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ABSTRACT: This article addresses issues of model choice in Bayesian contexts,
and focusses on the use of the so-called posterior predictive p-values (ppp values).
These involve a general discrepancy or conflict measure and depend on the prior,
the model, and the data. They are used in statistical practice to quantify the
degree of surprise or conflict in data, and for purposes of comparing different
combinations of prior and model. The distribution of such ppp values is however
far from uniform, as we demonstrate for different models, making their interpre-
tation and comparison a difficult matter. We propose a natural calibration of the
ppp values, where the resulting cppp values are uniform on the unit interval under
model conditions. The cppp values, which in general rely on a double simulation
scheme for their computation, may then be used to assess and compare different
priors and models. Our methods also make it possible to compare parametric
with nonparametric model specifications, in that genuine ‘measures of surprise’
are put on the same canonical uniform scale. Our techniques are illustrated for
some applications to real data. We also present supplementing theoretical results
on various properties of the ppp and cppp.

KEY WORDS: calibration of ppp values, dipper data, double simulation, model
criticism, posterior predictive p-values, prior construction, prior predictive eval-
uation, quantification of surprise

1. Introduction and summary

Bayesian inference involves selecting a prior 7(f) for the unknown parameters 6 and a
model f(y,0) for the data y given #. In complex situations one might often need to
consider several candidates for both prior and model. This leads to questions on how to
meaningfully evaluate, compare and select among these candidates.

1.1. Existing approaches. There are by necessity several approaches to handling such
general problems. Classic goodness-of-fit remains relevant (also Bayesians might need to
check if data follow a normal distribution). Bayes factors (of which there are different
related versions) are often used, see e.g. Smith and Spiegelhalter (1980), Kass and Raftery
(1995) and Marden (2000). Related to these again is the so-called Bayesian information
criterion, the BIC (see e.g. Robert, 2001, Ch. 7). A quite general model-evaluation strategy
employs the deviance information criterion, the DIC, of Spiegelhalter, Best, Carlin and
van der Linde (2002) (see also van der Linde, 2004); this method is in widespread use
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since its computation is an easy by-product of the MCMC simulations that are often
used to simulate from the posterior distributions. Model adequacy evaluation tools partly
geared specifically towards use in hierarchical models are proposed and discussed in Gelfand
and Dey (1994), Dey, Gelfand, Swartz and Vlachos (1998), O’Hagan (2003), Lu, Hodges
and Carlin (2004), and Bayarri and Castellanos (2004). Versions of the Bayesian model
selection problem may also be cast in decision theoretic terms, involving utility or loss
functions; references here include Gelfand and Ghosh (1998), Gutiérrez-Pena and Walker
(2001), Claeskens and Hjort (2003), Hjort and Claeskens (2003), and Kadane and Lazar
(2004).

In addition, various authors have attempted to construct ‘Bayesian p-values’, which
can be thought of as quantifying the degree of surprise from data, given the prior and the
model, sometimes also focussing on certain hypotheses. The Bayesian p-values come in
many forms, and range from the prior predictive p-values of Box (1980) to the posterior
predictive p-values touched on in Guttman (1967) and Rubin (1984), a tool worked out
more fully by Gelman, Meng and Stern (1996) and Meng (1995). Important variations and
improvements are introduced in Bayarri and Berger (2000), further discussed and analysed
in Robins, van der Vaart and Ventura (2000), and in Bayarri and Castellanos (2004).

1.2. The ppp. This article focusses on one of the above-mentioned mechanisms for
carrying out such evaluation and comparisons, namely the so-called posterior predictive
p-value (henceforth, the ppp). It requires specification of a suitable discrepancy measure
D = D(y,0), reflecting aspects thought to be important for the final conclusions of the
statistical analysis. The intention is to assess a posteriori the fit of the underlying model
assumptions, or to quantify the degree of surprise by observing what we actually observed,
in view of prior and model. In the formulation of Gelman, Meng and Stern (1996), the
ppp is defined as

ppp = ppp(y°"®) = Pr{D(y™P,0) > D(y°"*,0) | data}. (1.1)

Here 4°" signifies the observed data, or in some cases a suitably relevant subset of the full
data-set, while y"™P represents a new (‘future’) data-set of the same type, drawn conjointly
with 6 from the posterior distribution 7 (6 | data). More concretely,

(0,y™P) ~ m(0 | data)f(y | 0), (1.2)

so that, in particular, y™P comes from the predictive distribution [ f(y|6)m(6|data)df.
Provided we can simulate (i) 6;s from the posterior and (ii) ;" data-sets from the model
f(y|6;), we may evaluate the ppp as

A
pop(y™) = 5 S I, 65) > D™ 6,)}, (13)

J=1
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across a high number A of simulations. It is useful to plot D(y°",8;) vs. D(y; P.6,),
whereby the ppp number is identified as the proportion of points above the diagonal.

The appeal of the ppp apparatus is partly the generous flexibility afforded the statis-
tician through choices of the discrepancy function, which can be set up to test or inspect
different aspects of the model formulation. Unlike traditional test statistics the discrepancy
functions are also allowed to depend upon the unknown parameters.

The ppp value of observed data y°°° has the combined intention of checking adequacy
of the prior distribution 7(f) as well as of the model f(y,0). In the (relatively rare) cases
where we view our prior as ‘the distribution Nature used when creating the world’ we
might prefer the prior predictive p-value (prpp), suggested by Box (1980); this is also a
bona fide p-value (with null distribution uniform on [0, 1]). The prior predictive p-values
can only handle test statistics D = D(y) that do not depend on the 6, however. Even in
cases when the prior is taken quite literally, therefore, there is a place for ppp values.

1.3. The calibrated ppp. Loosely speaking, the ppp calculation uses the data twice;
first by updating the prior to fit the data better, and then by estimating how surprising the
data are, relative to the posterior parameter distribution. Thus it is not surprising that its
distribution, across likely values of y°P%, is not uniform; we shall in fact demonstrate various
extreme aspects of non-uniformity in several situations. This makes the interpretation and
comparison of ppp values a difficult and risky matter. To alleviate this problem our
proposal is to post-process or calibrate the ppp value, to

cppp(y°™) = Pr{ppp(Y) < ppp(y°™)}, (1.4)

where the distribution of Y is that implied by the prior and model conditions. This cppp,
the perfected ppp value, will now by construction have a uniform null distribution, i.e. may
be seen as a genuine p-value. The main message of our article is that the ppp values have
limited information value in themselves, but that the naturally re-scaled cppp versions are
genuinely useful and interpretable across different combinations of priors and models.
That the ppp numbers sometimes do not convey very useful information was not
picked up in the initial reactions when the method was introduced, see e.g. the discussion
contributions to Gelman, Meng and Stern (1996). There have been later warnings in
the literature, however; Dey, Gelfand, Swartz and Vlachos (1998) complained that the
ppp values were not able to pick out model inadequacies in a string of Bayesian logistic—
normal regression setups, and Sinharay and Stern (2003) similarly observed that the ppp
numbers tended to cluster too tightly around % to give clear signals of model distortions in
hierarchical models. We will in fact demonstrate below that this is a fairly typical situation;
when information content increases, in relation to the complexity of a model, the ppp values
will tend to cluster around %, for natural classes of discrepancy functions. Our contention is
that these problems, pointed to by other authors, are solved by the calibration mechanism
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alluded to above, as discussed more firmly in Section 4 and afterwards in our article. When
properly calibrated, the cppp values are well able to give signals of surprise or conflict,
and may be used to screen away unfortunate combinations of prior and data model in a

unified manner.

Unlike the prior predictive p-value, the ppp value can also be applied in cases where
the prior is vaguer than one’s ‘true’ subjective belief about the parameters in question.
The prior may still be informative, but does not need to be fine-tuned to reflect all aspects
of our prior belief. One may demonstrate mathematically that the ppp value becomes less
and less dependent on the prior, for a given data model, as data information accumulates.
The cppp value, however, will remain critically dependent on the actual prior used. This
is at it should be; the calibration transform (1.4) is instructed to actively use and assess
the implications of a given prior.

1.4. The present article. The lay-out of our article is as follows. In Section 2 we
investigate the structurally simple situation where data are normal with a normal prior
on the mean. Here we find a formula for the ppp, and use this to study important special
cases, corresponding to having a sharp prior, a more flat prior, and to having a fixed
prior with increasing sample size. Such calculations and analysis may also be extended
to normal-normal hierarchical models. We also include a brief large-sample analysis of
the ppp for general parametric models. We learn for example that the ppp value often
becomes tightly concentrated around % in situations with growing amounts of data for
a fixed parametric model. Further properties and aspects of the ppp are gleaned from
studying situations with a mixture of sub-priors, in Section 3.

Then in Section 4 we propose and develop our perfected ppp values, the cppp, and
discuss their computation and interpretation. The cppp may in general be computed via
a double simulation regime. The details of our general theory are then worked out in the
context of general linear regression models in Section 5, illustrated for a real data set,
pertaining to the modelling of sprint speedskating results, in Section 6. These techniques
could be used routinely in all Bayesian analyses of normal-linear models, to check for
model adequacy and to monitor data for any serious conflicts with the prior used. We also
illustrate our techniques for two models pertaining to survival patterns of the European
dipper species, in Section 7. Brooks, Catchpole and Morgan (2000) have earlier analysed
the same data, using the ppp apparatus, but via our calibrated ppp we reach somewhat
different conclusions.

Our cppp values have by construction been transformed to a ‘canonical scale of sur-
prise’, namely the uniform on the unit interval. Observed cppp numbers therefore enjoy
a clear interpretation and can soundly be compared across several proposed or imagined
combinations of prior and model. We may even apply the techniques to comparison of
parametric vs. nonparametric model specifications, as illustrated in Section 8. Such com-
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parisons are often quite difficult, conceptually and operationally, with other approaches.
Our article ends in Section 9 with a list of ppp and cppp related topics and issues, some
worthy of further research efforts.

The success or not of our cppp analysis depends crucially on the choice of discrepancy
measure, the D(y, ). This choice should be aided by context and aspects of the actual
application, and might in particular be constructed to address those model aspects that
are seen as crucial for the principal conclusions of the statistical analysis. See in this
connection constructions of Dey, Gelfand, Swartz and Vlachos (1998), O’'Hagan (2003)
and Sinharay and Stern (2003). Bayesian statisticians need as always to care about prior,
model, and loss function; the modern, conscientious members of the species also need to
exhibit creative acuity for matters pertaining to model selection and screening of priors,
which with the methodology and machinery of this article would mean choosing good and
problem-relevant discrepancy measures, followed by appropriate cppp analysis.

2. The normal-normal model

Here we investigate the simple situation where data are normal with unknown mean and
where the prior for this mean parameter is also normal. We find an explicit formula for
the ppp which provides certain general insights into its properties and behaviour. Our
calculations extend to the case with the traditional inverse gamma times normal conjugate
prior in the general normal model, and may also be generalised to to the case of normal-
normal type hierarchical models.

2.1. A formula for the ppp. Assume therefore that the data y = (y1,...,¥n), condi-
tional on 0, are i.i.d. from N(0, 02), with known standard deviation o, and let the prior be
0 ~ N(o, 03). We choose to work with

D(y,6) = n(7 — 6)?/o? = monotone(|7 — 6])

as discrepancy measure, where y is the mean of y;s; any monotone increasing function of
|y — 0| gives the same ppp value, as we see from (1.1). This is a pivotal quantity, with
distribution being equal to a x3 for each given 6. For the following result, let F} 1(v, k)
be the cumulative distribution function of a non-central Fisher variable with degrees of
freedom (1,1) and excentricity parameter x, i.e. of a variable of the form (X + x'/2)2/Y?2,
where X and Y are independent and standard normals.

PrRoOPOSITION. For the situation described, the posterior predictive p-value, as a
function of the observed data, may be expressed as

1 1— 2 n —~0bs 0 2
ppp(yobS) — Fl,l(_7 ( pn) (y - 0) )
Pn Pn o

2.1
_ 0.2 0.2 (gobs _ 90)2 ( )
=Fia(1+ 27 2 2 2 )
noy nog+o o

where p, = nol/(noj + o?).



ProOOF: By well-known techniques, the posterior distribution for # is found to be
normal with mean (1 — p, )0y + pn7°®® and variance p,o?/n. Conditional on 6, the P is
of course a N(#,02%/n). Write now

(0 | data) ~ (1 = pn)bo + puF°® + p/%(0c/v/n)Ny and (7P |0) ~ 0 + (¢//n)N,

in terms of two independent standard normals Ny and N. We learn that D(y™P,0) = N2,
independent of Ny, while

obs n —obs o 2 ngjObs—H 2
DO, = Z5{(1=p.) =)+t N | = {2 No— (1= ) VI =00V

Hence the ppp becomes

1—pn v, _ 2
ppp:Pr[N2 an{No— TZ%(@/‘“’S—%)} }
Pn

from which the result follows. m

2.2. Special cases. The formulae above offer insight into the ppp. Here are some
remarks and consequences, also to be followed up in later sections.

Large n, or flat prior, or both. Suppose \/nog is large, i.e. either n is large, or the
prior is flat, or both. Then p,, goes to 1, and

ppp(y°>%) — Pr{N? > N§} = 1 for all y°™*.

This happens irrespective of the observed 7°PS. This is illustrated in Figure 2.1, for n = 10,
oc=1,60y=0and gy =5, giving p,, = 0.996, where the ppp is very close to % over a broad
range of 7°Ps.

Moderate n and sharp prior. Suppose on the other hand that /nog is small, which
means that the prior knowledge about 6 is reasonably sharp, compared to sample size,
i.e. it is believed rather firmly that 6 is close to 6y. Then p, is close to zero, and in the
limit

ppp(y°%) — p*(5°°°) = Pr{N? > n(5°* — 60)*/o?}.

This is the classic p-value for testing the hypothesis 8 = 0. See Figure 2.1, for n = 10 and
o9 = 0.1, with p,, = 0.091. Observe also that for given p,,, there is a maximum attainable
value for ppp, namely Fy1(1/pn), for §°°5 = 6p; this is the ‘maximally unsurprising’
value we might have of 7, under the given prior. The ppp distribution is in particular
not symmetric around % The figure also displays the ppp as a function of 7°S for an
intermediate case of n = 10 and oy = 1, for which p, = 0.909. We observe that the
distribution of ppp has a clear maximum value just above % (actually, 0.5151), with most
mass from say 0.25 to this max value.
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FIGURE 2.1. The ppp(y°P®) of formula (2.1) is displayed as a function of y°", for
n =10, 0 =1, 6y = 0, for the three cases oo equal to 0.1 (solid line), 1.0 (dotted
line), 5.0 (dashed line).

2.3. Full normal analysis. Above we took the data standard deviation to be known.
More realistically, both parameters of the N(u,o?) distribution are unknown. The tradi-
tional conjugate prior takes an inverse gamma for o2 and a normal for p given o. Agree
to say that (A, u) = (1/02, 1) comes from the GN(%a, %b, o, o) distribution if

A~ Gam(ia,1b) and (u|A) ~ N(po, (coN)™).
Its density is accordingly
(A, p) ox A%/271 exp(—%b)\))\l/2 exp{—2Aco(p — po)*}-

The likelihood for a data set y1,...,y, from the normal may be written as proportional
to A™/2 exp[—2 M Q8PS + n(p — §)?}], where Q3> = "7, (y; — §)%. The posterior density
becomes

oc A+ exp[— 2 Mb + Q™ + n(i — §)* + o — p0)*}]

= A2 exp[— 3 Mb+ Q™ + (071 + ¢g) Ty — p)” + (co + ) (1 — )},

proving that

{(\ ) [ data} ~ GN((a+n), 30+ Q™ + (¢ + 1) @ = o)), v co + ),

—obs

in terms of & = (copo + ny°°%)/(co + n). See also the more general analysis of Section 5.
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We continue employing the natural discrepancy function D(y,0) = n(y — p)?/o?, for
which D(y*P, ) = N2 for a standard normal N independent of

D(y°*®,0) = nA{ji+ (co +n) " ENTVENG — yobe)?

n Co _ 2
_ N 1/21/2 obs _ } ’
o Aot (ot ) AV (7 o)

where again Nj is standard normal. This yields an exact computable expression for the
ppp in this case,

n Co

ppp(y°™) = /Ooo Pr [N2 > W(’!]Obs - Mo)}2 | )\} gn(X)dA

> Cot+mn 0(2))\ —_obs 2
= F - n I
| R (B R — )?) 0, () 4N

{NO + A\1/2

co+n

(2.2)
in terms of the gamma density g, () with parameters (%an, %bn), where, from the above,
an = a+n and b, = b+ Q™ + con(y°®* — uo)?/(co + n).

The previous case of known o corresponds to a and b going to infinity with a/b = 1/02
and 1/(coA) = 02 /co = 03, i.e. co = 02/02. In this case the above formula reduces to (2.1).

A simple numerical approximation to (2.2) is

2 —obs 2
obs) _: Co Co (y _/«"0) )
= F (1 —, — ,
ppp(y ) 171 + n CO + n (O—ObS)2

where 1/(°%)2 = a,,/b,, is the posterior mean of X. For growing n the posterior variance
of X is small, and furthermore 2 will be close to the empirical variance of the data.

REMARK 2.1. The ppp of (2.1) converges rather rapidly to 1 as sample size increases.
Some analysis reveals that Fy 1(1 +a/n,b/n) = ; + 3 (a — b)/(7n), with consequences for
the (2.1) formula and approximations. m

REMARK 2.2. The formulae found in Meng (1994, Section 3) relate to the ppp value
for another discrepancy measure, namely D(y,0y) = n(§ — 6)?/0?, used as a test statistic
for testing 6 = 6y. Our ppp measure uses the more general D(y,0). =

2.4. ppp behaviour for general parametric models. Calculations similar to those above
can be carried out also for more complicated models, with additional efforts. In work not
reported on here we have for example found explicitly computable formulae for the ppp
for the situation where data are exponential and the parameter has a Gamma prior, as
well as for the Poisson-Gamma situation. In general we would not be able to have explicit
formulae for the ppp(y), however, and we would need to resort to the simulation scheme
of (1.4) to compute the ppp value.



Some general phenomena may be recognised from the above analysis of the normal-
normal and the other cases mentioned. Suppose that data y = (y1,...,y,) are i.i.d. from
a density g(y, 6), conditional on . Assume also that a discrepancy measure of the type

~

D(y,0) = H(v/n(0(y) — 0),0)

~

is used, where 0(y) is the maximum likelihood estimator. We might e.g. take H(v,0) =
v*J(#)v, with the Fisher information matrix .J(6); in this case D(y,#) is close to a x7 for
large n, where p is the dimension of §. In general,

~ ~

ppp(y°*) = Pr{H(V/a(B(y™*?) — 0),0) > H(yn(B(y™™) — 6),6) | data}.

Two cases of interest are as follows.
First consider the case of a ‘sharp prior’, tightly concentrated around some 3. Then
this also goes for the posterior, and

~ ~

ppp(y°*%) = Pr{H (vn(0(y™P) — 60),00) > H(v/n(0(y°"®) — 0o),00)} = p* (y°>°).

-~

This is the classic p-value for testing 6 = 0, with the test D(y,0y) = H(1/n(0(y) —6o), 0o)-
This result only requires that D(y, 6) is continuous in 6.

Then study the large-sample scenario where data really follow the g(y, 6s;) model, for
a suitable true parameter value, and n grows. Then, under mild regularity conditions, the
distribution of \/7(8(y**P) —0) is close to say V (0), which is N, (0, J(#)~ 1), and this approx-
imation statement holds uniformly in a neighbourhood around the 6, value. In particular,
ﬁ(@(yrep) —0) —4 V, which is N, (0, J(0;) ). Secondly, from Bernshtein—von Mises type
theorems, see e.g. Lehmann (1983, Ch. 6), the posterior distribution of v/n (6 — §°bs) is with
probability 1 coming close to that of Vy, another and independent Ny, (0, J(0;,) ') variable.
All this implies D(y*P,0) —4 H(V,60;;) and D(y°",0) —4 H(Vy,0;,), with probability 1.
As long as H (v, ) is continuous, therefore,

ppp(y°>°) = Pr{H(V,0) > H(V°,0i)} = 3 as.

This is the precise description of a phenomenon that occasionally has been noted in the
literature, but perhaps not well understood; see e.g. comments in Sinharay and Stern
(2003), about the ppp values clustering around %

3. The ppp when the prior is a mixture

Here we study the ppp for normal data under a mixture prior for its mean, and use insights
thus revealed to make some general comparisons with the so-called prior predictive p-values
advocated by Box (1980).



Assume as in the previous section that data vy, ..., y, conditional on 6 are i.i.d. from
N(f,02) and that the same discrepancy measure D(y, ) is used, but that the prior is a
mixture of two different hypotheses about nature; 6 ~ pi1N(o,1,05 ;) + p2N(o,2, 03 5).
Then

(0,9) ~ p1m1(0) f(§]0) + pam2(0) f(y ] 0)
= p1m1(0 | data) f1(y) + pama(0 | data) f2(7),
in terms of the posterior densities m;(6 |data) for # and of the marginal densities f;(y)
under the two prior hypotheses in question. In fact, f;(g) is a normal with mean 6y ; and
variance o3 ; + ¢ /n. This leads to

(0 | data) ~ p1(7°P%) w1 (0 | data) 4+ pa(5°°%)ma(0 | data),

where ( b)
~ obs pjfj go °
by = - -
1) = LR G) + pafa o)

This may now be used to find a formula for the ppp. As in Section 2, D(y*°P,6)

for j =1,2.

may be represented as N2, where N is a standard normal. For D(y°bs,#), it is with

obs)

probability p;(y of the type worked with in Section 2.1, with appropriate parameters

pn,j = nog ;/(nog ; +0?) and 6 j, for j = 1,2. Hence

2
_ 1 1_n,2ngobs_9 )2
ppp(yobS) — ij(yObs)F1,1< 7 ( P ,J) ( = O,J) )

j=1 Pn,j Pn,j o

The formula generalises easily to a mixture across a wider spectrum of hypotheses about 6.
There are several general ppp aspects to be learned from applying this formula in
different mixture prior settings. A variety of possible shapes for the ppp(y°") curves
emerge by different combinations of the parameters. Among findings of interest are the
following points.
(i) Suppose the two prior hypotheses are both ‘sharp’, situated at 6y 1 and 6p 2 with

obs) func-

small standard deviations o¢ 1 and 0 2. Then we learn that the resulting ppp(y
tion is relatively unaffected by the balance parameters p;,p2. The ppp tool essentially
works as a classic frequentist p-value, for testing 6 = 6 if data indicate that it is the
first prior component that is the real one, and for testing 0 = 0y » if it is the second prior
component that is picked out by the data.

For comparison, consider the prior predictive p-value (prpp) advocated by Box (1980),
with respect to the test statistic that sorts the y values according to their prior likelihood,

obs)

and take py very small but positive. This prpp(y would give a value close to zero for

7°Ps close to 0,2, because ¥ values close to 6 o are highly unlikely under the given prior.

We may in fact easily prove

lim ppp(yjobS =0p2) =1 and lim prpp(gjObS =0p2) =0
p2—0 p2—0
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in the situation with two sharp hypotheses, i.e. oy j = 0 for j = 1,2. Thus the ppp may in

obs)

this respect be seen as a highly non-continuous operator, since the two ppp(y curves

are highly different for po = 0 and ps = 0.001.

0.6

ppp
0.4

0.2

-5 [0} 5
observed y-bar

FIGURE 3.1. The ppp(y°"®) as a function of jj°bS, for n = 25 and o = 1, displayed

for two priors; for the normal (0,1) (solid line) and for a sharp bi-mixture with

p1 = 0.999 and ps = 0.001, of two normals (0,1) and (5,0.052) (dotted line).

(ii) Suppose 1 is moderate while g » is small. Then when 7° is close to 0 » the
ppp acts as a classic p-value for testing 6 = 0 »; if 7°P% on the other hand is some distance
away from 6 o, then the ppp is close to what it would be for the first prior component alone.
Again this behaviour is relatively independent of the p;, ps parameters. It is interesting
and perhaps mildly contra-intuitive that even when py is very small, the ppp indicates
non-surprise of 7°P% close to 0o,2; thus, in this situation, even some events that have very
low prior probability are deemed completely acceptable. See Figure 3.1.

(iii) Let us now hold p, fixed (but small), while 6y o varies. We have seen that
when 0 o is large, ppp(y°PS = 6o,2) will be close to 1. Also, if 62 — 0, we clearly get
ppp(¥°P% = 6y 2) — 1. But if fp » is at a moderate distance from 6y 1, then ppp(y°PS = 6, 2)
may be close to zero. This is a bit of a paradox: we have two competing models, represented
through a prior with two peaks, and observe a value that fits the a priori unlikely model
well. If the models are either very different or very similar, then ppp gives a high value,
while if they are moderately different, we get a low ppp value.

These examples illustrate the fact that the ppp value is relatively insensitive to the
magnitude of the probability mass that the prior assigns to parts of the parameter space
that are distant from each other. This is in particular true if the different parameter values
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give very different distributions for the observed y°PS. If this is the case, conditioning on
the observation will essentially eliminate parameter values that fail to explain the data,
making their prior likelihood irrelevant.

4. ppp calibration and the double-level simulation

°bs) = (.28 from one’s data set, for a given prior and

Suppose that one computes ppp(y
model. This is a well-defined probability, as in (1.1), but to judge the significance of the
0.28 number, possibly in comparison with other ppp values for other combinations of prior
and model for the same data set, we are forced to define the underlying probability scale:
how rare, or how common, are values less than 0.287

There has perhaps been a certain Pavlovian tendency in applied statistics work to
interpret the ppp numbers on the uniform scale, like for classic p-values. We have already
seen that the distribution of ppp is often quite non-uniform, however, and more precise
information is provided below. We shall see that an observed ppp = 0.28 (say) may be
extremely surprising in one situation, whereas the value ppp = 0.06 (say) may not be very
surprising in another situation. Like frequentists, who compute p-values as probabilities of
events involving outcomes that did not occur, here also the Bayesian is forced to consider
the values of y that one did not observe. In this section we define and study the appropriate
distribution of ppp(Y) across values of Y, and use this to introduce our calibrated ppp

obs)

value, the cppp(y°°®). Its actual use is illustrated with real data in Sections 6 and 7.

4.1. The null-null distribution of the ppp. Classical Bayes analysis operates of course

°bs  When one in addition wishes to test validity of aspects of model and

conditional on y
prior, however, one needs to bring into the picture also the distribution of y°S. This leads
us to define ‘the null-null distribution’ of ppp(Y'), corresponding to the distribution of
ppp(y) across precisely those y values that occur by the combined mechanism of the prior
and the model. The null-null distribution of U = ppp(Y’), under perfect prior and perfect

model, is

G(u) = Pr{ppp(Y) <u} whereY ~ /f(y, 0)m(9) do. (4.1)
This is the distribution that should be used to calibrate the observed ppp value. We
propose using

cppp(y°°®) = G(ppp(¥°**)) = Pr{ppp(Y) < ppp(y°>*)}. (4.2)

The distribution of cppp(Y'), across values of Y as above, is then by construction a uniform
on (0,1) (as long as G is continuous). In other words, the cppp is a proper p-value.

To illustrate, consider the normal-normal situation of Section 2, and suppose the
world is exactly as we have imagined, both regarding Nature’s distribution of 6 and our
own modelling of data given §. Then Y is normal (6y,02 + 0%/n), expressible as 0y +

12



(02 4+ 02 /n)Y/2M with a standard normal M. The consequent null-null distribution of ppp

becomes
0w = pe{ria (BRI <)
= pr{ (ol n =5 o)
= pe{ (T o) M2 > et} = Pric > a(u)pa/(L o)

for 0 <wu < Fy 1(1/pp). Here g(u) is the excentre parameter that makes Fi 1(1/pn, q) = u.

density
20 30 40

10

0.6 0.8 1.0

0.0 0.2
pPpp(Y)

FIGURE 4.1. Density of ppp(Y), displayed as a normalised histogram with a
million simulations, for n =5, 0 = 1, 09 = 1. The distribution has exact mean

1, with sharp right cut-off point at Fy 1(1/py,).

27
The ppp distribution can also easily be displayed via simulation of

L AP,

) - Fl,l(pn - (4.3)

1 (1=p,)2
U:F171(p—,(’+)(1+n0(2)/02)M2
n

n
we may simply check the relative frequency

obs)
. For this particular situation

where M ~ N(0,1). To compute the cppp(y
obs)

of such simulated Us that fall below the observed ppp(y

we may even get an explicit expression;
13



1 (1= pn)?n(Y —6;)?
cppp(yObS)zPr{Fl,l(p—n,( o )l o2 0) )

=Pr{n(Y —60)%/c? > n(5°* — 6y)%/0?}

n(gobs _ 00)2/0.2 }
1+ nod/o? '

= Pr{x? >
(4.4)
While the classic p-value statistic is uniform on the unit interval under the null hy-
pothesis, the present null-null distribution is quite far from having such a form. The U
variable of (4.3) is confined to [0, F; 1(1/pp)], with a sharp upper threshold, and is highly
skewed to the left. For /noy moderate or large (sample size is moderate, or prior is mod-
erately flat, or both), p, is close to 1 and the ppp distribution is quite tightly concentrated
around % Ounly for \/noy quite small, with p, close to zero, does the ppp distribution
come close to the uniform one on the unit interval (which is the limit case as p, — 0). The
statistical distribution of cppp(Y) of (4.4), however, is by construction exactly a uniform
on [0, 1], provided the prior and the model are correct. See in this connection Figure 4.1,
which shows the partly extreme nature of the ppp distribution, and Figure 4.2, which gives
the ppp and cppp curves, along with a third variant treated in a later subsection.

REMARK 4.1. When n grows, the observed ° will go to the true underlying mean
value 6y, and from (4.4) we see that

cppp(y°°*) = Pr{x? > {(0x — 00)/00}?} = Pr{|N(0,1)| > |6sx — bo|/o0} as.

Thus
0ce — 00| 172 (06 — G0
g0 g

conf =

emerges as a natural measure of conflict between real data distribution and the N(fp, 03)

prior. If conf > 1.96, then cppp(y°bs)

will for large n be below the critical value 0.05,
etc. The second representation of conf uses ¢y = 02/02, which has interpretation as prior

sample size. See also Section 9.1. m

4.2. The double simulation method to calibrate ppp. The reasoning above invites the
following simulation method to compute the calibrated ppp value. Simulate values (0, yx)
for k=1,..., B, for a high number B, where 0 ~ 7(0) and the full data set y; is drawn
from the model given 6. Then compute

1B
cppp(y°™) = — > I{ppp(¥s) < PPP(Y°*)}. (4.5)

B
k=1

It is the perhaps chief claim of our article that while the ppp(y°P®) of (1.3) may have a
difficult interpretation and sometimes a low information value, the cppp(y°"®) of (4.5) has
a clear meaning and can be highly informative.

14



While clear in interpretation and natural qua strategy, the (4.5) operation might of
course be both cumbersome and computer time costly from an operational point of view,
since it in general must amount to a double simulation, with AB operations in total, fol-
lowing (1.3). One should therefore look for ways of simplifying the computational burden.

Sometimes an explicit formula may be worked out for the ppp(y°PS)

, with considerable
benefit for the cppp computations, as we also see in the next section, or one may be helped
by knowing the distribution of D(y™P,0). In other cases one may look for variance reduc-
tion tricks or for ways of approximating the ppp(Y) distribution, the benefit being that
one may be allowed a moderate rather than a large number B of repeated sampling. We
have actually developed some methods of this kind in connection with the cppp analysis

of the bird survival data in Section 7, but this will be reported on elsewhere.

4.3. Alternative what-if scenarios. We judge the above calibration to be the canon-
ical one, transforming the ppp numbers under the proposed prior and model to the uni-
form scale. One may however also consider other what-if scenarios that from different
perspectives lead to other potentially interesting distributions for Y, and hence to other
calibrations for ppp(Y), in the formulation of (4.1)—(4.2). Suppose in general terms that
a distribution for such Y™* data-sets is being considered, where such Y* are drawn from a
mechanism different from the canonical one given in (4.1); this other distribution could for
example take the form [ f(y,0)n*(0)d0, for a prior 7*(0) different from (). This defines
an alternative ppp distribution G*(u) = Pr{ppp(Y*) < u} and in its turn a differently
calibrated ppp value,

cppp* (y°°%) = G*(ppp(y°™*)) = Pr{ppp(Y*) < ppp(y°™)}. (4.6)

A ppp number is computed under a given model specification, say M, and we may write
ppp(y°PS, M) to indicate this. Whereas we above calibrated ppp(y°%, M) via the same
model M, operations as described above amount to calibrating ppp(y°bS, M) using an
alternative model M* for data-sets Y*. The (4.6) scheme may then be thought of in terms
of
cppp*(y°"°) = c[ppp(y°"*, M), M*]
= calibrated ppp(y°", model M), under model M*.

The definition here is fully general and operational, and the cppp* may be computed

(4.7)

for any well-defined Y* distribution, via double simulation if necessary. For the normal—
normal model we may see more clearly the implications of the (4.6) idea; the reasoning
that led to (4.4) now gives

cppp* (y°*%) = Pr{n(Y* — 0)*/0® > n(5°"* — 00)*/0?},

in terms of the distribution of the sample average Y* stemming from data-sets Y* drawn
from the intended alternative what-if distribution. This gives formulae generalising that
of (4.4), for different models M* for data-sets Y*.

15
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PPP, Cppp, naive ppp
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FIGURE 4.2. The three functions ppp (dotted line), cppp (solid line), cppp*
(dashed line) are displayed as functions of §°°%, for n = 10, o = 1, with a N(0, 1)
prior for 6.

As a particular illustration we may consider the somewhat naive data-twice-version
that instead of sampling y from the prior predictive [ f(y,0)n(0)d6 uses the posterior
predictive [ f(y,0)n(0|data)df. This has some intuitive attraction, in that it does take
on board the new knowledge about 6 that was not available before data; it would also
be close to using f(y, 5) as the model for data, with the maximum likelihood estimator.
There are instances in the literature of such analysis, sometimes carried out tentatively to
illustrate consequences under different scenarios. In Bayesian clinical trials literature one
sometimes discusses ‘sampling density’ vs. ‘fitting density’, for example; see Gelfand and
Wang (2002) for some related discussion.

For the normal-normal situation, once more, we know that 6 | data is distributed as a

70bs

normal with mean (1 — p,,)0y + p,%°" and variance p,o?/n. Sampling data Y;* from the
N(0,02) for such 0 we find that

Y* — 0o ~ N(pa(5°°° = ), (1 + pp)a?/n).
Using the cppp* formula above this yields
cppp*(y°*) = Pr[{pn(7°* — 60) + (1 + pa)/*(0/Vn)N}* > (5°°° — 60)°]

- Pr[%z(l + pn){?(lﬁ.ﬁ(ﬂ‘)bs — o) + N}2 > (7°P" — 90)2}

2
p Zn
T+ 5 T 1+
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in terms of z, = n(y°° — 6y)? /0. In the terminology and thinking of (4.7) this would be
the formula for

Obs) = C[ppp(yObs, prior), posterior]

obs

cppp* (y

= calibrated ppp(y°"®, model prior), under model posterior.

obs) obs

Our previous cppp(y is in this terminology the same as c[ppp(y°°3, prior), prior].

Figure 4.2 illustrates the ppp, cppp and cppp* curves for n = 10, ¢ = 1, with a normal

(0, 1) prior for 6, as a function of 7°s.

We see that the cppp* is not a satisfactory measure
of surprise; we would scarcely ever be surprised, if the numbers are interpreted on the
uniform scale. This is due to the double use of data when we draw Y™ from the posterior
predictive. There could be other choices for Y* distributions with more relevance and with

a less over-cautious cppp* curve than here.

5. ppp and cppp analysis for general regression

Here we study the general linear regression model for data (x;,y;) for which y; = z!8 +¢;,
for i = 1,...,n, where x; is a p-dimensional covariate vector for individual 7, and the g;s
are independent and normal with standard deviation o. In standard matrix formulation,
y = X B + e, with least squares estimator B\ = (X*X)~ !Xty for B; it is assumed that the
n X p matrix X is of full rank. We shall develop theory for a canonical ppp measure that
makes a good quality evaluation of the underlying model assumptions. It is based on the
discrepancy measure D(y,0) = (8 — 8)'Q, (B — B)/02, where Q,, = XX = Y7 | z;zt, and
where we write § = (3, o) for the full parameter vector. It may also be expressed as

n

D(y,0) = lln— pl*/o® = (i — pi)*/o”

=1

in terms of the vector y of means p; = z¢8 and their fitted values fi; = x‘:ﬁ .
One may of course include other discrepancies too for one’s analysis, like

m<ax|yi—x§ﬂ\/a or max‘ 12[{ i —xiB) /o <t} — ®(t)|.

Theory and computational schemes may be developed for these and other D functions,
following the arguments and methods of this section. Any Bayesian regression analysis
could in principle be supplemented with ppp and cppp analysis, along the lines we give
here.

5.1. The case of known o. Calculations for the ppp and cppp are rather easier and
more immediately interpretable for the case where the data standard deviation o is taken
known, so we study that case first.
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Assume A has a prior distribution of the form Ny (8o, 0%(co€20) 1), with a matrix Q
and a scalar c¢g. The parameterisation is a bit redundant, since ¢y may be taken into the
Qp, but it is useful to start with the covariance structure and then explore different levels
of sharpness (cy large) or vagueness (co small) for the prior. One finds using multivariate
normal theory and some matrix algebra that 3 given data is normal, with

E(3|data) = 8 = (coQ0 + D) " (coQ0Bo + 2aB),
Var(8 | data) = o (coQ0 + Q) .

Also, B — B = (coQ0 + D) Tco0(Fo — B°%). Since D(y, #"P) ~ x2, independent of
D(y°3,0), this leads to the formula

ppp(y°%) = Pr{x; > (U + ) (U + f)}, (5.1)

where U ~ Np(0, (coQ0 + 2n)1) and f = (coQ0 + 2n) Lo (8P — Bo) /0. Computation
would most often be simplest via simulation of U vectors. We note that when ¢ is large,
U goes to zero and f goes to (B°® — fBy)/o, making ppp(y°*) — p*(y), the traditional

p-value for testing 8 = [y using the (E—ﬂo)th (B—BO)/02 test. On the other hand, when

obs) obs.

co becomes small, f — 0 and ppp(y — % for each data set y

To calibrate the ppp we need to compute a number B of ppp(yx) values from simu-
lated data sets yx, as per (4.5). We would draw these sets by first drawing S from the
posterior distribution and then creating yx = X[ + €k, i.e. without changing or resam-
pling the covariate vectors. For each of these B sets one would find the ppp(yx) number

via simulation of A random vectors U, i.e.

A
PP (YK Z 2> (Uny — f(uk) " (Uk,y — fur))}-

The only simple case is that of 2y being proportional to €2,,. We may in that case
without loss of generality take Qy = n~1,, with appropriate ‘prior sample size’ inter-
pretation for the flexible factor ¢y in Var 8 = o2(n/co)2;; the €, matrix indeed grows
linearly with sample size n. We then have

5; Co 3 n A6>0bs U N (
Co + n 0 Co + n ’ P ’

co B = Bo

co+n o

S 1

This leads to a representation for (U + f)*Q, (U + f), in terms of W ~ N,(0,Q;1), as

n (W+(60+n>1/2 co ,§°bs—r30>t9n(w+(co+n>1/2 Co 30'”5—&0)

co+n n co+n o n co+n o
n (Co 1 (B — Bo)*2, (B — Bo))
co+n"P\nc+n o2 '
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In consequence, under the Qg = n~1Q,, scenario,

n

2 obs
cy K )

C
ppp(y°*) = Fp,p(l + = (5.2)

n’'co+n o?

in terms of xK°P$ = n~1 (3PS — By)t€2,, (B°PS — By) and the non-central F distribution function.

This also leads to an explicit formula for the cppp, as follows:

cppp(¥°°*) = Pr{ppp(Y) < ppp(y°**)}
= Pr{(B(Y) = Bo)*Qu(B(Y) — Bo)/o? > (B — Bo)* (B> — fo) /0?}
=Pr{x; > cocﬁ@obS — Bo)* Q2 (B — Bo) /o).

We use here that under prior and model conditions, ,@(Y) is normal with mean 3y and
variance o2(1 4+ n/co)Q; L.

5.2. Full analysis with unknown o. The traditional conjugate prior in this model
takes an inverse gamma for 02 and a normal for 8 given o. In generalisation of material of
Section 2.3, agree now to say that (X, u) = (1/02, 8) comes from the GN,(3a, 3b, 1o, coS2o)
distribution if

A~ Gam(2a,1b) and (B|A) ~ Np(Bo, A7 (cof) ). (5.3)

Thus 3 has prior mean 3y and prior variance (EA~!)cy 'Qg'. We shall see that the posterior
takes the form

{(\,B) | data} ~ GN, (5 (a+n), 3 (b+Q>*+ (B o) K (B o)), B, coo+2n), (5.4)
in which QP = 37 (y; — #£5°%)2 = ||y — 7i°*||2 is the least sum of squares and
B = (coQ0 + ) " Hco0Bo + 2, 5%) and K = (55t + Q)7L

Proving this is accomplished partly via a little algebraic lemma, which states that for
vectors ag, a; and positive definite matrices G, G1, the following identity holds:

(x—0a0)'Go(x—ag)'+(x—a1)'Gi(z—a1) = (—a)"(Go+G1)(z—a)+ (a1 —ap) "M (a1 —ao),

where @ = (Go + G1)~}(Goap + G1a1) and M = (G5' + Gy~
To prove (5.4), start with the prior density for (X, 8), which is proportional to

X271 exp(=3bA)AP2 exp{—5coA(B — Bo)' Qo (B — Fo)}-
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The likelihood for data is proportional to A™/2 exp[—2 M Qg + (B\Obs - B)tQ, (E"bs - B)}.
The posterior accordingly becomes proportional to

Aletm/2=13P72 exp[— 2 M + Q5™ + co(B — Bo)*0(B — Bo)
+ (B = B) (B — B)}]
= AFm/2710/2 oxp - IA{b + Q5™ + (B — B)*(coQ0 + ) (B — B)
+ (B — Bo) K (B — Bo)},

using the algebraic identity above. This is of the required form.

This leads to an accessible scheme for computing the ppp, as follows. Under model
conditions, conditional on (3, 0), one knows that B is a N, (8,02Q, 1), allowing D(y™P, 0) a
representation of the form V*Q,,V, where V ~ N, (0,2, !), i.e. D(y™P, ) is a X2 To work
with D(y°P5, ), we represent for the posterior distribution 8 for given A as 8 + A~/2U,
where U ~ Np(0, (co€20 + ©,)"") and independent of the x2 distribution of D(y™?,0).

Thus
( obs 9) ( ﬁobs+)\ 1/2U) (/8 ﬂobs+)\ 1/2U)

= ()\1/2 (COQO + Qn)_ CoQo(IBObS - IB()) + U) Qn
(AY2(cof2% + )~ Lo (B — Bo) + U).

It is now relatively easy to simulate a large number A of (A;, U;) replicates, with
A~ Gam(ian, 1b,), where a, =a+n and b, =b+ QSPs + (BObS - ,Bo)tK(EObs — Bo)-

This gives replicates of D(y°",6;) and the required simulation approximation

ppp(y°°®) =

h> |

A
Z D(y°™,0,)}. (5.5)

This is a more precise estimate than the general-recipe version used in (1.3); the (5.5)
option is available here since D(y™P,#) has the known X127 distribution, regardless of 6.

Formula (5.5) also lends itself to the computation of the cppp, through a double
simulation regime that computes ppp(yx) for many simulated data set, as per the general
(4.5) strategy.

5.3. The case of proportional €2y and €2,,. Important simplifications are found for the
special case where the prior variance of 3 is specified as being proportional to the sample
variance of its least squares estimator. In that case we may again take Qo = n=1,, as
above, thereby also giving a more precise interpretation of ¢y in relation to sample size.
With efforts similar to those exuded in the previous subsection one finds

2 ~
D(yObs, 9) — n X2 (A “ (5obs - ,BO)th(/BObS - :80))7

co+n" P\ ¢cg+nn
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leading to the formula

2

obs 2 n 2 Co obs
=P { > <)\7 )}
ppp(y ) r Xp - 0 n Xp co n K:n

oe co+n .
- | F ( A ) 2\ d),
/0 p:p n co—l-nH" gn(A)

(5.6)

in terms of k9P = n~1(B°Ps

n
A implicit in (5.4). Its parameters are now

— Bo)*Qy, (BObS — Bo) and the posterior gamma density g,, for

CoM  obs

anp =0a+"n and bn:b‘l‘ngs‘l‘m n

The (5.6) result is a generalisation of (2.2). A sometimes satisfactory approximation to
the ppp is

cotn c KOPs
( n c+n (5°bs)2)’
where 1/(5°%%)2 = a, /b, is the posterior mean of A. This is as in (5.2), but with the
estimated o, and works well if n is large.

ppp(y°*) ~ F,,

For cppp analysis it is not a difficult task to compute ppp(yx) as in (5.6) for a high
number B of simulated data sets, leading by recipe (4.5) to the appropriate cppp(y°P®)
number. Special properties of the linear regression model make it possible to simplify this
step, however, as we now demonstrate.

PROPOSITION. Suppose the prior for (o, /) is as in (5.3), with Qo = n~1Q,,, and that
Y given these parameters really follows the linear regression model N,,(Xf3,021I,). Then
the ppp distribution is

G(u) = Pr{ppp(Y) < u} = Pr{F, ,(1 + co/n, (co/n)Z) < u},

where Z ~ x2.

This makes it easy to compute the necessary cppp(y°?®) = G(y°P%) as the relative

frequency of F, ,(1+ co/n, (co/n)Zk) < ppp(y°P*)
since the non-central F}, ,, function is implemented in software packages like R; in particular

, across a million copies Zj, from the x2,

there is no need to carry out the updating of the inverse gamma parameters or to perform
the numerical integration in (5.6) each time. The G distribution is close to a uniform
for large co (corresponding almost to a classic p-value for testing 8 = (o), is very tightly
concentrated around % for small ¢y (corresponding to a nearly non-informative prior), with
a sharp upper bound at F}, ,(1+co/n,0). The case study presented in the following section
has ¢y = 6.25, an intermediate case.

PrOOF. Let H = X(X®X)7!1X = XQ_1X be the familiar ‘hat matrix’. It is sym-
metric and idempotent, and a standard result is that for given (o, ),

XB=HY ~Np(XB,02H), =Y — XB= (- H)Y ~N,(0,0%(I — H)),
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and that these two n-vectors are independent. Taking (5.3) into account for the distribution
of B given o, one finds that the vectors remain independent, for given o, with

XB ~Np(XBo,02(1 +n/co)H), &~ Nu(0,0%(I — H)).
This implies Qo(Y) = o?||g]|* ~ o2(V*)*V* and
b (V) =n"YXB - XBo)"XB — XBo) =n" 01+ n/co) V'V,

in terms of V* ~ N,,(0,I—H) and V ~ N,,(0, H), with these two being independent. Hence
kn(Y) = 02(n~t + ¢51)Z and Qo(Y) = 02Z*, where Z and Z* are x? distributed and
independent with p and n — p degrees of freedom. This simplifies the updated parameters
of the Gamma distribution for A = 1/02, to a, = a +n and b, = b+ W,, where W,, ~
0*(Z + Z*), and, more importantly,

n 1 11
n=rfips (o (e D))
ppp(Y) = Prox; = o\ +n” e
in terms of a central and a non-central X127 variable that both are independent of Z. The
claim follows. m

REMARK 5.1. When sample size n is large, n~1(,, will be close to a limiting covariance
matrix 3 for the covariates, and 3°PS will be close to the true regression coefficient vector
Bte. Some analysis shows that cppp(y°P®) — Pr{xf, > conf?}, where

conf = ¢g/*{(Ber — Bo)*S(Bex — Bo)}/? o

acts as a conflict measure between prior and model, also dependent on prior sample size
co- This generalises Remark 4.1. See also Section 9.1. m

6. Case study: regressing speedskaters

In the annual World Sprint Championships in speedskating, competitors skate the 500 m
and 1000 m distances on Saturday, and then the same distances on Sunday. The champion
is the skater with the lowest combined score, defined as t1 + t3/2 + t3 + t4/2, where
t1,t2,t3,t4 are the results (in seconds) of the skater for the four distances; see Table 1,
which gives the top of the result list for the 2004 championships at Nagano. In this section
we will illustrate the general methods of Section 5 for the regression model that pertains to
predicting and understanding the result of the fourth distance in terms of times achieved
for the previous three distances. In this case there would be substantial prior knowledge
(along with excitement and speculations), among skaters and the millions of television
viewers, relating to the parameters and the fruitfulness of the model, making Bayesian
analysis a relevant and interesting enterprise.
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1 Erben Wennemars 140.755  35.70 (9) 1.09.46 (1) 35.63 (7) 1.09.39 (1)
2 Jeremy Wotherspoon 140970 35.25 (1) 1.10.40 (4) 35.43 (3) 1.10.18 (4)
3 Mike Ireland 141.010 35.40 (3) 1.10.52 (5) 35.46 (4) 1.09.78 (3)
4 Gerard van Velde 141.150 35.64 (7) 1.10.73 (6) 35.27 (1) 1.09.75 (2)
5 Kip Carpenter 141.795 35.36 (2) 1.10.94 (9) 35.80 (9) 1.10.33 (5)
6 Casey FitzRandolph ~ 141.995 35.50 (6) 1.10.84 (8) 35.55 (6) 1.11.05 (11
7 Hiroyasu Shimizu 142.030 35.40 (3) 1.11.38 (14) 35.29 (2) 1.11.30 (14)
8 Janne Hénninen 142.070 35.71 (10) 1.10.38 (3) 35.91 (11) 1.10.52 (6)
9 Dmitri Lobkov 142.520 35.49 (5) 1.11.22 (13) 35.70 (8) 1.11.44 (16)
9 Masaaki Kobayashi 142.520 35.85 (12) 1.11.49 (15) 35.51 (5) 1.10.83 (9)

TABLE 1. The best ten skaters in the 2004 World Sprint Championships, held
in Nagano, Japan. The results are the combined point sum, then the 500 m and
1000 m results for Saturday, followed by the 500 m and 1000 m results for Sunday.

6.1. Setting the prior. The natural model to consider takes
Yi =bo+b1xi1 4+ -+ bpxip+ & :b0—|—.’132b+€7; fori=1,...,n,

in terms of a p-dimensional covariate vector z; for each of n individuals, where the ¢;s
are independent zero-mean normals with standard deviation o. For the speedskating ap-
plications, y; is the 1000 m Sunday result, while x; 1, x; 2, z; 3 are the results of the three
previous distances. Our model is intended to convey the main mechanism of achievements
during the World Championships among the say 30 best skaters or the world, during races
without falls or accidents, i.e. outliers are screened out and not allowed to enter the model.

Setting a clear prior for (bg,b,0) is not an easy exercise. It does not quite do to
have (b1, b2, b3) centred at (0,1,0), even though ;5 is a reasonable guess for y;; this
viewpoint does not take into account that y; also tends to be positively associated with
both z; 1 and z; 3. One option here would be to use last year’s tables of results to provide
that competition’s posterior distribution of parameters, as a prior for this year’s model,
perhaps scaled down in precision so as to not be too informative. To make the exercise
more realistic, however, having likely future applications of our theory in mind, we adopt
the attitude that we should construct our prior from subjective (but substantiated) beliefs
about the parameters. We argue that the prior knowledge in this situation (and, we
suggest, in many other), is most easily quantified in terms of (i) the overall level and its
variability (expected average and standard deviation for the y;s) and (ii) the correlations
between covariates z.; and y. We therefore develop a method for bringing such prior
knowledge into a proper prior for the model parameters.

It is helpful first to centre the covariates by subtracting the averages z.; from the
z; ;s above. Considering this done, § = by + €, giving by a clear interpretation as the
expected average result. Furthermore, n=' > | y;2; = Spb+n~1Y " | x;e;, where S,, =
n~1! Z?zl z;z¥ is the empirical variance matrix of the covariate vectors, with elements say
sjk for j,k = 1,...,p. While the considerations that follow actually might invite also
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other types of priors we wish for this illustration to follow the development and recipes of
Section 5, so we are to specify a prior for ¢ and for the regression curve parameters given

(?>|0NNHN<?>¢Q%(3 4})) (o1

Since n= !>, (y; —y)? is seen to have mean value b*S,b+ 02, we see that the correlations

o of the form

p=(p1,---,pp)" between y and the respective covariates x. ; may be represented as

(Snb);

;= forj=1,...
Pj (btsnb+02)1/28j orj ’ » D,

1/2
3.3
turning prior information about p into a prior for b. We assume that the list of covariate

where s; = s is the standard deviation of z. ;. We therefore need a mechanism for

vectors is available to aid us in fine-tuning the prior, as with the speedskating data.
To work with this, we solve the equation

Sab
(0Spb + 02)1/2

:’U:D}l/2p

for b, where D,, = diag(si,...,s;) is the matrix with empirical covariate variances down
its diagonal; thus v has components s;p;. The solution is

S—1y

n

(1 —vtSy to)1/2’

b=o

To follow the intended scheme we take

g-1/2

n v
(1 —vt8, v)1/2

= 2z9/0+ TN ~ N,(z/0, T2Ip),

for a suitable location zo and scale parameter 7, in terms of an N ~ N,(0, I,). This also

means that
(b]0) ~ Np(S7 220, 02728 1), (6.2
which is consistent with the conjugate set-up of (5.3) and (6.1). To fine-tune the parame-
ters, solve for v = (s1p1,..., sppp) to find
S-1/2y = /0 + TN (6.3)

(1+ ||z0/0 + TN||2)1/2

Our strategy is as follows: (i) Put up prior guess parameters p;o for the correlations
P1,- -5 pp. This must in particular be done in a manner which reflects v*S,; ly < 1, for
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v = D,ll/ 2 p. (ii) Then, for each of a sequence of trial values of the parameter 7, solve the p

equations
zo/o0 + TN

(1+ llz0/00 + TN|[?)'/?

for zp, utilising also an initial prior guess value 1/0¢g for 1/0. In practice we solve these

g(20) = E = 5771/2,00 = S;l/2D}/2p0 (6.4)

equations using stochastic simulation to compute g1(20), ..., gp(20), since no formulae are
available, and a non-linear minimisation algorithm like n1lm in the R software package to

minimise Z?zl{gj(zo) - (S;l/2vo)j}2. (iii) For the trial value of 7, and the found zg, one

1/ %v, where v is taken according to (6.3); in particular one

generates p vectors from p = D,
may monitor the spread of the pj;s via their standard deviations and correlations (again,
there are no explicit formulae to help us, hence the simulations). (iv) The procedure stops
when a value of 7 is found that well reflects the uncertainty level for the p;s around the
prior guesses p; o.

The procedure would perhaps have looked more precise and elegant were it possible
to produce a clear prior covariance matrix, say A, for p, and then to choose 7 to match the
mean of v*S~ v, which is v§S; Lvo +Tr(Da/ > AS, /%), with the mean of ||zo/o+7N||2/(1+
|z0/0 + TN||?), from (6.3). The problem with this is the difficulty of setting a good A
matrix, in that attempts at doing this would clash with the structure imposed by (6.3).

Our strategy avoids this quandary.

6.2. ppp and cppp analysis of the 2004 speedskating model. We carried out the above
exercise for the World Championships 2004 data. We used prior guess values 0.6, 0.8, 0.6
for the correlations (p1, p2, p3) of z.1,2. 2, 2. 3 with y, and 1/0.75 for 1/0¢; these values
were elicited based on discussion amongst the authors and speedskating compatriots, and
are meant to be based on solid experiences; for more background, see e.g. Hjort (2002,

2003a). One had
0.365 0.625 0.343
Sp=10.625 1878 0.572 |,
0.343 0.572 0.386

and we could for each trial value 7 solve (6.4) for zp, in terms of Sy, 12pl/ %po = (0.094,
0.756,0.294)t. Monitoring spread and correlations in the prior distribution for p we settled
on 7 = 0.4 to reflect prior beliefs. This corresponds to ‘prior sample size’ ¢y = 1/7% =
6.25, to standard deviations 0.144, 0.086, 0.144 for the three correlations, centred around
0.6,0.8,0.6, and to correlations 0.477,0.846,0.218 for (p1, p2), (p1, p3), and (p2, p3). This
also leads to Sy, /%29 = (—1.014,0.948,1.015)" in (6.2), i.e. the prior mean b in (6.1). As
prior mean by for by we use the mean of all Saturday’s 1000 m results, which is 71.856.

It remains only to specify a suitable inverse gamma prior for o2, to keep with the (5.3)
recipe. To this end we may first show that

tg—1 2
v*S, v o

b'S,b=0?—" " and k2= Vary,=—"—,
" 1—otS, vi 1—vtS, 1w
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which leads to ¢ = k(1 — v'S;;'v)}/? in terms of the standard deviation for the ;
results themselves, for which a prior estimate is the standard deviation of Saturday’s
1000 m races, namely 1.394. With our prior estimates (0.6,0.8,0.6)" for the correla-
tions this suggests prior mean value a/b = 1/(c*)? = 1/0.8042 for 1/0?%, and the vari-
ance is 2a/b? = (2/0.804%)/a = 3.094/a. Comparisons with the estimated variance for
the standard deviation of Saturday’s 1000 m races leads us finally to put a = 4.2 and
b = 0.804%a = 2.815 for the two Gamma, prior parameters.

After the hard work of setting a proper prior it is a pleasure to finally watch Sunday’s
1000 m races, and an easy task to produce the ppp and cppp numbers, following the results
of Section 5, and to update our prior for the correlation and regression parameters. The
correlation uncertainty updating is of interest for the actual application (the posterior is
e.g. centred at about (0.75,0.85,0.75)), but is uncorrelated with the main story of this
article, so we report instead on the ppp analysis. Formula (5.6) gives ppp(y°S) = 0.539,
while that section’s Proposition readily can be applied to yield cppp(y°P%) = 0.781. We may
conclude that there is absolutely no conflict between our carefully constructed prior and the
data, as monitored via the canonical discrepancy function D(y,0) = Y7, (i — pi)?/o?. It
might be of interest to try other discrepancy functions, checking adequacy of other aspects
of prior and model, like asymmetry, but we abstain from doing so here.

7. ppp and cppp analysis of two bird survival models

Brooks, Catchpole and Morgan (2000; henceforth BCM) analysed recapture data for the
European Dipper species (Cinclus cinclus) using ppp values. The same data have previ-
ously been analysed by Lebreton, Burnham, Clobert and Anderson (1992). They are in
the form of a triangular 6 x 6 array in conjunction with a vector giving the number of
released individuals for the six years in question; see below. Here we offer a re-analysis of
their data, utilising our cppp tools, and reach conclusions partly different from those of
BCM regarding adequacy of suggested models.

7.1. The data, the model, and the discrepancy. The data are given in Table 1. The
models considered by BCM involve up to twelve parameters: for z = 1,...,6, ¢; represents
the probability that a given bird survives year 1980 + %, while p; represents the probability
of capturing a particular bird in year 1980 + .

Release year Released Recaptured: 1982 1983 1984 1985 1986 1987

1981 22 11 2 0 0 0 0
1982 60 - 24 1 0 0 0
1983 78 - - 34 2 0 0
1984 80 - - - 45 1 2
1985 88 - - - - 51 0
1986 98 - - - - - 52

TABLE 1. Recapture data for the European Dipper.
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The multiplicative multinomial model assumption can for such recapture data be shown
to lead to a likelihood of the form

6 6 Jj—1 o
L(¢7p) = const. A(¢7p) H H ((bzpj H (bz(l - pk))yzd7
=1 j=it+1 k=i+1

where A is the contribution to the likelihood for the never-captured birds, and where
‘empty products’ are equal to 1; see BCM for details. The discrepancy measure used in
BCM is
D(y, (¢,p)) = Z(yzlf - 6%'2)2, where €; j = Emodel Yi,j-
0,

We have analysed two versions of this general model. The large model (T/T in the ter-
minology of BCM) employs all twelve parameters (¢;, p;) while the small model (C/C in
their terminology) takes all ¢;s equal and all p;s equal, thus having two parameters.

For both cases we choose to use independent and uniform priors for the parameters in
question. We do this for two reasons. Firstly, the more focussed priors also briefly worked
with by BCM do not appear to fit data particularly well, and BCM give little indication
that they represent actual prior knowledge of the parameters. Secondly, they quote the
posterior means and standard deviations only for the uniform prior. It turns out that our
computed ppp values are slightly, but statistically significantly, different from those quoted
by BCM (for the full model with uniform prior, we find a ppp value of 0.075, while BCM
quote the number 0.086; similarly, we find ppp equal to 0.060 where BCM give 0.069, for
the small model). By verifying the quoted posterior means and standard deviations, we
have eliminated the MCMC simulation as a possible reason for these differences. Although
we have not been able to reproduce the exact ppp values of BCM, the differences are small
enough to be ignored in the present setting of general analysis.

7.2. ppp and cppp analysis of the two models.

The large model. We have sampled the distribution of ppp along the lines indicated
above, and found ppp(y°”) = 0.075. From plots (not shown here) of the sampled cu-
mulative distribution function and estimated density for the ppp, based on 500 simulated
values, we see that the distribution function is clearly S-shaped, and the density clearly
unimodal. The sample standard deviation is 0.172, compared to 0.289 for a uniformly
distributed p-value. More important is that the fact that only a single one of our 500
simulated ppp values was below 0.075, giving an estimated cppp value (the true surprise
level) of 0.002.

The small model. In this case we find ppp(y°"*) = 0.060. Again we studied the
sample cumulative distribution function and estimated density for the ppp. We found
here that the ppp distribution is closer to a uniform distribution, compared to the twelve
parameter case. The sample standard deviation of ppp is now 0.257. With calibration
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we find cppp = 0.022 (11 out of 500 simulated ppp(Y’) values were less than 0.060). We
therefore conclude that the given data are much less likely under the large model than
under the small one, although the nominal ppp values give the opposite relation.

8. Comparing nonparametric with parametric models

Our cppp can be interpreted as a ‘quantification of surprise’, as monitored by the dis-
crepancy function. It is a strength of this approach that it puts all surprises on the same
footing, so to speak, namely the uniform scale on the unit interval. In particular, there
are no conceptual difficulties with comparing the cppp from a parametric model specifica-
tion with that of a nonparametric one. We indicate how this might be put to use in two

situations.

8.1. Nonparametric vs. parametric cdf. Consider independent data yi,...,¥y, drawn
from a distribution F', where two quite different priors are under consideration for F'.
The first is to take F(t) = ®((t — p)/0) normal, with a prior 7(u, o) on its parameters.
The second does not bound F' to any parametric description, and takes F' ~ Dir(aFyp), a
Dirichlet process with centre distribution Fjy and concentration parameter a; see e.g. Hjort
(2003b) for a recent review of nonparametric Bayesian statistics. For discrepancy measure
we use

D(y, F) = vallF, — F|| = Vimax|F,(t) - F(t)],

in terms of the empirical distribution function F; of the data. The /n factor is of no
consequence for the actually computed ppp and cppp numbers, but is there to better
understand the situation when n grows. In fact, the D(y"™P, F) = /n||F}® — F|| is
then close being the maximum absolute value of WO(F(t)), where W° is a Brownian
bridge, by classic empirical process theory, see e.g. Billingsley (1968, Ch. 4). In particular,
D(y™P, F) —4 ||W°|| = max; [W°(t)|, both when F is fixed and when F is selected by
some posterior mechanism.

Let us now assume that the y; data really follow some continuous Fi, distribution.
We are to study the behaviour of the nonparametric and normal-parametric prior specifi-
cations, say pppp;; and pppy-. First study the nonparametric prior. Here F' given data is
a Dirichlet process with parameter aFy + nF2. One may show that /n(F — FoPS) —y4
WO(Fy:(-)) a.s., where W9 is another Brownian bridge, independent of W?; this follows
e.g. from work of Hjort and Ongaro (2004). Hence

PPPpir (¥°™°) = Pr{v/n|| Fp® — F|| > Vnl[F™® = F|| | data} — Pr{|[W°|| > [W°|]} = §

a.s., as n grows towards infinity. Then consider the normal-parametric prior, for which F
given data is a random normal distribution function, with (p, o) drawn from the appropri-
ate posterior density 7(u, o |data). Here |F2° — F|| goes a.s. to ||Fir — Fapprl|, essentially

28



by the Glivenko—Cantelli theorem, where Fippr(t) = ®((¢t — pt4r) /04r) is the best parametric
approximant to Fi.(t), inside the normal family. It follows that /n||F° — F|| goes to
infinity a.s., as long as the real F}, is not fully equal to a normal distribution function,

°bs) 3 0 a.s. as n — oo.

and, in particular, pppy(y

The results above help us understand the behaviour of the two ppp measures, for large
n. We would also need to calibrate these, to reach the more interpretable cppp values given
data. This can be done via double simulation, as per the general guidelines about this laid
out in Section 4.2.

In some situations interest focusses more on certain parameter x(F') than on the full
distribution F', say the interquartile range or the skewness. In such cases one might prefer
working with discrepancy measures of the type D(y, F) = n{x(F,) — k(F)}2. Here the
parametric model could win, even when it is not fully correct as such. Again, ppp and

cppp analysis may be carried out.

8.2. Nonparametric vs. parametric hazard rate models. Bayesian analysis of survival
and event history data appear to fall into one of two separate categories, viz. the parametric
and the nonparametric. Only rarely does one see any formal justification for choosing
one path over the other. The cppp analysis makes it in principle easy, conceptually and
operationally, to do such a comparison. The parametric model might use a Weibull hazard
rate H(t) = (0t)7, with a prior on (6, ), where the nonparametric alternative could use a
Beta process. As discrepancy measure one might use D(y, H) = [ w(t){H,(t)—H(t)}*dt,
for a weight function w, involving the Nelson—Aalen estimator H,, for H.

9. Related themes and concluding remarks

We end our article with a list of comments and indication of themes, some of which might
warrant further research efforts.

9.1. Calibrating the prior through the calibrated ppp. Eliciting and fine-tuning priors
remains of course a difficult task, even for experienced Bayesian statisticians. There are
often situations where the statistician may translate prior knowledge into a reasonably
secure centre point, say a ‘prior guess’ equal to 6y, but where setting the appropriate
precision level is far from clear-cut. In such situations a scheme or way of thinking not
infrequently followed is to try out different precision levels, from ‘reasonably precise’ to
‘quite non-informative’, and make do with a level of spread that balances the two desiderata
of not trusting the prior guess too much and at the same time not tolerating a serious
conflict or clash between prior and data. Some ‘prior sample size’ elicitations indirectly
are of such a form.

The procedure just described is somewhat ad hoc, of course, and may not be easy to
follow or formalise in practice. The cppp mechanism offers a venue leading to a precise
version of this idea, however. The proposal is to monitor the cppp(y°P®) as a function of

29



the spread or precision parameter involved, and in the end use the most conservative prior
that still does not clash with data, in the sense of having for example cppp(y°"*) = 0.10,
but not lower.

As a mundane illustration of this cppp-induced conservative prior, study again the
normal-normal setup of Section 2 and Section 4.1. Assume the statistician has selected a
secure prior guess parameter fy for 6, but is not yet certain about the choice of the prior’s
spread parameter 0. From (4.4), the idea above amounts to selection o to have

UKL LYY S AT
1+ no2/o? ' ’ 07 /n\1.6452 ’
where 22 = n(y°" —0y)? /o2 is the usual test statistic for testing the null hypothesis that

@ = 6. This formula would be used when ngs > 1.6452, i.e. when the test rejects 0y at
significance level 0.10. In cases where the 8 = 6y hypothesis is accepted by the data, the
scheme above would allow a sharp prior at 0y, i.e. setting oo to a small value.

We stress that the idea is quite general and might be used in situations much less
clear-cut than the above, e.g. in semi- and nonparametric contexts. One type of applica-
tion would be to nonparametric setups involving Dirichlet or Beta processes, where the
statistician knows where to centre these but is unsure about the concentration parameters.

9.2. Detection power. There is not room here for properly discussing the detection
power of the cppp assessors. This clearly depends on aspects of the situation at hand,
including the discrepancy function D(y,#). For the normal-normal setup of Section 2 it
is not difficult to study the distribution of U = ppp(Y’) under various conditions different
from those implied by the prior and the model; we will report elsewhere on some such
findings. While the power may be satisfactory for some sets of alternative combinations
of prior and model there will remain types of alternatives that are difficult to detect, with
any given D(y, ). For detecting special types of violations one might therefore need to
devise corresponding special discrepancy functions.

9.3. cppp as a p-value. One way of viewing our cppp construction is that the ppp(y°bs)
of (1.1), albeit clearly having Bayesian interpretation and inspiration, is nothing but a
test statistic. Since statisticians compute it, they wish directly or indirectly to assess its
significance, which amounts to comparing it to its null distribution. This is in effect what
the cppp operation does.

9.4. Tail versus height. When attempting to assess the degree of surprise in an
observation U = u, one might compute tail areas, i.e. G(u) = Pro{U < u} for the relevant
null distribution, or a suitable ratio of densities h(u)/g(u). This article has been concerned
with the first general direction, partly because is would be difficult to find good general
candidates for the h(u) in question, and partly since the null densities g(u) have been seen
to be so extreme, cf. Figure 4.1.
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9.5. General hierarchical models. In complicated hierarchical models it is easy to lose
track of the different implications of a many-levelled prior. Ordinary assessment methods
may not work well in such cases, see e.g. comments made in Lu, Hodges and Carlin (2004)
about the otherwise general-purpose DIC measure. The cppp methods of our article may be
generalised to various hierarchical models, and we believe they may be useful for screening
out unfortunate combinations of prior and model there, when employed with appropriate
discrepancy functions. Such might be constructed along the lines of Day, Gelfand, Swartz
and Vlachos (1998).
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