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A SPATIAL-TEMPORAL MODEL FOR TEMPERATURE WITH

SEASONAL VARIANCE

FRED ESPEN BENTH, JŪRATĖ ŠALTYTĖ-BENTH, AND PAULIUS JALINSKAS

Abstract. We propose a spatial-temporal stochastic model for daily average tempera-
ture data. First we build a model for a single spatial location, independently on the spatial
information. The model includes trend, seasonality and mean-reversion, together with a
seasonally dependent variance of the residuals. The spatial dependency is modelled by a
Gaussian random field. Empirical fitting to data collected in 16 measurement stations in
Lithuania over more than 40 years shows that our model captures the seasonality in the
autocorrelation of the squared residuals, a property of temperature data already observed
by other authors. We demonstrate with some examples that our spatial-temporal model
is applicable for prediction and classification.

1. Introduction

Temperature is an important characteristic of the thermodynamical state of the atmo-
sphere, and probably the most important element since it controls or influences other
elements like, for example humidity, clouds, air pressure and precipitation. In this pa-
per we propose a spatial-temporal Gaussian random field for modelling the daily average
temperature (DAT), and fit this to data collected in Lithuania.

The changes of the spatial distribution of temperature is the result of global and local
factors. One such factor is the inflow of solar radiation, which, generally depends on the
geographical location. In Lithuania the location of seas and continents - Baltic Sea, Scandi-
navian Peninsula and Atlantic Ocean to the West of Lithuania and large Eurasia continent
to the East of the country determine differences between coastal and inland localities. The
coastal locations experience moist Baltic Sea air most of the year, while moving to the East,
temperature is influenced by the more continental atmosphere circulation regimes. Differ-
ent scales of atmosphere circulation - predominant Westerly circulation in the midlatitudes
is next important factor driven by temperature and pressure differences between warm/low
and cold/high latitudes together with the Coriolis Effect. Other factors are types of surface
layer and local relief. Seasonal fluctuations of these factors determine the characteristics
of the temperature distribution. During the year characteristics and domination of factors
may vary which can be seen on spatial distribution of the isotherms.
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Šaltytė-Benth is supported by the Norwegian Research Council under grant NFR: 155120/432.
1
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We propose to model the DAT by a Gaussian random field which is seasonally mean-
reverting in time and having a seasonal variance. Campbell and Diebold (2005) observed
that in several American cities squaring the residuals obtained after removing the trend,
seasonality and mean-reversion possessed a seasonal autocorrelation function. The same
phenomena was (more or less clearly) observed for Norwegian data and Stockholm in the
papers Benth and Šaltytė-Benth (2005a,b), where the authors suggested to model this by
a deterministic seasonal variance function. Campbell and Diebold (2005) model the DAT
by an autoregressive time series with a seasonal ARCH-type dynamics for the residuals.
In the present paper we extend the simple time series model in Benth and Šaltytė-Benth
(2005a,b) to a spatial-temporal model that is consistent with the time series model for each
location, but taking into account the spatial correlation between stations. We demonstrate
that our model is simple, but yet powerful enough to model the most important statistical
properties of the temperature dynamics.

We consider two examples involving temperature prediction and classification, demon-
strating that our model is analytically tractable for natural applications. The question of
future temperature prediction is important given a statistical model, and we apply kriging
techniques in order to predict the day-ahead temperature together with the error in a city
which is not included in the data set used for estimating the model. Since temperature is
part of a set of variables used to classify weather and climate regions, one may ask how
discriminant analysis can be applied to our model. We show that it is indeed possible
to set up a classification scheme, and demonstrate this with considering the question of
assigning a station to a climate region solely on temperature observations.

Many papers dealing with temperature modelling have analysis of financial weather
derivatives in mind as the prime application. Campbell and Diebold (2005) argue for
their model in light of such applications, and the motivation of Benth and Šaltytė-Benth
(2005a,b) is to price financial weather contracts. In order to do so successfully, one needs to
have a model that is easily formulated in a continuous-time set-up, which will be the case
for our suggested temperature dynamical model. In the weather derivatives markets there
are investors who issue (or buy) contracts based on temperature in many locations, and
the spatial dependency structure then becomes important. Furthermore, one may think
of an investor whose profit is highly dependent on temperature at a location for which
there are no derivatives traded (e.g. a ski resort). This investor will benefit from a spatial
model to be able to see how his location is dependent on a location for which there exists
official and trustable measurements of temperature, and where derivatives may be issued.
This is a financial application of our spatial-temporal temperature model. Among several
papers dealing with temperature derivatives, we would like to mention Alaton, Djehiche
and Stillberger (2002) who analyze a Swedish temperature series using a mean-reverting
model having monthly variability in the residuals. Brody, Syroka and Zervos (2002) analyze
a mean-reverting fractional Brownian motion to model temperature.

The rest of the paper is divided into 3 sections. The next one contains a detailed
description of the temperature data collected in Lithuania. Here we perform a simple
statistical analysis to get more feeling about such features as normality, seasonality and
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other properties. This helps us to do some considerations about the possible model. We
present the model in the first part of the third section. Later we fit the suggested model
to our data. Analysis of residuals shows that the proposed model captures the properties
of data quite well. Here we also perform a validation of our model. In the last section
we demonstrate with some examples how our model can be applied to prediction and
classification.

2. The Data

We start with a description of the collection of temperature data. There are 20 me-
teorological stations in Lithuania (see Fig. 1), where temperatures are measured every 3
hours from 00:00 to 21:00 UTC in degrees of Celsius. Our objective in this paper is DAT,
which is obtained by averaging the 8 values of temperature observed a certain day at each
station. The data base is available through the Lithuanian Hydrometeorological Service in
Vilnius, Lithuania.
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Figure 1. Map of Lithuania with measurement stations and climate regions
marked with Roman numerals. T.Vokė is abbreviation for Traku̧ Vokė.
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In most of the stations we have observations in electronic form starting in the beginning
of 1961, except for Vilnius where the starting point is the beginning of June 1964. We
exclude 4 measurement stations (Dūkštas, Lazdijai, Palanga and Traku̧ Vokė) from the
analysis because of too many missing observations. There were some missing observations
in other stations as well, which we filled in (for each station separately) by the average of
observations made at the same day in the last 5 years.

In order to have time series of equal length in all 16 stations, as a starting point we
choose the 1st of June 1964. DAT are ranging until the 31 of August 2004 resulting in
14692 observations. When illustrating our results graphically, we choose only 4 stations:
Klaipėda, Teľsiai, Dotnuva and Vilnius. The choice of these stations was based on the
climate map of Lithuania, where there are 4 regions, and the 4 chosen stations are repre-
sentatives of these climate regions. In Fig. 2 we plot the DAT from the beginning of 2001
(3 years and 8 month), as the pattern for other time periods is basically the same.

Before proceeding to the modelling of DAT, we give some simple descriptive statistics
characteristics for all 16 stations, that are resumed in Table 1. The variation in different
characteristics of DAT is not big among the stations. The median DAT and the average
DAT are somewhat different from each other, which may indicate a deviation from the
normality in data. The values of skewness and kurtosis are also supporting the hypothesis
of non-normality in DAT: both they are small, but still different from zero. Note that
all values of skewness and kurtosis are negative, indicating left skewness and a less peaky
distribution than the normal.

Analysis of histograms of all stations confirms the conclusions reached above. All 16
histograms have similar shape. In Fig. 3 we present the histograms of the 4 representative
stations. All they have left skewness and have no clear peak which is contradictory to
the normality. In fact, the distributions seem to be bimodal, which can be explained by
different seasons of cool and warm weather. We performed a correlation analysis between
stations, where correlations for each pair of time series were calculated. All correlations
are very close to +1 and (as expected) depend on distance between stations: observations
in stations far apart are less correlated than in those within shorter distances. High values
of the correlations can be explained by fact that stations are relatively close to each other
(the longest distance between two stations being approximately 292km) and temperatures
in Lithuania vary in a quite similar manner on long time scales.

Values of the Kolmogorov-Smirnov statistics were statistically significant for all 16 mea-
surement stations at the 1% level, which gives us a strong evidence of non-normality in
DAT. To be confident in the choice of the model, we also check for the presence of au-
tocorrelation in DAT. From Fig. 4 we see a strong seasonal variation in the values of
autocorrelations, indicating seasonal heteroskedasticity in data.

Before defining our spatial-temporal Gaussian random field, let us briefly describe the
modelling idea in connection to the DAT observations. In view of the many discussions of
a global warming (see e.g., Rassmusson et al. (1993) or Handcock and Wallis (1994)), a
first step in the data analysis would be to check for the presence of a linear trend. Next,
we investigate the seasonal pattern of the DAT. Already from Fig. 2 it is obvious that
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Figure 2. DAT in Klaipėda, Teľsiai, Dotnuva and Vilnius in the period
2001 01 01 to 2004 08 31.

temperatures vary with season, being low in the winter and high in the summer. We
model these seasonal variations with a simple cosine function.

Due to natural cyclic/periodic temperature variations, which are seen on diurnal, inter-
seasonal or annual time scales, temperature has a tendency to revert back to its mean over
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Figure 3. Histograms of DAT in Klaipėda, Teľsiai, Dotnuva and Vilnius.

time. This mean-reverting property is modelled by a first order autoregressive (AR(1))
process.

We eliminate step by step the different modelling components from the data. First, we
eliminate the linear trend, then we deseasonalize data and apply AR(1) for the resulting
data. We show that the obtained residuals in the AR(1) model are not uncorrelated and far
from being normal. The autocorrelation function for squared residuals reveals the presence
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Figure 4. Autocorrelation functions of DAT in Klaipėda, Teľsiai, Dotnuva
and Vilnius.

of a seasonally dependent variance, which we explain using a truncated Fourier series. After
we model daily seasonal variance and remove its effect from data, the residuals become
close to normal, being only slightly correlated for the few first lags, and uncorrelated when
the number of lags increases.
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After fitting the process at each location separately as a time series, we turn our attention
to the spatial modelling. We suppose that the residuals come from a Gaussian random
field and fit the spatial correlation function based on the empirical correlations between
locations.

3. Model

In this section we define the spatial-temporal Gaussian random field that we propose for
modelling the temperature evolution in time and space. After doing this we fit the model
to the DAT observations we have available for Lithuania, and finally validate our model
by comparing with observations from locations not included in the estimation procedure.

3.1. Model specification. Spatial-temporal data can be considered as a realization of a
random field {

Z(s; t) : s ∈ D ⊂ R2, t ∈ [0,∞)
}
,

where s and t define spatial and temporal coordinates, respectively.
Typically, a spatial-temporal model Z(s; t) is decomposed into a mean component µ(s; t)

modelling the trend, and residual component ε(s; t) modelling the fluctuations around the
trend in both space and time. Hence, the decomposition of the spatial-temporal random
field Z(s; t) can be written as

(1) Z(s; t) = µ(s; t) + ε(s; t),

where µ(s; t) is a deterministic function of the space-time coordinates. We suppose it to
be given by

(2) µ(s; t) = S(s; t) + α(s) (Z(s; t− 1)− S(s; t− 1))

where the mean-reversion parameter α(s) is assumed to be non-random. It can be assumed
to depend on time, but the data analysis suggested that it is stable over time so we suppose
no dependency on t here. Furthermore, we factorize the residual field into

(3) ε(s; t) = σ(s; t)ε(s; t)

where σ(s; t) is a nonrandom seasonal function, satisfying the condition

(4) σ(s; t) = σ(s; t+ 365)

for any time t. Assume that

(5)
{
ε(s; t) : s ∈ D ⊂ R2, t ∈ [0,∞)

}

is a zero-mean stationary Gaussian spatial-temporal random field which is independent in
time and having a spatial correlation function defined by the parametric model

(6) corr {ε(s; t), ε(s+ hs; t)} = ρ(hs; θs)

for all s, s+ hs ∈ D. We assume that the cross-correlation in time and space is equal to
zero, and note that the random field ε(s; t) has the following properties:
A1. Residuals are uncorrelated but dependent in time.
A2. Residuals are correlated in space.
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The stated properties and assumptions lead us to the following model of the spatial-
temporal covariance function for ε(s; t) defined in (3):

(7) C(s, s+ hs; θ) = ρ(hs; θs)Σs(θt)Σs+hs
(θt),

where Σs(θt) is a diagonal variance matrix at the location s ∈ D. We denote by θ =
(θs; θt)

T ∈ Θ the k × 1 parameter vector, where Θ is an open subset of Rk, in (6) and (7).
Here T means transposing.

First, we consider a temporal model appropriate for a temperature field at a single
spatial location (measurement station), i.e. we deal with the time series of data from each
station, independent on the spatial information. Denote by Zi(t) a time series at the spatial
location si ∈ D, i = 1, ..., n, t = 1, ..., T . Our spatial-temporal model considered at a single
spatial location becomes then the time series

Zi(t) = µi(t) + εi(t),

where µi(t) and εi(t) denote the mean and residual process at the moment t = 1, ..., T at
the spatial location si ∈ D, i = 1, ..., n, respectively. Here

(8) µi(t) = Si(t) + αi (Zi(t− 1)− Si(t− 1)) ,

where

(9) Si(t) = ai0 + ai1t+ bi1 + bi2 cos(2π(t− bi3)/365),

describes the linear trend and the seasonality in DAT. The speed in which the DAT reverts
back to its mean is denoted by αi.

We assume that the residual process εi(t) is of the following form

εi(t) = σi(t)εi(t),

where σi(t) is a seasonally dependent standard deviation function, and εi(t) is a zero-mean
temporally independent Gaussian random process with standard deviation equal to one.
Here we assume that

(10) σ2
i (t) = ci1 +

4∑

k=1

[
ci2k cos(2kπt/365) + ci2k+1 sin((2k + 1)πt/365)

]
.

In the subsection below we fit the suggested model to the Lithuanian DAT.

3.2. Model fitting. Alaton et al. (2002) and Campbell and Diebold (2005) consider data
sets of DAT observed for more than 40 years in Sweden and the USA, respectively. They
show that there has been a clear increase of DAT over the years. We check if there is
a linear trend in Lithuanian DAT by running a simple linear regression. The obtained
slopes are all approximately equal to 0.0001 as intercepts vary in the interval [5.46, 6.91].
Values of these parameters for 16 stations are presented in Table 2 (columns 2 and 3). All
obtained values are significant at the 1% level. Hence, we have a linear trend in DAT. This
basically means that the DAT from the middle of 1964 to the middle of 2003 has increased
approximately by 1.5oC in Lithuania. The positive trend corresponds to the increase in
the global mean temperature, which has risen over the past hundred years by about 0.6oC
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and is now increasing more rapidly. This phenomena is coursed by global warming. These
facts have resulted in more extreme weather events such as droughts, heavy precipitation
patterns, floods, hurricanes etc.

We eliminate the obtained linear trend from the DAT and model the seasonal effects of
residuals. Already from Fig. 2 it is obvious that DAT follows certain periodical pattern
which we describe with the function Si(t) in (9). Parameters of the seasonal part of
this function are fitted using the nlinfit procedure in MATLAB, and the estimates are
reported in Table 2 (columns 4, 5 and 6).

Further we remove seasonal effects from DAT and apply an AR(1)-model, or mean-
reverting model for the obtained residuals. The values (see Table 2, last column) of the
coefficients αi are slightly above 0.80 for all 16 stations and do not vary much from station
to station. All values are statistically significant at the 1% level. We also fitted the
constant, which turned out to be statistically insignificant and therefore assumed to be
equal to zero.

Autocorrelation functions of the residuals obtained after eliminating the linear and sea-
sonal trends, and the influence of the mean reversion process, are presented in Fig. 5. The
values of the autocorrelation function for the first two lags are quite high but decrease
very rapidly and vary around zero for bigger lags. To get more information on the tem-
poral dependencies in the residual process we analyze the autocorrelation function for the
squares. Plots of the autocorrelation functions of squared residuals are given in Fig. 6.
Here we observe a clear seasonal pattern which is an indication of the time dependency in
the variance of residuals, which we now model.

First, we calculate the daily empirical variance by averaging the values of the squared
residuals of the particular day over all years. Then we model it by the truncated Fourier
function (10). The fitted parameters of this function are presented in Table 3. In Fig. 7 we
present the empirical σ2

i (t)-functions together with fitted ones for each station separately.
It is obvious that the fluctuations in cold season temperatures are considerably higher then
those during warm season. This observation is consistent with the cold season’s interchange
of warm Atlantic air and cold Arctic air advection as well as atmosphere blocking activities,
which produce strong extreme temperature anomalies and are stronger and more frequent
during the cold season over north Atlantic-Europe sector (Stankūnavičius and Jalinskas,
2001).

Autocorrelation functions for residuals and squared residuals obtained after eliminating
the seasonal dependency in the variance are presented in Fig. 8 and Fig. 9, respectively.
The autocorrelation function of the residuals basically shows that we are left with zero-
mean uncorrelated noise. The autocorrelation function of squared residuals decays for the
several first lags and then simply varies around zero, clearly indicating that we managed
to remove the seasonality in the variance. The rapid decay of the correlation for the first
few lags may be modelled using, for example, a GARCH-process (see Bollerslev (1986) for
more on such processes and their properties).

In our model there are 15 parameters for each location. We want to have a spatial model
for each of them in order to specify Z(s; t). Note, that we are not interested in the intercept
of the linear trend as it is the same for all stations, thus we deal with only 14 parameters.
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Figure 5. Autocorrelation functions of the residuals in Klaipėda, Teľsiai,
Dotnuva and Vilnius.

First we fit the plane

P δ = λδ0 + λδ1x+ λδ2y

to each set of parameters separately. Here x and y are 16× 1 vectors of metric coordinates
of stations, and δ indicates the set of parameters and takes the values a1, bj, j = 1, 2, 3, α
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Figure 6. Autocorrelation functions of the squared residuals in Klaipėda,
Teľsiai, Dotnuva and Vilnius.

and ck, k = 1, ..., 9. The values of plane parameters and the corresponding mean square
error (MSE) values are given in Table 4.

The histograms for residuals are close to normal (see Fig. 10). Similar indications we get
when calculating the descriptive statistics characteristics analogous to those in Table 1. The
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Figure 7. Empirical and fitted σ2
i (t) in Klaipėda, Teľsiai, Dotnuva and Vilnius.

Kolmogorov-Smirnov test does not indicate clearly that the residuals are normal, however
we think that our assumption about the Gaussian random field is quite reasonable.

Since the remaining residuals in each station are not temporally correlated, we can easily
perform a spatial analysis based on them. We calculate the empirical correlations for each
pair of stations giving us 120 values altogether. The plot of empirical correlations against
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Figure 8. Autocorrelation function of the final residuals in Klaipėda,
Teľsiai, Dotnuva and Vilnius.

the corresponding distance between stations is given in Fig. 11. Distances were calculated
in meters using the program ArcView GIS 3.2a.
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Figure 9. Autocorrelation function of the final squared residuals in
Klaipėda, Teľsiai, Dotnuva and Vilnius.

Using the nlinfit function of MATLAB we fitted the following spherical spatial corre-
lation function to the empirical values

ρ(|hs| ; θs) = 1−
3

2

|hs|

θs
+

1

2

(
|hs|

θs

)3
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Figure 10. Histograms of the final residuals in Klaipėda, Teľsiai, Dotnuva
and Vilnius.

with θs = 1.1348 × 106. In Fig. 11 we also present the fitted spatial correlation function.
In fact, we tried to fit several more functions to the empirical values of the correlations,
however, none of them performed as good as the spherical correlation function.
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Figure 11. The empirical and fitted spatial correlation functions.

3.3. Model validation. It seems from the analysis above that the suggested spatial-
temporal model fits Lithuanian DAT well. Here we validate our model in the following
way.

There are 4 stations we did not use in our analysis. We use two of them, Palanga and
Traku̧ Vokė, to validate our model. In Palanga we have a time series of data ranging from
the 1st of June 1992 to the 31st of August 2004. This results in 4472 observations. In
Traku̧ Vokė, the time series are much longer. Here we take the values of DAT from the 1st
of June 1971 to the 31st of August 2004, which gives us 12146 observations. The choice of
these two stations was not random, since Palanga is outside of the area made up by the 16
locations, but not far from other stations on the cost, and Traku̧ Vokė is within the area
of the study and in addition it is just approximately 12 km away from the Vilnius station.

In Table 5 and Table 6 we present the values of the parameters estimated at the Palanga
and Traku̧ Vokė stations, respectively, together with their standard errors, and the values
of parameters obtained from our spatial model. It is clear that the model fits DAT quite
well: most of the estimated values are within two standard errors from the fitted values.

We remark in passing that we tried to fit a quite general third-order trend surface model
to the parameters as well. Naturally, values of MSE where smaller in all cases. However,
the differences in values of model parameters where only slightly different from the case of
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the plane. Taking into account the complexity of the third-order trend surface model we
prefer the plane as a spatial model for the parameters of interest.

4. Applications

Here we will demonstrate how the suggested model can be applied to temperature pre-
diction and classification. Before we proceed to the examples, let us make some additional
assumptions.

We use the detrended and deseasonalized DAT in the examples below, i.e. we consider

Z̄i(t) = αiXi(t− 1) + εi(t),

where Xi(t − 1) = Zi(t − 1) − Si(t − 1). This simplifies the notation without affecting
the analysis. We obtain the actual values for prediction by adding the trend and seasonal
function Si(t). Such simplification does not affect the classification procedure at all.

Also, we make a simplifying assumption on the mean-reverting process parameter αi.
We assume it to be a constant over space, i.e. αi = α. This seems to be quite reasonable
for Lithuania, as values of αi do not vary much from station to station (see Table 2).
Furthermore, we assume the variance to be the same for all locations, i.e. σ2

i (t) = σ2(t),
for i = 1, ..., n.

The estimates for α and σ2(t) can be found in several different ways: by averaging the
estimated parameters (see Table 2 and Table 3) over all 16 stations; by averaging the
parameters obtained using the fitted planes (see Table 4); or by using maximum likelihood
approach.

4.1. Prediction. One of the most interesting and important tasks in weather analysis
is the prediction of future weather conditions at a specific location in space. Kriging is
a well-known technique for spatial prediction (see e.g. Cressie (1993)), however, it is not
difficult to generalize it to the spatial-temporal case. The generic problem is then to predict
Z(s0; t0), s0 ∈ D, from data (Z(s1; t), ..., Z(sn; t)), t = 1, ..., T , where t0 > T is a future
time moment.

Here we apply the universal kriging approach to predict the DAT in Palanga station (s0)
for the time moment t0, which we choose to be the 1st of September 2004 (it corresponds
to t0 = 4473), that is, we predict one day ahead based on our data sample, t0 = T + 1.

Let us introduce the following notations: Ū(t) =
(
Z̄1(t), ..., Z̄n(t)

)T
,

Xt−1 = (X1(t− 1), ..., Xn(t− 1))T , and denote by R the n × n spatial correlation matrix
with elements ρ(hs; θs), and C0 the n × 1 vector consisting of the spatial correlations
ρ(si − s0; θs), i = 1, ..., n. Note that n = 16 for our Lithuanian data set.

The universal kriging prediction is then given by the equation

̂̄Z0(t0) = aT Ū(T ),

where

a = R−1C0 +R−1XT−1

(
XT

T−1R
−1XT−1

)−1 (
X0(t0 − 1)−XT

T−1R
−1C0

)
.
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The corresponding mean square prediction error (mspe) is

mspe
(̂̄Z0(t0)

)
= σ2(t0) − CT

0 R
−1C0 +

(
X0(T )−XT

T−1R
−1C0

)2
×

(
XT

T−1R
−1XT−1

)−1
.

As we do not know the true value of σ2 (t0), we estimate it using three different methods
and substitute the unknown value by one of the estimators.

Method A. We average the estimated parameters of σ2
i (t) from Table 3 over 16 stations.

Then σ̂2
A (t0) = 4.134.

Method B. We average the parameters of σ2
i (t) obtained by fitted planes (Table 4). In

this case σ̂2
B (t0) = 4.131.

Note that Method A and Method B can be used for the estimation of the parameter α
as well.

Method C. We use the maximum likelihood estimator of σ2(t):

(11) σ̂2
C (t) =

1

n− 1

(
Ū (t)− ̂̄µ (t)

)T
R−1

(
Ū (t)− ̂̄µ (t)

)
,

where ̂̄µ (t) = α̂Xt−1 is a maximum likelihood estimator of µ̄ (t) with

(12) α̂ =
(
XT

t−1R
−1Xt−1

)−1
XT

t−1R
−1Ū (t) .

Then σ̂2
C (t0) = 4.224.

After performing simple calculations we get that ̂̄Z0 (t0) = 8.3 with mspeA

(̂̄Z0 (t0)
)

=

3.18, mspeB

(̂̄Z0 (t0)
)

= 3.17, and mspeC

(̂̄Z0 (t0)
)

= 3.55, here index A,B or C indicates

the type of the estimator of σ2 (t0).
Taking into consideration the values of the linear and seasonal trend at t0 = 4473, i.e.

the 1st of September 2004, we get the predicted DAT Ẑ0 (t0) = 16.10C. Just for the
comparison we mention that the observed DAT one day earlier (i.e. the 31st of August
2004) in Palanga was 16.80C, as two days earlier it was 18.90C, and even more, the true
value of DAT in Palanga on the day when prediction was made was 15.10C. We have
reasons to believe that our model predicts the DAT well. The values of mspe are not large
indicating that the prediction is quite reliable. They are also very similar for all three
types of estimators, giving a clear indication that the suggested model captures well the
different phenomena in DAT.

It is often of interest to predict the weather for more days ahead. In order to do so we
can iterate our temperature model to get

Zi(t+ k) = Si(t+ k) + αk (Zi(t)− Si(t)) +
k∑

j=1

αjε(t+ j)

for k ≥ 1. We observe that this is again a linear Gaussian model which has the same
structure as the case k = 1 considered above. We do not go into further details about the
prediction for k bigger than one.
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4.2. Classification. There are several reasons of the different mesoclimate conditions in
Lithuania, which are considered in climate classification schemes: advection of sea air, its
primary transformation and sea breeze at the coastal part of Lithuania; orographic air-mass
uplift accompanied with activation of frontal areas on the windward slopes of the height
terrains; adiabatic descent on the downwind slopes of the height terrains; air turbulence
and intensification of the thermal convection in the hilly (as well as laky and forested)
areas; forested areas with increased radiation balance; hydrological and hydrogeological
soil characteristics (Bukantis, 1994). Kaušyla’s (1982) Lithuanian climatic regionalism
scheme, based on the genetic scheme of climate classification made by Alisov (1954) is
used in this study (see Fig. 1). From this point of view the territory of Lithuania is divided
into the following regions: Seacoast (I), Žemaitija (Samogitia) (II), Central lowland (III),
and Southeast highland (IV), which further are divided into subregions (not shown).

These regions are defined on the basis of many parameters like air temperature, wind
parameters, air humidity values, atmospheric pressure, precipitation and their intensity,
sunshine duration, meteorological parameters of the soil, etc. One may be interested if
temperature alone could be a sufficient variable for describing the climate regions. To
answer such a question we suggest to run a classification procedure. In this subsection we
illustrate how discriminant analysis could be applied for DAT in the case of two classes.

We assume that the first class Ω1 is Seacoast, consisting of the stations Nida, Klaipėda
and Šilutė. The second one Ω2 consists of the 13 remaining stations where all the three
inland regions are merged into one. In this set-up, the number of stations in Ω1 and Ω2 is
n1 = 3 and n2 = 13, respectively. We choose Palanga as the station to be classified for the
time moment t0 = 4473 corresponding to the 1st of September 2004. Remark in passing
that as we can see from the Fig. 1, Palanga belongs to the class (or climate region) Ω1.
Thus, we expect that the classification rule will assign Palanga station to the class Ω1. But
at the same time we observe that the station is close to the border of the inland regions.

Here we use the plug-in Bayes classification rule (BCR), and calculate the actual error
rate (AER). More detailed description of the procedure can be found in, for example,
Šaltytė-Benth and Dučinskas (2005). Now we present briefly the necessary mathematics
taken from that paper and adopted to the present model. Note that all the required
conditions there hold for our model.

Denote by Z̄0(t0) the observation in Palanga at the time moment t0 = T + 1, and let
z̄0(t0) be a realization of it. Define πl as a prior probability and

pl(z̄0(t0); Ψ) =
(
2πσ2(t0)

)− 1
2 exp

(
−

1

2σ2(t0)

(
z̄0(t0)− µ̄0

l (t0)
)2
)

as the probability density function of Z̄0(t0) in Ωl, l = 1, 2. Here, Ψ = (σ2(t0), µ̄
0
1(t0), µ̄

0
2(t0))

is a vector of (usually unknown) parameters, the variance σ2(t0), which is assumed to be
the same for all locations in both classes, and means µ̄0

l (t0) = αX0(T ), l = 1, 2. The
variance σ2(t0) and the parameter of the mean-revertion model α can be estimated using
Method A, B, or C. When using Method A or B, we calculate the estimators of α and
σ2 (t0) separately for each class, and take a weighted average of the two σ2(t0) estimators
with weights proportional to the number of stations in the corresponding class. Note also
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that the maximum likelihood estimators (11) and (12) in the case of two classes are

(13) σ̂2(t) =
1

n− 1

2∑

l=1

(
Ūl(t)− ̂̄µl(t)

)T
R−1l

(
Ūl(t)− ̂̄µl(t)

)
,

where ̂̄µl(t) = α̂lXl,t−1 is a maximum likelihood estimator of µ̄l(t) with

(14) α̂l =
(
XT

l,t−1R
−1
l Xl,t−1

)−1
XT

l,t−1R
−1
l Ūl(t).

Here Ūl(t) =
(
Z̄l,1(t), ..., Z̄l,nl

(t)
)T

is a so-called training sample from the class Ωl, Xl,t−1 =

(Xl,1(t− 1), ..., Xl,nl
(t− 1))T , and Rl is a nl × nl spatial correlation matrix with elements

ρ(hs; θs), l = 1, 2. Note that the estimators (13) and (14) are both unbiased, and n =
n1 + n2.

Further we assume that Z̄0(t0) is independent on the training sample.

The plug-in BCR dB

(
z̄0(t0); Ψ̂

)
= argmax{l=1,2} πlpl

(
z̄0(t0); Ψ̂

)
is obtained when the

unknown parameters are replaced with their estimators in the BCR; here

Ψ̂ =
(
̂̄µ0

1(t0), ̂̄µ
0

2(t0), σ̂
2(t0)

)
.

We note that under the assumption that the variances in both classes are the same, the
sample discriminant function corresponding to the plug-in BCR is a linear one and is
defined as

L
(
z̄0(t0); Ψ̂

)
=

1

σ̂2(t0)

(
z̄0(t0)−

̂̄µ0

1(t0) + ̂̄µ
0

2(t0)

2

)(
̂̄µ0

1(t0)− ̂̄µ
0

2(t0)
)
+ γ,

where γ = ln π1

π2
.

Usually the prior probabilities πl, l = 1, 2, are not known either. We assume that the
classes are not changing with the time. Then we can let the prior probabilities be simply
a proportion of the number of stations in each of the classes, which results in the following
values: π̂1 = 0.19 and π̂2 = 0.81.

The AER for dB

(
z̄0(t0); Ψ̂

)
in the considered case can be written as

P
(
t0; Ψ̂

)
=

2∑

l=1

πlΦ


(−1)l

(
µ̄0
l (t0)−

̂̄µ0
1(t0)+̂̄µ0

2(t0)
2

)
̂̄µ0
1(t0)−̂̄µ0

2(t0)
σ̂2(t0)

+ γ
√

(̂̄µ0
1(t0)−̂̄µ0

2(t0))
2

σ̂4(t0)
σ2(t0)


 ,

where Φ is the standard normal distribution function. Here, πl will be substituted with
π̂l. Since we do not know the true values of the means and the variance, we use their
estimators obtained by Method A and B, and their maximum likelihood estimators from

(13) and (14) in P
(
t0; Ψ̂

)
.

The values of αl and σ2 (t) obtained using Method A and Method B were very similar for
two classes. These values were slightly more different in the case when the maximum likeli-
hood estimators (Method C ) were used. This gives a very small value of the Machalanobis
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distance

∆ =

√√√√
(
̂̄µ0

1 (t0)− ̂̄µ
0

2 (t0)
)2

σ̂2 (t0)

(which also is a denominator in the function Φ in AER). Small values of ∆ indicate that
there is no clear difference between two classes.

For all three estimation methods the value of the plug-in BCR is equal to 2, which
means that Palanga station should be classified as coming from the class Ω2. The value of
AER for all three cases of estimators is approximately 0.19. First, the AER is quite high,
indicating that the discriminant analysis performed not very well. This also supports the
conclusion for the small value of ∆. On the other hand, the fact that Palanga is assigned to
the class Ω2 is a clear sign that temperature alone is not a good indicator of these regions,
perhaps as expected since there are many factors making up them. Also, it is likely that
merging three inland climate regions to the one for this example was not reasonable.

Remark that climate regions are built on the basis of the long term data. Thus, the
maximum likelihood estimators are not appropriate in the considered context, even if the
results were very similar to those obtained when using Method A and B.

As we show, it is simple to apply the discriminant analysis procedure in the case of
two classes, and we believe that for a larger geographical region with bigger changes in the
temperature it would perform much better. However, we also show that with the definition
of the two classes used, temperature is not a good indicator to associate membership to a
region.

Discriminant analysis could be applied in prediction as well. For example, rather than
using data from all stations in Lithuania, one could use only data from those which belong
to the same class as the station in question. Such an alternative approach based on
discriminant analysis could be especially useful in circumstances where the number of
stations is large.
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Table 1. Descriptive statistics characteristics

Min Q1 Mean LCLMean Skewness
Median

Stations Max Q3 Std UCLMean Kurtosis

Biržai −29.90 0.10 6.28 6.13 −0.38
6.40

26.90 14.00 9.13 6.43 −0.34

Dotnuva −28.90 0.30 6.60 6.45 −0.37
6.80

26.50 14.20 9.02 6.74 −0.37

Kaunas −26.70 0.50 6.81 6.66 −0.34
7.00

26.70 14.30 8.93 6.95 −0.43

Kybartai −26.70 0.90 7.15 7.01 −0.39
7.40

29.10 14.40 8.74 7.29 −0.29

Klaipėda −26.40 1.80 7.45 7.32 −0.29
7.40

27.30 14.20 7.94 7.58 −0.39

Laukuva −28.80 0.00 6.04 5.90 −0.30
6.10

25.80 13.30 8.64 6.18 −0.45

Nida −25.10 1.70 7.65 7.51 −0.31
7.60

26.70 14.70 8.23 7.78 −0.36

Panevėžys −29.20 0.40 6.55 6.41 −0.37
6.70

26.90 14.10 9.03 6.70 −0.34
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Raseiniai −28.20 0.20 6.30 6.15 −0.34
6.40

26.50 13.70 8.81 6.44 −0.40

Šiauliai −29.70 0.30 6.46 6.32 −0.34
6.50

27.30 14.00 8.91 6.60 −0.36

Šilutė −26.10 1.20 7.15 7.01 −0.34
7.20

26.80 14.20 8.39 7.29 −0.31

Teľsiai −29.60 0.30 6.34 6.20 −0.28
6.40

27.40 13.50 8.58 6.48 −0.45

Ukmergė −28.40 0.30 6.60 6.46 −0.39
6.80

28.20 14.20 9.12 6.75 −0.29

Utena −29.20 0.00 6.22 6.07 −0.39
6.40

27.70 14.00 9.18 6.37 −0.33

Varėna −27.70 0.30 6.49 6.35 −0.41
6.70

28.00 14.10 9.12 6.64 −0.24

Vilnius −28.30 −0.40 6.15 6.00 −0.32
6.40

27.40 14.00 9.28 6.30 −0.51
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Table 2. Fitted parameters of the linear trend, seasonal trend and mean-revertion

Stations ai0 ai1 bi1 bi2 bi3 αi

Biržai 0.0001 5.51 −0.02 11.38 44.51 0.82
Dotnuva 0.0001 5.79 0.01 11.24 44.73 0.82
Kaunas 0.0001 6.24 −0.23 11.16 44.59 0.82

Kybartai 0.0001 6.45 −0.09 10.80 45.38 0.82
Klaipėda 0.0001 6.77 −0.11 9.87 52.49 0.81
Laukuva 0.0001 5.46 −0.21 10.76 46.01 0.83

Nida 0.0001 6.91 −0.05 10.39 52.32 0.83
Panevėžys 0.0001 5.79 −0.03 11.23 44.49 0.82
Raseiniai 0.0001 5.69 −0.19 10.98 45.18 0.83
Šiauliai 0.0001 5.78 −0.11 11.08 45.80 0.82
Šilutė 0.0001 6.49 −0.13 10.39 47.03 0.82
Teľsiai 0.0001 5.57 −0.02 10.68 46.52 0.83

Ukmergė 0.0001 5.90 −0.09 11.30 44.46 0.81
Utena 0.0001 5.52 −0.09 11.38 44.22 0.81
Varėna 0.0001 5.91 −0.21 11.25 44.16 0.80
Vilnius 0.0001 5.51 −0.15 11.61 43.70 0.82

Table 3. Fitted parameters of σ2
i (t) function

Stations ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8 ci9

Biržai 6.00 3.85 1.05 1.69 0.29 0.86 1.28 −0.09 0.53
Dotnuva 5.69 3.40 0.91 1.56 0.12 0.81 1.09 0.04 0.57
Kaunas 5.56 2.92 0.85 1.34 0.02 0.83 0.92 0.10 0.55

Kybartai 5.80 2.79 0.92 1.27 0.03 0.94 0.93 0.08 0.55
Klaipėda 4.72 2.05 0.74 1.30 −1.05 1.06 0.80 −0.17 0.51
Laukuva 5.21 2.47 0.89 1.34 −0.27 0.86 0.87 −0.02 0.50

Nida 4.11 2.24 1.10 1.79 −0.12 0.78 1.05 −0.16 0.36
Panevėžys 5.94 3.56 0.91 1.55 0.15 0.88 1.13 0.03 0.52
Raseiniai 5.45 2.85 0.82 1.50 −0.02 0.86 1.01 0.05 0.52
Šiauliai 5.67 3.01 1.07 1.48 0.02 0.82 1.11 −0.07 0.50
Šilutė 5.31 2.48 0.82 1.34 −0.48 1.05 0.96 0.02 0.53
Teľsiai 5.05 2.26 0.90 1.26 −0.41 0.85 0.84 −0.05 0.52

Ukmergė 6.43 3.45 1.23 1.42 0.35 0.95 1.28 0.03 0.57
Utena 6.51 3.89 1.21 1.54 0.32 0.97 1.22 0.06 0.52
Varėna 7.01 3.98 0.90 1.31 0.41 1.05 1.15 0.23 0.53
Vilnius 5.95 3.03 0.94 1.33 −0.04 0.92 0.86 0.17 0.54
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Table 4. Fitted parameters of the plane and corresponding mean square
error (MSE)

δ λδ0 λδ1 λδ2 MSE

a1 29.91 −36.61× 10−7 −36.27× 10−7 0.087
b1 −4.59 83.46× 10−9 72.34× 10−8 0.004
b2 −2.00 41.38× 10−7 18.02× 10−7 0.063
b3 127.59 −19.69× 10−6 −11.82× 10−6 3.561
α 0.51 −32.85× 10−9 52.52× 10−9 3.19× 10−5

c1 3.17 56.06× 10−7 −16.97× 10−9 0.208
c2 −11.21 55.75× 10−7 18.97× 10−7 0.119
c3 −5.32 68.77× 10−8 96.96× 10−8 0.013
c4 −5.35 35.74× 10−8 10.79× 10−7 0.019
c5 −10.98 25.29× 10−7 15.92× 10−7 0.079
c6 5.62 38.83× 10−10 −76.75× 10−8 0.006
c7 −5.74 10.30× 10−7 10.26× 10−7 0.013
c8 3.94 42.30× 10−8 −67.14× 10−8 0.007
c9 0.25 24.73× 10−8 24.87× 10−9 0.002

Table 5. Parameters estimated at the Palanga station with the correspond-
ing values of the standard errors and values obtained from the spatial models.

ai1 bi1 bi2 bi3 αi

Estimated 7.32 −0.18 9.86 51.06 0.81
Std. error 0.24 0.06 0.08 0.48 0.01

Fitted 6.23 −0.07 10.50 47.96 0.83

ci1 ci2 ci3 ci4 ci5

Estimated 5.01 2.18 0.65 1.24 −1.34
Std. error 0.15 0.21 0.21 0.21 0.21

Fitted 4.85 2.35 0.92 1.46 −0.29

ci6 ci7 ci8 ci9

Estimated 1.19 0.62 −0.10 0.66
Std. error 0.21 0.21 0.21 0.21

Fitted 0.85 0.96 −0.09 0.49
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Table 6. Parameters estimated at the Traku̧ Vokė station with the corre-
sponding values of the standard errors and values obtained from the spatial
models.

ai1 bi1 bi2 bi3 αi

Estimated 5.99 −0.10 11.30 48.41 0.82
Std. error 0.16 0.04 0.05 0.28 0.00

Fitted 5.85 −0.16 11.27 44.79 0.81

ci1 ci2 ci3 ci4 ci5

Estimated 5.95 2.25 0.99 1.59 −0.16
Std. error 0.13 0.18 0.18 0.18 0.18

Fitted 6.27 3.47 0.95 1.39 0.10

ci6 ci7 ci8 ci9

Estimated 0.64 0.93 0.23 0.36
Std. error 0.18 0.18 0.18 0.18

Fitted 0.97 1.06 0.12 0.54


