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Preface

This thesis is submitted to the Faculty of Mathematics and Natural Sciences at
the University of Oslo (UiO) in fulfillment of the requirements for the degree
of Philosophiae Doctor (Ph.D.). The work presented here was carried out in
collaboration between the Acquisition Geophysics group in the Research and
Development (R&D) Department of PGS and the Department of Geosciences of
UiO. This collaboration was made possible through the Industrial PhD Program
organized and supported by the Research Council of Norway.

The research described in this thesis was conducted between January 2020
and March 2023 under the supervision of Dr. Anthony Day, Dr. Pierre Turquais,
and Dr. Morten W. Pedersen from PGS, and Prof. Leiv-Jacob Gelius from UiQO.
The thesis consists of three papers presented in chronological order of writing.
Two of these papers have already been published in the journals Geophysics and
Geophysical Prospecting, respectively, while the third paper has been submitted
to Geophysical Prospecting and is currently under review.
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Summary

Seismic exploration surveys are increasingly covering larger areas and utilizing a
greater number of sensors to collect data. Hence, the resulting seismic data sets
are rapidly growing in size. However, this increase in data volume, presents a
significant challenge for conventional seismic processing and imaging techniques,
which require extensive human and computational resources . Compressing the
seismic data at an early stage of the seismic processing sequence can be key
element to overcoming storage and data transfer barriers. Moreover, applying
seismic processing steps directly in the compressed domain would not only save
storage and transfer costs but could also lead to faster and more cost-effective
alternatives to standard seismic processing.

The relevant information contained within seismic data sets is of smaller
dimensionality than the data themselves. Consequently, the seismic data can
be expressed with a reduced number of coefficients compared to the number
of data samples by transforming the data into an appropriate mathematical
domain. Such transformations are generally called sparse and have gained more
interest in seismic processing during the last few years. This thesis first explores
different sparse representations in the context of seismic data compression, where
a distinction is made between fixed and learned transforms. It then follows
an investigation of different transforms that succeed in describing the seismic
wavefield based on their analytical expressions. Further, a particular focus is
placed on a parabolic constrained version of dictionary learning methods, where
the seismic wavefield can be locally explained by kinematic parameters. The
extracted kinematic parameters are exploited to develop new processing methods
based on simple operators that are directly applied to compressed seismic data.

This goal has been tackled with a step by step approach as follows: (1)
A dictionary learning (DL)-based compression method is developed, where
redundancy in seismic data is fully exploited by learning small-sized dictionaries
from local windows of the seismic shot gathers. Our method has been evaluated
on both synthetic and realistic data sets and demonstrated superior effectiveness
compared to conventional compression methods, which are based on different
predefined transforms. (2) A novel method that applies the dual-sensor wavefield
separation processing step in the compressed domain has been developed for
2D seismic data based on parabolic dictionary learning. Kinematic parameters
such as the slope and curvature of the learned atoms are used to allow the
wavefield separation processing step directly in the dictionary learning compressed
domain. The method has achieved similar results as an industry-standard FK-
based method for wavefield separation and has the advantage of being robust
to spatial aliasing without the need for interpolation, while reaching a high
compression performance. (3) A deghosting process in the compressed domain,
specifically designed for low-frequencies has been developed. The method can
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Summary

be seen as complementary to the previous wavefield separation method which
usually handles only high frequencies. By operating directly on the compressed
data format, which is of smaller size, the method has provided a cost-effective
alternative to the standard deghosting process. We have evaluated the method
using both synthetic and field data sets and achieved similar results to an
industry-standard FK method while achieving high compression performances.

In summary, our research has demonstrated that constrained dictionary
learning-based methods are highly effective in enabling key processing steps,
such as wavefield separation and deghosting, to be carried out directly in the
compressed domain. While sparse transforms have previously been utilized for
some seismic processing steps, there has been no prior proposal for methods aimed
at compressing and simultaneously processing seismic data in the compressed
domain. Thus, we have shown that such methods can significantly reduce costs
related to data storage and transfer, and bring computational cost reduction.
Future research can now focus on allowing other key processing steps in the
compressed domain.
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Sammendrag

Seismiske leteundersgkelser dekker stadig storre omrader og benytter et gkende
antall sensorer for & samle inn data. Dette betyr igjen at de seismiske
datasettene gker raskt i stgrrelse. Denne gkningen i datavolum utgjer
imidlertid en betydelig utfordring for konvensjonelle seismiske prosesserings-
og bildeteknikker, som krever omfattende menneskelige og beregningsmessige
ressurser.  Komprimering av de seismiske dataene pa et tidlig stadium
av den seismiske prosesseringssekvensen kan veere et ngkkelelement for &
overvinne lagrings- og dataoverfgringsbarrierer. Videre vil bruk av seismiske
prosesseringstrinn direkte i det komprimerte domenet ikke bare spare lagrings-
og overfgringskostnader, men kan ogsa fore til raskere og mer kostnadseffektive
alternativer til standard seismisk prosessering.

Den relevante informasjonen i et seismiske datasett er av mindre dimensjon-
alitet enn dataene selv. Fglgelig kan seismiske data representeres ved hjelp av et
redusert antall koeffisienter sammenlignet med det totale antall datapunkter ved
& transformere dataene til et passende matematisk domene. Generelt kalles slike
transformasjoner glisne (‘sparse’) og de er blitt gjenstand for en stgrre interesse
innen seismisk prosessering i lgpet av de siste arene. Denne oppgaven undersgker
fgrst ulike glisne representasjoner for anvendelser innen seismisk datakomprimer-
ing, hvor det skilles mellom fast definerte og innleerte transformasjoner. Deretter
diskuteres ulike transformasjoner som er basert pa analytiske beskrivelser av det
seismiske bglgefeltet . Fokus vil spesielt veere pa en parabolsk beskrivelse av de
seismiske bglgene ved hjelp av lokale kinematiske parametre. De ekstraherte
kinematiske parametrene benyttes til & utvikle nye prosesseringsmetoder basert
pé enkle operatorer som anvendes direkte pa de komprimerte seismiske data.

I denne oppgaven er fglgende hovedresultater blitt oppnadd: (1) En
‘Dictionary Learning’ (DL)-basert komprimeringsmetode er utviklet, hvor
redundans i seismiske data utnyttes fullt ut ved a leere detaljerte egenskaper
ut fra lokale tidsvinduer av seismiske data. Metoden har blitt testet ved
bruk av bade syntetiske data og feltdata og er vist & veere mer effektiv
sammenlignet med konvensjonelle komprimeringsmetoder, som er basert pa
forskjellige forhandsdefinerte transformasjoner. (2) En ny metode for dual-sensor
bglgefeltseparasjon i det komprimerte domenet er utviklet for 2D data basert pa
parabolsk DL. Kinematiske parametere som helning og krumning til DL-atomene
gjor det mulig & utfore bglgefeltseparasjon direkte i det komprimerte domenet.
Metoden gir sammenlignbare resultater med en industristandard FK-basert
metode for bglgefeltseparasjon og har fordelen av & veere robust mot romlig
aliasing uten behov for interpolering og gir samtidig hgy kompresjonsytelse. (3)
En dehosting-prosess i det komprimerte domenet, spesielt designet for lave
frekvenser, er ogsa utviklet. Metoden kan sees pa som komplementeer til
bglgefeltseparasjonsmetoden som vanligvis kun handterer hgye frekvenser. Ved
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Summary

a operere direkte pa det komprimerte dataformatet, som er av mindre stgrrelse,
representerer denne nye metoden et kostnadseffektivt alternativ til en standard
deghosting-prosess. Vi har evaluert metoden ved a benytte bade syntetiske data
og feltdata og har oppnadd sammenlignbare resultater med en industristandard
FK-metode samtidig med en hgy kompresjonsytelse.

Kort oppsummert har forskningen var vist at leeringsbaserte DL-metoder
er sveert effektive i forhold til & utfgre viktige prosesseringstrinn, som bglge-
feltseparasjon og deghosting, direkte i det komprimerte domenet. Mens glisne
transformasjoner tidligere har veert benyttet i noen seismiske prosesseringstrinn,
har det ikke tidligere blitt foreslatt metoder skreddersydd for & komprimere og
samtidig prosessere seismiske data i det komprimerte domenet. Vi har demon-
strert at denne type metoder kan redusere kostnadene knyttet til datalagring og
overfgring betydelig, og gi en beregningsmessig kostnadsreduksjon. Videre forskn-
ing kan na fokusere pa & utvikle andre viktige seismiske prosesseringssekvenser i
det komprimerte domenet.
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Chapter 1
Introduction

1.1. Motivation

In the marine seismic industry, vast amounts of data are collected from tens of
thousands of sensors, resulting in data sets that often reach several terabytes in
size. This presents potential bottlenecks during data transfer and processing. For
example, during processing the data are duplicated several times to allow proper
quality control (QC) and enable repeating processing steps, which requires
additional disk space and management of data. Additionally, the large data size
makes direct data transfer between onshore processing centers time-consuming,
and between vessels and processing centers almost impossible. Indeed, the
satellites available bandwidth is not enough to enable the transfer of all pre-
stack data recorded on the vessels. Hence, physical tapes are still the most
commonly used way for transferring data, either upon completion of the
acquisition process or during crew changes. An efficient compression technique

L'Q
Compressed data Compressed data
Compression J Decompression

of Avi~| lof Avi~|
[of W] [of wivr|
88 ..o £ 1 NI

Seismic data Seismic data

Acquisition Processing
=
Earth Layers Processed data

Figure 1.1: Schematics of the conventional use of seismic data compression in
the context of marine seismic exploration.



1. Introduction

would save costs associated with disk storage and data transfer, thereby
removing barriers to faster product delivery. For instance, efficient compression
could: enable data transfer from the vessel to an onshore processing center before
the end of acquisition; reduce the size of long-term data storage on disk,
particularly for data that remains unused for an extended period.

Figure 1.1 shows how a seismic data compression algorithm can be used in
the context of marine seismic acquisition and processing. Although such
algorithms can help to achieve various goals, it is important to note that data
decompression is always necessary before applying any processing step. This is
because conventional processing steps typically work with input data in their
original time-space domain. As a result, the benefits of compressing seismic data
are mainly limited to data transfer and long-term storage. Hence, even if the
data is compressed, the cost-saving benefits related to disk storage or project
turnaround time are not realized during processing. Enabling steps of the
processing sequence directly in a compressed domain can overcome the
requirement for data decompression and thus not only save costs related to
storage during processing, but also provide a faster and cheaper alternative to
the standard seismic processing sequence since the processing would be applied
on compressed data which are of smaller size. Figure 1.2 shows how the general
workflow would look like if processing steps were enabled in the compressed

domain.
Q&\\
* Data Transfer m
Compressed data Compressed data
Compression Processing
[of ]
[of W
Compressed data
Seismic data omp!
Acqguisition Decompression
— ‘
= %
Earth Layers Processed data

Figure 1.2: Schematics of the use of a seismic compression method where
processing steps can be carried out directly in the compressed domain in the
context of marine seismic exploration.



Objectives and outline of the thesis

1.2. Objectives and outline of the thesis

1.2.1. Thesis objectives

Data compression algorithms are either lossy or lossless. Common lossless data
compression algorithms like “ZIP” (Deutsch, 1996) recover an identical copy of
the input after compression and decompression, while lossy algorithms like
“JPEG” (Taubman and Marcellin, 2002) result in lower reconstructed data
quality. As the marine seismic industry requires high compression rates to reach
the aforementioned goals, we focus on lossy data compression algorithms in this
thesis. Several data compression algorithms have been developed to compress
seismic data. Those algorithms are generally based on mathematical fixed
transforms/domains such as Fourier, Wavelets, Curvelets, Discrete Cosine, and
others. Dictionary Learning (DL) methods are another type of transforms not
based on mathematical fixed domains. While some of these algorithms have been
recently used in the marine seismic industry for various tasks such as noise
suppression (Beckouche and Ma, 2014; Turquais et al., 2017a; Turquais et al.,
2017b) or interpolation (Turquais et al., 2018), they are not specifically tailored
for seismic data compression. Yet, such methods have great potential for data
compression considering the high level of sparsity they provide (Skretting and
Engan, 2011; Akbari and Trocan, 2019).

While seismic data compression is a major concern, it is important not to
overlook the impact of seismic processing on disk storage and project turnaround
time. Seismic processing refers to a series of geophysical techniques used to
eliminate unwanted signals from recorded data and to relocate the seismic energy
to the point where it was originally diffracted or reflected from. Figure 1.3
illustrates the main steps of a simple processing sequence after acquisition. Most
of the seismic processing methods are carried out in a different domain than the
time-space domain. Transforming the data into another domain often requires
preconditioning (e.g., data interpolation, zero padding), which comes at a
significant computational cost. Moreover, throughout the long processing time,

Wavefield . . ) s
isil » D Di ]
Denoising EEparaton eghosting esignature emultiple Imaging

Figure 1.3: A simple processing workflow after acquisition including imaging.
First data are denoised and separated into up- and down-going parts of the
wavefield. Then the deghosting, designature, and demultiple processes remove the
effects of the source signature and the sea surface. Finally, the data are migrated
to obtain an image of the subsurface.
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data is duplicated numerous times and maintained in an uncompressed format
on disk. Furthermore, after each processing step, the data are transformed back
into the original time-space domain for quality control. Hence, seismic processing
and imaging results in a high quality multidimensional image of the subsurface
but is expensive in terms of human and computational resources. Processing
seismic data directly in a compressed domain has the potential to save disk
storage, human costs, and computational resources. Thus, the first step of this
thesis is to (1) develop a compression algorithm specifically designed for seismic
data based on a transform providing a high level of sparsity. Such algorithm is
designed with the aim of reaching high compression performances while
maintaining high seismic data quality and should fit into the illustration shown
in Figure 1.1, i.e., not with the aim of processing data in the compressed domain.
Then, we (2) identify a sparse transform which enables analysis of the kinematics
of the seismic events directly in the sparse domain and thereby build a bridge
between data compression and seismic processing. Such transform will be used
to (3) develop novel methods that apply the wavefield separation and receiver
deghosting processing steps directly in the compressed domain. These steps were
chosen over other steps (see Figure 1.3) because they naturally fall near the
beginning of a standard marine seismic processing sequence. Yet, the denoising
process was not brought into focus in this thesis because this step has been
extensively studied in the literature by means of sparse transforms (Hennenfent
and Herrmann, 2006; Neelamani et al., 2008; Beckouche and Ma, 2014; Turquais
et al., 2017a; Turquais et al., 2017b).

1.2.2. Outline

Chapter 2 of this thesis focuses on sparsity-promoting transforms, both learned
and fixed, that can be used for seismic data compression. The chapter begins by
discussing the exact and approximate sparse problems and how they relate to
compression. It then describes various efficient compression techniques, known
as entropy coding, which can be used in conjunction with sparsity-promoting
transforms to achieve effective compression of seismic data. Chapter 3 proceeds
by exploring various transforms that can accurately describe the seismic
wavefield, based on their analytical expressions. Particular emphasis is placed
on a constrained version of dictionary learning methods known as parabolic
dictionary learning. This approach focuses on locally describing the seismic
wavefield through kinematic parameters. Chapter 4 starts by presenting
conventional methods for wavefield separation and receiver deghosting, which
are the processing steps we want to enable in the compressed domain in this
thesis. Then, it proposes simple operators that can be applied in the sparse
domain to enable these processing steps in the compressed domain. Chapter 5
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summarizes the main scientific contribution of the three papers written during
this thesis. Finally, Chapter 6 presents some discussions, conclusions, and an
outlook.






Chapter 2

Seismic data compression

Seismic data compression algorithms generally involve a three-stage process,
which includes transformation, quantization, and coding. The latter two stages
are mathematical techniques generally referred to as entropy coding. The
decompression algorithms perform the inverse process of each stage, leading to
the reconstruction of the original data. Figure 2.1 depicts the different stages of
seismic data compression, including the data reconstruction process. In this
study, we build upon these fundamental principles to address the seismic
compression problem.

Entropy coding

Transform Quantization Coding

Original data — T > Q — C

Compressed data

Data after compression
/decompression

g T_l -— Q_l — C_l

Figure 2.1: Main stages of a compression / decompression algorithm. Here the
superscript ‘-1’ refers to the inverse operations. Note that the inverse
quantization denoted Q™1 does not include reversing rounding errors.

2.1. Transformation to a sparse domain

2.1.1. The exact sparse representation problem

The transformation stage allows the representation of seismic data in another
mathematical domain. In order to provide data compression, this representation
in the transformed domain must be more compact (including fewer large
amplitude coefficients and more small amplitude coefficients) than the original
data. A synthesis sparse representation of the data is composed of two parts: a
dictionary and a sparse coefficient vector. The dictionary is a collection of vectors
called atoms representing patterns or waveforms. The sparse coefficient vector
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stores a relatively small number of non-zero coefficients that contains the
information related to the amplitude and location of the waveforms in the data.
Multiplying the dictionary and the sparse coefficient vector associates the
morphological waveforms to their location and amplitude and thereby
reconstructs the data. The analysis approach also exists, where data are
multiplied by dictionary atoms to provide a sparse representation. Details
regarding the differences between both approaches can be found in Elad et al.
(2007). In this thesis we consider only the synthesis approach. In order to
understand how the data are represented in a sparse domain, we consider a
simple 1D example as illustrated in Figure 2.2. Here, the original 1D signal of
size N is denoted y. The transform domain is defined by a dictionary of atoms
D = [d,, d,, ..., di] of the same size N as the original signal ¥, and a sparse
coefficient vector denoted x of size K. The exact sparse representation problem
consists of finding the vector x with the least number of non-zero coefficients
such that multiplying D by x results in a linear combination of atoms that
reconstructs the original signal y. Hence, the exact sparse representation
problem can be mathematically expressed as:

min || x ||, subject to y = Dx (2.1)

In this equation, the f,-norm is not a proper mathematical norm; it has been
redefined as the number of nonzero coefficients in a vector or an array (Donoho
and Elad, 2003; Donoho, 2006). For example, Figure 2.2 shows that the signal ¥
can be represented as a linear combination of the Discrete Cosine Transform
(DCT) dictionary atoms. Indeed, multiplying d, by -1 and dg by 0.5, followed
by a summation of both vectors reconstructs exactly the original signal y.

y [d.d; ds dy] X

===
—

P
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.. -
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R
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- - .
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e P e
LR DR e e T
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- w
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0
Figure 2.2: Illustration of a simple one dimensional signal reconstruction by

solving the exact sparse representation problem.
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2.1.2. The sparse approximation problem

In general, it is challenging to reconstruct the geophysical signal with a strictly
sparse representation, i.e., a representation where a significant amount of
amplitude coefficients are exactly equal to zero. Consequently, striving for an
exact solution leads to a signal representation that is not sparse in the strict
sense, implying that the solution contains only a few coefficients exactly equal
to zero. Figure 2.3 shows the reconstruction of a signal y (in green) which
simulates a geophysical signal with a more complex structure than that shown
in Figure 2.2. The solution depicted represents the signal precisely, but,
unfortunately, is not very sparse since x has only a few zero coefficients.
Consequently, it is often preferred to tolerate a small representation error, with
the aim of finding a representation which is sparser. For example, in Figure 2.4
only two coefficients with the highest values were kept in order to approximately
reconstruct the signal y. This is referred as the sparse approximation problem.
In order to address this problem, we can look for the sparsest solution while
tolerating an error below a fixed threshold ¢ (Bruckstein et al., 2009). This
approach will be referred as the “error constraint mode” and can be
mathematically expressed as:

min || x ||, subjectto ||y —Dx |, <ce (2.2)
X

An alternative solution is to restrict the number of non-zero coefficients in
the vector x. This restriction sets a maximum number of non-zero coefficients T
for the atoms and aims to find a solution that minimizes the error (Tropp, 2004).
Such an approach will be referred as the “sparsity constraint mode” and can be
mathematically expressed as:

min || y — Dx ||, subject to || x ||, <T (2.3)
X

When the dictionary is an orthonormal basis, the exact and sparse
approximation problems can be solved by hard thresholding (Elad, 2010). If N <
K, the dictionary is said to be redundant. The greater the redundancy in a
dictionary, the sparser and more accurate will be the representations (Donoho,
2006). However, in this case the solution will not be unique. This problem is
known to be NP-hard and can be solved with matching pursuit algorithms such
as the orthogonal matching pursuit (OMP) (Pati et al., 1993), which is used in
this thesis.
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Figure 2.3: Illustration of a realistic one dimensional signal reconstruction by

solving the exact sparse representation problem.

X
0
0
0

-0.91
0
0
0
0.44
0
0
0
0
0

-—e s .. e
*e et e e e? b

oo
. R ot S ttesae

[at1 d, d;

Q

. . -t
v.. P R e N S )
v -

Figure 2.4: Illustration of a realistic one dimensional signal reconstruction

by solving the sparse approximation problem.

10



Dictionaries for sparse representations

2.2. Dictionaries for sparse representations

2.2.1. Predefined dictionaries

In order for data compression to be effective, a high degree of sparsity must be
present in the transformed domain. To obtain a sparse representation of the
data, conventional methods involve selecting pre-defined or fixed atoms from the
basis vectors of an analytically defined domain. Pre-defined dictionaries such as
Wavelets, Curvelets, and Discrete Cosines (Mallat, 2008) are commonly used to
develop compression algorithms (Elad, 2010). For example, the JPEG
compression format is based on the Discrete Cosine Transform (DCT). These
pre-defined dictionaries have also been used for the purpose of compressing
seismic data (Duval and Nguyen, 1999; Duval and Rosten, 2000; Wang et al.,
2004; Zheng and Liu, 2012; Fajardo et al., 2015). In this section we investigate
two main pre-defined dictionaries, the Discrete Cosine Transform (DCT), and
the Wavelet Packet Transform (WPT). These two transforms are used in two
seismic data compression algorithms that were used for benchmarking, presented
in Paper I.

The DCT representation expresses a signal as a combination of sinusoidal
waveforms with varying amplitudes and frequencies, thereby transforming the
signal from its spatial domain to its frequency domain. The basis functions of
the Discrete Cosine Transform (DCT') are essentially the real part of the Fourier
basis functions, as they use only real-valued cosine functions. In mathematical
terms, the basis functions of the 2D DCT transform are defined as follows:

Ni1—1 ,N2-1 x 1 ﬂ 1
Y = Z ( Z Yn1.n2 COS [@ (n2 +§) k2]> cos {m (nl + 5) kl} (2.4)

nl=0 ‘“n2=0

where Y is the signal representation in the transform domain, y is the original
signal representation in the spatial domain, N1 x N2 is the size of the original
2D signal, k1 x k2 is the size of the 2D signal in the transform domain.
Compression methods based on the DCT rely on the principle that the low-
frequency components of a signal are more significant than the high-frequency
components (W. Smith, 1997). Hence, reducing the number of bits required to
represent the high-frequency component can cause only a slight degradation in
the image quality. Figure 2.5-a illustrates an 8 by 8 2D DCT.

The WPT (Fajardo et al., 2015) is a type of wavelet transform that involves
passing a signal through low and high-frequency filters. When applying this
transform to an input image, a forward transform can be achieved through a
series of cascaded filtering steps. The image is first filtered by a set of
complementary filters (i.e., a low-pass filter and its complementary high-pass
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2. Seismic data compression

filter), which preserves the entire frequency content of the image when the
filtered components are combined. The low-pass filtered image is then filtered
by another set of complementary filters, as is the high-pass filtered image, and
so on. The Haar wavelet packet transform (Elad, 2010) is obtained by filtering
an image with simple 1D filters along the horizontal and vertical axes. Figure
2.5-b depicts the filters used in an 8 by 8 2D Haar Transform. For a more detailed
mathematical explanation of the wavelet transform, refer to Sweldens, (1995) or
Mallat (2008).

2.2.2. Dictionary learning

Transforming seismic data to a sparse domain based on pre-defined dictionaries
may not be ideal since the basis vectors of a selected fixed transform are not
designed with the aim of representing the seismic signal. Although, traditional
transforms may provide satisfactory sparsity performance, they may not be
optimal when used with seismic waveforms related to complex structures.
Dictionary learning (DL) methods, e.g., K-mean Singular Value Decomposition
(K-SVD) (Aharon et al., 2006) or Online Dictionary Learning (ODL) (Mairal et
al., 2009), provide other types of dictionary that are not based on mathematical
fixed transforms/domains. These methods capture redundant events from the
original data, store them in a dictionary of waveforms, and then express the
signal as a weighted sum of a few of the learned waveforms. Hence, such methods
have the potential to fully exploit the high level of similarity in seismic data
providing representations with a higher level of sparsity than conventional
dictionaries based on fixed transforms. Consequently, DL approaches are
expected to be more effective for seismic data compression. Figure 2.5-¢ shows
an example of an 8 by 8 2D dictionary learned from seismic data.

ol
—_—

a) b)
I LI ARSI

LR R LR LRI gﬁg;;;ﬁ
o T o 0 000 000 oo BB O 3
= S 8 0 LR B A
o DREENENEE o™
SESEEEEE EEEEREEE @ »oocoEs~wEW
SESEEEEE el o RO Y R
SEESEEEEE AN @we=RENT

DCT transform Haar Wavelet transform DL transform

Figure 2.5: Illustration of 8 by 8 2D dictionaries. a) the Discrete Cosine
Transform, b) the Haar Wavelet Transform, c¢) a Dictionary Learning
Transform.
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Dictionaries for sparse representations

In DL problems, the objective is to represent the original data in a sparse
fashion using two key components: a dictionary of learned atoms that represent
elementary waveforms that occur repeatedly in the data, and a set of sparse
coefficient vectors. Let us consider a data set of L signals denoted {y;}£, each
of size N. The first step is to extract a training set denoted {y;} which is a
sub-set of the original data set comprising M signals, where M < L. Then, apply
a DL method to jointly: learn a redundant dictionary D € RV*X where N < K
(Donoho and Elad, 2003) of K atoms, each of size N, with K’ < M; and find the
set of sparse coefficient vectors x;,x,,..x,, that minimize the representation
error given an error constraint € or a sparsity constraint 7" imposed on the sparse
coefficient vectors (Aharon et al., 2006). When the ‘error constraint mode’ is
applied, this problem can be mathematically expressed by

M

min X; subject to . —Dx; [,< €, i=1,..M. 2.5
{xi}%ﬁl,DZ 1% [lo subj Iy i llo< (2.5)

i=1

When the ‘sparsity constraint mode’ is applied, this problem can be
mathematically expressed by

M
min_ > [y —Dx; [} subject to [|x; [y< T, i

1,..M . (2.6)
{x;}},.D i=1

Initialize D

Sparse Coding using omp

Dictionary Update

SVD computation over the

relevant samples

Figure 2.6: Illustration of the k- mean singular value decomposition (KSVD)
algorithm main steps.
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2. Seismic data compression

Figure 2.6 illustrates the main steps of the K-SVD algorithm, which involves
initializing the dictionary by selecting random atoms from the extracted patches
of the initial data set. Next, the Orthogonal Matching Pursuit (OMP) algorithm
is applied to solve the sparse problem (equations 2.2 or 2.3). The dictionary
atoms are then updated one by one using Singular Value Decomposition (SVD).
Once the whole dictionary is updated, another OMP is performed with the new
dictionary to obtain a sparser representation, and the process is repeated
iteratively (indicated by the arrow in Figure 2.6). The iteration between OMP
and dictionary updating stops after a fixed number of iterations defined by the
user. Once the dictionary D, is learned, OMP is again used to solve the sparse
optimization problem, but this time for the L signals in the original data set
{y;}£,. This procedure allows us to obtain sparse coefficient vectors
Xi,Xq,..Xy, which can be used to represent the original data in the sparse DL
domain.

2.3. Entropy Coding

After the signal has been transformed to a sparse domain, the entropy coding
stage follows, which generally includes two tasks: quantization and coding.
Quantization is a lossy compression strategy that is used to achieve compression
with an approximation of the floating-point coefficients (the non-zero sparse
coefficient for the presented method) by a set of integers. This means that the
amplitude scale is discretized during quantization. The quantization process
involves two operations: rescaling and rounding. During rescaling, the sparse
coefficients are multiplied by a scaling coefficient (Sc), and then the coefficients
are rounded to enable them to be coded with fewer bits. The quantization can
be uniform or non-uniform (Fajardo et al., 2015). Figure 2.7 provides an example
of both quantizations. In this example, [al, a2, a3, .., ak| represents sparse
coefficients before quantization, and [bl, b2, b3, ..., bk] represents the quantized
values of these coefficients. For instance, the amplitude coefficients in a range
[al, a2] are discretized into the same value b2. Uniform quantization may be
more appropriate for seismic compression because the larger errors in non-
uniform quantization occur in the larger amplitude coefficients, which are likely
to contain relevant geophysical information in seismic data. By contrast, the
small amplitude coefficients may correspond to noise in the seismic data.

After quantization, a coding scheme can be applied to the quantized
coefficients in order to seek a data representation with a small number of bits.
In the field of data compression, Huffman and Arithmetic Coding are the most
commonly used coding schemes, with the goal of forming symbol sequences in a
way that allows them to be coded with fewer bits. Among these, the Huffman
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coding scheme (Huffman, 1952) is considered one of the most popular and
efficient. This scheme creates variable-length codes, with each code represented
by an integer number of bits. Symbols with higher probabilities are assigned
shorter code words, and the scheme is particularly effective when quantized
amplitude coefficients occur with different probabilities (Skretting, et. al, 1999).
Table 1 shows a simple example in which some characters occur more frequently
than others in a set of data represented by letters. When Huffman coding is
used, letters with high frequencies (such as ‘B’, ‘F’, and ‘C’) are coded with
fewer bits (e.g., ‘017, ‘00’, and ‘10’) compared to other letters with low frequencies
(e.g., ‘D’ and ‘G’), which are coded with ‘11111 and ‘11110’ However, when a
standard coding scheme based on fixed length is used, the frequencies of
occurrence are not considered. After calculating the total number of bits (by
multiplying the length of the codes with their corresponding frequencies) based
on the simple example depicted in Figure 1, we find out that the Huffman scheme
indeed codes these data using a smaller number of bits (146 instead of 174).

BK 4 Ji bk -
b2 A/—I—I b2 -
bl b1 —
T T T T T T
al a2 ak 1 a1 a2 ak
Uniform quantization Non-Uniform guantization

Figure 2.7: Illustration of uniform and non-uniform quantization (adapted from
Fajardo et al., (2015)).
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2. Seismic data compression

Data A B C D E F G Total
number

Frequency | 10 15 12 3 4 13 1 of bits

Code with

fixed ‘000° | “001° | <010’ | ‘011> | “100° | ‘101> | *110° 174

length

Code with | .\, 0. | <10: | <000 | 111117 | “1110° | “01° | “11110° | 146

Huffman

Table 1: Comparison between fixed length coding and Huffman coding strategies

based on a simple data set where characters occur with different frequencies.
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Chapter 3

Transforms for seismic processing

3.1. Predefined vs learned dictionaries

In the previous chapter, we presented some predefined dictionaries whose basis
vectors are based on fixed mathematical transforms, such as the Discrete Cosine
(DCT) and Haar wavelet transforms. These transforms were used to compute
sparse representations of seismic data. Other transforms, such as curvelets
(Candes and Donoho, 2000, 2002) or seislets (Fomel and Liu, 2010) have also
been used to reconstruct seismic data via sparsity-promotion given their high
potential to describe the seismic signal morphology. Indeed, atoms of a
dictionary should describe the morphology of a seismic signal in order to provide
a representation with a high level of sparsity. The more closely the morphology
of the atoms reflects the morphology of the seismic waveforms, the higher the
level of sparsity. For example, Fourier bases are frequently chosen to describe
the seismic wavefield (Zwartjes and Sacchi, 2007; Schonewille et al., 2009;
Naghizadeh and Sacchi, 2010a) mainly because the basis vectors represent
monochromatic waves, and a monochromatic plane wave is the simplest solution
to the wave equation in a homogenous medium (Kiselev, 2007). Wavelet
transforms have also been used for many seismic data applications (Mallat,
2008), such as compression and denoising (Villasenor et al., 1996; Fajardo et al.,
2015; Mohanalin et al., 2016). Their basis vectors are known to be well localized
in time and thus provide a superior representation of transient signals than the
Fourier basis for some seismic processing tasks (Forster et al., 1994). Curvelets
are an extension of wavelets, which are scaled, localized and directional at fine
scales. Hence, they are able to better represent seismic patterns which are curved
compared to wavelets (Candes and Demanet, 2005). Additionally, curvelets have
been shown to be an effective basis to describe, denoise, and interpolate seismic
data (Hennenfent and Herrmann, 2006; Naghizadeh and Sacchi, 2010b). These
bases have also been used for seismic imaging (Douma and De Hoop, 2007;
Chauris and Nguyen, 2008).

In the preceding chapter, we have also explored Dictionary learning (DL)
methods, which have the potential to represent seismic data with higher sparsity
levels than conventional dictionaries based on fixed transforms. DL methods
learn seismic waveforms directly from seismic data, thus allowing for a better
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3. Transforms for seismic processing

description of the seismic signal morphology (Elad, 2010). Consequently, DL
methods have already been used for seismic processing tasks such as denoising
(Beckouche and Ma, 2014; Turquais et al., 2017). While sparsity is a vital
component for accomplishing many seismic processing tasks, it is not always
sufficient. Although conventional DL methods have the potential to generate
highly sparse representations, the absence of an analytic expression for the
learned atoms limits the range of processing steps that can be performed in the
DL domain. Interpolation to arbitrary locations is an example of a processing
step that requires an analytic expression. Fourier or Curvelets transforms, which
have basis functions with analytic expressions, can be used to interpolate seismic
data (Xu et al., 2005; Naghizadeh and Sacchi, 2010b). That is because analytic
functions can be evaluated at any point. In contrast, learned atoms are only
defined at discrete positions, and the representation of data as a linear
combination of atoms is constrained to these same discrete positions. Therefore,
the lack of an analytic expression makes it impossible to interpolate data over
an arbitrary grid. Thus, to accommodate most processing steps, DL methods
would require atoms with analytic expressions.

3.2. Physics-constrained dictionary learning

With the goal of combining the benefits of predefined dictionaries, which define
atoms using analytical expressions, with the high sparsity levels achieved
through DL methods, Turquais et al. (2018) proposed a novel approach. The
authors proposed to constrain the morphology of dictionary-learned atoms to
have a parabolic shape, thereby creating a parabolic dictionary learning (PDL)
method that could leverage the strengths of both predefined and learned atoms.
The parabolic structure was chosen because it is consistent with the physics of
the wavefield propagation. Previous studies by Bortfeld (1989), Hubral et al.
(1992), Cerveny (2001), and Zhang et al. (2001) have shown that a seismic
wavefield recorded at the surface can be described as a sum of waves whose
travel times are analytically represented by parabolic or hyperbolic moveouts.
Indeed, according to the ray theory (Ursin, 1982; Hubral, 1983), if a central ray
travels from a source located at x, to a receiver located at x,., while an arbitrary
paraxial ray travels in the vicinity of the central ray from a source located at x’
to a receiver located at x,.’

T

and under the assumption of smoothly changing
amplitudes in the earth model, the travel time of that paraxial ray can be
expressed as:

t(Axg, Ar,) =t + s, Az, — s,Ax, + s B AAz* + ;DB 'Ax,? — B Az, Az, (3.1)
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where Az, = 2z, —x,, Az, = z. —x

A " —x,, s, and s, are the slowness of the
paraxial ray at the source and the receiver, respectively. A, B and D are scalar
matrix elements of the 2 by 2 ray propagator matrix (Cerveny, 2001). Equation
(3.1) is known as the parabolic travel time formula and represents a second order
approximation of the ray travel time. It was introduced by Bortfeld (1989) for a
2D medium, then generalized by Hubral et al., (1992) to 3D laterally
inhomogeneous media. In the common shot configuration where Ax, =0,

equation (3.1) can be rewritten as follows:
t(Azx, =0,Az,) =t, + s, Az, Jr%DB’lAmTQ. (3.2)

The formula in (3.2) describes the equation of a parabola. Therefore, based on
this description of the wavefield, Turquais et al. (2018) learned dictionary atoms
in the common shot domain, and constrained them to have a parabolic shape.
This constraint enabled the interpolation of 3D streamer data in the crossline
direction, leveraging the strengths of both predefined and learned atoms for more
efficient and accurate seismic interpolation results.

In order to learn parabolic atoms, the authors have added an extra
constraint during the dictionary update stage where atoms are updated one by
one using singular value decomposition (Figure 2.6). When an atom is learned,
and before updating it, PDL finds the parabolic parameters which maximize the
trace-to-trace correlation of the atom. Consider an atom representing a small
number of traces as shown in Figure 3.1, and consider the blue parabola in the
figure to have the following travel time At of parabolic moveout:

At =b Az, + ¢ Az, ? (3.3)
Az, =i — x:ef is the spatial shift between the receiver located at a trace ¢ and
the receiver located at the center or reference trace, b is the slope of the parabolic
function, and ¢ the curvature of the parabolic function. The fitting is done by
finding the parabolic parameters b and ¢ that minimize the error
At —b Az, —c Az, ? ||2- Hence, after fitting, each atom is characterized by the
parabolic parameters b and c. Then, PDL averages the samples of the atom that
lie on the same parabola by flattening the event, stacking the traces, and shifting
them back according to the parabolic time moveout described in equation (3.3).
The end result is atoms with parabolic shape and constant amplitudes along the
parabolic moveouts. Consequently, it is possible to define learned atoms on a
desired sampling grid and thus enable interpolation as illustrated in Figure 3.1.
More details regarding PDL can be found in Turquais et al., (2018).
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Figure 3.1: Illustration of an atom representing a small number of traces before
and after applying PDL. The figure also shows the resampling of the atom over
a desired grid (interpolation).

In PDL atoms are characterized by parameters such as slope and curvature.
In fact, by inspection of equations (3.2) and (3.3), we observe that the
parameters of a parabolic moveout can be related to kinematic attributes of the
wavefield. Indeed, from (3.2) and (3.3), the slope of a given waveform with
parabolic moveout b is identical to the slowness of the ray s,., and the curvature
c is related to elements of the ray propagator matrix (Cerveny, 2001). Hence,
Zhang et al. (2001) relate the ray propagator matrix elements to kinematic
parameters of the wavefield. For the common shot configuration, we can write:

: 2
_ sind, cos“0,.

b= s, = ¢c= DBl =

" v v

K (3.4)

where v is the propagation velocity in water, 6, the angle of incidence of the
wavefront at the receiver location, and " the curvature of the wavefront at the
receiver location. Zhang et al. (2001) relate the hyperbolic travel time moveout
to kinematic parameters of the wavefield not only for the common shot
configuration (CS) but also for different configurations, namely, common receiver
(CR), common mid-point (CMP), and common offset (CO). Therefore, it is
noteworthy that the parabolic travel time moveout approximation is also valid
for these different configurations, especially since some processing steps require
operating in a domain other than the CS. For these configurations, the parabolic
travel time moveout can be related to the kinematic parameters as follows:
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[CR: At =b Az, +c Az, Az, =0

B _ —sind,
b=—s,=—/ (3.5)
1 1 cos?0
== BlA== 5 gS
©73 2 v "

CMP : At=0b Ah+c Ah?; Az, =0
_ sinf, + sin6,

b
v (3.6)
1 1 cos?0 cos?6
= (B 'A+DB1+4+2B 1) == T kT — 5 kS
¢ 2 ( + + ) 2( v " v £7)
CO: At=b Az, +c Azx,*; Az, =0
b sin@, — sind,
- v (3.7)
1 1 cos?6 cos%6
_ - —1 —1 _ -1y _ = T r__ s S
0—2(B A+ DB 2B 1) 2( R » LK)

where Az,, =1 (Az, + Az,) is the spatial shift in midpoint, Ah = 1 (Az,-Azg)
the spatial shift in half offset, 0, the angle of emergence of the wavefront at the
source location, and k*® the curvature of the wavefront at the source location.

Consequently, PDL can be used not only to promote sparsity or describe the
morphology of the seismic signals by attributing analytical expressions to the
parabolic dictionary atoms, but also to characterize the wavefield from a
kinematic perspective.
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Chapter 4

Wavefield separation and receiver
deghosting using kinematic attributes of
the wavefield
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Figure 4.1: Illustration of primary reflection and its corresponding receiver ghost
event as recorded by the dual-sensor acquisition configuration. The figure also
demonstrates how the wavefield can be separated into its up- and down-going
parts.
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4. Wavefield separation and deghosting in a compressed domain

This chapter presents the wavefield separation and receiver deghosting
processing steps, emphasizing their importance in the seismic processing
sequence. Firstly, we discuss conventional methods that facilitate these processes
by determining kinematic attributes such as the incidence angle using plane-
wave decomposition. Next, we introduce an alternative approach that defines
new operators and applies them directly in a sparse domain characterized by
kinematic parameters.

4.1. Conventional methods for receiver ghost removal

Marine seismic data acquired with towed streamers often contain unwanted
reflections known as ghosts, which can degrade seismic resolution and reduce the
interpretability of subsurface images if not removed from the data. Such
reflections arise due to the high impedance contrast between air and water,
which causes acoustic waves to reflect at the water surface. These reflections
generate both source and receiver ghosts with different periods since sources and
streamers are typically deployed at different depths below the water surface
(Aytun, 1999; Gosh, 2000). The removal of these unwanted reflections is an
essential step in seismic processing to obtain a high-quality subsurface image. In
this thesis, we focus only on the receiver-side ghost.

The receiver ghost problem has been a subject of extensive research. Two
main categories of methods exist to remove the receiver-side ghost: acquisition-
based and processing-based. Conventional single-sensor streamer acquisitions
rely on processing-based methods (Amundsen, 1993; Robinson and Treitel, 2008;
Masoomzadeh and Woodburn, 2013; Wang et al., 2016) that seek to determine
the time delay between the primary and ghost recordings. In contrast,
acquisition-based methods, such as dual-sensor streamers (Figure 4.1) (Sollner
et al., 2008; Kluver and Day, 2011; Day et al., 2013) and multicomponent
streamers (Robertsson et al., 2008; Vassallo et al., 2014), aim to separate the
wavefield into up- and down-going parts by combining pressure and particle
motion recordings. This process is known as wavefield separation. However, this
process alone cannot reconstruct the full data bandwidth, as the low-frequency
component of particle motion data is often heavily contaminated with noise. To
address this issue, low-frequency particle motion data can be predicted from the
relatively clean pressure data, or processing-based methods relying only on
pressure measurements can be used.

In the following, we first present the dual-sensor wavefield separation process
which is an acquisition-based method. Then, we describe processing-based
methods commonly used to remove the receiver-side ghost.
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Conventional methods for receiver ghost removal

4.1.1. Dual-sensor wavefield separation

Dual-sensor wavefield separation combines the use of hydrophones and
geophones or accelerometers. Hydrophones record pressure data while geophones
or accelerometers record the vertical component of either particle velocity or
acceleration, with the latter being integrated with respect to time to obtain
particle velocity. Since pressure is a scalar quantity and the vertical component
of particle velocity is a vector quantity, the primary and ghost reflections, which
travel in opposite directions, have opposite polarities when recorded with
hydrophones, whereas they have the same polarity when recorded with
geophones. Figure 4.1 illustrates the acquisition of a primary reflection and its
corresponding receiver ghost and depicts their respective waveforms when
recorded with hydrophones and geophones. Here, we consider a simple 2D case
where the cable is horizontal, and the propagation velocity is constant at the
cable depth. By combining both recordings, it is possible to separate the up- and
down-going parts of the wavefield. However, before the two recordings can be
combined, the amplitudes recorded by the geophone must be scaled by an
obliquity factor F', to correct for the fact that only the vertical component of
particle motion is recorded (Séllner et al., 2008). The obliquity factor F' can be
expressed as follows:

1

F =
cosf’

(4.1)

where 6 is the angle of incidence of each recorded trace. In the time-space (t-z)
domain, the equations to reconstruct the up- and down-going parts of the
pressure wavefield, denoted P*? and P%"" respectively, can be written as:

P = ~(P— puFV.), (4.2)

plovn — — (P + poFV,), (4.3)

N =N =

where P is the total pressure, V, the total vertical component of particle velocity,
p the water density, and v the propagation velocity in water. All the variables
in equations (4.2) and (4.3) are known apart from F'. To determine 6 for each
single event, we generally apply plane-wave decomposition. Indeed, according to
the paraxial ray theory (Ursin, 1982; Hubral, 1983; Bortfeld, 1989) 6 can be
related to the slowness s of a plane wave as follows:

sin 6

(4.4)

S =
v
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4. Wavefield separation and deghosting in a compressed domain

By rearranging equation (4.4), we can also write:

cosf = /1 — (sv)2. (4.5)
The frequency-wavenumber (f-k) domain is a common representation used in
seismic data processing. In this domain, each plane wave at a given frequency

maps to a particular wavenumber. Hence, the slowness of a plane wave s can be
related to the horizontal angular wavenumber £ in a straightforward manner:

s= =, (4.6)
where w is the angular frequency. From (4.5) and (4.6) we can write:

cosf = 4/1— (gkgf)z, (4.7)

with k, being the vertical angular wavenumber. From equation (4.7) we can also
write:

/l} 2
cosf = ;kz, where: k, = (7> —k,? (4.8)

Consequently, equations (4.2) and (4.3) can be rewritten in the f-k domain as
follows: (2D case)

Po,) = (Pw,kw) —Z—wvzw,m) , (49)
Pplown (k) :% (P(w,kz) +Z—sz(w7kz)>- (4.10)

Equations (4.9) and (4.10) are used to reconstruct the high-frequency component
of the up- and down-going pressure wavefield in a dual-sensor acquisition
configuration. For the low-frequency component, the particle velocity data can
be predicted from the relatively clean pressure data using the following equation
(Amundsen et al., 1995):

k, (1 + e~ 2k.2
V. (w, k) = *w*p (162]1“,) Plw, k), (4.11)
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Conventional methods for receiver ghost removal

where z is the streamer depth, and j is the imaginary unit such that j? = —1.
This procedure assumes a flat streamer and the sea surface to behave as a free
surface. After emulating the low-frequency component of the particle velocity
data, the full frequency bandwidth of both pressure and particle velocity data
can be used with equations (4.9) and (4.10). However, it is also possible to use
processing-based methods to handle the low-frequency component. Day et al.
(2013) have demonstrated that emulating the low-frequency particle velocity and
then performing wavefield separation is equivalent to deghosting the pressure
data using processing-based methods. In the next section, we will describe these
methods in more detail.

4.1.2. Processing-based methods for receiver deghosting

Processing-based methods for receiver-side deghosting were originally designed
for data recorded with single-sensor streamers, which means that such methods
are applied on pressure-only measurements containing both desired primaries
and unwanted ghosts. These methods seek to find the time delay 7 between the
primary and the ghost for each single trace. Let us consider a pressure signal in
time p(t), containing only the primary and its corresponding receiver ghost. Such
signal can be mathematically expressed as follows:

p(t) =r(t) +r rt—71), (4.11)

where r(t) denotes the recorded primary event in time at a given receiver
location, and 7(t — 7) the recorded ghost at the same receiver with similar
amplitudes but delayed with 7. The reflection coefficient at the sea surface is
denoted r,, and is generally approximated as -1. Hence, in the frequency-space
(f~r) domain, equation (4.11) can be written as:

P(w) = R(w) — R(w) e+ | (4.12)

R(w) = P(w) .U(w) , where: U(w) = o (4.13)

- 1 — e Jwr’

where U(w) denotes the 2D deghosting operator in the f-z domain. The time
delay 7 is a function of the propagation velocity in water v, the receiver depth
z, and the angle of incidence 6 (Zhang et al., 2018). This time delay can be
geometrically calculated as shown in Figure (4.2), and mathematically expressed
as:
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4. Wavefield separation and deghosting in a compressed domain

T = 2?zcos((i). (4.14)

As in the 4.1.1 subsection, the problem is to find the angle of incidence 8, which
is a kinematic attribute of the wavefield related to the slowness of a plane wave
(4.4). Hence, plane wave decomposition can again be used to find the correct
deghosting operator for each single event. This is generally achieved by applying
the deghosting operator U in the frequency-slowness (f-s) domain
(Masoomzadeh and Woodburn, 2013; Robertsson and Amundsen, 2014; Zhang
et al., 2015; Zhang et al., 2018), or in the f~k domain (Amundsen, 1993; Robinson
and Treitel, 2008; Wang et al., 2017). In these domains 7 can be written as (from
equations (4.5) and (4.14)):

(s) = % 1= (502, (4.15)

or as (from equations (4.8) and (4.14)):

2z

=k (4.16)
w

/ Mirrored receiver location

Figure 4.2: Geometric illustration for calculation of the ghost time delay T.
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4.2. Operators in a sparse domain characterized by
wavefield kinematic parameters

In this thesis our aim is to apply wavefield separation and receiver deghosting
processing steps directly in a compressed domain. As discussed in the previous
section 4.1, kinematic parameters such as the incidence angle or the slowness of
plane wave events are needed when applying these processing steps. Therefore,
in this section, we identify simple operators based on these kinematic parameters
that can be applied in a sparse domain suitable for compression.

Parabolic Dictionary Learning (PDL), which was introduced in Chapter 3,
transforms data to the dictionary learning (DL) sparse domain (Chapter 1)
where atoms are constrained to have a parabolic shape. Hence, it can describe
seismic events as a linear combination of parabolic elementary waveforms
characterized by kinematic parameters of the wavefield such as the slope (or
slowness) s and the curvature ¢. Thus, in the following we investigate how the
kinematic parameters can be used in the PDL sparse domain to allow wavefield
separation and deghosting processing steps.

4.2.1. Scaling operator in the compressed domain

In the previous sections we have described the wavefield separation process,
where particle motion data need to be scaled by an obliquity factor. To do so,
plane wave decomposition is commonly used to compute kinematic attributes of
the wavefield such as the slowness. Here, we want to investigate the possibility
of applying a scaling operator to each trace of each elementary event using
kinematic parameters of the PDL sparse domain.

We consider a synthetic example simulating a shot gather containing a
family of events with different dips as shown in Figure 4.3-a. The data consists
of 70 traces sampled at 10 m and 256 time samples sampled at 4 ms. In this
figure, the blue frame depicts a first patch of 64 samples and 70 traces containing
a single event, and the red frame depicts a second patch of the same size
containing 4 events with conflicting dips. Let us assume that our objective in
this experiment is to correct for the obliquity scaling problem in these patches.
First, we apply PDL to the shot gather. The number of learned atoms was set
to 2000, where each atom is of size 64 by 70. Each patch was constrained to be
represented with 4 atoms. Figure 4.3-b illustrates the decomposition of the patch
depicted with blue frame using PDL. From this decomposition we can see that
the original patch denoted y; has the same shape as the atoms {d,}¥={, and
hence the same slope and curvature. Additionally, we know that each d is
characterized by a slope s, (which is the same as the slowness), a curvature ¢,
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and a reference receiver location corresponding to a reference trace x;ef . Hence,
by taking the derivative of equation (3.3), we can find the slope Sf; of each trace
7 in an atom k, and thus we can write:

st =2¢, <x; - x:Gf> + 8y (4.17)
Now that we have access to the slope of each single trace in an atom d,, we can
easily find the angle of incidence 0}, of each single trace ¢ of that atom via (4.5)
and thus the obliquity factor F} characterizing each trace of the atom via (4.1).

In the example illustrated in Figure 4.3-b, where ¥1 is expressed as a linear
combination of the atoms {dx}¥=% such that Yy, = YEe oy dy, , a given trace 1
located at a specific location z¢ has the same scaling factor F* for all atoms
because they all have the same slope and curvature. Hence, multiplying all the
traces i in the different atoms by F" is the same as scaling the trace i of the
patch y; by F*. This should lead to the reconstruction of the scaled version of
the patch y, after obliquity correction, given that each trace of the patch y,
has the same slowness as its corresponding trace in the different atoms.

In the example depicted in Figure 4.3-c, y, is also expressed as a linear
combination of the atoms {dx}{=] such that Yo = Ykt o d;C . However, in
this example the patch y, contains events with conflicting dips. Hence, we need
to have access to the kinematic parameters of each elementary event in order to
find the scaled version of this patch. Indeed, from this figure PDL succeeds in
decomposing the patch into the different elementary waveforms from which it is
composed. Therefore, scaling the same way as in the example depicted in Figure
4.3-b, will reconstruct the desired scaled patch. These examples show that PDL
permits the application of scaling operators to elementary events based on their
kinematic attributes. Hence, PDL can be used on a larger scale with vertical
particle motion data to correct for the obliquity scaling problem.
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Figure 4.3: Synthetic example with many dipping events. a) shot gather
depicting two patches with blue and red frames. b) Decomposition of a single
event patch to elementary parabolic waveforms using PDL. d) Decomposition
of a multiple-events patch to elementary parabolic waveforms using PDL.
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4.2.2. Frequency-space operator in the compressed domain

In the case of processing-based methods for receiver ghost removal, and as
discussed in the previous section, we need to multiply pressure data with a
deghosting operator U defined in the f-z domain (4.13). This operator contains
an unknown variable 7. Thus, plane-wave decomposition was needed to
determine 7 for each single event. Here, we would like to investigate the
feasibility of applying such an operator using PDL. We know from the previous
subsection that PDL gives access to the slowness of each trace in the parabolic
atoms using (4.17). Hence, from (4.5) and (4.14) PDL is able to find the time
delay 7 of the ghost for each single trace in the parabolic atoms. Yet, applying
the operator U as in equation (4.13) implies transforming the atoms from the #-
2z domain to the f-z domain. Indeed, if we consider a patch denoted y, in the
PDL sparse domain this patch can be mathematically expressed asy =

W= ayp dy, where {d; }¥=K denotes the K parabolic atoms and «,, the non-
zero coefficients in a sparse vector. Hence, given that the FFT (Fast Fourier
transform) is a linear operator, we are able to write the equation in the f-z
domain as:

y(w) =0q.dy(w) + ay. dy(w) + -+ ay,. dye (w) . (4.18)
Multiplying both sides with the operator U gives:
U(w).y(w) =a;.U(w).dy (W) + ay. U(w). dy(w) + -+ + . U(w). di(w) (4.19)

This means that multiplying the atoms by a given operator in the f-r domain is
supposed to give the same result as multiplying the patch by that operator. Of
course, in the case of multiple conflicting dips in a patch as in Figure 4.3-c,
different operators will be applied to the different elementary events similarly to
the experience we have previously conducted with the scaling operator.

Even though deghosting the different atoms leads to a similar result as
deghosting the different elementary events of a patch, removing the ghost from
the whole recorded signal is not guaranteed. Indeed, some patches may not
contain the primary and its ghost, particularly if an event is captured at the
edge of the patch, resulting in an inaccurate deghosting operation at these edges.
To better understand this problem, let us consider a simple experiment using a
1D trace. Figure 4.4 displays a 1D trace containing both the primary and its
ghost (in blue). The trace is a synthetic trace of 512 samples with a time
sampling of 2 ms, where 7 is known. Hence, this trace can be easily deghosted
(in red) using equation (4.13) to reconstruct the primary event (in black).
However, if we decompose this signal into non-overlapping or overlapping
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patches, and then apply the operator on each individual patch we will not end
up with a similar result. Figure 4.5 illustrates the non-overlapping case, where
we can see that if a patch contains only parts of the primary or parts of the
ghost, the deghosting operator creates artefacts and hence, when the patches are
concatenated, the result does not correspond to that in Figure 4.4. The
conventionally used work-around to this problem is to extract overlapping
patches and apply a taper, such as the Hamming function, to the edges of the
patches which will avoid deghosting edges of the patches containing only parts
of the primary or the ghost. Additionally, an overlap of at least 75% is
recommended when the FFT is applied on Hamming tapered patches
(Zhivomirov, 2019). Figure 4.6 illustrates the overlapping and tapered case. In
fact, applying an overlap of 75% results in the extraction of 13 overlapping
patches. Nevertheless, in the figure we show only nine patches since no
information is contained in the two first and the two last patches. We can now
see that, when applying the deghosting operator on each patch, the
reconstructed signal is much smoother. After summing and averaging we obtain
the deghosted signal. Consequently, PDL can be used on a larger scale to deghost
pressure data.

Original and reconstructed signal

1.5 .
Input signal
Deghosted signal
1r Desired primary 1
5
Ei 05 1
Té.
< 0
©
.05 ,
-(I—) =uU.
1t J
15 1 I 1 I 1
0 0.2 0.4 0.6 0.8 1

Time (s)

Figure 4.4: Single trace containing both the primary and the ghost depicted in
blue. The primary alone is depicted in black. Deghosting the input trace in blue
using equation (4.13) results in the deghosted signal in red.
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Figure 4.5: Experiment where the original signal displayed in Figure 4.4 is split
into four mon-overlapping patches, before applying the deghosting operator on
each patch separately.
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Figure 4.6: Experiment where the original signal displayed in Figure 4.4 is
split into thirteen overlapping patches. Each individual patch is tapered before

applying the deghosting operator. Finally, the overlapping patches are added
and averaged.
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Chapter 5
Main Scientific Contribution

5.1. Paper |

A dictionary learning method for seismic data compression
Mohammed Outhmane Faouzi Zizi and Pierre Turquais.

Geophysics, Volume 87, No. 2 (2022); P. V101-V116.
DOI: 10.1190/GE02020-0948.1

Motivation

In marine seismic exploration, surveys can generate vast amounts of data, often
several terabytes, making the storage and transfer of these data sets costly and
challenging. Hence, developing a compression method that could reduce the data
size while reaching a high-quality reconstruction would be highly beneficial for
the industry. Seismic data sets are highly redundant, and traditional compression
methods based on predefined transforms do not fully exploit this redundancy.
As a result, there has been growing interest in applying data-driven methods
such as dictionary learning (DL) to compress seismic data. This motivated us to
develop an efficient DL-based compression algorithm specifically designed for
seismic data. The algorithm can fully exploit the redundancy of information in
seismic data and achieve high compression ratios (CRs) while preserving the
quality of the seismic signals at the desired level of signal-to-residual error ratio

(SRR).

Key contributions and findings

In this paper, we developed a DL-based compression workflow which learns
small-sized sub-dictionaries from local windows of multiple seismic shot gathers.
This process captures the local similarities between the seismic shot gathers and
enhances sparsity. The proposed method achieves superior performance in terms
of CR and SRR when compared to conventional compression methods such as
the zfp software or algorithms from the Seismic Unix package. The capability of
the workflow to preserve the seismic signal was evaluated for different
applications. For instance, when the workflow is used for near-real-time data
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transmission or long-term data storage, we observed insignificant signal leakage
on a 2D line stack while the DL method reached a CR higher than 20. For other
applications such as visual quality control (QC) of shot gathers, the method
preserved the visual aspect of the data even when a CR of 95 is reached. These
findings suggest that the proposed DL-based compression workflow can
significantly reduce the cost associated with storing and transferring large
seismic data sets while preserving the seismic signal at the desired level of SRR.

5.2. Paperll

Dual-sensor wavefield separation in a compressed domain using parabolic
dictionary learning

Mohammed Outhmane Faouzi Zizi, Pierre Turquais, Anthony Day, Morten W.
Pedersen, Leiv J. Gelius.

Geophysical Prospecting, (2023); P. 1-19. DOL: 10.1111/1365-2478.13348

Motivation

The marine seismic industry faces numerous challenges, from data acquisition to
imaging, due to the massive amounts of seismic data obtained from marine
surveys. One effective way to reduce storage and data transfer costs is to use
data compression algorithms at the early stages of seismic processing. Faouzi
Zizi and Turquais (2022) have recently developed a dictionary learning (DL)
method, which has been shown to provide state-of-the-art results for seismic
data compression. However, compressing seismic data with this method, or other
conventional methods, does not offer benefits throughout the entire processing
time as seismic data must be decompressed before processing or imaging. This
motivates the need to enable a seismic processing step directly in the compressed
domain, specifically the dual-sensor wavefield separation processing step, which
is typically applied early in the seismic processing sequence.

Key contributions and findings

In this study, we successfully implemented a novel method for dual-sensor
wavefield separation in a compressed domain using a parabolic dictionary
learning algorithm (Turquais et al., 2018). This method, referred to as WSPDL,
transforms the input data sets, i.e., pressure and vertical particle velocity
measurements, to a compressed domain with two main components: a dictionary
of parabolic atoms and a set of sparse coefficients. The atoms in the dictionary
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are characterized by kinematic parameters such as slope and curvature, which
enable proper correction of obliquity scaling directly in the compressed domain.
This correction allows the up- and down-going parts of the pressure wavefield to
be separated successfully. The performance of the WSPDL method was tested
and validated by quantifying the accuracy of the up-going pressure field
reconstruction using the signal-to-residual ratio (SRR) metric, based on a 100-
shot synthetic data example, where the true result was known. The study also
demonstrated similar wavefield separation performance compared to an
optimized industry-standard FK based method on both synthetic and field data
examples. The WSPDL method was also shown to be robust with respect to
spatial aliasing while reaching a high data compression rate of more than 15,
which enables data transfer from vessels to onshore processing centers. The
transmitted compressed data can be used to reconstruct, with a simple matrix
multiplication, not only the input data sets recorded by hydrophones and
geophones, but also the up- and down-going parts of the wavefield.

5.3. Paperlll

Low frequency seismic deghosting in a compressed domain using parabolic
dictionary learning

Mohammed Outhmane Faouzi Zizi, Pierre Turquais, Anthony Day, Morten W.
Pedersen, Leiv J. Gelius.

Submitted to Geophysical Prospecting.

Motivation

Acquisition-based methods such as dual-sensor or multicomponent towed
streamers, have shown to provide state-of-the-art results for removing receiver-
ghosts from seismic data. However, low frequencies of the recorded vertical
particle motion data are generally heavily contaminated with noise. Hence,
processing-based methods are used to deghost the low frequency component of
the recorded pressure data. Moreover, legacy data are recorded using
conventional single-sensor streamer acquisition and also rely on processing-based
methods to remove the receiver-side ghost. Faouzi Zizi et al. (2023) have
introduced a method to enable dual-sensor wavefield separation directly in a
compressed domain using parabolic dictionary learning (WSPDL). This
motivated us to develop a novel method, referred to as LFD-PDL, to deghost
receiver-side low frequency pressure data directly in the DL compressed domain.
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Key contributions and findings

The LFD-PDL method first decomposes the low-frequency pressure data into a
set of sparse representations and a dictionary of parabolic atoms characterized
by local kinematic parameters. The local kinematic parameters are used to
calculate the ghost time delay associated with each trace of the parabolic atoms,
and the deghosting operator is applied to each trace independently. The
reconstructed ghost-free pressure data is obtained using the deghosted atoms.
The proposed method was evaluated using a synthetic data set where the true
ghost-free data was known. The accuracy of the method was assessed using
visual inspection and the signal-to-residual ratio (SRR) metric. Comparisons
with an optimized industry-standard FK method were carried out using both
synthetic and field data sets. The findings suggested that the LED-PDL method
can achieve deghosting performance comparable to that of the FK method, while
also providing the benefit of being applicable directly in the DL compressed
domain with a data compression rate (CR) greater than 5. Additionally, the
LFD-PDL method can be easily generalized to high-frequency pressure data,
and thus can be used to deghost the full frequency bandwidth of data recorded
using conventional single-sensor streamer acquisition.

40



Chapter 6
Discussions and outlook

6.1. Discussions and conclusions

6.1.1 Amplitude balance

In this subsection we discuss the impact of balancing amplitudes between shallow
and deep parts on compression results. In Papers I, II, and III, DL (Dictionary
Learning) and PDL (Parabolic Dictionary Learning) are applied with the “error
constraint mode”. This mode is designed to better reconstruct data with higher
amplitudes. Therefore, it relies on an appropriate gain applied to the data prior
to compression. For example, if no amplitude gain is applied before applying DL
or PDL, events in the deep part of the model will not be reconstructed with the
same accuracy as the shallow part. That is because seismic events in the deeper
part tend to be more attenuated than those in the shallower part. Hence,
balancing amplitudes is a crucial step before applying seismic data compression.
To balance seismic amplitudes, it is common to apply a time-based gain function.
For instance, in Paper I a T-square spherical divergence correction was applied
to the seismic shot gathers before compression/decompression. It consists of
multiplying the amplitude of each sample by the square of its corresponding
recording time. Later, this amplitude gain was removed before processing the
data and obtaining a 2D stack section. The purpose of the applied gain was to
preserve low-amplitude signals in the deep part of the seismic data set.
Consider again the same data set used in the “Transmission and long-term
storage” section of Paper 1. There, the data set was used to compare “harsh”,
“medium” and “soft” compression levels. In each of the three cases the T-square
spherical divergence was applied. Now, we use the same data set to compare
different time gains, namely: T-square spherical divergence, T spherical
divergence, and no spherical divergence, denoted T2, T1, and TO0, respectively.
Now, in this experiment we use the so called “harsh” compression, defined in
Paper 1. This compression level was chosen to better assess the visual differences
between the different time gains. Figure 6.1-a displays the original 2D stack
section when no compression is applied, then Figures 6.1-b-d display the
corresponding residuals after applying T0, T1 and T2, respectively, to shot
gathers prior to “harsh” compression/decompression. From Figure 6.1-b, we
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observe that, when no spherical divergence (TO0) is applied, some of the high
amplitude events characterizing the blended energy in the deep part are
removed. When T1 is applied (Figure 6.1-c), the residuals seem to be well
balanced. Finally, when T2 is applied (Figure 6.1-d) the deep part is better
preserved than the shallow one. Even though T1 seems to provide the best visual
results with this data set (Figure 6.1-c), the T2 spherical divergence was still
preferred in Paper I because it ensured the reconstruction of low amplitude
signals around the high amplitude blended energy. Overall, the choice of time
gain should be user defined and one should carefully pick the time gain to apply
prior to the DL-based compression depending on the desired output.

Trace number Trace number
7§50 8300 8?50 9500 10050 19600 7850 8400 8950 9500 10q50 10600

=————=

75 b) 100

-100

Figure 6.1: a) 2D stack section similar to the one displayed in Paper I, Figure
11-a. b) ¢) and d) are corresponding residuals after applying “harsh”
compression/decompression to shot gathers which amplitudes are gained with
T0, T1, and T2, respectively.

A similar time gain can also be applied prior to the WSPDL (Wavefield
Separation using Parabolic Dictionary Learning) method developed in Paper II.
There, the same time gain should be applied to both pressure and velocity data.
However, in Paper Il we apply the deghosting operator on pressure data only.
Considering a single trace containing both the primary and the ghost, the two
events are not localized at the same time positions. Hence, applying a time gain
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such as T1 or T2 prior to LFD-PDL (Low Frequency Deghosting using Parabolic
Dictionary Learning) will result in applying different gains to the primary and
the ghost. This would lead to the wrong deghosting operator being applied. To
balance amplitudes when LFD-PDL is used, we have implemented a fixed time
gain in the method presented in Paper III. The process involves a data set
consisting of L patches represented by {y,}~ , where each patch y; is multiplied
by a fixed scalar, either ¢; or t? (depending on the user’s choice), where j denotes
the number of patches extracted in the time dimension. These scalars are
determined by the time position from where y, was extracted. This
multiplication occurs prior to applying OMP to identify the sparse
representations {x;}% ; . The value of ¢; depends on the time position. Hence,
OMP is solved for each ¢;¥;. Later, the deghosting operator is applied to the
parabolic atoms and the sparse representations x, are quantized and coded.
After decoding and before reconstruction, each x; can be divided by the
corresponding t;, since each x; corresponds to a given y;. This allows for
amplitude balancing before transitioning to the DL domain and at the same
time ensure that the deghosting operator is applied on the original amplitudes.

6.1.2 Dictionary learning parametrizations

In Paper I we have developed a DL-based algorithm specifically designed to
compress seismic data. One of the main characteristics of that algorithm was its
capacity to fully exploit similarities between shot gathers. This algorithm was
based on learning localized sub-dictionaries for different time and offset
positions. Yet, each of these sub-dictionaries was learned from the many similar
shot gathers in the data set. Once a dictionary was learned from a local window,
it was used to only reconstruct events localized in that specific window for all
shot gathers. Hence, such an extraction strategy led to sparser representations
given that similar waveform patterns are locally repeated many times over the
different shot gathers around the same ¢-x locations. Figures I-1 and I-2, which
refer to Figures 1 and 2 in Paper I respectively, summarize the different steps of
the DL-based method parametrization and extraction strategy. However, even
though this strategy was promoted in Paper I, it was not used with PDL in
Papers II and III, where a single dictionary was learned for a set of gathers. In
this subsection, we discuss the motivation behind this change of strategy and
parametrization.

Let us consider the simple field data example of 100 shot gathers introduced
in the methodology section of Paper 1. Shot gathers of this data set are displayed
in Figure I-1. Let us recall the characteristics of this data set and the
parametrization of the DL-based algorithm used there. The data are sampled at
4 ms in time and 12.5 m in space. The data set comprises Nt = 1251 time
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samples, and Nx = 200 traces. Using the DL-based method developed in Paper
I, 25 dictionaries are learned for the whole data set: one dictionary for each
window of size one second by 500 meters. Each of these windows contain M =
15500 2D patches of size eight time samples by eight space samples. Hence, in
each local window all the extracted M patches are used as a training set to learn
a sub-dictionary representing 256 atoms also of size eight by eight. The 25
learned sub-dictionaries are later used to reconstruct the M patches for each
window. In that experiment we were targeting a signal-to-residual ratio (SRR)
of 20 dB (equation I-3, which refers to equation 3 in Paper I). Figure 6.2-a
displays one shot gather from this seismic data set where no compression has
been performed. Figure 6.2-b displays the residuals after reconstructing this shot
gather with the DIL-based method, and subtracting it from Figure 6.2-a. The
residuals appear as random noise uniformly distributed across the shot gather.
Now, we run a second experiment where we apply the same parametrization and
extraction strategy, but with PDL instead of DL. Figure 6.2-c¢ depicts the
corresponding residuals. From this figure, we observe that the Orthogonal
Matching Pursuit (OMP) algorithm (Chapter 2) did not succeed in reaching the
desired SRR of 20 dB while reconstructing windows with dictionaries learned
via PDL. For instance, the window located at 2 s — 3 s and 2 km — 2.5 km was
reconstructed with SRR of 7 dB instead of 20 dB. When applied on local regions
where nearly all waveforms have the same kinematic attributes PDL seems to
be less stable than DL. For example, in the case of the specific window depicted
above, applying PDL has led to learning parabolic atoms having the same slopes
and curvatures. Consequently, as soon as a patch was deviating slightly from the
learned kinematic characteristics, OMP was not able to reconstruct it using
atoms that were all constrained to have a different slope and curvature. One way
to stabilize PDL was to provide it with training patches from the entire gathers,
and thus force it to learn atoms with different kinematic parameters. Finally, we
run another experiment where only one parabolic dictionary of 6000 atoms is
learned (as in Papers II and III) for the entire shot gathers. Here, the number of
dictionary atoms was fixed to 6000 because we used to learn 25 dictionaries of
256 atoms which is equivalent to 6400 atoms learned from the whole data set.
Figure 6.2-d depicts the corresponding residuals. The desired SRR level is now
reached. However, we can still notice from this figure small discontinuities
between the reconstructed patches when PDL is used. That is the reason behind
considering overlapping patches in Papers II and III.
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Figure 6.2: a) Arbitrary shot gather chosen from the 100 shots seismic data
set presented in the methodology section of Paper I. b) Residuals after
subtracting the reconstructed gather using the DL based method described in
Paper I. ¢) Residuals after subtracting the reconstructed gather using PDL
with the parametrization described in Paper I. d) Residuals after subtracting
the reconstructed gather using PDL with one dictionary learned from non-
localized patterns of all shot gathers.
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6.1.3 Workflow combining wavefield separation and receiver
deghosting in the DL compressed domain

In this section, our aim is to integrate the methods developed in Papers I, II, and
III into a single workflow and evaluate its advantages over the conventional
approach of compression/decompression before processing. We describe the
different steps involved in this proposed workflow and discuss its effectiveness in
tackling the challenges mentioned in Chapter 1 of this thesis. Our discussion
highlights the key findings and outcomes of the research and provides insights
into the potential application of this workflow in the marine seismic industry.

In Papers II, and III we have generated a synthetic data set from the same
2D P-wave velocity model (Figures II-5 and I11-4). This data set was used in case
of both the WSPDL and LFD-PDL methods. We consider the same model in
this subsection, which implies a data set example where both the total vertical
component of particle velocity and the total pressure wavefield were recorded by
geophones and hydrophones, respectively. The recorded pressure and velocity
data sets denoted P and V;, comprise N, = 100 shots, N, = 1856 time samples,
and N, = 480 traces, and are sampled at 2 ms in time and 12.5 m in space,
respectively. The first step in our workflow is to split the P data into high
frequency (typically above 20 Hz) and low frequency (typically below 20 Hz)
components, denoted Py and P;, respectively. Also, we only keep the high
frequency component of V, data since the low frequencies are considered to be
highly contaminated with noise. The P; data are then resampled from 2 ms to
16 ms. As mentioned in Paper III, all information can be recovered from the data
at 16 ms due to the fact that a time interval of 16 ms permits representation of
frequencies up to 31.25 Hz, which exceeds the 20 Hz of P, data. Then, we apply
WSPDL to Py and V,, and apply LED-PDL to P, as described in Papers 11
and III, respectively. Figure 6.3 shows the three data sets in the time domain
and in the DL compressed domain. This figure combines Figures 1I-2 and III-1,
where patches with yellow, blue, and red frames in the time domain are
represented as a matrix multiplication of sparse representations and parabolic
atoms with frames of similar colors. More details regarding the relationship
between the time domain and the DL compressed domain can be found in Papers
IT and III. Similar DL parameters to those described in the papers were used here.
The number of extracted training patches for each of the 100 shot gathers was
set to M = 10.000. The targeted SRR was set to 30 dB. The number of learned
atoms for each dictionary is K = 6000 atoms. The size of the atoms was set to
64 time samples by 8 traces for WSPDL and 16 by 16 for LED-PDL. That is
because 128 ms by 100 m was enough to capture the parabolic moveout with
high frequency data (Paper II). While 256 ms by 200 m was needed for LFD-
PDL to achieve good deghosting performance (Paper III).

46



Workflow for wavefield separation and receiver deghosting

00z . .
-0.02 1. =1 ﬁz‘.
Sparse 3 &° AN
i N
0.02 - % E;
a0 1
= {i ==[
<0.021L= =1 :}‘\’“
Sparse 7065 % ‘ %“%
o.ozl = s N wé % :
SR S
I = | =SENA \RE5SEEST
= 002 = Parabolic Dictionary Dy, (of K atoms)
Z A Sparse L
Shot100 - * * ) Sparse representations
A [km E 0.02 .
Pressure HF r— i o
R -0.02 -
Sparse 3
0.02
0.02
Sparse 7065
0.02
-0.02
; Sparse L
Shot 100 - - Sparse representations
X [k 0.05 . 2
Pressure LF 2 2 o .
E 0.05 1
i R 0s Sparse 3
1
o LFD-PDL| °®
5 =
oss . 3 T 7| ooslke
) Sparse 7065
B 25
s . 0.05 ]
01 35 =
005 ic Dicti
. Sparse L Parabolic Dictionary D {of K atoms)
Shot 100 * ° e Sparse representations
“ DL Compressed domain .
Quantization and
coding

Compressed data
Original velocity data

Original Pressure data «+-
Full bandwidth P-down <~
Full bandwidth P-up

Reconstruction <— Decoding

Figure 6.3: Illustration of the workflow combining dual-sensor wavefield separation
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Once the data are represented in the DL compressed domain, a scaling
operator is applied to each trace of the dictionary atoms learned from V, and
denoted Dy,. That is to obtain the dictionary D¢y, and correct for the
obliquity scaling as described in Paper II. Atoms of the dictionary D obtained
from P, data are tapered and deghosted to obtain the dictionary D, as
described in Paper III. Later, Dov,, Dp, and D,, are quantized and coded along
their corresponding sparse representations to obtain the compressed data as
described in Paper I. These data can then be sent from the vessel to processing
centers. Considering each of the recorded P and V, data sets to be of size S,
the total size of the recorded data is 2S. Hence, since we apply WSPDL and
LFD-PDL on the same synthetic data sets used in Papers II and III, the
compression results are similar to the ones presented in the papers. The
compressed data after WSPDL are of size 25/13 and after LED-PDL are of size
S/60. This means that the compressed data are approximately of size S/5.86,
which is over 11 times smaller than the size of the original recorded data. Note
that such compression results are obtained while wavefield separation and
deghosting processes reach similar results compared to optimized industry-
standard methods as demonstrated in Papers II and III.

Once the data are received by a processing center, the user can choose which
data set to recover, the recorded pressure data P, the recorded vertical velocity
data V,, the full-bandwidth up-going pressure wavefield P“P, or the full-
bandwidth down-going pressure wavefield P4°%" (Figure 6.3). To do so, the
compressed data are first decoded and again expressed in terms of the
dictionaries Dev,, Dp, D, and their corresponding sparse representations. To
reconstruct the PUP data, the high frequency component Pj is first
reconstructed by simple dictionary combinations (using Dcv, and Dp), and
matrix multiplication. Paper II describes the details of this process. The low
frequency component pressure data P;” is similarly reconstructed by matrix
multiplication of D,, and its corresponding set of sparse representations. Details
of this process can be found in Paper III. Later, the two data sets (ng and Pflp )
can be simply summed after resampling the resulting P, from 16 ms to 2 ms.
Note that such resampling can be applied directly in the DL compressed domain
by up-sampling each trace of each atom independently. To reconstruct P@ow,
the high frequency and low frequency components Pi’”", and Pfo“"are also
reconstructed separately. Pi"™ is also reconstructed from the combination of
D¢y, and Dp, and via matrix multiplication with their corresponding sparse
representations (Paper II). P down Leconstruction was not described in Paper III
but can easily be obtained by applying the inverse of the deghosting operator to
D,, to reconstruct D. Then, by subtracting D, from D we can obtain D4, which
is the dictionary characterizing the ghost events. Multiplying this dictionary D,
by the corresponding set of sparse representations gives Pp°“". Summing
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Pownand PR reconstructs the full bandwidth down-going pressure wavefield
data P?°wn To reconstruct the original pressure data, we reconstruct its high
frequency component Pj; by multiplying D p and the corresponding set of sparse
representations (Paper II). Then the low frequency component P, is obtained
by multiplying D and the corresponding set of sparse representations. Later,
they are summed to reconstruct 2. Moreover, V,, can also be reconstructed by
reconstructing Dy, from D¢y, .This implies the application of the inverse
scaling operator as described in Paper II. These reconstructions are expected to
be computationally cheap since they rely on simple operations such as
summations, subtractions, and matrix multiplications. We will later discuss the
computational cost of the different steps in more detail.

Figure 6.4 describes different steps of a conventional workflow tailored to
compress seismic data, transfer them to a processing center, decompress them,
and then apply the wavefield separation and deghosting processing steps. The
first step in this workflow is to compress seismic data with a conventional
algorithm based on a predefined dictionary such as the Wavelet Packet
Transform (WPT) algorithm available in Seismic Unix and introduced in Paper
I. The data are then quantized and coded in a similar manner to our method
(Stockwell and Cohen, 2008). Such algorithms succeed in providing a compressed
format of the recorded data with a size that is more than 10 times smaller than
the input, while reaching a high SRR value of 30 dB. However, once the data
are transferred to a processing center, they need to be immediately decompressed
in order to be processed. This means that the storage advantage is immediately
lost as soon as data are to be processed. The decompression is conducted via
decoding and WPT inverse transform to recover the original vertical velocity
and pressure data in the time domain. Later, these data are split into high and
low frequency components, where the high frequencies need to be interpolated
before applying the conventional dual-sensor wavefield separation process
introduced in Chapter 4 and Paper II. Interpolating the data leads to increasing
their size by at least a factor of 2. The low frequencies are also deghosted using
a conventional processing-based method (Chapter 4 and Paper III). In both
cases, optimized industry-standard FK methods are used (the same methods
that were introduced in Papers II and III) The high frequency and low frequency
components are later summed to reconstruct the up- and down-going parts of
the data.
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Figure 6.4: Illustration of a conventional workflow where recorded data are
compressed, decompressed, and processed. Here, the processing tasks of
interest are dual-sensor wavefield separation and low frequency receiver
deghosting.
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We are now in the position to discuss the computational cost of both
workflows. Both workflows were run on a computer with an Intel Xeon processor
running at 2.93 GHz using 60 GB of RAM. Note also that our workflow is a
prototype mainly written in MATLAB, while the conventional workflow is an
optimized algorithm written in C/C++. Learning the dictionaries Dp, Dv,,
and D takes 17 min 14 sec, 18 min 56 sec, and 10 min 16 sec, respectively. This
means that the whole learning part takes 46 min 26 sec. Here, we notice that
learning the dictionary D takes less time than the two other dictionaries. That
is because the learned atoms contain a smaller number of samples given that D
is learned on data sampled at 16 ms in time. However, in our workflow (as in
Papers II and II) we learn dictionaries from M = 10.000 training patches but
apply an extra OMP step with patches extracted from the whole data set. For
the high frequency component data, L = 678.300 patches are extracted, and for
the low frequency component data, L = 324.500 patches are extracted. Hence,
it takes 24 min 9 sec and 29 min 45 sec to find the sparse representations
corresponding to Py and V, respectively while it takes only 2 min 59 sec to
find the sparse representation corresponding to P;. This is due to the small
number of extracted patches, the small number of samples in each patch, but
also OMP needs fewer iterations to reach the user defined threshold (Rubinstein,
2008) when applied to P, . Hence, it takes 102 min and 53 sec in total to go from
the time domain to the DL compressed domain for the 100 shots synthetic data
set with our workflow. That includes both the learning time and the OMP time
to find the sparse representations. Then, applying a scaling operator to each
trace of Dy, atoms is a fast process taking only 1 sec, tapering and deghosting
D atoms takes 1 min 48 sec. The quantization and coding stages took around
15 min 49 sec (of which less than 30 sec is used for quantization), for all the
dictionaries Dov,, Dp, and D, and their corresponding sparse representations.
In contrast, the WPT-based algorithm takes around 1 min 32 sec to compress,
quantize and code both data sets. Given that the WPT-based algorithm uses a
similar Huffman coding (Nelson and Gailly, 1995) to the one we use in our
workflow (Skretting et al., 1999) as mentioned in Paper I, it would be unfair to
directly compare the run time of both coding strategies since the computation
cost difference depends mainly on the implementation of the Huffman scheme.
Hence, we consider the run time of compression, coding, and quantization to be
negligible when the WPT-based algorithm is used, and we do not consider the
quantization and coding run times in our workflow. The same applies to the
decoding that takes around 1 min 2 sec with the conventional workflow, and
which depends only on the Huffman coding implementation as well (Paper I).
After decoding and applying the inverse of the WPT transform, the wavefield
separation is applied in the conventional workflow case (Figure 6.4). It takes 114
min 26 sec to obtain Py’ and PE“". Note that more than 75% of this time is
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spent to interpolate the data. Then, to deghost the low-frequency component, it
takes around 2 min 18 sec. Note that this is less than twice the run time to
deghost our atoms, while we have shown in Paper III that deghosting the atoms
with our workflow can theoretically reduce the computational cost by a factor
of 30. This is expected since our method is not optimized as an industry-standard
algorithm. Once P;” is obtained, we sum it with Pf to obtain PP, the same
way it is done with our workflow. Then, to obtain Pg°“" we simply subtract
P ﬁp from P; . The computation cost of such reconstruction is negligible since it
only involves summations and subtractions after applying the wavefield
separation and deghosting processes. In the case of our workflow (Figure 6.3),
we should still consider the run time of the different matrix multiplications that
allowed us to reconstruct the data back in the time domain. To reconstruct P“P,
three matrix multiplications occur: two to reconstruct P, Zp where Doy, D are
multiplied by their sparse representations, and one to reconstruct P, zp. Hence it
takes 24 sec to reconstruct P“? and approximately the same time to reconstruct
Pdown  Then, to obtain the original recorded pressure P, Py is first obtained
by a simple matrix multiplication including Dp and the corresponding set of
sparse representations. Then, D, is used to recover D as described earlier, which
includes applying the deghosting operator again. Later, D is multiplied by the
corresponding set of sparse representations to obtain P;. The extra deghosting
operator and the two matrix multiplications take around 2 min 5 sec. The
vertical velocity data V, can easily be reconstructed using only one matrix
multiplication after rescaling the atoms of D¢y, to obtain Dy, (which takes 1
sec). This matrix multiplication takes around 8 sec. Thus, in order to reconstruct
the whole four data sets in the original time-space domain with our workflow it
takes around 3 min. Therefore, the resulting time after summing all the steps of
our workflow is around 106 min while all the steps of the conventional workflow
take around 116 min. Here, we did not consider the coding and decoding run
times for the aforementioned reasons. We also did not consider the resampling
times since resampling is applied in both algorithms. Moreover, we have
considered that the run times of the WPT forward and inverse transforms are
negligible. We can conclude by considering that the run times of both workflows
are comparable, even though our workflow has not been optimized for
computation cost.

Overall, the workflow we have developed which applies wavefield separation
and deghosting directly in the DL compressed domain can have many advantages
over the conventional workflow. First, it can release the geophysicists from the
wavefield separation and deghosting tasks, which can be expensive in terms of
time and human resources. Recall that, in this example, the different steps of
the workflow take around 2 hours while we have only considered a small data
set of 100 shots. It can also save more storage compared to the conventional
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workflow. Indeed, even though the WPT-based algorithm might succeed in
reaching comparable compression results to our DL based method, the data
needs to be in a decompressed format while being processed, i.e., expressed in
the time-space domain, which requires more storage during the period where
wavefield separation and deghosting are performed. Also, during processing the
data are even interpolated which leads to higher storage requirements. Moreover,
after wavefield separation and deghosting, only P"P is generally needed to
perform other processing tasks. Hence, in the conventional case where the WPT-
based algorithm is used for compression, both P and V, can be compressed for
backup, and the processing can be re-applied later to recover the original
PP and P9°"" if needed, or alternatively, the four data sets can be kept in
their compressed format as a backup. In contrast, with our workflow, the
compressed P and V,; can be used to directly reconstruct the four data sets at
almost no additional cost. In Figure 6.4, we have considered the wavefield
separation and deghosting tasks to be performed after data compression,
transfer, and decompression. In other words, we have considered these processing
tasks to be performed in processing centers to align with the objectives of
Chapter 1. Nevertheless, such processing tasks can also be applied on the vessels,
then compressed and transferred for further processing. Even then, applying our
workflow would still be more advantageous compared to applying the
conventional workflow. Indeed, in such cases, the simultaneous compression,
wavefield separation, and deghosting with our workflow will take approximately
the same time as wavefield separation, deghosting and then compression with
the conventional workflow (around 2h for the 100 shots example). However, while
the data are being processed on the vessel, more storage will be needed with the
conventional workflow since interpolation increases the size of the data by at
least a factor of 2. Furthermore, the four data sets will need to be compressed
in order to transfer them to the processing centers instead of only two when our
workflow is used. Finally, applying the processing steps in the compressed
domain comes almost for free as we could see with wavefield separation and
deghosting run times, it is the compression that takes most of the time. Hence,
since the compression occurs only once, enabling further processing steps with
our workflow would save more costs related to time and storage.
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6.2. Outlook

This thesis focused on enabling wavefield separation and receiver deghosting
directly in the DL compressed domain only for the 2D case. Future work can
focus on generalizing our methods to the 3D case. In the discussion section of
Paper 11, suggestions were made to achieve such goal with the dual-sensor
wavefield separation process. The same suggestions can be applied to the low-
frequency deghosting process (Paper III). Indeed, both processes need
information related to kinematic parameters (slope and curvature) in the
crossline direction to enable this generalization. For instance, kinematic
parameters in the crossline direction can be estimated by learning 3D atoms
characterized by five parameters (two slopes, two curvatures, and one parameter
correlating both directions) instead of only two parameters in the 2D case. In
the Common Reflection Surface (CRS) theory, these parameters have been
estimated to achieve 3D interpolation (Hoecht et al., 2019). However, such an
approach might be computationally expensive. Another way to estimate these
parameters is to consider a pseudo-3D approach. For instance, Kliiver and Day
(2011) suggested a method in which each streamer is processed several times
using 2D plane-wave decomposition, with a different constant crossline slowness
assumed each time. This approach enabled the processing of 3D dual-sensor
towed streamer data without requiring proper 3D plane wave decomposition.
In Papers II and III we have used PDL (Turquais et al., 2018) to compress
seismic data. PDL characterizes the different atoms with local kinematic
parameters. These parameters were used to allow processing but can also be
used to improve the compression performance of our methods. Indeed, the PDL
approach constrains the atoms by stacking the traces, averaging them, and then
shifting them back according to a given parabolic time moveout. Therefore, one
can imagine storing only the averaged trace along with its corresponding slope
and curvature, instead of storing all coefficients of 2D atoms. This can
significantly reduce the dictionary size and thus improve the compression
performance of our method. The computational cost of our method may also be
reduced using transfer learning. Transfer learning is a popular technique in
machine learning that involves using a model trained on one data set to make
predictions on a different data set. In the context of the given statement, transfer
learning can also help to reduce the learning cost of our method. Specifically,
the DL-based methods developed in this thesis can employ transfer learning to
learn one dictionary containing various slopes and curvatures on a particular
data set and then use that dictionary with different data sets. This approach
may help reducing the number of stored dictionaries and thus improve
compression performance, while also reducing the overall computational cost.
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In this thesis, DL-based methods have been constrained with the physics of
the wavefield to both compress and process seismic data. While dictionary
learning is a subfield of machine learning, it has its own set of algorithms based
on the wide field of sparse approximation. These methods have been shown to
be tightly connected to the very popular Neural Networks (NN), which led to
state-of-the-art results in various fields. More details regarding the relation
between sparse coding and neural networks can be found in Papyan et al., (2017).
While this work constrained dictionary atoms with the physics of the wavefield,
future research may explore the feasibility of developing similar approaches
where NN filters are constrained to learn kinematic parameters of the wavefield.

The research conducted in this thesis has made it possible to separate the
wavefield and eliminate the receiver ghosting effects in the compressed domain.
This opens up opportunities for further research to focus on additional
processing steps in this domain. For instance, it is possible to integrate denoising
into the workflow as both coherent and incoherent noise removal processes have
already been established in the DL domain (Beckouche and Ma, 2014; Turquais
et al., 2017a; Turquais et al., 2017b; Gomez and Velis, 2020). As mentioned in
Paper 11, dip filtering may also be applied in the DL compressed domain since
local velocity information can be accessed from the learned atoms. Paper III also
mentions the potential for source deghosting using the common receiver domain.
Additionally, demultiple processing has already been performed using curvelet
frames (Herrmann et al., 2008). Therefore, future research can focus on primary-
multiple separation using PDL. Lastly, future work could concentrate on
enabling imaging in the DL compressed domain, as estimating local kinematic
attributes from pre-stack data has been shown to facilitate seismic imaging
(Fomel, 2007), and sparse transforms have already been used for seismic
migration (Chauris and Nguyen, 2008).
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Abstract

In the marine seismic industry, the size of the recorded and processed seismic data is
continuously increasing and tends to become very large. Hence, applying compression
algorithms specifically designed for seismic data at an early stage of the seismic process-
ing sequence helps to save cost on storage and data transfer. Dictionary learning methods
have been shown to provide state-of-the-art results for seismic data compression. These
methods capture similar events from the seismic data and store them in a dictionary
of atoms that can be used to represent the data in a sparse manner. However, as with
conventional compression algorithms, these methods still require the data to be decom-
pressed before a processing or imaging step is carried out. Parabolic dictionary learning
is a dictionary learning method where the learned atoms follow a parabolic travel time
move out and are characterized by kinematic parameters such as the slope and the cur-
vature. In this paper, we present a novel method where such kinematic parameters are
used to allow the dual-sensor (or two-components) wavefield separation processing step
directly in the dictionary learning compressed domain for 2D seismic data. Based on a
synthetic seismic data set, we demonstrate that our method achieves similar results as
an industry-standard FK-based method for wavefield separation, with the advantage of
being robust to spatial aliasing without the need for data preconditioning such as inter-
polation and reaching a compression rate around 13. Using a field data set of marine
seismic acquisition, we observe insignificant differences on a 2D stacked seismic section
between the two methods, whereas reaching a compression ratio higher than 15 when
our method is used. Such a method could allow full bandwidth data transfer from vessels
to onshore processing centres, where the compressed data could be used to reconstruct

not only the recorded data sets, but also the up- and down-going parts of the wavefield.

KEYWORDS
compression, data processing, dictionary learning, multicomponent, seismics

INTRODUCTION seismic data recorded during one marine seismic survey has

increased significantly and often reaches several terabytes.
During the last decade, marine seismic acquisition capabil- Such large data sizes give rise to several challenges related
ities have improved at a rapid pace. As a result, the size of to data transfer, storage and processing. For example: Only
marine seismic exploration surveys, and the number of sen- bandlimited data can typically be transferred from vessels

sors deployed have both increased. Hence, the size of the to onshore processing centres because of the low-bandwidth

Geophysical Prospecting 2023;1-19.
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available from satellites; storing many large seismic data sets
for a long time on tapes is costly but necessary as many of
them need to be backed up even after project delivery. Hence,
compressing data at an early stage of the seismic process-
ing sequence has attracted growing interest from the marine
seismic community in the last few years. Indeed, design-
ing efficient compression algorithms for seismic data is a
key element to removing the barriers related to storage and
data transfer. However, conventional compression processes
still require the data to be decompressed before carrying
out any processing or imaging steps, by transforming them
back into their original time-space domain. This can limit
the compression benefits related to storage or lead to accu-
mulating compression errors if the compression process is
again applied after carrying out that processing or imaging
step. Moreover, conventional seismic processing and imaging
is a long meticulous sequence of workflows, which generally
requires transforming the data into other processing domains
where data preconditioning is needed (e.g. zero padding, data
interpolation, data extrapolation and decimation) and comes
at a significant computational cost. In this paper, we aim to
enable one seismic processing step directly in the compressed
domain, namely the dual-sensor (or two-components [2C])
wavefield separation processing step. This would allow to
overcome the requirements for data decompression and avoid
data preconditioning with regards to this specific processing
step, which is generally applied early in the seismic processing
sequence.

Many compression algorithms have been designed for
seismic data. Such algorithms are generally based on trans-
forming the data to a so-called sparse domain, which is more
compact than the original time-space domain. Sparse domains
have been used to carry out different seismic processing
and imaging applications (compressed sensing). Indeed, the
compressed sensing fields have helped to tackle many dif-
ficulties related to seismic data starting from acquisition to
full waveform inversion by exploiting the sparse structure of
seismic data (Herrmann et al., 2013; Lin & Herrmann, 2013;
Mansour et al., 2012). Conventionally, seismic compression
algorithms are based on fixed sparse transforms (Averbuch
et al.,, 2001; Duval & Rosten, 2000; Fajardo et al., 2015;
Wang et al., 2004; Zheng & Liu, 2012), where the basis
functions are analytically predefined and already known by
the encoder and decoder, such as discrete cosines, wavelets
and others (Elad, 2010; Mallat, 2008). By contrast, other
seismic compression algorithms based on learned transforms
have recently emerged. Schiavon et al. (2020) proposed a
deep autoencoder to compress post-stack seismic data. Helal
et al. (2021) proposed two convolutional autoencoders, where
the first model is adapted to low compression rates (CRs),
whereas the second model is more efficient when the user
needs to reach high CR. These methods transform the input
seismic data into feature representations which are sparse
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enough to allow good compression performance. Dictionary
learning (DL) methods, for example K-mean singular value
decomposition (Aharon et al., 2006) or online DL (Mairal
et al., 2009), are another type of learned transform. These
methods capture the similar elementary events from the seis-
mic data, store them once in a dictionary of atoms and then
express the original data as a weighted sum of the learned
atoms. DL methods have been shown to provide state-of-
the-art results when it comes to seismic data compression
(Faouzi Zizi & Turquais, 2022). The authors have developed
a compression workflow where the similarities between the
different seismic events is fully exploited, and where the DL-
based compression algorithm provides better compression
performance compared to conventional compression meth-
ods. Moreover, different modifications of the DL methods
have been shown to be suited to various seismic processing
tasks, such as noise suppression (Beckouche & Ma, 2014) or
interpolation (Turquais et al., 2018). For example Turquais
et al. (2018) proposed a parabolic dictionary learning (PDL)
method where the learned atoms represent elementary wave-
forms of constant amplitude along parabolic travel time move
out. Hence, each atom can be characterized by a set of param-
eters such as the slope and the curvature, which relate to the
kinematics of the wavefield (Bortfeld, 1989; Ursin, 1982).
These kinematic parameters are then used to interpolate the
atoms along their respective slopes, thereby reconstructing
the interpolated single-component 3D streamer data in the
crossline direction. These local kinematic parameters can be
used not only for interpolation but also for other processing
tasks such as dual-sensor wavefield separation.

In dual-sensor towed streamer acquisition, also referred
as 2C streamer data, wavefield separation is the process
of decomposing the data into upward and downward trav-
elling waves using two types of sensors: hydrophones and
geophones. The hydrophones record the pressure, and the
geophones record the vertical component of particle veloc-
ity at the same locations. Combining both records facilitates
removal of the receiver-side sea surface ghost reflection to
produce data with better resolution than data with the ghost
present (Sollner et al., 2008). However, for emergence angles
greater than zero, the amplitudes recorded by the geophones
need to be scaled by an obliquity correction factor as only
the vertical component of the particle velocity is recorded
(Amundsen, 1993; Sollner et al., 2008).

In this work, we use PDL to both compress seismic data
and extract the kinematic parameters from parabolic atoms
such as the slope and the curvature. These kinematic param-
eters are further used to derive the obliquity correction factor
for local events in the time domain which allows the dual-
sensor wavefield separation processing step to be carried out
directly in the DL compressed domain. Our PDL method for
wavefield separation (WSPDL) is benchmarked against an
optimized industry-standard FK method for wavefield sepa-
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ration (FK-WS) using a synthetic data set. Later, a field data
set comprising a full 2D sail-line of marine seismic acquisi-
tion is used to assess the differences between both methods.
Hence, the WSPDL method shows its robustness with respect
to spatial aliasing without the need for data interpolation as for
FK-WS methods. Finally, the method also succeeds in reach-
ing high compression levels, where the compressed data can
be used to reconstruct not only the recorded data sets, but also
the up- and down-going parts of the wavefield.

METHODOLOGY

In order to understand how the PDL method for wavefield sep-
aration (WSPDL) enables dual-sensor wavefield separation
in the compressed domain, it is first necessary to intro-
duce the conventional dictionary learning (DL) and parabolic
dictionary learning (PDL) problems.

Conventional dictionary learning and parabolic
dictionary learning problems

In conventional DL problems, the aim is to represent the orig-
inal data in a sparse manner with two parts: A dictionary
of learned atoms representing elementary waveforms that are
repeated many times in the data; and a set of sparse coeffi-
cient vectors. In the case of seismic data, M small 2D patches
of size N are first extracted and then vectorized to construct
a training set denoted y,, Y, ...,y (Elad, 2010), which is a
subset of the original data set. Then, a DL method such as the
K-SVD (K-times the singular value decomposition) algorithm
(Rubinstein et al., 2008) is applied to jointly: learn a redundant
dictionary D € RNV*K where N < K (Donoho & Elad, 2003)
of K atoms, each of size N, same size as the patches, denoted
[d;,d, ...dg], with K < M; and find the set of sparse coeffi-
cient vectors X, X,, ..., X,, that minimize the representation
error given a sparsity error ¢ imposed on the sparse coeffi-
cient vectors (Aharon et al., 2006). This approach is generally
referred to as the error constraint mode, and this problem can
be mathematically expressed by

M
min > 1 xlly subject to || y; = Dx,ll, <e,
{x}i= D=1

i=1,..M. (€]

After learning the dictionary D, the sparse optimization
problem can be solved for patches of the original data set
(Bruckstein et al., 2009). This problem is mathematically
expressed as

X = arg min || x|| subject to || y = Dx|l, <e. (2)
X
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Equation (2) consists of finding the vector x of sparse coef-
ficients that minimize the norm of the residual vector for a
given patch y of the original data given the dictionary D,
where a sparsity error € is tolerated. We can solve the prob-
lem by finding an approximate solution X using orthogonal
matching pursuit (Pati et al., 1993). Each patch y of the orig-
inal data set can now be described as a linear combination of
the dictionary atoms.

The PDL (Turquais et al., 2018) is a modification of the
conventional DL method where a geometrical structure is
imposed to the atoms while learning them. The parabolic
structure was used by Turquais et al. (2018) for interpolation
purposes, because it is consistent with the physics of wave-
field propagation (Hoecht et al., 2009; Hubral et al., 1992;
Zhang et al., 2001). The PDL problem may be mathematically
expressed as follows:

M
min 11 xillo subject to 3)
{x'},:y-{dk}A:H:l
K
lyi— X dxill,<e i =1,...,.M
k=1

d, (1.0F) = d, (1 + ¢, 80% + s5,A0, o + Ao), V(1,40) R

Equation (3) is similar to Equation (1) with an extra con-
straint imposed on the geometrical structure of the atoms.
Here, each learned atom d is characterized by a parabolic
travel time move out given by At = s, Ao + ¢, Ao, where
At is the time move out, s, the atom’s slope, ¢; the atom’s
curvature and Ao = [o}( - oZef,oi - oyff, ,oz - o{ff] the
vector containing the displacement of a receiver location o)
related to each trace i of an atom k containing # traces relative
to the reference receiver off.

A more detailed description of the PDL problem and the
method to find an approximate solution to it can be found
in Turquais et al. (2018). Note that in this paper the PDL
method is used with the error constraint mode, whereas in
Turquais et al. (2018) the PDL is used with the sparsity con-
straint mode. That is because the error constraint mode is
more appropriate when the compressed seismic data are fur-
ther processed, whereas the sparsity constraint mode is more
appropriate for visualization purposes as explained in detail
by Faouzi Zizi and Turquais (2022).

The WSPDL method

Now, we will describe and illustrate with examples the dif-
ferent stages of the PDL method for wavefield separation
(WSPDL), where the dual-sensor wavefield separation pro-
cess is applied in the DL compressed domain. First, we
show how the transformation to the PDL domain is car-
ried out. Then, we derive the obliquity correction factor for
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each trace of the velocity dictionary atoms. Next, we com-
bine the corrected velocity and pressure dictionaries to obtain
the up-going pressure dictionary and do the same with the
velocity and pressure sparse representations to obtain the up-
going pressure sparse representation. Further, compression
techniques called entropy coding are used in the DL domain
to encode the data with a low number of bits. Finally, we
reconstruct the up-going pressure data.

Transformation stage

To describe the transformation stage of the WSPDL method,
we need to consider a data set example of many shots where
both the total vertical components of particle velocity and
the total pressure wavefield were recorded by the geophones
and the hydrophones, respectively. For reasons of simplic-
ity, we will refer to these data sets as velocity and pressure
data sets and will denote them with the indices V, and P,
respectively. The extraction and PDL stages are illustrated in
Figure 1. First, a large number M of non-overlapping time-
space 2D patches of size N are randomly extracted from
both seismic data sets, and vectorized to obtain the training
sets denoted Yy, and Yp. Then, for each training set PDL
is applied as described earlier to obtain the two parabolic
dictionaries D, = [d|", ..., d/]and D = [dF, ..., dF]
that optimally represent the training data sets in a sparse
manner, where K is the number of learned atoms per dic-
tionary. In this figure, we show only few atoms of both
dictionaries. Each atom dy is characterized by a set of local
kinematic parameters o‘lff, s; and c;. Further, both the veloc-
ity and pressure data sets are split into L number of 2D
overlapping patches of size N as shown in Figure 2. The
sparse optimization problem represented in Equation (2) can
now be solved for the L patches of each of the velocity
and the pressure data sets to obtain the sparse representa-
tions XVz = [x:/:, e, XZZ] and Xp = [xf, e XILJ], given
a sparsity error €. Figure 2 represents the relationship between
the time-space domain and the DL compressed domain. For
example multiplying the sparse representation X;/Z (yellow
frame) denoted ‘Sparse 3’ in the figure and the dictionary DVz
will result in the reconstruction of the velocity patch number 3
represented with the yellow frame in the time-space domain.
The atom frames in yellow, red and blue in this figure corre-
spond to the atoms used in the different linear combinations
to reconstruct the patches 3, 7065 and L, respectively. The
different small squares in the sparse representations (repre-
sented with the grey scale) denote different values of non-zero
coefficients used in the linear combinations. Note that the dic-
tionary and the set of sparse representations are different for
the velocity and pressure data sets.

The sparsity error € is generated from a desired level
of signal-to-residual ratio (SRR) of 30 dB following Equa-
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tion (4), as described by Faouzi Zizi and Turquais (2022)

_(SLR> 1
e~ 10 \ 20/ x ”dorig”2 X Z’ Q)

where
“dorigHZ
SRR = 20log;j——————— (dB), (%)
" Ndrig = lldec >
with d,j, and d;. denoting original and reconstructed data,

respectively. The SRR presented in Equation (5) is a metric
defining the level of desired signal distortion on the recon-
structed signal. A high level of SRR = 30 dB means that
a very small energy loss of 0.1% is expected between the
original velocity and pressure data sets and the reconstructed
ones after multiplying the dictionaries Dy, and D p with their
corresponding set of sparse coefficient vectors Xy, and Xp.
However, higher SRR leads to lower compression fate (CR),
which is defined as

number of bits before compression
CR = - —. ©)
number of bits after compression

Explanations regarding how the data are compressed come
in a later section. We will now discuss the choices for the dif-
ferent parameters specified in the WSPDL method based on
the 100 shots data set example illustrated in Figures 1 and 2.
The data are sampled at 2 ms in time and 12.5 m in space.
The number of time samples (Nt) and the number of chan-
nels (Nx) are Nt = 1850 and Nx = 475, respectively. M,
the number of extracted patches used to learn the dictionary,
was set to 10,000 because that was found sufficient to cap-
ture most of the similar features in a data set comprising 100
shots. Although the number of atoms is generally set to be at
least five times smaller than the number of training patches
in conventional DL methods, here we have set K, the number
of atoms per dictionary, to 6000 to enforce redundancy in the
dictionary to ensure that a high level of sparsity is reached.
The greater the redundancy in a dictionary, the sparser and
more accurate will be the representations (Donoho, 2006).
However, increasing the size of the dictionary makes the
learning stage computationally more expensive. The size of
the atoms was set to 64 samples by 8 traces because it was
large enough to capture the parabolic move out given the data
sampling of 2 ms and 12.5 m. Note that the display of the patch
size was increased in Figures 1 and 2 for better visualization.
Moreover, the PDL was slightly modified here to better suit
our wavefield separation application. An additional constraint
was imposed where only atoms with a slope value lower than
1/1500 s/m were learned, as the apparent velocity cannot be
smaller than the water velocity. This was done to avoid learn-
ing non-physical events, given that the slopes of the different
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Random extraction of M non-overlapping patches from the original data sets recorded by the geophones and the hydrophones to

construct the training sets Y,, and Y, respectively. Then, parabolic dictionary learning (PDL) is applied to obtain the corresponding parabolic

dictionaries Dy, and D . Only the first 256 atoms of each dictionary are represented here. The display size of the non-overlapping patches was

increased for better visualization.

atoms will later be used to correct for the obliquity scaling
problem in the velocity data.

Obliquity correction

The amplitudes recorded by the geophones need to be scaled
by an obliquity correction factor F, which can be expressed
as follows in the following equation:

1

F= R
cos

)

where € is the emergence angle of each single event. This
scaling is needed because the geophones record only the verti-
cal component of particle velocity in dual-sensor acquisition.
Such approach assumes that the cable is horizontal, and the
propagation velocity is constant at the cable depth (Sollner

et al., 2008). In the time domain, the equations for the up- and
down-going pressure fields (PP and P4°*", respectively) can
be written as in the following equations:

P¥ == (P—pvFV,), ®)

1

2
1

plown — 3 (P +pvFV,), )

where p is the water density, v is the propagation velocity
in water, P is the recorded pressure and V is the recorded
vertical particle velocity. However, it is difficult to find the
obliquity correction factor F for every single event in the
time domain. Hence, it is more convenient to apply the oblig-
uity scaling after plane wave decomposition, which requires
preconditioning (e.g. data interpolation, zero padding) and
comes at significant computational cost. The f~k domain is
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FIGURE 2

Illustration of the data sets recorded by the geophones and the hydrophones in the compressed dictionary learning (DL) domain. In

this domain, each seismic data set is represented by a parabolic dictionary and a set of sparse representations. For each data set, three different sparse

representations and their corresponding atoms are represented with frames of the same colour (yellow, blue and red). The display of the patch size

was increased for better visualization.

conventionally used because each plane wave component
maps to a particular coefficient in f~k space (Day et al., 2013).
In the f~k domain, Equations (8) and (9) can be rewritten as
follows in the following equations:

pup (a),kx)=% (P (w.ke) = 22V (w,kx)>, (10)

PO (k) = % <P (,k,) + ’;{—w

z

v, (a),kx)>, (11

where w is the angular frequency, k, is the horizontal angular
wavenumber and k_ is the magnitude of the vertical angular
wavenumber. In the WSPDL method, we use the local kine-
matic parameters to correct for the obliquity scaling problem
in the velocity data set. Bortfeld (1989), Hubral et al. (1992)

90

and Zhang et al. (2001) relate the parameters of the parabolic
move out to the kinematics of the wavefield based on ray the-
ory assumptions. Ray theory assumes the travelling event to
be in the vicinity of a central ray that travelled in the subsur-
face, and smoothly changing amplitudes in the earth model
(Bortfeld, 1989; Ursin, 1982). For example in the common
shot domain, the slope s, of an atom k can be linked to the
emergence angle 6, of the trace at the reference position o;fr as
follows:

sin 6
5= —. (12)
v
From Equations (7) and (12), we can write:
F, = 10 = ! . (13)
cos
k 1- (vsk)2
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four different atoms.

In Equation (13), we have found the scaling factor F, that
must be applied to each atom k of the velocity dictionary Dy,
to correct for obliquity scaling. However, the F, factor we
have found here is in fact related only to the trace located at
the reference position o?f of an atom k. Given that the atoms
of our velocity dictionary contain several traces, we need to
find the obliquity correction factor F/i related to each trace
i located at each of the positions o) and not only to the ref-
erence position olef. To do so, we consider the derivative of
the parabolic time move out function At = s, Ao + ¢, Ao’
The obliquity correction factor for each trace i at a receiver

location 0;( in an atom k can thus be written as

1

1-(vsi)?

F =

i _ i ref
i , where s}, = 2¢; (o} — o) + 5.

14

Figure 3 shows the velocity dictionary DVZ on the left side
as represented earlier in Figure 2. The atoms of this dictio-
nary are characterized by a slope s, and a curvature c,. Hence,
we can apply the obliquity correction factors F, 11 to each trace
of each atom in the dictionary DVz following Equation (14)
to obtain the corrected velocity dictionary D, v, represented
on the right-hand side of Figure 3. The figure also shows the
detail of four different atoms before and after applying the
obliquity correction. These four atoms displays show that for
each single trace, the higher the slope, the higher the angle of
incidence and thus the higher the obliquity correction factor
F Ii, which corresponds to the dependency relationship among
the obliquity correction factor, the slope and the angle of
incidence described in Equations (12)—(14). Moreover, Equa-
tion (14) shows that when dealing with high slopes values,
small errors in the approximation of the slope might lead to
big errors in the estimation of the obliquity correction factor.
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Illustration of the velocity dictionary atoms before (left) and after (right) the obliquity correction step, with close-up displays of

Note that both dictionaries have the same set of sparse rep-
resentations. Multiplying these sparse representations by the
dictionary D, gives the reconstruction of the velocity data
set after correc{ing for obliquity scaling.

Wavefield separation

After scaling the atoms of the velocity dictionary by the dif-
ferent obliquity correction factors following Equation (14), we
end up with two parabolic dictionaries: the corrected velocity
and the pressure dictionaries denoted D¢y, and Dp, respec-
tively; and two sets of sparse representations denoted XVZ and
Xp. To allow the dual-sensor wavefield separation process in
the DL compressed domain, we need to express the up-going
pressure field data set in terms of one dictionary and one set
of sparse representations. Thus, we combine the two dictio-
naries Dcy, and Dp into a common up-going pressure field
dictionary of 2K atoms denoted Dp,,, € RV*ZX such that

s)
where the first K atoms belong to the corrected velocity
dictionary and the last K atoms belong to the pressure
dictionary. We also combine the two sets of sparse representa-
tions Xy, € RXXL and X, € REXL into a common up-going
pressure field set of sparse representations denoted Xpy, €
R2KXL guch that

1

-3 XXy P P

Xep= |75 0| = [xPP LX) ae
2

p

. Pup .
where each sparse representation Xi 1S a sparse vector con-

taining 2K coefficients. The rescaling of X, by _71 and Xp
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by % is necessary following Equation (8). Now, each patch
of the up-going pressure field data set can be described as
a linear combination of the dictionary atoms stored in D])up,
where coefficients of each linear combination are stored in
Xpup- Hence, one can stay in the DL compressed domain and
further processing steps (if enabled) can directly be applied on
Xpyp and Dpy, before having to decompress or reconstruct the
data.

Data compression

Even though we are already in the DL compressed domain,
we further apply mathematical compression techniques com-
monly known as entropy coding techniques to Dp,, and Xpy,,,
as described in detail by Faouzi Zizi and Turquais (2022).
The entropy techniques are applied in two main stages: the
quantization and coding stages. The quantization stage is the
process of mapping floating point sparse coefficients within
a range [a, b] into a finite set of output levels; that is the
discretization of a continuous amplitude scale. We adopt the
same approach as Faouzi Zizi and Turquais (2022) and rescale
the dynamic range of the sparse coefficients by multiplying
them by a defined scaling coefficient Sc, which is automati-
cally generated from the level of desired SRR and the norm of
the original data d, Sc can be mathematically expressed
as follows:

origy*

025% v Nb

Se = et : a7
02x10-(5) x | d

orig )

where N b refers to the total number of non-zero coefficients
in the sparse representations. In our method we do the same
for the set of sparse representations Xpyp,. A fixed rescaling
factor Sc = 103 is also applied to all atoms of the dictionary
Dyp,;, because the dictionary atoms are normalized and do not
depend on the scale of the data. Then, we apply a rounding to
obtain integer values that can be coded using a small number
of bits. For the coding stage, the set of sparse representations
Xpyp is coded alongside the dictionary Dp,, using a Huffman
coding scheme (Huffman, 1952). The coding stage is a loss-
less compression strategy that seeks to represent the data with
the lowest number of bits per symbol. More details on apply-
ing entropy coding techniques in the DL domain can be found
in Faouzi Zizi and Turquais (2022).

Data reconstruction
First, we apply the inverse operations of the quantization

and coding stages as described in detail by Faouzi Zizi and
Turquais (2022) to obtain the reconstructed ﬁpupand Xpup-
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Then, we can easily reconstruct the total vertical particle
velocity, the total pressure, the up-going pressure or the
down- gomg pressure seismic shot gathers. For example: mul-
tiplying D])up and Xpup will reconstruct the up-going pressure
seismic shot gathers; multiplying DPup and Xpup, after reical-
ing the first K coefficients of the sparse vectors in Xpy,
denoted Xp“p[l . K, :]by —1 following (16), will reconstruct
the down-going pressure seismic shot gathers multiplying
the first K atoms of DP“p denoted Dpup[ k : K] and the
first K coefficients of the sparse vectors in Xpup denoted
Xpup[l : K, :], after rescaling Xpup[l :K,:] by a fac-
tor of —2 following (16), would reconstruct the corrected
velocity seismic shot gathers; finally, multiplying the last
K atoms of ﬁpup denoted ﬁpup[:, K +1:2K] and the
last K coefficients of the sparse vectors in )A(Pup denoted
XpuplK + 11 2K, 1], after rescaling Xp,,[K +1 : 2K, :]
by a factor of 2, would reconstruct the pressure seismic shot
gathers. Figure 4 shows the reconstructed up going pressure
sparse representation number 3 denoted x , which cor-
responds to the combination of the ve10c1ty and pressure
sparse representations X: and X x3 , respectively, and the recon-
structed dictionary ﬁpup corresponding to the combination of
the corrected velocity dictionary ]A)CVV and the pressure dic-
tionary D p» respectively. Multiplying ﬁpup and ﬁg"p gives the
linear combination of atoms needed to reconstruct the up-
going pressure patch number 3. Note that, as only the 256 first
atoms of the 6000 atoms of each dictionary are displayed in
Figure 4, more atoms are in fact needed to obtain the final
up-going pressure field patch displayed in the figure.

DATA APPLICATION

Synthetic data

In this section, we will assess the capability of the PDL
method for wavefield separation (WSPDL) method to cor-
rect for velocity obliquity scaling and to reconstruct the
up- and down-going pressure fields. We have modelled a syn-
thetic data set, where we have access to the true result, and
compared our method to an optimized industry-standard FK
method (FK-WS).

The total pressure and total vertical particle velocity wave-
fields were modelled using acoustic finite difference mod-
elling for the 2D P-wave velocity model shown in Figure 5,
which comprises a 200 m thick water layer and five sedi-
mentary layers. The different layers have different boundary
dips and velocities to create dipping events with different
slopes. The density increases slightly with depth and goes
from 1.96 g/cm? in the first sedimentary layer to 2.11 g/cm?
in the fifth and last one (Figure 5). In addition, diffracting
points have been added to create conflicting dips in the shot



PDL FOR WAVEFIELD SEPARATION

Pa bollc dictionary of 2K atoms

Geophysical Prosp’éwg

EUROPEAN

ASSOCIATION OF
GEOSCIENTISTS &

ENGINEERS

1 =
| 2
N =
o
| 3 (0.005) x \ + (0.003) x
- P-up (patch 3)
‘Sparse 3’ of 2K coefficients (-0.040) x % (0.020) x %+ (-0.004)x ‘ﬁ ﬁ
o.nzl . - = = s
R +(0.014) x 0015><E' F(0020)x b e
ruoz| ( )X ) - %
—
A0 k+1,20 " = =
+ (0.010) X === -0.010) x .
(0.010) x =+ ) éﬂo.wo)x&

(swoze y) dq

Dpup(2K atoms) Dy, (K atoms) U Dp (K atoms)

FIGURE 4 Reconstruction of the up-going pressure patch 3 by multiplying the up-going pressure dictionary, which is a combination of the

corrected velocity and pressure dictionaries, and the up-going pressure sparse representation, which is a combination of the velocity and pressure

sparse represemalions.
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FIGURE 5 2D P-wave velocity model used to generate the

synthetic data example of 100 shots. Four diffracting points are
represented in the model at different depths with small oval shapes. The
depth of the source is 6 m, and the depth of the cable is 20 m, where the
receiver spread is fixed.

gathers which are challenging to reconstruct. The up-going
parts of the pressure and vertical particle velocity fields were
first modelled without free-surface effects. Then, the down-
going parts of the pressure and vertical particle velocity fields,
which are reflected at the sea surface, were modelled using
virtual receivers located in a mirror-image position relative to
the sea surface. Further, the direct arrival was also modelled
and subtracted from the four data sets. We then combined
the up- and down-going parts of the pressure and the up-
and down-going parts of the vertical particle velocity wave-
fields to simulate the total pressure and the total vertical
particle velocity measurements recorded by the hydrophones
and the geophones, respectively. Hence, we have produced
three data sets each of 100 shots: the input vertical particle
velocity and pressure measurements, and their corresponding

up-going pressure field which will be used as reference (true
result).

The modelled data sets were sampled at 2 ms in time
and 3.125 m in space. The depth of the source was 6 m,
and the depth of the receivers was 20 m. Source ghosts and
free-surface multiples were not modelled for the three data
sets of 100 shots. Moreover, the modelled data sets under-
went pre-processing, as shown in Figure 6, in preparation
for the application of the wavefield separation process using
the WSPDL and FK-WS methods. The performance of these
methods is then evaluated and compared. Here, we consider
three data sets: the recorded total vertical particle velocity,
the recorded total pressure and the reference up-going pres-
sure wavefield. First, we applied a 20 Hz low-cut filter to the
three data sets because low frequencies are handled by other
methods when dual-sensor wavefield separation is applied
to field data examples. For low-frequencies, typically below
20 Hz, there is no decomposition of the wavefield into up-
and down-going parts. Indeed, the velocity data are heavily
contaminated by noise at the lowest frequencies. Thus, this
problem is usually solved by the so-called low-frequency con-
ditioning, where the noisy low frequency velocity data are
reconstructed from the relatively clean pressure data (Day
et al., 2013). Then, we applied a dip filter to remove steeply
dipping events with apparent propagation velocities of less
than 1550 m/s. This was done to allow a fair comparison of the
WSPDL method and the industry-standard FK-WS method in
terms of wavefield separation performance. Indeed, a tapering
is generally applied at such dips in conventional FK-WS meth-
ods to avoid instability arising from the application of large,
rapidly varying obliquity scaling factors. Finally, we decimate
the data by a factor of 4 in the space dimension to obtain data
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FIGURE 6 Pre-processing workflow for synthetic data before applying the dual-sensor wavefield separation process.
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One seismic shot gather of the 100 shot synthetic data example: (a) reference up-going pressure field; (b) total pressure measured

by the hydrophones and (c) total vertical particle velocity component measured by the geophones.

sets sampled at 12.5 m, normally employed for field data.
Figure 7 shows the same example shot gather for the three
data sets: the reference up-going pressure field (Figure 7a), the
input pressure (Figure 7b) and the input velocity (Figure 7¢)
after the decimation step but before applying the dual-sensor
wavefield separation process (Figure 6).

After pre-processing the data sets, we apply the wavefield
separation process to the synthetic input pressure and veloc-
ity recordings and compare the resulting up-going wavefield
to the reference up-going wavefield. The wavefield sepa-
ration process was carried out using the WSPDL method,
then using the optimized industry-standard FK-WS method
without interpolation and a third time using the same FK-
WS method after interpolating the data to a 3.125 m spatial
sampling interval using an industry-standard interpolation
algorithm to handle the aliased events (Bekara & Robin,
2015). In real field data cases, the FK-WS method is used
after interpolation as the data are more commonly acquired
at 12.5 m. Figure 8 shows the residual difference between
the reference up-going pressure wavefield (Figure 8a) and the
combination of the input pressure (Figure 7b), and velocity
(Figure 7c) when: No obliquity scaling is applied (Figure 8b),
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the industry-standard FK-WS method is used without inter-
polation (Figure 8c), the industry-standard FK-WS method is
used with interpolation (Figure 8d) and the WSPDL method
as described in the methodology section is used (Figure 8e).
Figure 9 shows the corresponding f~k spectra of the shot gath-
ers displayed in Figure 8. We compute the signal-to-residual
ratio (SRR) metric for the different methods following Equa-
tion (5), to assess the quality of the wavefield separation
results, with d,,, being the reference up-going pressure field
(Figure 8a) and d,.. the reconstructed up-going pressure
field after applying one of the wavefield separation meth-
ods. Figures 8b and 9b show visually the results obtained
in case an obliquity correction factor F of 1 is employed
with Equation (8). In this case, we obtain a SRR value of
10.1 dB. If no interpolation is used prior to the industry-
standard FK-WS method (Figures 8c and 9c), the aliased
events are not well reconstructed and a SRR of 16.54 is
reached. However, when the same FK-WS method is used
after interpolation (Figures 8d and 9d) the residuals are neg-
ligible and a high level of SRR = 27.64 dB is reached.
From Figure 8e, we can clearly see that the WSPDL method
has also succeeded in reconstructing the up-going pressure
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Wavefield separation results for the shot gather represented in Figure 7: (a) reference up-going pressure field; (b) residuals when no

obliquity scaling is applied; (c) residuals after applying the FK-WS method without interpolation; (d) residuals after applying the FK-WS method

with interpolation and (e) residuals after applying our WSPDL method.

field well and reaches a high level of SRR = 24.43 dB, and
with only weak residuals associated with very high ampli-
tude events. Thus, although the industry-standard FK-WS
method (Figures 8d and 9d) achieves slightly better results
when interpolation is included compared to the WSPDL
method (Figures 8e and 9e), both methods achieve high qual-
ity wavefield separations. Moreover, our method has shown
its effectiveness in reconstructing aliased events without the
need for interpolation. That is because parabolic dictionary
learning (PDL) reconstructs aliased events under its own set of
assumptions, namely sparsity and parabolic constraint. Under
these assumptions, PDL has shown the ability to provide bet-
ter interpolation results compared to a standard FK-based
interpolation method (Turquais et al., 2019). In addition, our
method has accomplished the dual-sensor wavefield sepa-

ration process in the dictionary learning (DL) compressed
domain with CR = 13.13, that is the data used to recon-
struct the up-going pressure field are 13 times smaller than
the input velocity and pressure data sets. The reconstruction
results obtained using the different methods are summarized
in Table 1. In this synthetic data example, we have in fact
compressed the input velocity and pressure data sets and
then reconstructed them prior to using both FK-WS meth-
ods (with and without interpolation). This procedure was
chosen to ensure that the data input to the FK-WS meth-
ods include any errors introduced by the compression step,
thereby permitting a fair assessment of the effectiveness of
the WSPDL method to correct for the obliquity scaling prob-
lem itself. The WSPDL method compresses the data and
corrects for the obliquity scaling problem simultaneously in
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The f~k spectra of the wavefield separation results represented in Figure 8: (a) reference up-going pressure field; (b) residuals if no

obliquity correction is applied; (c) residuals after applying the FK-WS method without interpolation; (d) residuals after applying the FK-WS method

with interpolation and (e) residuals after applying our WSPDL method.

the compressed domain. Hence, it is not possible to apply
the wavefield separation process without compressing the
data when using WSPDL. If no compression and recon-
struction are applied to the input velocity and pressure data
sets, the results of the optimized industry-standard FK-WS
method when used with interpolation reach a SRR level of
34.02 dB, and when no interpolation is used it reaches a
level of SRR = 16.79 dB. The computational costs of the
FK-WS method with interpolation and the WSPDL are com-
parable. However, when using WSPDL, the compression is
the most expensive part, whereas the reconstruction is very
efficient and fast as it requires only matrix multiplications
as described earlier in the methodology section. This means
that once the data are in the compressed domain, one can
also reconstruct the down-going pressure field, the pressure
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or the corrected vertical particle velocity with almost no extra
cost.

Field data

We now consider a more realistic field data set that con-
sists of 3320 shots comprising a full 2D sail-line of marine
seismic acquisition. The data were acquired in the ‘Nord-
land ridge’ area offshore Norway with a time sampling of
2 ms and a spatial sampling of 12.5 m. The number of
time samples (N?) and the number of channels (Nx) are
Nt = 2050 and Nx = 647, respectively. For every shot,
both the total pressure and the total vertical particle veloc-
ity were recorded. Both data recordings were pre-processed
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TABLE 1 Comparison of the different wavefield separation
methods in terms of signal-to-residual ratio (SRR), ability to
reconstruct aliased data parts (+) or not (—), and compression ratio
based on the synthetic data example

Method WSPDL Interpolation + FK FK
SRR (dB) 24.43 27.64 16.54
Aliasing + + -
CR 13.13 0.25 1

Note: We remind that compression/decompression is applied to the input data
sets of all three methods to allow a fair comparison of the wavefield separation
performance.

Abbreviations: CR, compression rate, SRR, signal-to-residual ratio.

before applying the dual-sensor wavefield separation process
(Figure 10). Later, we will describe in detail the different steps
of the pre-processing sequence. The purpose of the test is to
assess the effectiveness of WSPDL when applied to field data.
This is done by comparing its performance to the optimized
industry-standard FK-WS method with interpolation, as this
approach has been shown to provide high quality results in
the synthetic data example. However, for the field data we
do not have access to the true result. Moreover, we do not
apply any compression to the input velocity and pressure field
data sets prior to using the FK-WS method. This means that
the combined effects of compression and wavefield separation
are included in the quantitative assessment of the differences
between the results of both methods. Furthermore, the shot
gathers will be pre-stack migrated to assess the differences
between both methods in the image domain.

Figure 10 shows the pre-processing steps applied to the
input velocity and pressure data sets. First, a low-cut filter
is applied to remove frequencies below 20 Hz for the same
reason previously mentioned in the synthetic data example.
Then, a k-filter or spatial matching filter is applied to match
the responses of the geophones and hydrophones groups. This
process is required because the distributions of individual
sensors in the hydrophones and geophones groups are not
identical. We then remove the direct arrival and apply a dip fil-
ter to remove steep events with apparent velocities less than
1550 m/s and limit our comparison to the signal cone as in
the synthetic data example. Finally, the wavefield separation
process is applied, once using the FK-WS method after inter-
polating the data to 6.25 m spatial sampling as generally done
in production, and the second time using the WSPDL method.
The two up-going pressure field data sets obtained are then
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FIGURE 10 Different pre-processing steps before applying the dual-sensor wavefield separation to the field data example of 3320 shots.

compared. Here, we apply the same parameters described in
the methodology section when using the WSPDL method. In
fact, we developed our algorithm such that each group of 200
shots are processed independently. Hence, for each group of
200 shots, 2 dictionaries of 6000 atoms will be learned, one for
the velocity and one for the pressure data sets, then both will
be combined into one dictionary of 12,000 atoms. However,
when the total number of shots cannot be divided by 200, the
algorithm will automatically find the closest number to 200
that will make this division possible. For example in our case
we deal with 3320 shots; therefore, groups of 208 shots will
be processed independently, whereas the last set will comprise
exactly 200 shots. The choice of 200 shots was found to be a
good compromise between the accuracy of reconstruction and
the sparsity level. Indeed, applying the same parameters pre-
viously used on a 100 shots data set to a 200 shot data set will
lead to a higher level of sparsity and thus a higher compression
rate (CR) as 12,000 atoms will now be used to reconstruct 200
shot gathers and not only 100. However, a very high number
of shot gathers processed at the same time might lead to insuf-
ficient number of atoms to reconstruct the data with the high
level of reconstruction SRR = 30 dB imposed earlier in the
methodology section. Our aim is to develop a method which
is transferable to different data sets without changing the DL
parameters.

Figure 11 shows one shot gather of the resulting up-
going pressure field after applying the wavefield separation
process using both methods: the industry-standard FK-WS
method (Figure 11a) and the WSPDL method (Figure 11b),
respectively. Figure 11c shows the difference between the
two shot gathers. The f~k spectra of Figure 1la,c are dis-
played in Figure 11d,f, respectively. The small differences
between both methods are primarily due to locally strong
amplitudes at near offsets. Indeed, this is a very challeng-
ing part of the data set for both methods where a rapid
change of amplitudes occurs in both space and time. Here,
the FK-WS method suffers from the truncation effect at zero
offset, whereas the WSPDL method is based on the ray the-
ory which assumes smoothly changing amplitudes along the
travel time move outs (Bortfeld, 1989; Ursin, 1982). More-
over, in Figure 11f, we see that such differences are primarily
concentrated at high frequencies (around 160 Hz), whereas
the differences at the low frequencies (lower than 60 Hz)
and low wavenumbers are relatively weak compared to the
high energy of the primary even if it is significant relatively
to the rest of the energy displayed in the f~k spectrum of
the differences (Figure 11d—f). From Figure 11d,e, we note
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FIGURE 11 Dual-sensor wavefield separation results for one shot gather of the field data example: (a) up-going pressure field after applying

the FK-WS method with interpolation; (b) up-going pressure field after applying the WSPDL method; (c) differences between (a) and (b) and (d—f)

the f~k spectra of (a—c), respectively.

that the WSPDL method reconstructs the high frequency
events around 160 Hz with more energy than the FK-WS
method. Hence, such differences are most likely not due to
the compression effects, but higher values of the obliquity
correction factor F applied to the velocity data for such dip-
ping events in case of WSPDL. We recall that we spatially
interpolate the data with a factor of 2 when the industry-
standard FK-WS method is applied, and that we have already
demonstrated the ability of the WSPDL method to work
beyond aliasing in the synthetic data example. Therefore, it
is reasonable to observe higher amplitudes on highly dip-
ping events when using the WSPDL at frequencies higher
than 120 Hz which is the frequency limit beyond which spa-
tial aliasing will adversely affect the output of the FK-WS
method for spatial sampling of 6.25 m. However, the FK-
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WS method does not show specific problems above 120 Hz
on the synthetic data example, because the synthetic data
are sparse in frequency, which makes it easy for frequency-
based interpolation methods such as the industry-standard
interpolation algorithm (Bekara & Robin, 2015) used here,
to reconstruct clean aliased events (Figure 9d) compared to
the real data case. Note that the WSPDL method has recon-
structed the up-going pressure field in the compressed domain
with CR = 15.81.

After comparing the results of both wavefield separation
methods on seismic shot gathers, we will now pre-stack
migrate the resulting up-going pressure field data set of 3320
shots comprising a full sail-line of marine seismic acquisi-
tion. We applied a simple seismic processing workflow with
main steps as summarized in Figure 12. This workflow does
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FIGURE 12 Main steps of the seismic processing workflow to generate a 2D line image after applying the dual-sensor wavefield separation

process using the FK and the WSPDL methods.
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FIGURE 13 (a) 2D seismic image after applying the FK-WS

method; (b) 2D seismic image after applying the WSPDL method and
(c) difference between (a) and (b).

not replicate a full commercial processing but is sufficient
to assess the impact of both wavefield separation methods
on a 2D seismic image. Figure 13 shows the part of the
2D seismic image, where most dipping events occur. Here,
the focus is on the shallow part as the deep part is heav-
ily contaminated by noise. Visually, it is hard to discern any
differences between Figure 13a,b, representing the 2D seis-
mic images after applying the industry-standard FK and the
WSPDL methods, respectively. The differences between both
reconstructions are displayed in Figure 13c and are mainly
located close to the water bottom reflector, where amplitudes

are very strong. Hence, we can conclude that the two meth-
ods provide very similar results. However, in case of WSPDL,
a compression factor of almost 16 is obtained and aliased
energy is handled without the need for explicit interpolation.
In order to confirm the visual results, we perform an amplitude
spectrum analysis of the 2D seismic images, and their differ-
ences. Figure 14 shows the cumulative amplitude spectra of
the images in Figure 13a—c, denoted in blue, green and red,
respectively. This figure shows that the spectrum of the dif-
ferences between both images, which is 10 dB to 30 dB below
signal (in red), is relatively flat and has a dissimilar shape to
that of the 2D seismic sections. The spectra of the images
formed from the two up-going pressure fields (in green and
blue) are very similar especially below 125 Hz. This analysis
confirms that the FK and WSPDL methods provide very simi-
lar results. Moreover, we do not observe any significant loss of
energy due to the compression effect when we use the WSPDL
method knowing that the resulting image was reconstructed
from data almost 16 times smaller in size than the original
data used for the FK-WS method. That is because we have
targeted a high level of reconstruction of SRR = 30 dB for the
input velocity and pressure data sets. We further observe that
the WSPDL method recovers events between 120 and 200 Hz
with higher energy than the FK-WS method. However, this
does not mean that one method is more correct than the other.
Indeed, the water bottom differences are located at these fre-
quencies which is in accordance with the analysis of the shot
gathers results shown in Figure 11.

DISCUSSION
Compression sensitivity analysis

Although we have already discussed our choices for the dif-
ferent dictionary learning (DL) parameters, we should still
discuss the compression impact on the wavefield separation
results when using the PDL method for wavefield separa-
tion (WSPDL) method. Indeed, a high input signal-to-residual
ratio (SRR) level of 30 dB has been imposed as a target to
allow an accurate reconstruction of the input velocity and
pressure data sets after compression. Such an input SRR level
(that we will denote SRR;;,) has allowed a good reconstruc-
tion of the up-going pressure field for both the synthetic data
example where the SRR after wavefield separation (that we
will denote SRRyy) reached a high level of 24.43 dB with
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FIGURE 14 Amplitude spectrum analysis of the 2D seismic images represented in Figure 13.
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FIGURE 15 Impact of different input signal-to-residual levels

(SRR;,) on the compression ratio (CR) and the wavefield separation
reconstruction levels (SRRyg). The red cross on the graphs
corresponds to the case reported in Table 1, where SRR;, = 30 dB.

compression rate (CR) = 13.13 and the field data example
where a 2D line section was reconstructed with insignificant
energy loss while reaching a CR of almost 16. Acknowledg-
ing that as we increase the SRR;,, we decrease the CR, we
introduce a simple experiment in which the WSPDL method
is tested with different values of SRR;,. We then observe
how the CR level impacts the wavefield separation results via
the SRRy,g employing the 100 shot synthetic data set. The
graphs displayed in Figure 15 show that the WSPDL method
is stable as the CR level is decreasing when the SRR;, is
increasing as expected. We also observe from the same figure
that the SRRyq level becomes relatively stable (between 24
and 25 dB) when SRR;, is higher than 30 dB, which shows

100

the reconstruction limits of our method. Indeed, targeting a
higher level of SRR;, = 36.5 dB in our method could lead
to a slightly better SRRy level (Figure 15), but the CR level
would drop from 13.13 to 6.35. In Figure 16 we display four
different up-going pressure field reconstructions given differ-
ent SRR; levels. Here, we observe good performance in terms
of up-going pressure field reconstructions when CR = 6.35
and CR = 13.13 (Figure 16a,b,e,f) and one can hardly see
any differences between those reconstructions. When CR is
around 26 (Figure 16¢,g), few low amplitude events are not
well reconstructed, and residuals are uniformly distributed
along the different events below the first reflection. However,
even when reaching such a high CR level the visual quality of
the reconstruction is still acceptable. In Figure 16d,h, a high
level of CR = 43.36 is reached, and many events are not well
reconstructed. These displays validate our choice of targeting
a high SRR;, level of 30 dB, as it allows to reach both high
SRRy and CR levels.

Future work

In the synthetic data and field data subsections, we have
applied the same pre-processing steps (Figures 6 and 10) to
input data sets before applying the WSPDL or the optimized
industry-standard FK-WS method. Indeed, this paper focuses
only on enabling the dual-sensor wavefield separation pro-
cess in the DL compressed domain. Thus, it is important
to apply the same pre-processing steps before applying both
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FIGURE 16 Compression effect on the 2D synthetic up-going pressure field reconstruction results: (a—d) up-going pressure field
reconstructions after applying the WSPDL method with different compression levels and (e-h) the residuals corresponding to (a—d) after subtracting

the reference up-going pressure field.

methods to allow a fair comparison in terms of wavefield
separation performance. However, some of these steps are
more suited for FK-WS methods as they already include
a transformation in the FK domain. Hence, future work
can focus on enabling pre-processing or other processing
steps in the DL compressed domain to avoid going back
and forth between different processing domains. For exam-
ple the dip filter does not necessarily need to be applied
before the WSPDL method here. This was applied in syn-
thetic and field data examples to fairly compare the impact
of both methods on the signal cone as tapering is gener-
ally applied in conventional FK-WS methods as mentioned
in the data application section. In practice, a taper can also
be applied after reconstructing the data with the WSPDL
method or a dip filter can directly be applied at the atoms
level using the kinematic parameters. Another example is the
k-filter that was not needed to compare both methods but
was applied in the real data example to simulate a real data
case where the responses of the geophones and hydrophones
groups need to be matched. Consequently, enabling such
a filter in the DL compressed domain can be very conve-
nient. Moreover, the low-cut filter was applied because low
frequency velocity data are generally reconstructed from the
relatively clean pressure data (Day et al., 2013), as mentioned

earlier in the data application section. Therefore, one can also
investigate the possibility of using the low frequencies pres-
sure data to reconstruct the low frequencies up-going pressure
field directly in the DL compressed domain.

In this paper, we have learned the dictionaries Dy, and
Dpindependently. This was enough to achieve good recon-
struction of the up-going pressure field while reaching a
high level of compression. Instead, one could use a joint DL
method (Wang et al., 2022) where the same kinematic param-
eters are imposed to the atoms of both dictionaries. Such an
approach may lead to better approximations of the obliquity
correction factors, as the total pressure data will also be used
in the estimation of the kinematic parameters. Furthermore,
the scope of this paper focuses on applying WSPDL in the
2D case. The extension to the 3D data case can be done by
learning 3D atoms which would enable the reconstruction of
the 3D wavefield. 3D atoms would be characterized by five
parameters instead of only two in the 2D case, namely two
slopes, two curvatures and a mixed travel time parameter cor-
relating both directions (in-line and crossline). In the common
reflection surface approach, Hoecht et al. (2009) estimated
these parameters to achieve 3D interpolation. Similarly, such
parameters can be learned using WSPDL. Alternatively, one
can adopt a pseudo-3D approach where 2D dictionaries
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will be learned independently in the in-line and crossline
directions. Such an approach would be computationally
cheaper than learning 3D atoms but might lead to less accu-
rate results as correlations between the in-line and crossline
directions will not be used in the estimation of the kinematic
parameters. In this case, one should still think about meth-
ods to correlate the in-line and crossline dictionaries such as
joint DL methods (Wang et al., 2022). Moreover, the paper
focuses also on the dual-sensor towed streamer acquisition
(or two-components streamer data acquisition), where: One
hydrophone and one geophone are used to record the total
pressure and the total particle velocity motion, respectively.
Hence, other acquisition settings do exist such as the 3C
streamer data acquisition, where two geophones or accelerom-
eters record the particle velocity field in the vertical and
the cross-cable directions. However, the horizontal compo-
nent is heavily contaminated by noise in the in-line direction.
The 3C acquisition setting would theoretically provide the
crossline component of the particle velocity measurement
without the need to learn kinematic parameters in the crossline
direction (Vassallo et al., 2014). Such information can be com-
bined with the kinematic parameters estimated in the in-line
direction via WSPDL to allow a better approximation of the
reconstructed wavefield.

CONCLUSION

In this work, we have successfully demonstrated a novel
method that enables dual-sensor wavefield separation in a
compressed domain using a parabolic dictionary learning
(PDL) algorithm. The method (WSPDL) uses PDL to trans-
form input data sets, namely the total pressure and the total
vertical particle velocity measurements, to a compressed
domain composed of two main parts: a dictionary of parabolic
atoms and a set of sparse coefficients. The atoms of the dic-
tionary are characterized by kinematic parameters such as the
slope and the curvature, which are used to correct for veloc-
ity obliquity scaling directly in the compressed domain, and
thus allow to successfully separate the up- and down-going
parts of the pressure wavefield. We have tested and validated
the performance of our method by quantifying the accuracy
of the up-going pressure field reconstruction using the signal-
to-residual ratio metric based on a 100 shot synthetic data
example, where we have access to the true result. Moreover,
we observe similar wavefield separation performance when
compared to an optimized industry-standard FK-WS method
based on both synthetic and field data examples. Hence, we
have observed only small differences between the two meth-
ods after 2D line pre-stack migration. Moreover, the WSPDL
method is robust with respect to spatial aliasing without the
need for data preconditioning such as interpolation and comes
with the advantage of a data compression rate higher than
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15. Such a method could allow full bandwidth data transfer
from vessels to onshore processing centres as it reaches sig-
nificant compression levels. The transmitted compressed data
can be used to reconstruct not only the input data sets recorded
by the hydrophones and the geophones, but also the up- and
down-going parts of the wavefield without the need to run the
conventional dual-sensor wavefield separation process as this
reconstruction requires only a simple matrix multiplication.

In this paper, we have succeeded in applying one seismic
processing step, namely the dual-senor wavefield separation,
in the dictionary learning compressed domain using kine-
matic parameters. Enabling other seismic processing steps
in the compressed domain using these kinematic parameters
would provide a novel and efficient workflow to simulta-
neously compress and partly or fully process seismic data
sets.
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