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Popular Abstract 

Accurate estimation of standard errors is key to making correct inferences and comparisons. For 

correct and precise estimates, smaller values of standard errors are desired otherwise this could 

lead to unjustified certainty. When Laplace approximations are used it is unclear which standard 

error procedures should be used to get robust and precise standard errors.  This study compares 

the different standard error estimators suitable with Laplace approximations through a Monte-

Carlo simulation. The study sought to evaluate the standard error procedures in terms of 

accuracy, precision and computations efficiency as well as investigate the average coverage rate 

of the 95% confidence interval. The results showed that of all the five procedures investigated, 

using the first order Laplace produced biased estimates whereas second order Laplace produced 

more precise and accurate estimates.  The findings add knowledge to the literature on standard 

error estimators using Laplace approximations. 
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Abstract 

This research was conducted to address the paucity of comparative studies on different methods 

for estimating standard errors with Laplace approximated maximum likelihood in 

multidimensional item response theory models. We considered standard errors associated with  

the observed information matrix, a fast version of the observed information matrix and the 

empirical cross product matrix, along with the Sandwich estimators derived from the observed 

information matrix and the fast observed information matrix. This study compares the accuracy, 

precision, computational efficiency and the average coverage rate of the 95% confidence interval 

of the different standard error methods. A Monte-Carlo simulation was conducted to investigate 

the effect of samples size, test length, number of categories and model complexity. The 

simulation was based on a fully crossed design with two test lengths (4/8),  three sample sizes 

(250/1,000/4,000),  two  model types (independent cluster and cross-loadings),  and 2/5 number 

of categories (binary response and polytomous ) resulting in 24 data generating conditions which 

all used a three-dimensional latent variable vector. The  standard error estimators were evaluated 

in terms of accuracy, precision and computation efficiency using the coverage rates of the 95% 

confidence intervals, average root mean squared and the average absolute bias.  In terms of 

average absolute bias, and average root mean squared error no method was found unacceptable, 

they all had close to zero values. The empirical cross product matrix was found to be more 

computationally efficient compared to other methods. In relation to 95% confidence interval, the 

average coverage rate for methods using first order Laplace were lower than the nominal level 

hence biased and imprecise estimates across all conditions. Standard error methods estimated 

using second order Laplace produced precise and accurate estimates with the correct coverage 

rates. This study adds knowledge to the literature on standard error estimators with Laplace 

approximations.  

 

 

Key words: Standard Errors, Laplace approximations, Multidimensional Item Response Theory, 

Confidence Intervals.  
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Comparing Standard Error Estimators Using Laplace Approximated Maximum 

Likelihood in Multidimensional Item Response Theory Models 

The standard error (SE) of a statistic is the standard deviation of the sampling distribution 

of the estimator and is used as a measure of the degree of precision of the statistic (Vogt, 2022). 

SE of zero means that the statistic has no random error, whereas a large SE implies an unreliable 

statistic. There is not a statistical model that is a perfect reflection of the data it summarizes, but 

a simplification with beneficial characteristics (Wainer & Thissen, 1987). In statistical modelling 

SEs help capture this imperfection and can in addition be used to construct confidence intervals 

and carry out statistical significance tests.  In the context of item response theory (IRT), SEs are 

an indication of the degree of precision with which item parameters are estimated (Thissen & 

Wainer, 1982). One method used to construct a 95% confidence interval (CI) for a parameter is 

to compute symmetric interval based standard normal quantiles and the estimated standard error 

for the parameter (Hays, 1988). Then we can say that a 95% C.I. (a; b) for a parameter θ means 

that the parameter θ is covered by such an interval 95% of the time if the sampling would be 

repeated infinitely (Hoekstra et al., 2014). Therefore, smaller SE values are preferred because the 

smaller the SEs the greater the precision in our estimated parameters (Vogt, 2022).  

Item response theory or generalized linear latent variable models usually use marginal 

maximum likelihood estimation to estimate latent variables (Andersson et al., 2023). The 

challenge with most IRT models is that the integrals are not tractable analytically and must be 

approximated when using maximum likelihood. When dealing with models with one or two 

latent variables, Gauss-Hermite quadrature approximations (Bock & Aitkin, 1981), are highly 

effective, however their efficiency rapidly declines when working with models with more latent 

variables(Andersson et al., 2023).  Among other suggested solutions in IRT literature, are two 
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estimation approaches used in this study i.e., the first order Laplace and the second order 

Laplace. We focused on these two estimation approaches since many of the SE methods work 

only with Laplace approximations and have not been implemented in other programming 

software’s except the Lamle package. Andersson et al. (2023) developed an estimation procedure 

that uses the second order Laplace approximation to the marginal loglikelihood function 

estimations of generalized linear latent variable models using binary or and polytomous data. An 

important feature of the developed algorithm especially for the current study is that it supports 

several multidimensional IRT structures.  

Considering the crucial role of SEs in IRT model parameters and the paucity of studies 

examining SE procedures in IRT there is a need for more comprehensive studies to investigate 

the performance of SEs. Hence, one may be interested in carefully investigating the assessment 

of the various procedures of generating SEs in IRT. Some previous studies have been conducted, 

however some of the earlier studies focused on unidimensional IRT models using dichotomous 

data with few studies on multidimensional IRT models using polytomous data (Monroe, 2019; 

Paek & Cai, 2014; Yuan et al., 2014).  

The current study differs from earlier studies by considering multi-dimensional IRT with 

dichotomous and polytomous data. The study centers on the direct comparisons of SEs from five 

different approaches using maximum likelihood estimates (MLEs) with Laplace approximation 

in higher dimensional IRT. It complements a recent study by (Andersson et al., 2023) by 

providing a comprehensive evaluation on the differences and similarities in performance of SEs 

and confidence intervals in higher order IRT models using Laplace approximations.     

In IRT literature, there are several SE approaches available, and all have different 

computational demands associated with them. For instance, the expected Fisher information 
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matrix is considered the gold standard in estimating the error covariance matrix. However, it has 

a major drawback in that it imposes a heavy computational burden for many realistic test lengths 

(Paek & Cai, 2014).  This emanates from the fact that its calculation requires the expectation be 

taken over all possible response patterns. Since the differentiation methods for approximating the 

expected Fisher information matrix increases exponentially as the number of items increases this 

renders the expected Fisher information matrix practically infeasible in the case of large number 

of items and many categories (Paek & Cai, 2014). On the other hand, the number of items and 

the differentiation methods of estimating the observed information matrix have a linear 

relationship suggesting that the observed information matrix is a more practical approach for 

item analysis in education and psychological settings.  For instance, the empirical cross product 

information matrix is an example of an observed information matrix that only contains the 

response patterns to the data and is much simpler to calculate (Lin, 2018). 

For this study, we considered SEs associated with  the Observed information matrix(M1), 

a fast version of the observed information matrix (M2) and the Empirical cross product matrix 

(M3), along with the Sandwich estimators derived from M1 and M2 herein called the Sandwich 

estimator from the observed information matrix (M4) and the Sandwich estimator from the fast 

observed information matrix (M5). These were considered because they are suitable with 

Laplace approximations and are implemented in available software for the models considered in 

this study. M1 and M2 are obtained through numerical differentiation of the observed gradient 

with respect to the unknown parameters. In the study by Andersson and Xin (2021), it was found 

that using standard errors based on M1 yielded accurate results for independent-cluster models as 

long as they were specified correctly. In additional research, Andersson et al. (2023), showed 

that this approach is also suitable for cross-loading models. To obtain this approximation, an 
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objective function is defined using the unknown parameters as a vector-valued input argument. 

This function then computes and returns the exact observed gradient of the approximated log-

likelihood by updating the mode for each response pattern based on the input parameters before 

computing the gradient. This approach provides an estimation of the second derivatives of the 

approximated log-likelihood. The numerical differentiation of M1 includes updating the mode, 

whereas M2 does not. This makes M2 computationally efficient compared to M1. Since this 

study is about the comparison of the different SE procedures, we omit the mathematical details 

for the different methods and instead refer to the existing literature for the mathematical details 

(Andersson et al., 2023).  

The importance of this study is twofold. First, it adds to knowledge to the literature on the 

performance of SEs estimated from different information matrices. Second, knowledge on the 

performance of SEs or error covariance matrices is important in informing the selection of Wald 

test statistics for differential item functioning, model selection at the item level, overall 

goodness-of-fit statistics, test scoring accounting for uncertainty in item parameter calibration 

and the calculation of approximate confidence intervals for item parameters. (Cai & Hansen, 

2013; Li & Wang, 2015; Liu et al., 2019, 2019; Ma et al., 2016; Maydeu-Olivares & Joe, 2005).  

Specifically, the study sought to answer the following research questions.  

1. When using Laplace approximations, how do the above SE methods compare 

across different varying conditions (i.e., sample sizes, test length, number of 

categories and model complexities) in terms of computational efficiency, 

accuracy, and precision? 

2. In practice, which estimator of SEs should be used for estimators based on 

Laplace approximations? 



 9 

 

3. What is the empirical coverage rate of 95% confidence intervals when using the 

different methods for computing the standard errors? 

The rest of this article is structured as follows. In the next subsections, there will be a 

brief background provided on multidimensional models for dichotomous and polytomous data, 

previous studies on SEs in IRT, the importance of SEs in IRT, and methods of estimating SEs in 

IRT. Following this, the methodology section will provide an account of the proposed research 

methods and feasibility, as well as the evaluation criterion for standard errors and confidence 

intervals. Lastly, the results will be reported and discussed. 

Key Concepts Associated with SEs in IRT  

Multidimensional Models for Dichotomous and Polytomous Data 

Multidimensional IRT (MIRT) is an extension of the unidimensional IRT models that 

were developed to portray an individual’s likelihood of a correct response based on item 

parameters and multiple latent traits (Reckase & Reckase, 2009).  MIRT models are classified 

into two categories called compensatory and non-compensatory models (Bonifay, 2020). To 

illustrate the difference between the two types, assume a test of the two dimensions algebra and 

arithmetic proficiency. If in solving a mathematical problem the higher level trait say of algebra 

proficiency compensates for the low level of arithmetic proficiency, then we have a 

compensatory model.  On the other hand, non-compensatory models restrict an examinee’s 

standing across the multidimensional space such that an examinee’s proficiency on one latent 

trait does not compensate for the lack in another latent trait needed for correctly endorsing an 

item.  The current study focuses on compensatory models since they are more common within 

IRT literature (Immekus et al., 2019).  

MIRT models can be applied to binary data as well as polytomous data. MIRT models for 

binary data include the multidimensional two parameter logistic model (2PL) and the 
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multidimensional three parameter logistic model (3PL). Polytomous MIRT models include the 

multidimensional graded response model (GRM), the multidimensional generalized partial credit 

model (GPCM) and many more. As mentioned earlier, a distinguishing feature in this study is 

the use of dichotomous and polytomous data. This had a direct implication on the choice of the 

IRT models. The 2PL model was chosen because it is suitable for estimating IRT models with 

binary data, whereas the GRM model was chosen because it is suitable for estimating IRT 

models with polytomous data (Zanon et al., 2016).   

Previous Studies on Standard Errors  

There have been various studies on SEs in the past, motivated by the recognition of the 

importance of SEs of IRT model parameters. Tsutakawa (1984) investigated the EM algorithm 

used to derive maximum likelihood (ML) and provided details on obtaining SEs using the 

observed information matrix. Yuan et al. (2014) studied information matrices and SEs for ML 

estimates of IRT model parameters and showed that SEs from the observed information matrix 

are robust, but not under all conditions. For instance, if the model is not correctly specified, only 

the sandwich estimator gives consistent SEs. Paek & Cai (2014) conducted a study on the 

comparison of SEs for IRT models based on three covariance matrices i.e., Fisher information, 

empirical cross-product, and supplemental expectation maximization. The results of their study 

show that all three methods give similar results in relation to the bias in the SEs. Andersson & 

Xin (2021) in their study, used the second-order Laplace with maximum likelihood and showed 

that the cross-product matrix and the observed information matrix produce SEs that are 

approximately equally accurate.  

As mentioned earlier, intractable integrals pose a challenge to marginal maximum 

likelihood estimation and some suggested solutions in the literature include Gauss-Hermite 

quadrature (Bock & Aitkin, 1981) and adaptive Gauss-Hermite quadrature (Cagnone & Monari, 
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2013; Schilling & Bock, 2005); however, these are only efficient with a few latent variables and 

quickly decrease in efficiency with higher dimensions. Other suggested solutions include 

simulation-based approaches like a Monte-Carlo and the Metropolis-Hastings Robbins-Monro 

method (Cai, 2010), but these are slow to converge in the case of small sample sizes (Andersson 

et al., 2023).  

Another solution is to use the first-order and the second-order Laplace approximations 

(Andersson & Xin, 2021; Huber et al., 2004; Joe, 2008). In IRT, the Laplace approximation is a 

method for estimating the item parameters (such as item difficulty and discrimination) to obtain 

approximate MLEs. The first-order Laplace (Lap1) approximation uses an asymptotic expansion 

to approximate the required integrals and is equivalent to the adaptive quadrature with only one 

quadrature point per dimension. Since the computational demand of Lap1 increases linearly with 

increasing dimensionality it is considered an efficient method in estimating high dimensional 

models (Andersson & Xin, 2021). However, inaccuracy of approximation is a problem, 

especially when there are few observed variables per dimension and for dichotomous observed 

variables (Joe, 2008). Higher order Laplace approximations such as the second order Laplace 

(Lap2) have been proposed to improve computational accuracy (Shun, 1997). Both Lap1 and 

Lap2 approximations can be implemented using software packages such as R or Mplus. 

However, it should be noted that the accuracy of the estimates may depend on the sample size, 

the number of response options, and the distribution of the latent trait. 

Some types of IRT models (Rasch-like models for binary and ordinal data) fit within 

what is called generalized linear mixed models/generalized linear random effects models. Two 

such approaches have used 2nd-order Laplace approximations. For instance, Noh and Lee (2007) 

proposed a statistically and computationally efficient restricted maximum likelihood (REML) 
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procedure for the analysis of dichotomous data and showed how the REML can be modified to 

be applied over a wide class of models and design structures. Similarly, Raudenbush et al. 

(2000), in recognizing the challenge in computing integrals without an explicit solution for the 

marginal maximum likelihood, proposed a solution that applies to generalized linear models with 

nested random effects. Their strategy involved the approximation of the log of the integrand via 

its fully multivariate Taylor expansion of higher order and integration approach using Laplace 

method. Their results showed that the higher-order Laplace approach is remarkably accurate and 

computationally fast (Raudenbush et al., 2000). However, these two papers do not specifically 

discuss how to estimate standard errors. 

Importance of Standard Errors In IRT 

The advancement of IRT has made models popular and applications of IRT are common 

in practical testing. Some areas where IRT models are applied include test equating, test design, 

and evaluation of measurement invariance (De Ayala, 1995). Standard errors are measures of  

precision for an estimate and are inversely related to the sample size, with smaller samples 

having larger standard errors and larger samples having smaller standard errors (Thissen & 

Wainer, 1982). This has a direct implication on the test design, for instance it means a well-

designed test will make use of a large sample to reduce standard errors. This underlines the 

important relationship between standard errors and test designs for correct and precise estimates. 

Test equating is a statistical procedure used to adjust test scores on different test forms so 

that the scores from different test forms are comparable (Kolen & Brennan, 2004). Irrespective 

of the methods of test equating to be used, the standard errors of equating should be reported to 

gauge the precision of the converted scores. It then follows that proper estimation of standard 

errors is essential in test equating.  
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Lastly, SEs are key in the evaluation of differential item functioning (DIF), item 

parameter drift (IPD) and model goodness of fit evaluation (Woods et al., 2013). For example, 

when measurement invariance is not achieved, standard errors are likely to be higher, indicating 

greater uncertainty in the ability estimates. In sum, accurate estimation of SEs is integral to 

making correct inferences and comparisons, therefore, consistent SEs are important elements of 

any statistical methods (Yuan et al., 2014) and when estimated incorrectly, they can lead to 

unjustified certainty. 

Methods 

To assess the performance of the five methods for calculating SEs we conducted a 

simulation study. The statistical software R (R. C. Team, 2022) and the lamle package 

(Andersson B., and Jin S., 2022) was used in the analysis of this study. Four factors were varied 

in this simulation i.e., test length, sample size, model type, number of latent variables and 

number of categories. The simulation was based on a fully crossed design with two test lengths 

(4/8),  three sample sizes (250/1,000/4,000),  two  model types (independent cluster and cross-

loadings),  t factors, and 2/5 number of categories (binary response and polytomous ) resulting in 

2x3x2x2=24 data generating conditions which all used a three-dimensional latent variable vector. 

Under each condition 1,000 replications were conducted. Figure 1 gives an illustration of the 

independent cluster models with 12 observed variables used in this study while Figure 2 shows 

the cross-loadings models with 12 observed variables.  The latent variables are represented by 

the ellipses whereas rectangles are used to denote the observed variables. The covariances 

between the latent variables are shown by solid lines connected with arrows on both sides. Main 

factor loadings are represented by solid lines whereas dotted lines are used to show cross-

loadings.  
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Simulation Conditions  

Test Length 

Previous research has demonstrated that test length has an effect on the accuracy and 

precision of an examinee’s ability estimates (Sahin & Anil, 2017). A test should not be too long 

else it leads to fatigue on the examinees and should not be composed of few items either (too 

short) else it will not be able to provide a reliable measure of the examinee’s position in the 

latent space. Test length is important because it has direct implications on the magnitude of the 

SEs with poorly designed tests e.g., short, and biased tests tend to produce large SEs which are 

indications of inaccurate and imprecise estimates. On the other hand, well designed tests, and 

appropriate sampling techniques will tend to produce smaller SEs hence more accurate and 

precise estimates. The dimensionality of the error covariance matrix is also dependent on the 

number of estimated item parameters i.e., the computational burden of the methods for 

calculating SEs increases as the dimensionality of the error covariance matrix increases (Lin, 

2018).  In this study we considered four and eight items per dimension for a total of either 12 or 

24 items for the three-dimensional models.  

Sample Size 

Sample size is inversely proportional to the SE, hence the larger the sample size the 

smaller the SE. Thissen and Wainer (1982) shows that for samples greater than 500 the SEs will 

be less than or equal to 0.1. However, this is conditional on the model fitting the data well and 

that the item discriminations are homogenous and sufficiently large. If the item discriminations 

are not homogeneous and sufficiently large one would need larger sample sizes to achieve the 

same levels of precision. In this study we varied the samples between 250, 1000, and 4,000. 
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Figure 1 

Illustration of Independent Cluster Models with 4 Items per Dimension 

 

Note:  𝑦1 is latent variable one, 𝑦2 =latent variable two, 𝑦3= latent variable three, whereas 

𝑥1=observable variable one or item number one, 𝑥2 = observable variable two, 𝑥3= observable 

variable three, 𝑥4 = observable variable four. 

Figure 2 

Illustration of Cross-Loadings Models with Four Items per Dimension  

 

Note:  𝑦1 is latent variable one, 𝑦2 =latent variable two, 𝑦3= latent variable three, whereas 

𝑥1=observable variable one or item number one, 𝑥2 = observable variable two, 𝑥3= observable 

variable three, 𝑥4 = observable variable four. 
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The discrimination parameters for the simulations will be selected from the U(1, 2)-

distribution and the difficulty parameters from the N(0, 1)-distribution. These distributions were 

considered to mimic realistic item parameters used in standardized testing.  

Model Complexity 

Here we considered the type of the multidimensional model i.e., simple structure 

(between-item) and complex structure (within-item). For both the simple structure and the 

complex structure we considered three-dimensional tests. Four and eight observed variables per 

cluster were considered, for a total of 12/24 indicators respectively. In the complex structure one 

indicator in each cluster was allowed to cross load to another cluster or dimension to reflect the 

assumption that some indicators measure more than one latent variable. For instance, in the case 

of 3 latent variables with 12 indicators we had a total of 3 cross-loadings. 

We assume that ability parameters are drawn from a multivariate normal distribution, 𝛉~𝑀𝑉𝑁(0, 

𝚺) where is 𝚺 the variance covariance matrix of the abilities. The data were simulated from a 

two-parameter logistic model and a graded  response model, estimating the parameters with the 

2-PL model and the GRM model, respectively. For all estimated models the mean, and the 

variance of the first latent variable is fixed to 0 and 1, whereas all the other parameters are freely 

estimated. 

Data Generation 

The data was generated using R programming software version 4.2.2. (R. C. Team, 

2022). GRM and 2-PL was used to simulate polytomous and binary item responses for 

estimating item parameters with slope and intercept parameters.  
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Evaluation Criterion for SEs and CIs  

Following the example of Andersson et al. (2023), we used average convergence rates, 

average absolute bias,  average root mean square error (RMSE), average estimation time, and 

average coverage rate of a 95% confidence intervals estimated with SEs from each of the SE 

methods (M1 to M5) as the evaluation criterion. Only simulation methods whose convergence 

rates were greater than 50%  are reported. To correctly assess the computational efficiency of the 

SE procedures we used the time information in the estimation procedures. The absolute bias and 

root mean squared error for a parameter θ with estimate 𝜃�̂�in replication 𝑖 are defined as  |bias| θ =

1

𝑅
 |∑ (𝜃𝑖

̂ − 𝜃)𝑅
𝑖=1 |  and RMSE𝜃 = √∑ (𝜃�̂� − 𝜃)2𝑅

𝑖=1 /𝑅 respectively (Andersson et al., 2023). Since the 

true standard errors are unknown, we used the Monte-Carlo standard errors from the standard 

deviation of the parameter estimates in the simulation as proxies for the true values. For higher 

accuracy values closer to zero are preferred. A 95% CI for a parameter is constructed by 

calculating 𝑥(𝑝𝑎𝑟) ± 𝑦(𝑠𝑒) ∗ 𝑧(0.975), where x(par) denotes model parameter estimates and 

y(se) denotes SEs from one of the five SE methods whereas z(0.975) is the 0.975 quantile of the 

standard normal distribution. By letting 𝑋𝑟  denote the outcome (0,1) of the estimated CI 

covering the true value in a replication r we obtain the estimate of the coverage rate as �̂� =

∑
𝑋𝑟

𝑅
𝑅
𝑟=1  . Generally, the evaluation criterion involved computing overall measures of recovery of 

model parameters i.e., slopes, intercepts, variances and covariances in terms of above-mentioned 

criteria with SEs from each of the five methods of estimating SEs.  

Results  

In this subsection we present the results of the simulations. The outcome measures are 

summarized in Table 1 to Table 6 whereas the covariance matrix, and the item parameters used 
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in the simulations are presented in the appendix  as Table A1 to Table A5. The condition for 

sample size 250 and 12 items had over 50% nonconvergence so we decided to remove this 

condition in the analysis.  

Accuracy, Precision and Computational Efficiency of Standard Errors 

The average absolute bias and the average root mean squared error (RMSE) for all the 

parameters for the 2-PL independent cluster models is summarized in Table 1. In general, small 

sample sizes showed higher bias values compared to larger sample sizes i.e., average absolute 

bias exhibited by the SE methods decreased as sample size increased. The results similarly 

suggest that varying the test length had a similar effect, i.e., as test length increased the bias also 

decreased. All SE methods produced close to zero average absolute bias except for M3 in the 

250 sample size and the sample size 1,000 with 12 items which had slightly higher biases. On 

average M3 showed slightly higher average absolute bias compared to other SE methods when 

Lap1 was used. On the other hand, with Lap2 estimation method, it was M5 that on average 

depicted slightly higher average absolute bias compared to other SE methods. Compared with 

M1, M2, and M4 had almost similar biases i.e., close to zero. Though the differences are small, 

on average M4 showed the lowest biases, followed by M1 then M2.   

Regarding the average RMSE which takes the bias and variability of an estimate into 

consideration when evaluating an estimator, M3 tended to show higher values than other SE 

methods when Lap1 was used as the estimation method. Similarly, using Lap2 as the estimation 

method, RMSE values are highest with the sandwich estimator M5. Increasing sample size and 

the number of items tended to decrease the RMSE across all SE methods and conditions. 

However, the methods differed in the amount of decrease in the RMSE, e.g., increasing the 

number of items from 12 to 24 for sample size 1,000 we observe that M3 has the highest 
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decrease in RMSE i.e., from 0.207 to 0.116 (91 points) whereas M4 has the lowest decrease in 

RMSE i.e., from 0.0135 to 0.0099 (36 points). The lowest values in RMSE were observed when 

sample size was largest with many items i.e., 4,000 and 24. M1 and M4 showed the lowest 

values.   

The average absolute bias and RMSE for all parameters for the GRM independent cluster 

models is summarized in Table 2. The results suggest that absolute bias exhibited by the SE 

methods decreased as sample size increased. The highest bias (0.0794) was exhibited by M3 

Lap1 when test length was 24 and sample size 250. On average, with more test items, the results 

showed less bias. The smallest bias (0.002) was when the test length equaled 24 and sample size 

4000. M3 showed slightly higher average absolute bias and RMSE compared to other SE 

methods with Lap1 or Lap2 estimation method. Across all the five methods we observe close to 

zero biases. Nevertheless, slight differences exist between the methods. Compared with M1, the 

Sandwich estimator M5 showed better performance than in the 2-PL case. M4 had the lowest 

bias, followed by M1, M2, M5 and lastly M3.  The RMSE was consistently lowest for the M1 

with both Lap1 and Lap2 estimation method.   
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Table 1 

Outcome Measures for the  2-PL Independent Cluster Models with the  Lap1 and Lap2 Estimation Methods . 

Notes.  Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard error method of estimation i.e., M1= 

Observed information matrix, M2= Fast observed information matrix, M3= Empirical cross-product matrix, M4= Sandwich estimator 

from observed information matrix and M5= Sandwich estimator from fast observed information matrix.

  
 

  
 Lap1    

 
Lap2  

Outcome Measure Sample Size  Items  M1 M2 M3 M4 M5  M1 M2 M3 M4 M5 

Average  

Absolute  

Bias 

250 24  .0072 .0077 .0241 .0060 .0094  .0068 .0083 .0196 .0048 .0101 

1000 
12    .0087 .0090 .0155 .0057 .0111  .0061 .0109 .0066 .0060 .0148 

24  .0039 .0043 .0067 .0036 .0062  .0038 .0050 .0042 .0036 .0063 

4000 

12  .0077 .0073 .0109 .0053 .0077  .0051 .0071 .0054 .0052 .0089 

24  .0036 .0038 .0043 .0036 .0047  .0036 .0041 .0036 .0035 .0048 

Average Root Mean 

Squared Error  

24  .0384 .0396 .0475 .0418 .0453  .0372 .0386 .0473 .0371 .0417 

1000 
12  .0152 .0156 .0207 .0135 .0174  .0178 .0195 .0191 .0172 .0213 

24  .0099 .0105 .0116 .0099 .0118  .0104 .0112 .0110 .0104 .0121 

4000 
12  .0087 .0085 .0117 .0069 .0088  .0079 .0088 .0081 .0079 .0101 

24  .0048 .0050 .0054 .0048 .0057  .0049 .0052 .0049 .0049 .0058 
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The average absolute bias and RMSE for all parameters for the 2-PL cross-loadings 

models is summarized in Table 3. SE estimation methods with Lap2  estimation methods showed 

less bias compared to Lap 1 methods. The results suggest that average absolute bias exhibited by 

the standard error methods decreased as sample size increased. The highest bias (0.0716) was 

exhibited by M3 Lap1 when test length was 24 and sample size 250.  

On average the M3 showed slightly higher average absolute bias and RMSE compared to 

other SE methods when Lap1 was used but when Lap2 estimation method was used, it was the 

Sandwich estimator M5 that on average depicted slightly higher average absolute bias and 

RMSE. Compared with M1, M2, and the M4 had almost similar biases i.e., close to zero. 

However, on average M1 showed the lowest biases, when Lap1 estimation method was used 

while M2 showed lowest bias with Lap2 estimation method.  
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Table 2 

Outcome Measures for the  GRM Independent Cluster Models with the  Lap1 and Lap2 Estimation Methods. 

  
  Lap1    

 
Lap2  

Outcome Measure Sample Size  Items   M1  M2  M3 M4 M5  M1 M2 M3 M4 M5 

Average 

Absolute 

Bias 

 24  .0052 .0052 .0794 .0052 .0052  .0055 .0055 .0780 .0053 .0053 

     1000 
12    .0039 .0056 .0086 .0029 .0057  .0031 .0041 .0044 .0029 .0073 

24  .0029 .0032 .0085 .0028 .0035  .0028 .0030 .0078 .0028 .0035 

     4000 

12  .0035 .0041 .0046 .0045 .0040  .0029 .0039 .0030 .0029 .0045 

24  .0020 .0021 .0024 .0020 .0022  .0020 .0020 .0022 .0020 .0022 

 

Average 

Root Mean 

Squared Error 

24  .0176 .0176 .0844 .0182 .0182  .0183 .0183 .0833 .0192 .0192 

   1000 
12  .0070 .0085 .0109 .0062 .0086  .0077 .0092 .0087 .0081 .0122 

24  .0054 .0058 .0098 .0055 .0061  .0055 .0057 .0094 .0057 .0063 

  4000 
12  .0040 .0046 .0051 .0044 . 0045  .0038 .0043 .0039 .0039 .0055 

24  .0025 .0026 .0029 .0025 .0028  .0025 .0026 .0027 .0026 .0028 

Notes.  Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard error method of estimation i.e., M1= 

Observed information matrix, M2= Fast observed information matrix, M3= Empirical cross-product matrix, M4= Sandwich estimator 

from observed information matrix and M5= Sandwich estimator from fast observed information matrix. 
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Table 3 

Outcome Measures for the 2-PL Cross-Loadings Models with Lap1 and Lap2 Estimation Methods . 

   
                             Lap1    

 
Lap2  

Outcome Measure Sample Size  Items  M1 M2 M3 M4 M5  M1 M2 M3 M4 M5 

Average  

Absolute  

Bias 

250 24  .0613 .0622 .0716 .0557 .0588  .0076 .0093 .0243 .0053 .0088 

1000 
12  .0043 .0069 .0110 .0025 .0076  .0038 .0059 .0058 .0057 .0172 

24  .0025 .0031 .0047 .0022 .0053  .0039 .0037 .0025 .0049 .0054 

4000 
12  .0032 .0025 .0063 .0011 .0043  .0045 .0027 .0033 .0064 .0052 

24  .0012 .0014 .0018 .0011 .0023  .0019 .0015 .0014 .0024 .0024 

Average  

Root Mean  

Squared 

250 24  .1043 .1052 .1204 .1170 .1189  .0430 .0440 .0576 .0420 .0441 

1000 
12  .0086 .0108 .0142 .0078 .0121  .0085 .0085 .0106 .0097 .0818 

24  .0096 .0101 .0107 .0104 .0120  .0103 .0103 .0097 .0116 .0113 

4000 
12  .0049 .0046 .0074 .0039 .0059  .0061 .0046 .0049 .0080 .0063 

24  .0026 .0028 .0030 .0026 .0036  .0030 .0030 .0027 .0035 .0036 

Notes.  Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard error method of estimation i.e., M1= 

Observed information matrix, M2= Fast observed information matrix, M3= Empirical cross-product matrix, M4= Sandwich estimator 

from observed information matrix and M5= Sandwich estimator from fast observed information matrix. 
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The average absolute bias and RMSE for all parameters for the GRM cross-loadings 

models is summarized in Table 4. SE estimation methods with Lap2  estimation showed less bias 

compared to Lap 1. The results suggest that average absolute bias decreased with increase in 

sample size. The highest bias (0.0838) was exhibited by M3 Lap1 when test length was 24 and 

sample size 250. The empirical cross product matrix (M3) consistently showed slightly higher 

average absolute bias and RMSE compared to other SE methods with either Lap1 or Lap2 

estimation method. M1 had the lowest bias when Lap2 estimations method was used, whereas 

M4 had the lowest biases when estimation method was Lap1. However, the biases were close to 

zero.  In the cross-loading models the root mean squared error was lowest for the M1 followed 

closely by the M4, M2, M5 and M3 came last.  
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Table 4 

Outcome Measures for the GRM Cross Models with Lap1 and Lap2 Estimation Methods. 

   
                          Lap1    

 
 Lap2  

Outcome Measure Sample Size Items M1 M2 M3 M4 M5  M1 M2 M3 M4 M5 

Average 

Absolute 

Bias 

250 24 .0039 .0039 .0838 .0037 .0037  .0039 .0039 .0826 .0037 .0037 

1000 
12 .0030 .0037 .0074 .0024 .0053  .0034 .0035 .0038 .0047 .0060 

24 .0021 .0025 .0077 .0021 .0029  .0022 .0024 .0068 .0025 .0029 

4000 
12 .0012 .0018 .0021 .0009 .0020  .0019 .0013 .0011 .0025 .0023 

24 .0009 .0010 .0013 .0009 .0012  .0009 .0009 .0011 .0009 .0012 

Average 

Root Mean 

Squared Error 

250 24 .0175 .0175 .0888 .0182 .0182  .0182 .0182 .0878 .0191 .0191 

1000 
12 .0063 .0078 .0100 .0059 .0085  .0067 .0081 .0076 .0076 .0104 

24 .0047 .0050 .0092 .0048 .0056  .0049 .0052 .0085 .0051 .0058 

4000 
12 .0019 .0025 .0028 .0017 .0027  .0024 .0022 .0020 .0030 .0031 

24 .0014 .0015 .0018 .0015 .0017  .0014 .0015 .0017 .0015 .0017 

Notes.  Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard error method of estimation i.e., M1= 

Observed information matrix, M2= Fast observed information matrix, M3= Empirical cross-product matrix, M4= Sandwich estimator 

from observed information matrix and M5= Sandwich estimator from fast observed information matrix.  
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The average coverage rate of the 95% confidence interval is summarized in Table 5. 

The average coverage rates of the 95% confidence intervals are lower than the nominal level 

SE estimation methods using Lap1. Varying the settings did not significantly improve the 

coverage rates for Lap1 estimation. Across all settings investigated, all SE methods had 

coverage late below the nominal level. The results suggest that all SE methods produced 

biased and imprecise estimates with Lap1 estimates. On the other hand, the average coverage 

rate of the 95% CI  for the SE methods using Lap2 is not statistically different from 95% for 

most of the conditions investigated.  However, for the M2 and the M5, in all sample sizes 

investigated with 12  items the average coverage rates for the 95% CI was still slightly lower 

than the nominal rate even with Lap2 estimation. Therefore, the results seem to suggest with 

Lap2 estimation methods, having more test items increases the coverage rate, for instance 

with 24 items the sample size 1,000 has the correct coverage.  

Table 6 summarizes the average estimation times for the SE estimation methods.  

Since the sandwich estimators have the same timings as the non-sandwich versions their 

timings are not reported in the table. The results suggest that the average estimation time  

increased as sample size and the number of items increased. For instance, the sample size 250 

with 12 items took on average 1.3 seconds to compute the SE using M2 whereas sample size 

4,000 with 24 items took  48.81 seconds. The M2 was faster in computing the standard errors 

compared to the M1 irrespective of which estimation method was used. Generally, 

independent cluster models took lesser time to compute the SEs compared to cross-loading 

models, but the same pattern is observed, i.e., the M2 took lesser time than the M1whether 

Lap1 or Lap2 was used as the estimation method. The M3 was the most computationally 

efficient method in terms of average estimation time  for computing standard errors since it 

took the least time in all settings investigated. 
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Table 5 

Average Coverage Rates for 95% CI   

 

 

 

 

 

 

 

 

 

 

 

Notes.  Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard 

error method of estimation i.e., M1= Observed information matrix, M2= Fast observed 

information matrix, M3= Empirical cross-product matrix, M4= Sandwich estimator from 

observed information matrix and M5= Sandwich estimator from fast observed information 

matrix. 

           SEM   12items 24items 

Lap1 Lap2 Lap1 Lap2 

 sample size 1000 
 

M1 90.06 95.18 94.37 95.19 

M2 88.95 94.39 94.28 95.13 

M3 91.19 95.33 95.02 95.66 

M4 89.20 95.27 94.36 95.26 

M5 87.23 93.64 94.15 95.11 

 sample size 4000  
M1 78.93 94.94 92.57 95.07 

M2 77.73 94.33 92.41 95.01 

M3 81.03 94.87 92.93 95.18 

M4 77.51 95.02 92.42 95.10 

M5 75.45 93.63 92.07 94.99 

 sample size 250  
M1   92.15 94.91 

M2   91.37 95.28 

M3   93.11 94.83 

M4   91.76 94.56 

M5   90.13 94.81 
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Table 6 

Average Estimation Times in seconds  for the 2-PL and GRM Models. 

 

Note. Lap1 = first-order Laplace, Lap2 = second-order Laplace, M1 to M5 represent standard error method of estimation i.e., M1= 

Observed information matrix, M2= Fast observed information matrix. GRM=Graded Response Model, 2-PL=two parameter logistic.  

The Sandwich estimator from the observed information matrix (M4) and the Sandwich estimator from the fast observed information 

matrix have the same timing as the non-Sandwich versions. 

  

   2-PL                    GRM        

    M1 M2 M3  M1 M2 M3  

Sample 

Size 
Items Lap1 Lap2 Lap1 Lap2  Lap1 Lap2 Lap1 Lap2          Lap1 Lap2 Lap1 Lap2 

        Independent Cluster Models      

250 24 5.47 5.87 4.49 4.85  0.10 0.12 26.67 29.10 29.06 29.16 0.40 0.42 

1000 
12 5.70 6.04 3.92 4.37  0.22 0.23 14.09 15.33 9.88 11.23 0.24 0.26 

24 17.22 18.54 13.25 14.74  0.36 0.38 47.48 52.24 38.99 44.04 0.44 0.47 

4000 
12 20.92 22.37 14.17 15.69  0.80 0.85 50.61 55.37 34.94 39.8 0.83 0.90 

24 64.01 69.21 48.81 54.23  1.30 1.39 164.70 182.02 128.08 145.89 1.41 1.55 

                Cross-Loadings Models    

250 24 10.75 13.45 9.53 12.31  0.20 0.25 40.49 55.19 40.90 56.12 0.70 0.92 

1000 
12 12.05 15.62 8.61 12.20  0.39 0.50 28.66 42.54 20.88 34.80 0.45 0.65 

24 35.92 46.64 28.55 39.24  0.67 0.86 95.06 142.66 76.69 126.25 0.86 0.86 

4000 
12 48.67 63.15 35.15 49.60  1.57 2.02 112.85 168.69 82.41 138.09 1.73 2.55 

24 145.21 188.11 115.97 158.69  2.68 3.44 367.43 558.46 294.51 486.70 3.01 4.50 



 29 

 

Discussion and Conclusion 

Summary of Recommendations  

In the context of item response theory (IRT), SEs are an indication of the degree of 

precision with which item parameters are estimated (Thissen & Wainer, 1982). In the literature 

of IRT thus far, it is unclear which estimator of SEs should be used when drawing inference with 

Laplace approximations. Motivated by the importance of SEs to practitioners and the paucity of 

comprehensive studies on performance of different SE methods in IRT literature, we conducted a 

Monte-Carlo Simulation study to compare the performance of five SE methods across varying 

conditions. Specifically, the following simulation settings were investigated, Tests with 4/8  

items per dimension, sample sizes of 250, 1,000, and 4000, two model types (independent cluster 

and cross-loadings), number of dimensions (3 dimensions), and number of categories (2 category 

and 5 category). This study complements a recent study by (Andersson et al., 2023) by directly 

evaluating SEs from the observed information matrix (M1), fast observed information matrix 

(M2), the empirical cross product matrix (M3), the sandwich estimator from the observed 

information matrix (M4) and the sandwich estimator from the fast observed information matrix 

(M5).  

Research question one  

How do the five methods of calculating SEs in IRT compare across different varying 

conditions (i.e., sample sizes, test length, number of categories and model complexities) in terms 

of computational efficiency, accuracy, and precision?  

In general, the results in this paper show that no method of estimating standard errors was 

found unacceptable in terms of average absolute bias and average root mean squared error. The 

SE methods are very close regarding to the accuracy and precision between the different 
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estimation methods except for the Empirical cross product matrix that has slightly higher average 

RMSE and average absolute bias especially for the small sample size i.e., 250. Comparing SEs 

from the observed information matrix (M1) to those from the empirical cross product matrix 

(M3), the Empirical cross-product tended to overestimate the standard errors especially for the 

sample size 250 and the sample size 1,000 with 12 items. Of all the simulation conditions, 

sample size showed the greatest impact on performance of the SE methods in relation to 

accuracy and precision. Large sample sizes showed more precise estimates compared to small 

sample sizes in all investigated conditions. It can thus be argued that larger sample sizes provide 

more precise estimates of the latent trait being measured. This effect of sample size on standard 

errors is similar to the results found by (Paek & Cai, 2014; Thissen & Wainer, 1982). 

However, the average coverage rates for 95% CI in all SE methods using Lap1 produced 

biased and imprecise estimates. With Lap2 the standard errors are approximately equally 

accurate and precise for either of the five estimation methods. Results from the simulation study 

showed that the estimated confidence intervals for the SE methods have good coverage 

properties with sample sizes of at least 1,000 and 24 items for 2-PL and the GRM models when 

using Lap2. This is consistent with the results of (Andersson & Xin, 2018).  

Research question Two  

In practice, which estimator of SEs should be used for estimators based on Laplace 

approximations?  

To be able to make an evidence based decision on their estimator of choice a researcher 

need to consider a combination of various factors like the sample size, test length, model 

complexity and available resources. Within the limits of the factors investigated in this study for 
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a researcher faced with time constraint and with large sample size the empirical cross product is 

a suitable choice.  

Research question Three  

What is the empirical coverage rate of 95% confidence intervals when using the different 

methods for computing the standard errors?  In all conditions studied the standard error 

estimators with Lap1 the average coverage rate of  the 95% CI was lower than the nominal level. 

On the other hand,  using Lap2 estimations method conditions with 24 items had an average 

coverage rate of  95% CI that is not statistically significantly different to the nominal level for 

any sample size.   

Significance and Contributions  

A comparison of the different SE procedures with Laplace approximations reveal that one 

using Lap1 estimation would likely lead to biased and imprecise estimates for three dimensional 

IRT models, whereas Lap2 estimation would give accurate and precise estimates of the SEs.  

Limitations and Future Research   

A limitation of the current study was not investigating the performance of SE methods 

when the model is mis-specified, and the distribution is non normal. Therefore, future 

investigations are needed, and one should be cautious in generalizing the results beyond the 

current design. A possible future study is to evaluate the properties of the standard error 

estimation methods based on Laplace approximations and adaptive Gauss-Hermite quadrature 

approximations when the underlying latent variable distribution is non-normal.  

In conclusion, no method was found unacceptable in terms of average root mean squared 

error and average absolute bias. The average coverage rates of the 95% CI for SE estimators 

using Lap1 were less than the nominal level, whereas SE estimators with Lap2 produced good 
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coverage rates. As for estimation times, the cross empirical product matrix took the least time to 

compute the standard errors.    
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Appendices 

Appendix I: GDPR documents & Ethical approval 

We used simulated data, so this is not needful.  

Appendix II: Data Management and Analysis Code 

Below is a Sample code used in to generate data, run models, and the simulations, 

additional codes are available upon request.  

######################## 

rm(list=ls()) 

#a function to generate data, and run models using generated data and 

#return objects of interest to the study 

#.......................................................... 

generate_data <- function(nitems, sample.size, ncategories, nfactors, 

model.type, seed ) { 

  library(lamle) 

  library(mvtnorm) 

  if ( ncategories== 2){ 

     set.seed(124) 

    a<- runif(nitems,0.8, 2)  

     set.seed(124) 

    b<-  rnorm(nitems) 

  } else if(ncategories == 5 ){ 

     #Item parameter generation 

    set.seed(124) 

    a <- runif(nitems, 0.8, 2) 
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    set.seed(124) 

    b <- vector("list", nitems) 

    for(j in 1:nitems) b[[j]] <- -c(runif(1, -3, -2),  

                                    runif(1, -1.5, -0.5), 

                                    runif(1, 0, 1), 

                                    runif(1, 1.5, 2.5)) 

     

  } 

  #set up covariance matrix for 3D model  

  set.seed(1234) 

  covmat=diag(rep(1, nfactors)) 

 covmat[lower.tri(covmat)] <- runif((nfactors*(nfactors-1)/2),0.4,0.6) 

 covmat[upper.tri(covmat)] <- t(covmat)[upper.tri(covmat)] 

if (nfactors == 3 && model.type == "IND"){ 

####  Setup three-dimensional independent-clusters model 

    mydim <- matrix(NA, nrow = nitems, ncol = nfactors) 

    mydim[1:(nitems / nfactors), 1] <- 1 

    mydim[(nitems / nfactors + 1):(2 * nitems / nfactors), 2] <- 1 

    mydim[(2 * nitems / nfactors + 1):(3 *nitems / nfactors), 3] <- 1 

    #######and 

    GRMa <- matrix(0, nrow = nitems, ncol = 3) 

    GRMa[1:(nitems / nfactors), 1] <- a[1:(nitems / nfactors)] 

    GRMa[(nitems / nfactors + 1):(2 * nitems / nfactors), 

     2] <- a[(nitems / nfactors + 1):(2 * nitems / nfactors)] 

    GRMa[(2 * nitems / nfactors + 1):(3 * nitems / nfactors),  
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    3] <- a[(2 * nitems / nfactors + 1):(3 * nitems / nfactors)] 

     

    #Data generation: independent-clusters 

    set.seed(seed) 

    latmat <- rmvnorm(sample.size, c(0, 0, 0), covmat) 

    dataGRMIND <- matrix(NA, nrow =  sample.size, ncol = nitems) 

    dataGRMIND[1:sample.size, ] <- DGP(GRMa, b[1:nitems],  

    rep("GRM", nitems), latmat) 

     colnames(dataGRMIND[1:sample.size, ]) <- paste0("item", 1:nitems) 

     #estimate lamle object using generated response data  

    myGRMINDLap1 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                              model = mydim, 

                              modeltype = rep("GRM", nitems),  

                              first.step = 25,  

                              optimizer = "BHHH",  

                              method = "lap", 

                              maxit = 200, 

                              accuracy = 1,  

                              obsinfo = TRUE,  

                              thetaupdate = TRUE)) 

     

    if(myGRMINDLap1$iter >= 200) { 

      myGRMINDLap1 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                model = mydim, 

                                modeltype = rep("GRM", nitems),  

                                first.step = 25,  
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                                optimizer = "BFGS",  

                                method = "lap", 

                                maxit = 200, 

                                accuracy = 1,  

                                obsinfo = TRUE,  

                                thetaupdate = TRUE)) 

    } 

   myGRMINDLap2 <- try(lamle(y = dataGRMIND[,],  

                              model = mydim,  

                              modeltype = rep("GRM", nitems),  

                              first.step = 25,  

                              optimizer = "BHHH", 

                              maxit = 200, 

                              method = "lap",  

                              accuracy = 2,  

                              obsinfo = TRUE,  

                              thetaupdate = TRUE)) 

     if(myGRMINDLap2$iter >= 200) { 

      myGRMINDLap2 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                model = mydim, 

                                modeltype = rep("GRM", nitems),  

                                first.step = 25,  

                                optimizer = "BFGS",  

                                method = "lap", 

                                maxit = 200, 

                                accuracy = 2,  
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                                obsinfo = TRUE,  

                                thetaupdate = TRUE)) 

    } 

    myGRMINDLap1FastObs <- try(lamle(y = dataGRMIND[,], 

                                     model = mydim, 

                                     modeltype = rep("GRM", nitems),  

                                     first.step = 25,  

                                     optimizer = "BHHH",  

                                     method = "lap",  

                                     accuracy = 1,  

                                     maxit = 200, 

                                     obsinfo = TRUE,  

                                     thetaupdate = FALSE)) 

    if(myGRMINDLap1FastObs$iter >= 200) { 

     myGRMINDLap1FastObs <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                       model = mydim, 

                                       modeltype = rep("GRM", nitems),  

                                       first.step = 25,  

                                       optimizer = "BFGS",  

                                       method = "lap", 

                                       maxit = 200, 

                                       accuracy = 1,  

                                       obsinfo = TRUE,  

                                       thetaupdate = TRUE)) 

    } 

    myGRMINDLap2FastObs <- try(lamle(y = dataGRMIND[,], 
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                                     model = mydim,  

                                     modeltype = rep("GRM", nitems),  

                                     first.step = 25,  

                                     optimizer = "BHHH",  

                                     method = "lap",  

                                     maxit = 200, 

                                     accuracy = 2,  

                                     obsinfo = TRUE,  

                                     thetaupdate = FALSE)) 

     

    if(myGRMINDLap2FastObs$iter >= 200) { 

    myGRMINDLap2FastObs <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                       model = mydim, 

                                       modeltype = rep("GRM", nitems),  

                                       first.step = 25,  

                                       optimizer = "BFGS",  

                                       method = "lap", 

                                       accuracy = 2,  

                                       maxit = 200, 

                                       obsinfo = TRUE,  

                                       thetaupdate = TRUE)) 

       

    } 

     

  } else if(nfactors == 6 && model.type == "IND" ){ 
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    ####  Setup three-dimensional independent-clusters model 

    mydim <- matrix(NA, nrow = nitems, ncol =nfactors) 

    mydim[1:(nitems / nfactors), 1] <- 1 

    mydim[(nitems / nfactors + 1):(2 * nitems / nfactors), 2] <- 1 

    mydim[(2 * nitems / nfactors + 1):(3 * nitems / nfactors), 3] <- 1 

    mydim[(3 * nitems / nfactors + 1):(4 * nitems / nfactors), 4] <- 1 

    mydim[(4 * nitems / nfactors + 1):(5 * nitems / nfactors), 5] <- 1 

    mydim[(5 * nitems / nfactors + 1):(6 * nitems / nfactors), 6] <- 1 

    GRMa <- matrix(0, nrow = nitems, ncol = nfactors) 

    GRMa[1:(nitems / nfactors), 1] <- a[1:(nitems / nfactors)] 

    GRMa[(nitems / nfactors + 1):(2 * nitems / nfactors), 

    2] <-a[(nitems / nfactors + 1):(2 * nitems / nfactors)]    

    GRMa[(2 * nitems / nfactors + 1):(3 * nitems / nfactors), 

    3] <- a[(2 * nitems / nfactors + 1):(3 * nitems / nfactors)] 

    GRMa[(3 * nitems / nfactors + 1):(4 * nitems / nfactors), 

    4] <- a[(3 * nitems / nfactors + 1):(4 * nitems / nfactors)] 

    GRMa[(4 * nitems / nfactors + 1):(5 * nitems / nfactors), 

    5] <- a[(4 * nitems / nfactors + 1):(5 * nitems / nfactors)] 

    GRMa[(5 * nitems / nfactors + 1):(6 * nitems / nfactors), 6] 

    <- a[(5 * nitems / nfactors + 1):(6 * nitems / nfactors)] 

    set.seed(seed) 

    latmat <- rmvnorm(sample.size, c(0, 0, 0, 0, 0, 0), covmat) 

    dataGRMIND <- matrix(NA, nrow =  sample.size, ncol = nitems) 

    dataGRMIND[1:sample.size, ] <- DGP(GRMa, b[1:nitems], 
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    rep("GRM", nitems), latmat) 

     

    colnames(dataGRMIND[1:sample.size, ]) <- paste0("item", 1:nitems) 

    #estimate lamle object using generated response data  

    myGRMINDLap1 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                              model = mydim, 

                              modeltype = rep("GRM", nitems),  

                              first.step = 25,  

                              optimizer = "BHHH",  

                              method = "lap", 

                              maxit = 200, 

                              accuracy = 1,  

                              obsinfo = TRUE,  

                              thetaupdate = TRUE)) 

    if(myGRMINDLap1$iter >= 200) { 

      myGRMINDLap1 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                model = mydim, 

                                modeltype = rep("GRM", nitems),  

                                first.step = 25,  

                                optimizer = "BFGS",  

                                method = "lap", 

                                accuracy = 1,  

                                obsinfo = TRUE,  

                                thetaupdate = TRUE)) 

    } 

    myGRMINDLap2 <- try(lamle(y = dataGRMIND[,],  
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                              model = mydim,  

                              modeltype = rep("GRM", nitems),  

                              first.step = 25,  

                              optimizer = "BHHH", 

                              method = "lap",  

                              maxit = 200, 

                              accuracy = 2,  

                              obsinfo = TRUE,  

                              thetaupdate = TRUE)) 

      if(myGRMINDLap2$iter >= 200) { 

      myGRMINDLap2 <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                model = mydim, 

                                modeltype = rep("GRM", nitems),  

                                first.step = 25,  

                                optimizer = "BFGS",  

                                method = "lap", 

                                accuracy = 2,  

                                obsinfo = TRUE,  

                                thetaupdate = TRUE)) 

    } 

    myGRMINDLap1FastObs <- try(lamle(y = dataGRMIND[,], 

                                     model = mydim, 

                                     modeltype = rep("GRM", nitems),  

                                     first.step = 25,  

                                     optimizer = "BHHH",  

                                     method = "lap",  



 47 

 

                                     maxit = 200, 

                                     accuracy = 1,  

                                     obsinfo = TRUE,  

                                     thetaupdate = FALSE)) 

    if(myGRMINDLap1FastObs$iter >= 200) { 

     myGRMINDLap1FastObs <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                       model = mydim, 

                                       modeltype = rep("GRM", nitems),  

                                       first.step = 25,  

                                       optimizer = "BFGS",  

                                       method = "lap", 

                                       accuracy = 1,  

                                       obsinfo = TRUE,  

                                       thetaupdate = TRUE)) 

    } 

    myGRMINDLap2FastObs <- try(lamle(y = dataGRMIND[,], 

                                     model = mydim,  

                                     modeltype = rep("GRM", nitems),  

                                     first.step = 25,  

                                     optimizer = "BHHH", 

                                     maxit = 200, 

                                     method = "lap",  

                                     accuracy = 2,  

                                     obsinfo = TRUE,  

                                     thetaupdate = FALSE)) 

    if(myGRMINDLap2FastObs$iter >= 200) { 
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     myGRMINDLap2FastObs <- try(lamle(y = dataGRMIND[1:sample.size, ],  

                                       model = mydim, 

                                       modeltype = rep("GRM", nitems),  

                                       first.step = 25,  

                                       optimizer = "BFGS",  

                                       method = "lap", 

                                       accuracy = 2,  

                                       obsinfo = TRUE,  

                                       thetaupdate = TRUE)) 

    } 

     

  } 

  if (nfactors == 3 && model.type == "CL"){ 

    #Data generating model: cross-loadings 

    if ( ncategories== 2){ 

      set.seed(124) 

      a<- runif(1000,0.8, 2)  

      set.seed(124) 

      b<-  rnorm(nitems) 

    } else if(ncategories == 5 ){ 

      #Item parameter generation 

      set.seed(124) 

      a <- runif(1000, 0.8, 2) 

      set.seed(124) 

      b <- vector("list", nitems) 

      for(j in 1:nitems) b[[j]] <- -c(runif(1, -3, -2),  



 49 

 

                                      runif(1, -1.5, -0.5), 

                                      runif(1, 0, 1), 

                                      runif(1, 1.5, 2.5)) 

    } 

#set up covariance matrix for 3D model  

set.seed(1234) 

covmat=diag(rep(1, nfactors)) 

covmat[lower.tri(covmat)] <- runif((nfactors*(nfactors-1)/2), 0.4,0.6) 

covmat[upper.tri(covmat)] <- t(covmat)[upper.tri(covmat)] 

#set the model structure for CL  

mydim <- matrix(NA, nrow = nitems, ncol =nfactors) 

mydim[1:(nitems / nfactors), 1] <- 1 

mydim[(nitems / nfactors + 1):(2 * nitems / nfactors), 2] <- 1 

mydim[(2 * nitems / nfactors + 1):(3 * nitems / nfactors), 3] <- 1 

mydim[1, c(2)] <- 1 

mydim[(nitems / nfactors + 1):(nitems / nfactors + 1), c(3)] <- 1 

mydim[(2 * nitems / nfactors + 1):(2 * nitems / nfactors +1),c(1)]<- 1 

###and a mat 

GRMa <- matrix(0,nrow = nitems, 

ncol = nfactors)GRMa[!is.na(mydim)] <- a[1:(sum(!is.na(mydim)))] 

 ###data generation  

set.seed(seed) 

latmat <- rmvnorm(sample.size, c(0, 0, 0), covmat) 

dataGRMCL <- matrix(NA, nrow =  sample.size, ncol = nitems) 

dataGRMCL[1:sample.size, ] <- DGP(GRMa, b[1:nitems],  

rep("GRM", nitems), latmat) 
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#estimate model for 3 D CL clusters  

#Estimation: cross-loadings for 6 D model cl clusters  

myGRMCLLap1 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

            model = mydim, 

                             modeltype = rep("GRM", nitems),  

                             first.step = 25,  

                             optimizer = "BHHH",  

                             method = "lap",  

                             maxit = 200, 

                             accuracy = 1, 

                             obsinfo = TRUE,  

                             thetaupdate = TRUE)) 

        if(myGRMCLLap1$iter >= 200) { 

      myGRMCLLap1 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                               model = mydim, 

                               modeltype = rep("GRM", nitems),  

                               first.step = 25,  

                               optimizer = "BFGS",  

                               method = "lap", 

                               maxit = 200, 

                               accuracy = 1,  

                               obsinfo = TRUE,  

                               thetaupdate = TRUE)) 

    } 

    myGRMCLLap2 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                             model = mydim, 
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                             modeltype = rep("GRM", nitems),  

                             first.step = 25,  

                             optimizer = "BHHH",  

                             method = "lap",  

                             maxit = 200, 

                             accuracy = 2, 

                             obsinfo = TRUE,  

                             thetaupdate = TRUE)) 

    if(myGRMCLLap2$iter >= 200) { 

      myGRMCLLap2 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                               model = mydim, 

                               modeltype = rep("GRM", nitems),  

                               first.step = 25,  

                               optimizer = "BFGS",  

                               method = "lap", 

                               maxit = 200, 

                               accuracy = 2,  

                               obsinfo = TRUE,  

                               thetaupdate = TRUE)) 

    } 

    myGRMCLLap1FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                    model = mydim, 

                                    modeltype = rep("GRM", nitems),  

                                    first.step = 25,  

                                    optimizer = "BHHH",  

                                    method = "lap",  
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                                    maxit = 200, 

                                    accuracy = 1, 

                                    obsinfo = TRUE,  

                                    thetaupdate = FALSE)) 

    if(myGRMCLLap1FastObs$iter >= 200) { 

      myGRMCLLap1FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                      model = mydim, 

                                      modeltype = rep("GRM", nitems),  

                                      first.step = 25,  

                                      optimizer = "BFGS",  

                                      method = "lap", 

                                      maxit = 200, 

                                      accuracy = 1,  

                                      obsinfo = TRUE,  

                                      thetaupdate = TRUE)) 

    } 

    myGRMCLLap2FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                    model = mydim, 

                                    modeltype = rep("GRM", nitems),  

                                    first.step = 25,  

                                    optimizer = "BHHH",  

                                    method = "lap",  

                                    accuracy = 2, 

                                    maxit = 200, 

                                    obsinfo = TRUE,  

                                    thetaupdate = FALSE)) 
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    if(myGRMCLLap2FastObs$iter >= 200) { 

      myGRMCLLap2FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                      model = mydim, 

                                      modeltype = rep("GRM", nitems),  

                                      first.step = 25,  

                                      optimizer = "BFGS",  

                                      method = "lap", 

                                      maxit = 200, 

                                      accuracy = 2,  

                                      obsinfo = TRUE,  

                                      thetaupdate = TRUE)) 

    } 

  } else if(nfactors == 6 && model.type == "CL" ){ 

  ####  Setup 6D CL-clusters model 

  mydim <- matrix(NA, nrow = nitems, ncol =nfactors) 

  mydim[1:(nitems / nfactors), 1] <- 1 

  mydim[(nitems / nfactors + 1):(2 * nitems / nfactors), 2] <- 1 

  mydim[(2 * nitems / nfactors + 1):(3 * nitems / nfactors), 3] <- 1 

  mydim[(3 * nitems / nfactors + 1):(4 * nitems / nfactors), 4] <- 1 

  mydim[(4 * nitems / nfactors + 1):(5 * nitems / nfactors), 5] <- 1 

  mydim[(5 * nitems / nfactors + 1):(6 * nitems / nfactors), 6] <- 1 

  GRMa <- matrix(0, nrow = nitems, ncol = nfactors) 

  GRMa[1:(nitems / nfactors), 1] <- a[1:(nitems / nfactors)] 

  GRMa[(nitems / nfactors + 1):(2 * nitems / nfactors), 

   2] <- a[(nitems / nfactors + 1):(2 * nitems / nfactors)] 

  GRMa[(2 * nitems / nfactors + 1):(3 * nitems / nfactors), 
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  3] <- a[(2 * nitems / nfactors + 1):(3 * nitems / nfactors)] 

GRMa[(3 * nitems / nfactors + 1):(4 * nitems / nfactors), 

 4] <- a[(3 * nitems / nfactors + 1):(4 * nitems / nfactors)] 

GRMa[(4 * nitems / nfactors + 1):(5 * nitems / nfactors), 

 5] <- a[(4 * nitems / nfactors + 1):(5 * nitems / nfactors)] 

GRMa[(5 * nitems / nfactors + 1):(6 * nitems / nfactors), 

 6] <- a[(5 * nitems / nfactors + 1):(6 * nitems / nfactors)] 

set.seed(seed) 

latmat <- rmvnorm(sample.size, c(0, 0, 0, 0, 0, 0), covmat) 

dataGRMCL <- matrix(NA, nrow =  sample.size, ncol = nitems) 

dataGRMCL[1:sample.size, ] <- DGP(GRMa, b[1:nitems], rep("GRM", 

nitems), latmat) 

colnames(dataGRMCL[1:sample.size, ]) <- paste0("item", 1:nitems) 

#Estimation: cross-loadings for 6 D model cl clusters  

    myGRMCLLap1 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                             model = mydim, 

                             modeltype = rep("GRM", nitems),  

                             first.step = 25,  

                             optimizer = "BHHH",  

                             method = "lap",  

                             maxit = 200, 

                             accuracy = 1, 

                             obsinfo = TRUE,  

                             thetaupdate = TRUE)) 

    if(myGRMCLLap1$iter >= 200) { 

      myGRMCLLap1 <- try(lamle(y = dataGRMCL[1:sample.size, ],  
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                               model = mydim, 

                               modeltype = rep("GRM", nitems),  

                               first.step = 25,  

                               optimizer = "BFGS",  

                               method = "lap", 

                               accuracy = 1,  

                               obsinfo = TRUE,  

                               thetaupdate = TRUE)) 

    } 

    myGRMCLLap2 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                             model = mydim, 

                             modeltype = rep("GRM", nitems),  

                             first.step = 25,  

                             optimizer = "BHHH",  

                             method = "lap",  

                             maxit = 200, 

                             accuracy = 2, 

                             obsinfo = TRUE,  

                             thetaupdate = TRUE)) 

    if(myGRMCLLap2$iter >= 200) { 

      myGRMCLLap2 <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                               model = mydim, 

                               modeltype = rep("GRM", nitems),  

                               first.step = 25,  

                               optimizer = "BFGS",  

                               method = "lap", 
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                               maxit = 200, 

                               accuracy = 2,  

                               obsinfo = TRUE,  

                               thetaupdate = TRUE)) 

    } 

    myGRMCLLap1FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                    model = mydim, 

                                    modeltype = rep("GRM", nitems),  

                                    first.step = 25,  

                                    optimizer = "BHHH",  

                                    method = "lap",  

                                    maxit = 200, 

                                    accuracy = 1, 

                                    obsinfo = TRUE,  

                                    thetaupdate = FALSE)) 

    if(myGRMCLLap1FastObs$iter >= 200) { 

      myGRMCLLap1FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                      model = mydim, 

                                      modeltype = rep("GRM", nitems),  

                                      first.step = 25,  

                                      optimizer = "BFGS",  

                                      method = "lap", 

                                      maxit = 200, 

                                      accuracy = 1,  

                                      obsinfo = TRUE,  

                                      thetaupdate = TRUE)) 
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    } 

     

    myGRMCLLap2FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                    model = mydim, 

                                    modeltype = rep("GRM", nitems),  

                                    first.step = 25,  

                                    optimizer = "BHHH",  

                                    method = "lap",  

                                    maxit = 200, 

                                    accuracy = 2, 

                                    obsinfo = TRUE,  

                                    thetaupdate = FALSE)) 

        if(myGRMCLLap2FastObs$iter >= 200) { 

      myGRMCLLap2FastObs <- try(lamle(y = dataGRMCL[1:sample.size, ],  

                                      model = mydim, 

                                      modeltype = rep("GRM", nitems),  

                                      first.step = 25,  

                                      optimizer = "BFGS",  

                                      method = "lap", 

                                      maxit = 200, 

                                      accuracy = 2,  

                                      obsinfo = TRUE,  

                                      thetaupdate = TRUE)) 

          } 

     

  } 
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    # Combine the generated values in a list 

  if (model.type=="IND"){ 

    data <- list(a = a, 

                 b = b, 

                 seed = seed, 

                 dataGRMIND = dataGRMIND[1:sample.size, ], 

                 myGRMINDLap2FastObs=myGRMINDLap2FastObs, 

                 myGRMINDLap2=myGRMINDLap2, 

                 myGRMINDLap1FastObs=myGRMINDLap1FastObs, 

                 myGRMINDLap1=myGRMINDLap1) 

  }else if (model.type == "CL"){ 

    data <- list(a = a, 

                 b = b, 

                 seed = seed, 

                 dataGRMCL=dataGRMCL[1:sample.size, ], 

                 myGRMCLLap2FastObs=myGRMCLLap2FastObs, 

                 myGRMCLLap1FastObs=myGRMCLLap1FastObs, 

                 myGRMCLLap1=myGRMCLLap1, 

                 myGRMCLLap1=myGRMCLLap1) 

  } 

  #Combine the results in a single data set 

  if (model.type=="IND"){ 

    result <- list(sample.size=sample.size, 

                   nitem=nitems, 

                   model.type=model.type,  
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                   ncategories=ncategories,  

                   nfactors=nfactors, 

                   myGRMINDLap1.par=myGRMINDLap1$par,  

                   myGRMINDLap1.iter=myGRMINDLap1$iter, 

                   myGRMINDLap1.Amat=myGRMINDLap1$Amat, 

                   myGRMINDLap1.timing=myGRMINDLap1$timing, 

                   myGRMINDLap2.iter=myGRMINDLap2$iter, 

                   myGRMINDLap2.par=myGRMINDLap2$par, 

                   myGRMINDLap2.Amat=myGRMINDLap2$Amat, 

                   myGRMINDLap2.timing=myGRMINDLap2$timing, 

                   myGRMINDLap2FastObs.iter=myGRMINDLap2FastObs$iter, 

                   myGRMINDLap2FastObs.par=myGRMINDLap2FastObs$par, 

                   myGRMINDLap2FastObs.Amat=myGRMINDLap2FastObs$Amat, 

                myGRMINDLap2FastObs.timing=myGRMINDLap2FastObs$timing, 

                   myGRMINDLap1FastObs.iter=myGRMINDLap1FastObs$iter, 

                   myGRMINDLap1FastObs.par=myGRMINDLap1FastObs$par, 

                   myGRMINDLap1FastObs.Amat=myGRMINDLap1FastObs$Amat, 

               myGRMINDLap1FastObs.timing=myGRMINDLap1FastObs$timing, 

                   accuracy=myGRMINDLap1$accuracy, 

                   a=a, 

                   b=b, 

                   GRMa=GRMa, 

                   covmat=covmat, 

             #Observed information matrix 

             SE.M1Lap1=sqrt(diag(solve(-data$myGRMINDLap1$Amat))), 

           #Fast observed information matrix 
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         SE.M2Lap1=sqrt(diag(solve(-data$myGRMINDLap1FastObs$Amat))), 

           #Sandwich estimator from observed information matrix 

SE.M3Lap1=sqrt(diag(solve(data$myGRMINDLap1$Bmat))), 

                 #Sandwich estimator from observed information matrix 

SE.M4Lap1=sqrt(diag(solve(-myGRMINDLap1$Amat) %*% myGRMINDLap1$Bmat 

%*% solve(-myGRMINDLap1$Amat))), 

            #Sandwich estimator from fast observed information matrix 

        SE.M5Lap1=sqrt(diag(solve(-myGRMINDLap1FastObs$Amat) %*% 

myGRMINDLap1FastObs$Bmat %*% solve(-myGRMINDLap1FastObs$Amat))), 

                   #LAPLACE 2 se  

                   #Observed information matrix 

                   SE.M1Lap2=sqrt(diag(solve(-myGRMINDLap2$Amat))), 

                   #Fast observed information matrix 

              SE.M2Lap2=sqrt(diag(solve(-myGRMINDLap2FastObs$Amat))), 

                   #Empirical cross-product matrix 

                   SE.M3Lap2=sqrt(diag(solve(myGRMINDLap2$Bmat))), 

                  #Sandwich estimator from observed information matrix 

                   SE.M4Lap2=sqrt(diag(solve(-myGRMINDLap2$Amat) %*% 

myGRMINDLap2$Bmat %*% solve(-myGRMINDLap2$Amat))), 

             #Sandwich estimator from fast observed information matrix 

             SE.M5Lap2=sqrt(diag(solve(-myGRMINDLap2FastObs$Amat) %*% 

myGRMINDLap2FastObs$Bmat %*% solve(-myGRMINDLap2FastObs$Amat)))) 

  }else if (model.type == "CL"){  

    result <- list(sample.size=sample.size, 

                   nitem=nitems, 

                   model.type=model.type, 
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                   ncategories=ncategories, 

                   nfactors=nfactors, 

                   accurance=myGRMCLLap1$accuracy, 

                   myGRMCLLap1.par=myGRMCLLap1$par,  

                   myGRMCLLap1.iter=myGRMCLLap1$iter, 

                   myGRMCLLap1.Amat=myGRMCLLap1$Amat, 

                   myGRMCLLap1.timing=myGRMCLLap1$timing, 

                   myGRMCLLap2.iter=myGRMCLLap2$iter, 

                   myGRMCLLap2.par=myGRMCLLap2$par, 

                   myGRMCLLap2.Amat=myGRMCLLap2$Amat, 

                   myGRMCLLap2.timing=myGRMCLLap2$timing, 

                   myGRMCLLap2FastObs.iter=myGRMCLLap2FastObs$iter, 

                   myGRMCLLap2FastObs.par=myGRMCLLap2FastObs$par, 

                   myGRMCLLap2FastObs.Amat=myGRMCLLap2FastObs$Amat, 

myGRMCLLap2FastObs.timing=myGRMCLLap2FastObs$timing, 

                   myGRMCLLap1FastObs.iter=myGRMCLLap1FastObs$iter, 

                   myGRMCLLap1FastObs.par=myGRMCLLap1FastObs$par, 

                   myGRMCLLap1FastObs.Amat=myGRMCLLap1FastObs$Amat, 

myGRMCLLap1FastObs.timing=myGRMCLLap1FastObs$timing, 

                   a=a, 

                   b=b, 

                   GRMa=GRMa, 

                   covmat=covmat, 

                   #LAPLACE 1 se "CROSSLOADING" MODELS  

                   #Observed information matrix 
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                   SE.CLM1Lap1=sqrt(diag(solve(-

data$myGRMCLLap1$Amat))), 

                   #Fast observed information matrix 

                   SE.CLM2Lap1=sqrt(diag(solve(-

data$myGRMCLLap1FastObs$Amat))), 

             #Sandwich estimator from observed information matrix 

SE.CLM3Lap1=sqrt(diag(solve(data$myGRMCLLap1$Bmat))), 

            #Sandwich estimator from observed information matrix 

                   SE.CLM4Lap1=sqrt(diag(solve(-myGRMCLLap1$Amat) %*% 

myGRMCLLap1$Bmat %*% solve(-myGRMCLLap1$Amat))), 

           #Sandwich estimator from fast observed information matrix 

             SE.CLM5Lap1=sqrt(diag(solve(-myGRMCLLap1FastObs$Amat) %*% 

myGRMCLLap1FastObs$Bmat %*% solve(-myGRMCLLap1FastObs$Amat))), 

                   #Observed information matrix 

                   SE.CLM1Lap2=sqrt(diag(solve(-myGRMCLLap2$Amat))), 

                   #Fast observed information matrix 

                   SE.CLM2Lap2=sqrt(diag(solve(-

myGRMCLLap2FastObs$Amat))), 

                   #Empirical cross-product matrix 

                   SE.CLM3Lap2=sqrt(diag(solve(myGRMCLLap2$Bmat))), 

                  #Sandwich estimator from observed information matrix 

                   SE.CLM4Lap2=sqrt(diag(solve(-myGRMCLLap2$Amat) %*% 

myGRMCLLap2$Bmat %*% solve(-myGRMCLLap1$Amat))), 

             #Sandwich estimator from fast observed information matrix 
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                   SE.CLM5Lap2=sqrt(diag(solve(-

myGRMCLLap2FastObs$Amat) %*% myGRMCLLap2FastObs$Bmat %*% solve(-

myGRMCLLap2FastObs$Amat)))) 

  } 

  return(result) 

} 

# end of generate function  

#Simulations 

library(doParallel) 

library(mvtnorm) 

library(dplyr) 

library(lamle) 

mydir="/home/munyakam/k/" 

#mydir="C:/Users/andre/Desktop/tbR/" 

# Set up all the conditions 

R = 1000 

seed = sample.int(1000000, 1000) 

sample.size = c(250,1000,4000) 

nitems = c(12,24) 

model.type = c("IND", "CL") 

ncategories= c(2,5) 

nfactors=3 

# Register four clusters 

cl <- makeCluster(30)  

registerDoParallel(cl) 

# Run nested foreach loops 
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simresults <- foreach(s=model.type, 

.packages = c("lamle","doParallel","mvtnorm",  "dplyr"), 

.combine = rbind) %:% 

  foreach(n=sample.size, 

 .packages = c("lamle", "doParallel",  "mvtnorm", "dplyr"), 

          .combine = rbind)  %:% 

  foreach(k=ncategories,  

          .packages = c("lamle", "doParallel", "mvtnorm", "dplyr"), 

          .combine = rbind)  %:% 

    foreach(d=nfactors,  

          .packages = c("lamle", "doParallel", "mvtnorm", "dplyr"), 

          .combine = rbind)  %:% 

    foreach(j=nitems,  

          .packages = c("lamle", "doParallel", "mvtnorm", "dplyr"), 

          .combine = rbind)  %:% 

    foreach(i=1:R,  

          .packages = c("lamle", "mvtnorm", "doParallel", "dplyr"), 

          .combine = rbind) %dopar% { 

            # Generate item parameters and data 

            step1 <- generate_data(nitems=j, sample.size = n, 

model.type = s, nfactors = d, ncategories=k, seed=i) 

            try(saveRDS(step1, file = paste0(mydir, "rep", i,"n", n, 

"cat", k, "nfac", d,"nitem", j, "mod", s, ".RDS"))) 

          } 

# Stop the clusters 

stopCluster(cl) 
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Appendix III: Supplemental Material 

Table A1 

Model Parameters for the Three-Dimensional Models 2-PL with 12 Indicators. 

 

 

 

 

 

 

 

 

 

 

 Independent Clusters   Cross Loadings  

Variable a1 a2 a3  a1 a2 a3 b 

1 0.90 0.00 0.00  0.90 1.14 0.00 -0.52 

2 1.29 0.00 0.00  1.29 0.00 0.00 -0.05 

3 1.42 0.00 0.00  1.42 0.00 0.00 1.86 

4 1.28 0.00 0.00  1.28 0.00 0.00 0.17 

5 0.00 1.07 0.00  0.00 1.73  1.86  0.80 

6 0.00 1.15 0.00  0.00 1.83  0.00  -0.70 

7 0.00 1.50 0.00  0.00 1.71  0.00  -0.87 

8 0.00 1.39 0.00  0.00 1.82  0.00  -0.17 

9 0.00 0.00 1.91  1.91  0.00  0.84  0.49 

10 0.00 0.00 1.14  0.00  0.00  1.55  -1.43 

11 0.00 0.00 1.73  0.00  0.00  1.52  -0.05 

12 0.00 0.00 1.83  0.00  0.00  0.89  -0.55 
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Table A2 

Model Parameters for the Three-Dimensional Models GRM with 12 Indicators. 

            

 

 

 

 

 

 

 

 

 

 

 

 Independent Clusters            Cross Loadings  

Variable a1 a2 a3  a1 a2 a3 b2 b3 b4 b5 

1 0.90 0.00 0.00  0.90 1.14 0.00 2.70 1.28 -0.48 -1.62 

2 1.29 0.00 0.00  1.29 0.00 0.00 2.03 1.21 -0.57 -1.88 

3 1.42 0.00 0.00  1.42 0.00 0.00 2.21 1.38 -0.24 -2.35 

4 1.28 0.00 0.00  1.28 0.00 0.00 2.81 0.73 -0.43 -2.11 

5 0.00 1.07 0.00  0.00 1.73 1.86 2.71 1.34 -0.76 -2.49 

6 0.00 1.15 0.00  0.00 1.83 0.00 2.54 1.36 -0.23 -2.26 

7 0.00 1.50 0.00  0.00 1.71 0.00 2.10 0.65 -0.96 -1.76 

8 0.00 1.39 0.00  0.00 1.82 0.00 2.88 0.75 -0.75 -2.28 

9 0.00 0.00 1.91  1.91 0.00 0.84 2.72 1.47 -0.29 -1.96 

10 0.00 0.00 1.14  0.00 0.00 1.55 2.18 1.11 -0.23 -2.19 

11 0.00 0.00 1.73  0.00 0.00 1.52 2.74 0.70 -0.26 -2.05 

12 0.00 0.00 1.83  0.00 0.00 0.89 2.37 0.68 -0.35 -2.26 
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Table A3 

Model Parameters for the Three-Dimensional Models 2-PL with 24 Indicators. 

 

 

 Independent Clusters                 Cross Loadings  

Variable a1 a2 a3  a1 a2 a3 b 

1 0.90 0.00 0.00  0.90 1.14 0.00 -0.52 

2 1.29 0.00 0.00  1.29 0.00 0.00 -0.05 

3 1.42 0.00 0.00  1.42 0.00 0.00 1.86 

4 1.28 0.00 0.00  1.28 0.00 0.00 0.17 

5 1.07 0.00 0.00  1.07 0.00 0.00 0.80 

6 1.15 0.00 0.00  1.15 0.00 0.00 -0.70 

7 1.50 0.00 0.00  1.50 0.00 0.00 -0.87 

8 1.39 0.00 0.00  1.39 0.00 0.00 -0.17 

9 0.00 1.91 0.00  0.00 1.73 1.86 0.49 

10 0.00 1.14 0.00  0.00 1.83 0.00 -1.43 

11 0.00 1.73 0.00  0.00 1.71 0.00 -0.05 

12 0.00 1.83 0.00  0.00 1.82 0.00 -0.55 

13 0.00 1.71 0.00  0.00 1.29 0.00 0.32 

14 0.00 1.82 0.00  0.00 0.87 0.00 -0.67 

15 0.00 1.29 0.00  0.00 1.49 0.00 -0.17 

16 0.00 0.87 0.00  0.00 1.69 0.00 0.09 

17 0.00 0.00 1.49  1.91 0.00 0.84 -0.57 

18 0.00 0.00 1.69  0.00 0.00 1.55 0.70 

19 0.00 0.00 1.86  0.00 0.00 1.52 -0.09 

20 0.00 0.00 0.84  0.00 0.00 0.89 -0.74 

21 0.00 0.00 1.55  0.00 0.00 1.30 1.26 

22 0.00 0.00 1.52  0.00 0.00 1.21 1.78 

23 0.00 0.00 0.89  0.00 0.00 1.04 -1.20 

24 0.00 0.00 1.30  0.00 0.00 1.81 0.68 
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Table A4 

Model Parameters for the Three-Dimensional Models GRM with 24 Indicators. 

 

 

 

 

 Independent Clusters   Cross Loadings  

Variable a1 a2 a3  a1 a2 a3 b2 b3 b4 b5 

1 0.90 0.00 0.00  0.90 1.14 0.00 2.70 1.28 -0.48 -1.62 

2 1.29 0.00 0.00  1.29 0.00 0.00 2.03 1.21 -0.57 -1.88 

3 1.42 0.00 0.00  1.42 0.00 0.00 2.21 1.38 -0.24 -2.35 

4 1.28 0.00 0.00  1.28 0.00 0.00 2.81 0.73 -0.43 -2.11 

5 1.07 0.00 0.00  1.07 0.00 0.00 2.31 0.79 -0.08 -2.11 

6 1.15 0.00 0.00  1.15 0.00 0.00 2.52 0.69 -0.29 -2.03 

7 1.50 0.00 0.00  1.50 0.00 0.00 2.37 0.90 -0.25 -1.50 

8 1.39 0.00 0.00  1.39 0.00 0.00 2.57 1.26 -0.54 -1.95 

9 0.00 1.91 0.00  0.00 1.73 1.86 2.71 1.34 -0.76 -2.49 

10 0.00 1.14 0.00  0.00 1.83 0.00 2.54 1.36 -0.23 -2.26 

11 0.00 1.73 0.00  0.00 1.71 0.00 2.10 0.65 -0.96 -1.76 

12 0.00 1.83 0.00  0.00 1.82 0.00 2.88 0.75 -0.75 -2.28 

13 0.00 1.71 0.00  0.00 1.29 0.00 2.06 0.58 -0.17 -1.90 

14 0.00 1.82 0.00  0.00 0.87 0.00 2.20 1.10 -0.32 -2.14 

15 0.00 1.29 0.00  0.00 1.49 0.00 2.05 1.12 -0.09 -1.91 

16 0.00 0.87 0.00  0.00 1.69 0.00 2.75 0.58 -0.53 -1.51 

17 0.00 0.00 1.49  1.91 0.00 0.84 2.72 1.47 -0.29 -1.96 

18 0.00 0.00 1.69  0.00 0.00 1.55 2.18 1.11 -0.23 -2.19 

19 0.00 0.00 1.86  0.00 0.00 1.52 2.74 0.70 -0.26 -2.05 

20 0.00 0.00 0.84  0.00 0.00 0.89 2.37 0.68 -0.35 -2.26 

21 0.00 0.00 1.55  0.00 0.00 1.30 2.23 1.48 -0.20 -1.68 

22 0.00 0.00 1.52  0.00 0.00 1.21 2.73 0.87 -0.90 -1.78 

23 0.00 0.00 0.89  0.00 0.00 1.04 2.29 1.43 -0.56 -2.16 

24 0.00 0.00 1.30  0.00 0.00 1.81 2.90 0.75 -0.68 -2.18 
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Table A5 

Covariance Matrix Used in the 3-Dimensional Simulation 

 

 

  

 

Note. LV= latent variable, F1= latent variable one, F2=latent variable two and F3 = latent 

variable three.  

 

 

 

 

 

 

 

LV F1 F2 F3 

F1 1.00 0.45 0.47 

F2 0.45 1.00 0.51 

F3 0.47 0.51 1.00 


