(u).

Thus, at the true value of the regression coefficient, the observed information
matrix equals the predictable variation process of the score function plus a
stochastic integral.

By the martingale central limit theorem, we may now show, under suitable
regularity conditions, that n−1/2U(β0) converges weakly to a multinormal
distribution with mean zero and a covariance matrix Σβ that is the limit in
probability of n−1 〈U(β0)〉 (τ). We may also show that both n−1I(β0) and
n−1I(β̂) converge in probability to Σβ. From these results the large sample
properties of β̂ follow in the usual way. The main steps in the derivations
are as follows. Since β̂ is the solution to the score equation U(β̂) = 0,
a Taylor expansion of the score equation around β0 gives 0 = U(β̂) ≈
U(β0)− I(β0)(β̂ − β0). From this we obtain

√
n

(
β̂ − β0

)
≈ (

n−1I(β0)
)−1

n−1/2U(β0) ≈ Σ−1
β n−1/2U(β0), (5.7)

and it follows that
√

n(β̂ − β0) converges weakly to a multinormal distri-
bution with mean zero and covariance matrix Σ−1

β ΣβΣ−1
β = Σ−1

β . Thus, in

large samples, β̂ is approximately multinormally distributed around β0 with
covariance matrix n−1Σ−1

β .

In order to estimate the covariance matrix of β̂ we may use I(β̂)−1, the
inverse of the observed information, or we may use the inverse of the (esti-
mated) expected information matrix. The (estimated) expected information
is obtained from (5.5) by inserting β̂ for β0 and the increment

dÂ0r(u) =
dNr(u)

S
(0)
r (β̂, u)πu(r)
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of the Breslow type estimator (3.14) for α0(u)du to get

I(β̂) =
∑

r∈P

∫ τ

0
Vr(β̂, u) dNr(u), (5.8)

where Vr(β, u) is given by (5.6). This justifies (3.6) of section 3.3. By (5.8)
and (5.3) we note that while the expected information matrix depends only
on quantities that are aggregates over each sampled risk set, the observed
information matrix depends specifically on the covariates of the cases. There-
fore the expected information matrix tends to be the most stable of the two,
and it is the one we recommend. For Cox’s regression model the observed
and expected information matrices coincide.

5.2. Large sample properties of the grouped martingale residual
processes

We will derive similar large sample properties for the grouped martingale
residuals for sampled risk set data as those of Grønnesby and Borgan [8] for
Cox regression with cohort data. To this end we first note that the grouped
martingale residual processes (3.16) may be given as

M̂J(t) =
∑

r∈P

∫ t

0

∑

i∈r∩J (u)

dN(i,r)(u)−
∑

r∈P

∫ t

0

S
(0)
rJ (β̂, u)

S
(0)
r (β̂, u)

dNr(u), (5.9)

where S
(0)
r (β, u) is given by (5.1) and

S
(0)
rJ (β, u) =

∑

l∈r∩J (u)

Yl(u)c(β, zl(u))wl(u, r).

We also note that the intensity process of the counting process Nr(t) given
by (3.10) takes the form

λr(t) =
∑

i∈r

λ(i,r)(t) = S
(0)
r (β0, t) πt(r)α0(t), (5.10)

where we have used (3.11) and (5.1) to get the last equality. We also intro-
duce the martingales

Mr(t) =
∑

i∈r

M(i,r)(t) = Nr(t)−
∫ t

0
λr(u)du. (5.11)
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Then, using (3.12), (3.13), (5.1), and (5.9) – (5.11), we find after some
straightforward algebra that the normalized grouped martingale residual
processes may be decomposed as

n−1/2M̂J(t) = (5.12)

X∗
J(t) − n−1/2

∑

r∈P

∫ t

0

{
S

(0)
rJ (β̂, u)

S
(0)
r (β̂, u)

− S
(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dNr(u),

where

X∗
J(t) = n−1/2

∑

r∈P

∑

i∈r

∫ t

0

{
δiJ(u)− S

(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u)

with δiJ(u) = 1 if i ∈ J (u), i.e. if individual i belongs to group J at time
u, and δiJ(u) = 0 otherwise. Note that X∗

J(t) is a stochastic integral, and
hence itself a martingale. Thus the grouped martingale residual processes
would have been martingales if we could use the true value β0 instead of its
estimate β̂ in (5.9).

We now take a closer look at the last term in (5.12). By a Taylor series
expansion, one may show that this term is asymptotically equivalent to

−n−1
∑

r∈P

∫ t

0

∂

∂βT

{
S

(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
dNr(u)

√
n

(
β̂ − β0

)
.

Now, using (5.10) and (5.11), the latter expression may be shown to be
asymptotically equivalent to−ψJ(0, t, β0)T

√
n (β̂−β0), where ψJ(s1, s2, β0)

is the uniform (in s1 and s2) limit in probability of

n−1
∑

r∈P

∫ s2

s1

{
S(1)

rJ (β0, u)

S
(0)
r (β0, u)

− S
(0)
rJ (β0, u)S(1)

r (β0, u)

S
(0)
r (β0, u)2

}
S

(0)
r (β0, u)πu(r)α0(u)du,

(5.13)
and

S(1)
rJ (β, u) =

∑

l∈r∩J (u)

Yl(u)ċ(β, zl(u))wl(u, r).

Further, using (5.4) and (5.7), one may show that
√

n (β̂−β0) is asymptot-
ically equivalent to Σ−1

β X∗∗(τ), where

X∗∗(t) = n−1/2
∑

r∈P

∑

i∈r

∫ t

0

{
ċ(β0, zi(u))
c(β0, zi(u))

− S(1)
r (β0, u)

S
(0)
r (β0, u)

}
dM(i,r)(u)
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Combining all this, we get from (5.12) that, for J = 1, . . . , G, the normalized
martingale residual processes n−1/2 M̂J(t) are asymptotically equivalent (as
stochastic processes in t) to

XJ(t) = X∗
J(t)−ψJ(t,β0)

TΣ−1
β X∗∗(τ). (5.14)

Now X∗
J(t) and X∗∗(t) are linear combinations of stochastic integrals, and

hence themselves martingales. For given groups I, J = 1, . . . , G we find after
some algebra that the predictable (co)variation process of the first of these
martingales takes the form

〈X∗
I , X∗

J〉(t) = (5.15)

n−1
∑

r∈P

∫ t

0

S
(0)
rI (β0, u)

S
(0)
r (β0, u)

{
δIJ −

S
(0)
rJ (β0, u)

S
(0)
r (β0, u)

}
S

(0)
r (β0, u)πu(r)α0(u)du,

with δIJ = 1 if I = J , and δIJ = 0 otherwise, while 〈X∗
J ,X∗∗〉(t) equals

(5.13) and 〈X∗∗〉(τ) = 〈U(β0)〉 (τ) is given by (5.5). If, on the right hand
side of (5.15), we integrate over (s1, s2] instead of (0, t], one may show that
the resulting integral converges uniformly (in s1 and s2) to a limit function
φIJ(s1, s2,β0), say. By (5.14) and the above results we may now conclude,
using the martingale central limit theorem, that the normalized vector of
grouped martigale residual processes n−1/2(M̂1, . . . , M̂G)T converges weakly
to a mean zero Gaussian process U = (U1, . . . , UG)T. The (I, J)-th entry
of the covariance matrix Σ(s, t) = E{U(s)TU(t)} between U(s) and U(t)
becomes

σIJ(s, t) = Cov(UI(s), UJ(t)) (5.16)
= φIJ(0, s ∧ t, β0)−ψI(0, s, β0)

TΣ−1
β ψJ(0, t, β0),

where ψJ(s1, s2, β0) and φIJ(s1, s2, β0) are defined just above (5.13) and
just below (5.15), respectively. For estimation of the covariances (5.16), we
may estimate Σβ consistently by 1/n times the expected information matrix
(5.8). Further, using (5.10) and (5.11), one may prove that φIJ(s1, s2, β0)
can be estimated uniformly (in s1 and s2) consistently by 1/n times (3.18),
while ψJ(s1, s2,β0) can be estimated uniformly consistently by 1/n times
(3.19). Combining this, it follows that the asymptotic covariances (5.16) may
be estimated uniformly consistently by n−1σ̂IJ(s, t), where σ̂IJ(s, t) is given
by (3.17) in section 3.4.
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6. Matched risk set sampling

In order to keep the presentation simple, we have so far considered the rel-
ative risk regression model (2.1), where the baseline hazard rate is assumed
to be the same for all individuals in the cohort. Sometimes this may not
be reasonable, e.g., to control for the effect of one or more confounding fac-
tors, one may want to adopt a stratified version of (2.1) where the baseline
hazard differs between (possibly time-dependent) population strata gener-
ated by the confounders. The regression coefficients are, however, assumed
the same across these strata. Thus the hazard rate of an individual i from
population stratum h is assumed to take the form

α(t; zi) = c(β0, zi(t))α0h(t). (6.1)

When the stratified proportional hazards model (6.1) applies, the sampling
of controls should be restricted to those at risk in the same population stra-
tum as the case. We say that the controls are matched by the stratification
variable. In particular for simple random sampling, if an individual in pop-
ulation stratum h fails at time t, one selects at random m− 1 controls from
the n(h)(t) − 1 non-failing individuals at risk in this population stratum.
Similarly one may combine matching and counter-matching by selecting the
controls among those in the sampling strata used for counter-matching who
belong to the population stratum of the case. Note the distinction between
the population strata, which form the basis for stratification in (6.1), and
the sampling strata used for the counter-matched sampling of the controls.

In general matched risk set sampling may be described as follows. Given
Ft−, if an individual i in population stratum h fails at time t, we select our
sampled risk set according to a probability distribution πt(r | i) over sets r
that contain i and where all individuals in r belong to population stratum h
at time t. (Note that the sampling distribution will depend on the popula-
tion stratum h of the failing individual, even though this is not made explicit
in the notation.) For such sampling distributions we have the factorization
πt(r | i) = wi(t, r) πt(r), where πt(r) is given by (3.1) with n(t) replaced
by n(h)(t), and wi(t, r) is obtained from (3.2) as before. In particular for
matched risk set sampling with simple random sampling of the controls, the
weights are wi(t, r) = [n(h)(t)/m]I{i ∈ r} for individuals in population stra-
tum h, while for matched risk set sampling with counter-matched sampling
of the controls the weights are wi(t, r) = [n(h)

s(i)(t)/ms(i)]I{i ∈ r}. Here s(i)

denotes the sampling stratum of individual i, while n
(h)
s (t) is the number of

individuals at risk “just before” time t in population stratum h who belong
to sampling stratum s.
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The general theory of sections 3 and 5 goes through almost unchanged
for matched risk set sampling. In particular the partial likelihood (3.5) and
the formula (3.6) for the expected information matrix apply without mod-
ification provided one uses the appropriate weights as just described. Also
the expressions (3.16) and (3.18) for the grouped martingale residuals and
their estimated covariances, as well as the chi-squared goodness-of-fit test
derived from these expressions, remain valid for matched risk set sampling.

In order to prove these extensions of the results of sections 3 and 5, we have
to consider the processes N

(h)
(i,r)(t), counting the observed number of failures

for individual i with associated sampled risk set r while being a member of
population stratum h, and their associated (cumulative) intensity processes
and martingales. The proofs follow step by step the arguments of sections 3
and 5, and we omit the details.

7. Discussion

We have shown how plots of grouped martingale residual processes and
the accompanying chi-squared goodness-of-fit test provide useful tools for
checking the fit of relative risk regression models based on sampled risk set
data. However, a number of questions remain to be better understood in
relation with these methods.

To use the methods one has to define a (possibly time-dependent) group-
ing of the individuals, and it is then a question how this best can be done.
If the grouping is based on current covariate values, one has to decide which
covariates to use for the grouping and how the cut points should be chosen.
Another option is to follow the approach of Grønnesby and Borgan [8] and
group the individuals according to their values of the estimated relative risks
c(β̂, zi(t)). As these depend on β̂, such a grouping will violate our assump-
tion that the grouping at time t should only depend on information available
“just before” time t. We conjecture, however, that the large sample distri-
butions of the grouped martingale residual processes and the accompanying
chi-squared goodness-of-fit test can still be used as approximations in large
samples, but simulation studies are needed to investigate this further.

A useful feature of the grouped martingale residual process plots is that
they show how deviations from the model may change over time. For in-
stance, in the uranium miners example, we saw how the highest radon ex-
posure group had more observed lung cancer deaths than expected for ages
below 60 years and fewer thereafter. Such deviations give useful hints as to
how the model may be modified to obtain a better fit. However, a better
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understanding is needed on how various deviations from the relative risk
regression model (2.1) will turn up in the plots.

For the special case of an exponential relative risk function, one may
use standard software for Cox regression to maximize the partial likelihood
(3.5), formally treating the label of the sampled risk sets as a stratification
variable in the Cox regression and including the log wl(tj , R̃j) as offsets in
the model. The package Epicure fits a wide variety of relative risk functions
c(β, zi(t)) and was used to estimate the parameters for the uranium miners
data in section 4. But available statistical packages are in general not able
to perform all the computations needed for the grouped martingale residual
process plots and accompanying chi-squared goodness-of-fit test, and the
computations in section 4 were done in separate programs written by the
authors for SAS and for S-Plus. However, for the special case of Cox’s re-
gression model, the extended model (3.21) becomes a Cox model as well,
and our chi-squared goodness-of-fit test can be computed as the score test
for the addition of categorical grouping variables using standard software
for Cox regression.

Our chi-squared goodness-of-fit test is based on a comparison of observed
and expected number of failures in cells obtained by partitioning the space of
covariates and time. This is in line with the test suggested by Schoenfeld [21]
for Cox’s regression model with cohort data. In fact, apart from details in
the estimation of covariances, Schoenfeld’s test is the special case of ours
in which the relative risk function is exponential and the entire risk set is
sampled with probability one. In order to use our chi-squared test, one has to
decide on a grouping according to both covariates and time. As an alternative
one may group only according to covariates and consider the maximum
value of the chi-squared statistic over a time interval [τ1, τ2] ⊂ (0, τ ]. P-
values for such a supremum type test statistic should be obtainable by the
simulation approach of Lin, Wei and Ying [16] based on the asymptotic
representation (5.14) of the grouped martingale residual processes. It should
even be possible to avoid the grouping according to covariates by using
the individual martingale residual processes M̂(i,r)(t) [ cf. (3.15)] to derive
cumulative sum of martingale-based residuals along the line of Lin et al.
[16].
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