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ABSTRACT

Context. Magnetic reconnection is a fundamental mechanism in astrophysics. A common challenge in mimicking this process numer-
ically in particular for the Sun is that the solar electrical resistivity is small compared to the diffusive effects caused by the discrete
nature of codes.

Aims. We aim to study different anomalous resistivity models and their respective effects on simulations related to magnetic recon-
nection in the Sun.

Methods. We used the Bifrost code to perform a 2D numerical reconnection experiment in the corona that is driven by converging
opposite polarities at the solar surface. This experiment was run with three different commonly used resistivity models: 1) the hyper-
diffusion model originally implemented in Bifrost, 2) a resistivity proportional to the current density, and 3) a resistivity proportional
to the square of the electron drift velocity. The study was complemented with a 1D experiment of a Harris current sheet with the same
resistivity models.

Results. The 2D experiment shows that the three resistivity models are capable of producing results in satisfactory agreement with
each other in terms of the current sheet length, inflow velocity, and Poynting influx. Even though Petschek-like reconnection occurred
with the current density-proportional resistivity while the other two cases mainly followed plasmoid-mediated reconnection, the large-
scale evolution of thermodynamical quantities such as temperature and density are quite similar between the three cases. For the 1D
experiment, some recalibration of the diffusion parameters is needed to obtain comparable results. Specifically the hyper-diffusion and
the drift velocity-dependent resistivity model needed only minor adjustments, while the current density-proportional model needed a
rescaling of several orders of magnitude.

Conclusions. The Bifrost hyper-diffusion model is as suitable for simulations of magnetic reconnection as other common resistivity
models and has the advantage of being applicable to any region in the solar atmosphere without the need for significant recalibration.

Key words. magnetohydrodynamics (MHD) — magnetic reconnection — methods: numerical — Sun: atmosphere — Sun: corona —

Sun: magnetic fields

1. Introduction

Magnetic reconnection plays a crucial role in a wide range
of phenomena in the Universe. For instance, it sparks high-
energetic bursts in the accretion disc around the black hole in
active galactic nuclei (Liu et al. 2002), it is the basis of ther-
monuclear power devices, such as the tokamak (Furth et al.
1973), and it strongly affects space weather (Paschmann et al.
1979). On the Sun in particular, this physical process has been
shown through numerical experiments to cause several remark-
able solar events, such as Ellerman bombs (EBs) and ultra-
violet (UV) bursts (e.g., Hansteen et al. 2017, 2019; Danilovic
2017; Nébrega-Siverio et al. 2017; Peter et al. 2019; Ni et al.
2021), surges and coronal jets (e.g., Yokoyama & Shibata 1995,
1996; Nishizuka et al. 2008; Pariat et al. 2009; Moreno-Insertis
& Galsgaard 2013; Archontis & Hood 2013; Fang et al. 2014;
Toriumi et al. 2015; Noébrega-Siverio et al. 2016; Wyper et al.
2016, 2017; Karpen et al. 2017; Luna & Moreno-Insertis 2021;

* Movie associated available at

www.aanda.org

to Fig. 3 is https://

Nobrega-Siverio & Moreno-Insertis 2022), and flares (e.g.,
Yokoyama & Shibata 2001; Masson et al. 2009; Cheung et al.
2019; Rempel et al. 2023; Chen et al. 2023), to mention some.
Theoretical reconnection models are commonly divided into
two types: slow-reconnection and fast-reconnection. The slow-
reconnection model developed by Sweet (1958a,b) and Parker
(1957) assumes constant diffusivity over the whole reconnec-
tion site and predicts exactly one-half of the inflowing mag-
netic energy to be converted into heat and the other half into
kinetic energy. Nonetheless, the Sweet-Parker model is not effi-
cient enough to reproduce the relatively high reconnection rate
observed in flares (e.g., Priest 2014, and references therein). The
fast-reconnection model developed by Petschek (1964) instead
assumes a diffusion layer limited to a small segment of the
boundary layer between the opposing magnetic fields with slow-
mode shock waves propagating from the diffusion region. Most
of the energy conversion in this model takes place at the shocks,
and for a specific heat ratio of y = %, two-fifths of the inflow-
ing magnetic energy is turned into heat and the remaining three-
fifths into kinetic energy. This model predicts a reconnection
rate that is high enough to reproduce flares. The Sweet-Parker
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model and the Petschek model are both steady-state models that
assume that the current sheets are stable and do not break. How-
ever, reconnection theory has shown that current sheets tend to
undergo different resistive instabilities, such as the tearing insta-
bility (Furth et al. 1963), causing plasmoids (magnetic islands) to
appear and move along the current-flow lines. As a consequence,
the reconnection rate and energy conversion rate may deviate
from the values predicted analytically with the Sweet-Parker and
the Petschek model, and careful analysis is therefore required
when studying non-stationary reconnection through numerical
simulations.

Mimicking magnetic reconnection processes from a numer-
ical perspective is challenging due to the complex behaviour
of the electrical resistivity, n, which appears in Ohm’s law as
the ratio of the electric field strength and the current density
in the rest frame of the fluid. In the solar atmosphere, this
coefficient is commonly derived from kinetic theory of parti-
cle collisions and given by Spitzer resistivity (Spitzer 1962).
However, under some conditions, such as regions of strong
magnetic field gradients, plasma instabilities can affect the
dynamics of the charged particles and can cause the resistivity
to rise beyond the Spitzer value (Roussev et al. 2002). This
effect, known as anomalous resistivity, is also a necessary com-
ponent to support the theory of dissipation of direct currents
(Heyvaerts & Priest 1984) as a significant source of coronal
heating because the collisional Spitzer resistivity is too small to
dissipate such strong currents (Adamson et al. 2013). In addi-
tion, we need to take into account the diffusive effects caused
by the discrete nature of numerical codes, which are often sig-
nificantly greater than those caused by the physical resistivity.
Especially in numerical models of the solar atmosphere, regions
of large magnetic field gradients require a diffusivity that is
much larger than the Spitzer resistivity in order to become
numerically resolvable. Because of this, it is common to apply
ad hoc terms for anomalous resistivity (Sato & Hayashi 1979;
Nordlund & Galsgaard 1995; Roussev et al. 2002; Vogler et al.
2005; Felipe et al. 2010; Adamson et al. 2013; Rempel 2014,
2017; Przybylski et al. 2022) that are set to be large around cur-
rent sheets in order to dissipate them until they become numer-
ically resolvable, but stay small elsewhere in order to keep the
Reynolds and Lundquist numbers relatively high.

For a steady Sweet-Parker- or Petschek-like reconnection
model, it is sufficient to use a localised anomalous resistiv-
ity model, which means that the resistivity is set to a non-
zero value (or to a function of spatial coordinates) in a specific
location and zero elsewhere (Innes & Téth 1999). Non-steady
reconnection models with a plasmoid instability can be sim-
ulated by using a more adaptive anomalous resistivity model,
for instance by enhancing the resistivity when the electron drift
velocity or the current density surpass a given threshold value
(e.g., Sato & Hayashi 1979), or by applying a fourth-order hyper-
diffusive operator consisting of a small global diffusive term and
a location-specific diffusion term (e.g., Nordlund & Galsgaard
1995; Gudiksen et al. 2011). However, if the numerical resolu-
tion is sufficiently high in areas of strong magnetic field gra-
dients, it is even possible to successfully simulate reconnection
with a plasmoid instability without adding any anomalous resis-
tivity terms and only using the actual resistivity in the solar atmo-
sphere (e.g., Ni et al. 2021).

In this paper, three different resistivity models are applied
on two numerical experiments for the purpose of analysing their
effects on magnetic reconnection. The first experiment mimics a
2D simulation by Syntelis et al. (2019). This enables us to com-
pare our results with already published results that were obtained
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using a different numerical code. The second experiment simu-
lates a 1D Harris current sheet. We can therefore study the diffu-
sive effects that the resistivity models have in a simple setup.

The structure of the paper is as follows. Section 2 describes
the numerical code and the model equations (Sect. 2.1) we used
for our experiments, the resistivity models (Sect. 2.2), and the
setup for the numerical experiments (Sect. 2.3). Section 3 gives a
detailed analysis of the results for the 2D experiment (Sect. 3.1)
and the 1D experiment (Sect. 3.2). Finally, Sect. 4 contains a
brief discussion of the key results of our study and summarises
the conclusions.

2. Numerical model

The simulations of this paper were performed with the Bifrost
code (Gudiksen et al. 2011). Bifrost is a massively parallel
3D code that solves the equations of magnetohydrodynamics
(MHD) on a staggered grid using a sixth-order differential oper-
ator to discretise the spatial derivatives, supported by fifth-order
interpolation operators. For the time-stepping, we chose a third-
order method (Hyman 1979). The code is modular and can
take various physical ingredients into account depending on the
experiment.

2.1. Model equations

The model equations for our experiments are given by

6p__ )

2= V- (ou), (1)
%z_v.(pu®u—‘?)—VP+JxB+pg, 2

0B =

E:—Vx(—uxB+ﬁJ), 3)

%:-V.(eu)—PV-u+Q1+Qv+QC’ “

where p, u, e, and B are the mass density, fluid velocity, inter-
nal energy per unit volume, and the magnetic field, respectively.
7, P, J, g 1 Oy, Qv, and Qc are the viscous stress tensor,
gas pressure, electric current density, gravitational acceleration,
electrical resistivity tensor, Joule heating, viscous heating, and
the Spitzer thermal conductivity term, respectively. Other terms
such as non-equilibrium ionisation, ambipolar diffusion, Hall
effect, radiative cooling, and optically thin losses are neglected
in our experiments. The gravitational term pg, with g =
0.274km 2, and the Spitzer thermal conductivity term Q¢ are
only included in the first experiment of this paper (Sect. 2.3.1).

For the equation-of-state, we used the same equation as
Syntelis et al. (2019), that is, an electrically neutral ideal gas
with a specific heat ratio of y = % and a mean molecular weight
of u = 1.2, where P and e are related to the mass density, p, and
temperature, 7', as follows:

P
e = m, (6)

where kg and my are the Boltzmann constant and mass of hydro-
gen, respectively.
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2.2. Electrical resistivity models

For the purpose of analysing the effects of the electrical resis-
tivity model on the reconnection in the corona, three differ-
ent approaches were compared: 1) the default way of handling
magnetic resistivity in Bifrost, by means of hyper-diffusion
(Gudiksen et al. 2011), hereafter referred to as the Gudiksen-11
model (see Sect. 2.2.1), 2) a resistivity that scales linearly with
the current density as was used by Syntelis et al. (2019) for
their 2D flux cancellation simulation, which is mimicked in this
paper (see Sect. 2.3.1), hereafter referred to as the Syntelis-19
model (see Sect. 2.2.2); and 3) a resistivity that scales quadra-
tically with the electron drift velocity employed by Yokoyama
& Shibata (1994) for their simulation of an emerging coronal
loop, hereafter referred to as the YS-94 model. Inspired by Sato
& Hayashi (1979), the latter resistivity model has been used in
several other papers (e.g., Shibata et al. 1992, 1993; Yokoyama
& Shibata 1996; Matsumoto et al. 2004).

For later reference, we introduce here the definitions of the
Reynolds number, Re, and Lundquist number, S,

[ulLp
9

Re = @)
n
L

Sy =22, ®)
n

where Lg = (|J|/IB|)~' is the characteristic length of the magnetic

field, and vy = [B|/ +/uop is the Alfvén speed of the plasma,

where py is the vacuum permeability.

2.2.1. Gudiksen-11 model

Based on the resistivity model developed by Nordlund &
Galsgaard (1995), the Gudiksen-11 resistivity consists of
two major terms. The first term is an electrical diffusive speed,
Un, with the x; component defined by

®

where vy, v», and 73 are scaling factors for the fast-mode wave
velocity, bulk velocity, and gradients in the velocity perpendic-

Ui = vicy + valuil + m3Axi|V Luyl,

ular to the magnetic field, respectively; and ¢y = /c2 + vf\ is

the fast-mode speed, with the sound speed c; given by ¢, =
VYP/p. In our experiments, we set v; = 0.03,v, = 0.2, and
n3 = 0.2, which are typical values used in Bifrost simulations.
In Sect. 3.1.5 we discuss how modifying these free parameters
affects the results.

The second term is a positive definite quenching operator

defined by
Qi(g) = B (10)
’ lgl + 18291/ Gmax

where Aiz is the second-order difference operator in the
x;-direction, g is the first-order derivative (with respect to any
spatial coordinate) of any MHD variable, and gmax is the maxi-
mum quenching factor. For any perturbation of the wavenumber
k, this term quickly approaches gmax as k — oo and decreases
with k? as k — 0, hence ensuring that perturbations with a wave-
length of same order as the grid size are heavily damped, while
perturbations with wavelengths that are more than one order of
magnitude larger than the grid size are only slightly damped. We
used gmax = 8 because this has been empirically shown to work
well when Bifrost was used to solve standard test problems.

Thus, the hyper-diffusive resistivity of Bifrost can be written
as a diagonal tensor, 711, given by

m aB,,
NG11,xx = E Um yA.I/QL/ + Um ZAZQZ 62

m 0B
NGilyy = ? [ ( ) + Um xAer( axz ):|

73 0B,
NGll,zz = 5 [ mxAxQx( ) + Uy yAyQJ/( )} s

dy

NG11ay = NG1yx = NG11yz = NG11zy = NG11az = N611,x = 0. (11)

This resistivity model ensures that the resistive terms in
the induction and energy equation become significant only in
the regions in which the diffusive velocity is high because of the
high fast-mode velocity, advective velocity, or strong magnetic
shocks along with strong gradients in the magnetic field, which
allow the Reynolds number to stay high outside these regions.

2.2.2. Syntelis-19 model

The Syntelis-19 resistivity, 75 19, is a scalar function given by

10, |J| < Jcril
_ 12
Is19 { no + nllJl/Jcrih IJI > Jcrit~ ( )
Syntelis et al. (2019) used mp = 3.78x102km*s™!, i =

3.78x 107 km? s~!, and J.5 = 5.00x10™* G km™". In our exper-
iments, we instead chose 77, = 7.56km?s~! in order to obtain
approximately the same inflow Alfvén Mach number as when
applying the Gudiksen-11 model on the 2D flux cancellation
experiment (Sect. 3.1), as well as an average current sheet length
similar to that of Syntelis et al. (2019). This change was needed
because the MHD solver scheme of Bifrost and the Lare3D code
employed by Syntelis et al. (2019) are different. The Lare3D
code is a Lagrangian-Eulerian Remap code (Arber et al. 2001).

2.2.3. YS-94 model

The YS-94 resistivity, 1,,,, is defined as
0, U < Ve
= 2
Mysoq min (a,(z_j _ 1) ,nmax), Vg > Vg (13)
where v; = n—Je is the electron drift velocity, and v., @, and

Nmax are free parameters. Yokoyama & Shibata (1994) used
v € [416x1077,8.32 x 10°]kms~!, & € [0.20,2000] km? s~!,
and 7max = 2000 km s~! (normalisation units and formulae are
extracted from Nozawa et al. 1992 and Yokoyama & Shibata
1996).

In our simulations, we used v, = 8.3 x 10°kms™", @ =
4.0x 108 km?s7!, and Nmax = 2000 km? s™! in order to obtain
a similar inflow Alfvén Mach number in the 2D flux cancella-
tion simulation as when using the other resistivity models. With
this, we applied a much lower value of the scaling factor « than
Yokoyama & Shibata (1994) used in their study of current sheets
located in the convection zone. Our case deals with reconnection
in current sheets that are located in the corona, where the den-
sity is several orders of magnitude lower. This causes the drift
velocity in current sheets to become several orders of magni-
tude higher. It is therefore logical that a weaker scaling factor
between resistivity and drift velocity is needed here. In addition
to the resistivity given by Eq. (13), we added a background uni-
form resistivity of 7y = 4.00 x 1072km?s~! when using this
model, similar to that of Syntelis-19.
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Fig. 1. Initial conditions for the 2D flux cancellation experiment mim-
icking (Syntelis et al. 2019). Top: map of the temperature with the mag-
netic field topology superimposed. Middle: vertical component of the
magnetic field, B;, at z = 0. Bottom: stratification of the temperature
(black) and mass density (red).

2.3. Numerical experiments
2.3.1. 2D flux cancellation experiment

The first experiment mimics the case 1 simulation by Syntelis
et al. (2019), in which reconnection is driven by converging
opposite polarities at the solar surface, leading to flux cancel-
lation in a 2D atmosphere. The computational domain was given
by x € [-30,30] Mm and z € [0,30] Mm, and it was discre-
tised over 2048 x 1024 grid points. The initial magnetic field
was a superposition of two sources of opposite polarity placed
below the photosphere, along with a horizontal uniform back-
ground magnetic field. In 2D, the magnetic field strength from
one source with a flux of F at a given distance r is F/(nrr), with
the direction given by unit vector = r/r. Thus, the initial mag-
netic field is given by

(14)

where F = 2500 GMm is the flux of each source, By = 45G
is the magnetic field strength of the horizontal background field,
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and
r=x+d)X+(z—-20)2, (15)
r=x-d)X+(z—-20)2, (16)

where d; = 1.8Mm is the initial half-separation distance
between the sources, and zp = —0.36 Mm is the height at which
the sources are located.

The initial temperature profile of Syntelis et al. (2019), set to
mimic the C7 model of Avrett & Loeser (2008), is given by

Tcnr_T o . — Zcor
T(x,2,t=0) = Typo + % [tanh(ﬂ) + 1], (17)

Wy

with Tphe = 6109K and T,y = 0.61 MK. For the location of
the bottom of the corona and the width of the transition region,
we used Zeor = 2.31Mm and wy = 0.09Mm in our simula-
tions. The initial mass density was found by requiring hydro-
static equilibrium, 0P/dz = —pg, and a photospheric density of
Ppho = 1.67x 1077 gcm™. With P given by the ideal gas law and
T given by Eq. (17), the following analytical solution was found:

cooy [ Tono + Teore™ Y71 T,
p(x.2,1 = 0) = pppoe” X0+ (—"h" = ) mLLICE)
Tpho + Teore™ T®)
where
. Z — Zcor 3 = Zeor Yo = HMyGWy Yi = HMHg Wi
Wiy ’ ¢ Wy ’ 2kB Tpho ’ 2kB Tcor
(19)

Initial magnetic field, temperature, and mass density computed
from the above equations are shown in Fig. 1. The figure shows
that the initial conditions of Syntelis et al. (2019) have indeed
been successfully mimicked.

For the bottom boundary conditions, we used a driving
mechanism where the horizontal velocity u, is defined as

vo(t) x<0
uy(x,z=0,1 = 0 x=0 , (20)
—vo(®) x>0
where
1 _
00(f) = = Vmax tanh(t t“) + 1], 21)
2 w

Umax = 1kms™!, #o = 10.1 min, and w = 1.4 min; and the mag-
netic field B is given by

o Frn® Frno .
B(x,z=0,1) = - rf(t) - r%(t) BoX, (22)
where
ri(t) = (x+d))X+ (z—20)Z, (23)
r(t) = (x—d())X + (z — 20)Z, (24)

and

STRS

s (52) e (4] -]

(25)

dit) =d; - (Umax

In addition, an absorbing layer was applied on u,, p, and e to
ensure that waves hitting the boundaries were not reflected. With
respect to the top boundary, we set u, = 0, B to be line-tied to
the flow, and applied an absorbing layer for u,, p, and e.
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Because Bifrost is designed to use periodic side-boundaries,
we superimposed additional terms to the initial and bottom
boundary conditions for B, Eqs. (14) and (22), which corre-
sponds to magnetic sources located in neighbouring domains
identical to our computational domain. This adjustment had a
negligible effect on the central parts of the domain, where the
reconnection takes place, but it ensured that the field was hori-
zontal and V - B-free at the periodic side-boundaries. For u,, p,
and e, we also applied an absorbing layer, thus keeping a peri-
odic side-boundary.

As an additional note regarding the boundaries, the
Syntelis-19 and YS-94 resistivity models in this experiment were
applied within x € [-28,28] Mm A z € [2,28] Mm. The resistiv-
ity was set uniformly to 7y outside these regions to avoid con-
flicts near the boundary layers.

2.3.2. 1D Harris current sheet

Our second experiment was a 1D Harris current sheet that was
set up in a computational domain of z € [-2, 2] Mm and was dis-
cretised over 4096 grid points. To keep this experiment relatively
simple, we neglected the gravitational term, pg, and the Spitzer
thermal conductivity term, Q¢, when solving Egs. (1)—(4). The
initial condition for the magnetic field was

B(z,1 = 0) = By tanh ((z — 20)/w) k. (26)

When we assume a uniform total pressure (the sum of gas pres-
sure and magnetic pressure) with a uniform temperature 7(z,t =
0) = Ty, the initial density is given by

Himy B(z) 2

oTo Ve (1= tanh? (z - 20)/w)).
where py is the density far away from the current sheet. In our
simulations, we used Ty = 0.61 MK, py = 10’15g cm™3, and
By = 1G (as well as w = 20 km and zp = 0) in order to
approximately match the temperature, mass density, and mag-
netic field strength in the inflow region of the current sheet of
the 2D flux cancellation experiment (Sect. 2.3.1). This ensured
that the Alfvén velocity and current density in the 1D and 2D
experiment were of the same order of magnitude in the regions
near the current sheets, which facilitated performing the same
comparisons between the same resistivity models in the two
experiments.

The boundary condition was handled by applying an absorb-
ing layer for all variables near the two boundaries to ensure that
no waves hitting the boundaries were reflected back into the
physical domain. The Syntelis-19 and YS-94 resistivities on this
experiment were applied within z € [-0.5,0.5] Mm and were set
uniformly to 7y elsewhere to avoid conflicts near the boundary
layers.

pz,t=0)=po+ 27

3. Results
3.1. 2D flux cancellation experiment
3.1.1. Overview

The simulation was run for 40 min, and the results show that
the large-scale evolution of the main quantities such as the mag-
netic field, temperature, and density agrees relatively well with
the case 1 simulation of Syntelis et al. (2019) for the three resis-
tivity models.

The two sources of opposite magnetic polarity located imme-
diately below the photosphere move towards each other with the

2.0_....I....I....I....I....I....I....I....
3 — d(t) (z<0)
— dm(t) (z=0) [

1.5
1.0
05
0.0

—0.5—3
—1.0—3

==%
e
Plad
i

Polarity position (Mm)

—1.5—3

—2.04 | I | I I I [

Fig. 2. Evolution of the magnetic polarities in the 2D flux cancella-
tion experiment. The black lines show the horizontal position of each
source, given by Eq. (25). The blue lines show the horizontal position
of the photospheric polarities, that is, the location along z = 0 where
B, reaches its maximum value. The results here are from the simulation
with the Gudiksen-11 resistivity model, but nearly identical results are
obtained with the other two resistivity models.

driving velocity given by Eq. (21) until they meet at x = 0 at
t = 40 min. Figure 2 shows that the above-lying photospheric
polarities do indeed follow the driver very well throughout the
simulation time, until they start to slow down after = 35 min,
similar to Syntelis et al. (2019).

As a consequence of the motion of the photospheric polari-
ties towards each other, the null-point, initially located 7.6 Mm
above the photosphere, is stretched into a vertical current sheet
with a length of up to ~0.6 Mm. The reconnection site moves
slowly downwards along x = 0 during the cancellation phase,
that is, from # = 10min to ¢+ = 40 min. Thermal energy from
the reconnection is transported outwards from the current sheet
along the magnetic field lines and heats up a wide nearly hor-
izontal open reconnection loop above it and a narrow closed
reconnection loop below it. The top panels of Fig. 3 show maps
of the temperature in the atmosphere at # = 40 min for each resis-
tivity model. The magnetic field topology is superimposed. The
bottom panels show the corresponding maps of the mass density
in the region surrounding the null-point'. The resistivity mod-
els are indeed capable of producing a large-scale atmospheric
response that agrees among the models, except for some differ-
ences in terms of final null-point height and maximum temper-
ature. The height of the elongated null-point (here defined as
the centre of the current sheet) at ¢t = 40 min lies at 4.05 Mm
above the photosphere in the Syntelis-19 case, 4.0 Mm in the
YS-94 case, and 3.85 Mm in the Gudiksen-11 case. The maxi-
mum temperature in the heated region at this time is 1.49 MK in
the Syntelis-19 case, 1.38 MK in the YS-94 case, and 1.78 MK
in the Gudiksen-11 case.

A movie of Fig. 3 is available online. It shows the evolution
of the temperature, magnetic field, and density throughout the
whole simulation time for the three cases. While all cases even-
tually have temperature profiles of the same structural shape,
despite some differences in terms of maximum temperature and
null-point height, the plasma inside the current sheet behaves
notably differently in each case. In the Syntelis-19 model, the
current sheet moves steadily downwards without any sign of
plasmoid generation. In the other two resistivity models, plas-
moids are generated rapidly. The current sheet in the YS-94 case

! These plots mimic the style of Syntelis et al. (2019) to facilitate

comparison.
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Fig. 3. Atmospheric response in the 2D flux cancellation experiment for the three resistivity models (columns) at = 40 min. Top: maps of the
temperature with the magnetic field topology superimposed. Bottom: maps of the mass density around the reconnection site. A movie of the full

evolution from ¢ = 0 to t = 40 min of these maps is available online.

is different from the other two cases by its remarkably lower
mass density. In the Gudiksen-11 case, the current sheet coin-
cides with a thin stripe of increased mass density. This is also
visible in the Syntelis-19 case, but to a lesser extent.

The Lundquist number at the centre of the current sheet is
~5 in the Gudiksen-11 case, ~10 in the Syntelis-19 case, and
~20-100 in the YS-94 case, while the Reynolds number inside
the current sheet approaches unity in all three cases (but it is
slightly higher in the YS-94 case). At a horizontal distance of
0.1 Mm from the current sheet, the Reynolds and Lundquist
numbers are ~10* or higher in all three models. This is as
expected because the resistivity models were scaled so that the
simulation was able to obtain roughly the same Alfvén veloci-
ties in the inflow region. The plasma-g inside the current sheet
reaches maximum values (in the top and bottom points of the
current sheet) of ~2—5 in the Gudiksen-11 case, ~1 in the
Syntelis-19 case, and ~0.5 in the YS-94 case. At a distance of
0.1 Mm from the current sheet, 8 ~ 0.1 in all three cases.

To demonstrate that the three resistivity models work differ-
ently on the current sheet, maps of the resistivity along x = 0 as
function of height relative to the vertical midpoint of the current
sheet and time for each resistivity model are shown in Fig. 4.
The dashed lines in each panel mark the top and bottom of the
current sheet. The relatively smooth behaviour of the resistivity
of the Syntelis-19 model agrees well with the fact that the cur-
rent sheet in this case evolves steadily without any sign of plas-
moid instability. Based on this, it is plausible to expect the
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current sheet in this case to follow a Petschek-like reconnec-
tion scheme, especially in terms of energy conversion, which is
analysed in Sect. 3.1.4. The resistivity of the Gudiksen-11 and
Y'S-94 models, on the other hand, varies more rapidly in its mag-
nitude due to the frequent plasmoid generation, and therefore we
expect the energy conversion rates in these cases to deviate more
significantly from the Petschek theory. While the Gudiksen-11
and Syntelis-19 resistivities inside the current sheet mostly stay
within the range of 100-1000km? s~!, the YS-94 resistivity has
a lower average value that reaches below 100km? s~! within the
boundaries of the current sheet. Along with the fact that the diffu-
sive layer is shorter than in the other cases, this explains why the
atmosphere in this case has the lowest maximum temperature:
the Joule heating scales directly with the resistivity. Although
the diffusive layer in the Gudiksen-11 case is of similar size as
in the Syntelis-19 case, the average resistivity of the current sheet
in the Gudiksen-11 case is slightly higher because the resistivity
is enhanced in the plasmoids that appear relatively frequently.
This explains why the atmosphere receives the highest amount
of heating in the Gudiksen-11 case.

3.1.2. Comparison method

We performed the same comparison between simulations and
theory as Syntelis et al. (2019) by locating the current sheet and
measuring some inflow values near it and comparing them with
values predicted from analytical formulae. To demonstrate the
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Fig. 5. Evolution of the current sheet in the 2D flux cancellation experiment for the Gudiksen-11 resistivity model at different times (columns).
Top: temperature maps zoomed in on the region around the elongated current sheet. Bottom: corresponding maps of the inverse characteristic
length L. The rectangle marks the region around the current sheet, and the inflow parameters are measured at the line segments AB and CD. S,

and S, are the top and bottom of the current sheet, respectively.

localisation of the current sheet and the regions in which the
inflow values are measured, Fig. 5 shows maps of the tempera-
ture and inverse characteristic length of the magnetic field, L, in
the surroundings of the null-point with the inflow region delim-
ited by a rectangle of points A, B, C, and D. We defined the
current sheet as the oblong vertical region along x = 0 where
the characteristic length for magnetic field, Ly, is shorter than
a chosen threshold value of 100 km, which is roughly three
grid cells because the numerical resolution of the experiments
is ~30 km. The extremes of the current sheet are indicated in
the plots with S, (top) and S, (bottom). The corresponding cur-
rent sheet length L,, is measured as the vertical distance between

these two points. The index m denotes that it is a numerically
measured value. This indexation was applied to several numer-
ically measured values in order to distinguish them from their
analytical counterparts. Points A, B, C, and D are defined such
that the AB and CD segments form vertical lines parallel to the
current sheet at 0.2 Mm to the left and right of the current sheet,
respectively. The choice of this location of the line segments
was made so that the segments lay within the range in which
the analytical formulae for the inflow values used by Syntelis
et al. (2019) are valid. We found that placing AB and CD at any
horizontal distance between 0.1 and 0.2 Mm was suitable. We
used 0.2 Mm to also be consistent with the criterion employed by
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Syntelis et al. (2019). The figure shows that the inflow rectangle
ABCDA does indeed follow the current sheet as it moves down-
wards throughout the cancellation phase.

The inflow magnetic field strength B;,, and velocity v;,, were
measured as the mean absolute value of the magnetic field and
the velocity, respectively, along the line segments AB and CD.
The Poynting influx @g, was measured by integrating the Poynt-
ing vector component perpendicular to these line segments, S , =
[E x Bl/uo = E,B;/uo, over AB and CD. The average density
along AB and CD, p;,,, was also measured because it is needed
in the calculations of the analytical estimate for the Poynting
influx.

Knowing the numerical measures By, Vi, Ly, and @g, , we
compared them with analytical estimates for B;, v;, L, and @y,
as derived by Syntelis et al. (2019). The analytical expression for
the inflow magnetic field strength B; is

d L
Bl»(d,do,L):Bm/gO -1

where d and dj are the source separation distance and the crit-
ical source separation distance, respectively. Two different ana-
lytical estimates were made for B;: 1) B;(d(t), dy, L,,), based on
the source positions with d(f) given by Eq. (25) and dy = ﬂ%;
and 2) Bi(d,(t),dom, L), based on the photospheric polarity
positions, where d,,(¢) is the half-separation distance between
the photospheric polarities, shown as the blue curve in Fig. 2,
and do,, = %’)’, where F,, = 2200GMm is the flux of each
photospheric polarity.
The analytical expression for the inflow velocity is

(28)

d
vi(vo, do, L) = f(d, do, 20) Uozo, (29)
where
max 1
F(d,do,z0) = 1 — do——mx— 20 (30)

(zmax — 20)* + d* \do/d — 1
is a flux correction factor, as explained in detail in the appendix
of Syntelis et al. (2019), with zn,x = 30 Mm as the top of the
computational domain. The factor was initially f = 0.72 when
d = 1.8 Mim, then approached 1 as d — 0. Again, two analytical
estimates were made for the inflow velocity: 1) v;(v(?), do, L),
based on the sources, with vg(f) given by Eq. (21); and 2)
0;(Vom (1), dom, L), based on the photospheric polarities, using
F(dm, dom, 0), and where vo,(f) = d,(?) is the absolute value
of the velocity of the photospheric polarities given by the time
derivative of the blue curve in Fig. 2.
The analytical current sheet length is

Mo 1
L(My,d,dy, vy, v40) = d,dy,z0) dy | — ——, (31
(My,d,dy,v0,v40) = + f(d,do,z0) do My T (3D

where M}, is the inflow Alfvén Mach number, and Mo = vy/va0
is a hybrid Alfvén Mach number based on the hybrid Alfvén
speed v4o = Bo/ /opi, a quantity introduced by Syntelis et al.
(2019) which is based on the external magnetic field By but
the inflow mass density p; (therefore “hybrid”’). We estimated
1) L(May,,,d(t), dy, vo(t), va0m) based on sources, with vag, =
BO/ \/#O_Pim’ and 2) L(MAm’ dm(t), dOm, Vom (t), UAOm) based on phO-
tospheric polarities.

The analytical Poynting influx is

2 UoB(z) My
Dy, (My,d, dy, v9,v40) = 2f7(d, dy, z0) ——do \do/d — 1——,
Ho My
(32)
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where we estimated 1) @g, (M, d(1), do, vo(t), Vaon) based on
the sources and 2) @g,(Mam, d(t), dom, Vom(t), Vaom) based on the
photospheric polarities.

We also calculated the fractions of the Poynting influx that
were converted into kinetic energy and into heat. According to
Gauss’ theorem, we have

1 1
Ps, =P —ExB-dC= f—V-(EXB)dA, (33)
A

c Mo Mo

where C is the curve over the points ABCDA, and A is its
enclosed area. This simply states that the energy increase in the
system equals the energy added into it. The above equation can,
with the help of vector calculus as well as Faraday’s law, Ohm’s
law, and Ampere’s law, be rewritten as

|q’sf|z‘f77J2dA fJ-(va)dA',
A A

which indeed tells us that the input magnetic energy is converted
into heat (first right-hand-side term) and kinetic energy (second
right-hand-side term) through reconnection. A third right-hand-
side term, fA 2 (%), was neglected here as Syntelis et al. (2019)
did the same (we measured this term in our simulations, and it is
indeed small compared to the other right-hand side terms in the
above equation). To compare the simulated energy conversion
with Petschek (1964) theory, we measured the J - (v X B) term
and the Joule heating term integrated over the rectangle A and
compared it to three-fifths and two-fifths of the Poynting influx,
respectively. For this comparison, we used both the numerical
measure @g, and the analytical estimate ®g;,.

+ (34)

3.1.3. Inflow magnetic field, velocity, and current sheet length

Figure 6 shows the comparison between the numerical results
(solid lines) and the analytical estimates based on the dynamics
of the sources (dashed curves) and the photospheric polarities
(dash-dotted curves) for the inflow magnetic field (top panels),
the inflow velocity (middle panels), and the current sheet length
(bottom panels). The quantities shown in the figure were aver-
aged over 100 s to obtain smooth lines, which reduced their rapid
fluctuations as a consequence of the non-stationary nature of the
current sheet.

It is clear from the figure that the numerical measures for
Bim, vim, and L,, in each model satisfactorily agree with each
other and with the analytical estimates, especially those based on
the photospheric response (dash-dotted curves), but they are not
identical. The current sheet length in the YS-94 case is slightly
shorter than in the other cases, which means that it deviates more
strongly from the analytical estimate. The current sheet length in
the Syntelis-19 case is similar to that of the Gudiksen-11 case in
the first 10 min of the cancellation phase, but it then declines
faster. The agreement is best in the Gudiksen-11 model for the
numerical measure for L,, and the analytical estimate for L based
on photospheric polarities. The inflow velocity in the Syntelis-
19 case is more or less the same as in the YS-94 case, both
numerically and analytically, while the inflow velocity in the
Gudiksen-11 case has a lower maximum value, and the numer-
ical measure and the analytical estimate based on photo-
spheric polarities agree better. The inflow magnetic field in the
Gudiksen-11 case has a slightly higher maximum field strength
than in the other two cases and simulation and theory agree best,
while the field strength in the YS-94 case is weakest and simu-
lation and theory deviate most.
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Fig. 6. Evolution of the relevant quantities in the 2D flux cancellation experiment for each resistivity model (columns). Top: inflow magnetic field,
both numerical measures (solid curves) and analytical estimates (dashed and dash-dotted curves). Middle: inflow velocity. Bottom: length of the
current sheet. The quantities are averaged over 100 s to reduce their rapid fluctuations.

The analytical estimates for L in each model agree very
well with each other from # = 15 min and throughout the sim-
ulations because the Alfvén Mach number, on which the ana-
Iytical current sheet length is directly dependent, agrees well.
We adjusted the input values of the diffusion scaling param-
eters of each model (7; for the Syntelis-19 model, o for the
YS-94 model, and 73 for the Gudiksen-11 model) on purpose in
order to obtain this agreement between the analytical estimates.
The analytical estimates for B; and v; agree less well when com-
paring the resistivity models because these estimates depend on
the numerical measures for L,,, which are slightly different in
each case.

3.1.4. Energy release

Figure 7 shows the energy release in the three models. The quan-
tities here are also averaged over 100s to reduce their rapid
fluctuations. The first row shows the numerical measures of the
Poynting influx @g, (solid line), and the analytical estimates
for @g, based on the source positions (dashed curve) and based

on the photospheric polarity positions (dash-dotted curve). In all
three cases, the numerical measures approach the analytical esti-
mate at # = 13 min, which is approximately the time at which the
current sheet length reaches its maximum value. After this time,
the numerical Poynting influx stays constant in each case for
the next 15 min, instead of increasing, as analytically predicted,
before it slowly decreases. These numerical measures roughly
follow the same evolution in all the three cases, however, but
they reach a slightly lower maximum value in the YS-94 case,
and are roughly of same order of magnitude as the analytical
estimates based on photospheric polarities.

The second and third rows show the fraction of the energy
that is released through reconnection that is transformed into
kinetic energy and thermal energy, respectively, compared to
three-fifths and two-fifths, respectively, of the numerical mea-
sures and analytical estimates for the Poynting influx. The
energy conversion with the Syntelis-19 model is more Petschek-
like than with the other two models, with almost exactly
three-fifths of the energy input converted into kinetic energy,
and slightly less than two-fifths converted into heat. In the
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Fig. 7. Evolution of the energy release in the 2D flux cancellation experiment for each resistivity model (columns). Top: poynting influx, both
numerical measures (solid curves) and analytical estimates (dashed and dash-dotted curves). Middle: three-fifths of the numerical measure for
the released energy (solid lines), compared to the numerical value for the kinetic energy output (dashed curves) and three-fifths of the analytical
estimate for the released energy (dash-dotted curves). Bottom: two-fifths of the numerical measure for the released energy (solid lines), compared

to the numerical value for the heat output (dashed curves) and two-fifths of the analytical estimate for the released energy (dash-dotted curves).
The quantities are averaged over 100 s to reduce their rapid fluctuations.

Gudiksen-11 model, significantly more than two-fifths of the
input energy is converted into heat. It gains more heat than
the other two models, and therefore, the agreement between
the numerically measured and analytically predicted heat out-
put is best. The YS-94 model deviates most from the Petschek
theory: less than one-fifth of the energy is converted into
heat. This agrees with Fig. 3, in which the Gudiksen-11 case
resulted in the warmest atmosphere. The maximum tempera-
ture was almost 0.3 MK higher than in the Syntelis-19 case,
while the YS-94 model had the coldest atmosphere with a
maximum temperature 0.1 MK lower than in the Syntelis-19

case.

The Syntelis-19 case follows a nearly perfect Petschek-like
energy conversion. This agrees with the fact that this simulation
has nearly no sign of plasmoid generation in the current sheet,
as seen in the movie of Fig. 3. This means that this resistivity
model allows the current sheet to undergo Petschek recon-
nection. In the YS-94 and Gudiksen-11 models, the current
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sheet undergoes

paper.

plasmoid-mediated
explains why the kinetic and thermal energy released through
reconnection is not necessarily equal to three-fifths and two-
fifths, respectively, of the input magnetic energy. Still, it is note-
worthy that these two cases, while they are plasmoid-mediated,
follow completely different energy conversion schemes. While
in the Gudiksen-11 case, more of the magnetic energy is con-
verted into heat than predicted with Petschek theory and less into
kinetic energy, in the YS-94 case, less magnetic energy is con-
verted into heat and more into kinetic energy. As we described
above, this is caused by the significantly stronger diffusive layer
in the Gudiksen-11 model than in the YS-94 model, as shown
in Fig. 4, where the Gudiksen-11 model clearly has the highest
mean resistivity along the centre of the current sheet. The
frequency of plasmoids in current sheets as a result of different
resistivity models and how this affects the heating of the sur-
rounding plasma will be studied more in detail in an upcoming

reconnection,

which
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3.1.5. Dependence on the choice of diffusion parameters

The results of the above section were obtained by setting the free
parameters of the resistivity models to specific values to ensure
that the inflow Alfvén speed has roughly the same value in all
simulation cases. In this way, we ensured that we solved a very
similar physical problem even though we used different numer-
ical approaches. In this section, we study the dependence of the
results on an adjustment of these parameters.

For the Gudiksen-11 model (Sect. 2.2.1), we originally used
vi = 0.03,v, = 0.2, and 173 = 0.2. The parameter v, affects the
electrical resistivity as well as the viscous terms, and it scales
up all the diffusive terms in the MHD equations over the entire
computational domain. Therefore, this parameter should be kept
as low as possible. It has been shown empirically that v; > 0.02
is needed to obtain stable solutions in several standard test prob-
lems to which Bifrost has been applied for a numerical solu-
tion (Gudiksen et al. 2011). We studied different choices for this
parameter for the 2D flux cancellation experiment and found
that v; = 0.03 is a suitable choice because decreasing v; below
this value leads to numerical instability in the current sheet, and
increasing it much beyond this value will make the whole prob-
lem over-diffused.

Furthermore, it has been shown empirically that v, = 0.2 is
about the minimum for numerically stable solutions in several
standard test problems (Gudiksen et al. 2011). In our case, the
length of the current sheet is only slightly affected when this
parameter was decreased below that value. However, running the
experiment with a higher value of v, led to a reduction of the
current sheet length, and therefore, to a considerable deviation
between the numerical measures and analytical estimates shown
in Figs. 6 and 7.

The only free parameter of the Gudiksen-11 model that is
interesting to adjust for our purposes is 773 because it directly
scales the electrical resistivity and has no effect on the viscosity.
We tested running the experiment with different values of 3 and
obtained that values below 0.2 are numerically unstable, while
values much higher than 0.2 increase the deviation between the
numerical measures and the analytical estimates for the inflow
values.

The simulation was also run using different values of 7; for
the Syntelis-19 resistivity model. We found that this parameter
can be decreased by an order of magnitude from the value used
for the results in the above sections without losing numerical sta-
bility. However, this reduction of this diffusion parameter causes
the current sheet length to be too long compared to the results
of Syntelis et al. (2019), thus deviating more from the analyt-
ically predicted current sheet length. A further decrease in 7,
will lead to numerical instability. When we instead increase this
parameter by an order of magnitude, the current sheet length is
too small compared to the analytical estimate. Decreasing the
threshold value Ji; has almost the same effect as increasing 7;.

The results obtained with the YS-94 resistivity model seem
to be weakly dependent on the scaling parameters: The cur-
rent sheet length and Poynting influx barely increase when «
is decreased by a factor ten. In addition, there is no significant
change in the plasmoid behaviour. Decreasing this parameter
further causes numerical instability. When the threshold value
Uerie 1s modified, it creates roughly the same effect as adjusting a
the opposite way.

For each of the three resistivity models used in this exper-
iment, we observed that the current sheet becomes numeri-
cally unstable when the anomalous resistivity is scaled down
too strongly. This also shows that the experiment cannot be run

without an anomalous resistivity for the given resolution because
the current sheet would not be numerically resolvable, unless we
were to use a uniform resistivity that is many orders of magni-
tude greater than the Spitzer resistivity, leading to very unphys-
ical results, or if we were to increase the resolution by several
orders of magnitude, causing the experiment to become expen-
sive in terms of compute resources.

3.2. 1D Harris current sheet

In the previous section, we showed that we could use three dif-
ferent resistivity models in a 2D flux cancellation experiment
and obtain relatively consistent results in terms of current sheet
length and energy release by adjusting the diffusion parameters
of each resistivity model. In this section, we begin to study the
effects of applying the same resistivity models and parameters to
the 1D Harris current sheet experiment introduced in Sect. 2.3.2.

The results of the experiment for the magnetic field B,, resis-
tivity 7, Joule heating Q;, and temperature 7 are shown in the
first two columns of Fig. 8 at two selected times: one time close
to the beginning (0.25 min), and another time at the moment
we stopped the simulation (15 min). Even though we applied
the same diffusion parameters that ensured relatively consistent
results for the 2D flux cancellation experiment, the results for
this 1D Harris sheet vary significantly depending on the resistiv-
ity model. At r = 0.25 min, the Syntelis-19 model has already
had a huge impact in terms of diffusing out the current sheet
width and heating up the plasma. The YS-94 model has a sig-
nificant diffusive effect on the current sheet at + = 15min,
but it is still small compared to the Syntelis-19 model. The
Gudiksen-11 model has apparently no diffusive effect on the
current sheet with the given values for its free parameters. By
fitting the B, profile to a hyperbolic tangent, tanh(z/w), and find-
ing the width w through the least-squares method, we find that
the width of the current sheet, which initially is 20 km, has at
t = 15 min increased to 217 km with the Syntelis-19 model and
to 30 km with the YS-94 model, but it remained at 20 km with
the Gudiksen-11 model. The reason is that the resistivity (second
row of the figure) in the Syntelis-19 model is highest: it is up to
two orders of magnitude higher than in the YS-94 model. At
the end of the simulation, in the Syntelis-19 case, its maximum
is ~15km?s~!, while for the YS-94 model, it is ~0.20km?s~!.
The resistivity stays <0.01km?s~! in the Gudiksen-11 model.
As aresult of this, the Joule heating, as seen in the third row, has
a maximum value more than one order of magnitude higher in
the Syntelis-19 case than in the YS-94 case at the early stages
of the simulation, and then this difference decreases over time as
the magnetic field is diffused and the currents are smaller. Since
the resistivity is really low for the Gudiksen-11 case, the asso-
ciated Joule heating in this case is negligible. Consequently, the
temperature profile in the current sheet, which is initially uni-
form with a value of 0.61 MK, has risen to a maximum value
above 1.1 MK in the Syntelis-19 case at t = 15 min, but only to
0.69 MK in the YS-94 case. It is unchanged in the Gudiksen-11
case. The large asymmetry seen in the temperature profile for
the Syntelis-19 case at t = 15 min is due to the tiny asymmetries
in the staggered mesh, which are rapidly magnified by the rel-
atively high diffusivity of this resistivity model (with the given
values for the diffusion parameters).

For comparison, the third and fourth columns of Fig. 8
show the results after adjusting the scaling parameter of each
resistivity model to ensure that they have roughly the same
diffusive effect on this 1D Harris sheet. The new values for
the adjusted parameters are 73 = 1.0 for the Gudiksen-11
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Fig. 8. Evolution of the 1D Harris current sheet. From top to bottom: the magnetic field B,, the resistivity 7, the Joule heating Q,, and the
temperature 7 are plotted as obtained by using the Syntelis-19 (green), YS-94 (blue), and Gudiksen-11 (red) resistivity models. The first and
second columns show the results, measured at different times, setting the diffusion parameters to the same values as used in the 2D experiment.
The third and fourth columns show the results obtained after adjusting these diffusion parameters to obtain the same behaviour on this 1D Harris

sheet for the three resistivity models.

model, n; = 3.78 x 103 km?s~! for the Syntelis-19 model,
and @ = 2.0x1078km?s™! for the YS-94 model. With the
adjusted values, all three resistivity models diffuse the cur-
rent sheet out to a final width of ~26 Mm at t+ = 15min.
The resistivity at the centre of the current sheet lies at
slightly above ~0.10km?s~! in all three cases, causing the
final Joule heating profiles to be nearly identical and the
final maximum temperature to reach about 0.66 MK in all
three cases. One noticeable difference is seen in the resistivity
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in the regions outside the current sheet, where the magnetic field
is nearly constant. The Gudiksen-11 model is nearly an order of
magnitude higher than the other two models because the resistiv-
ity of this model depends, among other factors, on third deriva-
tives of the magnetic field as well as on the gradients in the
velocity perpendicular to the field. This makes it relatively sensi-
tive to tiny perturbations in the current density that are enhanced
by the velocity perturbations that arise during the diffusion of
the current sheet. However, this enhancement of the resistivity
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outside the current sheet does not affect the temperature pro-
file at all because the current density, and hence the Joule heat-
ing, is here several orders of magnitude lower than at the cen-
tre of the current sheet. Additionally, the Lundquist number in
the Gudiksen-11 case is above 10* at any distance greater than
0.01 Mm away from the current sheet. This agrees well with the
other two resistivity models. This shows indeed that the resis-
tivity outside the current sheet has no effect on the evolution of
the plasma.

We have shown that the resistivity models resulted in com-
pletely different levels of the diffusive effect when they were
applied in this 1D Harris current sheet experiment when the
same diffusion parameter values were used that in the 2D flux
cancellation experiment gave results that agreed well. We also
demonstrated that we can easily adjust the diffusion parame-
ters to obtain roughly the same diffusive behaviour in this rela-
tively simple experiment. The free parameters of the YS-94 and
Gudiksen-11 models only needed adjustments within roughly
the same order of magnitude to obtain these results, as shown
in the second two columns of Fig. 8, but the 7; value of the
Syntelis-19 model needed to be decreased by more than three
orders of magnitude. This is due to its direct scaling with the
current density, which causes the diffusivity of this resistivity
model to be strongly dependent on the magnetic field topology.

4. Discussion

This comparative study of resistivity models has demonstrated
that we can use different types of resistivity models in the same
numerical experiment and still obtain results that agree rela-
tively well with each other. We successfully mimicked a 2D flux
cancellation experiment from Syntelis et al. (2019) and found
that using Bifrost’s hyper-diffusive resistivity model (Gudiksen
et al. 2011, referred to in this paper as Gudiksen-11) results in
a current sheet length that more or less follows the same evo-
lution as when using the current density-proportional resistiv-
ity model of the original experiment (Syntelis-19), given the
right input values for the diffusion parameters. The magnetic
field and velocity measured in the inflow region of the current
sheet also develop in a similar way when the experiment is per-
formed with each of these two resistivity models. As a result
of this, the Poynting influx evolves similarly in both cases. The
energy conversion, on the other hand, follows different schemes
in each case. While the energy conversion in the Syntelis-19
case agrees with the Petschek theory, the current sheet in the
Gudiksen-11 case undergoes plasmoid-mediated reconnection
and a significantly higher portion of the magnetic energy is con-
verted into heat. As a result, the maximum temperature is higher
in this last case. The drift velocity-dependent resistivity model
(YS-94), previously applied by Yokoyama & Shibata (1994),
among others, was also applied for the same experiment. The
results obtained when using this resistivity model also agree sat-
isfactorily with the results from the other two resistivity mod-
els. The current sheet is slightly shorter and the inflow magnetic
field is slightly weaker, however, leading to a significantly lower
Poynting influx. Despite undergoing plasmoid-mediated recon-
nection, a lower portion of the input magnetic energy is con-
verted into heat in this case than in the Petschek-conform
Syntelis-19 case, in contrast to the Gudiksen-11 case, in which
the conversion rate of magnetic energy to heat is higher. There-
fore, the heated region has a lower temperature than in the other
two cases. Except for the differences in terms of plasmoid gen-
eration and energy conversion, the temperature and mass density
profiles of all three cases have a similar structural shape.

Furthermore, we observed that when we numerically solved
the same model equations for a 1D Harris current sheet, the
results in terms of diffusive rates and Joule heating obtained
using each of the three resistivity models were significantly dif-
ferent from each other, given the same input values for the dif-
fusion parameters as in the 2D experiment. Running the same
experiment with adjusted values for the diffusion parameters
showed that two of these resistivity models, namely Gudiksen-11
and YS-94, needed only adjustments within the same order of
magnitude for their scaling parameters in order to obtain the
same diffusive rate on the Harris sheet. The scaling parameter 7,
in the Syntelis-19 resistivity model, on the other hand, needed to
be scaled down by more than three orders of magnitude from its
value applied in the 2D experiment in order to obtain the same
diffusive rate in this 1D Harris sheet experiment as the other two
resistivity models.

One of the free parameters of the resistivity model used by
Syntelis et al. (2019) requires an adjustment of several orders
of magnitude when jumping between these two experiments
because the resistivity scales linearly with the current density.
This causes the ideal value for the scaling parameter to be
strongly dependent of the magnetic field topology of the exper-
iment when a satisfactory result is to be obtained. Moreover, its
linear proportionality to the current density causes the resistivity
to stay relatively high in relatively large areas around the cur-
rent sheet. The Lundquist number therefore increases relatively
slowly with distance from the current sheet compared to the
other two resistivity models that were tested in this paper.
Finally, because n scales with the current density, the anoma-
lous resistivity in regions near to magnetic sources needed to
be turned off. This resistivity model works in a satisfactory way
for several numerical experiments when the scaling parameter is
adjusted properly, however.

We observed that the electron drift velocity-dependent resis-
tivity model that was previously used by Yokoyama & Shibata
(1994) might be used to obtain results in both experiments of
this paper that agree satisfactorily with the corresponding results
obtained with Bifrost’s hyper-diffusion model without adjusting
the scaling parameter drastically. However, both our experiments
dealt with coronal plasma with approximately the same temper-
ature and density as well as similar magnetic field strength. The
experiment of Yokoyama & Shibata (1994), on the other hand,
which used the same resistivity model to handle current sheets
in the upper convection zone, required the scaling parameter to
be larger by several orders of magnitude. As the typical elec-
tron drift velocity and electron thermal velocity (which typically
determines the threshold velocity at which this type of anoma-
lous resistivity is to be activated) differs by several orders of
magnitude from the upper convection zone to the upper corona,
the ideal values for the free parameters of this resistivity model
strongly depend on the local plasma conditions. We were there-
fore also able to activate the anomalous resistivity of this model
only in the coronal region of our 2D experiment (as the scal-
ing parameter was set to handle coronal plasmas) and had to
apply a relatively low uniform resistivity below. Despite this, we
were fully able to use this resistivity model and obtain results in
both our experiments that agreed relatively well with the results
obtained with the other two resistivity models, after the free
parameters were adjusted properly.

The hyper-diffusive resistivity model of Bifrost (Gudiksen
et al. 2011), on the other hand, depends not only on the magni-
tude of magnetic field gradients, but also on the local fast-mode
wave velocity, fluid velocity, and velocity gradients along mag-
netic field lines. This ensures that the resistivity of this model
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becomes large only when it is really needed to be large in order
to make current sheets numerically resolvable and stay relatively
low elsewhere. With a default set of input values for the dif-
fusion parameters, this resistivity model can be applied on any-
thing from coronal plasmas to convection zone plasmas with any
type of magnetic field topology without adjusting the parameters
drastically. Therefore, this resistivity model does not need to be
turned off and replaced by uniform resistivity in specific areas
of the computational domain, but can rather be applied on the
whole domain.

It is important to point out that several simplifications were
made in this study, which is only a rough representation of
driven reconnection in the solar atmosphere. For a more detailed
study of the reconnection in the Sun, partially ionised effects
such as ambipolar diffusion (Zweibel 1989) and the Hall effect
(Huang et al. 2011) cannot be ignored, especially when study-
ing the energy balance in the chromosphere (Wargnier et al.
2023) and the heating mechanisms for EBs (Liu et al. 2023)
and UV bursts (Ni et al. 2022). These effects also play a sig-
nificant role in the structure of the inflow current density (Snow
et al. 2018), plasmoid formation (Singh et al. 2019; Murtas et al.
2021), and reconnection-driven slow-mode shocks (Hillier et al.
2016). A detailed study of the reconnection rate in plasmoid-
mediated reconnection may be performed with high-resolution
simulations of a 2D current sheet (Bhattacharjee et al. 2009).
More realistic studies of the turbulent energy cascade that occurs
in flux ropes generated along the current sheets where the
reconnection takes place can be made through high-resolution
3D MHD simulations (Dong et al. 2022) or particle-in-cell
simulations (Daughton et al. 2011). We acknowledge that the
details of the reconnection physics cannot be revealed through
MHD models with anomalous resistivity, and this is not what we
attempted to achieve with our study. With the simplifications and
assumptions that were made, however, we achieved the insight
that three relatively different anomalous resistivity models can be
applied on a well-known physical problem to obtain results that
agree relatively well with each other. The main gain in knowl-
edge with the hyper-diffusive resistivity model of Bifrost from
the results of our experiments is that it is not that strongly depen-
dent on local plasma conditions and magnetic field topology and
can therefore be applied on the whole solar atmosphere as well
as to upper convection zone in numerical models without using
different values for the free parameters in different areas of the
computational domain.
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