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Abstract

Predicting near-future rainfall, defined as nowcasts, is essential to various
industries and sectors, including aviation safety, agriculture, flood management,
and the general public. Traditional nowcasts are calculated using optical
flow methods, which extrapolate radar observations. However, these methods
have shortcomings and struggle to capture important non-linear convective
events. Deep learning has shown promising results in mitigating these challenges.
Especially promising are frameworks built on generative models (GM), enabling
the generation of realistic precipitation nowcasting scenarios. Di�usion Models
(DM) are a specific form of GMs and have advanced tremendously over the
last three years. To our knowledge, these models have yet to be explored for
nowcasting or general weather forecasting. With this as motivation, this thesis
presents a novel approach to precipitation nowcasting using DMs.

These models have mainly been implemented as unconditional or label-
dependent models. However, for precipitation nowcasting, generating samples
conditioned on radar video from past time steps is necessary. This thesis
suggests two strategies for generating such conditional samples. First, using
the radar video directly as input to the network, and secondly, creating image
embeddings of the input by processing it through a second neural network. Our
results show that both models possess predictive abilities and can generate
realistic nowcasts with lead times from five to 20 minutes ahead.

Model training and validation are performed on a dataset compiled by
extracting and processing data from an API provided by the Norwegian
meteorological institute. The primary variable of interest is radar precipitation
rates from a 256 ◊ 256-square kilometer area of eastern Norway and parts of
Sweden, extracted from April to October for 2021 and 2022. As this results in
massive amounts of data, video sequences are thresholded and selected based
on precipitation intensities to create a manageable-sized data set.

We implement metrics commonly used in meteorology to validate model
output and to assess nowcast probabilistic quality. We found that the model
utilizing image embeddings produced higher-quality predictions than the model
with direct conditional input. However, both models su�er from poor results
when generating nowcasts with little- to no rain prior to lead times. This is
likely caused by these scenarios being underrepresented in the compiled dataset.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Predicting short-term rainfall events is of great interest to a wide range of
users. Population growth and expanded urbanization result in an increased risk
for loss of lives due to severe weather [56]. Developing methods to accurately
predict the location and intensity of near-future precipitation events can aid
decision-makers in critical situations and bring improvements to aviation safety,
agriculture, flood management, and the general public.

These short-scale forecasts of future weather are called nowcasts. Today’s
operational nowcasting methods are based on extrapolating observed precipita-
tion fields forward in time but have been shown to have several shortcomings.
Especially challenging is the prediction of the non-linear events often connected
with heavy precipitation [49]. As data from the atmosphere is continuously
collected through various remote sensing systems, this makes for a perfect
application of machine learning (ML). Since the first ML-based precipitation
nowcasting model presented by Shi et al. in 2015, several papers have made
major advancements towards reaching the performance of extrapolation-based
nowcasts methods currently employed in operational nowcasting systems [44].

However, these deterministic models output a precipitation map for future
events, directly predicting the cell-wise precipitation probability [49]. This
inhibits these models’ applicability to operational use as the nowcasts they
produce are blurred and struggle to resemble real-life precipitation scenarios.
These blurred predictions are not suited for quantifying the uncertainty of the
produced nowcasts. A better approach is to utilize probabilistic generative
models. These models are able to generate a distribution of realistic precipitation
scenarios and quantify the uncertainty based on this distribution [36, 39].

The last couple of years has seen significant improvements in this area of
generative methods. One of the most impactful breakthroughs was proposed in
a 2020 paper by Ho et al, presenting Di�usion Models (DM), further improving
the Denoising Di�usion Probabilistic Models (DDPM) first initialized by Sohl-
Dickstein in 2015 [18, 48]. At first only of interest to small scientific research
fields within ML, before exploding in popularity even among the public through
image-generating frameworks like Dall-E and Stable Di�usion [5, 50]. However,
their possible use cases far extend the creation of images and art from text
prompts that the above-mentioned frameworks o�er. Nichol and Dhariwal 2021,
presented several improvements to the DDPM, boosting its performance to
exceed the state-of-the-art image generators known as Generative Adversarial
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1. Introduction

Networks (GANs) [8].

1.2 Research objectives and methods

In this master thesis, we suggest using DM for precipitation nowcasting. To the
best of our knowledge, this is the first-ever research on using DM for this purpose
and weather forecasting in general. Given the impressive image-generative
abilities of DM, implementing a DM to perform precipitation nowcasting is
a natural and interesting direction to explore. However, there are several
challenges and methodological and implementation decisions that must be
made before state-of-the-art DM can be used for precipitation nowcasting. We
summarize this in the following four primary thesis research and development
objectives:

Objective 1 Develop a di�usion model framework with the ability to condition
the model output. As an unconditional generative model produces output
that resembles random samples from the original data distribution used
for training, their use in predicting future events is limited. The primary
objective of this thesis is, therefore, to explore and develop methods for
guiding the model to generate samples resembling a predicted future state.
We will explore di�erent methods to achieve this by feeding the network
conditional input from the preceding time steps.

Objective 2 Explore and implement validation metrics to quantify the probab-
ilistic correctness of nowcasts generated from the implemented di�usion
models. As above-mentioned, the power of generative methods is their
ability to generate realistic future precipitation scenarios that capture
the characteristics and uncertainty in these future predictions. We will
combine this probabilistic behavior with specifically developed validation
metrics to quantify the uncertainty in predicted future events.

Objective 3 Explore model performance in di�erent weather scenarios to
identify potential challenges and pitfalls. Methods based on both
optical flow and neural networks alike have shown strengths and
weaknesses related to specific scenarios connected to non-linear convective
precipitation and heavy rainfall. [37, 39, 49]. The developed framework
will test its abilities in some of these scenarios.

Objective 4 Compile a dataset for model training and validation consisting of
radar precipitation rates. Radar precipitation rates are represented as
numeric values for a given location in a two-dimensional grid space, well
suited to be represented as images. This data is provided by the Norwegian
Meteorological Institute through an application programming interface
(API) and must be extracted and processed by developing a series of scripts.
These scripts extract relevant variables from a specified domain, perform
necessary processing and transform the data into a data type suited for
model training on high-performing graphical processing units (GPUs).
The scripts can prove helpful in later weather forecasting operations as
it enables an end-to-end solution for data extraction, processing, and
real-time prediction.

2



1.3. Ethical considerations

1.3 Ethical considerations

Trained, generative models possess powerful abilities to generate samples
resembling real-life scenarios. However, they also pose the risk of generating
samples that are entirely wrong but still resemble a highly realistic-looking
scenario. This can lead to situations where the model fails to correctly predict
a future extreme precipitation event which can have substantial negative
consequences. In contrast, the model can also overestimate predictions, resulting
in false alarms.

We also note that the substantial computational resources needed to train
these models can negatively impact the environment through increased energy
consumption and emissions.

1.4 Main contributions

This study presents a novel approach to precipitation nowcasting, implementing
a DM with conditioning abilities. This model generates realistic radar images
of future precipitation based on past radar observations for lead times of up
to 20 minutes. As pre-built model architecture was still sparse during the
development phase of this project, a complete module had to be developed,
inspired by concepts and implementations from various sources. The models
are trained and validated on a compiled dataset with radar observations. For
validating the nowcast quality, several probabilistic metrics commonly used
in the field of meteorology were implemented. These metrics are applied to a
range of weather scenarios to test probabilistic prediction capability.

1.5 Thesis outline

The rest of the text is organized as follows:

Chapter 2: Precipitation and nowcasting presents theory on the microphys-
ical processes behind precipitation and outlines the two main types of
rainfall, namely convective and stratiform. Presented is also theory on
the state-of-the-art baseline method for predicting precipitation on short
time scales.

Chapter 3: Deep learning and neural networks first presents the theory
and concepts on basic neural nets to machine learning models used for
image analysis. The second part of the chapter dives deeper into the main
model architecture of interest for this study, namely di�usion models.
At last, we present releated work in the field of machine learning for
precipitation nowcasting.

Chapter 4: DiffMet: A diffusion model for precipitation nowcasting
details all the application and development of methodology involved
in the development of the framework used for precipitation nowcasting.
We denote the framework Di�Met.

Chapter 5: Case study on nowcasting with DiffMet present the results
from several experiments and use cases with Di�Met. Initially, we
present results from early experiments conducted on a simplified dataset

3



1. Introduction

before shifting focus to actual precipitation nowcasting with radar images
as input data.

Chapter 6: Conclusion and future work presents a summary of the thesis,
our findings regarding the skill of DM for nowcasting, and our conclusion.
Finally we present our suggestions for future work.

Appendix A: Source code presents the GitHub repository for all source code
behind Di�Met, in addition to data processing and extraction.
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CHAPTER 2

Precipitation and Nowcasting

Beeing able to predict the weather accurately is of great importance, both for
the public and for several sectors critical for society. More specifically, the
ability to accurately predict rainfall intensities for a short time range, called
precipitation nowcasting, is of great interest. These predictions are usually
made on lead times from 0-6 hours and can significantly impact aviation safety,
emergency services, agriculture, and flood warning systems, among others [56].
Today’s operational nowcasting systems implement optical flow methods based
on data from weather radar systems to capture these events.

The model presented in Chapter 4 will, among other things, have its abilities
tested at two di�erent types of precipitation. Hence, this chapter will present
the theory describing the main mechanics behind rainfall and outline these
two distinguishable types of rainfall. It will also present concepts and theories
behind a state-of-the-art optical method for creating precipitation nowcasts.

2.1 Precipitation

Figure 2.1: Two variables from a sample from the dataset presented in
Section 4.1, visualizing parts of a stratiform precipitation region. Left: radar
precipitation rates. Right: Separation of convective and stratiform precipitation.
In the visible parts of this system, there are no convective regions.
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2. Precipitation and Nowcasting

The main focus of this thesis has been developing a novel approach to
precipitation nowcasting. However, gaining a better understanding of some of
the mechanics behind precipitation can prove useful when exploring where the
model fails and where it succeeds. The main objective behind the developed
nowcasting model, presented in Chapter 4, is to generate synthetic images for
a given lead time, where the numeric values in the generated image represent
precipitation intensities. This generation is done by feeding the model radar
images with precipitation intensities from prior weather sequences. These
intensities, projected on a two-dimensional grid, are the sole model input.
However, the dataset used for model training contains an additional variable
classifying the precipitation into one of two types. This classification enables
further explorations on model performance as it allows for selecting subsets of
the original test set. These subsets contain sequences with either exclusively
one precipitation type or a mix of both.

This section presents these two types, namely convective and stratiform
precipitation. These two distinguishable types are responsible for most
precipitation in the water cycle but have several variations and are seldom
present without the other. The selected domain contains little topographical
variations as visualized in Figure 4.2. Orographic precipitation, the rainfall that
occurs when moist air is forced upwards due to elevation in landmasses is, as a
result, not discussed in this chapter.

2.1.1 Stratiform precipitation

Stratiform precipitation is produced in a cloud type named Nimbostratus. These
clouds are formed by masses of thermodynamically stable air and are often
spawned in multiples along frontal cloud systems. Visually, these clouds are
typically grey and dense, often covering large areas. The precipitation that
falls from Nimbostratus clouds is often long-lasting, caused by their internal air
motion, which is usually slow compared to its convective counterpart. This air
motion is critical for describing the mechanics behind the precipitation types,
as it makes them clearly distinguishable. As the nimbostratus cloud is deep,
the top level is high in altitude and therefore contains ice particles. Their
slow-moving air motion, |w̄| can be defined kinematically compared to the fall
speed usually found in ice particles,Vice,typical, as defined by Houze jr.

0 < |w̄| π Vice,typical (2.1)

This slow movement enables the ice hydrometeors in the cloud to increase in
size and result in rainfall when exiting the cloud. This process can thoroughly
be examined through a combination of radar and laser measurements and will
be discussed in detail in the following sections. However, it is important to note
that the air motion, w̄ in Equation2.1, is denoted by its absolute value. This is
based on the two sub-types of stratiform regions, defined by vertically upwards
moving air or downwards. Equation 2.2 and 2.3 outlines both respectively.

0 < |w̄| π Vice,typical and w̄ > 0 (2.2)

0 < |w̄| π Vice,typical and w̄ Æ 0 (2.3)
For the air motion |w̄| to satisfy Equation 2.2, the overall vertical speed must be
positive, resulting in an average upward motion in the region of interest. If this
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2.1. Precipitation

is satisfied, the region is considered an active stratiform region. Equation 2.2
defines the opposite case, namely an inactive region where the overall motion
of air is downward. In the latter’s case, the conditions for particle growth are
not present, and rainfall from these regions is defined as fallout. Explaining
the mechanics of the opposite, active region, is therefore of greater interest, as
the mean upward air motion in these regions allows for particle fall speeds that
facilitate growth. For an active region, the height of a typical nimbostratus cloud
structure usually allows the falling ice particles to grow for one to three hours.
During this period, the particle goes through several distinct microphysical
processes for growth. As each process will have di�erent e�ects on particle
radius, structure, and fall speed, it is possible to identify them with changes in
radar reflectivity.

2.1.2 Convective precipitation and its presence in stratiform
regions

As the previous section outlined the microphysical processes of growing particles
falling slowly towards the ground, this section deals with precipitation that
grows while moving upwards. The vertical air motion in these convective cells
far exceeds the constraints set in Equation (2.1), which in turn is the key
driver for growth. This rapid mean vertical air motion is caused by surface
heating, lifting the air, enabling the right conditions to create cumulus- and
cumulonimbus clouds. This powerful updraft will lift the particles and allow
them to grow by gradually accumulating water. These lifting particles can be
either ice or liquid water and will continue their journey upwards until they
grow too large, which at that point, they will fall to the ground as rainfall. In
contrast to their stratiform counterpart, the period of convective precipitation
is a short-lived cycle. The strong updraft enables the creation of clouds and the
following rainfall to be completed in ¥ 30 minutes. This distinct di�erence also
enables the classification of precipitation type from radar echoes. At its simplest,
the separation can be made based on the distinct vertical shape of maximum
reflectivity caused by the solid convective updraft. Algorithms developed for
separating precipitation types based on radar echos base their separation on
further criteria on radar intensities and di�erences[51]. As the rainfall from
convective cells is so distinguishable, all precipitation not classified as convective
is automatically classified as stratiform.
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2. Precipitation and Nowcasting

Figure 2.2: A sample from the dataset presented in Section 4.1, visualizing
an occurrence of both stratiform and convective precipitation. Left: radar
precipitation rates. Right: Separation of convective and stratiform precipitation.
From the plot of the separated precipitation types, several generating convective
cells can be seen, surrounded by stratiform precipitation. This coincides with the
symbiotic relationships described in Section 2.1.2. The plot of radar precipitation
rates also visualizes the high-intensity rainfall that convective precipitation can
present, visible at a maximum rate of 14 mm/hr.

As above-mentioned, both convective and stratiform precipitation may occur
together in the same cloud system and can happen in several di�erent scenarios.
To di�erentiate between these scenarios, a vertical profile of radar echoes of the
region is often required, in addition to a time-height cross-section. However, the
dataset available in this project only contains a two-dimensional array where each
element corresponds to the precipitation type at a given spatial location. These
precipitation types are illustrated in Figure 2.1 and Figure 2.2. To conclude the
type of entangled convective and stratiform precipitation phenomena present
in a given radar image is hence, impossible. There is, however, practical to
outline some overall concepts on the most common ways these systems form
relationships, as it is present, one way or another, in a significant part of the
dataset.

One of these co-occurrences of convective and stratiform precipitation
presents a relationship where the former adds precipitation to the latter by
adding ice particles above the stratiform cloud structure. This phenomenon is
called stratiform precipitation with shallow overturning convective cells aloft.
This process is defined by the presence of a convective cell in the stratiform
cloud deck and can occur in frontal clouds. The convective cell present in these
regions has the same powerful updraft described above, enabling rapid growth of
ice particles, which later fall out of the generating cell and into the cloud below.
This updraft will, in turn, lead to greater precipitation rates from the stratiform
system as these particles will go through parts of the microphysical processes
outlined in Section 2.1.1. These generating convective cells are classified as
weak, but a relationship defined by deep convection also exists. In these deep,
generating cells, the strong updraft carries air to high altitudes, where the
decrease in pressure causes a horizontal widening of the updraft. This causes a
phenomenon called a particle fountain, where the lateral movement of particles
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away from the updraft can cause the creation of nimbostratus clouds and
stratiform precipitation [20].

As presented above, the physical processes behind the two presented
precipitation types di�er and occur at di�erent time scales. Hence, one may
expect that the model presented in Chapter 4 will achieve di�erent results
based on the type of predicted rainfall prior to lead times. This will be further
examined in Section 5.2.3.

2.2 Baseline method for precipitation nowcasting

As made clear in the preceding sections, precipitation is a highly complex
phenomenon controlled by various microphysical processes. Nowcasting is
defined as the process of describing these weather systems and predicting the
change over a few hours’ time scale [56]. These nowcasts emphasize weather
occurring on the mesoscale, defined as phenomena with horizontal scales ranging
from a few to several hundred kilometers [12]. As these nowcasts can predict a
wide range of weather scenarios ranging from thunderstorms, wind, and fog, this
section will focus on methods used solely for nowcasting precipitation. These
models di�er from the numerical models typically used for forecasting weather
over more extended periods, as the former relies on heavy computations based
on a comprehensive combination of data sources. Methods used in nowcasting,
however, advect precipitation fields based on radar observations. One of the
most widely used frameworks for this short-range precipitation nowcasting is
PySTEPS. This framework predicts future precipitation events by estimating
optical flow, with radar data as input. This is done by first calculating the
displacement of a precipitation parcel, R, given by the conservative equation
for incompressible flow outlined in Equation 2.4.

dR

dt
= ˆR

ˆt
= u

ˆR

ˆx
= v

ˆR

ˆy
, u = dx

dt
, v = dy

dt
(2.4)

where dR/dt = 0 is assumed, and u and v are the x and y components of the
motion field [37]. The complete nowcast uses this motion field and extrapolates
radar data using an advection method. This produces a deterministic nowcast for
a given lead time. However, there are several predictive uncertainties connected
to weather forecasts in general, stemming from reasons like the chaotic nature
of the atmosphere, approximations to physical laws, and general model errors
[30]. This creates the need for an ensemble of predictions, reflecting these
uncertainties. To produce this ensemble, PySTEPS perturb the determinist
forecast with noise through stochastic simulations.

However, due to the highly non-linear processes of precipitation, achieving
appropriate ensembles proves challenging for several scenarios. This raises
interest in developing alternative ML approaches to mitigate these non-linear
challenges.
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CHAPTER 3

Deep learning and neural networks

The previous chapter presented the theory behind precipitation and how this
can be forecasted using optical flow methods. However, recent years have shown
considerable e�orts from the scientific community in developing weather forecasts
produced by neural networks. The Convolutional LSTM presented by Shi et
al. in 2015 provided results that outperformed several optical flow methods
and gave rise to several advancements by Google Research and Deepmind using
neural network-based methods [39, 44, 49].

In this chapter, Section 3.1 presents the theory and concepts behind neural
networks, starting with a simple perceptron before moving toward complex
architectures used for image analysis. In Section 3.2 introduce the theory behind
di�usion models, a recently presented model architecture for image generation.
The relevant metrics specifically used for nowcasting are presented in Section 3.3.
Finally, Section 3.4 presents releated work in the field of nowcasting with ML.

3.1 Neural Networks

Machine learning is a rapidly growing field that combines informatics, statistics,
and mathematics to build models that learn from data. While machine learning
is a rapidly advancing field, its roots date back to the 1940s [31]. As today’s
model architectures and capabilities far surpass the ones originally developed
decades ago, the core idea can still be described in the same way as they were
in 1959, by A.L. Samuel, as "programming of a digital computer to behave in a
way which, if done by human beings or animals, would be described as involving
the process of learning" [41]. For the scope of this thesis, the application of
interest is images. This chapter will therefore start by outlining a broader, more
general description of machine learning and its most elementary components
before shifting focus to what makes up a state-of-the-art model used for image
applications.

3.1.1 An overview of machine learning

As decades have passed since the birth of the first machine learning models,
the field has grown to contain a wide variety of models, commonly divided into
three main sub-fields. The models in the sub-field called supervised learning
commonly refer to models that assign class labels to the testing instances where
the values of the predictor features are known, but the value of the class label
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x g(xw + b)

b

yw

Figure 3.1: A single perceptron, with an input node x, a bias b and weights.

is unknown [25]. At training times, these models make use of already labeled
data to guide the model’s parameter. In this category, we find classical machine
learning models like linear regression, support vector machines, and neural
networks.

In contrast, the second sub-field deals with unlabeled data and is called
unsupervised learning. As there is no labeled data to guide the learning, these
models make predictions based on patterns in the data, often defined by the
distance between data points. The third sub-field describes models that steer the
learning process by an agent that rewards choices made by the model. This type
of learning is defined as reinforcement learning. However, model development
over recent years has shown increasing use of model architectures that combine
several of the above. Examples are the self-supervised transformers that are
fine-tuned with supervised learning or unsupervised generative models that
implement cost functions usually found in supervised learning models [13, 54].

3.1.2 Neural Networks

The artificial neuron

Today’s neural networks are massive technological workings, consisting of layer
upon layer of functions. At the core, however, the most basic unit of the net is
based on the workings of the human neuron. The mathematical derivation of
these artificial neurons was proposed by McCulloch and Pitts [31] in 1943. The
core idea that the artificial neuron mimics is that the neuron gets activated
di�erently depending on the input. Adjusting this activation level is the core
element of interest when training these networks. This subsection will outline
the functionality between the simple single perceptron, how it can be arranged
in layers of several perceptrons, and how this net of neurons is collectively
trained on labeled data.

Passing data through a perceptron

To control this activation, each neuron’s output will be a function of the input,
weight, and a bias term. For a single perceptron with a single input value x, the
first computed value is then simply the product of x and the weight value w,
with the bias term, added. Figure 3.1 illustrates this process. The bias term is
added to o�set the neural network results to match the wanted output better.

The real power of the perceptron is, however, the activation function that
follows. The concept behind this function is the introduction of nonlinearity.
Without this activation of the node output, the network’s abilities will not be
able to succeed in the capabilities of a linear regression model [43]. This is
due to the fact that the result of a combination of linear functions is a linear
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function itself. This will greatly inhibit the abilities of the network to learn
complex data patterns and hence limit its use in applications.

Furthermore, many of these non-linear activation functions also serve the
purpose of a way to limit the output value of the node to stay within a fixed
interval. This is an important factor in the training of the neural network, as
large output values can quickly destabilize the training and optimization of
the network. Depending on the problem and network architecture, di�erent
activation functions can lead to di�erences in performance. The function used
in the final layer is also often tailored to fit the labeled output, like a logistic
sigmoid function. This function will squash the output in the interval between
zero and one and enable the network to produce a probability connected with
the input.

Multilayer Perceptron

This section has, until now, described the workings of a single perceptron.
The neural network, however, is, as the name suggests, a network of neurons
connected in layers. Each added neuron and layer has the potential of making
the network able to learn more complex data. Equation 3.1 and 3.2 derive the
computation of the output value of a node yj connected to d nodes from the
previous layer. The resulting output is the activated result, yj of the sum, hj

of the products of the value between the i ≠ th weight and output value, added
with the bias term

hj =
dÿ

i=1
ziwij + bj (3.1)

yj = g(hj) (3.2)

These networks are often referred to as fully connected feed-forward neural
networks visualized by figure 3.2. These networks will have a fixed input size,
representing the number of features in the data set. This input data is then
processed through the nodes and layers as described in the previous sections.
The above-referenced figure demonstrates an output layer consisting of a single
neuron, but this number is tailored to suit the use case.

Updating the weights

With the network architecture and the math behind the output derived, the
network is ready to start the actual learning. As input to the network, the
training data is arranged so that every input xi has a matching observation yi.
How well the network performs on a given task is then done by comparing the
computed output in the final layer with the corresponding observed data. This
is computed by applying a loss function with these values as input. Equation
4.2 outlines a loss function called Mean Squared Error, a widely used function
applied in various implementations. This function takes the mean of the squared
sum of the di�erence between the actual value y and the predicted output yi

for all N samples.

MSE = 1
N

Nÿ

i=1
(yi ≠ ŷi) (3.3)
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x1

x2

b b

y

L ≠ 1 L

Figure 3.2: Multilayer perceptron with two input nodes, two hidden layers and
one output node

However, computing this loss on every single input value independently
is ine�cient both in terms of computational expenses and convergence. In
reality, this loss function is applied on mini-batches of training data. These
mini-batches consist of partitions of randomly shu�ed data and have the e�ect
of each mini-batch creating a single numeric value to measure how well the
network performed. To understand why this aids the network in learning, we
must see how the network parameters are updated through the concept of
stochastiggradient descent and backpropagation. These processes aim to guide
the network in how the weights connecting the nodes and biases are updated
since these are the only trainable parameters of the network. For every mini-
batch of data, the cost functions evaluate every predicted output against the
desired output. As a result, the mini-batch creates a collective measurement of
how weights and biases should be updated, averaged over all training examples
within the given batch. How these weights and biases should be updated is
calculated through backpropagation. As presented in Section 3.1.2, the output
of each neuron is a function of both weight, bias, the previous input, and an
activation function. The core mechanic behind backpropagation is applying the
chain rule to identify the optimal change in these weights and biases regarding
the loss. Hence, backpropagation enables us to find a gradient, ÒC, that
contains the derivatives explaining these updates as partial derivatives of the
cost function.

ÒC =

S

WWWWWU

ˆC

ˆÊ(1)
ˆC

ˆb(1)
.
.
.
.

ˆC

ˆÊ(L

ˆC

ˆb(L)

T

XXXXXV
(3.4)

This gradient is the best suggestion based on the given data partition from the
mini-batch. Equation 3.4 outlines the gradient vector consisting of the partial
derivatives of all weights and biases connected to L nodes.
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3.1.3 Machine learning for image analysis

As Section 3.1 outlined a neural network architecture with input based on a
set of features, this section will focus on model architecture suited for input
in a more complex manner, namely images. As technological improvements
during recent years have brought both image quality and the availability of
camera technology to new heights, the need for intelligent systems to analyze
this data is of great interest. The use of machine learning for this task is already
widespread in several fields. Neural networks are now beeing used to aid medical
personnel in diagnostics, for remote-sensing and monitoring earth processes,
and in self-driving cars [3, 4, 63].

CNNs in machine learning

Non-image, tabular data sets contain attributes and observations making up
features. Building a good-performing model is then a process of selecting
the most relevant features. For images, however, this process is not as
straightforward, as the image and its channels are the only data available.
For a model to make meaningful predictions and classifications based on images,
the input has to be transformed and processed into feature maps. In traditional
image analysis, these feature maps were often engineered by carefully selecting
a set of di�erent mathematical operations. These operations acted as filters,
extracting specific information from the original image. The response from the
filtering operations would be stored in a new image consisting of statistical
and geometrical descriptors. These descriptors would then make up the feature
images and be used as input to a model classifier with trainable parameters.

As both developments in model architecture and computational power
increased, new methods for computing these feature maps were developed. In
1998, a model architecture called convolutional neural networks (CNN) where
proposed. This network brought several advances to the field of machine learning
and image analysis. The key conceptual idea where a scheme that relied as
much as possible on learning in the feature extractor itself [28]. This was done
by using layers of convolution kernels with trainable weights, in addition to
layers of sub-sampling. Figure 3.3 presents a visualization of a convolutional
kernel with computed output. The big advance in the use of CNNs, however,
came over a decade later, with the introduction of AlexNet[27] in 2012. This
major leap was made possible by the advances in hardware, as the network was
trained on several high-performing GPUs. This network was the first of its kind
to win the LSVRC-2010 contest, achieving top error rates on the classification
of 1.2 million high-resolution images into 1000 di�erent classes.

As the field of machine learning is expanding and new model architectures
are introduced, a large number have elements based on one of these exact
network architectures. This section will outline the theory and concepts behind
CNNs before shifting focus to a specific type often used in the di�usion models
presented in 3.2, called U-Net.

The concept of Convolution

As described in section 3.1.3, data sets containing images are fundamentally
di�erent than data found in regular tabular data. Regular digital images can be
represented numerically as a 3D array, where the first two dimensions represent
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Figure 3.3: Visualization of a 5x5 matrix being convolved with a 3x3 kernel,
stride equal to 1. As there is no padding on the on border of the input matrix,
the resulting output is a 3x3 matrix.

the height and width of the image, while the last represents the channels. A
typical optical image has 3 channels, representing the level of Red, Green, and
blue (RGB) at each pixel index. A simple, naive solution on how to feed this
data to a regular fully connected network, would be to flatten the dimensions
to a long one-dimensional array.

This would, however, presents several challenges for the network. For one,
this would lead to important spatial information in the input being lost, as the
position of the indices relative to each other is vital. Secondly, unstructured
nets for image or speech applications have no built-in in-variance with respect
to translations or local distortions of the inputs [28]. These nets will therefore
struggle to generalize on the objects of interest. LeCun 1998, uses the case
of handwritten digits to demonstrate this problem, as there are numerous
ways a single digit can be written in terms of writing style, size, slant, and
position variations. This can be extended to all other objects represented in
images. Lastly, this approach of a long, flattened input array will force the
network to deal with an input layer that increases exponentially in size as the
resolution and size of the image increase. A 256 ◊ 256 input image with 3
color channels will have an input layer consisting of 196.608 nodes, making it
extremely computationally expensive to train.

As a result, using convolution is a means to deal with these challenges. At
its core, convolution is a simple mathematical operation. It consists of using
a kernel to filter an input image. Figure 3.3 visualizes a discrete convolution
with a 2-dimensional input, also formulated in equation 3.5. The response g for
a pixel at position (x, y) is computed by positioning the filter h such that its
origin is overlapping (x,y) in f . The overlapping values of the kernel and the
input image are then multiplied before all products in the overlapping area are
summed.

g(x, y) =
x+aÿ

s=x≠a

y+bÿ

t=y≠b

h(x ≠ s, y ≠ t)f(s, t) (3.5)

Figure 3.3 visualizes a convolution with two-dimensional input. It is
important to note that the depth of the kernel should match the depth of
the input image, so in the case of input with RGB dimensions, the kernel will
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be three-dimensional with a depth of three. Furthermore, the size and stride
length of the kernel will dictate the width and height of the output image. This
stride is defined as the step-by-step displacement in the horizontal and vertical
direction of the kernel after each convolution operation.

If the input image is kept as is, it will inevitability have its width and height
reduced. This can be avoided by using various techniques to pad the outer
border of the input. Widely used padding operations are "zero-padding", where
padding is applied, only consisting of zeros, or "mirror padding", where the n
values near the edge are mirrored in the padding. Equation 3.6 and 3.7 describe
formulations on how the output shape in terms of height and width can be
computed1. The indexing of the padding, kernel_size, and stride relates to
the height and width dimensions, respectively

Hout =
5

Hin + 2 · padding[0] · kernel_size[0] ≠ 1
stride[0] + 1

6
(3.6)

Wout =
5

Win + 2 · padding[1] · kernel_size[1] ≠ 1
stride[1] + 1

6
(3.7)

Convolutional layers in CNN

Section 3.1 outlined a multilayer perceptron consisting of nodes and weights,
where training the network resulted in updates to the values of the weights
connecting the nodes. For convolutional neural networks, the update is in the
kernel values. As the network and kernels are initialized, all kernels will have
values drawn from a random distribution. As training progress, the goal is to
have kernel values converge to values where each layer in the network can detect
the di�erent level of details.

A well-trained network will have a first layer of kernels trained to detect
the general shapes and characteristics. These can be shapes like lines, curves,
edges, and colors. As the depth of the network increases, each layer will bring
increased attention to specific details of the objects of interest. Each layer of
convolutions produces a set of feature maps, which in turn will be used as input
to the next layer of convolutions. The subsequent layers combine these features
to detect higher-order features[28]. This is done through the concept of the
receptive field that each convolutional layer holds, as input to each layer is the
feature maps produced in the layer before. This enables the deeper layers to
e�ectively process an increasingly larger portion of the original input image.
The logic behind this technique is that each kernel will be optimized to detect
specific features present in varying parts of the input. As the kernel strides
across the input, the local receptive field for each position will use the same
optimized kernel.

Pooling operation

In addition to convolution, each layer also contains a sub-sampling component.
This component has the objective of reducing the spatial dimension of the
feature map. This is done to reduce the precision with which the position of
distinctive features are encoded in a feature map[28]. These are rather simple

1https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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Figure 3.5: Visualization of the final layer of a CNN used for a 4-class
classification problem. The network will assign the correct label as the output
node with the highest probability coincides with the index of the class in the
one-hot-encoded array(marked in green).

operations and mainly work by applying a sliding filter in the same way as
outlined in 3.1.3. Figure 3.4 visualizes applying a 2x2 max pooling on an input
image. The response is the maximum value contained in the input in the area of
the overlapping parts between the input image and filter. As the filter response
is a single value, the size of the kernel is strongly connected with the shape
of the output. Figure 3.4 presents a visualization of a two ◊ two max pool
operation applied to a five ◊ five input matrix and the resulting output.

Fully connected layer

After processing and transforming the input through all the previously mentioned
filters and operations, the network architecture returns to a more traditional
form. In the final parts of the CNN, the convolution layer is connected to one
or several fully connected layers. If the network is constructed for classification,
the final output size of the last layer will be a one-dimensional array matching
the number of classes of the data set.

The numeric values of each node will then be processed through an activation
function. In the case of classification, this will often be a Sigmoid function,
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Figure 3.6: Gastrointestinal image, where the pixels containing abnormal tissue
growth(polyps) have been assigned a label. This creates a mask for the images
used in the training phase of the model, guiding the network to output a
numerical value for each pixel. For a well-trained model with good performance,
this value coincides with the ground truth class label[23] .

squashing the numeric output value in the interval between 0 and 1. This
will represent the probability of an input belonging to the given class. This
is then compared to the values of a one-hot-encoded label array. This is a
1 ◊ n dimensional array, where n is the number of classes. This is illustrated
in Figure 3.5, where the network will assign the input image to the label
corresponding to the index with the highest probability.

3.1.4 U-Net

As mentioned in the previous section, CNNs are widely used in medical imaging.
This field deals with large amounts of images from advanced imaging techniques
like magnetic resonance imaging and x-ray to traditional optical images. These
images are then used to diagnose diseases and conditions in patients. This
process requires highly trained medical personnel to pay great attention to fine
details, which can often lead to conditions being misclassified or overlooked[23].

To aid in this process of image-based diagnosis, neural nets were introduced
with the task of performing image segmentation. The goal of segmenting an
image is to provide an output where a class has been assigned to each pixel
[40]. This contrasts the classification-based CNNs discussed in Section 3.1.3,
where a label is assigned to the picture as a whole. Developing e�cient model
architectures for this pixel-wise classification has historically demanded large
data sets of annotated images and significant computational resources. To deal
with these challenges, a model architecture called Unet was introduced in 2015
[40]. This network has since gained a lot of popularity and is now being used in
a wide variety of tasks, far extending the original use case of biomedical image
processing.

For the scope of this master thesis, the main goal is to have a network able
to create a mapping pixel-by-pixel that translates precipitation rates at previous
time steps into a prediction of future time steps. This relationship between input
and output dimensions, therefore, makes the U-net architecture the perfect tool
for the job. The following section will describe the architecture and concepts of
the first presented architecture, further extending the components from Section
3.1.3.
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Architecture

At a high conceptual level, the traditional U-net consists of two parts; The
contracting and the expansive parts. Figure 3.8 illustrates how the Unet got its
name, as the input is transformed through these components. The contracting
part shares many similarities with a traditional CNN and can be seen as the
downsampling part of the network. This part consists of repeated blocks with
three main components. First, there are one or multiple convolutional operations.
The feature maps produced by these are further processed by a rectified linear
unit activation function as defined in Equation 3.8.

f(x) = max(0, x) =
I

x, if x > 0
0, otherwise

(3.8)

Figure 3.7: Visualization of the ReLU (rectified linear unit) activation function,
on input from the interval of minus six to six.

These are un-padded convolutions, resulting in a reduction in the width
and height dimensions. However, the number of convolutions decides the
number of feature channels. A traditional approach is to adjust the number of
convolutions so that the number of channels for each described block is doubled.
The network then stores a copy of each feature mapping, later to be added to
the corresponding block in the other half of the network.

After the network has reached the desired number of downsampling blocks,
a new type of mathematical operation is introduced, namely the transposed
convolution. This operation can transform the image dimensions in the opposite
direction compared to the standard convolution, in other words, increase the
resolution[9]. The e�ect of this is a reduction in feature channels while increasing
the height and width of each mapping.

The before-mentioned copy of the feature mappings from the downsampling
is also concatenated with the output from these transpose convolutions. This
concatenation of feature mapping from the contracting part of the network
enables precise localization and lets the network e�ectively propagate contextual
information. A set of normal convolutions with ReLu-activated output follows
this.

There are no fully connected layers in these networks, and the final output
with the wanted width, height, and the number of channels is produced by a final
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Figure 3.8: The original U-net architecture [40]. An input image of size
572x572 is passed to the network. The original image contains only 1 channel
but is increased for each layer in the network using convolutional operations.
Combined with max-pooling, this also results in the reduction of image height
and width. After passing through the middle part of the network, often called
"the bottleneck", the channels are reduced and the image size gradually increases
back to its original dimensions. This architecture is often visualized as a "U",
which gives the neural network its name.

convolution. The concept of this final operation is to transform a N -dimensional
feature mapping to the final output channel dimension.

3.2 Diffusion Models

During 2022, generative models gained a lot of interest, both in mainstream
media and in various scientific communities. These generative models could
broadly be divided into two groups. Large language models (LLM) that are
able to both interpret and output natural language at a high level and models
that generate images from text prompts. This section will focus on the latter.
These models are complex systems that consist of multiple types of networks to
be able to transform language into images. However, the core mechanism for
generating diverse samples of high-quality images is di�usion models. While the
first seminal papers showed hints of potential, these models soon proved their
performance and quickly gained status as real challengers to more established
generative models, like GANs [8, 18].

As the development of di�usion models continues, we continue to see their
use increase for solving challenges with complex, real-life data sets. They are
now being utilized in a wide variety of fields and applications, including medical
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imaging, remote sensing, and time-series forecasting, among others [2, 38, 58].
However, their use in precipitation nowcasting is yet to be explored. This section
aims to outline the inner workings of these models, ranging from architecture
to mathematics and the functionalities of its components.

3.2.1 Concept

The concept of di�usion models was first presented by Sohl-Dickstein et al.
in a 2015 paper called Deep Unsupervised Learning using Nonequilibrium
Thermodynamics [47]. This paper introduced a novel approach for modeling
probability distributions inspired by non-equilibrium statistical physics. This
approach was later improved upon by Ho et al. in 2020 [18], which led to a
rapid advance in the capabilities of di�usion models.

At a high level, the main concept behind di�usion models is the idea of
step-by-step destroying samples from the training data by adding Gaussian
noise. In the final steps of this process, the amount of noise added will reduce
the input image to nearly isotropic Gaussian noise. This process is illustrated in
Figure 3.9. A neural network is then introduced with the goal of rebuilding the
image in the same step-wise manner as the noising process. After the iterative
training process is completed, the neural network should then be able to take
as input random sampled Gaussian noise and generate samples similar to the
training data by a learned reverse process.

3.2.2 Forward diffusion process

X0 .... Xt≠1 Xt .... XT
q(xt|xt≠1)

Figure 3.9: Visualization of how a sample from the compiled radar precipitation
data set is gradually ’destroyed’ by adding increasing amounts of Gaussian
noise. X0 is the input image. Noise is gradually added step by step T times.
XT represents the image at T -th timestep when the input image is reduced to
nearly isotropic Gaussian noise. q represents the forward di�usion process(FDP).
Inspired by Ho et al. 2020[18]

At a deeper level, these models can be referred to as latent variable models,
where the noised images are latents of the same dimensionality as the original
image [18]. This before-mentioned process of adding noise to the input data is
defined as the forward di�usion process (FDP)

q(xt|xt≠1) := N (xt;


1 ≠ —txt≠1, —tI) (3.9)

The FDP derived in Equation 3.9 can be seen as the amount of noise in xt,
given an image with a lower amount of noise, xt≠1, for the distribution q. —
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represents a variance schedule that dictates the amount of noise added at time
step t.

Ô
1 ≠ —txt≠1 is the mean of the distribution, while —tI is the variance. I

represents the identity matrix and represents multiple dimensions. Ho et al. [18]
proposed a linear variance schedule, with a constant increase from —1 = 10≠4

to —T = 0.02, over T = 1000. This scheduling was later improved using a cosine
schedule[33]. The cosine schedule has the benefit of adding less noise at the
start of the process and has been shown to boost model performance for input
images with a resolution of 64 ◊ 64 and smaller. A visual representation of
both schedules is presented in Figure 4.5.

This noising process is formulated as a Markov chain, implying that the
distribution q(xt) only depends on q(xt≠1). However, this might leave an
impression that one needs to compute all previous distributions, q(x0:t≠1), to
get q(xt). This would create a massive computational expense for the already
mentioned 1000-time steps. However, Sohl-Dickstein et al. showed that this
could be avoided by reformulating —:

–t = 1 ≠ —t. (3.10)

–̄t :=
tŸ

s=1
–s (3.11)

Equation 3.9 is then rewritten using the newly introduced – :

q(xt|xt≠1) = N (xt;


1 ≠ —txt≠1, —tI)

=


1 ≠ —txt≠1 +


—t‘

=
Ô

–txt≠1 +
Ô

1 ≠ –t‘

= Ô
–t–t≠1xt≠2 +


1 ≠ –t–t≠1‘

= ...

where ‘ is sampled from N (0, I). If one proceeds to replace the chained – values
with –̄, the final expression can be written as

q(xt|xt≠1) =
Ô

–̄tx0 +
Ô

1 ≠ –̄t‘ (3.12)

q(xt|x0) = N (xt;
Ô

–̄tx0, (1 ≠ –̄t)I) (3.13)

This enables the model to sample noised images from a given time step, t,
during training, without calculating all the previous recursive steps. This is a
major contribution to manageable running times during the training, discussed
further in Section 3.2.4.

3.2.3 Reverse diffusion process

As Section 3.2.2 outlined the process of gradually destroying the training data,
this section describes the reverse process: how to remove noise. This process
involves a neural network to approximate a distribution, defined as p, with
a neural network with trainable parameters ◊, which is trained to learn the
transitions between time steps t and t ≠ 1. The learning goals of the network
are, therefore, to learn the distribution defined as:
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3. Deep learning and neural networks

xT .... Xt Xt≠1 .... x0
p◊(xt≠1|xt)

Figure 3.10: Visualization of the reverse di�usion process. p◊ denotes a
distribution p approximated by a model with trainable parameters ◊ that
can learn the transitions between a noisy image xt and the less noisy image,
xt≠1. Inspired by Ho et al. 2020[18]

p◊(xt≠1|xt) = N (xt≠1; µ◊(xt, t), �◊(xt, t)) (3.14)

As done by Ho et al., the model presented in this study has fixed variance.
As a result, the training objective of the neural network is to learn the mean of
this distribution. Initially, training was done based on the resemblance between
p and q and variational autoencoders. This motivated the authors to optimize
the variational lower bound to minimize the log-likelihood of the training data.
However, through a series of parameterizations, they derive a loss function that
learns to predict the noise, ‘, instead of µ. This derived training objective is
further simplified, as Ho et al. found empirically that a simplified variant could
generate better-quality samples and simplify the implementation process.

Lsimple(◊) := Et,x0,‘

#
||‘ ≠ ‘◊(

Ô
–̄tx0 +

Ô
1 ≠ –̄t‘, t)||

$
(3.15)

Equation (3.15) presents the final training objective. From this equation,
one can recognize

Ô
–̄tx0 +

Ô
1 ≠ –̄t‘ from Equation (3.12) as the final expression

defining the sampling of a noised sample from a given time step. With this
in mind, the final loss objective can then be interpreted as the L2 distance
between the actual noise ‘ and the noise generated by the parametrized model,
‘◊ for a given timestep t, rather than the mean.

3.2.4 Training

With both the forward process, reverse process, and loss function defined, an
algorithm for training the model can be defined, see Algorithm 1 [18]. A training
sample x0 is drawn from the original distribution q(x0). A random t-value
between 1 and T is drawn, representing the time step. As illustrated in Figure
3.9, the level of noise increases in proportion to t. ‘ ≥ N (0, I) represents
the sampled noise from the Gaussian distribution. This ‘ is added to the
input sample x0 according to the variance schedule described in 3.2.2. The
parameterized model will then predict the noise, ‘◊, and compare it to the
actual noise, ‘. This process is repeated until converged. Figure 3.11 visualizes
one iteration in the for-loop outlined in Algorithm 1. In practice, this process is
performed on batches of samples, although for illustration purposes, this figure
illustrates the process for only a single sample.
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3.2. Diffusion Models

x0 ≥ q(x0)

‘ ≥ N (0, I)

t ≥ Uniform(1, ....., T )
Ô

–̄tx0 +
Ô

1 ≠ –̄t‘, t ‘◊(
Ô

–̄tx0 +
Ô

1 ≠ –̄t‘, t)

Ò◊||‘ ≠ ‘◊||2
p◊

Figure 3.11: Schematic drawing of one iteration in the training of a di�usion
model, based on Algorithm 1. From left to right: A random noise level, t,
and Gaussian noise ‘ are drawn. These corrupt the sample from the original
distribution, x0. A neural network with trainable parameters, ◊, is trained to
predict the noise added to this corrupted image.

Algorithm 1 Training
repeat

x0 ≥ q(x0)
t ≥ Uniform(1, ....., T )
‘ ≥ N (0, I)
Take gradient descent step on Ò◊||‘ ≠ ‘◊(

Ô
–̄x0 +

Ô
1 ≠ –̄t‘, t)||2

until converged

3.2.5 The parameterized model

The U-Net discussed in 3.1.4 is the most widely implemented neural network in
di�usion models [8, 18, 33]. As discussed earlier, these models are the perfect
choice when dealing with input and output images with the exact dimensions,
as with di�usion models. This U-Net will take as input a corrupted image and
predict the noise. However, the same neural network with shared parameters is
applied for all t. Hence, the neural network depends on receiving information
about the time step in question. This is because the amount of noise in an image
will significantly vary depending on the t position in the [1, T ] interval. To solve
this challenge, the U-Net architecture is also extended to handle input in the
form of a sinusoidal position embedding [54]. This creates extra dimensionality
and forms a positional matrix, enabling each t to be mapped to a specific vector
containing the positional information.

3.2.6 Sampling post training

After convergence during training, the model should, in theory, be a noise
predictor. This enables it to sample pure Gaussian noise and transform it into
data points similar to the original distribution. Algorithm 1 outlined a process
of randomly drawing noise levels which the network then made predictions
based upon. However, the sampling process outlined in Algorithm 2 is a reverse
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Algorithm 2 Sampling
xT ≥ N (0, I)
for t = T, . . . , 1 do

z ≥ N (0, I) if t > 1, else z = 0

xt≠1 = 1Ô
–t

(xt ≠ 1≠–tÔ
1≠–̄t

‘◊(xt, t)) + ‡tz

end for

return x0

iterative process from the maximum noise level, T , to 1. At first, pure Gaussian
noise is drawn from the previously defined Gaussian distribution N (0, I). This
sample, xT , has the exact dimensions as the data points in the original training
data distribution and acts as the starting point for the image that will be
gradually denoised.

The reverse process consists of the network iteratively predicting the noise
level in the image for the given time step, defined in the algorithm by ‘◊(xt, t).
This predicted noise is multiplied with 1≠–tÔ

1≠–̄
term, which relates to the variance

schedule defined in Equation 3.10 and 3.11. This product is then subtracted
from xt. Together with an additional multiplication with 1Ô

–t
and the addition

of the posterior variance,‡tz, at time steps t, this produces the slightly less
noisy xt≠1. It is important to note that the model always predicts the total
noise in the image, regardless of t. This predicted noise is, however, scaled by
the –-values, creating the gradual de-noising dictated by the —-schedule.

3.3 Verification Metrics

As the intended use of the implemented di�usion model in this study is the
before-mentioned nowcasting of precipitation, two validation metrics tailored
for this use case are presented in this section.

Continous Ranked Probability Score

As outlined in 2.2, there are fundamental di�erences between deterministic and
probabilistic model output. The produced forecasts are usually connected with
uncertainty to a varying degree, which in turn, creates the need for outlining
a suitable metric to quantify this. Scoring rules have been developed for this
quantification and are used to evaluate the accuracy of a forecast distribution
given an observed outcome A scoring rule is hence a measurement of the
performance of the forecast distribution, in contrast to the MSE defined above,
where the output is the function of two points. In the scope of this thesis, the
scoring rule of choice is the Continuous Ranked Probability Score (CRPS).

CRPS(F, y) = EF |X1 ≠ y| ≠ 1
2EF,F |X1 ≠ X2| (3.16)

CRPSNRG(M, y) = 1
M

Mÿ

i=1
|xi ≠ y| ≠ 1

2M2

Mÿ

i,j=1
|xi ≠ xj | (3.17)

The CRPS is defined in Equation 3.16, where X1 and X2 are independently
drawn from the predictive distribution F , and y is the observed radar image

26



3.4. Probabilistic models for weather forecasting

at a given lead time [24]. When F is only known through M ensembles, the
CRPS can be defined with the empirical formula presented in Equation 3.17
[62]. CRPS is negatively oriented, meaning lower is better.

Critical Success Index

The critical success index (CSI) evaluates a binary forecast and operates with
a set threshold relating to precipitation intensities. CSI can be explained as
the ratio of the number of hits, to the number of total events, to the number of
false alarms [42]. This ratio is defined by Equation 3.18, for true positives, TP,
false positives, FP, and false negatives, FN.

CSI = TP

TP + FP + FN
(3.18)

TP, FP, and FN are computed by first assigning a precipitation threshold
value, t, for example, medium rain (t = 5mm/hr). The three variables are then
computed for all i grid cells, where:

TP (Fi Ø t, Oi Ø t)
FP (Fi Ø t, Oi < t)
TP (Fi < t, Oi Ø t)

Fi denotes the forcasted value in grid cell i, while Oi denotes the actual
observed [39]. CSI is a positively related score, meaning higher is better.
Equation 3.18 makes it clear that this metric is closely related to traditional
performance metrics like precision and recall. These are defined by T P

T P +F P and
T P

T P +F N respectively.

3.4 Probabilistic models for weather forecasting

As noted earlier, di�usion models have, up to this point, yet to be explored
for use in weather forecasting. However, several papers have been published in
recent years, utilizing increasingly complex model architecture to better model
performance. In this section, we present the most influential related work from
the four most relevant papers. We will explain the main concepts behind each
model and discuss the most important findings.

Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting

In 2015, Shi et al. proposed a Convolutional LSTM Network for precipitation
nowcasting which was the first ML approach in nowcasting able to reach and
exceed the performance of operational optical flow methods. The model is
based around a modified version of Recurrent Neural Nets (RNN). These nets
are especially well suited for handling temporal data as they display a cyclic
architecture made up of cells. Each cell has internal memory that dictates
the output value making up the input to the next cell. In addition to this
processed data from the previous time step, the cell receives input data from
the current time step. This e�ectively makes all inputs in a given sequence
dependent on each other. However, the vanilla RNNs have limited e�ectiveness
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for input sequences above five to ten timesteps due to the gradient-based
updates of weights, causing the backpropagated error either to vanish or explode
[11]. The Long Short Term Memory network (LSTM) avoids these issues by
implementing improved capabilities in the cell’s internal state, allowing them
to learn what information to retain or forget from given time steps. The
implemented nowcasting framework by Shi et al. further improves this model
architecture by implementing convolutional operations in the cells, transforming
the model architecture to one well-suited for handling spatiotemporal image
sequences.

The output of the convLSTM is a probability map of future rainfall intensities.
The presented results demonstrate the models’ abilities to produce more precise
nowcasts, with fewer false alarms than the then state-of-the-art optical flow
model, called ROVER2. However, the generated nowcasts su�er from blurring
as significant uncertainties are connected to the produced radar maps [44].

MetNet: A Neural Weather Model for Precipitation Forecasting

The next influential improvement was presented by Sønderby et al. 2020 by the
introduction of MetNet. This implementation was built on the Convolutional
LSTM presented by Shi et al. but had several significant improvements. The
extended architecture consists of 3 main parts:

• A Spatial Downsampler, where the model input is processed through
a series of convolutional operations to reduce the spatial size. As the
input to MetNet consists of both radar images, 16 spectral bands from the
GOES-16 satellite, in addition to latitude, longitude and topographic data,
this was necessary to maintain manageable computational requirements.

• The next block of the network architecture is a Temporal Encoder,
represented by the convolutional LSTM. This part of the network is
responsible for learning the temporal dynamics of the input.

• The last part of the network is a Spatial Aggregator, consisting of a series
of axial self-attention blocks. This modified version of the regular self-
attention enables the network to cover the full spatial context of the input
while simultaneously avoiding computational restraints.

With this architecture, MetNet produced precipitation forecasts for up to eight
hours of lead time, outperforming several numerical weather prediction methods
(NWP) [49]. It is important to note that the mentioned performance was
benchmarked against NWPs, and not the optical flow methods presented in
Section 2.2 due to the extended lead time of MetNet of up to eight hours.
Despite reaching state-of-the-art performance, the network still su�ered from
blurred predictions du the produced probabilistic precipitation map [39].

Skilful precipitation nowcasting using deep generative models of radar

The next significant improvement was presented by a model framework based
on a generative adversarial network (GAN). As GANs are generative models like
the DMs presented in Section 3.2, their goal is similar: They generate examples
from an estimated probability distribution, estimated by studying training
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examples. How GANs generate samples di�ers from DMs, however. At its core,
GANs consist of 2 adversarial parts: A generator and a discriminator. These
have their own distinct objectives. The generator’s objective is to generate fake
samples that resemble samples from the original distribution. These samples
are then used as input for the discriminator, which tries to determine if a
sample stems from the original distribution or is a fake sample produced by the
generator. Both the generator and discriminator are trained simultaneously,
enabling the discriminator to increase its accuracy in separating real samples
from fake, forcing the generator to produce more realistic samples [13].

As published in Nature, the GAN developed by Ravuri et al. at DeepMind
provided the first generative approach to nowcasting that surpassed the
predictive performance of a majority of the other established baselines. The
model used radar precipitation rates as input to produce nowcasts on lead times
ranging from five to 90 minutes on a 1,536 ◊ 1,280-kilometer area covering
the United Kingdom. In contrast to the above-presented frameworks, this
model can produce realistic precipitation scenarios, as it is trained to generate
samples that resemble real-life radar images instead of producing a probabilistic
precipitation map. To quantify the uncertainties of the nowcast, the model
generates a distribution of nowcasts for each scenario. As the generator in the
GAN samples from a random latent vector to generate a sample, each prediction
will be slightly di�erent [39, 46]

3.5 Summary

In this chapter, we have presented relevant theory regarding deep learning
and neural networks used for image analysis. The first section presented the
basic theory behind the perceptron and how they make up a complete neural
network. We also presented theory on how these networks lean, by updating
their parameters with loss functions and backpropagation. For the last part of
this section, we focused on machine learning for image analysis, by introducing
convolutional neural nets and the U-net. The second part of the chapter
presented theory and concepts behind di�usion models. We presented how the
network is able to turn gaussian noise in to synthetic samples resembling samples
from the original distribution using the reverse di�usion process. This section
also outlined two essential metrics, later used for validation purposes. Lastly,
we presented related work in the form of three papers that had a significant
impact on the development of machine learning in precipitation nowcasting.
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CHAPTER 4

DiffMet: A diffusion model for
precipitation nowcasting

To further drive the technological advancements in weather forecasting, in this
master thesis we have developed a novel approach for precipitation nowcasting
based on di�usion models. As discussed in Section 3.4, machine learning has
shown great promise for producing high-quality precipitation forecasts. In
addition to creating predictions in a more time-e�cient manner than their
numeric, physics-based counterpart, some models have also been shown to be
superior in accuracy for several precipitation cases [39]. Some of this success
is partly due to the well-proven machine learning algorithms utilized in these
implementations, like the GANs or LSTMs outlined in section 3.4.

This chapter, however, represents a step into the unknown, as it is to the
best of our knowledge the first application of di�usion models for precipitation
nowcasting and weather forecasting in general. Moreover, di�usion models
are young of age and lack the set of proven hyperparameters that the above-
mentioned models have established. Combined with a model architecture
consisting of several moving parts, this makes for a challenging task. The
upsides, however, are that di�usion models have been shown to be superior to
the current state-of-the-art GAN models, both in sample quality and training
stability [8]. This is hence the main motivation for choosing these models.

This chapter outlines all relevant methods making up the Di�Met module
and will present a detailed look into each component. Section 4.1 presents
the dataset created for training the model. This is a compiled dataset built
by writing scripts for accessing an application programming interface. This
gathered raw data requires several processing operations before being fit as
model input to the model. This process is presented in Section 4.2. We then
present in Section 4.3, a detailed look at how the complete module, based
on di�usion, was done. This includes the implementation of the mechanics
behind the di�usion model itself, but equally important, the strategies applied
for generating forecasts. This transforms the unconditional model into one
conditioned on radar video from the past 20-minute observations. Two strategies
were implemented to achieve this, presented in Section 4.4. Section 4.5 details
the process of generating samples of radar data post-model-training, with the
computational challenges related to this. Finally, Section 4.6 presents the
implementation of the special set of metrics used for measuring nowcast quality.
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Figure 4.1: Radar precipitation rates from a random sample from the dataset.
The values are projected on a map of Scandinavia, showing precipitation over
Denmark and southern parts of Norway. This figure illustrates the total area
covered by the ground radars.

4.1 Radar reflectivity archive

This section presents the main dataset used for model training, a custom
dataset built from variables extracted from the API provided by The Norwegian
Meteorological Institute (MET).

MET provides radar reflectivity data, covering Norway and the nordic
countries 1. This data is free of use to the public and can be accessed through
the THREDDS data server with the OPeNDAP data access protocol 2. Each
daily 24-hour period of observations is stored in a separate file, containing
15 di�erent variables, each containing information with a 5-minute temporal
resolution and 1 square kilometer spatial resolution. The dataset covers an area
of 1694 ◊ 2134 kilometers, which amounts to a substantial-sized dataset.

The archive contains daily observations dating back to July 2020. However,
the observational area changed from 2020 to 2021. Combining data from the two
observational areas may provide several challenges, as one needs to be assured
that the indices between samples represent the matching, spatial location. This

1https://thredds.met.no/thredds/catalog/remotesensing/reflectivity-
nordic/catalog.html

2https://www.opendap.org/
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is important as precipitation data represents highly spatially dependencies. It
was therefore decided to only use data from 2021 and 2022. Only the months
from April to October were used to ensure that the reflectivity data contained
rain and not snow.

4.2 Data pre-processeing

4.2.1 Domain

Figure 4.2: Visialization of the selected domain. Radar precipitation rates are
projected over a map of Sweden and the eastern part of Norway.

As described in Chapter 2, precipitation patterns can be highly spatial
dependent. These patterns are complex and already prove challenging to
predict. An area of 256 by 256 kilometers was selected to optimize the model’s
predictive abilities. The area was selected based on radar coverage and to
minimize topographical variation. The selected area spans from 10.15¶ to
14.81¶ longitude, and 58.16¶ to 60.53¶ latitude and is visualized in Figure 4.2.
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4.2.2 Extracting data

To cover the above-specified period, 418 separate files had to be accessed
through the THREDDS data server. These must be accessed by requesting
the correct URL and specifying the variables and area of interest. Several files
had missing data to varying extents. Dealing with this extraction manually
is a huge time consumer, as each request will have di�erent URLs to specify
variables and mitigate the missing data. To deal with this, a series of scripts
in the programming language of Python 3.9 was developed to interact with
the Application Programming Interface(API). These scripts are a part of
the MetData module and are presented in Appendix A. These scripts iterate
through each day in the specified period and create requests to the data server
with a URL, correctly specifying the corresponding date and variables. The
functionality for handling missing data is implemented as recursive methods,
iteratively adjusting the call to the server until complete data without missing
values has been extracted.

4.2.3 Feature selection and engineering

The dataset contains several variables of interest; three of the 15 were selected.
The main variable of interest is the Radar Precipitation Rate. This variable has
data stored in a 3D array, representing precipitation rates on a 2D grid with
1-kilometer spatial resolution and 5-minute temporal resolution. The process of
calculating precipitation from radar reflectivity is already computed beforehand
by MET. The dataset also contains a variable with the same dimensionality
as the Precipitation Rate but instead contains binary values describing if the
precipitation is either convective or stratiform. Lastly, a variable containing
date and time information was also extracted. The longitude and latitude
variables were only used initially for selecting the correct geographical location
and were discarded afterward to save disc space. To aid in evaluating the model
performance, the Radar Precipitation Rate and the convective variable were
used to engineer a new variable. The original variable provided by MET had
grid cells with convective precipitation correctly specified. Still, all other grid
cells were classified as stratiform, whether the cell contained precipitation or
not. As this variable is planned to be used in model validation, its original form
will greatly overrepresent occurrences of stratiform precipitation. As a result,
an implemented method uses both the original classification variable combined
with radar precipitation intensities to generate a new varable. This variable
contains integers ranging from zero to two, representing convective, stratiform,
or no precipitation, hence giving a more realistic representation of the actual
distribution of precipitation types.

4.2.4 Data processing

A series of scripts in python was developed to process the data to a dataset
suitable for machine learning. The main goal for this master project has been
precipitation nowcasting, based on images of precipitation rates from previous
time steps. This gave rise to the need to create video sequences of radar images.
Most frameworks already developed for deep learning on images are developed
for single images. As a result, a large portion of the scripts for processing
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Figure 4.3: Example of a radar image with obvious radar clutter. The presented
radar precipitation intensity is from a 64 ◊ 64 square kilometer outcrop from
the dataset, with intensities in the range of [0,2].

had to be developed ground up. Rather than focusing on the data in single
frames, the scripts developed gather statistics of a sequence consisting of eight
consecutive time steps. These statistics will be used in decision-making for
whether a sequence is suited for model input or not. A challenge when gathering
precipitation data is that most frames contain little to no precipitation. Simply
selecting all frames will create several challenges. From a model perspective,
much of the training time will be spent on all-zero frames not contributing to
optimizing model performance. However, they will occupy the same amount
of disc space as their precipitation-filled counterparts, leading to datasets of
unnecessary size. To combat this issue, a set of threshold values are selected.
To ensure non-empty sequences, a threshold for the minimum sum of total
precipitation contained in the sequence is set.

As the datasets consist of remote sensing data, noise, and clutter are
unavoidable. This is visible in the dataset as precipitation rates in the magnitude
of 103. In addition, some extreme weather events see precipitation rates far
exceeding what is typically observed. As all values will be further processed,
normalized, and scaled within a fixed range, these outliers can have a major
impact on the distribution of most of the most typical precipitation rates found
in the data. Section 4.2.5 presents a detailed explanation of this further data
processing. To avoid both cases, the script uses a threshold for the maximum
precipitation rate contained in a single grid cell. However, Figure 4.3 presents
a radar image with obvious radar clutter but with precipitation rates within
the thresholded values. This illustrates that compiling a dataset with some
instances of radar clutter is unavoidable. Finally, the sequence is controlled
for NaN values. If the sequence values are within the set values, the sequence
is saved to a four-dimensional array. This contains a 2D grid of precipitation
rate values and types over the given area for eight consecutive time steps. A
timestamp, given in seconds since 01.01.1970, is used as the filename instead of
its original placement as a variable. This is done to reduce the dimensionality
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of the training samples to keep the disc space used for each sequence to a
minimum. This is important to ensure greater transfer speeds while loading
data to the model, a process described in section 4.2.5. This timestamp can
later be used to transform the value back to the original date and time.

Finally, all sequences are randomly divided between three folders, creating
a dataset consisting of training, testing, and validation data. The total size of
the dataset consists of over 10.000 sequences, making up 50 gigabytes of data.
80 % of the data is contained in the training split, while the remaining 20 % is
divided equally between testing and validation sets.

4.2.5 Developing a PyTorch Dataset

PyTorch is a library optimized for deep learning on GPUs, requiring data to be
loaded and transformed in specific ways. Thus, a custom PyTorch Dataset class
was developed to handle these requirements 3. The custom dataset developed
is contained in the GitHub repository under DiffMet/prec_dataset.py.

These custom classes perform several important tasks. First, they allow for
separation between model training and data handling, as each custom dataset
must implement a series of pre-defined methods for reading and loading data.
An initializer was the first method developed. This method acts as a way to
define the purpose of the initialized dataset, as well as define the necessary
transformations to be performed. This definition is important as the training,
test, and validation datasets will have several di�erences in how they transform
the data.

For the data used in training and testing, a randomly selected full eight-
frame sequence consisting of the 256 ◊ 256 km2 area described in Section 4.2.1
is loaded from a file. The file is loaded as a NumPy array to perform the needed
transformations [14]. The first transformation applied is a data augmentation.
However, many of the more widely used augmentation techniques have to be
limited in this project, as the data is highly spatially dependent. Making use
of commonly applied augmentations like horizontal flips and skews will have
the e�ect of disrupting this dependency, and is therefore avoided. However, a
64 ◊ 64 random crop of the image is performed. This is done by sampling x,
and y indices within a valid range shared for the whole sequence. This will also
drastically reduce the computational expenses while training the network, as
the input size is reduced from 256 ◊ 256 to 64 ◊ 64.

For the validation data, a center crop replaces this random crop. This
ensures that validation metrics are calculated on the same patch of spatial data,
enabling comparison between model initializations. This is important because
the 256◊256 area can contain di�erent weather patterns. These di�erent model
initializations will be discussed in 4.3.

After successfully cropping the observational area, all values are normalized
and scaled. This is done based on both model prerequisites and to optimize
model training. First, all values xi are scaled by xi = 3

Ô
xi. This is done to scale

the precipitation intensities to minimize the distance from normal intensities
to extreme values and creates a range better optimized for model convergence.
Then values are normalized, first to be contained in the range of [0,1], and
then to [-1,1]. This ensures the neural network reverse process operates on

3https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
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consistently scaled inputs starting from the standard normal prior p(XT ) [18].
Finally, all arrays are transformed to Tensors4 the required data type needed
for PyTorch to enable training on GPUs.

4.3 The development of DiffMet

This section presents the algorithms and scripts for the developed python
module named DiffMet. All code developed can be found in the provided
GitHub repository under the folder with the same name.

Figure 4.4: Conceptual overview of the intended purpose of nowcasting with the
developed Python framework, named Di�Met. The framework takes as input a
radar video from the past 20 minutes. The output is a video generated by the
di�usion model, predicting precipitation for the next 20 minutes. Illustrated is
a precipitation event from the selected domain, starting on the 11th of May,
2021, at 10:45 GMT + 1.

Machine learning frameworks like PyTorch often contain pre-built models for
popular architectures. However, di�usion has only gained popularity recently,
and advanced models with modification possibilities are missing from most model
libraries. This hindered the possibility of producing results with out-of-the-box
models. For implementation, the focus was therefor shifted towards published
papers, as many provides GitHub repositories with model implementations,
including the seminal paper from Ho et al. [18]. These repositories often have
a code base consisting of thousands of lines of code, specifically tailored to
their particular dataset and experiments. As a result, simply copying these
implementations and getting the code to run proves challenging. Furthermore,
extending the functionality to act as models suited for solving the challenges
with nowcasting proved even more di�cult.

As a result, the main body of work in this master thesis has been
implementing and extending the functionality of a di�usion model from the
ground up. This is done to fully control every model component, enabling
further implementations and extensions. As explained in chapter 3, di�usion
models consist of several components, each with their specific task. The
developed di�usion model is therefore designed as a python framework, with each

4https://pytorch.org/tutorials/beginner/introyt/tensors_deeper_tutorial.html
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4. DiffMet: A diffusion model for precipitation nowcasting

component created as a separate python script. The components and finished
structure are inspired by several implementations, where components have been
either modified or completely rewritten5,6,7,8. The following subsections present
the implementation of these components and how they each relate to the theory
presented in chapter 3.

4.3.1 Beta schedules

Figure 4.5: Visual comparison of applying noise to a random sample from the
validation data set. The noise has been applied using the implemented method
described in 4.3.2. As T = 1000, only a selection of values for t has been
selected, ranging from t = 0 to t = T . The two rows compare the corresponding
values for t. Top row: Cosine beta schedule. Bottom row: Linear beta schedule.
This comparison illustrates how the linear schedule adds noise in a more rapid
fashion than the cosine schedule. Inspired by the figure in Nichol and Dhariwal
2021 [33]

For gradually adding noise to the data, Ho et al. proposed a constant linear
—t schedule where —1 = 10≠4 and —T = 0.02, for T = 1000. However, this was
later considered sub-optimal for low-resolution images 64 ◊ 64 and smaller.
One of the problems discovered was that the linear schedule was too noisy in
the upper range of T , having minimal contributions to sample quality. As a
result, Nichol and Dhariwal 2021 proposed an improved cosine noise schedule.
This schedule provides a linear behavior in the middle range but contributes to
very little change near the extremes of t = 0, and t = T [33]. This schedule is
formulated in Equation 4.1. s is a small o�set to prevent too small values of —t

for small t, which was found to improve sample quality.

–̄t = f(t)
f(0) , f(t) = cos

1 t/T + s

1 + s
· fi

2

22
(4.1)

Figure 4.5 presents a visual example of how a radar image from the dataset
is reduced to noise through the two di�erent schedules

5https://github.com/hojonathanho/di�usion
6https://github.com/lucidrains/denoising-di�usion-pytorch
7https://huggingface.co/blog/annotated-di�usion
8https://github.com/openai/improved-di�usion
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4.3.2 Forward diffusion process

The main component making up the core characteristic of the model is the
forward di�usion process. In this script, a method for computing the noisy
image at time step t, q(xt|x0), has been implemented. First, the method
extracts both

Ô
–̄t and

Ô
1 ≠ –̄t for the given random value of t. This is done

by receiving the full lists of all values for
Ô

–̄ and
Ô

1 ≠ –̄. These terms are
all pre-computed, defined by the mathematical operations presented in Ho et
al.[18]. These outputs are then used to calculate

Ô
–̄x0 +

Ô
1 ≠ –̄, ‘, t, which is

the added noise to the input image x0. The method returns both the noised
image and the random sampled noise, ‘, as well as the noised input image,
q(xt|x0).

4.3.3 Loss

Choosing an appropriate loss function for the neural network is crucial, as it
determines how the network weights are optimized. The goal of this function is
to give a numeric value describing how well the network can predict noise in
the image. The loss function is implemented with a function call to the model,
returning the predicted noise. The loss function used is the Mean squared
Error, presented in Equation 4.2. This returns a pixel-wise comparison on the
true noise, ytrue compared to predicted noise, ypredicted. Furthermore, as the
model makes predictions on a lead time, the size of the target patch must di�er
from the input size. This is caused by the need for spatial context around
the target patch, accounting for the displacement rate of weather patterns.
For the implemented loss function, the dimensions of the final target patch
is calculated as a function of lead time. Sønderby et al. found an indicative
average precipitation displacement of 1 kilometer per minute. Thus, the number
of minutes from the last observation to the relevant lead time, will be cropped
from each side of the target patch, leaving enough spatial context around the
surrounding area in the conditional input [49]. The indices specifying the
cropped target patch are also used to crop the corresponding area from the true
noise, making up the two inputs for comparison.

MSE = 1
n

nÿ

i

(ytrue ≠ ypredicted)2 (4.2)

4.3.4 Positional Time Embedding

As presented in section 3.2.4, the neural network used for predicting noise
is the same for all t noise levels, thus requiring input arguments describing
the noise level to expect. This information is passed to the model through a
sinusoidal position embedding, originally developed to be used by transformers
architecture in natural language processing, presented by Vaswani et al. 2017
[54]. In contrast to being utilized on sequences of words, the embedding in this
implementation will take a t-value and extract a real-valued vector. This vector
corresponds to a row in the complete encoding matrix, resulting in a unique
sinusoid for each time step. As the matrix is computed using a combination
of cosine and sinus trigonometry functions, all valuers are transformed to the
range [≠1, 1], matching the transformed values from the radar precipitation
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data set. This transformation also has the benefit of enabling the model to
compare similarities between sinusoids [1].

The implemented positional encoding is based on the methods originally
developed by Ho et al. [18]. The output from the positional embedding method,
xemb, is then processed through a linear transformation, y = xembAT + b, where
b is a bias term. This processing ensures a matching size between the time
embedding and the images processed through the U-net, allowing the embedding
to be added to this data.

4.4 Condtioning the diffusion model

All model architecture explored in the various repositories connected to the
papers chosen relevant for this thesis mainly focused on either an unconditional
or class-conditional implementation [18, 33]. The unconditional models are
defined by a training scheme where a selection of unlabeled images is used for
guiding the model in the noise prediction. When generating samples with this
model after convergence, the model uses sampled Gaussian noise as the only
input to produce the final output x0 ≥ q(x0), where q(x0) represents the real
data distribution used in training. These models are well-suited for producing
high-quality image synthesis results. However, the model output, p(x0), is a
randomly selected approximation from the original data distribution, q. Ho et
al. 2020 [18] present their results using the unconditional CIFAR10 dataset,
consisting of 60.000 images contacting either of 10 di�erent classes [26].

As a way to steer the sampling process toward a desired output, Dhariwal
and Nichol 2021 present a conditional di�usion model using classifier guidance.
This approach utilizes the training of a classifier p◊(y|xt, t), where y is an
arbitrary class label. The classifier is trained on noisy images xt and uses the
model’s gradients to steer the sampling process towards the class-conditional
label y [8].

However, as the generated dataset presented in section 4.2.5 consists of
sequences of highly varying radar reflectivities, the number of specific class
labels needed to explain each sequence would be nearly infinite. These labels
are, therefore, not available, forming the need to explore alternative approaches
to condition the model on these sequences.

A series of novel techniques presented by Voleti and Jolicoeur-Martineau in a
2022 paper on video synthesis inspired to implement functionality usually found
in video prediction problems [55]. The framework proposed, named Masked
Conditional Video Di�usion (MCVD), outlines a series of methods for generating
next-frame predictions based on sequences of past frames. These next sections
present the two methods implemented in the Di�Met framework to generate
samples conditioned on images of radar precipitation from the four consecutive
previous time steps. In addition, parts of the following implementation are also
based on the concepts proposed by Ravuri et al. 2021, employing a Generative
Adversarial Network for precipitation nowcasting, as presented in Section 3.4.
However, The GitHub repository containing the code for the GAN nowcasting
model is only partly open-source. It mainly consists of notebooks presenting
visualizations of samples produced from an already trained model, limiting
its usefulness for this thesis. Moreover, the code corresponding to the MCVD
framework is open-source, however massive in size and lacking comments and
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4.4. Condtioning the diffusion model

documentation. All implementations presented here are, therefore, only inspired
by the concepts outlined in these papers but implemented from the ground up.

4.4.1 Concatination

Figure 4.6: Schematic drawing of the convolutional neural network, utilizing
concatenated conditional input. The network input is the noisy frame,
concatenated with the conditional input from the previous time steps. For
each block in the U-Net, a layer containing positional information describing
the current time step is added to the data flow. The yellow blocks represent
layers of convolution. In the decoder part of the network, the dark orange
layer illustrates how the spatial dimensions are reduced while the number of
channels is increased. The blue layer in the decoder represents the transposed
convolution, increasing the size while reducing channel dimensions. As presented
in Section 3.1.4, each block in the decoder part of the network has the input
from the corresponding block in the encoder directly added. For illustration
purposes, some model details are not visualized.

The first implementation utilizes a technique that involves several modi-
fications to the code on the data processing side of the model. In this imple-
mentation, a slicing operation is performed on each loaded sequence from the
implemented data loader presented in 4.2.5, creating a new tensor consisting
of the first four frames present in the original eight-frame sequence. This
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tensor makes up the sequence used for conditioning the model output. This is
implemented in the training loop as a constant intake of conditional information
for each noise level, t. Algorithm 3 outlines the updated training objective.
x ≥ q(x) denotes a sequence randomly drawn from the original dataset. The
model is implemented with the flexibility of choosing the number of frames
to use as conditional input. xcond is a tensor of n past images whose length
depends on this selection. Functionality for selecting lead time has also been
added, and xlead will be a single frame corresponding to the index of the lead
time of interest from the original sequence. This single frame is then processed
through the implemented method forforward di�usion process presented in
section 4.3.2. xinput denotes the concatenation of a noised image xlead with the
conditional sequence xcond.

Algorithm 3 Training, concatenated model
repeat

x ≥ q(x)
xcond = [x0, x1, x2, ...., xn]
xlead = xlead time
t ≥ Uniform(1, ....., T )
‘ ≥ N (0, 1)
xnoised =

Ô
–̄xlead +

Ô
1 ≠ –̄t‘

xinput = xnoised + xcond
Take gradient descent step on Ò◊||‘ ≠ ‘◊(xinput|t)||2

until converged

To facilitate this model extension, the number of input channels in the neural
network has to be adjusted to match the number of conditional frames added
with the lead time frame. As Algorithm 3 outlines, the conditional information
is being sent to the model for each timestep, and should, in theory, provide the
model with proper guidance. Figure 4.6 presents a simplified schematic drawing
of the main concepts behind this network architecture. Each convolutional block
is based on the components presented in the initially proposed U-net architecture,
presented in Section 3.1.4. For illustrational purposes, this overview only shows
the main components of the network, highlighting how the conditional input
is concatenated as input at the start of the network. Presented is also how
each convolutional block receives the sinusoidal positional embedding, though
the figure only visualizes this for one block. The layers of activation and
normalization applied within each convolutional block are not illustrated.

4.4.2 Image Embedding

In an e�ort to further improve model performance, a second method was
developed. This conditioning method di�ers widely from the concatenation
explained in the previous section and involves implementing a second neural
network. This second network is a Residual Neural Network (ResNet). The
task of this network is to transform the conditional sequence into a di�erent
dimensional representation, called an image embedding. This technique is a
widely used technique within the fields of computer vision and machine learning
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and is motivated by the conceptual ideas outlined by Ravuri et al. 2020 and
Voleti et al. 2022[39, 55].

Figure 4.7: Schematic drawing of the implemented image embedding module
used for conditioning the di�usion model. Radar precipitation rates from the
previous three-time steps prior to lead time are being processed through the
convolutional part of a ResNet18 model architecture. The produced feature maps
are then processed through several operations consisting of interpolation, more
convolutions, and an activation layer to generate the final image embeddings.

ResNet

The number of weight layers in convolutional neural networks closely correlates
to its performance [45]. However, as the depth of the network increases, so
does the di�culties of training the network. He et al. 2016 showed that adding
convolutional layers to a deep network could result in saturated accuracy that
eventually degrades, indicating that parts of the network represent di�erent
di�culties in terms of optimizing. To allow for deep neural nets whilst avoiding
this issue, the introduced ResNet utilizes identity connections between layers.
These connections let underlying layers learn residual functions between layers,
as they showed that learning the di�erence between input and desired output
increases overall accuracy[16]. As a result, these networks have become a
staple in models used for image analysis and are often found pre-built in many
machine learning frameworks. The network of choice for this implementation
was the ResNet18 architecture, consisting of 18 layers. Each layer consists of a
convolutional operation followed by batch normalization. The output is then
activated through a ReLU function. As PyTorch o�ers this architecture as a
pre-built model, this makes up the first half of the embedding module 9.

However, pre-built implementations like the ResNet18 are constructed for
classification tasks, where the model outputs the probabilities for an input
sample belonging to a fixed number of classes. As visualized in Figure 4.7,
the ResNet18 model architecture consists of the abovementioned 18 layers.
After the final convolutional layer in the original implementation, the output is
average pooled before being linearly transformed through a fully connected layer,

9https://pytorch.org/vision/master/models/generated/torchvision.models.resnet18.hztml
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and activated with a softmax function. This fully connected layer enables the
network to produce class probabilities, with each output neuron corresponding
to a class probability.

As this probability output di�ers from the training objective in focus for this
study, further implementations and adjustments had to be made to produce
embedding on a better-suited dimensionality. To achieve this, the implemented
module extracts the model’s output from the last convolutional layer prior
to the average pooling layer. At this point in the ResNet18 architecture, the
output is a 512 ◊ 7 ◊ 7 feature map tensor, transformed from the conditional
input. The spatial dimensions of the feature maps in the U-Net range between
64 and eight, depending on the position in the encoder/decoder. The embedding
tensor, therefore, needs to be processed through an interpolation process, where
the spatial dimensions are made to match the feature maps produced by the
di�erent depths of convolutional blocks in the U-net. To obtain a matching
number of channels, the embedding is processed through convolutional layers
before being activated with a rectified linear unit.

Transfer learning

As presented in Section 3.1.3, the process of training a convolutional neural
network is the process of updating the values of the randomly initialized weights
so that the resulting convolution eventually outputs meaningful feature maps.
Outlined in the same section are also the concepts on how a convolutional
net will learn to identify the di�erent levels of detail based on layer depth.
However, methods exist for utilizing kernels already trained for this task of
detail recognition. This method, defined as Transfer learning, enables the use
of employing models pre-trained on domains that di�er from the intended use
case. The challenges proposed to a network with weights initialized in this
manner propose a significantly more managable challenge than when initialized
with random weight [57].

Most pre-trained models are trained on ImageNet, a large-scale annotated
dataset comprising 14 million images divided into 21,841 subcategories. These
subcategories, or classes, are manually labeled, and consist of typical objects
and concepts like animals, plants, and vehicles [6]. However, Stewart et al. 2022
presented the TorchGeo framework. This framework provides weights from
models trained on remote sensing data, developed specifically for models aimed
at geospatial data [52]. For the implemented di�usion module in this project, a
set of weights optimized on data from Sentinel-2 satellites was extracted and
applied to the ResNet18 model architecture. Although the radar precipitation
dataset provided by MET utilizes ground radars, an assumption is made that
the geospatial data provided by the orbiting satellites is still better suited than
the weights trained on the standard ImageNet.

Figure 4.8 visualizes a schematic drawing of how this embedding is infused
with the feature maps at every block in the U-net.

The improved Unet

The U-net used in the image embedding model uses the same main structure as
the one used for the concatenated model, but has several updated components.
First, the type of normalization used in the convolutional blocks is changed. As
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Algorithm 4 Training, embedding model
repeat

x ≥ q(x)
xcond=[x0,x1,x2,....,xn]
xlead = xlead time
t ≥ (1, ....., T )
‘ ≥ N (0, 1)
xnoised =

Ô
–̄xlead +

Ô
1 ≠ –̄t‘

xinput = xnoised

Take gradient descent step on Ò◊||‘ ≠ ‘◊(xinput|t, xcond)||2
until converged

Figure 4.8: Schematic drawing of the final model architecture. For illustration
purposes, several simplifications have been made.
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each sample consists of a sequence of several input images, this puts constraints
on the batch size used in training and validation due to the memory it requires
by the GPU. As the normalization performed in batch normalization, as the
name suggests, is performed on the statistics within the batch, this might lead
to rapidly increasing errors due to small batch size. Group Normalization is
introduced to combat this, instead calculating the mean and variance in groups
divided along channel dimension [59].

The ReLU activation functions were replaced with Gaussian Error Linear
Units (GELUs). These units combine the behavior of the functionality of ReLU
with drop-outs. The functionality of drop-out is to randomly multiply some
activations by zero as a way to regularize the model. This activation function
has been proved superior to ReLU for computer vision uce-cases [17].

Figure 4.8 presents a conceptual visualization of the architecture behind the
complete image embedding network. In this implementation, the noisy current
image is the only initial model input, while each block of the U-net receives
conditional information from the embedding model in addition to the positional
embedding. The two embeddings are added together with the feature maps
from the previous convolutional block. For illustration purposes, the drawing
only illustrates the output from the embedding module and positional module
being sent as input to one block each. However, every convolutional block in
both the encoder and decoder part of the network receives these embeddings as
input.

4.5 Sampling

An often overlooked part in the discussion on di�usion models is the topic of
sampling, or more precisely, the computational cost of sampling. As presented
in Algorithm 1, the process of training a di�usion model until convergence is the
iterative process of drawing samples from the original distribution, corrupting
it with a noise level according to t before the parametrized model makes a
prediction on the noise contained in the image. For the process of sampling,
however, there is a key di�erence that plays a major role in the computational
cost of producing a sample which can easily be overlooked and underestimated.
As Algorithm 2 outlines, generating a sample is the iterative process of gradually
denoising XT , which initially start as randomly sampled Gaussian noise. This
involves making model predictions iteratively for t = T to t = 0. Moreover,
the size of T has shown to have major impacts on model performance, with
higher values yielding better model performance [47]. Ho et al. 2020. used a
T -value of 1000, while Nichol and Dhariwal 2021 trained all their models on
4000 di�usion steps [18]. While this has no direct impact on the computational
burden of model training, producing a single sample after completed training
requires the model to be called 4000 times. Thus, generating a single sample
takes several minutes, even when employing high-performing modern GPUs.

This, of course, has major implications for the practical use of di�usion
models, resulting in the development of sampling noise schedules [33]. These
schedules work on a subsequence of the original noise schedule used in training,
resulting in the iterative sampling process being completed in a fraction of
the original steps. However, the choice of loss functions directly dictates how
much sample quality su�ers from this reduction. The loss function implemented
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in the models developed for this project utilizes the simplified loss function,
Lsimple presented in Equation 3.15. This is a reweighted form of LV LB, the
loss on variational lower-bound [18]. As Nichol and Dhariwal 2021 presented a
hybrid learning objective, combining both Lsimple and LV LB , they implemented
a sampling noise schedule using just 100 of the original 4000 steps while still
achieving near-optimal sample quality. Models trained exclusively on Lsimple,
however, has its sample quality greatly reduced. With this in mind, further
e�orts to implement a sampling noise schedule for Di�Met were not made.

4.6 Metrics

As presented in Section 3.3, probabilistic forecast models often utilize specific
verification metrics. Many of these are specifically developed for forecasting
models and are not included in most machine learning libraries. As a result of
this, the two metrics that were used had to be implemented from the ground
up. The choice of implemented functions was based on the selection of metrics
found in related studies [10, 39, 49]. These papers include conceptual and
mathematical formulations describing these metrics and were used as inspiration
for the implementations made in this project.

For computational e�ciency, a large part of the metrics has also been
implemented in PyTorch, allowing the metrics to be calculated in the same
high-performance manner as mentioned in Section 4.7.1 [34]. All implemented
methods are located in DiffMet/metrics.py and DiffMet/calc_metrics.py
and consist of the two primary methods csi() and crps(), as presented in
Section 3.3. In addition, methods for creating pooled neighborhood metrics were
developed. These are the same pooling operations described in section 3.1.3,
consisting of max-, and average pooling. The motivation for this downsampling
is to measure the model’s performance beyond pixel-wise performance. The
algorithm performs max-pooling with 2 di�erent output sizes. This can be
motivated by estimating the model’s ability to predict extreme precipitation
events, where exact pixel location might be challenging. The average pooling
can be motivated by flood forecasts, where precipitation is accumulated over
large areas [15].

4.7 Additional details

4.7.1 Software

A wide variety of software packages and libraries are required when developing
end-to-end machine learning models. To manage these, Anaconda was
used. This is an open-source distribution that enables you to create virtual
environments specific to the project’s needs. At the core of this environment
is Python 3.9, which has been the main programming language for data
processing and model building. This is a language that is widely used in
scientific programming. Pytorch was used for building the architecture of the
di�usion models[34]. This machine-learning framework is written in Python,
specifically tailored for computer vision and developing deep-learning models.
All visualizations of results have been produced with Matplotlib and Cartopy
[21, 32]. Both frameworks are written in python and widely used for visualizing
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scientific data. Figures for illustrating model architecture are produced using
TikZ and PlotNeuralNet, both languages for drawing vector graphics [22, 53].
The figures of the two implemented U-Nets are inspired by examples provided
through the PlotNeuralNet GitHub [35].

4.7.2 Computing resources

All models have been developed and tested in the above-mentioned local Python
environment. A cloud-based computing backend was used for full-scale model
training. This was provided through Colab, a cloud-based platform provided by
Google Research. This enables model training on high-end Graphical Processing
Units(GPUs). All models have been trained on clusters of either Nvidia A100
or NVIDIA V100. These high-performance GPUs provide between 16 to 80
gigabytes of high-bandwidth memory per GPU and are optimized for model
training. However, Google Research does not provide the exact number of
GPUs utilized in the cluster or the specific type of GPU.

4.8 Summary

In this chapter, we presented the developed framework for precipitation
nowcasting, named Di�Met. First, Section 4.1 and Section 4.2 introduced the
compiled dataset and outlined how this data was extracted from an API before
being processed to be fit as input for our DM. We then presented in Section 4.3
and Section 4.4 how the theory behind DMs was implemented into a python
framework and how this implementation had been further extended to include
two di�erent strategies for conditioning the model. Section 4.5 presented some
computational challenges related to generating image samples post-training. In
Section 4.6, we outlined the implementations of the metrics specific to measuring
nowcasting quality before Section 4.7 presented the software used in addition
to computational resources.
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CHAPTER 5

Case study on nowcasting with
DiffMet

As discussed in Section 3.4, deep learning and neural networks have shown
promising results for use cases in weather forecasting. The methods have several
advantages over traditional numerical methods. The latter relies on significant
computing power to solve complex di�erential equations. They need several
iterations with di�erent initial conditions to create a probabilistic output and
is required for every forecast produced. Models based on neural networks, on
the other hand, are, once trained, able to generate forecasts for a fraction of
the computational cost compared to their numeric counterparts.

In this chapter, we will evaluate our suggested Di�Met method in di�erent
use cases using the implemented metrics quantifying the probabilistic quality of
the Di�Met forecasts. In Section 5.1, we consider the initial problem of tracking
moving handwritten digits. We don’t use any validation metrics but showcase
how the model output compares to the wanted output by using data that
are visually easy to compare. Unconditional output acts as a first test of the
model’s ability before the complexity grows by adding increasingly complicated
conditional input.

Further in Section 5.2, we present the primary use case for Di�Met. These
results are based on the prediction of short-term future precipitation by
training Di�Met on real-life historic radar precipitation data. The probabilistic
forecasting performance will be evaluated using the implemented metrics
presented in Section 3.3. These metrics will be presented together with
visualizations of model predictions to demonstrate further both the predictive
and probabilistic abilities of Di�Met.

5.1 Inital Experiments – Tracking Moving Handwritten Digits

The main body of work in this thesis has been developing a generative model for
generating synthetic radar images. In contrast to models used for classification
or regression, these generative models often utilize a di�erent set of validation
metrics, as their training objectives di�er. However, developing proper metrics
for validating the model’s ability to generate this output is challenging and
time-consuming. Moreover, the generated radar images can be di�cult to
make sense of visually, as samples from the original radar dataset can easily be
mistaken for noise. As described in Section 4.1, the final dataset also required
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Figure 5.1: 20 randomly drawn samples from the MNIST dataset. Every sample
is a handwritten digit ranging between zero and nine.

developing a significant amount of scripts to extract and process the data to its
final form.

In the process of developing and implementing the di�usion model, the
need for visually validating model performance on a simpler dataset was made
evident. This made it possible to make progress in the development stages of the
model before the final metrics were implemented. This also enabled lightweight
training iterations where only a few generated samples were required to get a
visual confirmation that the model output was heading in the right direction.
Feeding the model a less complex dataset for testing initial performance is a
common approach in machine learning and computer vision, and the selected
dataset used for the initial results in this project is widely used in these fields.
These next sections will present both the standard MNIST dataset as well as
a modified variant of increased complexity. We will then present the model
output, acting as a visual validation for model performance.

5.1.1 MNIST

The Modified National Institute of Standards and Technology database (MNIST)
consists of a total of 70.000 handwritten digits between zero and nine with
corresponding labels [29]. These are divided between a training set and a test set
where the training set contains 60.000 images. All digits have been normalized
in size and set to a fixed image size of 28 ◊ 28, each containing grey levels in
the range of 0 to 255 stored in one channel. As model input plays a large factor
in the computational cost of training a network, this small image size makes
them a perfect candidate for initial model testing.

.
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Figure 5.3: Conditioned output results from the model trained on the MNIST
dataset. From left: conditional input and Gaussian noise as model input. The
remainder of the row is generated model output. This sample visualizes nine
generated samples, with the digit nine as conditional input. The digit that
makes up the conditional input is always the same handwritten digit, both
during training and sampling.

Unconditional model

In the first initial model test, the MNIST dataset was initialized through
Torchvision, a library part of the PyTorch framework presented in Section 4.7.1.
To ensure values are optimized for training di�usion models, all data underwent
the same processing and transformation as described in Section 4.2.5. As this
first experiment is unconditional, model training is simply a process of passing
a batch of randomly drawn numbers from the original MNIST dataset, adding
noise through the forward di�usion process, and having the model predict this
noise. Figure 5.2 presents four samples generated from the unconditional model
after training for 50 epochs. As shown, the model is clearly able to generate
distinct digits resembling the handwritten digits from the original training data.
Several of the samples shown have some noise still present in addition to the
digit, indicating that the model is still incapable of generating perfect samples
at the given time. This might be due to the restricted number of epochs, set to
limit training time.

Figure 5.2: Unconditional output results from the model trained on the MNIST
dataset.

Digit-condtioned model

The first significant test is to see if the model can generate samples based on
conditional input. This also moves the model from a model that generates
random output based on the distribution of the training data to a conditioned
model that utilizes the implemented method based on concatenation presented
in Section 4.4.1.
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This extends the use of the MNIST dataset used in the first inital test
and utilizes the corresponding labels that each digit provides. First, one
handwritten digit is selected to represent all digits of the corresponding value
for every number in the range of zero to nine. These ten selected digits will
later act as the conditional input during training and sampling and are stored
in a dictionary. This way, we limit the number of possible variations in shape
and form for each conditional digit. This is done in an e�ort to maximize the
model’s ability to generate conditional output.

During the training of the network, labels for every sample in the batch
are gathered from the data loader. These labels are then used to extract
the corresponding handwritten digit from the above-mentioned dictionary
of conditional input. This enables the model to concatenate the correct
corresponding conditional input to the sample digit. The simplified training
objective outlined in Equation 3.15 remains the same, as the model will compare
the predicted noise levels in its generated output to the noise levels in the
corrupted image of the digit drawn from the training data set. Hence, the
conditional input only acts as a way to guide the network to produce samples
from a digit-separated subset of the original distribution of all digits. Figure 5.3
demonstrates this with a wide variety of generated handwritten digits, sampled
after training the model for 50 epochs. Most of the conditional output consists
of variations of nine, as well as a few badly generated samples.

Sequence-condtioned model

Figure 5.4: Generated sequence from the implemented Moving MNIST dataset.

To establish an experiment in the inital phase of model development that
resembled the intended nowcasting use case, the complexity of both the dataset
and model had to be increased. The most significant related work done on
precipitation nowcasting, outlined in Section 3.4, all make use of input data
consisting of sequences making up radar images of previous time steps. To
achieve a dataset that mimics the traits of moving weather patterns in a
simplified way, a dataset originally intended for stochastic video generation was
implemented. The corresponding GitHub repository to a paper published by
Denton et al. 2018 provides scripts that enable the creation of a set of video
sequences based on the original MNIST dataset [7]. As the dataset was intended
for use in the inital experimental phase of the project, the scripts were modified
to simplify the model sequences, making model learning more manageable.

The final dataset consisted of one randomly sampled handwritten digit, with
short deterministic movement between frames consisting of 64 ◊ 64 grey-level
pixels. The implemented dataset generates a batch-sized set of sequences with
three frames at training time. Figure 5.4 visualized one of these sequences.
Training time is decided based on the selection of batch size and the number of
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Figure 5.5: Conditioned digit-tracking results from the model trained on the
Moving MNIST dataset. Each row represents generated output at epochs zero,
five, and twenty, respectively. This plot also acts as a demonstration of how
the initial model predictions move from the noise for the untrained model to
resembling a handwritten digit in the last row.

epochs. At this stage, however, an increase in both input image size and channel
dimensions results in a rapid increase in the computational cost of training and
sampling. The model was, therefore, only trained for 20 epochs with a single
generated prediction plotted for every fifth epoch. Figure 5.5 visualizes the
generated output at three selected epochs. Drawing hard conclusions based on
this limited output must be avoided, especially since we deal with probabilistic
models. However, some visual remarks can be made about the model’s predictive
ability. As seen in the far right of the bottom row, after 20 epochs, the model
seems to have learned some general digit characteristics regarding the digit zero.
Compared to the size-normalized and centered digits in the original MNIST
data set, this data presents floating digits with no fixed center. It is reasonable
to assume that this might prove as an extra challenge for the network when
learning these said characteristics, hence the broken curve. However, this also
might be the e�ect of a less fortunate drawn sample, as some samples in Figure
5.3 displayed the same broken curves. Furthermore, it is evident that the model
has learned some of the mechanics behind the digit displacement, as the location
of the sampled digit coincides reasonably well with the ground truth depicted
in the frame next to it.

53



5. Case study on nowcasting with DiffMet

5.1.2 Discussion and analysis of initial results

Through the initial results presented in Figures 5.2, 5.3 and 5.5, it is evident
that the implemented concepts behind the di�usion model are in fact able to
generate synthetic output that visually resembles samples from the original
distribution, as visualized in Figure 5.1. This plot demonstrates that Di�Met is
able to both recover the overall shape of the digit from the input shape, as well
as track the movement. However, proceeding to the use cases with precipitation
data brings a significant increase in complexity, both in the form of model input
and wanted output:

• Handwritten digits are constrained by fixed shapes, made up of clearly
defined lines and curves. As we proceed to the next section, it will be
evident that this is not the case for radar precipitation patterns.

• The digit-conditioned model only had ten possible variations of conditional
input, one for each selected hand-drawn digit. The sequence-conditioned
model increased this complexity, but clearly defined shapes with little
movement still represented the conditional input.

• All though the sequences in the moving MNIST data set have moving
structures, there occurred no deformation or change in the size of the digits
in-between frames. This is in sharp contrast to how radar precipitation
patterns can develop frame-to-frame.

• Moving MNIST was generated on the fly, and each batch of sequences only
exists during training of that specific epoch. In addition, each sequence
only consisted of three gray-level images, stored as a datatype known as
uint8. This virtually removes the need for considering disc space and
computational bottlenecks with data loading. This is not the case as
we proceed to model training with the real-life radar data, presented in
Section4.1. These radar sequences are made up of 8 frames with radar
intensities stored as floating point numbers with multiple channels and
represent 60 gigabytes of data that needs its own workflow to be loaded
e�ciently to the model at training time.

5.2 Precipitation nowcasting with DiffMet

As presented in Section 4.5, generating synthetic radar images from the di�usion
model comes at a substantial computational cost. Furthermore, as Di�Met
presents a probabilistic approach to precipitation nowcasting, it is of great
interest to examine the forecasted distribution in addition to single predictions.
In this section, this is examined through the use of the Continuous Ranked
Probability Score, presented in 3.3. This, however, requires the model to
generate a predictive distribution, demanding an iterative process where the
model creates a set amount of predictions for the same conditional input
sequence. For the results presented in the preceding sections, all CRPS scores
are reported with a sample size of ten predictions for each input sequence. As the
dataset used for testing consists of over 1000 sequences, generating the necessary
predictive distribution for next-frame predictions with a di�usion model trained
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on the 1000 to 4000 di�usions steps used in many published papers would result
in 10 - 40.000.000 forward passes through the neural network. When factoring
in the floating point calculations required to extract the metrics from a database
of this size, it becomes evident that this is a massive computational hurdle.

To mitigate these challenges, these next sections provide metrics and visual
results from multiple carefully selected subsets of the original test dataset,
computed by models selected as a function of predictive performance and
computational e�ciency. These subsets consist of di�erent constellations of
sequences intended to highlight the model’s abilities in di�erent scenarios. We
note that optimally, these subsets should have been of larger size to ensure
statistical significance, but due to the reasons outlined above, this was not
feasible for the scope of this study.

Section 5.2.1 presents the configurations and training scores for four di�erent
models. We then proceed to Section 5.2.2, where we compare the two approaches
for conditioning the model. Section 5.2.3 examines the model’s ability to predict
the next frame based on precipitation type. In Section 5.2.4, we proceed to test
model performance based on precipitation intensity. Following, in Section 5.2.5,
is a presentation of the results from the implemented framework for 20-minute
nowcasts, combining the di�usion model with an auto-regressive approach.
Finally, Section 5.3 presents a discussion of the results from all the nowcasting
experiments and summarizes the findings.

5.2.1 Configurations and model training

This section presents the di�erent model configurations used in training, as
well as presenting metrics on model performance through epochs. As machine
learning models can be used in a wide selection of scientific fields, there is often
a need to tailor the hyperparameters to the specific use case to maximize model
performance. This can be done by utilizing various optimization techniques
or simply observing what empirically has been found to be optimal for similar
model architectures in relevant use cases [60]. However, due to the recent rise
in the popularity of di�usion models, the optimal set of hyperparameters for
this type of model used in precipitation nowcasting has yet to be established.
Furthermore, as made obvious in the previous section, the process of this fine-
tuning comes at a computational cost too large for the scope of this project.
As a result, the process of optimizing model performance was made based on
testing two di�erent sizes of noise schedules for both model implementations.
Table 5.1 displays the hyperparameters and relevant components for each model
implementation.

Figure 5.6 visualizes mean squared errors for training and validation each
of the four implementations through 50 epochs. This figure highlights several
important findings from the initial training phase. Firstly, the two best-
performing models are the ones that use the increased sampling scheme with
1000 noising steps. There are only small di�erences separating the concatenated
model and the model that utilizes image embeddings. Still, the concatenated
model seems to gain an advantage over the embedded model after the 40th
epoch. This correlation between increased T-value and increased performance
reflects the conclusions shown in most papers [18][33][8]. Both embedding
models present validation loss consistently lower than their respective training
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Table 5.1: Table of hyperparameters for model training.EM: Image embedding
model. CM: Concatenated model.

Hyperparameters
CM1 CM2 EM1 EM2

T 300 1000 300 1000
Optimizer Adam Adam Adam Adam
Batch Size 24 24 24 24
Learning rate 0.005 0.005 0.005 0.005
Epochs 51 51 51 51
Unet Simple Simple Improved Improved
Beta Schedule Linear Linear Linear Linear

Figure 5.6: This plot visualizes the training- and validation loss (MSE) from 4
di�erent model initializations over 50 epochs.

loss. Both are likely due to the implemented drop-out layer, presented in Section
4.4.2, which is only activated during the training phase.
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5.2.2 Comparing image embedding input to concatenated input

Figure 5.7: Model prediction which achieved the highest CSI when threshold
set to two mm/hr. The prediction is made with the concatenated input model
and the output received a CSI score of 0.9. Top row: Previous 4 timesteps that
make up the conditional input. Bottom left: Model prediction at lead time.
Bottom right: Observed radar precipitation rates at lead time. The change in
dimensions between the conditional input and the model prediction is due to
the spatial context needed for the target patch, as presented in Chapter 4

The previous section presented results during training, where the loss is
calculated based on how well the model can predict noise in images for di�erent
levels of t. For the remainder of this chapter, the main focus of the metrics will
shift to concentrate on the model’s abilities to produce valuable precipitation
nowcasts and hence introduce the methods implemented for post-training
sampling to generate synthetic radar images. To ensure feasible computing
times, the two models relevant for use in sampling are both implementations
of the models which utilize the sampling scheme where T = 300. These two
models will be referred to as either Embed or Concat in figures and plots, where
the former is the model utilizing the extra architecture for creating image
embeddings, while the latter uses the conditional input directly as concatenated
input. We note that if computational capacity were not an issue, further metrics
would have been produced with the larger-sized noise schedules. For comparing
the two models, a subset consisting of 100 randomly drawn sequences from
the original test set was used. This subset is shared between the models to
ensure that the metrics produced are done on the same samples. As presented
in Section 4.2.5, each sequence loaded to the model have the same 64 ◊ 64 area
cropped based on the image center instead of the random cropping that occurs
during training.

To able the calculations for measuring the probabilistic behavior of the model,
the implemented scripts generate ten predictions for each input sequence. This
creates the nowcast distribution used by the continous ranked probability score.
For calculating the critical success index, a randomly drawn single prediction
is used. After sampling all required predictions for the whole subset, the
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corresponding results are displayed either as averaged values with corresponding
standard deviations or visualized through box plots. We note that as CSI is
a pixel-wise comparison between a single prediction and the observed radar
image, it lacks the representation of probabilistic behavior as CRPS represents.
However, we assume that some of this behavior is represented through the 100
samples represented in the plots.

Figure 5.8 and 5.9 visualizes both metrics, with bars representing the mean
values and their corresponding standard deviations. Figure 5.9 presents the
CSI scores for three precipitation intensities, at 0.01, 2, and 5 mm/hr. The
lowest threshold is set to generate a scenario where we can measure the model’s
performance to correctly predict rain, disregarding the precipitation intensity
levels. This can be of equal value in many use cases where the knowledge of a
future if there will be rain is more relevant than the exact amount of rain. As
presented, both models demonstrate close to equal performance at the lowest
threshold. There is, however, a large variation for both models, as can be seen
from the plotted whiskers. For the two higher thresholds, the performance is
drastically reduced for both models. For the threshold set at 2mm/hr, both
models produce equal median values. However, the Embed model’s distribution
mainly centers around this median value, whereas the Concat model displays
a much larger variation. For the highest threshold at five mm/hr, the image
embedding model shows low performance with a notable part of the CSI scores
produced below 0.10. The concatenated model displays higher values but with
significant variation.

Figure 5.8 presents the CRPS scores for four di�erent pooling operations. As
presented in Section 4.6, these pooling operations remove the location-specific
constraints when measuring model performance, as values are compared based
on values processed from either a 4 ◊ 4 or 16 ◊ 16 pooled out-crop, rather than
pixel to pixel. For average-pooling on both grid sizes, the Embed-model displays
slightly better performance, with both lower mean values and smaller variation.
For the CRPS calculated on the max-pooling operations, the di�erence in
performance increases. For the smaller grid size, the Concat model displays
a score with both larger variation and mean value compared to the Embed
model. This di�erence intensifies for the large grid size, where the Embed model
performs significantly better. A visualization of the predictive abilities of the
concat-model is displayed in Figure 5.7. This sequence achieved the highest CSI
score at 0.9, when the threshold was set at two mm/hr. As the median CSI score
for 0.01 mm/hr is ¥ 0.75 for both models, this plot demonstrates the model’s
ability to generate somewhat accurate predictions for certain precipitation
scenarios.
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Figure 5.8: CRPS for two di�erent pooling scales on two di�erent pooling
methods. Each model is tested on the same subset, consisting of 100 random
samples from the test dataset. Each bar represents the relevant CRPS averaged
over all 100 samples, with standard deviations. For CRPS, lower is better.

Figure 5.9: CSI for three di�erent threshold precipitation values, tested for both
model implementations. Each model is tested on the same subset, consisting of
100 random samples from the test dataset. Each bar represents the relevant
CSI averaged over all 100 samples, with a standard deviation. For CSI, higher
is better.
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5.2.3 Comparing performance on convective and stratiform
precipitation

Figure 5.10: Model prediction for a sequence with both convective and stratiform
precipitation. Top row: Precipitation plotted as a function of precipitation type.
Middle: Radar precipitation rates. Bottom left: Model prediction for lead time.
Bottom right: Observed radar precipitation at lead time.

As Section 5.2.2 made it evident that the models indeed are able to generate
precipitation nowcasts, both Figure 5.9 and 5.8 presented metrics with
occasionally large variations. These variations were present in both the image
embedding and concatenated models but to a larger degree in the latter.
However, the extended model architecture in the embedding model makes
a significant di�erence in increased sampling times. This resulted in all the
following experiments being conducted using the Concat model. To better
understand the model performance, further experiments were conducted. These
experiments determine if the variations in performance can be linked to certain
precipitation types or intensities in the conditional input. The first of these
experiments implements two new subsets from the original test data. These
new subsets are created using the variable with classified precipitation types,
described in Section 4.2.3. As presented in Chapter 2, stratiform precipitation
is often present in regions with convective cells. This is also apparent in the
dataset, as there are no cases with only convective precipitation. As a result,
one subset contains observations where both convective and stratiform are
present, whereas the other only contains stratiform precipitation. The size of
the two subsets is held at 100 sequences each. We note that for convenience,
the subset containing both convective and stratiform precipitation is hereby
referred to as solely Convective, both in text and figure labels.

Validation metrics are produced the same manner as the ones presented in
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Section 5.2.2. For the lowest threshold, Figure 5.11 shows that the convective
input produced output with a slightly higher median CSI than stratiform. The
convective dataset also produced predictions where most of the CSI score was
above ¥ 0.55. Stratiform input resulted in much greater variation. For the
2 mm/hr threshold, this di�erence was even more prominent. Despite a few
outlying samples, most predictions based on stratiform input received a CSI
score below 0.20. For the highest threshold, the scores were somewhat more
balanced, however still colored by the same di�erence as the middle threshold.
As the change according to thresholds and precipitation types present large
variations within, there is di�cult to separate any significant model performance
purely based on CSI. However, we note that the convective input data shows
a pattern of higher-scoring predictions. Large variations are also present in
the CRPS, as seen in Figure 5.12. The number of outliers from the convective
subset is significantly larger than the stratiform for all pooling operations. For
the max-pooling on the largest grid size, the di�erences in variations were
significant.

Figure 5.14 - 5.13 visualizes the input sequences both in terms of the actual
radar precipitation intensity as well as a visualization of the engineered feature
used for creating the subsets. It is important to note that the conditional
input to the network at this point is unchanged and still only consists of radar
precipitation rates, as the included plots of precipitation types are solely meant
for visualization purposes. Figure 5.10 and 5.13 demonstrate what seems to be
two very di�erent precipitation scenarios, although both with strong rainfall
intensity. Whereas the convective precipitation in 5.10 seems to be a part of
a larger stratiform region with widespread rainfall, the precipitation region in
5.13 appears to be centralized around the convective cell with a concentrated
area of high-intensity rainfall. Both predictions achieved a high CSI score. The
latter scenario with a concentrated precipitation region was the highest scoring
of the 100 sequences, achieving a CSI of 0.84 when thresholded at the middle
value of two mm/hr. Figure 5.14 demonstrate the model’s predictive abilities
on a stratiform precipitation scenario. This prediction achieved the best CSI of
all 100 samples when thresholded at two mm/hr at 0.78.
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Figure 5.11: CSI at di�erent thresholds. The metrics are computed on two
subsets of the test data. One subset contains stratiform precipitation exclusively,
while the other has convective precipitation in addition to stratiform. For CSI,
higher is better.

Figure 5.12: CRPS for di�erent pooling operations. The metrics are computed
on two subsets of the test data. One subset contains stratiform precipitation
exclusively, while the other has convective precipitation in addition to stratiform.
For each conditional input sequence, 10 predictions were made by the model.
For CRPS, lower is better.
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Figure 5.13: Model prediction for a sequence dominated by convective
precipitation. Top row: Precipitation plotted as a function of precipitation type.
Middle: Radar precipitation rates. Bottom: Left: Model prediction for lead
time. Right: Observed radar precipitation at lead time. This prediction got
the highest CSI when thresholded at two mm/hr, slightly above 0.9.
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Figure 5.14: Model prediction for a sequence of solely stratiform precipitation.
Top row: Precipitation plotted as a function of precipitation type. Middle:
Radar precipitation rates. Bottom: Left: Model prediction for lead time. Right:
Observed radar precipitation at lead time. This prediction got the highest CSI
when thresholded at two mm, at approximately 0.7.

5.2.4 Comparing heavy precipitation to light precipitation

Figure 5.15: Model predictions on a conditional input sequence with little- to
no rain. Top: Conditional input. Bottom left: Model prediction. Bottom
right: observed radar precipitation at given lead time. This figure illustrates the
model’s tendency to grossly overestimate precipitation intensity in situations
with low-level precipitation prior to lead time.
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Figure 5.16: CRPS for di�erent pooling operations. The metrics are computed
on two subsets of the test data. One subset contains only light precipitation
rates, while the other contains heavy precipitation. For each conditional input
sequence, 10 predictions were made by the model. For CRPS, lower is better

For the last experiment conducted regarding next-frame predictions, a final
data set was constructed. Based on the discovery in Section 5.2.3 regarding
di�erences in model performance based on precipitation types, this final dataset
consists of two subsets that separate sequences based on the total sum of radar
precipitation rates contained in the last conditional image before lead time.
The two thresholds were set at < 30 and >2500 and resulted in just above
100 sequences in each dataset. As the total grid cells in an image are 4096,
this results in an average threshold intensity rate at ¥ 0.6 mm/hr per grid cell.
This value can rarely be considered heavy. Still, the resulting subset created
from this threshold is indeed weighted by sequences containing precipitation
events either large in size, with high intensity, or a combination. Randomly
sampled sequences were removed from each subset, resulting in equally sized
subsets containing 100 samples each. Figure 5.16 visualizes the CRPS scores
for both subsets, demonstrating significant di�erences in the model’s ability
to create nowcasts based on rainfall intensities prior to lead time. The model
conditioned on heavy precipitation is superior on both pooling operations for
both grid spaces, compared to the model conditioned on the subset with light
precipitation. These results are reflected in the CSI score presented in Figure
5.17. For the lowest threshold, the model reaches an average CSI score of 0.92,
a result superior to the CSI scores from all previous experiments. As the light
precipitation subset contains little- to no precipitation events with rates higher
than 1 mm/hr, these boxes are not plotted. Figure 5.15 visualizes a prediction
sample from the dataset with light precipitation. This reflects the poor CRPS
and CSI scores these precipitation scenarios received and demonstrates how the
model overestimates precipitation rates by a considerable amount.

5.2.5 Producing 20-minute nowcasts

With the previous section measuring performance in various scenarios for the
next-frame predictive abilities, this section presents the results from full 20-

65



5. Case study on nowcasting with DiffMet

Figure 5.17: CSI scores for light- and heavy precipitation. For light precipitation,
the sequences contain little to no regions with precipitation rates above 1 mm/hr,
which explains the lack of visual boxes for these threshold values.

Figure 5.18: CRPS for the four di�erent pooling operations as a function of the
prediction interval.

minute nowcasts. These forecasts have a temporal resolution of five minutes,
hence producing output sequences consisting of four frames. The results
presented in Section 5.2.4 made it evident that the model’s performance is
strongly correlated to the presence of rainfall in the conditional input. As a
result, this section presents results on 20-minute nowcasts based on a subset
of the dataset that represents heavy precipitation. As nowcasts of this length
present a significant computational increase in terms of sampling, the subset is
reduced to 50 randomly drawn sequences.

The implemented methods for sampling 20-minute nowcasts rely on the
same next-frame models utilized in the previous sections. This framework
was then extended to iteratively produce sequences of arbitrary length, using
an autoregressive approach [55]. This implies that each predicted next frame
is used as conditional input to predict the following frame. The next-frame,
five-minute nowcasts presented in Section 5.2.2 to 5.2.4 relied on the concept
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of having input on a larger spatial dimension than the output patch to allow
for precipitation displacement [49]. As the U-net relies on input on a fixed set
of dimensions, this approach had to be abandoned and rather relies on other
implementations, where conditional input is of the same size as the generated
prediction [39].

Figure 5.18 visualizes the average CRPS for the four selected pooling
operations, plotted against the prediction interval. As the first 5-minute nowcast
is based on the observed, precipitation-heavy input, the model achieves low
CRPS for all operations. However, when the lead time increases, so do the
CRPS score, as expected.

Figure 5.19 to 5.22 visualizes nowcasts made on four di�erent input sequences.
These figures demonstrate how the probabilistic nature of di�usion models
generates di�erent outputs based on the same conditional input, in contrast to
the numerical methods presented in Section 2.2. For visual reasons, only four of
ten predicted sequences are presented. Figure 5.19 presents an input sequence
where the model generates visually accurate, consistent results compared to
the observed sequence. The precipitation region in this scenario looks to be a
well-defined structure shaped by a clear di�erence in precipitation intensities.
The second last row in this figure also displays the value of having multiple
time steps as conditional input. Despite a bad first predicted frame, the model
can still produce visually accurate predictions for the following time steps.
Figure 5.20 represents a scenario with intensified rainfall but with the same
clear-structured region seen in Figure 5.19. This also represents a scenario
where the model is able to predict the precipitation location accurately for the
following frames.

In contrast, the precipitation regions shown in the input sequence of Figure
5.21 are presented to showcase a scenario where the input sequence is less
well-defined. This input sequence contains precipitation rates in the same range
as the one presented in Figure 5.19 but produces significantly di�erent model
predictions. In this scenario, the model struggles with predicting accurate
rainfall location, in addition to generating output with large variations between
predictions.

Figure 5.22 presents a prediction from an input sequence drawn from the
subset of light precipitation data and is not part of the CRPS metrics presented
in 5.18. The forecast distribution demonstrates how the model overestimates
precipitation in all predicted sequences and may visually reflect the metrics
presented in Figure 5.16 and 5.17.
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Figure 5.19: Comparison between the observed sequence and sequences predicted
by the model. All generated model output is based on the same conditional
input sequence. Top row: observed. Bottom four rows: model predictions. This
illustrates both the predictive ability of the model, as well as its probabilistic
nature. All predicted sequences reflect some of the vertical motion present in
the observed sequence.
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Figure 5.20: Comparison between the observed sequence and sequences predicted
by the model. All generated model output is based on the same conditional
input sequence. Top row: observed. Bottom four rows: model predictions. This
illustrates both the predictive ability of the model, as well as its probabilistic
nature.
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Figure 5.21: Comparison between the observed sequence and sequences predicted
by the model. All generated model output is based on the same conditional
input sequence. Top row: observed. Bottom four rows: model predictions. This
illustrates how the model might struggle to predict patterns without a clear
structure or shape.
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Figure 5.22: Comparison between the observed sequence and sequences predicted
by the model. All generated model output is based on the same conditional
input sequence. Top row: observed. Bottom four rows: model predictions. This
illustrates the model’s tendency to overestimate precipitation rates when the
conditioned input has little- to no rainfall. The forecast distribution shows that
this might very well be a common model behavior.

5.3 Discussion

Section 5.2 presented results demonstrating both the capability and pitfalls when
using Di�Met to create precipitation nowcasts for di�erent weather scenarios
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and time scales. In this section, we discuss these findings and connect them to
theory related to both di�usion models and precipitation.

Our analyses show that it is important to include a wide variety of metrics
when evaluating the performance of Di�Met. This is made clear throughout the
results but is already evident when comparing the MSE on validation scores
for the two chosen models to their corresponding CRPS and CSI scores. As
the concatenated model showed better performance in terms of MSE and CSI,
it produced forecasts with consistently worse CRPS throughout all pooled
versions. The di�erence between the best performance in terms of CSI and
CRPS might also highlight important di�erences in the generated output based
on model implementation. This di�erence might imply that the model based
on image embeddings creates a more generalized prediction, with better-quality
nowcasts when pooled over a neighboring area. On the other hand, the model
with concatenated input creates forecasts with higher pixel-wise accuracy for
precipitation intensities greater or equal to two mm/hr. This is likely caused
by the non-processed input, which we assume makes the network less able to
generalize on input in terms of grid location. From a nowcasting point-of-view,
the ability to make skillful predictions over a generalized area is of greater
interest than making accurate predictions on a grid cell level. Furthermore, CSI
is biased and dependent on the frequency of events, making CRPS the best
indicator for nowcast quality[42]. Furthermore, on the max-pooling of the 16 ◊
16 grid, the image embedding model displayed significantly lower CRPS with
lower variations. This pooled metric quantifies the model’s ability to predict
extreme precipitation events, which the World Meteorological Organization
emphasizes as one of the most significant use cases for operational nowcasts [56].
We note that with the subset used for creating validation metrics, the image
embedding model would be the preferred model for nowcasting. However, a
larger sample size would be preferable before concluding.

The CRPS values for the image embedding model also highlight the potential
value of processing conditional input before feeding it to the network. The
implemented embedding method used in this study represented a novel approach
to processing precipitation data, using parts of a ResNet18 model pre-trained
on geospatial data. It is reasonable to assume a significant performance increase
if this approach is extended to match the functionality of the input processing
found in state-of-the-art nowcasting and video generation frameworks [39, 49].

For the results from the experiment conducted on convective and stratiform
precipitation, the results di�ered from what was expected. As presented in
Chapter 2, convective precipitation is often defined by intense rainfall over
a small region within a short time scale, in contrast to the continuous and
uniform precipitation associated with stratiform precipitation. Baseline optical
flow models have been shown to struggle to capture these highly non-linear
convective events [37]. For the nowcasts produced by Di�Met, the results did
not coincide with this.

However, two significant points come into play when analyzing these results.
First, one can speculate if the di�erences in predictive accuracy would be more
substantial if the model’s lead time were extended to the 90-minute range found
in the state-of-the-art nowcasting models. At these timescales, the continuous
behavior of stratiform precipitation is likely a significantly more manageable
task for the network to predict compared to the intense, short-lived nature
of a convective region. Second, the two subsets are thresholded based on the
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classification of a limited area of 64 ◊ 64 kilometers. As reflected in Figures
5.10 to 5.14, precipitation regions often exceed this size, resulting in a cropping
of the region. This cropping can create instances where the visible precipitation
in a region is all classified as stratiform, only to, in reality, be a part of a
convective relationship outside the cropped area. Moreover, one can speculate if
the intense rainfall over a concentrated area, creating well-defined shapes, makes
for an easier predictive task for the neural network. This could be the answer
to the increased CSI scores for convective precipitation at higher thresholds,
both compared to stratiform and the metrics presented for the two models in
Section 5.2.2. This di�erence in predictive ability is also reflected visually in
the distributions for the 20-minute nowcasts presented in Figures 5.19 to 5.22.

The significant di�erences regarding rainfall intensity presented in Section
5.2.4 are most likely due to the imbalance in the original dataset, dominated
by sequences with substantial rainfall. As presented in Section 4.2.4, the
dataset was created based on several threshold values set to ensure a su�cient
amount of sequences with substantial precipitation while keeping the total
size manageable. Increased overall model performance could, therefore, likely
have been achieved with training on a more well-balanced dataset. Other
implemented nowcasting frameworks have shown this obtained by utilizing an
importance sampling scheme, which favors samples with heavier rainfall, and at
the same time addresses the biases which this introduces [39].

The 20-minute nowcast presents several accurately predicted scenarios,
where the visual variation with the nowcast distribution seems minimal. The
conditional input for these well-predicted sequences substantiates what seems
essential for the model to generate an accurate output, as discussed above.
The same applies to less-accurate predictions. As expected, the initial CRPS
at the 5-minute prediction interval coincides with values from the previous
precipitation-heavy experiment. Also expected is the increase in CRPS as the
lead time extends, as far-ahead predictions naturally present a greater challenge
due to the chaotic nature of weather systems. The auto-regressive approach is
another reason for the decline in model performance. As the predictions made
after the first initial iteration are based on previous predictions as conditional
input, this can easily lead to propagating errors in the following predictions.

5.4 Summary

In this chapter, we have analyzed the performance of the suggested Di�Met
method in various use cases. First, we presented visual results based on the
handwritten digits from the MNIST dataset. These results supported the first
objective outlined in Section 1.2 by demonstrating that we have successfully
developed a conditional model. The model was made conditional in two di�erent
scenarios. The first conditional experiment guided the model to output a wanted
digit before increasing the complexity with tracking of handwritten digits. This
latter experiment acted as a simplified scenario for the proposed nowcasting
model use case.

Second, we then proceeded to present the results from nowcasting real-life
precipitation events with Di�Met. The model was tested in various weather
scenarios to explore model performance and identify weaknesses. We discovered
that the improved network architecture with image embeddings as conditional
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5. Case study on nowcasting with DiffMet

input outperformed the simpler model architecture when measured by CRPS.
However, predictive performance has to be seen in context with computational
performance. Since the improved model architecture required substantially
more time for sampling, the following experiments were conducted with the
simplified, concatenated conditional input. These experiments showcased the
models’ ability to produce nowcasts for several scenarios, including stratiform
and convective precipitation. However, the model su�ers from overestimating
the amount of future rainfall in scenarios with little- to no rainfall prior to lead
time. This is likely caused by an imbalanced dataset.
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CHAPTER 6

Conclusion and future work

6.1 Summary and main contributions

In this study, we have developed a di�usion model with conditioning abilities.
The model was trained on a compiled dataset of radar precipitation rates from a
selected domain of eastern Norway and parts of Sweden. Two di�erent methods
for generating conditional output were implemented. The first used a more
straightforward approach of directly concatenating the conditional sequence as
input to the network, while the second o�ered a more sophisticated method of
processing the input sequence through a second neural network to create image
embeddings.

The initial experiments presented in Section 5.1 supported Objective 1

from Section 1.2 by showcasing the models’ ability to produce conditioned
output, both in the form of single digits and in the form of tracking movement.
The conditional abilities were further showcased throughout the experiments in
Section 5.2 when the input data was replaced by the compiled dataset of radar
precipitation rates, outlined in Objective 4. These experiments also supported
Ojective 2 as they presented CRPS metrics to quantify the uncertainty in
predicted future events. Finally, we presented experiments conducted on a
collection of subsets from the original test data to identify strengths and
weaknesses related to specific weather scenarios, supporting Objective 3.

This study has contributed to the development of precipitation nowcasting
by presenting a novel approach using di�usion models. We have demonstrated
that these models can be conditioned on radar images from previous time steps
to generate synthetic radar images of future time steps. Both implemented
models showed predictive abilities, but the image-embedding model produced
higher-quality nowcasts based on the available dataset. This was evident
through better validation metrics in the form of pooled CRPS scores, which is
the probabilistic performance metric emphasized by the World Meteorological
Organisation [56].

6.2 Suggestions for future work

Creating a balanced dataset that includes an increased amount of samples with
low- to no precipitation is a crucial step in improving overall model performance.
An importance-sampling scheme can also potentially improve the performance
by enabling well-balanced datasets which maximize scenarios of interest but
still ensures no compromise in performance on low-intensity events [39].
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6. Conclusion and future work

The image embedding module can potentially also be improved, as the
input sequences are characterized by complex relationships in time and motion.
Recently, a few papers have suggested improvements in this direction. Yang et
al. [61] present a framework for stochastic video generation where the di�usion
model is conditioned on output from a convolutional recurrent neural network,
while Voleti et al. [55] present an embedding module with multi-head self-
attention. Ho et al. [19] present a framework for video di�usion models that
implements a 3D U-net, factorized over space and time.

Lastly, modifying the loss function to the hybrid variant proposed by Nichol
& Dhariwal [33] would enable using a sampling noise scheme with significantly
fewer steps than the noise scheme used in model training. This would mitigate
many of the computational obstacles related to sampling and allow for generating
nowcasts over larger areas and longer lead times.
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APPENDIX A

Source code

The source code for Di�Met is found at https://github.com/gapav/DiffMet
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