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Abstract 

The rapid development of the Internet of Vehicles (IoV) along with the emergence of intelligent applications have put 
forward higher requirements for massive task offloading. Even though Mobile Edge Computing (MEC) can dimin-
ish network transmission delay and ease network congestion, the constrained heterogeneous resources of a single 
edge server and the highly dynamic topology of vehicular edge networks may compromise the efficiency of task 
offloading, including latency and energy consumption. Vehicular edge networks are also vulnerable to malicious 
outside attacks. In this paper, we propose a new blockchain-enabled digital twin vehicular edge network (DTVEN) 
where digital twin (DT) is exploited to monitor network communication, computation, and caching (3C) resources 
management in real time to provide rich data for offloading decision-making, and blockchain is utilized to secure fair 
and decentralized offloading transactions among DTs. To ensure 3C resources sharing across edge servers, we design 
a DT-assisted edge cooperation scheme, which makes full use of edge resources in vehicular networks. Furthermore, 
a DT-based smart contract is built to achieve a quick and effective consensus process. Then, we apply a task offloading 
algorithm based on an improved cuckoo algorithm (ICA) and a resource allocation scheme based on greedy strat-
egy to minimize network cost by comprehensively taking into account latency and energy consumption. Numerical 
results demonstrate that our proposed scheme outperforms the existing schemes in terms of network cost.
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Introduction
The Internet of Vehicles (IoV) is a crucial technology for 
implementing Intelligent Transportation System (ITS) 
based on in-vehicle network, inter-vehicle network, and 
mobile Internet [1, 2]. In recent years, with the continu-
ous development of IoV and the commercialization of the 

fifth-generation (5G) networks, vehicles become more 
intelligent and efficient, offering users safe, comfortable, 
and intelligent travel experiences as well as traffic services 
[3]. Generally, these computationally intensive and delay-
sensitive service applications require a large amount 
of communication, computation, and caching (3C) 
resources, but the computing capacity of vehicular termi-
nal devices is difficult to meet the requirements of these 
applications, which will have an impact on the Quality of 
Service (QoS) and Quality of Experience (QoE) in IoV, as 
well as the safety of vehicle driving [4].

Mobile edge computing (MEC) can reduce task trans-
mission time by deploying edge servers (ESs) with 
computation and caching resources at the edge of the 
network [5]. With the explosive increase of tasks, a sin-
gle ES cannot process multiple tasks simultaneously. 
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Edge cooperation can effectively make up for the lack of 
3C resources of a single ES. At the same time, edge coop-
eration processes tasks in a distributed and collabora-
tive manner, which can take advantage of idle network 
resources and save system power consumption and time 
overhead [6, 7]. However, task offloading in IoV faces 
some critical challenges such as the randomness of wire-
less channels, the heterogeneity of collaborative nodes, 
and the high mobility of vehicles. These challenges seri-
ously restrict the implementation of task offloading, 
resource allocation, and edge cooperation, and ultimately 
limit the long-term development of IoV.

Digital Twin (DT) as an emerging technology, which 
can map the physical world to the digital world, enables 
communication, collaboration, and information shar-
ing between the physical and digital worlds, thereby 
monitoring the state of the entire network in real time 
[8]. DT can collect massive sensing data from IoV, then 
model and analyze it to obtain a global perspective, and 
publish control strategies for IoV. IoV can utilize power-
ful computation, communication, and control functions 
of DT to conduct unified scheduling management and 
obtain a vision related to the future of the system, making 
it possible to truly achieve the collaboration between the 
physical world and digital world throughout the life cycle 
of IoV [9–11]. However, frequent wireless communica-
tion between IoV nodes makes the network vulnerable to 
attack. If the sensed data is maliciously falsified, the con-
structed DT will not reflect the actual status of the physi-
cal entity, which may lead to serious accidents.

As a distributed ledger, blockchain can achieve infor-
mation fusion among all parties in IoV because of its 
non-deleting, non-tampering, and openness character-
istics [12–14]. The information collected from IoV will 
be uploaded to the blockchain platform that provides 
data security through encryption technology, forming a 
decentralized and distributed big data sharing network. 
Its decentralized and transparent data management 
approach has led to a significant reduction in transaction 
costs for vehicle management centers and data manage-
ment centers [15, 16].

However, there are some important challenges for edge 
cooperation in IoV. First, the dynamic characteristics in 
a time-varying IoV environment will have an impact on 
task offloading decision. Second, edge cooperation in 
IoV is prone to external attacks and information leakage. 
Third, how to make full use of the limited resources of 
heterogeneous edge servers is still worth research.

Therefore, in this paper, we propose a new vehicular edge 
network based on digital twin and blockchain, which opti-
mizes edge cooperation and secures task offloading. Dif-
ferent from the previous studies, we introduce digital twin 
technology to map the status of physical entities in IoV 

into the virtual space and construct a digital twin model 
of task offloading based on blockchain, thereby improving 
resource sharing security. To satisfy the dynamic vehicular 
edge network, we design an edge cooperation-based task 
offloading scheme, which minimizes network cost under 
the constraints of latency and energy consumption. The 
key contributions of this paper can be listed as follows. 

1	 We propose a novel blockchain empowered digi-
tal twin vehicular edge network (DTVEN), in which 
DTs assist resource scheduling by capturing net-
work dynamics while strengthening the security of 
resource sharing through blockchain.

2	 We design an edge cooperation-based task offload-
ing scheme to better reduce offloading latency and 
energy consumption, and construct a DT-driven 
blockchain consensus model to ensure the reliability 
of vehicles and edge servers.

3	 We propose a task offloading algorithm based on an 
improved cuckoo algorithm (ICA) and a resource allo-
cation scheme based greedy strategy to jointly optimize 
the latency and energy consumption during the task off-
loading process. The simulation analysis is conducted to 
show the effectiveness of our proposed scheme.

The rest of this paper is organized as follows. In “Related 
works” section, we review the related work. In “System 
model” section, we propose the system model. In “Per-
formance analysis” section, we describe the performance 
analysis of the system. In “Algorithms” section, we illus-
trate the algorithms in detail. In “Performance evalua-
tion” section, we discuss the performance of the proposed 
scheme. In “Conclusion” section, we summary this paper.

Related works
In order to improve the QoE performance of vehicles, 
some researchers have studied the advantages of edge 
cooperation in improving the performance of the IoV 
system. Literature [17] develops a blockchain-based col-
lective learning framework, in which distributed vehicles 
can train the machine learning models locally and upload 
to blockchain network to utilize the collective intelligence 
while avoiding large amounts of data transmission. Con-
sidering there is a large number of parking vehicles with 
abundant and undeveloped resources in the city, Ma et al. 
[18] use parking vehicles as virtual edge servers to assist 
ESs in performing tasks. A task scheduling algorithm 
combined with ESs selection and resource allocation is 
designed to provide a more efficient and stable offload-
ing service in the case of a large number of task requests. 
To solve the load imbalance among the ESs caused by 
the uneven geographical distribution of the vehicles, 
the authors in [19] present a joint task offloading and 
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resource allocation method for vehicular edge computing 
(VEC) via edge cooperation, in which the tasks offloaded 
to a high-load ES can be further offloaded to the other 
low-load ESs. Duan et  al. [20] construct a hierarchi-
cal model with QoS-aware and energy-aware resource 
management for the cooperative edge computing-based 
intelligent vehicular network (CEC-IoV). They propose 
a Minimum Latency with Migration Loads (MLML) 
scheme for load balance among multiple MECs to obtain 
lower system delay and higher energy efficiency. Litera-
ture [21] studies a new framework of hierarchical multi 
access edge computing based on blockchain, which can 
reach effective consensus among blockchain nodes while 
ensuring the performance of MEC system and block-
chain. A trust model is proposed to greatly ensure the 
security of communication links between vehicles.

Since the integration of DT into IoV is beneficial to the 
system, some scholars have exploited DT to promote the 
network performance of IoV. To prevent edge computing 
device (ECD) overload in DT-empowered IoV, Xu et  al. 
[22] study a multiuser offloading system and propose a 
service offloading (SOL) method with deep reinforcement 
learning for optimal offloading decisions. In [23], a vehic-
ular edge computing network combined with DT and arti-
ficial intelligence (AI) is presented to match potential edge 
services, in which a coordination graph-driven task off-
loading scheme based on Multi-agent Deep Deterministic 
Policy Gradient is designed to decrease offloading costs. 
Dai et al. [24] integrate DT into VEC networks to adap-
tively conduct network management and strategy sched-
ule, thereby minimizing the overall offloading latency of 
the system. The authors in [25] present a holistic network 
virtualization model that integrates DT and network slic-
ing, in which an environment-aware offloading method is 
designed to reduce the total time of the system. Liu et al. 
[26] propose a DT-assisted edge intelligent collaboration 
scheme in IoV to realize optimal 3C resources alloca-
tion and edge collaboration. Considering the deviations 
between the physical world and the digital world, they 
utilize a DRL algorithm to obtain the optimal offloading 
strategy and diminish the response delay.

The above studies have proved that digital twin and 
blockchain are both promising technologies. Different 
from these studies, we integrate digital twin and block-
chain into edge cooperation in IoV, which is conducive 
to efficient and secure edge computing. In addition, this 
paper minimizes network cost by jointly optimizing off-
loading cost and consensus cost.

System model
In this section, We first propose the system model of 
blockchain-enabled vehicular edge network architecture. 
Then, we describe the detailed process of blockchain-based 

vehicular edge computing. The main notations used in this 
paper are summarized in Table 1.

Network model
As shown in Fig. 1, the proposed system model consists 
of three layers, namely, an end layer, an edge layer, and a 
digital twin layer.

On the end layer, vehicles equipped with multiple 
sensors and onboard units can collect various valuable 
information about other vehicles, roads, and the sur-
rounding environment, including video music, enter-
tainment games, and traffic situation. Vehicles can 
locally process their own generated tasks by consuming 
their computation resources. Each task is represented 
as Tav = {DD,ZC ,Ymax} . DD is the data size of the task, 
ZC is the CPU cycles required to perform the task, and 
Ymax means the maximum deadline for executing tasks. 
However, due to the limited computing capacity, vehicles 
divide a task into several subtasks and offload them to 
different edge servers on the edge layer through vehicle-
to-infrastructure (V2I) communication.

On the edge layer, multiple edge servers with 3C 
resources are uniformly distributed. We use the set 
ES = ES1,ES2, · · ·,ESj , · · ·,ESM  to represent edge serv-
ers in the model. Owing to the constrained and heteroge-
neous resources, each edge server has different capabilities 
for performing tasks. By utilizing 3C resources, edge serv-
ers can provide high-quality V2I transmission, efficient task 
execution, and reliable block consensus for vehicles. In the 
meantime, each edge server is equipped with a blockchain 
to ensure that untrusted vehicles are able to offload tasks in 
a secure manner. All edge servers collaborate to maintain 
the blockchain, store relevant data, and manage the partici-
pating nodes of the network architecture.

On the digital twin layer, digital twins that are highly 
similar to vehicles and edge servers are constructed 

Table 1  Main notations

Notation Description

DTv The digital twin of the vehicle v

DTEj The digital twin of the edge server ESj

Tv,Ev The local computing time and energy consumption of v

Tj,Ej The edge computing time and energy consumption of v

TTO,ETO The time and energy consumption for task offloading

UTO The cost for task offloading

Tbp,Ebp The time and energy consumption for block production

Tbb,Ebb The time and energy consumption for block broadcast

Tbv,Ebv The time and energy consumption for block verification

Tbc,Ebc The time and energy consumption for block confirmation

UBC The cost for blockchain consensus

UNet The network cost
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based on the state information of the physical entities 
on the end layer and edge layer. To maintain consist-
ency with physical entities, the digital twin maps the 
physical devices to virtual space and updates them in 
real time. As shown in Fig. 2, DT can simulate the basic 

functions of the end layer and edge layer, which realizes 
more effective offloading decisions during the entire task 
execution process. The twins on the digital twin layer 
are modeled and maintained by edge servers on the 
edge layer. In this paper, we consider two types of digital 
twins, namely, the digital twins for vehicles and the digi-
tal twins for edge servers.

The digital twin of the vehicle is constructed on the 
digital twin layer with the help of the edge servers. By 
collecting and processing the operation status of the 
vehicle, including available computation resources and 
locations, the historical and current behavior of the vehi-
cle is dynamically presented in digital form.

where f v is the estimated computing capability of the 
vehicle, lv=

(

xv , yv
)

 is the location of the vehicle.
The digital twin of the edge server is a digital replica of 

the edge server that can reflect the current state of the 
edge layer. It constantly interacts with edge servers and 
updates itself based on actual network topology, task 
requests from vehicles, and so on. At the same time, the 
digital twin model of the edge server is stored in the digi-
tal twin layer through the edge server. For the vehicle ESj , 
its DT can be represented as

where C1
j  , C2

j  , and C3
j  are the estimated communication, 

computing, and caching resources of the vehicle respec-
tively, lEj =

(

xEj , y
E
j

)

 is the location of the edge server.

(1)DTv =
{

Tav , f v , lv
}

(2)DTE
j =

{

C1
j ,C

2
j ,C

3
j , l

E
j

}

Fig. 1  System model

Fig. 2  Task offloading based on digital twin
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In terms of data sensing, accurate global sensing is still 
difficult, because electromagnetic information transmis-
sion is subject to losses due to absorption and scattering 
in wireless channels, which cannot fully reflect the status 
of physical entities. The loss of state data further leads to 
deviations between the estimated value of the twins and 
the true value of the physical entity state. To calibrate 
the deviation of the digital twin, the resource deviation is 
represented by a matrix �C of size 3×M

where the first, second, and third rows of the matrix �C 
represent the deviation values of communication, com-
putation and caching resources for each edge server, 
respectively.

Blockchain‑based vehicular edge computing
Blockchain technology can prevent data leakage from 
vehicles and edge servers while ensuring safe and reli-
able task offloading. Since the digital twin network is 
built on the edge layer, we can use blockchain to trace the 
resource allocation between the digital twins.

To achieve task offloading and resource allocation by 
blockchain technology, vehicles and edge servers must 
first register their unique accounts and create corre-
sponding keys. The identities of vehicles and edge serv-
ers are established through elliptic curve digital signature 
technology and asymmetric encryption algorithms. Spe-
cifically, vehicles and edge servers need to register their 
legal identities after passing the authentication of the 
blockchain registration authority. A legal identity con-
sists of a public key, a private key, and a certificate. The 

�C =







�C1
1 . . . �C1

j . . . �C1
M

�C2
1 . . . �C2

j . . . �C2
M

�C3
1 . . . �C3

j . . . �C3
M







public key is used as the source address of the offloading 
transaction to verify the authenticity of the transaction. 
The key is regarded as transaction signing, and the cer-
tificate is used to identify the unique vehicle and edge 
server by binding their registration information.

As shown in Fig. 3, we use smart contracts to complete 
each transaction and store it on the blockchain to ensure 
the traceability of transaction information. Based on digi-
tal twin and blockchain, safe and efficient task offloading 
in vehicular edge networks can be achieved through the 
following stages.

When a new task is generated, the vehicle sends an 
encrypted task offloading request to its corresponding 
digital twin DTv . The request message for task offloading 
of the vehicle can be described as

where EnPKDTv indicates that the message Reqv→DTv is 
encrypted with a public key PKDTv . Signv = SiSKv (Ta

v , lv) 
indicates that the digital signature of the task information 
Tav and vehicle location lv is encrypted with a private key 
SKv . ICertv is the unique v identifier between the vehicle 
v and its twin DTv , and ts is the timestamp of the current 
message.

In the digital twin network, as a task publisher, DTv 
broadcasts task details to the digital twin DTE

j (j ∈ [1,M]) 
of the edge server ESj

where EnPK
DTE

j

 indicates that the message BocDT
v is 

encrypted with a public key PKDTE
j
 . SignDTv = SiSKDTv (DD ,ZC ,Ymax , l

v) 
represents that the digital signature of the detailed status 
information of the edge server is encrypted with a private 

(3)Reqv→DTv
= EnPKDTv (PKv , Signv , ICertv , ts)

(4)BocDT
v
= EnPK

DTE
j

(PKDTv , SignDTv ,Depv ,CertDTv , ts)

T

Fig. 3  Smart contract for secure vehicular edge computing
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key SKDTE
j
 . Depv is the deposit submitted by the vehicle. 

CertDTv is the identification of the vehicular twin DTv , 
i.e., digital certificate, and ts is the timestamp of the cur-
rent message.

As a task executor, the twin DTE
j (j ∈ [1,M]) of edge 

server responds to broadcast information of DTv and sends 
its detailed information such as its own resources and loca-
tion, to DTv for edge resource allocation

where EnPKDTv indicates that the message RepDT
E
j  is 

encrypted with a public key PKDTv . 
SignDTE

j
= SiSK

DTE
j

(C1
j ,C

2
j ,C

3
j , l

E
j ) indicates that the digi-

tal signature of detailed status information about the 
edge server is encrypted with a private key SKDTE

j
 . Depj is 

the deposit submitted by the edge server. CertDTE
j
 is the 

identification of the edge server twin DTE
j  , i.e., digital 

certificate, and ts is the timestamp of the current 
message.

After receiving the response message, DTv verifies the 
identity of the twin DTE

j (j ∈ [1,M]) . To accelerate the 
verification process, a batch verification process is used to 
verify the validity of multiple identities simultaneously [27]. 
Next, DTv performs subtask offloading and task-resource 
matching

where EnPK
DTE

j

 indicates that the message SolDT
v→DTE

j  is 

encrypted with a public key PKDTE
j
 . ORj represents the 

proportion of tasks offloaded to the twin DTE
j  . The digi-

tal signatures of ORj and Tav are encrypted with a private 
key SKDTv through SiSKDTv (ORj ,Ta

v).
DTE

j (j ∈ [1,M]) verifies the validity of its identity based 
on the digital certificate of DTv , and then executes the task 
according to the offloading scheme message sent by DTv 
and feedbacks the task result message

where EnPKDTv indicates that the message ResDT
E
j →DTv

 is 
encrypted with a public key PKDTv . The digital signature 
of the subtask result RESj is encrypted with a private key 
SKDTE

j
 through SiSK

DTE
j

(RESj).

After receiving the feedback results of all subtasks, 
DTv integrates them into the total task result RESall and 
feedbacks them to the vehicle v

(5)Rep
DTE

j
= EnPKDTv ( PKDTE

j
, SignDTE

j
,Depj ,CertDTE

j
, ts)

(6)Sol
DTv→DTE

j = EnPK
DTE

j

( PKDTv ,ORj ,Ta
v
,CertDTv , ts)

(7)
Res

DTE
j →DTv

= EnPKDTv (PKDTE
j
,RESj ,CertDTE

j
, ts)

(8)FebDT
v→v = EnPKv (PKDTv ,RESall , ICertDTv , ts)

where EnPKv indicates that the message FebDTv→v is 
encrypted with a public key PKv . The digital signature of 
total task results RESall is encrypted with a private key 
SKDTv through SiSKDTv (RESall) . ICertDTv is the unique 
DTv identifier between the vehicle v and its twin DTv , 
and ts is the timestamp of the current message.

The smart contract verifies the validity of the task 
results. If the result is verified successfully, the rewards 
in the smart contract will be sent to the digital twins 
of the edge servers and the deposits submitted by them 
will be returned. If the task is not completed or its exe-
cution deadline is exceeded, the deposit of DTv will be 
refunded. Furthermore, the deposit of DTE

j  will be con-
fiscated as a penalty to prevent DTE

j  from inaction or 
passive action after receiving the offloading scheme.

At the same time, DTv generates a transaction to 
record the task offloading event, and sends the trans-
action to DTE

j  . DTE
j  validates the received transaction 

and cryptographically broadcasts it to the blockchain 
network

where EnPK
DTE

j

 indicates that the message TraDT
v→DTE

j  is 

encrypted with a public key PKDTE
j
 . HA is its hash value. 

The digital signatures of all offload schemes sent by DTv 
are encrypted with the private key SKDTE

j
 through 

SiSK
DTE

j

(SolDT
v
)

Newly generated transactions are broadcast across 
the blockchain network for review and verification. 
Validated transactions are sorted and batch processed 
into encrypted and tamper-proof blocks. Blocks are 
connected in linear chronological order via hash point-
ers to form a blockchain. During the consensus process, 
the digital twin DTE

j  creates the corresponding blocks. 
Then, DTE

j  broadcasts the block with a timestamp for 
block auditing while verifying the correctness of the 
newly created block.

Performance analysis
In this section, The partial offloading technology 
based on blockchain is used to perform tasks. We will 
describe the local computing model, edge computing 
model, and blockchain consensus model in detail.

Local computing model
Since partial offloading can collaboratively utilize the 
computation resources of the vehicle and edge servers, it 
also benefits from both parallel computing [28]. There-
fore, when vehicles with constrained resources cannot 

(9)

Tra
DTv→DTE

j = EnPK
DTE

j

( HA, SolDT
v
,CertDTv ,CertDTE

j
, ts)
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perform tasks with large amounts of data, a partial off-
loading model is used to divide the task into several sub-
tasks. It is assumed that tasks are data partition oriented 
and can be divided arbitrarily on their input bits [29]. Sim-
ilar to the literature [30], we ignore the task partitioning 
cost and divide vehicular tasks. Some subtasks are pro-
cessed locally on the vehicle, while the remaining subtasks 
are offloaded to the edge servers for execution. Consider-
ing the mapping of the digital twin of the vehicle, the gen-
erated estimated value has a deviation from the vehicular 
real value. When the proportion of tasks to be processed 
by the vehicle is θv , the local computing time is

The energy consumption generated by executing the 
task locally on the vehicle is

where �f v is the computation resources deviation value 
of the vehicle. κv is the energy coefficient depending on 
the vehicle chip structure [31].

Edge computing model
When the vehicle offloads the subtask to the edge 
server for processing, the time required includes (1) 
the upload time for transmitting the subtask to the 
edge server, (2) the processing task time of the edge 
server, and (3) the downlink time for the edge server 
to feed the task result back to the vehicle. The results 
of the task will be compressed and are much smaller 
than when they are input, so the downlink time can be 
ignored in the calculation [32].

Due to the heterogeneity of resources, the edge serv-
ers have different communication resources, resulting 
in different transmission times for vehicles offloading 
subtasks to different edge servers. When the vehicle 
offloads a subtask with a ratio of θj to the edge server 
ESj , the transmission time is

Rj represents the data transmission rate of vehicle v to 
edge server ESj , which can be calculated according to the 
Shannon’s formula

where pv is the transmitting power of the vehicle, hv is 
the current channel gain, σ0 is power of the Gaussian 

(10)Tv =
θvZC

f v +�f v

(11)Ev = κv(f
v +�f v)2θvZC

(12)T 1
j =

θjDD

Rj

(13)Rj = (C1
j +�C1

j ) log2(1+
pvhvd−α

vj

σ0
)

white noise, α is path loss exponent. 

dvj =
√

(

xv − xEj

)2
+

(

yv − yEj

)2
 indicates the distance 

between the vehicle v and the edge server ESj.
When the task ratio processed by the edge server ESj is 

θj , the processing time is

Therefore, when the vehicle offloads a subtask with 
a ratio of θj to the edge server ESj , the time includes 
transmission time and processing time, which can be 
calculated

The energy consumption generated by this process 
includes vehicle transmission subtask energy consump-
tion and edge server ESj processing energy consumption, 
which can be calculated

where κE is the energy coefficient depending on the edge 
server chip structure.

With the help of advanced wireless communication 
technology, the vehicle cooperates with multiple edge 
servers to process tasks in parallel through full-duplex 
mode, so the completion time of a task is the maximum 
of the vehicular local computing time or the computing 
time of multiple edge servers. Therefore, the total time 
for the vehicle v offloading task is expressed as

The total energy consumption of offloading task 
includes local computing and edge computing energy 
consumption, which can be calculated

By introducing a delay factor ϑ1 and energy consump-
tion factor ϑ2 , the optimization of the offloading delay 
and the energy consumption is transformed into the opti-
mization of the offloading cost

Blockchain consensus model
By dividing and offloading vehicular tasks to edge 
servers, the service quality and service experience of 

(14)T 2
j =

θjZC

C2
j +�C2

j

(15)Tj = T 1
j + T 2

j

(16)Ej = pv
θjDD

Rj
+ κE(C

2
j +�C2

j )
2θjZC

(17)TTO = max{Tv ,T1, . . . ,Tj , . . . ,TM}

(18)ETO = Ev +
M
∑

j=1

Ej

(19)UTO = ϑ1TTO + ϑ2ETO
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vehicles are improved, but there exist some malicious 
edge servers that may privately steal vehicle user data 
and even disclose the privacy of vehicle users. There-
fore, to ensure the security of the vehicular edge net-
work, we use blockchain technology to verify task 
transactions. Edge servers are regarded as blockchain 
network nodes to perform consensus because of their 
3C resources. They will form a verification set, where 
one edge server acts as the leader and is responsible 
for block production and the other edge servers act as 
verifiers to audit and verify the blocks. The blockchain 
consensus phase can be divided into four processes: 
block production process, block broadcast process, 
block verification process, and block confirmation 
process.

During the block production process, the edge server 
collects transactions after the task is offloaded and 
broadcasts them to the entire network. The edge server, 
as a leader, packages its collection and computes a cor-
rect hash to create an unverified block. According to Del-
egated Proof of Stake (DPoS), the time Tbp for collecting 
transactions and computing hashes can be predefined, 
for example the time is 0.5s in a commercial distributed 
design blockchain operating system. In the meantime, 
the energy consumption during the block production 
process can be expressed as

During the block broadcast process, the leader 
sends a broadcast message to the other verifier edge 
servers. The format of the broadcast message is 
Brm = (block ,PKsou,PKdes, tsBrm) , where block repre-
sents the block it created, PKsou is the source address of 
the message, PKdes is the destination address of the mes-
sage, and tsBrm is the timestamp of the broadcast mes-
sage. The leader simultaneously broadcasts the generated 
blocks to the other verifiers. Since the location of each 
edge server is different, the block broadcast time is deter-
mined by the block transmission time with the longest 
distance. The time and energy consumption of the block 
broadcast process are respectively

where Dbb is the size of the block before validation. djm 
is the distance between the edge server j and m. PE is the 
transmit power of the edge server. RE is the wired trans-
mission rate between edge servers.

(20)Ebp = κE(C
3
j +�C3

j )
3Tbp

(21)Tbb = max
j,m∈M

{
Dbbdjm

RE
}

(22)Ebb =
M−1
∑

j=1

pE
Dbbdjm

RE

The block verification process consists of three stages. 
First, each verifier that receives a block performs a local 
verification, i.e., it audits the accuracy of the block by 
comparing the hash value calculated by using a hash-
ing algorithm with the digital signature of the received 
broadcast message. Then, the verifier broadcasts its local 
audit result with the digital signature to other verifiers in 
a distributed manner. Finally, the verifier performs a sec-
ondary audit of the received local results. The time and 
energy consumption during the block verification pro-
cess can be expressed as

where Tlv is the block local verification time, Trb is the 
broadcast time of the block local verification results, and 
Tsa is the secondary audit time of the block local verifica-
tion results. Z0 represents the size of caching resources 
per bit used to verify blocks, C3

m +�C3
m and C3

m′ +�C3
m′ 

represent the caching resources provided by the verifier 
edge servers m and m′ for block verification respectively. 
dmm′ is the distance between the verifier m and m′ . Dlr is 
the data size of the local verification result.

During the block confirmation process, each veri-
fier compares its audit results with those received 
from other verifiers and sends a confirmation mes-
sage to the leader. The format of the validation message 
is Com = (Rescom,Autown,Autoth,PKsou,PKdes, tsCom) , 
where Rescom is the audit comparison result between the 
verifiers, Autown is the verifier’s audit result, Autoth is the 
audit result received from other verifiers, and tsCom is the 
timestamp of the feedback message. The block confirma-
tion time depends on the distance between edge servers, 
so the block confirmation time and energy consumption 
are expressed as

where Dsr is the data size of the secondary audit result.

(23)

Tbv = max
m,m′∈M,m�=m′

{Tlv + Trb + Tsa}

= max
m,m′∈M,m�=m′

{
DbbZ0

C3
m +�C3

m

+
Dlrdmm′

RE
+

DlrZ0

C3
m′ +�C3

m′
}

(24)

Ebv =
M−1
∑

m=1

κE(C
3
m +�C3

m)
2DbbZ0 +

M−1
∑

m=1

pE
Dlrdmm′

RE

+
M−1
∑

m′=1

κE(C
3
m′ +�C3

m′)
2DlrZ0

(25)Tbc = max
j,m∈M

{
Dsrdjm

RE
}

(26)Ebc =
M−1
∑

j=1

pE
Dsrdjm

RE
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Similarly, the optimization of consensus delay and the 
energy consumption is transformed into the optimization 
of consensus cost by introducing a delay factor ϑ1 and 
energy consumption factor ϑ2 . The expression is

In summary, network cost consists of task offloading cost 
and blockchain consensus cost, which can be calculated

Problem formulation
The purpose of task offloading and blockchain consensus 
is to minimize network cost, including offloading cost 
and consensus cost. Therefore, the optimization model 
can be formulated as

C1 is a requirement for task offloading ratios to ensure 
that tasks can be fully executed. C2 represents a lin-
ear combination of delay and energy consumption. C3 
ensures that the computing power of each edge server 
is greater than the computing power of the vehicle. C4 
indicates that the task offloading time cannot exceed the 
maximum deadline for the task.

Algorithms
In this section, we divide the optimization model into 
two problems to solve, namely, using an improved cuckoo 
algorithm to minimize task offloading cost, and using a 
greedy strategy to minimize blockchain consensus cost, 
thereby jointly optimizing to minimize network cost.

ICA based task offloading algorithm
The offloading ratio of a task determines its offloading 
time and energy consumption, i.e., task offloading cost. 
Since the advantages of Cuckoo algorithm (CA) include 
fewer parameters and fast convergence speed [33], we 
design a task offloading algorithm based on improved 
Cuckoo algorithm (ICA). The probability of cuckoo 
eggs being discovered Pa and control step ε0 are adap-
tively changed to balance the relationship between global 

(27)

UBC =ϑ1TBC + ϑ2EBC

= ϑ1{Tbp + Tbb + Tbv + Tbc} + ϑ2{Ebp + Ebb + Ebv + Ebc}

(28)UNet = UTO + UBC

(29)

min UNet

s.t. C1 : θv +
M
∑

j=1

θj = 1, ∀j ∈ M

C2 : ϑ1 + ϑ2 = 1

C3 : fv < C2
j , ∀j ∈ M

C4 : TTO ≤ Tmax , ∀j ∈ M

search ability and local search ability. At the same time, 
the preferred random walking mode with global optimal 
guidance can better improve the development ability of 
ICA algorithm and jump out of a local optimal solution, 
thereby obtaining the optimal task offloading ratio and 
minimizing task offloading cost. The task offloading algo-
rithm based on ICA is shown in Algorithm 1.

Algorithm 1 ICA based task offloading algorithm

To prevent uneven distribution of individuals within 
a randomly generated population, we adopt the Latin 
hypercube sampling method to generate the initial 
population [34]. Based on the space-filling technique, 
Latin hypercube sampling ensures that the projection of 
sample points in the variable space is uniformly distrib-
uted in each dimension. The population locations after 
Latin hypercube sampling not only realize non-overlap 
throughout the entire space-filling and sampling to make 
the initial population uniformly distributed but also allow 
more full searching of the entire variable space with a 
small number of sample points. The specific steps for 
population initialization in the ICA are as follows 

(1)	� Determine the population size and dimension 
number of the ICA,

(2)	� Determine the interval of variables X ∈ [0, 1] ,
(3)	� Divide the interval of variables X ∈ [0, 1] into 

equal subintervals with the same number of popu-
lation sizes,

(4)	� Select a point within each sub-interval of each 
dimension randomly,

(5)	� Combine the extracted points of each dimension to 
generate the initial population position of the ICA.

Based on the above three rules, the CA uses both the 
Levy flight mode and the random walking mode to jointly 
update the location of the nest.

Levy flight mode (global search). The update formula 
for the location and path of the cuckoo bird searching for 
its host nest is
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where Xt+1
i  and Xt

i  represent the nest location in the 
t + 1 and t generation respectively. ε = ε0(X

t
i − Xbest) 

is the control step length, Xbest represents the optimal 
nest location in the current population. 

⊗

 stands for 
point-to-point multiplication; N is the number of bird 
nests; L(�) represents the random search path for Levy 
flight, which follows the Levy probability distribution 
L(�) ∼ s−�, 1 < � ≤ 3 , and its random step s can be cal-
culated by

where u ∼ N (0, δ2u) , µ ∼ N (0, 1) , β = 1.5 , δu can be cal-
culated by

The control step ε0 in the early stage of iterative opti-
mization should be larger to search more regions to 
improve the global optimum performance, which is more 
favorable to jump out of the local optimum. In the later 
stage of iterative convergence, the control step ε0 should 
be gradually reduced to a smaller value, which is more 
conducive to the careful search in the local region and to 
improve the solution accuracy while accelerating the con-
vergence speed. As a result, the relationship between the 
control step ε0 and the number of iterations t is

where the maximum and minimum values of control step 
ε0 represent εmax

0  and εmin
0  respectively, TI represents the 

maximum number of iterations, and ω is a non-linear 
factor with a value greater than 0 to control the rate of 
decline of control step ε0.

Preferred random walking mode (local search). The 
host bird will discover and discard cuckoo eggs with a 
certain probability Pa , Pa ∈ [0, 1] . The new nest location 
is updated by

where i  = i′  = i′′ , and i, i′, i′′ ∈ [1,N ] . ρ1 and ρ2 are ran-
dom numbers subject to uniform distribution [0,  1]; H 
is the Heaviside step function; Xt

i′ and Xt
i′′ represent two 

randomly selected nest locations in the T generation 
respectively.

The discovery probability Pa of cuckoo eggs is used to 
generate new individuals. If ρ2 < Pa , the original indi-
viduals are saved to the next generation. If ρ2 > Pa , the 

(30)Xt+1
i = Xt

i + ε
⊕

L(�), i = 1, 2, . . . ,N

(31)s =
u

|µ|1/β

(32)δu = {
Ŵ(1/β) sin(πβ/2)

Ŵ[(1+ β)/2]β2(β−1)/2
}1/β

(33)ε0 = εmin
0 + (εmax

0 − εmin
0 )(

TI − t

TI
)ω

(34)Xt+1
i = Xt

i + ρ1
⊕

H(ρ2 − Pa)
⊕

(Xt
i′ − Xt

i′′)

original individuals are eliminated and new individuals 
are generated. However, in the early iterative stage, the 
discovery probability Pa should be kept at a large value 
to increase the diversity of the population and avoid fall-
ing into a local optimum, and a smaller value in the later 
stage to ensure better convergence of the algorithm. The 
appropriate discovery probability Pa should be gradually 
reduced as the iteration progresses to ensure that new 
individuals can be generated more easily in the late itera-
tions, so we adopt a cosine decreasing strategy to achieve 
dynamic changes in the discovery probability:

To greatly improve the population diversity and the 
efficiency of ICA algorithm, we combine the particle 
swarm algorithm (PSO) and the golden sine optimization 
algorithm [35] for the preferred random walking mode 
with global optimal guidance, which can be calculated by

where i  = i′  = i′′ , and i, i′, i′′ ∈ [1,N ] . ϕ1 ∈ [0, 2π ] and 
ϕ1 ∈ [0,π ] are random numbers that determine the 
distance and direction of the location update during 
the iteration respectively. φ1 = −π + 2π(1− γ ) and 
φ1 = −π + 2πγ are compression factors that can be used 
to compress the space to find the best nest location more 
quickly. γ = (

√
5− 1)/2 is the golden section ratio coef-

ficient, which can be obtained

where the offset coefficient η is a random number uni-
formly distributed on the interval (−η, η) , and the value 
is (π/6) [36]. According to (36), the preferred random 
walking mode with global optimal guidance generates 
new solutions based on the golden ratio coefficient close 
to the global optimal solution, because the new solutions 
obtained by the golden ratio coefficient are superior to 
those generated only within the interval [0, 1]. Compared 
to generating new solutions linearly between [0,  1], the 
offset coefficient allows the ICA to search for more loca-
tion information with a certain offset angle.

Greedy strategy based resource allocation scheme
DPoS is a fast and efficient blockchain consensus mecha-
nism that utilizes voting and selection to protect block-
chains from the impact of centralization and malicious 
use [37]. Compared with traditional consensus algo-
rithms, the number of entities involved in DPoS con-
sensus is few, which can effectively reduce the time and 

(35)Pa = Pmax
a cos(

π

2
·
t − 1

TI + 1
)+ Pmin

a

(36)

Xt+1
i = Xt

i | sin ϕ1| + ρ1
⊕

H(ρ2 − Pa)
⊕

ϕ2 sin ϕ1|φ1Xt
i′ − φ2X

t
i′′ |

+ ζ(Xbest − Xt
i′′′ )

(37)ζ = ηγ
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energy consumption to reach consensus. Therefore, the 
DPoS consensus is combined with a greedy strategy to 
reasonably allocate resources, thereby minimizing the 
consensus cost.

The first is the leader selection. Task offloading is 
mainly performed between edge servers, so they store 
relevant transaction information and can be considered 
as leader candidates. In each selection, the edge serv-
ers vote based on their respective caching resources. 
The caching resources can be used for block consensus, 
including block production and verification. As a meas-
ure of the quality of the edge servers, more caching 
resources means that the edge servers have more pro-
cessing power to produce and verify blocks. At the end 
of the voting, the edge servers with the highest number of 
votes will form a verification set.

Algorithm 2 Greedy strategy based resource allocation scheme

There are two roles in the verification set, the leader 
and the verifier. The leader is responsible for transac-
tion collection and block production, and the verifier is 
responsible for block verification. In each block produc-
tion process, one edge server in the verification set acts 
as a leader and other edge servers act as verifiers. Leaders 
are generated in a round-robin manner in the verifica-
tion set, indicating that each edge server can become a 
leader to produce blocks. In the specific block consensus 
process, the leader first collects a certain amount of task-
offloading transactions and then computes a correct hash 
value to produce an unverified block. The verifier audits 
the block broadcasted by the leader and sends a confir-
mation message to the leader. The leader analyzes the 
received confirmation message and audits the block for 
accuracy. If more than two-thirds of the verifiers agree on 
the block, the leader sends the block to all edge servers in 
the verification set for storage. Edge servers that are not 

in the verification set will periodically synchronize the 
latest blockchain information in their vicinity.

When a newly generated block is successfully added 
to the blockchain, the edge servers involved in the block 
consensus process are rewarded to compensate for their 
resource consumption. If all edge servers in the verifica-
tion set become leaders, the order of leaders is changed, 
and they then produce new blocks again in a round-
robin manner. If a leader fails to create a block, the block 
is skipped and the transactions in the skipped block are 
transferred to the next block. The blockchain resource 
allocation scheme based on greedy strategy is shown in 
Algorithm 2.

Performance evaluation
In this section, simulation experiments are conducted to 
evaluate the performance of our proposed scheme. The 
comparison schemes in this paper include the cuckoo 
algorithm scheme (CA), distribute maximum scheme 
(DM), average offloading scheme (AVER), local com-
puting scheme (LOCA), and random offloading scheme 
(RAN).

Simulation setup
We considered an IoV scenario where vehicles drive 
randomly on the road and edge servers are randomly 
distributed on both sides of the road. The transmis-
sion power of each edge server is 10 W, and the trans-
mission rate between edge servers is 100 Mbit/s. We 
assume that vehicular computing power is 19 GHz 
and transmission power is 0.3 W. The current chan-
nel gain is 60 dB, the power of the Gaussian white 
noise is 2× 10−12 W, and the path loss exponent is 3. 
The energy coefficient of the vehicle chip structure is 
10−26 , while the energy coefficient of the edge server 
chip structure is 10−23 . For the convenience of analy-
sis, the DT deviation value is set to 1. The block size 
is [0,  30] MB, the data size of the local audit result 
is [0,  3] MB and the data size of the secondary audit 
result is [0, 300] KB.

In addition, the number of iterations is 100. The maxi-
mum and minimum values of discovery probability Pa are 
0.3 and 0.1, respectively. The maximum and minimum 
values of control step ε0 are 1.5 and 1, respectively. The 
non-linear factor ω is taken as 3. Other parameters in the 
simulation are shown in Table 2.

All simulations are performed by MATLAB R2016a on 
a computer configured with 8GB RAM and Intel Core 
i5-9500 3.0 GHz CPU with a 64-bits Microsoft Windows 
10 operating system. Besides, in order to eliminate the 
error caused by randomness, each simulation test is run 
20 times to obtain an average result.
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Security analysis
The DT-based blockchain provides secure and reliable 
edge cooperation for vehicular edge networks.

1) Efficient operation: Physical entities transmit infor-
mation through physical-to-physical (P2P) com-
munications, including vehicles and edge servers. 
The DTs in the proposed DTVEN achieve informa-
tion interaction and resource sharing through twin-
to-twin (T2T) communications, to reflect the state 
behavior in the actual physical network. T2T com-
munications depend on the computation resources of 
the edge server to model and simulate, without con-
suming any communication resources. Compared 
with time-consuming P2P communications, T2T 
communications only need to simulate and predict 
the operational state of the network in a relatively 
short time, and send the results to the physical enti-
ties through twin-to-physical (T2P) communications 
to realize task offloading and resource allocation.
2) Transaction traceability: In the proposed scheme, 
the verifier selection process is based on a greedy 
strategy, where all blocks and transactions are pub-
licly audited and mutually verified by all verifiers in 
a round-robin manner. Broadcasted transactions 
recorded with timestamps cannot be maliciously 
modified by a single entity, since timestamps in the 
blockchain can be used to keep transactions intact. 
At the same time, any vehicle and edge server can 
quickly verify and trace previous records by accessing 
the digital twin layer.
3) Privacy Protection: Vehicles, edge servers, and 
their corresponding DTs transfer messages about 
task offloading and blockchain in an anonymous 
manner. For example, the twin DTv of a vehicle v 
uses its public key as a pseudonym to ensure the ano-
nymity of its true identity. DTv sends the messages 
(i.e., BocDTv

, Sol
DTv→DTE

j , FebDT
v→v ), and transac-

tions (i.e., TraDT
v→DTE

j  ), which are signed and can 
only be accessible by vehicle v and the digital twin 
DTE

j  of the edge server ESj with the correct private 
key. If the malicious DTv′ and DTE want to forge the 
signature of DTv to pass the authentication process, 

the attackers must forge a signature. However, attack-
ers cannot obtain the private key from the public key 
of DTv , so they cannot access the private key to forge 
the signature information of the legitimate DTv . In 
edge collaboration, anonymity and digital signatures 
can protect the privacy of physical entities and twins 
in DTVEN.

Simulation and results analysis
As can be seen from Fig.  4, the ICA proposed in this 
paper can achieve effective convergence compared to the 
traditional CA. The solution space can be explored more 
fully by generating uniformly distributed initial popula-
tions through Latin hypercube sampling. In the global 
search process using Levy flight, the number of control 
step ε0 changes dynamically with the number of itera-
tions to improve the accuracy of the search. In the pro-
cess of local search, the cosine decreasing strategy is used 
to realize the dynamic change of discovery probability 
Pa , which can increase the strength of population evo-
lution and thus avoid falling into local optimum. At the 
same time, the global optimization guidance is added to 
strengthen the development ability of the algorithm, and 
the search process generates new solutions toward the 
global optimum to improve the convergence speed.

Figure  5 illustrates the comparison of offloading time 
with increasing data size for different schemes. It can 
be seen that offloading time increases with increasing 
data size for most of the schemes. The time fluctuation 
of the AVER scheme is the smallest because offloading 
time depends on the maximum of both local comput-
ing time and edge computing time when the task is par-
tially offloaded. Since the computing power of the edge 
server is stronger than that of the vehicle, vehicular local 

Table 2  Simulation parameters

Parameter Value

The data size of the task DD [0.2,1] MB

The CPU cycles of the task ZC [10,20] ×10
8

The communication resources of edge server C1
j

[20,30] GHz

The computation resources of edge server C2
j

[100,110] GHz

The storage resources of edge server C3
j

[5,10] GHz

Fig. 4  Comparison of convergence performance
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computing time is often higher than the time offloaded to 
the edge server for task execution, so the offloading time 
of the AVER scheme is vehicular local computing time. 
The DM scheme represents offloading a single task to the 
edge server with the maximum computing power with-
out any task segmentation operation. Even if the task is 
offloaded to the edge server with the maximum comput-
ing power, the transmission time of the task grows due 
to the increase in the data size, so the offloading time of 
the DM scheme also increases linearly. The RAN scheme 
randomly offloads tasks to the edge server, and the off-
loading ratio of the tasks is random, resulting in a large 
offloading time. The comparison results show that the 
ICA scheme proposed in this paper consistently out-
performs the other schemes in terms of offloading time. 
Compared with other schemes, the ICA scheme can 
more reasonably allocate communication and computa-
tion resources between the vehicles and the edge servers 
to efficiently execute the tasks.

Figure 6 compares the offloading time for task execu-
tion under six schemes. As the number of CPU cycles 
required for computing tasks increases, the offloading 
time also grows. The time spent in the LOCA scheme 
is the largest since the task is executed directly on the 
vehicle without any offloading operation. Due to the 
limited computation resources of the vehicle, the LOCA 
scheme is prone to the risk of vehicular overload. The 
task is only offloaded to the edge server with the high-
est computation resources in the DM scheme. Although 
the task offloading time also increases, it is less than 
the LOCA scheme because the edge server has higher 
computing power than that of the vehicle. Compared 
with the average task offloading in the AVER scheme 
and the random task offloading in the RAN scheme, 

the ICA-based task offloading scheme maintains good 
performance. Considering the resource constraints of 
the edge server, the appropriate subtasks are offloaded 
based on the distance from the edge server, thereby 
reducing the offloading time.

Figure  7 shows how the offloading cost varies with the 
CPU cycles. It can be seen that when the number of CPU 
cycles required to process the task increases, the corre-
sponding offload cost grows as well. The offloading cost of 
the LOCA scheme is the largest since the offloading time 
required by the LOCA scheme is the largest and comput-
ing tasks locally consume vehicular computation resources. 
The RAN scheme randomly divides and offloads tasks to 
different edge servers, resulting in relatively high offload-
ing cost. In Fig. 6, although the offloading time of the DM 

Fig. 5  Offloading time with respect to data size under different 
schemes

Fig. 6  Offloading time with respect to CPU cycles under different 
schemes

Fig. 7  Offloading cost with respect to CPU cycles under different 
schemes
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scheme is larger than that of the AVER scheme, its offload-
ing cost is lower than that of the AVER scheme. This is 
because the DM scheme offloads a single task to the edge 
server with the strongest computing power, and the off-
loading time increases with the number of CPU cycles, but 
it only consumes the computation resources of one edge 
server. In contrast, the AVER scheme requires dividing and 
offloading tasks equally to the vehicle and the edge server, 
which consumes not only the computation resources of 
the vehicle, but also the communication and computation 
resources of the edge server. Our proposed ICA scheme 
can measure the energy consumption of offloading tasks 
based on the communication and computation resources 
between the vehicle and the edge servers, and reasonably 
divide the offloading tasks to minimize the offloading cost.

Figure 8 presents the network cost over the varying CPU 
cycles under six schemes. The network cost of all schemes 
grows correspondingly with the increase in the number of 
CPU cycles. During the task offloading process, the task 
computing time and energy consumption increase accord-
ingly as the number of CPU cycles for processing the task 
grows. Furthermore, as the CPU cycle of a task increases, 
more transactions are generated, resulting in a larger num-
ber of generated blocks. This increases the time and energy 
consumption of the blockchain consensus process, and the 
network cost also grows. We adopt a resource allocation 
scheme based on greedy strategy, which reduces the block-
chain consensus cost by selecting the edge server with the 
highest caching resources as the leader and reducing the 
distance of block broadcast. From Fig. 7, it can be seen that 
our proposed ICA scheme can obtain the minimum off-
loading cost. Therefore, the proposed scheme in this paper 
can achieve the minimum network cost during the entire 
task offloading process.

Conclusion
In this paper, an edge cooperation scheme based on task 
offloading and resource allocation is proposed to minimize 
the network cost. We propose a novel blockchain-empow-
ered digital twin vehicular edge network architecture, 
which utilizes the DT-based smart contract to realize effi-
cient and secure edge computing. To jointly optimize the 
latency and energy consumption, we first design an ICA-
based task offloading algorithm to reduce offloading cost 
by reasonably offloading subtasks to edge servers. Then, 
while introducing blockchain for safe data sharing, a greedy 
strategy-based resource allocation scheme is present to 
select appropriate edge server verifiers, thereby diminish-
ing consensus cost. Simulation results show that the pro-
posed edge cooperation scheme has a lower network cost 
significantly than other schemes during the entire task off-
loading process.
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