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Abstract

We propose a method for path analysis of survival data with recurrent events.

By applying an additive model for the intensity, concepts like direct, indirect

and total effects may be defined in an analogous way as for traditional path

analysis. The focus is on understanding how to analyze the effect of a dynamic

covariate, e.g. the number of previous events, and at the same ensuring that the

effect of a fixed covariate is unbiasedly estimated. Theoretical considerations as

well as simulations are presented. A dataset on recurrent tumors in rats is used

for illustration.

Keywords: causal analysis, path analysis, dynamic covariates, event history

analysis, graphical models, internal covariates, orthogonalization, treatment ef-

fect, Aalen’s additive regression model



1 Introduction

In spite of the apparent success of the field, survival and event history analysis

has had shortcomings which have just recently started to receive a solution. The

analysis of time-dependent internal covariates has been a persistent problem. It

has been well known that a treatment effect may be wrongly estimated when

time-dependent covariates are included, e.g. in a Cox model. The recent re-

vised version of the classical book by Kalbfleisch and Prentice (2002) contains

discussion on this point, but no solution is presented. Important contributions

have been made in the marginal structural models of Robins and coworkers,

see e.g. Robins, Hernán and Brumback (2000). However, our perspective here

is different, or more general, since we want to understand the effect of the

time-dependent covariate, per se, instead of considering it as a nuisance to be

corrected for.

Our approach is built upon the classical path analysis which was developed as

an extension of linear regression models (Wright, 1934). In the simplest case one

analyses a series of regression models corresponding to a causal understanding

of the relationships between the variables under study. This approach has found

a wide application in many fields and is the basis on which the more recent and

far more extensive graphical models have been derived (e.g. Pearl, 2000). The

statistical analysis of simple recursive path models is based on linear regression

calculations, that is, successive least squares estimation.

In this paper we combine these procedures with the additive, or linear, model

for hazard regression that has been developed in the counting process context

(Aalen, 1980, 1989). In this model a local least square estimation is performed

whenever an event occurs, and the local estimates are added up in an informative

cumulative plot. Including a standard path model for the covariates, yields a

new path model for covariates and events combined. The algebraic calculations

from classical path analysis all transfer over to this new situation because they

only depend on the linearity and the least square estimation. The assumption

of normally distributed errors is of course not relevant for the hazard part of

the model, but is substituted by the machinery of counting processes.

A major advantage of such a path analysis is the distinction between direct,

indirect and total effects. Marginal structural models, on the other hand, do
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not give such detailed analysis. For the Cox model the analogues of direct,

indirect and total effects do not seem to have been developed, no doubt due

to the difficulties incurred by nonlinearity. In fact, even for logistic regression

models it has been difficult to suggest suitable analogues of direct, indirect and

total effects, although there may exist a recent suggestion (Eshima et al, 2001).

The difficulty of defining indirect effects for nonlinear models is also discussed

by Pearl (2001), who makes some general suggestions, without however relating

this to specific examples like the Cox model.

We shall consider the situation where a number of processes with recurrent

events are studied. These could be repeated occurrences of disease, repeated

awakenings during a night, etc (see e.g. Aalen et al, 2004, for examples). A com-

mon approach for analysing such recurrent events has been to use frailty models

(Hougaard, 2000). Recently a different approach has been studied, namely to let

the number of previous events for an individual be a covariate giving informa-

tion on the individual specific risk. This was applied in Kalbfleisch and Prentice

(2002), Aalen et al (2004), Peña and Hollander (2004), Gandy and Jensen (2004)

and Miloslavsky, Keleş and van der Laan (2004). We want to point out possible

pitfalls in analyses with covariates like ‘the number of previous events’. Nev-

ertheless, we believe this is a useful and important procedure, but one has to

be careful to avoid bias. The authoritative textbook of Kalbfleisch and Pren-

tice (2002) uses the number of previous events as covariate (Chapter 9) without

sufficient clarification, in our opinion.

What we want to do is to make a joint analysis getting a correct picture

both of the effect of fixed covariates, including possibly treatment, and of the

dynamic properties of the underlying process with repeated occurrences for each

individual. Note that also other dynamic (i.e, dependent on the past) covariates

than the number of previous events may be involved. A model with dynamic

covariates will be termed a dynamic model, see Aalen et al (2004) for a detailed

discussion.

In Section 2 we give a brief presentation of the nonparametric additive haz-

ard model. The extension by Scheike (2002), where the model is presented

also as a rate function model, is important here. Usually in counting process

theory one studies models for the intensity processes, such that residuals are
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martingales. This requires a complete modelling of covariates and past events

influencing the present intensity. Because we need to also analyse marginal

models, we shall have to consider situations where a more limited amount of

information is included in the model. This is precisely Scheike’s rate function

model, where residuals are not martingales, and where in particular special

methods for variance estimation and testing must be applied.

Section 3 gives some theoretical results on the relationship between various

additive models. A study of a data set on recurrent tumours in rats, which is

used to illustrate the procedures, is presented in Section 4. Here we also give

a simulation study. The approach through local path analysis is explained in

Section 5. A simulation study and discussion on variance estimation is included

in Section 6. Our approach could also handle more complex problems, and we

give some comments on this towards the end.

2 The additive hazard model

Consider a situation where n individuals are followed over a time period, and

the times of occurrence of a recurrent event are registered. Let Ñi(t) denote the

counting process representing the number of events for individual i by follow-up

time t. Since an individual may experience several events, the process Ñi(t)

will take integer values 0, 1, 2, 3, .... For individual i we have the covariates

Zi1(t), ..., Zip(t). These may be fixed or depend on time, and the time-dependent

covariates at time t are allowed to depend on Ñi(s) for s < t. A statistical model

for this situation is obtained by specifiying how the hazard or intensity process

αi(t) of Ñi(t) depends on the covariates; cf. Kalbfleisch & Prentice (2002,

section 9.1). We will assume that the intensity is given by the additive hazard

model:

αi(t) = β0(t) + β1(t)Zi1(t) + ...+ βp(t)Zip(t) (1)

(cf. Aalen 1980, 1989). Here the regression functions βj(t) are arbitrary in

t and describe the possibly time-varying effects of the covariates. Estimation

in the additive model usually focuses on the cumulative regression functions

Bj(t) =
R t
0
βj(s)ds.
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2.1 Data and estimation

The individuals may be followed over different periods of time. We let Yi(t) = 1

if individual i is under observation "just before" time t, and let Yi(t) = 0

otherwise. We also introduce the process Ni(t) =
R t
0
Yi(s)dÑi(s) counting the

observed number of the event for individual i, and assume that censoring is

independent in the sense of Kalbfleisch & Prentice (2002), see also Andersen et

al. (1993). Then the intensity process of the observed counting process Ni(t)

takes the form

λi(t) = Yi(t)αi(t) (2)

Note that our set-up allows for both right-censoring and left-truncation. How-

ever, covariates depending on previous events in the underlying counting process

Ñi(t) can cause problems for left-truncated data.

By combining (1) and (2) we obtain

λi(t) =Wi(t)β(t),

where β(t) = (β0(t), β1(t), ..., βp(t))
0 is the vector of regression functions, and

Wi(t) = Yi(t)(1, Zi1(t), ..., Zip(t)). By standard results for counting processes,

we then have

dNi(t) = λi(t)dt+ dMi(t) =Wi(t)β(t)dt+ dMi(t), (3)

where the Mi(t) are martingales.

In order to write the last expression in vector form, we let

N(t) = (N1(t), ..., Nn(t))
0 be the vector of counting processes, the corresponding

vector of martingales isM(t) = (M1(t), ...,Mn(t))
0, andB(t) = (B0(t), B1(t), ..., Bp(t))

0

is the vector of cumulative regression functions, meaning that dBj(t) = βj(t)dt.

Then we may write

dN(t) =W(t)dB(t) + dM(t), (4)

where W(t) is the matrix with Wi(t) as the i’th row. Note that this has the

form of a linear model with dN(t) as response, W(t)dB(t) as the systematic
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component, and dM(t) as the noise term. Ordinary least-squares regression

then gives

dB̂(t) = [W(t)0W(t)]
−1
W(t)0dN(t) (5)

when W(t) has full rank. We introduce J(t) as the indicator of W(t) having

full rank, and the least-squares generalized inverse

W−(t) = [W(t)0W(t)]
−1
W(t)0.

Summing up the increments of (5) over the event times where estimation is

meaningful, we obtain the estimator

B̂(t) =

Z t

0

J(s)W−(s)dN(s) =
X
Tk≤t

J(Tk)W
−(Tk)∆N(Tk)

where T1 < T2 < · · · are the event times and ∆N(Tk) is the increment ofN(Tk),
being a vector with one for the component corresponding to the individual

experiencing an event at Tk and zero otherwise.

We will usually center each of the covariates at every time Tk where we are

estimating, that is subtracting the mean of the covariate over the individuals at

risk at Tk. The reason is that β0(t) in (1) then can be interpreted as the intensity

of an "average" individual, whereas β0(t) otherwise would be the intensity of

an individual having value zero for every covariate.

2.2 Variance estimation

If we have a correctly specified model, the vector dM(t) in (4) is a martingale

increment. Introducing B∗(t) =
R t
0
J(u)dB(u) we can write

B̂(t)−B∗(t) =
Z t

0

J(u)W−(u)dM(u),

showing that B̂(t)−B∗(t) is martingale. An (essentially) unbiased estimator of
the covariance matrix of B̂(t) is given by the optional variation process of the

martingale B̂(t)−B∗(t), i.e. by

dVAR B̂(t) =
h
B̂−B∗

i
(t) =

tZ
0

J(u)W−(u)diag(dN(u))W−(u)0

=
X
Tk≤t

W(Tk)
−diag (∆N(Tk))W−(Tk)

0,
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cf. Andersen et al. (1993).

For a misspecified model, the process B̂(t)−B∗(t) will fail to be a martingale,
and the estimator of the covariance matrix given above may be biased. Scheike

(2002) proposed a robust variance estimator based on modelling the rate instead

of intensity. The rate differs from the intensity by the following assumptions:

whereas the intensity is defined conditionally on the complete history, the rate

is defined only given the identity of the individuals at risk and their covariates

at time t (or rather just prior to t). Thus the modelling of rates is based on

fewer assumptions than the modelling of intensities. Scheike’s estimator of the

covariance matrix is given by

gVAR B̂(t) = nX
i=1

Q̂i(t)Q̂i(t)
0

where

Q̂i(t) =

Z t

0

(W(s)0W(s))
−1
Wi(s)

0
³
dNi(s)−Wi(s)dB̂(s)

´
.

As defined earlierWi(t) is the row ofW(s) corresponding to individual no. i.

We note that Q̂i(t) is the cumulative weighted residual process up to time t for

individual i, the weight reflecting the size of the individual’s covariates. The

variance estimator is the sum of squares of these individual cumulative weighted

residuals.

2.3 Ridge regression

When using ordinary least-squares regression, we will sometimes encounter a

singular matrix in (5) when either very few individuals are at risk or when, in

the beginning a dynamic covariate has identical values for every individual at

risk. To avoid the singularity problem we will use ridge regression at times Tk

where we encounter a singular matrix.

The idea of ridge regression is to solve the problem of sparse data by putting

constraints on the parameter values, thus shrinking the estimates. We minimiseP
i {dNi(t)−Wi(t)dB(t)}2+η(t)

P
j dBj(t)

2, where η(t) is the ridge coefficient,

instead of the usual sum of squared residuals. Note that in our context η(t) may

be a predictable stochastic process, since the need for performing ridge regression
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may change over time dependent on what happens in the counting processes.

The ridge estimator for the increment of the regression function becomes

dB̂(t) = [W(t)0W(t) + η(t) · I]−1W(t)0dN(t),

where I is the identity matrix of appropriate dimension (here p + 1). We note

that the estimator differs from the usual least-squares estimator only by adding,

for any time t, a constant to the diagonal of W(t)0W(t).

The parameter η(t) can be different for each of the p+1 parameters, that is

substituting η(t)·I with a diagonal matrix with diagonal elements η0(t), η1(t), ..., ηp(t).
In practice this is seldom done due to the already fairly large challenges in

choosing an appropriate size of the scalar η(t). However, in our situation where

singularity ofW(Tk)
0W(Tk) often happens because of identical values of a dy-

namic covariate at the start of the study, it would be sufficient to let ηi(t) be

zero except for the ridge coefficients corresponding to dynamic covariates.

As with other shrinkage methods, ridge regression reduces the variance, pro-

viding us with a more stable estimate. There is, however, a trade-off between

stability and bias: the variance decreases and the bias increases, both mono-

tonically, with the value of the ridge coefficient. In ordinary regression setting

with no censoring, it can be shown (Gruber 1998, theorem 3.2.1) that the mean

squared error as a function of η(t) will never have its minimum for η(t) = 0,

hence ridge regression is always potentially superior to ordinary least squares

regression. However, although there exists clever methods for choosing η(t), the

choice will often at least partly rely on a subjective assessment of the appro-

priate degree of shrinkage. If the regression coefficients are very dependent on

the exact choice of η(t), this indicates an instability in the data, and the results

should be interpreted with caution.

3 Connection between various additive models

We shall present here some theoretical considerations, looking at the consis-

tency between various additive models. This is especially important in the path

analysis where additive models are viewed at several different levels. The first

two cases show that additivity (or linearity in the covariate) is preserved un-

7



der marginalization. Notice that such a result is not valid for most nonlinear

models, like the Cox model. Case 3 concerns the relationship between a frailty

model and a dynamic model. This turns out to be more complex and linearity

is not preserved.

Throughout this section we consider the situation without censoring so that

there is no difference between λ(t) and α(t), see (2).

Case 1. Assume the covariates Z1 and Z2 are independent random variables

and that we have the following true model for the intensity process:

λT (t) = β0(t) + β1(t)Z1 + β2(t)Z2

Assume now that Z2 is unknown. The rate function (not intensity process any

more!) with Z1 as the only covariate may be found by the following informal

argument:

1

dt
E(N(t+ dt)−N(t) | Z1) =

1

dt
E(E(N(t+ dt)−N(t) | Z1, Z2)| Z1)

= E(β0(t) + β1(t)Z1 + β2(t)Z2 | Z1)

= β0(t) + β1(t)Z1 + β2(t)E(Z2)

Hence, the marginal model is still linear in Z1 with the same regression function

β1(t), and we can write the rate function as:

λM (t) = β∗0(t) + β1(t)Z1

Notice that we would also get an additive model if Z1 and Z2 are correlated

and normally distributed (due to the linear conditional mean), but then the

regression function of Z1 would be changed.

Case 2. We shall now start with a dynamic model and see that linearity is

preserved under marginalization. Let N(t−) be the number of events in the
process prior to t, and assume the following model:

λD(t) = β0(t) + β1(t)Z + β2(t)N(t−)

Define the function fZ(t) = E(N(t)|Z). Following the argument above, the
marginal rate function of N(t) given only Z is given as:

1

dt
E(N(t+ dt)−N(t) | Z) = E(β0(t) + β1(t)Z + β2(t)N(t−) | Z)

= β0(t) + β1(t)Z + β2(t)E(N(t) | Z)
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This yields the differential equation

f 0Z(t) = β0(t) + β1(t)Z + β2(t)fZ(t),

with the initial condition fZ(0) = 0 corresponding to N(0) = 0. The solution

of this linear differential equation is straightforward and we skip the details.

Noting that the marginal rate function equals f 0Z(t), the following expression is

found for it:

λDM (t) = β0(t) + β2(t)

Z t

0

β0(v) exp(

Z t

v

β2(u)du) dv

+Z

½
β1(t) + β2(t)

Z t

0

β1(v) exp(

Z t

v

β2(u)du) dv

¾
.

Hence, the rate function is still linear in Z although the coefficient has changed.

Note that if, for example, β1(t) and β2(t) are both positive, then the coefficient

of Z is larger in the marginal than in the dynamic model, confirming results

demonstrated in the example and the simulation in the next section.

As an example, let β0(t) = 0, β1(t) = 1 and β2(t) = 1. Then

λDM (t) = Z(exp(t)− 1).

Hence the regression function of Z equals 1 in the full model case, and exp(t)−1
in the marginal case, which clearly demonstrates the large difference in the

estimated influence of Z which there may be between a full and a marginal

model.

Case 3. We start with the model

λT (t) = β0(t) + β1(t)Z1 + β2(t)Z2 (6)

with independent Z1 and Z2, but now we want to see what is the effect when

instead we use Z1 and N(t−) as covariates, which is an alternative when Z2

is unobserved. This is a typical use of a dynamic model, as a substitute for a

model with unknown frailty components. Assume for simplicity that β0(t) = 0

and that β1(t) = β1 and β2(t) = β2 are constants. Given Z1 and Z2 the process

N(t) is a homogenous Poisson process with rate λT (t). Assuming N(t−) = k
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we have by a somewhat informal argument:

1

dt
P (dN(t) = 1 | Z1, past) =

1

dt

P (dN(t) = 1, past | Z1)
P (past | Z1)

=
1

dt

E(P (dN(t) = 1, past | Z1, Z2) | Z1)
EP (past | Z1, Z2) | Z1)

=
E((β1Z1 + β2Z2)

k+1 exp(−t(β1Z1 + β2Z2)) | Z1)
E((β1Z1 + β2Z2)

k exp(−t(β1Z1 + β2Z2)) | Z1)

Now, assume that the Laplace transform of Z2 is L(s), that is:

L(s) = E(exp(−sZ2))

Introduce:

ϕ(s, x) = L(s) exp(−s x) = E(exp(−s(x+ Z2)))

and note that

φ(s, x, n) =
∂n

∂
ϕ(s, x) = (−1)nE((x+ Z2)

n exp(−s(x+ Z2)))

Inserted above this gives the following rate in a dynamic model:

P (dN(t) = 1 | Z1, past) =
−βk+12 φ(t β2, β1Z1/β2, k + 1)

βk2 φ(tβ2, β1Z1/β2, k)

= β2
−φ(tβ2, β1Z1/β2, k + 1)

φ(t β2, β1Z1/β2, k)
(7)

This is clearly not a linear model in Z1, so additivity is not preserved in this

case. However, the function might still be approximately linear in many cases.

As an example, let Z2 have an exponential distribution with expectation 1, and

assume β1 = β2 = 1, t = 1 and k = 2. Then the function in (7) with Z1

as argument is plotted in Figure 1 and shown to be approximately linear. In

simulations below we shall show that an additive dynamic model fits well to

data generated from a model of the type in (6).

4 lllustrations of dynamic covariates

The issues studied shall be demonstrated through a dataset and through sim-

ulations. In particular we shall show the underestimation of a treatment effect

that may occur when dynamic covariates are included.
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4.1 Tumour data

Gail et al. (1980) have described a data set concerning the development of mam-

mary cancer. For 76 female rats, injection of a carcinogen (an agent producing

cancer) for mammary cancer were followed by retinyl acetate (cancer preven-

tion) for an initial period of 60 days. The subcohort of 48 rats still being cancer

free after the initial period were randomly divided into a treatment group of

23 animals receiving continued cancer prevention, and a control group of 25

animals. All rats were then examined for tumours twice a week until day 122

after randomization.

Let N(t) denote the total number of mammary tumours for a rat by time t

where the date of randomization is defined as time zero (note that on the figures

the time start at the point of injection). We analyse the data with the additive

hazard model using the following covariates:

• Covariate 1: whether in treatment group or in control group (1=treatment,
2=control)

• Covariate 2: the number of previous tumours in the rat until time t−,
divided by elapsed time since randomization.

• Covariate 3: whether more than 20 days has passed since the last occur-
rence of a tumour in the rat (1=yes, 0=no).

To avoid singularity problems due to covariate 3, we start the estimation

at time 20 after randomization. In order to analyze these data we can use a

marginal model, containing only covariate 1. Presumably this gives a correct

estimation of the treatment effect, since the treatment was decided by random-

ization. If at the same time, however, we want to understand the structure of

the underlying processes, we should also include covariates 2 and 3 which are

dynamic (and then also internal) as described in section 1. From the discussion

of Case 2 in Section 3, we can expect an underestimation of the treatment ef-

fect in a dynamic model. This is confirmed by our analysis. The upper right

panel of Figure 2 shows that the cumulative regression function of the treatment

covariate in the marginal model (with only treatment as covariate) reaches ap-

proximately the value 2.8 at the final time 122 (182 after injection). On the

11



other hand, the treatment effect in the full dynamic model (all covariates in-

cluded) is only about 1.6 at the same time (middle right panel). This means that

after the inclusion of the dynamic covariates in the model, we underestimate the

treatment effect by approximately 40%.

The phenomenon of underestimation also occurs in a Cox analysis. Table 1

shows the result for the marginal model and the full dynamic model. The un-

derestimation of the treatment effect, as measured by the regression coefficient,

is 29%.

Standardized residual processes, e.g. Aalen et al. (2004), are shown in the

left panels of Figure 3. The upper panel is for the marginal model and the

lower for the dynamic model. The residuals should remain within -2 and +2 if

the model used for analysing data is adequate for the true pattern since then

they are approximately standard Gaussian distributed at any fixed time point.

Both plots have some residuals exceeding +2, but this tendency is smaller when

we use a dynamic model, especially when some time has passed. This is in

accordance with the fact that the dynamic covariates will not catch the data

pattern properly until some events have occurred. The right panels show the

mean and standard deviation of the standardized residual processes, and we see

that the standard deviation is increasing with time to above 2 in the marginal

model, clearly revealing that there are patterns in the data which the marginal

model fails to catch. However, in the dynamic model the standard deviation is

almost constant in time and equal to 1, showing that the dynamic model fits

well.

From the analysis of these data, we see that we have a marginal model that

does not fit the data well, but apparently gives a correct picture of the treatment

effect, and a dynamic model that gives a much better description of the data

as a whole. The treatment effect is very different in the two models, and the

question remains how to combine the two analyses to get a true picture of the

effect of all covariates, and how the apparent inconsistency between the two

models can be resolved.

The issues discussed here shall be further demonstrated in a simulation,

before we in Section 5 present the path analysis which resolves the issue.
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4.2 Simulation model

Whereas the analysis of the tumour data in the previous section showed that

underestimation of treatment effect can be a problem in a model with dynamic

covariates, we will in this section through a simulation model try to study when

and to what extent this happens.

When describing our simulation, we will use the terms ’simulation model’ and

’analysing model’. These terms must not be confused. The former represents

by definition "the truth" since the data are generated under this model. Once

the data are generated, we are going to analyse them as being real data, thus

assuming no knowledge of the true model. We analyse the data by the analysing

model, which is our guess of the true model.

We shall use a simple simulation model, mimicking the situation where there

is an unknown random effect. More precisely, we shall assume an intensity pro-

cess λT (t) = β0(t)+β1(t)Z1+β2(t)Z2 where Z1 corresponds to the known and

Z2 to the unknown covariate. For the statistician the data generation process is

unknown, with the knowledge of the variable Z1 only, and with a qualified guess

that there is some additional unmeasured heterogeneity. In the analysing model

the statistician uses an additive model with the dynamic covariate N(t−), that
is the previous number of events, as an observable substitute for the unknown

element. As seen in Section 3, Case 3, the two additive models considered are

not consistent and the estimate of the intensity process will be expected to be

biased. However, in the simulation we shall carry out residual analysis which

shows that the dynamic model still fits the data well, so the inconsistency is

only slight and of little practical importance.

More precisely, our simulation model is

λT (t) = 0.5 + kZ1 + (1− k)Z2, (8)

where k is between 0 and 1. For the Z’s we choose three different distributions,

uniform between 0 and 1, exponential with parameter 1, and gamma with shape

parameter 2 and scale parameter 1. For all situations considered, we generate

n=40 processes from the simulation model (8). Two analysing models are con-

sidered, the dynamic model

λD(t) = βD0 (t) + βD1 (t)Z1 + βD2 (t)N(t−) (9)
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and the marginal model

λM (t) = βM0 (t) + βM1 (t)Z1. (10)

One question is whether βD1 (t) differs much from the "true" effect of Z1 mea-

sured by k, and we shall see that this depends on the value of k.

First we shall consider whether the analysing model with the dynamic co-

variate N(t−) gives a reasonable fit to the data. Carrying out the estimation
we make martingale residual plots as described in Aalen et al (2004). Figure 4

shows the mean and standard deviation of the standardized residual processes

for the marginal analyzing model (10) as well as the dynamic model (9) when

the covariates are gamma distributed. For the marginal model the standard

deviation of the standardized residuals is clearly above 1 for values of k in the

lower range, that is, when the unknown covariate has considerable influence.

Hence, as expected, the marginal model does not yield a good fit in this case.

For the dynamic model the standard deviation is close to 1 for all values of k,

indicating a good fit. Figure 5 shows the individual standardized martingale

residual processes for the true model with k = 0.5 for the two analyzing models.

The residuals supports our claim that the dynamic model gives a good fit when

the true model is (8).

Next we consider whether applying the dynamic analysing model gives a

correct estimate of regression parameter of Z1. In fact, a considerable under-

estimation is found dependent on the value of k. Table 2 shows the amount of

underestimation for different distributions of the covariates.

As demonstrated in Section 3 a correct estimate of the effect of Z1 can be

found from the marginal model containing only Z1. However, we are interested

in a joint analysis containing both Z1 and the additional random or dynamic

effects. These issues will be sorted out in a path analysis in the next section.

Note also that the marginal model destroys the martingale property of the

residuals as demonstrated above. Scheike (2002) has provided a robust variance

estimator for this case.
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5 Local path analysis

We now introduce our version of path analysis. For a basic introduction to

standard path analysis, see (Bollen 1998). We perform path analysis at each

event time, getting a dynamic picture of the direct, indirect and total effects.

In Section 2 we used the symbol B(t) for a cumulative regression function

and dB(t) for its increment. In this section we will compare regression functions

from different nested models, and two nested models will in general give us

different regression functions. In order to compare regression functions, we will

also use Θ(t) to denote a cumulative regression function. Some models give us

identical regression functions, in which case we will use the same symbol for the

regression functions in both models.

Throughout we will consider the situation where we have one fixed covariate

Z1 corresponding to treatment, and in addition possibly the dynamic covariate

N(t−). We shall assume that all covariates are centered, that is the mean values
for the individuals at risk are subtracted. Note that this centering will change

over time with a changing risk set. Let Zc,t1 denote a vector consisting of centered

values of Z1 for individuals at risk at time t, and of zeroes for individuals not at

risk. Correspondingly, define Nc(t−) as the vector of centered values of Ni(t−)
or of zeroes for those not at risk.

5.1 Estimation

We first consider the marginal model with only the fixed covariate. A path

diagram of this model is given in Figure 6. In the usual model form we can

write the model as

dNi(t) =
©
dΘ0(t) + dΘ1(t)Z

c,t
i1

ª
Yi(t) + dM∗i (t). (11)

Since the marginal model specifies the rate function in the sense of Scheike

(2002) instead of the intensity process, the residual dM∗i (t) is not necessarily

a martingale increment, cf. Section 2.2. The estimator dΘ̂1(t), derived as in

Section 2.1, will be a correct estimator of the treatment effect.

If we also include the dynamic covariate Nc
i (t−), we get a "naive" dynamic

model whose path diagram is given in Figure 7. The model can be written as

dNi(t) =
©
dB0(t) + dB1(t)Z

c,t
i1 + dB2(t)N

c
i (t−)

ª
Yi(t) + dMi(t). (12)
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We shall here assume that the description of the intensity process through the

covariates Zc,t
i1 and Nc

i (t−) is a complete one, so that Mi(t) is a martingale.

The estimate dB̂1(t) will usually be smaller than dΘ̂(t), as we saw in Section 3

(case 2) and in Section 4.2. The intuitive reason for the underestimation is that

individuals with a large value of Zc,t
i1 will tend to have a larger N

c
i (t−), and then

some of the difference that actually is due to Zc,t
i1 , will in (12) be accounted for

by Nc
i (t−).

5.2 Orthogonal covariates

Two vectors x1 = (x11, ..., xn1)
0 and x2 = (x12, ..., xn2)

0 are orthogonal if the

inner product is zero, that is
Pn

i=1 xi1xi2 = 0. A geometrical interpretation is

that x1 and x2 are orthogonal vectors in a n-dimensional space.

In ordinary least square regression, it can be shown that if we consider two

nested models differing by one covariate, and where this covariate is orthogonal

to the other covariates in the model, then the regression coefficients of the

common covariates will be estimated equal in the two models. Informally we

say that adding an orthogonal covariate doesn’t change any of the estimated

regression coefficients. Once we have found a Nc
ort(t−) being orthogonal to

Zc,t1 , we can fit the model

dNi(t) =
©
dΘ0(t) + dΘ1(t)Z

c,t
i1 + dΘ2(t)N

c
i,ort(t−)

ª
Yi(t) + dMi(t), (13)

for individuals at risk at time t. The corresponding path diagram is Figure 8.

Note that we use the same symbol Θ1(t) for the regression function for Z
c,t
i1 as

we did for the marginal model (11). The reason is that the regression function

estimators for Θ1(t) are identical in models (11) and (13), this being also the

case for the two estimators for Θ0(t).

In order to find an orthogonalized covariate as described above, it will suffice

to orthogonalize Nc(t−) w.r.t. Zc,t1 . This can be done by fitting an ordinary
linear least-squares regression of Nc(t−) on Zc,t1 since such regression gives an

orthogonal projection. Thus we start the derivation of the orthogonal covariate

by fitting the standard linear model

Nc(t−) = Ψ(t)Zc,t1 + ε(t). (14)
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The least-squares estimators are

Ψ̂(t) =

P
Nc
i (t−)Z

c,t
i1P

(Zc,t
i1 )

2
(15)

Defining a new covariate as the residual

Nc
ort(t−) = Nc(t−)− Ψ̂(t)Zc,t1 ,

it is well known that this is orthogonal to Zc,t1 . The original dynamic covariate

can be expressed as

Nc(t−) = Ψ̂(t)Zc,t1 +Nc
ort(t−) (16)

5.3 Estimation in the dynamic model

We want to investigate further the connection between the naive dynamic model

(12) in Figure 7 and the orthogonal dynamic model (13) in Figure 8. By inserting

(16) into (12), we discover that what we really are estimating in the naive

dynamic model, is the model whose structural part is

dB0(t) + dB1(t)Z
c,t
i1 + dB2(t)

n
Ψ̂(t)Zc,t

i1 +Nc
i,ort(t−)

o
. (17)

Here we note that this expression contains the estimate Ψ̂(t), on which we are

conditioning when fitting the additive model (in the same way that we are

conditioning on the covariates, which is done in all regression analysis).

The structural part (17) can be re-written as

dB0(t) +
n
dB1(t) + dB2(t)Ψ̂(t)

o
Zc,t
i1 + dB2(t)N

c
i,ort(t−), (18)

which we recognize as the structural part of the orthogonal dynamic model (13).

By comparing the two expressions (13) and (18) for the structural part of

the orthogonal dynamic model, we have found the connection between the two

regression coefficients dB1(t) and dΘ1(t) of the covariate Zc,t
i1 for the naive

dynamic model (12) of Figure 7 and the orthogonal dynamic model (13) of

Figure 8. We get

dΘ1(t) = dB1(t) + dB2(t)Ψ̂(t). (19)

Here we note that dΘ1(t) is the treatment effect in the marginal model. Thus

we have shown that the treatment effect in the naive dynamic model is under-

estimated by dB2(t)Ψ̂(t).
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Based on the results above, we note that for the purpose of estimating the

treatment effect dΘ1(t) and the effect of the dynamic covariate dΘ2(t), we don’t

actually have to perform any orthogonalization. Instead we can fit (12) to get

dB̂2(t), being equal to dΘ̂2(t), whereas the treatment effect can be found either

from fitting the marginal model, or by fitting (12) and (14) and then calculate

the right-hand side of (19).

5.4 Interpretation by path analysis

Up to now we have only used the path diagram as a visualizing tool of the

regression of dN(t) on covariates. However, Figure 9 shows a path diagram of

the connection between all the variables, and it turns out that the estimation

methods in path analysis is essentially identical to the orthogonalizing approach

above, and gives in addition a better visual impression of what is going on.

The direct effect of the ancestor Z1 on the descendant dN(t) is represented

by the path directly from Z1 to dN(t) and is denoted with a symbol next to

the arrow in question. The symbol is defined as the regression coefficient of Z1

when we fit the linear least-squares regression of dN(t) on all its parents, in

our case being Z1 and N(t−) (centered appropriately as described above). This
means fitting (12), and then we have two of the three effects of Figure 9. For

the remaining direct effect, we follow the definition of direct effect and fit the

regression equation (14).

The indirect effect applies only to paths with intermediate nodes, and it is

the product of all direct effects along subpaths of the path. Using Figure 9, the

indirect effect of Z1 on dN(t) then is Ψ(t) · dB2(t).
The total effect of Z1 on dN(t) is defined as the sum of all direct and indirect

effects, and is then

Total effect = dB1(t) +Ψ(t) · dB2(t), (20)

thus from (19) the total effect has identical interpretation as the marginal treat-

ment effect.

The result of this analysis is that the marginal model gives the total effect of

treatment, which can presumably be identified with the causal effect. So what

the is the point of the more complex analysis, couldn’t one just be content with
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performing a simple marginal analysis?

We believe the path analysis framework is illuminating. It connects the

marginal model with the joint model and shows how the marginal effect of

treatment can be decomposed into a direct and an indirect effect. Such a simple

decomposition can only be performed simply because we postulate an additive,

or linear, structure. In nonlinear structural models no simple relationship be-

tween marginal, direct and indirect effects exist. E.g. it would be difficult to

perform a path analysis within a Cox proportional hazard framework.

The path analysis also shows the relationship between estimating treatment

effects and dynamic effects. While the correct treatment effect can either be

perceived as the regression effect in the marginal model or as the total effect

in the joint model, the effect of the dynamic covariate is the corresponding

regression effect in the joint model. Hence, the joint model and the associated

path diagram is not unneccesary luxury, but required to get a correct estimation

for both the treatment and the dynamic covariate.

5.5 The tumour data revisited

In Figure 2 it is seen that the effect of treatment in the marginal model is greater

that the effect in the joint model. It is now clear that the total treament effect

is found from the marginal model in the top right panel, while the direct effect

of treatment in the full dynamic model is found in the right middle panel. The

indirect effect of treatment is the difference between what is found in these two

panels.

The direct effects of the dynamic covariates in the full model are found in

the two bottom panels. We conclude that there is a clear effect of the number of

previous occurences, but not of the time since the last event. Hence the process

of repeated occurrences of tumours appears Markovian, but with different rates

for different individuals.

There will be more uncertainty as how to interprete the results of the Cox

analyses in Table 1. Clearly the effect of treatment would again be estimated

from the marginal model, however the interpretation of the joint model is not

clear since there is no simple connection between the joint and the marginal

models as we have in the additive case. In particular, a definition of indirect
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effects is lacking for the Cox model.

6 Variance estimators studied by simulation

The issue of variance estimation depends on whether the model is a true intensity

model with martingale residuals, or just a rate model. Since the distinction

between these two types of models is important here, we give a simulation study

of how different variance estimators perform. The simulation is done similarly to

Section 4.2, using the model λT (t) = kZ1+(1− k)Z2 with k = 0.25, and where

the Z’s are independent and uniformly distributed on (0,1). A simulation study

has been performed with each data set consisting of 40 individual processes on

a time scale from 0 to 10. A total of n = 200 data sets have been simulated.

6.1 Conditional versus unconditional simulation

Note that we can simulate in two different ways with respect to the variables

Zi1 and Zi2. The conditional simulation approach is to simulate given Zi1 and

Zi2, meaning that we have a specific sample of individuals with fixed intensity,

only simulating their processes given the intensity. The unconditional method

is to simulate both Zi1 and Zi2 as well as the course of the processes at each

repetition. The unconditional method is obviously the more general one of the

two approaches since we are not restricting ourselves to a particular sample of

individuals. In the conditional sampling scheme we will have only non-random

covariates, thus simplifying the interpretation since one typically assumes, at

least implicitly, non-random covariates in regression analysis. Unconditional

simulation means that the variability of the results (for instance the variance

estimator) has two components: one is the variability arising from the random-

ness at every time point of the process. The second variability component is

that invoked by generating the covariate values (or generating the sample of

individuals). The conditional simulation approach has only the first variability

component. Hence the variance in the unconditional case will be larger than

the variance in the conditional case, which also follows from the well known

formula: V ar(Y ) = V ar(E(Y |X)) +E(var(Y |X)) > E(var(Y |X))
The standard assumption in regression analysis is to assume fixed covari-
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ates, that is the conditional case. Little theory exists on the more realistic case

of random covariates, even for ordinary linear regression. In our case the dis-

tinction between the conditional and unconditional case turns out to be quite

important.

6.2 Simulating the variances

We want to compare the martingale and Scheike variance estimators (Scheike,

2002) for the cumulative regression function estimates with each other, and also

to compare them with the true variance. The true variance is not available an-

alytically, but an estimate is the sample variance of the n simulated cumulative

regression function estimates.

6.2.1 The variance of the total effect Θ̂1(t)

A rather complex picture is emerging as regards the variances. We shall first

consider estimation of the variance of the estimator of the fixed effect Z1, distin-

guishing between conditional and unconditional simulation schemes as discussed

above.

Let us first consider the marginal analysing model, that is, only using Z1

in the analysis. Figure 10 (upper right panel) reveals that in the uncondi-

tional simulation scheme, the martingale variance of Θ̂1(t) is underestimating

the variance in the marginal model, as we would expect from Section 2.2 since

the martingale property isn’t valid when one covariate is excluded. The Scheike

variance estimator (Scheike 2002) , on the other hand, is seen to give a correct

estimate, as expected.

It is interesting to note from the upper left panel of Figure 10 that when

conditioning on Z1 and Z2, the martingale estimator is the correct one while the

Scheike estimator overestimates the variance. Since the rates for each individ-

ual is in this case constant (not changing between simulations) the martingale

property will be preserved whichever model is used.

In the lower right panel of Figure 10 we use a dynamic orthogonalized model.

We see that both the Scheike and the martingale estimators underestimate the

variance. It is reasonable that the estimators coincide closely since we have a

full dynamic model where the martingale property would be expected to hold
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approximately, cf. the results for residuals in Section 4.2. Compared with the

marginal model discussed above, it is clear that the Scheike estimator will be

expected to decrease when adding the dynamic covariate since the residuals will

decrease due to the improved fit with two covariates, and Scheike’s estimator is

based on residuals. On the other hand the true variance will remain unchanged

when adding the dynamic covariate since the orthogonality of the orthogonalized

dynamic covariate to Z1 makes the regression function estimators identical in

the marginal model and the dynamic model.

The lower left panel of Figure 10 shows that both estimators are correct in

the conditional scheme, this being reasonable since the model given Z1 and the

full model coincide as discussed above.

Regarding how to estimate the variance in a real-life situation, our main

interest lies in the unconditional simulation scheme– since it reflects the total

span of real life situations that we could face – and in the orthogonal dynamic

model and the marginal model, being the models that we would use in a real

life situation. As concluded above, in the marginal model the Scheike-estimator

is the correct choice.

6.2.2 The variance of the dynamic effect Θ̂2(t)

The variance of Θ̂2(t) appears by Figure 11 to be best estimated by the mar-

tingale variance estimator since it appears that the Scheike-estimator is under-

estimating the variance at the start. Once the processes have been going on for

some time, the variance is in any case increasing only very slowly compared to

the start. The reason for this is that the number of earlier events is a rather

strong predictor on whether or not a new event will occur, but only when we

have allowed the processes to run until a certain number of events have already

happened.

7 Discussion

We have shown how to combine the analysis of a treatment effect and of dy-

namic covariates, and thereby getting a detailed insight into the structure of

the data. Due to additivity this can be performed by path analysis, tying to-
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gether marginal and joint models by defining direct, indirect and total effects.

A similar analysis does not exist, for instance, for the Cox model where indirect

effects have not been defined.

It should be noted that the biases studied here are different from those that

are due to excluded or unknown confounders. For instance, in frailty theory

it is well known that unknown risk factors will typically have the effect of at-

tenuating the estimated effects of the observed ones. In other cases, excluding

confounders may result in estimated effects that are too large. Had the unknown

factors been observed and included in the analysis as confounders, then the es-

timated effects would be more correctly estimated. What we see here is the

opposite phenomenon. The most correct estimates will be observed in marginal

models, and including internal time-dependent covariates in the causal path

between a fixed covariate (e.g. treatment) and the recurrent events may bias

the estimate, often downwards. Hence, as pointed out repeatedly in the causal

analysis literature, e.g. by Hernán et al (2002), whether to include or exclude

covariates are crucially dependent on a causal understanding.

We believe the analysis given here clarifies issues which have been unsettled

in the literature. For instance, Kalbfleisch and Prentice (2002, Section 9.4.3)

study the effect of the medication thiotepa on the recurrence of superficial blad-

der tumours. In Table 9.3 of their book they present results for a number of

different Cox models, including models with number of previous recurrences in

some form. The effect of thiotepa is lower in the analyses which include this dy-

namic covariate just as is expected. The discussion by the authors is interesting,

but does not seem conclusive with respect to which analysis one should choose.

We believe an analysis along the lines of this paper would be illuminating.

It has been recognized over the last few years that in order to understand

the issues of time-dependent covariates and time-dependent confounding, one

has to look at causal models. This has forcefully been presented by Robins

and coworkers, see e.g. Robins, Hernán and Brumback (2000). They apply the

marginal structural models which introduce weighting procedures to counteract

the biases introduced by confounding and selection. This is undoubtedly a

generally valid procedure as long as one is mainly interested in correct estimation

of, say, treatment effects. But if one wants to understand the more detailed
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causal structure, then the marginal structural models may not be the right tool.

Note that our path analysis is also a structural equation model, but different

from that of Robins and coworkers.

Our approach can be extended to include several fixed covariates and sev-

eral dynamic covariates as well as dynamic treatment regimes. As an example,

consider the paper by Hernán, Brumback and Robins (2000). Here they study

the impact on survival of the medication Zidovudine for HIV-positive patients.

A simple analysis cannot be done because Zidovudine is being give to patients

only when their CD4 count becomes quite low, hence when the disease is rela-

tively advanced. Superficially, one might therefore get the impression that the

treatment is associated with high risk of death, as indeed a simple Cox analy-

sis shows. However, Hernán et al analyses the data according to the marginal

structural model and finds, correctly, that the treatment reduces mortality. The

complexity here is due to the fact that the CD4 count influences the probability

that the treatment is started. On the other hand, treatment itself will influence

the CD4 count. Hence, one should analyze not only how treatment influences

survival, but also how it influences and is influenced by the CD4 count. It is

natural to talk about the direct effect of treatment on mortality risk and the

indirect effect working through the influence on the CD4 counts, and this dis-

tinction is just what path analysis offers. We believe our approach can also

handle the example discussed by Hernán et al and be an alternative to the

marginal structural model.
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Model Covariate Coef.
hazard

ratio

se

(coef.)
z-value P-value

Marginal Treatment 0.833 2.30 0.152 5.47 4.4e-8

Treatment 0.592 1.81 0.163 3.63 2.8e-4

Dynamic No. of prev. ev. 0.103 1.11 0.034 3.05 0.0023

Time since last ev. -0.320 0.73 0.169 -1.89 0.058

Table 1: Results of Cox analysis of the marginal and dynamic model on the

mammary tumour data.
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Figure 1: Dependence on Z1 in formula (7)

k

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U(0, 1) -23 -22 -17 -14 -9 -6 -4 -2 -1 0

exp(1) -65 -62 -56 -50 -42 -33 -22 -12 -2 0

Γ(2, 1) -54 -46 -43 -36 -28 -21 -13 -7 -2 0

Table 2: Relative decrease in percent of the cumulative regression function of Z1

at the last time point when fitting the dynamic model instead of the marginal.

Based on 1000 simulations of 40 individual processes generated from the model

λ(t) = 0.5 + kZ1 + (1 − k)Z2. Ridge regression with ridge factor 0.01 used in

the presence of singularity.
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Figure 2: Cumulative regression functions from the analysis of mammary tu-

mour occurrences. The two upper figures are for the marginal model with only

treatment included, whereas the four lower figures are for the model with all three

covariates included. The two upper left figures are the baseline intensities, the

two upper right are the cumulative regression function for treatment, the lower

left is for the number of previous occurrences divided by observation time, the

lower right is for time since previous event. Outer curves give pointwise 95%

confidence intervals.
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Figure 3: Standardized residual processes (left panels) and mean and standard

deviation of these processes (right panels) for the mammary tumour data. The

results for the marginal and dynamic model are in the upper and lower panel

respectively.
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Figure 4: Mean (solid curve) and standard deviation (dotted line) of the stan-

dardized martingale residuals of 40 processes. Shown for the marginal ana-

lyzing model (upper panels) and the dynamic analyzing model (the lower pan-

els), and for different values of k when the true simulation model is λ(t) =

0.5+kZ1+(1−k)Z2 where the Z’s are gamma distributed with shape parameter
2 and scale parameter 1. Ridge regression with ridge factor 0.01 used in the

presence of singularity.
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Figure 5: Standardized martingale residuals of 40 processes. Shown for the

marginal analyzing model (upper panels) and the dynamic analyzing model

(the lower panels), and for k = 0.2 (left) and k = 0.5 (right), where the true

model is λ(t) = 0.5+kZ1+(1−k)Z2 with the Z gamma distributed with shape
parameter 2 and scale parameter 1. Ridge regression with ridge factor 0.01 used

in the presence of singularity.
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Figure 6: Path diagram of the marginal model (11).

1Z

)( −tN

)(tdN
1( )dB t

2( )dB t

1Z

)( −tN

)(tdN
1( )dB t

2( )dB t

Figure 7: Path diagram of the naive dynamic model (12).
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Figure 8: Path diagram of the dynamic model (13) with orthogonal dynamic

covariate.
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Figure 9: Full path diagram of the dynamic model.
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Figure 10: Variance-estimators for the cumulative regression function of covari-

ate Z1. Upper panel are marginal models and lower are dynamic. Conditional

simulation scheme on the left and unconditional on the right. Solid line is the

Scheike-estimator, dotted line is martingale-based estimator and dashed (irreg-

ular) line is the simulated variance.
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Figure 11: Variance-estimators for the cumulative regression function of covari-

ate N(t−) in the dynamic model. The left figure gives conditional simulation
and the right unconditional. Solid line is the Scheike-estimator, dotted line is

martingale-based estimator and dashed (irregular) line is the simulated variance.

35


