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ABSTRACT:
Over the past decade, interval arithmetic (IA) has been used to determine tolerance bounds of phased-array beampat-
terns. IA only requires that the errors of the array elements are bounded and can provide reliable beampattern bounds
even when a statistical model is missing. However, previous research has not explored the use of IA to find the error
realizations responsible for achieving specific bounds. In this study, the capabilities of IA are extended by introduc-
ing the concept of “backtracking,” which provides a direct way of addressing how specific bounds can be attained.
Backtracking allows for the recovery of the specific error realization and corresponding beampattern, enabling the
study and verification of which errors result in the worst-case array performance in terms of the peak sidelobe level
(PSLL). Moreover, IA is made applicable to a wider range of arrays by adding support for arbitrary array geometries
with directive elements and mutual coupling in addition to element amplitude, phase, and positioning errors. Last, a
simple formula for approximate bounds of uniformly bounded errors is derived and numerically verified. This for-
mula gives insights into how array size and apodization cannot reduce the worst-case PSLL beyond a certain limit.
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I. INTRODUCTION

The push for reliable, high-performance sonar array
systems raises a need for analysis methods that can account
for various tolerances in manufacturing and data processing.
These tolerances relate to deviations from the sonar specifi-
cations, such as manufacturing imperfections, calibration
tolerances, electronic processing limitations, varying envi-
ronmental factors, and component wear and tear. Typically,
such deviations manifest themselves as errors in the trans-
ducer element amplitude, phase response, or element mutual
coupling (also referred to as cross talk).

The beampattern of an ideally calibrated array is a func-
tion of the array geometry and electronic processing. The
beampattern relates to the array’s lateral resolution given by
its mainlobe width. The contrast depends on the sidelobe
levels, and a low contrast (i.e., high sidelobe levels) may
impede target detection. This article deals with arrays sub-
ject to bounded errors and their associated beampattern
bounds. These bounds determine the limits within which all
possible beampattern realizations exist, and they must be
constrained if one assumes that the errors are bounded. This
problem is tackled using the mathematical technique of
interval arithmetic (IA). The theory mainly applies to sys-
tems of small relative bandwidth with sonars in mind.

An analysis of array errors may be performed statisti-
cally as has occurred since the early phased-array systems1

and in acoustic arrays.2,3 The common assumption is that
the relevant errors are independent and identically distrib-
uted across elements, typically Gaussian, from which one
can derive that the beampattern magnitude follows a Rician
distribution or, more generally, a Beckmann distribution.4 A
key finding from the statistical analysis is the expression for
the expected beampattern,5 where a constant term, caused
by errors or failed elements,6 may swamp the desired fea-
tures of the nominal beampattern, unless the array is excep-
tionally well calibrated. It should be noted that the expected
beampattern is not a proper beampattern but rather the sta-
tistical average of all of the possible realizations.

Although Gaussian error distributions may be a reason-
able assumption in many situations, they may also give mis-
leading results. When statistical assumptions, such as error
independence, does not hold, sidelobe levels that should be
statistically impossible may occur frequently. Moreover, a
comprehensive statistical description may not be available
or lead to an intractable formulation. Also, with an
unbounded distribution, the beampattern will, in principle,
be unbounded as well. For these reasons, the statistical
methods, typically, do not provide rigorous and finite upper
and lower bounds on the beampattern.

Interval methods are generally suitable in various con-
texts that involve quantities which are bounded.7,8 This is a
weak restriction as the quantities need not be preciselya)Electronic mail: haavaarn@ifi.uio.no
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known or representable to be enclosed by an interval and
give reliable results. In contrast to statistical methods, IA
provides finite beampattern bounds given finite error bounds
and weaker assumptions.

The upper beampattern bound may be interpreted as a
worst-case beampattern performance in terms of the side-
lobe level. Notably, the upper beampattern bound is also not
a proper beampattern as it cannot be attained simultaneously
in all directions. Because controlling the sidelobe level is a
fundamental objective in array design, it is important to
understand how tolerance errors in multiple variables can
affect the beampattern, for instance, to mitigate the worst-
case scenarios related to a high peak sidelobe level (PSLL).
An earlier example of worst-case analysis exists for phase
quantization sidelobes.9 A comprehensive overview of cali-
bration errors and analysis methods for phased-array anten-
nas can be found in the works by He et al.10

The first application of IA in beampattern analysis was
made in the antennae community by Anselmi et al.,11 where
they studied the effects of bounded amplitude errors.
Subsequent works expanded the scope further. Poli et al.12

studied the effects of phase errors, whereas Zhang et al.
studied joint amplitude and phase errors.13 Interval errors in
the positions have also been investigated in various ways
such as in the case of bump-like features in reflector anten-
nas.14 In beampattern analysis, the intervals reside in the
complex plane. In the aforementioned works, the complex
intervals are represented as rectangles in the complex plane
(rIA, rectangular interval arithmetic).

Bounds resulting from mutual coupling errors have
been analyzed for phased antenna arrays using the circular
interval representation (cIA, circular interval arithmetic).15

A similar analysis is based on the Cauchy-Schwarz inequal-
ity.16 However, in the mathematical models used therein, all
of the error types are treated as special cases of mutual cou-
pling errors, which blurs any clear separation between the
different error types.

The rectangular and circular descriptions tend to over-
estimate the interval bounds by decoupling the inherent
dependencies between the real and imaginary components.
To produce tighter and more correct bounds, Tenuti et al.17

proposed a polygonal representation (pIA, polygonal inter-
val arithmetic) by using Minkowski summation. To date,
this is the most accurate method in the literature for this spe-
cific application. Other techniques, such as the Taylor-based
interval method,18 also exist.

Recently, IA has been introduced to sonar beamforming,
starting as a cross-pollination from the antenna field. In the
previous works on IA for phased-array antennas, a uniform
linear array geometry was used. To make the theory more
applicable to a wider range of sonars, Kirkebø and Austeng19

derived interval bounds for arrays of arbitrary shape and
directive elements subject to amplitude errors by employing
rIA. We have recently extended this framework and released
a toolbox for beampattern interval analysis,20 which takes
into account errors in amplitude, phase, position, and direc-
tivity by employing the tighter and more accurate pIA.

To the best of the authors’ knowledge, there have been
relatively few prior works published on IA in the context of
acoustics. One example is the calculation of room acoustic
reverberation times, T60, from bounded quantities such as
volumes and sound absorption coefficients.21 Interval analy-
sis has also been used to find all system configurations con-
sistent with a set of measurements, as applied to underwater
acoustic source localization.22

The current work builds on Ref. 20, aiming to provide a
more thorough analysis of worst-case situations using IA.
To this end, the framework is extended to also include cou-
pling and describe it separately from the other forms of cali-
bration errors. The key result of this study follows with
“backtracking,” which directly recovers the errors that result
in a specific upper or lower bound beampattern magnitude.
Backtracking provides insight into particularly unwanted
error patterns that may result in exceptionally high PSLLs.
The nonuniqueness of the bounds due to ambiguities in the
error distribution (i.e., phase and position errors) is pre-
sented along with a solution for resolving these ambiguities.
Finally, an expression for the approximate beampattern
bounds is derived. The expression provides insight into the
limitations of array length and apodization for reducing the
worst-case PSLL. It also sheds light on the similarities
between the worst-case and expected beampatterns. The
code used for this article is available online.23

The article is structured as follows. Section II covers
the theoretical background, which primarily concerns beam-
patterns and real and complex IA. Section III presents the
mathematical model to obtain bounded beampatterns with
IA while Sec. IV introduces backtracking. In Sec. V, an
approximate bound is derived. All of the proposed methods
are showcased as numerical experiments in Sec. VI. The
results are discussed in Sec. VII, and the article is concluded
in Sec. VIII.

II. THEORETICAL BACKGROUND

A. Beampatterns

Beamforming is the process of spatially filtering the
wavefield using a sensor array. The array consists of M ele-
ments at positions rm. The beamformer output is obtained
by summing the appropriately delayed and weighted ele-
ment inputs. The complex beampattern, BðhÞ, describes the
array’s characteristics. In the far-field narrowband situation,
it is

BðhÞ ¼
XM

m¼1

wm $ dðamÞ $ ejðkðhÞ%ksÞ$rm (1)

for a wavefield arriving from the direction kðhÞ and steering
direction ks. The array apodization is given by the element
weights, wm, and allows for a trade-off between a narrower
mainlobe and a decreased sidelobe level. In this work, the
weights are always normalized such that

P
mwm ¼ 1. The

angular dependence is due to the relation
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kðhÞ ¼ kx; ky½ 'T ¼
2p
k
$ sin h; cos h½ 'T; (2)

where k is the wavelength. Two-dimensional beamforming
is considered with arrays in the x-y plane and broadside in
the ŷ direction. The element position is a function of the
coordinates rm ¼ ½xm; ym'T.

The element-to-wavefield angle, am ¼ h% wm, deter-
mines the influence of the element directivity through the
directivity function dðamÞ. Here, wm is the angle orthogonal
to the surface of the mth element. For circular elements of
diameter D, the directivity takes on the form of the first-
order Bessel aperture smoothing function,24

dðaÞ ¼ 2 jinc
2p sin a

k
D

! "
: (3)

The directivity function may be tapered to zero beyond 90(

such that the element is not sensitive to the rear; see Fig. 1.
It is customary to mainly consider the output power,

defined as PðhÞ ¼ jBðhÞj2. In Fig. 2, the nominal error-free
beampattern for a M¼ 5 element curved19 sonar is illus-
trated, as obtained using Eq. (1). The array parameters are
specified in Table I. This example is meant to be illustrative
and will be referred to as array example A. The speed of
sound throughout the text is assumed to be 1500 m/s, and
the wave frequency is set to 20 kHz.

The beampattern bounds, using the error intervals given
in Table I, are introduced briefly in this section. The bounds
are observed in Fig. 2, and the method of calculation is out-
lined in Sec. III. Between the two bounds, 1000 random
realizations are plotted, illustrating the inclusive property of
IA. The errors are drawn uniformly and independently from
the intervals. Nonuniform phase bounds are chosen to high-
light that edge elements may have different neighboring
conditions and the IA framework can handle element-
dependent error sizes. For instance, this could be relevant
for thermal expansion where element positional deviation is
proportional to the distance from the attachment point.

Taking a statistical approach, it is found that the
expected power for Gaussian amplitude and small phase
errors5 is approximately

E PðhÞ
# $

) jBðhÞnom:j
2e%r2

/ þ Tse $ r2
g þ r2

/

% &
; (4)

where r2
g and r2

/ are the variances for element amplitude
and phase, respectively. Tse is the sensitivity function, which
is defined as

Tse ¼
XM

m¼1

jwmj2: (5)

In deriving this expression, we make the assumption that no
variations depend on h. The second term in Eq. (4) raises
the power uniformly, affecting the ability to specify beam-
pattern nulls in particular. The expected beampattern is also
displayed in Fig. 2. The variances for the nonuniform phase
errors are calculated by averaging the variance across the
elements, assuming uniform distributions. In Sec. V, we
derive an expression for the worst-case beampattern, show-
ing some resemblance in its formulation with the expected
beampattern.

B. IA of real numbers

Interval variables are indicated with the superscript I
and represent a connected set of numbers,

xI ¼ x; #x½ ' ¼ fx 2 R : x + x + #xg; (6)

where x and #x are the lower and upper interval bounds,
respectively. As with ordinary variables, operations can be
performed on intervals. For the addition of two intervals,

FIG. 1. (Color online) The directivity function in Eq. (3) is evaluated within
an orientation interval (a-axis) of 610(. D ¼ k=2, with tapered response
between 80( and 100(.

FIG. 2. (Color online) Beampatterns of example array A. The white region
signifies the area between the bounds.

TABLE I. Example array A.

Number of elements, M 5

Element pitch k=2

Element diameter, D (omnidirectional) )0k
Radius of array curvature 8=3k
Apodization, w ½14; 23; 27; 23; 14'%
Steering angle, hs 5(

Maximum amplitude error, dg 65%

Maximum phase error, dU 6½6; 4:5; 4; 4:5; 6'(
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xI þ yI ¼ xþ y; #x þ #y
' (

; (7)

and for multiplication,

xIyI ¼ min xy; x#y; #xy; #x#y
# $

;max xy; x#y; #xy; #x#y
# $' (

: (8)

An important feature of IA is that subtraction and divi-
sion are not additive or multiplicative inverses, except in
the special case of degenerate intervals. In other words,
xI % xI 6¼ ½0; 0' unless the upper and lower bounds are equal.

The interval output of functions can also be defined. For
example, consider the quadratic function f ðxÞ ¼ x2, which
has a minimum at x¼ 0. This highlights the importance of
checking if an interval contains any extrema of the function.
For the interval xI, the function f ðxIÞ ¼ fx2 : x 2 xIg can be
expressed as

f ðxIÞ ¼
#x2; x2
' (

if #x + 0;

0;max x2; #x2
# $' (

if 0 2 xI;

x2; #x2
' (

if x , 0:

8
>><

>>:
(9)

The final issue to address in IA is the dependence prob-
lem. This occurs when a variable is represented more
than once in an expression. For example, if the interval
xI ¼ ½x; #x' ¼ ½%1; 1' is naively multiplied with itself, the
result would be xIxI ¼ ½%1; 1' instead of ðxIÞ2 ¼ ½0; 1'
because the xI in the first factor is treated independently
from the second factor. This is due to the lack of distributiv-
ity, but it can also result from the lack of additive and multi-
plicative inverses in IA.7

C. Array errors and complex IA

If the array elements are subject to bounded errors in
phase and amplitude, the phasor values in Eq. (1) are
bounded within a two-dimensional shape in the complex
plane known as an annular sector, as observed in Fig. 3.
This annular sector is considered to be a two-dimensional
complex interval. In the beamforming process, the complex
intervals are summed, resulting in a complex interval, B,I as
the output. Mathematically, for two intervals AI

1 and AI
2, the

Minkowski sum is defined as the set of all possible sum
combinations,

AI
sum ¼ AI

1þAI
2 ¼ fA1þA2 : A1 2 AI

1;A2 2 AI
2g: (10)

How this sum is performed in practice depends on the cho-
sen interval representation, for which some examples are
shown in Fig. 3. Rectangular and circular intervals enclose
the annular sectors and were the first used for beampattern
analysis.11,15 While these representations are convenient for
summation, they are evidently not tight and can introduce
“pessimism” to the bounds, also known as the wrapping
problem in IA.

A later development in this field involved integrating
IA with Minkowski summation by wrapping the annular
sectors with convex polygons,17 as observed in Fig. 3. The

inner, concave part of the annular sector is included by
forming the convex hull. Although this might seem prob-
lematic, the Shapley-Folkman lemma shows that the
Minkowski summation is a convexifying operation. In other
words, the sums of many concave sets are approximately
convex.25 This deviation can be quantified with the
Hausdorff distance, but this topic is not a major concern
because the bounds are inclusive in any case.

Considering only the convex boundary is sufficient
because Minkowski summation and forming the convex hull
are commuting operations.25 The sampling resolution of the
curve is determined by the error tolerance in the representa-
tion as the polygon must enclose the arcs of the annular sec-
tors. A summation algorithm that runs in linear time with
respect to the number of vertices on the two boundaries can
be implemented26 and is based on comparing only vertex
pairs that are extreme in the same direction.

Throughout this article, other complex interval opera-
tions are required. For example, the absolute value of a com-
plex interval is needed to plot the power bounds, PðhÞ and
#PðhÞ. This real-valued interval gives the distance from the
origin to the closest and furthest points on the boundary of
BI. If the origin is contained within the interval, then the
minimum distance is zero. Additionally, multiplication of
complex intervals is only needed for a special case, which is
discussed in Sec. III B.

III. BEAMPATTERN BOUND FORMULATION

A. Element error model

The model for element errors and the connection to the
beampattern bounds are derived with reference to Eq. (11)
and Fig. 4, where a plane wave is incident to the array. Note
that no assumptions are made about the array geometry, and
coupling is treated separately in Sec. III B.

FIG. 3. (Color online) The nominal element response is indicated by the
arrow tip. Bounded errors in amplitude and phase give interval bounds that
are shaped like annular sectors. Alternative representations, such as the
polygonal wrapping, are used to enable arithmetic operations.
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Errors are allowed in the element amplitude gm, the
element directivity dðamÞ, the element positions rm, and
the phase Um such that they lie within certain intervals
such as gI

m ¼ ½gm
; #gm'. Typically, the intervals are speci-

fied to be symmetric around some nominal value, which is
referred to as the interval midpoint. Let d denote the maxi-
mum error (or half of the interval width), thus, for exam-
ple, gI

m ¼ ½1% dgm; 1þ dgm'. Note that rI
m is taken to be a

vector with independent interval components, resulting in
rectangular areas around the nominal element positions.
These intervals can be directly inserted into Eq. (1) to
give

BIðhÞ ¼
XM

m¼1

wmgI
mdmðaI

mÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Amplitude interval: aI

m

$ ej kðhÞ$rI
mþUI

m%ks$rmð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Phase interval: uI
m

: (11)

Note that the steering is applied electronically under the
assumption that element positions are known to be rm as
opposed to the actual element positions that may be within
the intervals rI

m.
This formulation allows for the use of real-valued IA

for the amplitude intervals aI
m and phase intervals uI

m sepa-
rately, making it manageable to work with multiple bounded
categories of error. Unlike earlier descriptions that have
focused on deriving analytical bounds,19 the expression
stays close to the original formula for calculating
beampatterns.

The directivity function dðaÞ in Eq. (3) is evaluated
with interval inputs. By assuming a tapered aperture
smoothing function with one global maximum, the same
logic as was demonstrated in Eq. (9) can be used in the eval-
uation. The interval function used in this work is shown in
Fig. 1.

B. Element-to-element coupling

Mutual coupling, also known as cross talk, is now intro-
duced into the formulation of Eq. (11). This refers to the
transfer of signal from one element to the output line of
another element, either through electrical or mechanical
mechanisms. This is depicted in Fig. 4, where an arrow from
element c¼ 3 to m¼ 1 signifies that the coupling element
c¼ 3 is multiplied with a coefficient Cmc and injected into
the channel of element m¼ 1. These mechanisms are often
expressed using matrix formulations.

In this study, coupling coefficients are treated as unknown
but bounded complex intervals CI

mc. Estimating reliable
bounds on these coefficients is challenging as the exact cou-
pling model is generally not readily available.15 Therefore, it
is assumed that the coupling phase is completely unknown,
and this assumption cannot easily be reversed in the following
derivation. The maximum coupling magnitude, on the other
hand, is taken to decrease exponentially away from the excited
element (this is not a necessity in the following derivation):

jCI
mcj ¼ 0; cjm%cj

' (
; (12a)

/CI
mc ¼ 0; 2p $ ð1% dmcÞ½ ': (12b)

Here, c is the magnitude of the element-to-element coupling.
The phase is unknown, except in the case of self-coupling
Cmm¼ 1 when m¼ c. This description essentially treats cou-
pling as circular intervals, which previous coupling models
have also accomplished.15,16 However, our model maintains
a meaningful separation between element errors and cou-
pling errors, which allows for using the tighter polygonal
representation for the main element intervals.

To incorporate the effects of coupling, it is intuitive to
write out the model depicted in Fig. 4, expanding on Eq.
(11). The beamformer output is, as always, a sum over the
index m, but the contributions from each element c that cou-
ples into channel m must also be included such that

BIðhÞ¼
XM

m¼1

wme%jks$rm

$
XM

c¼1

jCjImcgI
cdcðaI

cÞe
jð/CI

mcþkðhÞ$rI
cþUI

cÞ

 !

: (13)

In the absence of coupling, the expression reduces to Eq.
(11). However, due to the outer sum, each interval (such as
gI

c) is evaluated M times independently. To reduce this
dependence problem, the two sums can be swapped:

BIðhÞ¼
XM

c¼1

gI
cdcðaI

cÞ

$ ejðkðhÞ$rI
cþUI

cÞ
XM

m¼1

jCjImcwmejð/CI
mc%ks$rmÞ

 !

: (14)

This formulation provides tighter bounds, and the terms are
also conveniently grouped by initially summing over

FIG. 4. (Color online) Error model exemplified with a three-element array.
Each element is subject to bounded errors and coupling prior to electronic
steering and apodization. Phase and position errors apply to each element
but are not shown.
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circular intervals, allowing for the use of the following
instrumental notation:

EI
c ¼ gI

cdcðaI
cÞ $ e

jðkðhÞ$rI
cþUI

cÞ ¼ aI
cejuI

c ; (15a)

AI
c ¼

XM

m¼1

jCjImcwmejð/CI
mc%ks$rmÞ; (15b)

such that the beampattern intervals with coupling can be
written as

BIðhÞ ¼
XM

c¼1

EI
cAI

c: (16)

Here, EI
c ¼ aI

cejuI
c represents a complex annular sector inter-

val that only describes an element. On the other hand, AI
c is

a complex circular interval that determines the element’s
interaction with the array structure, including effects such as
coupling, apodization, and steering. The circle is centered at

wce%jks$rc and has a radius of RAc ¼
PM

m ¼ 1
m 6¼ c

cjm%cjwm.

The product of EI
cAI

c results in “rounded” annular sectors
as shown in Fig. 5. These shapes are obtained through the

complex Minkowski product,27 which can be understood as
the union of many scaled and rotated circles. On closer exami-
nation, one can show that the product boundary consists of six
circular arcs connected by linear segments, one for each of the
four corners and two for the inner and outer arcs of the annular
sector. As discussed in Sec. II C, the convex boundary is used
for the polygonal representation. Because the inner arc is con-
cave, the convex rounded annular sector can be described
using five arcs. Thus, the sum with coupling is performed over
polygons that represent rounded annular sectors.

IV. BACKTRACKING: DIRECT BOUND VERIFICATION

In most of the previous works, the calculated beampat-
tern bounds have been verified using Monte Carlo simula-
tions.17,19 However, due to the statistical nature of such
simulations, there is no guarantee of achieving the exact
bounds. Alternatively, one could employ optimization meth-
ods to search for these bounds in a high-dimensional space.

In this section, we develop a novel technique for
directly verifying the bounds. It works by recovering the
errors corresponding to the beampattern that reaches the
bound. This is illustrated in Fig. 6(a), and this technique is
referred to as backtracking as the intention is to backtrack
the contributing points in the complex intervals of the ele-
ments from the summed interval BI.

A. Simple phase and amplitude intervals

We first consider a situation with simple phase and
amplitude intervals and no directivity effects or positional
errors (both involve dependence on h) or coupling. In that
situation,

EI
c ¼ gI

cejðkðhÞ$rcþUI
cÞ; (17a)

Ac ¼ wce%jks$rc : (17b)

Next, we choose a reference angle href:, for example, 50( as
shown in Fig. 6(a), to backtrack the specific errors, gc 2 gI

c

and Uc 2 UI
c, which are associated with either #Pðhref:Þ or

Pðhref:Þ. For the sake of this argument, we choose #P, which
is the sum of M complex numbers zc (with c ¼ 1;…;M).

FIG. 5. (Color online) The product and backtracking of various intervals,
scaled for illustrative purposes, and subscript c is omitted. EI

cAI
c is a rounded

annular sector. Points z on this boundary can be uniquely backtracked into
the factor intervals such that EcAc ¼ zc.

(a) (b)

FIG. 6. (Color online) (a) shows the nominal power pattern with the backtracked upper and lower bounds for example array A. (b) shows how the array
response is a sum of the complex-valued element responses. The bounds (triangles) are the most extreme values possible in the array response.
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These numbers, zc, are found on the boundaries of the
respective intervals, zc 2 @ðEI

cAcÞ, and

#Pðhref:Þ ¼
****
XM

c¼1

zc

****
2

: (18)

This can be interpreted as the squared maximum distance
from the beampattern response to the origin, as illustrated in
Fig. 6(b). To perform the backtracking, the terms that go
into the sum must be recovered, that is, solve

fz1;…; zMg ¼ argmax
zc2EI

cAc

****
XM

c¼1

zc

****
2

: (19)

A method for efficiently recovering fz1;…; zMg can be
implemented using the same principle as the linear time
Minkowski sum algorithm. A detailed description of the
algorithm can be found in Chap. 13 of Ref. 26, although it is
not a prerequisite for the next discussion. Following Fig. 7,

the first step is to find the vertex in the summed polygon that
is farthest from the origin. The extreme direction will lie
between the outer vertex normals. The key concept is that
only pairs of vertices that are extreme in the same direction
contribute to the Minkowski sum boundary and, therefore,
this must also apply to the backtracked vertices. For each
polygon in the sum, one needs to look for the corresponding
vertex, zc, whose outer normals contain this extreme direc-
tion. The normals can be found from the edges connecting
each vertex to its neighbor. The same method and argument
hold for the least extreme vertex by reversing the extreme
vector direction. Because backtracking involves a linear
search for the vertex satisfying the outer normal condition,
the complexity of backtracking all of the polygons is
OðMNvert:Þ, where Nvert: is the number of vertices used to
sample each polygon.

With the points zc known, the element errors and corre-
sponding beampattern can be calculated. The element errors,
ec ¼ gcejUc , can be unambiguously obtained by undoing the
phases from steering and the wavefield, together with the
apodization,

ec ¼ zc=ðAce%jkðhref:Þ$rcÞ: (20)

In Fig. 8, the phase and amplitude realizations for the upper
and lower beampattern bounds in Fig. 6(a) are shown along
with their respective error bounds. It should be noted that
while the amplitude errors will always be extreme in the
sense that either the upper or lower error bounds are reached,
this is not necessary for the phase. The plot also serves to ver-
ify how well the bounds imposed on the errors are respected
in the construction of the bounded beampattern.

The beampattern is obtained by considering a wavefield
impinging from another direction. Because the specific
errors are known, one can simply apply them as weights
when computing the beampattern,

Bðhjhref:Þ ¼
XM

c¼1

wcecejðkðhÞ%ksÞ$rc : (21)

In Fig. 6(a), the unique beampatterns that reach the upper
and lower bounds at the reference angle are depicted. It
should be noted that certain features, such as the maximal

FIG. 7. (Color online) The points zc that contribute to the most extreme ver-
tex on the polygon sum can be found directly by matching the extreme
direction with the outer vertex normals.

FIG. 8. (Color online) Amplitude (left)
and phase (right) of the backtracked
errors e for each element, correspond-
ing to the upper bound in Fig. 6(a). It
is worth noting that the indices c and m
can be used interchangeably here.
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mainlobe width, cannot be backtracked because the bounds
cannot be realized simultaneously in all directions.

B. Nonunique bounds

Backtracking becomes ambiguous in two circumstan-
ces, including cases when coupling is considered. First, in
rare instances, there may be two or more equally extreme
vertices to choose from. Second and more relevant is the
case when positional errors and phase response errors con-
tribute to the combined phase error, and a non-extreme com-
bined phase error is required to reach the beampattern
bounds. This occurs when the extreme direction falls within
the opening angle of an annular sector. In the following, it is
shown that backtracking can still be performed with phase
and position errors jointly as long as ambiguities are
resolved when they occur by deciding how the error is dis-
tributed over the different variables. To simplify the argu-
ment without loss of generality, assume that the position
error is only in dimension x.

The interval of possible phase values, zc, can assume
that /zI

c ¼ kxxI þ UI. If the phase angle of zc is not at the
interval bounds, one must decide how the phase error is dis-
tributed among x and U. In this case, the choice is made to
decide the error in U first. Denote the selected value as U-.
The maximum value that can possibly be selected is indi-
cated as U- and cannot be greater than #U under any circum-
stances. At the same time, it is limited by /zc and the lower
bound of kxxI. Thus, any values of U- falling within the fol-
lowing bounds are valid:

U- ¼ min #U;/zc % kxx
h i

; (22a)

U- ¼ max U;/zc % kxx
' (

: (22b)

After choosing the value of U-, the required value of x- will
be given as

x- ¼ /zc % U-

kx
: (23)

This way of resolving the ambiguities can be repeated when
more errors contribute to the phase. As a consequence of
these ambiguities, there may be multiple ways to realize the
upper beampattern bound.

C. With coupling

If coupling (Sec. III B) is included, the backtracking is
further complicated because the complex values can be
taken from anywhere on the boundary of the product of two
intervals, zc 2 @ðEI

cAI
cÞ. The algorithm described in Sec.

IV A can be used to find these values but with the additional
requirement of determining which value in EI

c and AI
c could

result in that particular zc and whether that value is unique
or not.

Figure 5 displays the product of EI
cAI

c along with a value
zc that contributes to #P for the purpose of illustration. By

considering how the Minkowski product EI
cAI

c is formed, it
is possible to demonstrate that any point on the boundary is
generated by a unique pair of points on the boundaries of
the two factor intervals.

To backtrack zc, the first step is to “invert” EI
c to pro-

duce a candidate interval, EI
c;inv:, of points that can give zc

by multiplication with AI
c,

EI
c;inv: ¼

jzcj
ac
;
jzcj
ac

" #
$ ej/zcþ %Uc ;%Uc

' (
: (24)

The intersection, AI
c \ EI

c;inv:, meets at the point Ac, which
will correspond to the maximum coupling strength, jCmcj, as
shown in Fig. 5. Finally, Ec is directly obtained as
Ec ¼ zc=Ac. From Ec, amplitude and phase error may be
found as previously. For Ac, the phase must necessarily be

/Cmc ¼ / Ac % wce%jks$rc
# $

% jks $ rm (25)

for all m 6¼ c. For m¼ c, the phase is zero by definition.

V. APPROXIMATE BEAMPATTERN BOUNDS

To gain a deeper insight into the factors that influence
the beampattern bounds and PSLL, an expression for the
approximate bounds is derived. The derivation begins with
Eq. (16), assuming uniform and symmetric error bounds in
amplitude and phase, without directional dependence. To
reiterate, this means that the maximum phase and amplitude
errors are 6dU and 6dg, respectively, across all elements.
Coupling is also allowed.

The bounds are derived using the circular interval repre-
sentation (cIA). First, consider the intervals EI

c, which are
enclosed with a circular interval, as illustrated in Fig. 3. The
radius of the circular interval RE is the same for all elements,
c, and can be approximated by

RE ¼ jð1þ dgÞ $ ejdU % 1j )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dU2 þ dg2

q
: (26)

The circular approximation overestimates the true bound,
but it is most accurate when dU and dg produce an annular
sector that is well enclosed by a circle (e.g., dU ¼ 63( and
dg ¼ 66%). Note that dU must be expressed in radians in
the formula, yet, dg is unitless. The geometry being approxi-
mated is very similar to that depicted in Fig. 6(b). The devi-
ation from the nominal array response is sought, and this
deviation is expressed as the sum of the respective radii
when using cIA. The particular phase of the array sum is not
significant and can be neglected. Therefore, the circle
around EI

c, which represents the element sensitivity, can be
assumed to have a nominal value of one.

The circle that represents EI
c is multiplied with another

circle, AI
c, which has a radius RAc (note the dependence on c),

with the nominal value of the element weighting, wc. The
product will also have its nominal value on wc. The enclosing
circle of the product interval, which forms a Cartesian oval,27

has a radius qc such that
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qc ¼ ð1þ REÞ $ ðwc þ RAcÞ % wc: (27)

The maximum deviation from the nominal array
response is obtained by summing the radii,

qB ¼
XM

c¼1

qc ¼
XM

c¼1

ð1þ REÞ $ ðwc þ RAcÞ % wc

’RE þ
XM

c¼1

RAc; (28)

recalling that
P

w ¼ 1. Here, the second-order cross term,
RERAc, was neglected. To evaluate the sum over RAc, the
definitions in Eq. (15b) and the subsequent text can be used,
and it can be shown that

XM

c¼1

RAc ¼
XM

c¼1

XM

m ¼ 1
m 6¼ c

cjm%cjwm

¼ %1þ
XM

m¼1

wm

XM

c¼1

cjm%cj

!% 1þ
XM

m¼1

wm $ 1þ 2c
1% c

! "
’ 2c: (29)

The following approximations were used: first, the geomet-
ric sum runs from c¼%1 to 1, and, second, the Taylor
expansion is c=ð1% cÞ ) c.

Finally, the approximate upper bound is obtained as the
nominal beam amplitude plus qB such that

#PðhÞ ) jBnom:ðhÞjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dU2 þ dg2

q
þ 2c

! "2

: (30)

The effect of this is that a constant term is added to the nom-
inal amplitude to yield the upper bound. Interestingly, this
term does, to a circular IA approximation, not depend on the
apodization w. As a result, the worst-case sidelobe level has
an asymptotic limit even for infinitely long arrays, which is
obtained simply by setting jBnom:ðhÞj ¼ 0 in Eq. (30). This
is in contrast to the expected beampattern in Eq. (4), which
does depend on w through Tse. This result is consistent with
the following intuition: In statistical analysis with indepen-
dent amplitude and phase errors, the errors add incoherently
such that the average sidelobe level depends on the sum of
the variances of the amplitude and phase errors divided by
the number of elements. However, for the worst-case analy-
sis, the errors all achieve their maximum allowed values and
add coherently, resulting in a bound that does not depend on
the number of elements.

VI. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to
illustrate the type of analysis made possible using the theo-
ries developed in Secs. III–V. Consider example array B,
tabulated in Table II. For the polygonal method (pIA), the

intervals need to be sampled. The sampling is sufficient to
make the cumulative representation error well below
%60 dB. This is calculated as the maximum error in repre-
senting the analytic boundaries of the rounded annular sec-
tors (shapes EI

cAI
c) and the M number of times these errors

are summed.
The bounds for this problem are depicted in Fig. 9. The

lower bound can only be observed close to the mainlobe and
is, therefore, not mentioned in the legend. The upper bound
is relatively uniform with only minor dips where the beam-
pattern nulls are expected. Additionally, the approximate
worst case, calculated with Eq. (30), is also illustrated.

Similarly, Fig. 9 shows the worst-case beampattern cor-
responding to the upper bound at 13.6(. The backtracking
includes the element errors and coupling matrix. The back-
tracked element errors, resulting in the particular worst-case
sidelobe, are shown in Figs. 10(a) and 10(b). The back-
tracked coupling matrix is displayed in Figs. 10(c) and
10(d). The coupling phase appears in Fig. 10(c), and lines
are apparent on the anti-diagonals. These lines depend
largely on the backtracked angle, and for a certain angle,
this matrix will be symmetric. However, in this example, the
matrix is only approximately symmetric. Figure 10(d) shows
that only the neighboring elements make a significant mag-
nitude contribution. The probability density function (pdf)
of the array power response is obtained by uniformly sam-
pling the phase and amplitude bounds of element error and
coupling, as shown in Fig. 10(e).

TABLE II. Example array B.

Number of elements, M 31

Element pitch k=2

Element diameter, D (omnidirectional) )0k
Array geometry Uniform linear array

Apodization, w %30 dB Chebyshev

Steering angle, hs %10(

Maximum amplitude error, dg 65%

Maximum phase error, dU 65(

Coupling strength, c 5%

FIG. 9. (Color online) The beampatterns and bounds of example array B,
tabulated in Table II.
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To visualize the beam profile, the continuous wave
excitation is calculated using the k-Wave function
acousticFieldPropagator.28 The nominal beam is
depicted in Fig. 10(f) while the worst-case performance is
displayed in Fig. 10(g). Plotting the difference beam in Fig.
10(h) clearly reveals that the errors align to form a separate
beam approximately %13 dB below the mainlobe.

Finally, it is explored how the PSLL is affected by the
nominal sidelobe level specified when using a Chebyshev
window. Four different cases are shown in Fig. 11. Case 1 is
the same as that discussed earlier (example B). In case 2, the
amplitude and phase error bounds are made more uneven
(such that the cIA approximation is worse). Case 3 looks at
small but even amplitude and phase error bounds. The ana-
lytic value for the asymptotic PSLL as the nominal sidelobes
vanish is also plotted using Eq. (30). Case 4 is an outlier; the
elements are directive, and a tilt error interval of 2( is

specified. No approximate bounds are available, but it is evi-
dent here that the PSLL decreases until it suddenly flattens
out.

VII. DISCUSSION

The backtracking technique showed that it could
recover the worst-case error realization for a PSLL in a
given direction. By reapplying the errors, it was made evi-
dent that the corresponding beampattern reaches the bounds.
It is timely to address the relevance of the bounds. The back-
tracked errors plotted in Figs. 10(a) and 10(b) indicate that
the errors are usually extreme, which was also observed in
Sec. IV A. The number of binary (maximum or minimum)
error configurations for amplitude and phase in Figs. 10(a)
and 10(b) is 231.2 ) 4:6. 1018. Even if we assume that
only one of these configurations represents the worst-case
error for a particular direction, it can be still considered
unlikely to encounter a configuration that is the worst-case
in any direction. Figure 10(e) illustrates that with indepen-
dent errors from uniform continuous distributions between
the bounds, the sidelobe level clusters around the nominal
value, making the bound practically impossible to achieve.

However, while IA may be seen as pessimistic, the sta-
tistical method assuming independence represents an opti-
mistic approach. This is because without knowledge of the
true bounded error distribution or covariance/dependence
between the errors, it becomes challenging to assess the rel-
ative probability of values close to the bounds. IA avoids
this issue entirely. Additionally, some arrays are composed
of a limited number of blocks/modules with common errors
within the blocks. Achieving a worst-case block positioning
is much more likely than achieving a worst-case element
position, and it naturally imposes a periodic structure in the
errors. This can be connected with Chap. 3.1.3 in Ref. 24,
where a sinusoidal disturbance essentially introduces a

FIG. 10. (Color online) Various plots related to the backtracked angle in Fig. 9. (a) The corresponding element amplitude error, (b) the element phase error,
(c) the coupling phase error, (d) the coupling magnitude error, (e) the pdf obtained from Monte Carlo simulation of independent errors within the bounds, (f)
the nominal beam, (g) the worst-case beam, and (h) the difference between nominal and worst-case are shown.

FIG. 11. (Color online) Worst-case against specified nominal PSLL using
Chebyshev apodization. The array geometry are given in Table II. Case 1:
dg ¼ 5%; dU ¼ 5(; c ¼ 5%; case 2: dg ¼ 5%; dU ¼ 1(; case 3: dg
¼ 1%; dU ¼ 1(; and case 4: element diameter D ¼ 0:95k=2, element tilt
dw ¼ 2(.
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dominating sidelobe. It is also important to note that any
error pattern resembling, in some sense, the worst-case sce-
nario is still undesirable. Therefore, a practical usage of
backtracking can be to identify configurations (such as peri-
odic errors in linear arrays) that are plausible in manufactur-
ing. We argue that for array designers, the worst-case
scenario is relevant as it specifies a guaranteed performance
that all arrays will meet, and this information is complemen-
tary to the expected behaviour.

To obtain the most accurate beampattern bounds, the
polygonal representation (pIA) was used. This method
requires sampling the boundaries of the complex intervals.
For the chosen examples, this did not raise any practical
issues. However, if the cumulative error has to stay fixed
with an increase in the number elements, denser sampling
may be needed. This requirement can potentially result in a
significant computational cost unless proper methods are in
place to address it. A natural technique to mitigate this issue
is to remove vertices that are very close to each other
(within some tolerance) between each polygon summation.
This approach limits a potential exponential growth in the
number of vertices, and preliminary tests have shown it to
be a promising technique. However, addressing this issue in
detail is beyond the scope of this article.

In the bound formulation with coupling, as shown in
Eq. (14), coupling coefficient reciprocity Cij¼Cji would be
expected. However, despite concentrated efforts, no solution
has been found to enforce reciprocity due to the dependence
problem in IA. On the other hand, as demonstrated by the
backtracking results in Fig. 10(c), there are situations where
the coupling matrix C is nearly symmetric, resulting in
small overestimation of the bounds, at least for linear arrays
when only nearest-neighbor coupling matters. This means
that even if coupling reciprocity could be enforced, the
worst-case PSLL when using the Chebyshev window would
not be significantly different.

In Fig. 11, the PSLL for certain error bounds was plot-
ted against the specified nominal PSLL. For cases 1–3, the
worst-case PSLL eventually deviates significantly from
the nominal PSLL. The approximate bound closely follows
the accurate bound but less so in case 2, where the circular
approximation that is assumed is worse. The general agree-
ment indicates reasonable assumptions in the derivation,
which may be helped by intermediate approximations that
over- and underestimate the true quantities. In any case,
choice of apodization and the number of elements can only,
to a limited extent, reduce the worst-case PSLL.

The lack of directional errors in the approximate for-
mula is not a major concern; for positional errors, it can be
included for linear arrays (at the cost of a more complicated
expression), but eventually directional errors are translated
into amplitude and phase regardless. Case 4 highlights one
special feature of directional errors as directive elements are
included in this case. The sudden flattening PSLL is
unusual, but closer inspection reveals a peculiar effect:
When the incidence angle is 90(, the worst-case PSLL is
obtained by alternate tilting of the elements such that a

grating lobe is produced, effectively undersampling the
wavefield. This comes from the directivity function in Fig.
1, but it can be argued that the strong effect shown here is a
result of the sharp tapering used.

VIII. CONCLUSIONS

This article presents a comprehensive framework for
calculating inclusive beampattern bounds. In addition to
tackling arbitrary geometries, a multitude of error inter-
vals can be specified, such as amplitude, phase, position,
directivity, and coupling. This flexible technique does not
rely on any assumptions about error distributions or
correlations.

The most notable contribution of this study is back-
tracking, which allows for the direct recovery of the specific
configuration of errors and beampatterns that result in the
upper or lower bounds. To the best of our knowledge, this is
the first time such a direct method has been proposed to ver-
ify the beampattern bounds provided by IA. Furthermore,
backtracking shows which error patterns across the array are
detrimental to the PSLL, allowing array designers to take
measures to prevent them in practice.

In addition, this study presents an approximate formula
for the bounds of uniformly bounded errors, assuming no
directional dependencies. The derived formula specifies and
quantifies the factors that influence the worst-case perfor-
mance of the array. Notably, as opposed to the expected
beampattern (a statistical concept), the worst-case beampat-
tern cannot be improved by increasing the number of ele-
ments in the array. Additionally, the effect of the
apodization window is limited to reducing the nominal
beampattern.

The results obtained in this study pertain to the array
farfield but can easily be generalized to the nearfield. In
future work, our aim is to analyze modular arrays. The
worst-case performance is highly relevant in such systems
because fewer degrees of freedom and imposed periodic
errors make the worst-case significantly more likely.
Additionally, we plan to quantify interval errors in the con-
text of adaptive beamformers. Another open direction for
further investigation is to extend the framework to broad-
band systems, such as medical ultrasound or synthetic aper-
ture sonar. In the latter, various types of periodic array
errors are prominent due to the repetition of the same plat-
form to synthesize a large array.
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