
Mohammed Outhmane Faouzi Zizi

Seismic Data Processing in a
Compressed Domain using
Constrained Dictionary Learning

Thesis submitted for the degree of Philosophiae Doctor

Department of Geosciences
Faculty of Mathematics and Natural Sciences

University of Oslo

2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Mohammed Outhmane Faouzi Zizi, 2023 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 2634 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
 
Cover: UiO. 
Print production: Graphic center, University of Oslo. 
 
  



Preface

This thesis is submitted to the Faculty of Mathematics and Natural Sciences at
the University of Oslo (UiO) in fulfillment of the requirements for the degree
of Philosophiae Doctor (Ph.D.). The work presented here was carried out in
collaboration between the Acquisition Geophysics group in the Research and
Development (R&D) Department of PGS and the Department of Geosciences of
UiO. This collaboration was made possible through the Industrial PhD Program
organized and supported by the Research Council of Norway.

The research described in this thesis was conducted between January 2020
and March 2023 under the supervision of Dr. Anthony Day, Dr. Pierre Turquais,
and Dr. Morten W. Pedersen from PGS, and Prof. Leiv-Jacob Gelius from UiO.
The thesis consists of three papers presented in chronological order of writing.
Two of these papers have already been published in the journals Geophysics and
Geophysical Prospecting, respectively, while the third paper has been submitted
to Geophysical Prospecting and is currently under review.
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Summary

Seismic exploration surveys are increasingly covering larger areas and utilizing a
greater number of sensors to collect data. Hence, the resulting seismic data sets
are rapidly growing in size. However, this increase in data volume, presents a
significant challenge for conventional seismic processing and imaging techniques,
which require extensive human and computational resources . Compressing the
seismic data at an early stage of the seismic processing sequence can be key
element to overcoming storage and data transfer barriers. Moreover, applying
seismic processing steps directly in the compressed domain would not only save
storage and transfer costs but could also lead to faster and more cost-effective
alternatives to standard seismic processing.

The relevant information contained within seismic data sets is of smaller
dimensionality than the data themselves. Consequently, the seismic data can
be expressed with a reduced number of coefficients compared to the number
of data samples by transforming the data into an appropriate mathematical
domain. Such transformations are generally called sparse and have gained more
interest in seismic processing during the last few years. This thesis first explores
different sparse representations in the context of seismic data compression, where
a distinction is made between fixed and learned transforms. It then follows
an investigation of different transforms that succeed in describing the seismic
wavefield based on their analytical expressions. Further, a particular focus is
placed on a parabolic constrained version of dictionary learning methods, where
the seismic wavefield can be locally explained by kinematic parameters. The
extracted kinematic parameters are exploited to develop new processing methods
based on simple operators that are directly applied to compressed seismic data.

This goal has been tackled with a step by step approach as follows: (1)
A dictionary learning (DL)-based compression method is developed, where
redundancy in seismic data is fully exploited by learning small-sized dictionaries
from local windows of the seismic shot gathers. Our method has been evaluated
on both synthetic and realistic data sets and demonstrated superior effectiveness
compared to conventional compression methods, which are based on different
predefined transforms. (2) A novel method that applies the dual-sensor wavefield
separation processing step in the compressed domain has been developed for
2D seismic data based on parabolic dictionary learning. Kinematic parameters
such as the slope and curvature of the learned atoms are used to allow the
wavefield separation processing step directly in the dictionary learning compressed
domain. The method has achieved similar results as an industry-standard FK-
based method for wavefield separation and has the advantage of being robust
to spatial aliasing without the need for interpolation, while reaching a high
compression performance. (3) A deghosting process in the compressed domain,
specifically designed for low-frequencies has been developed. The method can
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Summary

be seen as complementary to the previous wavefield separation method which
usually handles only high frequencies. By operating directly on the compressed
data format, which is of smaller size, the method has provided a cost-effective
alternative to the standard deghosting process. We have evaluated the method
using both synthetic and field data sets and achieved similar results to an
industry-standard FK method while achieving high compression performances.

In summary, our research has demonstrated that constrained dictionary
learning-based methods are highly effective in enabling key processing steps,
such as wavefield separation and deghosting, to be carried out directly in the
compressed domain. While sparse transforms have previously been utilized for
some seismic processing steps, there has been no prior proposal for methods aimed
at compressing and simultaneously processing seismic data in the compressed
domain. Thus, we have shown that such methods can significantly reduce costs
related to data storage and transfer, and bring computational cost reduction.
Future research can now focus on allowing other key processing steps in the
compressed domain.
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Sammendrag

Seismiske leteundersøkelser dekker stadig større områder og benytter et økende
antall sensorer for å samle inn data. Dette betyr igjen at de seismiske
datasettene øker raskt i størrelse. Denne økningen i datavolum utgjør
imidlertid en betydelig utfordring for konvensjonelle seismiske prosesserings-
og bildeteknikker, som krever omfattende menneskelige og beregningsmessige
ressurser. Komprimering av de seismiske dataene på et tidlig stadium
av den seismiske prosesseringssekvensen kan være et nøkkelelement for å
overvinne lagrings- og dataoverføringsbarrierer. Videre vil bruk av seismiske
prosesseringstrinn direkte i det komprimerte domenet ikke bare spare lagrings-
og overføringskostnader, men kan også føre til raskere og mer kostnadseffektive
alternativer til standard seismisk prosessering.

Den relevante informasjonen i et seismiske datasett er av mindre dimensjon-
alitet enn dataene selv. Følgelig kan seismiske data representeres ved hjelp av et
redusert antall koeffisienter sammenlignet med det totale antall datapunkter ved
å transformere dataene til et passende matematisk domene. Generelt kalles slike
transformasjoner glisne (‘sparse’) og de er blitt gjenstand for en større interesse
innen seismisk prosessering i løpet av de siste årene. Denne oppgaven undersøker
først ulike glisne representasjoner for anvendelser innen seismisk datakomprimer-
ing, hvor det skilles mellom fast definerte og innlærte transformasjoner. Deretter
diskuteres ulike transformasjoner som er basert på analytiske beskrivelser av det
seismiske bølgefeltet . Fokus vil spesielt være på en parabolsk beskrivelse av de
seismiske bølgene ved hjelp av lokale kinematiske parametre. De ekstraherte
kinematiske parametrene benyttes til å utvikle nye prosesseringsmetoder basert
på enkle operatorer som anvendes direkte på de komprimerte seismiske data.

I denne oppgaven er følgende hovedresultater blitt oppnådd: (1) En
‘Dictionary Learning’ (DL)-basert komprimeringsmetode er utviklet, hvor
redundans i seismiske data utnyttes fullt ut ved å lære detaljerte egenskaper
ut fra lokale tidsvinduer av seismiske data. Metoden har blitt testet ved
bruk av både syntetiske data og feltdata og er vist å være mer effektiv
sammenlignet med konvensjonelle komprimeringsmetoder, som er basert på
forskjellige forhåndsdefinerte transformasjoner. (2) En ny metode for dual-sensor
bølgefeltseparasjon i det komprimerte domenet er utviklet for 2D data basert på
parabolsk DL. Kinematiske parametere som helning og krumning til DL-atomene
gjør det mulig å utføre bølgefeltseparasjon direkte i det komprimerte domenet.
Metoden gir sammenlignbare resultater med en industristandard FK-basert
metode for bølgefeltseparasjon og har fordelen av å være robust mot romlig
aliasing uten behov for interpolering og gir samtidig høy kompresjonsytelse. (3)
En dehosting-prosess i det komprimerte domenet, spesielt designet for lave
frekvenser, er også utviklet. Metoden kan sees på som komplementær til
bølgefeltseparasjonsmetoden som vanligvis kun håndterer høye frekvenser. Ved
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Summary

å operere direkte på det komprimerte dataformatet, som er av mindre størrelse,
representerer denne nye metoden et kostnadseffektivt alternativ til en standard
deghosting-prosess. Vi har evaluert metoden ved å benytte både syntetiske data
og feltdata og har oppnådd sammenlignbare resultater med en industristandard
FK-metode samtidig med en høy kompresjonsytelse.

Kort oppsummert har forskningen vår vist at læringsbaserte DL-metoder
er svært effektive i forhold til å utføre viktige prosesseringstrinn, som bølge-
feltseparasjon og deghosting, direkte i det komprimerte domenet. Mens glisne
transformasjoner tidligere har vært benyttet i noen seismiske prosesseringstrinn,
har det ikke tidligere blitt foreslått metoder skreddersydd for å komprimere og
samtidig prosessere seismiske data i det komprimerte domenet. Vi har demon-
strert at denne type metoder kan redusere kostnadene knyttet til datalagring og
overføring betydelig, og gi en beregningsmessig kostnadsreduksjon. Videre forskn-
ing kan nå fokusere på å utvikle andre viktige seismiske prosesseringssekvenser i
det komprimerte domenet.
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Abstract
In the marine seismic industry, the size of the recorded and processed seismic data is
continuously increasing and tends to become very large. Hence, applying compression
algorithms specifically designed for seismic data at an early stage of the seismic process-
ing sequence helps to save cost on storage and data transfer. Dictionary learning methods
have been shown to provide state-of-the-art results for seismic data compression. These
methods capture similar events from the seismic data and store them in a dictionary
of atoms that can be used to represent the data in a sparse manner. However, as with
conventional compression algorithms, these methods still require the data to be decom-
pressed before a processing or imaging step is carried out. Parabolic dictionary learning
is a dictionary learning method where the learned atoms follow a parabolic travel time
move out and are characterized by kinematic parameters such as the slope and the cur-
vature. In this paper, we present a novel method where such kinematic parameters are
used to allow the dual-sensor (or two-components) wavefield separation processing step
directly in the dictionary learning compressed domain for 2D seismic data. Based on a
synthetic seismic data set, we demonstrate that our method achieves similar results as
an industry-standard FK-based method for wavefield separation, with the advantage of
being robust to spatial aliasing without the need for data preconditioning such as inter-
polation and reaching a compression rate around 13. Using a field data set of marine
seismic acquisition, we observe insignificant differences on a 2D stacked seismic section
between the two methods, whereas reaching a compression ratio higher than 15 when
our method is used. Such a method could allow full bandwidth data transfer from vessels
to onshore processing centres, where the compressed data could be used to reconstruct
not only the recorded data sets, but also the up- and down-going parts of the wavefield.
K E Y W O R D S
compression, data processing, dictionary learning, multicomponent, seismics

INTRODUCTION

During the last decade, marine seismic acquisition capabil-
ities have improved at a rapid pace. As a result, the size of
marine seismic exploration surveys, and the number of sen-
sors deployed have both increased. Hence, the size of the

seismic data recorded during one marine seismic survey has
increased significantly and often reaches several terabytes.
Such large data sizes give rise to several challenges related
to data transfer, storage and processing. For example: Only
bandlimited data can typically be transferred from vessels
to onshore processing centres because of the low-bandwidth

Geophysical Prospecting 2023;1–19. © 2023 European Association of Geoscientists & Engineers. 1wileyonlinelibrary.com/journal/gpr
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available from satellites; storing many large seismic data sets
for a long time on tapes is costly but necessary as many of
them need to be backed up even after project delivery. Hence,
compressing data at an early stage of the seismic process-
ing sequence has attracted growing interest from the marine
seismic community in the last few years. Indeed, design-
ing efficient compression algorithms for seismic data is a
key element to removing the barriers related to storage and
data transfer. However, conventional compression processes
still require the data to be decompressed before carrying
out any processing or imaging steps, by transforming them
back into their original time-space domain. This can limit
the compression benefits related to storage or lead to accu-
mulating compression errors if the compression process is
again applied after carrying out that processing or imaging
step. Moreover, conventional seismic processing and imaging
is a long meticulous sequence of workflows, which generally
requires transforming the data into other processing domains
where data preconditioning is needed (e.g. zero padding, data
interpolation, data extrapolation and decimation) and comes
at a significant computational cost. In this paper, we aim to
enable one seismic processing step directly in the compressed
domain, namely the dual-sensor (or two-components [2C])
wavefield separation processing step. This would allow to
overcome the requirements for data decompression and avoid
data preconditioning with regards to this specific processing
step, which is generally applied early in the seismic processing
sequence.

Many compression algorithms have been designed for
seismic data. Such algorithms are generally based on trans-
forming the data to a so-called sparse domain, which is more
compact than the original time-space domain. Sparse domains
have been used to carry out different seismic processing
and imaging applications (compressed sensing). Indeed, the
compressed sensing fields have helped to tackle many dif-
ficulties related to seismic data starting from acquisition to
full waveform inversion by exploiting the sparse structure of
seismic data (Herrmann et al., 2013; Lin & Herrmann, 2013;
Mansour et al., 2012). Conventionally, seismic compression
algorithms are based on fixed sparse transforms (Averbuch
et al., 2001; Duval & Rosten, 2000; Fajardo et al., 2015;
Wang et al., 2004; Zheng & Liu, 2012), where the basis
functions are analytically predefined and already known by
the encoder and decoder, such as discrete cosines, wavelets
and others (Elad, 2010; Mallat, 2008). By contrast, other
seismic compression algorithms based on learned transforms
have recently emerged. Schiavon et al. (2020) proposed a
deep autoencoder to compress post-stack seismic data. Helal
et al. (2021) proposed two convolutional autoencoders, where
the first model is adapted to low compression rates (CRs),
whereas the second model is more efficient when the user
needs to reach high CR. These methods transform the input
seismic data into feature representations which are sparse

enough to allow good compression performance. Dictionary
learning (DL) methods, for example K-mean singular value
decomposition (Aharon et al., 2006) or online DL (Mairal
et al., 2009), are another type of learned transform. These
methods capture the similar elementary events from the seis-
mic data, store them once in a dictionary of atoms and then
express the original data as a weighted sum of the learned
atoms. DL methods have been shown to provide state-of-
the-art results when it comes to seismic data compression
(Faouzi Zizi & Turquais, 2022). The authors have developed
a compression workflow where the similarities between the
different seismic events is fully exploited, and where the DL-
based compression algorithm provides better compression
performance compared to conventional compression meth-
ods. Moreover, different modifications of the DL methods
have been shown to be suited to various seismic processing
tasks, such as noise suppression (Beckouche & Ma, 2014) or
interpolation (Turquais et al., 2018). For example Turquais
et al. (2018) proposed a parabolic dictionary learning (PDL)
method where the learned atoms represent elementary wave-
forms of constant amplitude along parabolic travel time move
out. Hence, each atom can be characterized by a set of param-
eters such as the slope and the curvature, which relate to the
kinematics of the wavefield (Bortfeld, 1989; Ursin, 1982).
These kinematic parameters are then used to interpolate the
atoms along their respective slopes, thereby reconstructing
the interpolated single-component 3D streamer data in the
crossline direction. These local kinematic parameters can be
used not only for interpolation but also for other processing
tasks such as dual-sensor wavefield separation.

In dual-sensor towed streamer acquisition, also referred
as 2C streamer data, wavefield separation is the process
of decomposing the data into upward and downward trav-
elling waves using two types of sensors: hydrophones and
geophones. The hydrophones record the pressure, and the
geophones record the vertical component of particle veloc-
ity at the same locations. Combining both records facilitates
removal of the receiver-side sea surface ghost reflection to
produce data with better resolution than data with the ghost
present (Söllner et al., 2008). However, for emergence angles
greater than zero, the amplitudes recorded by the geophones
need to be scaled by an obliquity correction factor as only
the vertical component of the particle velocity is recorded
(Amundsen, 1993; Söllner et al., 2008).

In this work, we use PDL to both compress seismic data
and extract the kinematic parameters from parabolic atoms
such as the slope and the curvature. These kinematic param-
eters are further used to derive the obliquity correction factor
for local events in the time domain which allows the dual-
sensor wavefield separation processing step to be carried out
directly in the DL compressed domain. Our PDL method for
wavefield separation (WSPDL) is benchmarked against an
optimized industry-standard FK method for wavefield sepa-

86



PDL FOR WAVEFIELD SEPARATION 3

ration (FK-WS) using a synthetic data set. Later, a field data
set comprising a full 2D sail-line of marine seismic acquisi-
tion is used to assess the differences between both methods.
Hence, the WSPDL method shows its robustness with respect
to spatial aliasing without the need for data interpolation as for
FK-WS methods. Finally, the method also succeeds in reach-
ing high compression levels, where the compressed data can
be used to reconstruct not only the recorded data sets, but also
the up- and down-going parts of the wavefield.

METHODOLOGY

In order to understand how the PDL method for wavefield sep-
aration (WSPDL) enables dual-sensor wavefield separation
in the compressed domain, it is first necessary to intro-
duce the conventional dictionary learning (DL) and parabolic
dictionary learning (PDL) problems.

Conventional dictionary learning and parabolic
dictionary learning problems

In conventional DL problems, the aim is to represent the orig-
inal data in a sparse manner with two parts: A dictionary
of learned atoms representing elementary waveforms that are
repeated many times in the data; and a set of sparse coeffi-
cient vectors. In the case of seismic data, 𝑀 small 2D patches
of size 𝑁 are first extracted and then vectorized to construct
a training set denoted 𝐲1, 𝐲2,… , 𝐲𝑀 (Elad, 2010), which is a
subset of the original data set. Then, a DL method such as the
K-SVD (K-times the singular value decomposition) algorithm
(Rubinstein et al., 2008) is applied to jointly: learn a redundant
dictionary 𝐃 ∈ R𝑁×𝐾 where 𝑁 < 𝐾 (Donoho & Elad, 2003)
of 𝐾 atoms, each of size 𝑁 , same size as the patches, denoted
[𝐝1,𝐝2 …𝐝𝐾 ], with 𝐾 < 𝑀 ; and find the set of sparse coeffi-
cient vectors 𝐱1, 𝐱2,… , 𝐱𝑀 that minimize the representation
error given a sparsity error ϵ imposed on the sparse coeffi-
cient vectors (Aharon et al., 2006). This approach is generally
referred to as the error constraint mode, and this problem can
be mathematically expressed by

min
{𝐱𝑖}M𝑖 = 1,𝐃

𝑀∑
𝑖 = 1

∥ 𝐱𝑖∥0 subject to ∥ 𝐲𝑖 − 𝐃𝐱𝑖∥2 ≤ 𝜖,

𝑖 = 1,…𝑀. (1)

After learning the dictionary 𝐃, the sparse optimization
problem can be solved for patches of the original data set
(Bruckstein et al., 2009). This problem is mathematically
expressed as

�̂� = arg min
𝐱

∥ 𝐱∥0 subject to ∥ 𝐲 − 𝐃𝐱∥2 ≤ 𝜖. (2)

Equation (2) consists of finding the vector 𝐱 of sparse coef-
ficients that minimize the norm of the residual vector for a
given patch 𝐲 of the original data given the dictionary 𝐃,
where a sparsity error ϵ is tolerated. We can solve the prob-
lem by finding an approximate solution �̂� using orthogonal
matching pursuit (Pati et al., 1993). Each patch 𝐲 of the orig-
inal data set can now be described as a linear combination of
the dictionary atoms.

The PDL (Turquais et al., 2018) is a modification of the
conventional DL method where a geometrical structure is
imposed to the atoms while learning them. The parabolic
structure was used by Turquais et al. (2018) for interpolation
purposes, because it is consistent with the physics of wave-
field propagation (Hoecht et al., 2009; Hubral et al., 1992;
Zhang et al., 2001). The PDL problem may be mathematically
expressed as follows:

min
{𝐱𝑖}𝑀

𝑖 = 1 ,{𝐝𝑘}
𝐾
𝑘 = 1

𝑀∑
𝑖 = 1

∥ 𝐱𝑖∥0 subject to (3)

⎧
⎪⎨⎪⎩

∥ 𝐲𝑖 −
𝐾∑

𝑘 = 1
𝐝𝑘𝐱𝑖∥2 ≤ 𝜖, 𝑖 = 1,… ,𝑀

𝐝𝑘
(
𝑡, 𝑜ref𝑘

)
= 𝐝𝑘

(
𝑡 + 𝑐𝑘Δ𝐨2 + 𝑠𝑘Δ𝐨, 𝑜ref𝑘 + Δ𝐨

)
, ∀ (𝑡,Δ𝐨) ∈ R2.

Equation (3) is similar to Equation (1) with an extra con-
straint imposed on the geometrical structure of the atoms.
Here, each learned atom 𝐝𝑘 is characterized by a parabolic
travel time move out given by Δ𝐭 = 𝑠𝑘 Δ𝐨 + 𝑐𝑘Δ𝐨2, where
Δ𝐭 is the time move out, 𝑠𝑘 the atom’s slope, 𝑐𝑘 the atom’s
curvature and Δ𝐨 = [𝑜1𝑘 − 𝑜ref𝑘 , 𝑜2𝑘 − 𝑜ref𝑘 ,… , 𝑜𝑛𝑘 − 𝑜ref𝑘 ] the
vector containing the displacement of a receiver location 𝑜𝑖𝑘related to each trace 𝑖 of an atom 𝑘 containing 𝑛 traces relative
to the reference receiver 𝑜ref𝑘 .

A more detailed description of the PDL problem and the
method to find an approximate solution to it can be found
in Turquais et al. (2018). Note that in this paper the PDL
method is used with the error constraint mode, whereas in
Turquais et al. (2018) the PDL is used with the sparsity con-
straint mode. That is because the error constraint mode is
more appropriate when the compressed seismic data are fur-
ther processed, whereas the sparsity constraint mode is more
appropriate for visualization purposes as explained in detail
by Faouzi Zizi and Turquais (2022).

The WSPDL method

Now, we will describe and illustrate with examples the dif-
ferent stages of the PDL method for wavefield separation
(WSPDL), where the dual-sensor wavefield separation pro-
cess is applied in the DL compressed domain. First, we
show how the transformation to the PDL domain is car-
ried out. Then, we derive the obliquity correction factor for
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each trace of the velocity dictionary atoms. Next, we com-
bine the corrected velocity and pressure dictionaries to obtain
the up-going pressure dictionary and do the same with the
velocity and pressure sparse representations to obtain the up-
going pressure sparse representation. Further, compression
techniques called entropy coding are used in the DL domain
to encode the data with a low number of bits. Finally, we
reconstruct the up-going pressure data.

Transformation stage
To describe the transformation stage of the WSPDL method,
we need to consider a data set example of many shots where
both the total vertical components of particle velocity and
the total pressure wavefield were recorded by the geophones
and the hydrophones, respectively. For reasons of simplic-
ity, we will refer to these data sets as velocity and pressure
data sets and will denote them with the indices 𝑉𝑧 and 𝑃 ,
respectively. The extraction and PDL stages are illustrated in
Figure 1. First, a large number 𝑀 of non-overlapping time-
space 2D patches of size 𝑁 are randomly extracted from
both seismic data sets, and vectorized to obtain the training
sets denoted 𝐘𝑉𝑧 and 𝐘𝑃 . Then, for each training set PDL
is applied as described earlier to obtain the two parabolic
dictionaries 𝐃𝑉𝑧 = [𝐝𝑉𝑧1 , … , 𝐝𝑉𝑧𝐾 ] and 𝐃𝑃 = [𝐝𝑃1 , … , 𝐝𝑃𝐾 ]that optimally represent the training data sets in a sparse
manner, where 𝐾 is the number of learned atoms per dic-
tionary. In this figure, we show only few atoms of both
dictionaries. Each atom 𝐝𝐾 is characterized by a set of local
kinematic parameters 𝑜ref𝑘 , 𝑠𝑘 and 𝑐𝑘. Further, both the veloc-
ity and pressure data sets are split into 𝐿 number of 2D
overlapping patches of size 𝑁 as shown in Figure 2. The
sparse optimization problem represented in Equation (2) can
now be solved for the 𝐿 patches of each of the velocity
and the pressure data sets to obtain the sparse representa-
tions 𝐗𝑉𝑧 = [𝐱𝑉𝑧1 , … , 𝐱𝑉𝑧𝐿 ] and 𝐗𝑃 = [𝐱𝑃1 , … , 𝐱𝑃𝐿], given
a sparsity error ϵ. Figure 2 represents the relationship between
the time-space domain and the DL compressed domain. For
example multiplying the sparse representation 𝐱𝑉𝑧3 (yellow
frame) denoted ‘Sparse 3’ in the figure and the dictionary 𝐃𝑉𝑧will result in the reconstruction of the velocity patch number 3
represented with the yellow frame in the time-space domain.
The atom frames in yellow, red and blue in this figure corre-
spond to the atoms used in the different linear combinations
to reconstruct the patches 3, 7065 and 𝐿, respectively. The
different small squares in the sparse representations (repre-
sented with the grey scale) denote different values of non-zero
coefficients used in the linear combinations. Note that the dic-
tionary and the set of sparse representations are different for
the velocity and pressure data sets.

The sparsity error ϵ is generated from a desired level
of signal-to-residual ratio (SRR) of 30 dB following Equa-

tion (4), as described by Faouzi Zizi and Turquais (2022)

𝜖 ≈ 10−
(
SRR
20

)
× ‖𝐝orig‖2 ×

√
1
𝐿
, (4)

where

SRR = 20log10
‖𝐝orig‖2

‖𝐝orig‖ − ‖𝐝rec‖2 (dB) , (5)

with 𝐝orig and 𝐝rec denoting original and reconstructed data,
respectively. The SRR presented in Equation (5) is a metric
defining the level of desired signal distortion on the recon-
structed signal. A high level of SRR = 30 dB means that
a very small energy loss of 0.1% is expected between the
original velocity and pressure data sets and the reconstructed
ones after multiplying the dictionaries 𝐃𝑉𝑧 and 𝐃𝑃 with their
corresponding set of sparse coefficient vectors 𝐗𝑉𝑧 and 𝐗𝑃 .
However, higher SRR leads to lower compression rate (CR),
which is defined as

CR =
number of bits before compression
number of bits af ter compression

. (6)

Explanations regarding how the data are compressed come
in a later section. We will now discuss the choices for the dif-
ferent parameters specified in the WSPDL method based on
the 100 shots data set example illustrated in Figures 1 and 2.
The data are sampled at 2 ms in time and 12.5 m in space.
The number of time samples (𝑁𝑡) and the number of chan-
nels (𝑁𝑥) are 𝑁𝑡 = 1850 and 𝑁𝑥 = 475, respectively. 𝑀 ,
the number of extracted patches used to learn the dictionary,
was set to 10,000 because that was found sufficient to cap-
ture most of the similar features in a data set comprising 100
shots. Although the number of atoms is generally set to be at
least five times smaller than the number of training patches
in conventional DL methods, here we have set 𝐾 , the number
of atoms per dictionary, to 6000 to enforce redundancy in the
dictionary to ensure that a high level of sparsity is reached.
The greater the redundancy in a dictionary, the sparser and
more accurate will be the representations (Donoho, 2006).
However, increasing the size of the dictionary makes the
learning stage computationally more expensive. The size of
the atoms was set to 64 samples by 8 traces because it was
large enough to capture the parabolic move out given the data
sampling of 2 ms and 12.5 m. Note that the display of the patch
size was increased in Figures 1 and 2 for better visualization.
Moreover, the PDL was slightly modified here to better suit
our wavefield separation application. An additional constraint
was imposed where only atoms with a slope value lower than
1/1500 s∕m were learned, as the apparent velocity cannot be
smaller than the water velocity. This was done to avoid learn-
ing non-physical events, given that the slopes of the different
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F I G U R E 1 Random extraction of 𝑀 non-overlapping patches from the original data sets recorded by the geophones and the hydrophones to
construct the training sets 𝐘𝑉𝑧

and 𝐘𝑃 , respectively. Then, parabolic dictionary learning (PDL) is applied to obtain the corresponding parabolic
dictionaries 𝐃𝑉𝑧

and 𝐃𝑃 . Only the first 256 atoms of each dictionary are represented here. The display size of the non-overlapping patches was
increased for better visualization.

atoms will later be used to correct for the obliquity scaling
problem in the velocity data.

Obliquity correction
The amplitudes recorded by the geophones need to be scaled
by an obliquity correction factor 𝐹 , which can be expressed
as follows in the following equation:

𝐹 = 1
cos 𝜃

, (7)

where 𝜃 is the emergence angle of each single event. This
scaling is needed because the geophones record only the verti-
cal component of particle velocity in dual-sensor acquisition.
Such approach assumes that the cable is horizontal, and the
propagation velocity is constant at the cable depth (Söllner

et al., 2008). In the time domain, the equations for the up- and
down-going pressure fields (𝑃 up and 𝑃 down, respectively) can
be written as in the following equations:

𝑃 up = 1
2

(
𝑃 − 𝜌𝑣𝐹𝑉𝑧

)
, (8)

𝑃 down = 1
2

(
𝑃 + 𝜌𝑣𝐹𝑉𝑧

)
, (9)

where 𝜌 is the water density, 𝑣 is the propagation velocity
in water, 𝑃 is the recorded pressure and 𝑉𝑧 is the recorded
vertical particle velocity. However, it is difficult to find the
obliquity correction factor 𝐹 for every single event in the
time domain. Hence, it is more convenient to apply the obliq-
uity scaling after plane wave decomposition, which requires
preconditioning (e.g. data interpolation, zero padding) and
comes at significant computational cost. The f–k domain is
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6 FAOUZI ZIZI ET AL.

F I G U R E 2 Illustration of the data sets recorded by the geophones and the hydrophones in the compressed dictionary learning (DL) domain. In
this domain, each seismic data set is represented by a parabolic dictionary and a set of sparse representations. For each data set, three different sparse
representations and their corresponding atoms are represented with frames of the same colour (yellow, blue and red). The display of the patch size
was increased for better visualization.

conventionally used because each plane wave component
maps to a particular coefficient in f–k space (Day et al., 2013).
In the f–k domain, Equations (8) and (9) can be rewritten as
follows in the following equations:

𝑃 up (𝜔, 𝑘𝑥
)
= 1

2

(
𝑃
(
𝜔, 𝑘𝑥

)
− 𝜌𝜔

𝑘𝑧
𝑉𝑧

(
𝜔, 𝑘𝑥

))
, (10)

𝑃 down (
𝜔, 𝑘𝑥

)
= 1

2

(
𝑃
(
𝜔, 𝑘𝑥

)
+ 𝜌𝜔

𝑘𝑧
𝑉𝑧

(
𝜔, 𝑘𝑥

))
, (11)

where 𝜔 is the angular frequency, 𝑘𝑥 is the horizontal angular
wavenumber and 𝑘𝑧 is the magnitude of the vertical angular
wavenumber. In the WSPDL method, we use the local kine-
matic parameters to correct for the obliquity scaling problem
in the velocity data set. Bortfeld (1989), Hubral et al. (1992)

and Zhang et al. (2001) relate the parameters of the parabolic
move out to the kinematics of the wavefield based on ray the-
ory assumptions. Ray theory assumes the travelling event to
be in the vicinity of a central ray that travelled in the subsur-
face, and smoothly changing amplitudes in the earth model
(Bortfeld, 1989; Ursin, 1982). For example in the common
shot domain, the slope 𝑠𝑘 of an atom 𝑘 can be linked to the
emergence angle 𝜃𝑘 of the trace at the reference position 𝑜ref𝑘 as
follows:

𝑠𝑘 =
sin 𝜃𝑘
𝑣

. (12)

From Equations (7) and (12), we can write:

𝐹𝑘 = 1
cos 𝜃𝑘

= 1√
1 −

(
𝑣𝑠𝑘

)2 . (13)
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F I G U R E 3 Illustration of the velocity dictionary atoms before (left) and after (right) the obliquity correction step, with close-up displays of
four different atoms.

In Equation (13), we have found the scaling factor 𝐹𝑘 that
must be applied to each atom 𝑘 of the velocity dictionary 𝐃𝑉𝑧to correct for obliquity scaling. However, the 𝐹𝑘 factor we
have found here is in fact related only to the trace located at
the reference position 𝑜ref𝑘 of an atom 𝑘. Given that the atoms
of our velocity dictionary contain several traces, we need to
find the obliquity correction factor 𝐹 𝑖

𝑘 related to each trace
𝑖 located at each of the positions 𝑜𝑖𝑘 and not only to the ref-
erence position 𝑜ref𝑘 . To do so, we consider the derivative of
the parabolic time move out function Δ𝐭 = 𝑠𝑘 Δ𝐨 + 𝑐𝑘Δ𝐨2.
The obliquity correction factor for each trace 𝑖 at a receiver
location 𝑜𝑖𝑘 in an atom 𝑘 can thus be written as

𝐹 𝑖
𝑘 = 1√

1 −
(
𝑣𝑠𝑖𝑘

)2 , where 𝑠
𝑖
𝑘 = 2𝑐𝑘

(
𝑜𝑖𝑘 − 𝑜ref𝑘

)
+ 𝑠𝑘.

(14)

Figure 3 shows the velocity dictionary 𝐃𝑉𝑧 on the left side
as represented earlier in Figure 2. The atoms of this dictio-
nary are characterized by a slope 𝑠𝑘 and a curvature 𝑐𝑘. Hence,
we can apply the obliquity correction factors 𝐹 𝑖

𝑘 to each trace
of each atom in the dictionary 𝐃𝑉𝑧 following Equation (14)
to obtain the corrected velocity dictionary 𝐃𝐶𝑉𝑧 represented
on the right-hand side of Figure 3. The figure also shows the
detail of four different atoms before and after applying the
obliquity correction. These four atoms displays show that for
each single trace, the higher the slope, the higher the angle of
incidence and thus the higher the obliquity correction factor
𝐹 𝑖
𝑘, which corresponds to the dependency relationship among

the obliquity correction factor, the slope and the angle of
incidence described in Equations (12)–(14). Moreover, Equa-
tion (14) shows that when dealing with high slopes values,
small errors in the approximation of the slope might lead to
big errors in the estimation of the obliquity correction factor.

Note that both dictionaries have the same set of sparse rep-
resentations. Multiplying these sparse representations by the
dictionary 𝐃𝐶𝑉𝑧 gives the reconstruction of the velocity data
set after correcting for obliquity scaling.

Wavefield separation
After scaling the atoms of the velocity dictionary by the dif-
ferent obliquity correction factors following Equation (14), we
end up with two parabolic dictionaries: the corrected velocity
and the pressure dictionaries denoted 𝐃𝐶𝑉𝑧 and 𝐃𝑃 , respec-
tively; and two sets of sparse representations denoted 𝐗𝑉𝑧 and
𝐗𝑃 . To allow the dual-sensor wavefield separation process in
the DL compressed domain, we need to express the up-going
pressure field data set in terms of one dictionary and one set
of sparse representations. Thus, we combine the two dictio-
naries 𝐃𝐶𝑉𝑧 and 𝐃𝑃 into a common up-going pressure field
dictionary of 2𝐾 atoms denoted 𝐃𝐏𝐮𝐩 ∈ R𝑁×2𝐾 such that

𝐃𝐏𝐮𝐩 =
[
𝐃𝐶𝑉𝑧 𝐃𝑃

]
=
[
𝐝𝐶𝑉𝑧
1 , … , 𝐝𝐶𝑉𝑧

𝐾 ,𝐝𝑃1 , … , 𝐝𝑃𝐾
]
,

(15)
where the first 𝐾 atoms belong to the corrected velocity
dictionary and the last 𝐾 atoms belong to the pressure
dictionary. We also combine the two sets of sparse representa-
tions 𝐗𝑉𝑧 ∈ R𝐾×𝐿 and 𝐗𝑃 ∈ R𝐾×𝐿 into a common up-going
pressure field set of sparse representations denoted 𝐗𝐏𝐮𝐩 ∈
R2𝐾×𝐿 such that

𝐗𝐏𝐮𝐩 =

[
−1

2 × 𝐗𝑉 𝑧
1
2 × 𝐗𝑃

]
=
[
𝐱𝐏𝐮𝐩1 , … , 𝐱𝐏𝐮𝐩𝐿

]
, (16)

where each sparse representation 𝐱𝐏𝐮𝐩𝑖 is a sparse vector con-
taining 2𝐾 coefficients. The rescaling of 𝐗𝑉 𝑧 by −1

2 and 𝐗𝑃
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by 1
2 is necessary following Equation (8). Now, each patch

of the up-going pressure field data set can be described as
a linear combination of the dictionary atoms stored in 𝐃𝐏𝐮𝐩,
where coefficients of each linear combination are stored in
𝐗𝐏𝐮𝐩. Hence, one can stay in the DL compressed domain and
further processing steps (if enabled) can directly be applied on
𝐗𝐏𝐮𝐩 and𝐃𝐏𝐮𝐩 before having to decompress or reconstruct the
data.

Data compression
Even though we are already in the DL compressed domain,
we further apply mathematical compression techniques com-
monly known as entropy coding techniques to 𝐃𝐏𝐮𝐩 and 𝐗𝐏𝐮𝐩
as described in detail by Faouzi Zizi and Turquais (2022).
The entropy techniques are applied in two main stages: the
quantization and coding stages. The quantization stage is the
process of mapping floating point sparse coefficients within
a range [a, b] into a finite set of output levels; that is the
discretization of a continuous amplitude scale. We adopt the
same approach as Faouzi Zizi and Turquais (2022) and rescale
the dynamic range of the sparse coefficients by multiplying
them by a defined scaling coefficient Sc, which is automati-
cally generated from the level of desired SRR and the norm of
the original data 𝐝orig2. Sc can be mathematically expressed
as follows:

Sc =
0.25 ×

√
𝑁𝑏

0.2 × 10−
(
SRR
20

)
× |||

|||𝐝orig
|||
|||2
, (17)

where 𝑁𝑏 refers to the total number of non-zero coefficients
in the sparse representations. In our method we do the same
for the set of sparse representations 𝐗𝐏𝐮𝐩. A fixed rescaling
factor Sc = 103 is also applied to all atoms of the dictionary
𝐃𝐏𝐮𝐩 because the dictionary atoms are normalized and do not
depend on the scale of the data. Then, we apply a rounding to
obtain integer values that can be coded using a small number
of bits. For the coding stage, the set of sparse representations
𝐗𝐏𝐮𝐩 is coded alongside the dictionary 𝐃𝐏𝐮𝐩 using a Huffman
coding scheme (Huffman, 1952). The coding stage is a loss-
less compression strategy that seeks to represent the data with
the lowest number of bits per symbol. More details on apply-
ing entropy coding techniques in the DL domain can be found
in Faouzi Zizi and Turquais (2022).

Data reconstruction
First, we apply the inverse operations of the quantization
and coding stages as described in detail by Faouzi Zizi and
Turquais (2022) to obtain the reconstructed �̂�𝐏𝐮𝐩and �̂�𝐏𝐮𝐩.

Then, we can easily reconstruct the total vertical particle
velocity, the total pressure, the up-going pressure or the
down-going pressure seismic shot gathers. For example: mul-
tiplying �̂�𝐏𝐮𝐩 and �̂�𝐏𝐮𝐩 will reconstruct the up-going pressure
seismic shot gathers; multiplying �̂�𝐏𝐮𝐩 and �̂�𝐏𝐮𝐩, after rescal-
ing the first 𝐾 coefficients of the sparse vectors in �̂�𝐏𝐮𝐩
denoted �̂�𝐏𝐮𝐩[1 ∶ 𝐾, ∶] by−1 following (16), will reconstruct
the down-going pressure seismic shot gathers; multiplying
the first 𝐾 atoms of �̂�𝐏𝐮𝐩 denoted �̂�𝐏𝐮𝐩[∶, 1 ∶ 𝐾] and the
first 𝐾 coefficients of the sparse vectors in �̂�𝐏𝐮𝐩 denoted
�̂�𝐏𝐮𝐩[1 ∶ 𝐾, ∶], after rescaling �̂�𝐏𝐮𝐩[1 ∶ 𝐾, ∶] by a fac-
tor of −2 following (16), would reconstruct the corrected
velocity seismic shot gathers; finally, multiplying the last
𝐾 atoms of �̂�𝐏𝐮𝐩 denoted �̂�𝐏𝐮𝐩[∶, 𝐾 + 1 ∶ 2𝐾] and the
last 𝐾 coefficients of the sparse vectors in �̂�𝐏𝐮𝐩 denoted
�̂�𝐏𝐮𝐩[𝐾 + 1 ∶ 2𝐾, ∶], after rescaling �̂�𝐏𝐮𝐩[𝐾 + 1 ∶ 2𝐾, ∶]
by a factor of 2, would reconstruct the pressure seismic shot
gathers. Figure 4 shows the reconstructed up-going pressure
sparse representation number 3 denoted �̂�𝐏𝐮𝐩3 , which cor-
responds to the combination of the velocity and pressure
sparse representations �̂�𝑉𝑧3 and �̂�𝑃3 , respectively, and the recon-
structed dictionary �̂�𝐏𝐮𝐩 corresponding to the combination of
the corrected velocity dictionary �̂�𝐶𝑉𝑧 and the pressure dic-
tionary �̂�𝑃 , respectively. Multiplying �̂�𝐏𝐮𝐩 and �̂�𝐏𝐮𝐩3 gives the
linear combination of atoms needed to reconstruct the up-
going pressure patch number 3. Note that, as only the 256 first
atoms of the 6000 atoms of each dictionary are displayed in
Figure 4, more atoms are in fact needed to obtain the final
up-going pressure field patch displayed in the figure.

DATA APPLICATION
Synthetic data

In this section, we will assess the capability of the PDL
method for wavefield separation (WSPDL) method to cor-
rect for velocity obliquity scaling and to reconstruct the
up- and down-going pressure fields. We have modelled a syn-
thetic data set, where we have access to the true result, and
compared our method to an optimized industry-standard FK
method (FK-WS).

The total pressure and total vertical particle velocity wave-
fields were modelled using acoustic finite difference mod-
elling for the 2D P-wave velocity model shown in Figure 5,
which comprises a 200 m thick water layer and five sedi-
mentary layers. The different layers have different boundary
dips and velocities to create dipping events with different
slopes. The density increases slightly with depth and goes
from 1.96 g∕cm3 in the first sedimentary layer to 2.11 g∕cm3

in the fifth and last one (Figure 5). In addition, diffracting
points have been added to create conflicting dips in the shot
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F I G U R E 4 Reconstruction of the up-going pressure patch 3 by multiplying the up-going pressure dictionary, which is a combination of the
corrected velocity and pressure dictionaries, and the up-going pressure sparse representation, which is a combination of the velocity and pressure
sparse representations.

F I G U R E 5 2D P-wave velocity model used to generate the
synthetic data example of 100 shots. Four diffracting points are
represented in the model at different depths with small oval shapes. The
depth of the source is 6 m, and the depth of the cable is 20 m, where the
receiver spread is fixed.

gathers which are challenging to reconstruct. The up-going
parts of the pressure and vertical particle velocity fields were
first modelled without free-surface effects. Then, the down-
going parts of the pressure and vertical particle velocity fields,
which are reflected at the sea surface, were modelled using
virtual receivers located in a mirror-image position relative to
the sea surface. Further, the direct arrival was also modelled
and subtracted from the four data sets. We then combined
the up- and down-going parts of the pressure and the up-
and down-going parts of the vertical particle velocity wave-
fields to simulate the total pressure and the total vertical
particle velocity measurements recorded by the hydrophones
and the geophones, respectively. Hence, we have produced
three data sets each of 100 shots: the input vertical particle
velocity and pressure measurements, and their corresponding

up-going pressure field which will be used as reference (true
result).

The modelled data sets were sampled at 2 ms in time
and 3.125 m in space. The depth of the source was 6 m,
and the depth of the receivers was 20 m. Source ghosts and
free-surface multiples were not modelled for the three data
sets of 100 shots. Moreover, the modelled data sets under-
went pre-processing, as shown in Figure 6, in preparation
for the application of the wavefield separation process using
the WSPDL and FK-WS methods. The performance of these
methods is then evaluated and compared. Here, we consider
three data sets: the recorded total vertical particle velocity,
the recorded total pressure and the reference up-going pres-
sure wavefield. First, we applied a 20 Hz low-cut filter to the
three data sets because low frequencies are handled by other
methods when dual-sensor wavefield separation is applied
to field data examples. For low-frequencies, typically below
20 Hz, there is no decomposition of the wavefield into up-
and down-going parts. Indeed, the velocity data are heavily
contaminated by noise at the lowest frequencies. Thus, this
problem is usually solved by the so-called low-frequency con-
ditioning, where the noisy low frequency velocity data are
reconstructed from the relatively clean pressure data (Day
et al., 2013). Then, we applied a dip filter to remove steeply
dipping events with apparent propagation velocities of less
than 1550 m/s. This was done to allow a fair comparison of the
WSPDL method and the industry-standard FK-WS method in
terms of wavefield separation performance. Indeed, a tapering
is generally applied at such dips in conventional FK-WS meth-
ods to avoid instability arising from the application of large,
rapidly varying obliquity scaling factors. Finally, we decimate
the data by a factor of 4 in the space dimension to obtain data
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F I G U R E 6 Pre-processing workflow for synthetic data before applying the dual-sensor wavefield separation process.

F I G U R E 7 One seismic shot gather of the 100 shot synthetic data example: (a) reference up-going pressure field; (b) total pressure measured
by the hydrophones and (c) total vertical particle velocity component measured by the geophones.

sets sampled at 12.5 m, normally employed for field data.
Figure 7 shows the same example shot gather for the three
data sets: the reference up-going pressure field (Figure 7a), the
input pressure (Figure 7b) and the input velocity (Figure 7c)
after the decimation step but before applying the dual-sensor
wavefield separation process (Figure 6).

After pre-processing the data sets, we apply the wavefield
separation process to the synthetic input pressure and veloc-
ity recordings and compare the resulting up-going wavefield
to the reference up-going wavefield. The wavefield sepa-
ration process was carried out using the WSPDL method,
then using the optimized industry-standard FK-WS method
without interpolation and a third time using the same FK-
WS method after interpolating the data to a 3.125 m spatial
sampling interval using an industry-standard interpolation
algorithm to handle the aliased events (Bekara & Robin,
2015). In real field data cases, the FK-WS method is used
after interpolation as the data are more commonly acquired
at 12.5 m. Figure 8 shows the residual difference between
the reference up-going pressure wavefield (Figure 8a) and the
combination of the input pressure (Figure 7b), and velocity
(Figure 7c) when: No obliquity scaling is applied (Figure 8b),

the industry-standard FK-WS method is used without inter-
polation (Figure 8c), the industry-standard FK-WS method is
used with interpolation (Figure 8d) and the WSPDL method
as described in the methodology section is used (Figure 8e).
Figure 9 shows the corresponding f–k spectra of the shot gath-
ers displayed in Figure 8. We compute the signal-to-residual
ratio (SRR) metric for the different methods following Equa-
tion (5), to assess the quality of the wavefield separation
results, with 𝐝orig being the reference up-going pressure field
(Figure 8a) and 𝐝rec the reconstructed up-going pressure
field after applying one of the wavefield separation meth-
ods. Figures 8b and 9b show visually the results obtained
in case an obliquity correction factor 𝐹 of 1 is employed
with Equation (8). In this case, we obtain a SRR value of
10.1 dB. If no interpolation is used prior to the industry-
standard FK-WS method (Figures 8c and 9c), the aliased
events are not well reconstructed and a SRR of 16.54 is
reached. However, when the same FK-WS method is used
after interpolation (Figures 8d and 9d) the residuals are neg-
ligible and a high level of SRR = 27.64 dB is reached.
From Figure 8e, we can clearly see that the WSPDL method
has also succeeded in reconstructing the up-going pressure
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F I G U R E 8 Wavefield separation results for the shot gather represented in Figure 7: (a) reference up-going pressure field; (b) residuals when no
obliquity scaling is applied; (c) residuals after applying the FK-WS method without interpolation; (d) residuals after applying the FK-WS method
with interpolation and (e) residuals after applying our WSPDL method.

field well and reaches a high level of SRR = 24.43 dB, and
with only weak residuals associated with very high ampli-
tude events. Thus, although the industry-standard FK-WS
method (Figures 8d and 9d) achieves slightly better results
when interpolation is included compared to the WSPDL
method (Figures 8e and 9e), both methods achieve high qual-
ity wavefield separations. Moreover, our method has shown
its effectiveness in reconstructing aliased events without the
need for interpolation. That is because parabolic dictionary
learning (PDL) reconstructs aliased events under its own set of
assumptions, namely sparsity and parabolic constraint. Under
these assumptions, PDL has shown the ability to provide bet-
ter interpolation results compared to a standard FK-based
interpolation method (Turquais et al., 2019). In addition, our
method has accomplished the dual-sensor wavefield sepa-

ration process in the dictionary learning (DL) compressed
domain with CR = 13.13, that is the data used to recon-
struct the up-going pressure field are 13 times smaller than
the input velocity and pressure data sets. The reconstruction
results obtained using the different methods are summarized
in Table 1. In this synthetic data example, we have in fact
compressed the input velocity and pressure data sets and
then reconstructed them prior to using both FK-WS meth-
ods (with and without interpolation). This procedure was
chosen to ensure that the data input to the FK-WS meth-
ods include any errors introduced by the compression step,
thereby permitting a fair assessment of the effectiveness of
the WSPDL method to correct for the obliquity scaling prob-
lem itself. The WSPDL method compresses the data and
corrects for the obliquity scaling problem simultaneously in
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F I G U R E 9 The f–k spectra of the wavefield separation results represented in Figure 8: (a) reference up-going pressure field; (b) residuals if no
obliquity correction is applied; (c) residuals after applying the FK-WS method without interpolation; (d) residuals after applying the FK-WS method
with interpolation and (e) residuals after applying our WSPDL method.

the compressed domain. Hence, it is not possible to apply
the wavefield separation process without compressing the
data when using WSPDL. If no compression and recon-
struction are applied to the input velocity and pressure data
sets, the results of the optimized industry-standard FK-WS
method when used with interpolation reach a SRR level of
34.02 dB, and when no interpolation is used it reaches a
level of SRR = 16.79 dB. The computational costs of the
FK-WS method with interpolation and the WSPDL are com-
parable. However, when using WSPDL, the compression is
the most expensive part, whereas the reconstruction is very
efficient and fast as it requires only matrix multiplications
as described earlier in the methodology section. This means
that once the data are in the compressed domain, one can
also reconstruct the down-going pressure field, the pressure

or the corrected vertical particle velocity with almost no extra
cost.

Field data
We now consider a more realistic field data set that con-
sists of 3320 shots comprising a full 2D sail-line of marine
seismic acquisition. The data were acquired in the ‘Nord-
land ridge’ area offshore Norway with a time sampling of
2 ms and a spatial sampling of 12.5 m. The number of
time samples (𝑁𝑡) and the number of channels (𝑁𝑥) are
𝑁𝑡 = 2050 and 𝑁𝑥 = 647, respectively. For every shot,
both the total pressure and the total vertical particle veloc-
ity were recorded. Both data recordings were pre-processed
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F I G U R E 1 0 Different pre-processing steps before applying the dual-sensor wavefield separation to the field data example of 3320 shots.

T A B L E 1 Comparison of the different wavefield separation
methods in terms of signal-to-residual ratio (SRR), ability to
reconstruct aliased data parts (+) or not (−), and compression ratio
based on the synthetic data example

Method WSPDL Interpolation+FK FK
SRR (dB) 24.43 27.64 16.54
Aliasing + + −
CR 13.13 0.25 1
Note: We remind that compression/decompression is applied to the input data
sets of all three methods to allow a fair comparison of the wavefield separation
performance.
Abbreviations: CR, compression rate, SRR, signal-to-residual ratio.

before applying the dual-sensor wavefield separation process
(Figure 10). Later, we will describe in detail the different steps
of the pre-processing sequence. The purpose of the test is to
assess the effectiveness of WSPDL when applied to field data.
This is done by comparing its performance to the optimized
industry-standard FK-WS method with interpolation, as this
approach has been shown to provide high quality results in
the synthetic data example. However, for the field data we
do not have access to the true result. Moreover, we do not
apply any compression to the input velocity and pressure field
data sets prior to using the FK-WS method. This means that
the combined effects of compression and wavefield separation
are included in the quantitative assessment of the differences
between the results of both methods. Furthermore, the shot
gathers will be pre-stack migrated to assess the differences
between both methods in the image domain.

Figure 10 shows the pre-processing steps applied to the
input velocity and pressure data sets. First, a low-cut filter
is applied to remove frequencies below 20 Hz for the same
reason previously mentioned in the synthetic data example.
Then, a k-filter or spatial matching filter is applied to match
the responses of the geophones and hydrophones groups. This
process is required because the distributions of individual
sensors in the hydrophones and geophones groups are not
identical. We then remove the direct arrival and apply a dip fil-
ter to remove steep events with apparent velocities less than
1550 m/s and limit our comparison to the signal cone as in
the synthetic data example. Finally, the wavefield separation
process is applied, once using the FK-WS method after inter-
polating the data to 6.25 m spatial sampling as generally done
in production, and the second time using the WSPDL method.
The two up-going pressure field data sets obtained are then

compared. Here, we apply the same parameters described in
the methodology section when using the WSPDL method. In
fact, we developed our algorithm such that each group of 200
shots are processed independently. Hence, for each group of
200 shots, 2 dictionaries of 6000 atoms will be learned, one for
the velocity and one for the pressure data sets, then both will
be combined into one dictionary of 12,000 atoms. However,
when the total number of shots cannot be divided by 200, the
algorithm will automatically find the closest number to 200
that will make this division possible. For example in our case
we deal with 3320 shots; therefore, groups of 208 shots will
be processed independently, whereas the last set will comprise
exactly 200 shots. The choice of 200 shots was found to be a
good compromise between the accuracy of reconstruction and
the sparsity level. Indeed, applying the same parameters pre-
viously used on a 100 shots data set to a 200 shot data set will
lead to a higher level of sparsity and thus a higher compression
rate (CR) as 12,000 atoms will now be used to reconstruct 200
shot gathers and not only 100. However, a very high number
of shot gathers processed at the same time might lead to insuf-
ficient number of atoms to reconstruct the data with the high
level of reconstruction SRR = 30 dB imposed earlier in the
methodology section. Our aim is to develop a method which
is transferable to different data sets without changing the DL
parameters.

Figure 11 shows one shot gather of the resulting up-
going pressure field after applying the wavefield separation
process using both methods: the industry-standard FK-WS
method (Figure 11a) and the WSPDL method (Figure 11b),
respectively. Figure 11c shows the difference between the
two shot gathers. The f–k spectra of Figure 11a,c are dis-
played in Figure 11d,f, respectively. The small differences
between both methods are primarily due to locally strong
amplitudes at near offsets. Indeed, this is a very challeng-
ing part of the data set for both methods where a rapid
change of amplitudes occurs in both space and time. Here,
the FK-WS method suffers from the truncation effect at zero
offset, whereas the WSPDL method is based on the ray the-
ory which assumes smoothly changing amplitudes along the
travel time move outs (Bortfeld, 1989; Ursin, 1982). More-
over, in Figure 11f, we see that such differences are primarily
concentrated at high frequencies (around 160 Hz), whereas
the differences at the low frequencies (lower than 60 Hz)
and low wavenumbers are relatively weak compared to the
high energy of the primary even if it is significant relatively
to the rest of the energy displayed in the f–k spectrum of
the differences (Figure 11d–f). From Figure 11d,e, we note
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F I G U R E 1 1 Dual-sensor wavefield separation results for one shot gather of the field data example: (a) up-going pressure field after applying
the FK-WS method with interpolation; (b) up-going pressure field after applying the WSPDL method; (c) differences between (a) and (b) and (d–f)
the f–k spectra of (a–c), respectively.

that the WSPDL method reconstructs the high frequency
events around 160 Hz with more energy than the FK-WS
method. Hence, such differences are most likely not due to
the compression effects, but higher values of the obliquity
correction factor 𝐹 applied to the velocity data for such dip-
ping events in case of WSPDL. We recall that we spatially
interpolate the data with a factor of 2 when the industry-
standard FK-WS method is applied, and that we have already
demonstrated the ability of the WSPDL method to work
beyond aliasing in the synthetic data example. Therefore, it
is reasonable to observe higher amplitudes on highly dip-
ping events when using the WSPDL at frequencies higher
than 120 Hz which is the frequency limit beyond which spa-
tial aliasing will adversely affect the output of the FK-WS
method for spatial sampling of 6.25 m. However, the FK-

WS method does not show specific problems above 120 Hz
on the synthetic data example, because the synthetic data
are sparse in frequency, which makes it easy for frequency-
based interpolation methods such as the industry-standard
interpolation algorithm (Bekara & Robin, 2015) used here,
to reconstruct clean aliased events (Figure 9d) compared to
the real data case. Note that the WSPDL method has recon-
structed the up-going pressure field in the compressed domain
with CR = 15.81.

After comparing the results of both wavefield separation
methods on seismic shot gathers, we will now pre-stack
migrate the resulting up-going pressure field data set of 3320
shots comprising a full sail-line of marine seismic acquisi-
tion. We applied a simple seismic processing workflow with
main steps as summarized in Figure 12. This workflow does
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F I G U R E 1 2 Main steps of the seismic processing workflow to generate a 2D line image after applying the dual-sensor wavefield separation
process using the FK and the WSPDL methods.

F I G U R E 1 3 (a) 2D seismic image after applying the FK-WS
method; (b) 2D seismic image after applying the WSPDL method and
(c) difference between (a) and (b).

not replicate a full commercial processing but is sufficient
to assess the impact of both wavefield separation methods
on a 2D seismic image. Figure 13 shows the part of the
2D seismic image, where most dipping events occur. Here,
the focus is on the shallow part as the deep part is heav-
ily contaminated by noise. Visually, it is hard to discern any
differences between Figure 13a,b, representing the 2D seis-
mic images after applying the industry-standard FK and the
WSPDL methods, respectively. The differences between both
reconstructions are displayed in Figure 13c and are mainly
located close to the water bottom reflector, where amplitudes

are very strong. Hence, we can conclude that the two meth-
ods provide very similar results. However, in case of WSPDL,
a compression factor of almost 16 is obtained and aliased
energy is handled without the need for explicit interpolation.
In order to confirm the visual results, we perform an amplitude
spectrum analysis of the 2D seismic images, and their differ-
ences. Figure 14 shows the cumulative amplitude spectra of
the images in Figure 13a–c, denoted in blue, green and red,
respectively. This figure shows that the spectrum of the dif-
ferences between both images, which is 10 dB to 30 dB below
signal (in red), is relatively flat and has a dissimilar shape to
that of the 2D seismic sections. The spectra of the images
formed from the two up-going pressure fields (in green and
blue) are very similar especially below 125 Hz. This analysis
confirms that the FK and WSPDL methods provide very simi-
lar results. Moreover, we do not observe any significant loss of
energy due to the compression effect when we use the WSPDL
method knowing that the resulting image was reconstructed
from data almost 16 times smaller in size than the original
data used for the FK-WS method. That is because we have
targeted a high level of reconstruction of SRR = 30 dB for the
input velocity and pressure data sets. We further observe that
the WSPDL method recovers events between 120 and 200 Hz
with higher energy than the FK-WS method. However, this
does not mean that one method is more correct than the other.
Indeed, the water bottom differences are located at these fre-
quencies which is in accordance with the analysis of the shot
gathers results shown in Figure 11.

DISCUSSION

Compression sensitivity analysis

Although we have already discussed our choices for the dif-
ferent dictionary learning (DL) parameters, we should still
discuss the compression impact on the wavefield separation
results when using the PDL method for wavefield separa-
tion (WSPDL) method. Indeed, a high input signal-to-residual
ratio (SRR) level of 30 dB has been imposed as a target to
allow an accurate reconstruction of the input velocity and
pressure data sets after compression. Such an input SRR level
(that we will denote SRRin) has allowed a good reconstruc-
tion of the up-going pressure field for both the synthetic data
example where the SRR after wavefield separation (that we
will denote SRRWS) reached a high level of 24.43 dB with
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F I G U R E 1 4 Amplitude spectrum analysis of the 2D seismic images represented in Figure 13.

F I G U R E 1 5 Impact of different input signal-to-residual levels
(SRRin) on the compression ratio (CR) and the wavefield separation
reconstruction levels (SRRWS). The red cross on the graphs
corresponds to the case reported in Table 1, where SRRin = 30 dB.

compression rate (CR) = 13.13 and the field data example
where a 2D line section was reconstructed with insignificant
energy loss while reaching a CR of almost 16. Acknowledg-
ing that as we increase the SRRin, we decrease the CR, we
introduce a simple experiment in which the WSPDL method
is tested with different values of SRRin. We then observe
how the CR level impacts the wavefield separation results via
the SRRWS employing the 100 shot synthetic data set. The
graphs displayed in Figure 15 show that the WSPDL method
is stable as the CR level is decreasing when the SRRin is
increasing as expected. We also observe from the same figure
that the SRRWS level becomes relatively stable (between 24
and 25 dB) when SRRin is higher than 30 dB, which shows

the reconstruction limits of our method. Indeed, targeting a
higher level of SRRin = 36.5 dB in our method could lead
to a slightly better SRRWS level (Figure 15), but the CR level
would drop from 13.13 to 6.35. In Figure 16 we display four
different up-going pressure field reconstructions given differ-
ent SRRin levels. Here, we observe good performance in terms
of up-going pressure field reconstructions when CR = 6.35
and CR = 13.13 (Figure 16a,b,e,f) and one can hardly see
any differences between those reconstructions. When CR is
around 26 (Figure 16c,g), few low amplitude events are not
well reconstructed, and residuals are uniformly distributed
along the different events below the first reflection. However,
even when reaching such a high CR level the visual quality of
the reconstruction is still acceptable. In Figure 16d,h, a high
level of CR = 43.36 is reached, and many events are not well
reconstructed. These displays validate our choice of targeting
a high SRRin level of 30 dB, as it allows to reach both high
SRRWS and CR levels.

Future work
In the synthetic data and field data subsections, we have
applied the same pre-processing steps (Figures 6 and 10) to
input data sets before applying the WSPDL or the optimized
industry-standard FK-WS method. Indeed, this paper focuses
only on enabling the dual-sensor wavefield separation pro-
cess in the DL compressed domain. Thus, it is important
to apply the same pre-processing steps before applying both
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F I G U R E 1 6 Compression effect on the 2D synthetic up-going pressure field reconstruction results: (a–d) up-going pressure field
reconstructions after applying the WSPDL method with different compression levels and (e–h) the residuals corresponding to (a–d) after subtracting
the reference up-going pressure field.

methods to allow a fair comparison in terms of wavefield
separation performance. However, some of these steps are
more suited for FK-WS methods as they already include
a transformation in the FK domain. Hence, future work
can focus on enabling pre-processing or other processing
steps in the DL compressed domain to avoid going back
and forth between different processing domains. For exam-
ple the dip filter does not necessarily need to be applied
before the WSPDL method here. This was applied in syn-
thetic and field data examples to fairly compare the impact
of both methods on the signal cone as tapering is gener-
ally applied in conventional FK-WS methods as mentioned
in the data application section. In practice, a taper can also
be applied after reconstructing the data with the WSPDL
method or a dip filter can directly be applied at the atoms
level using the kinematic parameters. Another example is the
k-filter that was not needed to compare both methods but
was applied in the real data example to simulate a real data
case where the responses of the geophones and hydrophones
groups need to be matched. Consequently, enabling such
a filter in the DL compressed domain can be very conve-
nient. Moreover, the low-cut filter was applied because low
frequency velocity data are generally reconstructed from the
relatively clean pressure data (Day et al., 2013), as mentioned

earlier in the data application section. Therefore, one can also
investigate the possibility of using the low frequencies pres-
sure data to reconstruct the low frequencies up-going pressure
field directly in the DL compressed domain.

In this paper, we have learned the dictionaries 𝐃𝑉𝑧and
𝐃𝑃 independently. This was enough to achieve good recon-
struction of the up-going pressure field while reaching a
high level of compression. Instead, one could use a joint DL
method (Wang et al., 2022) where the same kinematic param-
eters are imposed to the atoms of both dictionaries. Such an
approach may lead to better approximations of the obliquity
correction factors, as the total pressure data will also be used
in the estimation of the kinematic parameters. Furthermore,
the scope of this paper focuses on applying WSPDL in the
2D case. The extension to the 3D data case can be done by
learning 3D atoms which would enable the reconstruction of
the 3D wavefield. 3D atoms would be characterized by five
parameters instead of only two in the 2D case, namely two
slopes, two curvatures and a mixed travel time parameter cor-
relating both directions (in-line and crossline). In the common
reflection surface approach, Hoecht et al. (2009) estimated
these parameters to achieve 3D interpolation. Similarly, such
parameters can be learned using WSPDL. Alternatively, one
can adopt a pseudo-3D approach where 2D dictionaries
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will be learned independently in the in-line and crossline
directions. Such an approach would be computationally
cheaper than learning 3D atoms but might lead to less accu-
rate results as correlations between the in-line and crossline
directions will not be used in the estimation of the kinematic
parameters. In this case, one should still think about meth-
ods to correlate the in-line and crossline dictionaries such as
joint DL methods (Wang et al., 2022). Moreover, the paper
focuses also on the dual-sensor towed streamer acquisition
(or two-components streamer data acquisition), where: One
hydrophone and one geophone are used to record the total
pressure and the total particle velocity motion, respectively.
Hence, other acquisition settings do exist such as the 3C
streamer data acquisition, where two geophones or accelerom-
eters record the particle velocity field in the vertical and
the cross-cable directions. However, the horizontal compo-
nent is heavily contaminated by noise in the in-line direction.
The 3C acquisition setting would theoretically provide the
crossline component of the particle velocity measurement
without the need to learn kinematic parameters in the crossline
direction (Vassallo et al., 2014). Such information can be com-
bined with the kinematic parameters estimated in the in-line
direction via WSPDL to allow a better approximation of the
reconstructed wavefield.

CONCLUSION

In this work, we have successfully demonstrated a novel
method that enables dual-sensor wavefield separation in a
compressed domain using a parabolic dictionary learning
(PDL) algorithm. The method (WSPDL) uses PDL to trans-
form input data sets, namely the total pressure and the total
vertical particle velocity measurements, to a compressed
domain composed of two main parts: a dictionary of parabolic
atoms and a set of sparse coefficients. The atoms of the dic-
tionary are characterized by kinematic parameters such as the
slope and the curvature, which are used to correct for veloc-
ity obliquity scaling directly in the compressed domain, and
thus allow to successfully separate the up- and down-going
parts of the pressure wavefield. We have tested and validated
the performance of our method by quantifying the accuracy
of the up-going pressure field reconstruction using the signal-
to-residual ratio metric based on a 100 shot synthetic data
example, where we have access to the true result. Moreover,
we observe similar wavefield separation performance when
compared to an optimized industry-standard FK-WS method
based on both synthetic and field data examples. Hence, we
have observed only small differences between the two meth-
ods after 2D line pre-stack migration. Moreover, the WSPDL
method is robust with respect to spatial aliasing without the
need for data preconditioning such as interpolation and comes
with the advantage of a data compression rate higher than

15. Such a method could allow full bandwidth data transfer
from vessels to onshore processing centres as it reaches sig-
nificant compression levels. The transmitted compressed data
can be used to reconstruct not only the input data sets recorded
by the hydrophones and the geophones, but also the up- and
down-going parts of the wavefield without the need to run the
conventional dual-sensor wavefield separation process as this
reconstruction requires only a simple matrix multiplication.

In this paper, we have succeeded in applying one seismic
processing step, namely the dual-senor wavefield separation,
in the dictionary learning compressed domain using kine-
matic parameters. Enabling other seismic processing steps
in the compressed domain using these kinematic parameters
would provide a novel and efficient workflow to simulta-
neously compress and partly or fully process seismic data
sets.
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