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Predicting the reliability of software systems based on a component approach is in-
herently difficult, in particular due to failure dependencies between the software compo-
nents. Since it is practically difficult to include all component dependencies in a system’s
reliability calculation, a more viable approach would be to include only those dependen-
cies that have a significant impact on the assessed system reliability. This paper starts
out by defining two new concepts: data-serial and data-parallel components. These con-
cepts are illustrated on a simple compound software, and it is shown how dependencies
between data-serial and data-parallel components, as well as combinations of these,
can be expressed using conditional probabilities. Secondly, this paper illustrates how the
components’ marginal reliabilities put direct restrictions on the components’ conditional
probabilities. It is also shown that the degrees of freedom are much fewer than first antic-
ipated when it comes to conditional probabilities. At last, this paper investigates three
test cases, each representing a well-known software structure, to identify possible rules
for selecting the most important component dependencies. To do this, three different
techniques are applied: 1) direct calculation, 2) Birnbaum’s measure and 3) Principal
Component Analysis (PCA). The results from the analyses clearly show that includ-
ing partial dependency information may give substantial improvements in the reliability
predictions, compared to assuming independence between all software components.
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1. Introduction

The problem of assessing reliability of software has been a research topic for more
than 30 years, and several successful methods for predicting the reliability of an in-
dividual software component based on testing have been presented 23:2°. There are,
however, still no really successful methods for predicting the reliability of compound
software (software systems consisting of multiple software components) based on

reliability data on the system’s individual software components®-2932,

1.1. Motivation

For hardware components, even in critical systems, it is accepted to base the relia-
bility assessment on failure statistics, i.e. to measure the failure probability of the
individual components and compute the system reliability on the basis of this. This
is for example applied for safety instrumented systems in petroleum '!.

The characteristics of software, however, make it difficult to carry out such
a reliability assessment. Software is not subject to ageing, and any failure that
occurs during operation is due to faults that are inherent in the software from the
beginning. Any randomness in software failure is due to randomness in the input
data. It is also a fact that environments, such as hardware, operating system and
user needs change over time, and that the software reliability may change over time
due to these activities 3.

Furthermore, having a system consisting of several software components, explic-
itly requires an assessment of the software components’ failure dependencies 22. So
in addition to the fact that assessing the reliability of software is inherently difficult
due to the complexity of software, and that software is sensitive to changes in its
usage, failure dependencies between software components is a substantial problem.

Although several approaches to construct component-based software reliability
models have been proposed 01520 most of these approaches tend to ignore the
failure dependencies that usually exist between software components, in spite of
the fact that previous research shows that this is often unrealistic 51421,

In principle, a single software component’s failure probability can be assessed
through statistical testing. However, since critical software components usually need
to have low failure probabilities 22, the number of tests required to obtain adequate
confidence in these failure probabilities often becomes practically very difficult to ex-
ecute. An even more difficult situation arises when the probability for simultaneous
failure of several software components need to be assessed, since these probabilities
are likely to be significantly smaller than single failure probabilities.

Based on the fact that:
e software components rarely fail independently, and that
e using statistical testing alone to assess the probability for software compo-
nents failing simultaneously is practically impossible in most situations
the main focus has been to develop a component-based approach for assessing
the reliability of compound software, which is practicable in real situations, and
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where failure dependencies between the software components are explicitly ad-
dressed 16,17,18,19_

This paper starts out by defining two new concepts: data-serial and data-parallel
components ®. These concepts are illustrated on a simple compound software, and
it is shown how dependencies between data-serial and data-parallel components,
as well as combinations of these, can be expressed using conditional probabili-
ties. Secondly, this paper illustrates how the components’ marginal reliabilities put
direct restrictions on the components’ conditional probabilities. It is also shown
that the degrees of freedom are much fewer than first anticipated when it comes
to conditional probabilities. If the components’ marginal reliabilities and four of
the components’ conditional probabilities are known in a simple three components
system, the remaining 44 conditional probabilities can be expressed using general
rules of probability theory. At last, this paper investigates three test cases, each
representing a well-known software structure, to identify possible rules for selecting
the most important component dependencies ?. To do this, three different tech-
niques are applied: 1) direct calculation, 2) Birnbaum’s measure and 3) Principal
Component Analysis (PCA).

The results from the analyses clearly show that including partial dependency
information may give substantial improvements in the reliability predictions, com-
pared to assuming independence between all software components. However, this
is only as long as the most important component dependencies are included in the
reliability calculations. It is also apparent that dependencies between data-parallel
components are far more important than dependencies between data-serial com-
ponents. Further the analyses indicate that including only dependencies between
data-parallel components may give predictions close to the system’s true failure
probability, as long as the dependency between the most unreliable components is
included. Including only dependencies between data-serial components may how-
ever result in predictions even worse than by assuming independence between all
software components.

1.2. Notation

In this paper, capital letters are used to denote random variables and lower case
letters are used for their realizations.

To indicate the state of the i th component, a binary value x; is assigned to
component i .

o — 0 if component i is in the failed state (1)
* 7 1 1 if component ¢ is in the functioning state

Similarly, the binary variable ¢ denotes the state of the system.

aSee Definitions 3 and 4 in Section 1.3.
bSee Definition 1 in Section 1.3.
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(2)

6= 0 if the system is in the failed state
~ ] 1if the system is in the functioning state

It is assumed that the state of the system is uniquely determined by the states of
the components, i.e. ¢ = ¢(x), where x = (z1,22,...,2,) and n is the number of
components in the system. ¢ is usually called the structure function of the system.
A serial structure functions if and only if all the components in the system function.
The structure function of a serial structure consisting of n components is given in
Equation 3.

(b(x):xl-xg-uxnznxi (3)

A parallel structure functions if and only if at least one of the components in the
system functions. The structure function of a parallel structure consisting of n
components is given in Equation 4.

n

o(x)=1- (1 —a) (4)

i=1

The reliability of component ¢ are given as follows:

pi=P(X;=1) (5)

In addition, a simplified notation is used to describe conditional reliabilities. An
example is given in Equation 6.

p3|1Q = P(iL’g = 1|£L’1 = 1,1’2 = 0) (6)

The main task of this paper is to find the system reliability h(p), where p includes
both the component reliabilities as well as their conditional reliabilities.

1.3. Definitions

Definition 1. The most important component dependencies are those dependen-
cies that influence the system reliability the most, i.e. those dependencies that
cannot be ignored without resulting in major changes in the predicted reliability of
the system.

Definition 2. A dependency combination (DC) is a subset of the actual compo-
nent dependencies in a compound software.
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Fig. 1. An illustrative example.

Definition 3. Two components 7 and j are said to be data-serial components if
either: 1) ¢ receives data, directly or indirectly through other components, from j,
or 2) j receives data, directly or indirectly through other components, from i.

z&g or jil (7)

Definition 4. Two components i and j are said to be data-parallel components if
neither ¢ or j receives data, directly or indirectly through other components, from
the other.

ibi and j-bi (8)
To explain the concepts of data-serial and data-parallel components, the compound
software given in Figure 1 is used as an illustrative example. The system consists
of four components, and in Table 1 different pairs of data-serial and data-parallel

components are listed. In addition, possible conditional reliabilities which can be
used to express the dependency between these components are given.

Table 1. Different pairs of data-serial and data-parallel com-

ponents.

data-serial component pairs stochastic dependence
C1 and C2 P2j1 OF P12

C1 and C4 P41 OF P1|4

C2 and C4 P4j2 OF Pajg

C3 and C4 P4|3 Or P34

data-parallel component pairs stochastic dependence

C1 and C3 P3|1 Or P1|3
C2 and C3 P3|2 OF Pa|3

To express dependencies for sets of data-serial and data-parallel components,
different conditional reliabilities can be used. For example, to express the depen-
dency between the data-serial components 1 and 4 and the data-serial components
2 and 4, the conditional reliability p4j;2 can be used. In the same way, to express
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the dependency between the data-parallel components 1 and 3 and between the
data-serial components 1 and 4, the conditional reliability p;j34 can be used.

1.4. Assumptions

In this study, a software component is considered to be an entity that has a pre-
defined and specified boundary and which is atomic, in the sense that it can’t or
won’t be divided into sub-components. It is made no special assumptions whether
the component is available in binary format or as source code. The context is
essentially an Off-The-Shelf (OTS) situation, where custom developed and previ-
ously developed software (PDS) components are combined to achieve a larger piece
of software.

In this paper, only on-demand types of situations are considered, i.e. situations
where the system is given an input and execution is considered to be finished when
a corresponding output has been produced.

The following assumptions are made:
e All structural relations between the components are known.
e The individual component reliabilities are known.
e The components, as well as the system, only have two possible states, a
functioning state and a failure state.
e [t is assumed positive correlation between the software components.
o The system has a monotone structure 27.

1.5. The structure of this paper

In Section 2, some of the work that has been done with regard to understanding
the nature of failure dependency between software components is reviewed. Section
3 illustrates how the software components’ marginal reliabilities put direct restric-
tions on the components’ conditional reliabilities and failure probabilities. It is also
shown that the degrees of freedom are much fewer than first anticipated when it
comes to conditional probabilities. Section 4 describes the methods and analysis
techniques used to identify possible rules for selecting the most important compo-
nent dependencies. Section 5 presents the selected test cases, and Section 6 presents
the results from the analyses. Section 7 summarizes the results and tries to come
up with possible rules for selecting the most important component dependencies.
Section 8 concludes and presents ideas for further work.

2. Earlier Work Related to the Problem of Component
Dependency

The dominating case for discussions on software component dependency is multi-
version designs, typically the N-version approach where output is decided by a
voter using the results from N components as input. The idea behind N-version
programming is that by forcing various aspects of the development process to be
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different, i.e. development team, methods, tools, programming languages etc. the
likelihood of having the same fault in several components would become negligible.

The hypothesis that independently developed components would fail indepen-
dently has been investigated from various perspectives. A direct test of this hy-
pothesis was done in '* where a total of 27 components were developed by different
people. Although the results can be debated, this experiment indicated that as-
suming independence should be done with caution. The experiment showed that
the number of tests for which several components failed was much higher than an-
ticipated under the assumption of independence. While there are many different
mechanisms that might cause even independently developed components to fail on
the same inputs, it doesn’t seem implausible that the simple fact that programmers
are likely to approach a problem in much the same way would cause them to make
the same mistakes, and thus cause dependency between the components’ failure
behavior.

A more theoretical approach on the same issue was presented in Eckhardt and
Lee ® and elaborated on a few years later in Littlewood and Miller 2. Although
Eckhardt and Lee present several interesting results, our primary interest is related
to the considerations regarding whether independent development processes pro-
duce software components that fail independently. Note that a more comprehensive
discussion is provided in 22.

The key variable in the Eckhardt and Lee model is the difficulty function 6(z),
defined to be the probability that a component version chosen at random will fail
on a particular input demand, x. The more difficult an input x is, the greater we
would believe the chance that an unknown program will fail.

The main result in the Eckhardt and Lee model is that independently developed
components do not imply independent components. The key point is that as long as
some inputs are more difficult to process than others, even independently developed
components will fail dependently. In fact, the more the difficulty varies between the
inputs, the greater is the dependence in failure behavior between the components.
Only in the special situation where all inputs are equally difficult, i.e. the difficulty
function #(x) is constant for all x € €2, independently developed components will
fail independently.

The Littlewood and Miller model 2! is a generalization of the Eckhardt and
Lee model in which the different component versions are developed using diverse
methodologies. In this context, the different development methodologies might rep-
resent different development environments, different types of programmers, different
languages, different testing regimes etc.

The main result in the Littlewood and Miller model is that the use of diverse
methodologies decreases the probability of simultaneous failure of several compo-
nent versions. In fact, they show that it is theoretically possible to obtain component
versions which exhibit better than independent failure behavior. So while it is nat-
ural to try to justify an assumption of independence, it is worthwhile noting that
having independent components is not necessarily the optimal situation with regard
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to maximizing reliability.

Other relevant work on how to include component failure dependencies are sum-
marized below.

Gokhale and Trivedi ® look into problems associated with assuming indepen-
dence in path-based approaches. The problem they address is that assuming in-
dependence of successively executing components is likely to produce pessimistic
results, especially considering that the same component may be executed several
times in a single path due to loop structures. The knowledge that a component did
not fail on the previous loop iteration is likely to be a good indication that it will
not fail on the next iteration either. This is an interesting observation and it indi-
cates that thinking in terms of reliability block diagrams when it comes to software
components is not straightforward. As a possible way to overcome the problem of
a pessimistic estimate, the authors propose to treat multiple executions as a single
execution. Their solution relies on 1) time-dependent notation of reliability and 2)
time-dependent failure intensities of the individual components.

Zavala and Huhns 32 present an initial empirical study on the correlation of
code complexity measures and coincident failures in multi-version systems (when
two or more program versions are identically incorrect). Their study is based on 28
Java implementations and clearly shows a correlation between software metrics and
coincident failures. At the current state the results cannot be generalized, however
the authors have shown that the use of software complexity metrics as indicators of
proneness to coincident failures in multi-version systems is worth exploring further.

In Popic et al. 28, the authors extend their previous work on Bayesian reliabil-
ity prediction of component based systems by introducing the error propagation
probability into the model. Like most other component-based reliability models,
their old model assumed that system components will fail independently. The au-
thors define the error propagation probability as the probability that an erroneous
state generated in one component propagates to other components instead of being
successfully detected and masked at its source. To describe error propagation, the
model of Nassar et al. 26 is applied. Based on a case study, the authors conclude that
error propagation may have significant impact on the system reliability prediction
and argue that future architecture-based models should not ignore it.

Fricks and Trivedi 7 study the effect of failure dependencies in reliability models
developed using stochastic Petri nets (SPN) and continuous-time Markov chains.
Based on a set of examples, the authors conclude that failure dependencies highly
influence the reliability models and that failure dependencies therefore never should
be ignored. Of special interest is the authors classification of different types of failure
dependencies that can arise in reliability modeling. The authors then illustrate how
several of these failure dependencies can be incorporated into stochastic Petri net
models.

Vieira and Richardson 3! argue that component dependencies should be treated
as a first class problem in component-based systems (CBSs). They discuss issues re-
lated to component-based system dependencies and present a conceptual model for
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describing and analyzing dependencies in a CBS. To describe component dependen-
cies, the authors use denotational semantics of partial-order multi-sets(pomsets).

In Huang et al. 12, the authors combine analytical models with simulation tech-
niques for software reliability measurement. The authors present two failure-rate
simulation techniques, which both take the functional dependency and error corre-
lation among the components in a software system into account. In the first tech-
nique, the authors use a dependency coefficient to include dependencies between
the components. This coefficient is based on test data from each component in the
system. In the second technique, the transition probabilities between the compo-
nents in the system are used. The authors do however not suggest any approaches
to find these probabilities. The main contribution of their work is demonstrating
an architecture-oriented simulation framework to analyze reliability measures for
software systems with dependent components.

Reliability block diagrams (RBDs), fault trees (FTs) and reliability graphs
(RGs) are all limited in their modelling capability, due to the assumption of stochas-
tic independence among the system’s units. Dynamic reliability block diagrams
(DRBDs), presented in 4, extend RBDs with elements specific for representing dy-
namic behaviors. Examples of dynamic-dependent behaviors that can be handled
in a DRBD include dependent, cascade, on-demand and/or common cause fail-
ures, as well as interferences between the system’s units such as load sharing and
inter /sequence-dependency. The DRBDs are based on the concept of dependency.
The authors consider a dependency as the simplest dynamic relationship between
two system units. A dependency is a unidirectional, one-way, dynamic relationship,
which represents and quantifies the influence of one unit on another unit. More
complex dynamic behaviors are than expressed as compositions of these simple de-
pendencies. In 4, the authors investigate the reliability in two case studies and show
that dynamic aspects and behaviors, usually not analyzable by other methodologies,
can be handled in DRBDs.

Although previous work on software component dependencies is valuable, it was
in 32 concluded that the scope of this work is too narrow. In 32, the authors take a
deeper look at the nature of software component dependencies and try to increase
the reader’s understanding of the mechanisms that cause dependencies between
software components. In the paper, the authors differ between degree of depen-
dence between software components, which can be expressed through conditional
or simultaneous failure probabilities, and the mechanisms that either cause or ex-
clude events to occur together. These mechanisms are divided into two distinct
categories:

e Development-cultural aspects (DC-aspects): Includes factors that cause dif-
ferent people, tools, methods, etc. to make the same mistakes, e.g. identical
programming language, compiler, etc.

e Structural aspects (S-aspects): Includes factors that allow a failure in one
component to affect the execution of another component, e.g. through
shared resources, structural relation, etc.
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The main conclusions in °¢ are that inter-dependencies between software compo-

nents are more complicated than any existing methods consider.

3. Prior Information from the Software Components’ Marginal
Reliabilities

In the following, it will be shown how single components’ marginal reliabilities,
as well as the assumption of positive correlation, put directly restrictions on the
components’ conditional reliabilities. These restrictions may be used as direct input
into a Bayesian belief net for establishing prior probability distributions for the
probabilities that sets of software components will fail simultaneously. It may also
be used as guidance for the experts as to which conditional reliabilities it is easiest
to make any decisions about.

3.1. Two components system

Consider a general system consisting of only two software components. Assume
further that the two components’ marginal reliabilities p; and ps are known. In
addition, positive correlation between component 1 and 2 is assumed (pa); > p2).
This means that information that component 1 is functioning cannot reduce the
reliability of component 2. This is a reasonable assumption when the components
are in series with each other. However, when the components are in parallel, this
may not always be a natural assumption. If the components have been developed by
different development teams, using different development methods and languages,
it might in fact be natural to assume negative correlation. This means that if
one component fails, this increases the reliability of the other component and visa
versa. However, the consequences of assuming independence between all software
components in a compound software are far more severe than by assuming positive
correlation.

In a simple two components system, there are eight possible conditional proba-
bilities between component 1 and 2 (paj1, P2j1, P1j2; P1jz etc.). If one of these con-
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Table 2.  Restrictions on the conditional reliabilities py|y
and P21 in a simple two components system for different
combinations of the marginal reliabilities p1 and pa.

Marginal Conditional
reliabilities reliabilities

C1 C2

p1 =0.9 p2 =0.9999  py € [0.9999, 1]

Pay1 € [0.999,0.9999]

p1=0.99 p2 =0.9999  pyy; € [0.9999, 1]
Pyt € [0.99,0.9999)]

p1=0.999  pz =0.9999 pyy; € [0.9999, 1]
Pyt € [0.9,0.9999]

p1 =0.9 p2 =0.999  pyy; € [0.999, 1]
Pay1 € [0.99,0.999]

p1 =099 p2 =0.999  pyyy € [0.999,1]
Pyt € [0.9,0.999]

p1=0999  p2=0999  pyy; € [0.999,1]
Pa1 € [0,0.999]

p1=0.9999  p2=0.999  pyy; € [0.999,0.9990999]
Py € [0,0.999]

p1 =0.99999 p2 =0.999  poj; € [0.999,0.99900999)]
Pyt € [0,0.999]

p1=0999  p2 =099  pyy; € [0.99,0.99099099]
pa1 € [0,0.99]

p1=0.9999  py = 0.99 pap € [0.99,0.990099]
Paji € [0,0.99]

p1=0.99999 py = 0.99 paj1 € [0.99,0.9900099]
paj1 € [0,0.99]

ditional probabilities is known, the others can easily be expressed by using general
rules in probability theory. See proof in Appendix A.

Based on the law of total probability, the linear relationship between py; and
Po|i 1s given in Equation 9.

p2 (1—p1)
Dop = — — ——— P21 (9)

Y4 Y41
Equation 9 is used as basis for investigating the relation between the marginal
reliabilities p; and ps and the conditional reliabilities py); and pyj7. In Table 2,

different sets of marginal reliabilities and their restrictions on the components’
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conditional reliabilities are given. Restrictions on the conditional reliabilities po);
and py|1 for three different sets of marginal reliabilities p; and p are also illustrated
graphically in Figure 2.

The results in Table 2 and Figure 2 clearly shows that the marginal reliabilities
p1 and ps put direct restrictions on the conditional reliabilities py; and py7. In
fact, in some cases the conditional reliabilities are restricted into small intervals.
The restrictions depend heavily on the values of the marginal reliabilities.

3.2. Three components system

Let’s move a step forward and look at a simple system consisting of three com-
ponents. As for the two components system, it is assumed that the components’
marginal reliabilities p;, p2 and p3 are known. In addition, positive correlations are
assumed.

In a simple three components system there are 48 possible conditional proba-
bilities between components 1, 2 and 3 (paj1, 3|1, P32, P3j2, P3j12 etc.), including
the eight possible conditional probabilities between components 1 and 2. If four
of these conditional probabilities are known, the others can easily be expressed
by using general rules of probability theory (see proof in Appendix A). In a three
components system, one therefore for instance needs to know one conditional prob-
ability between components 1 and 2 and three conditional probabilities between
components 1, 2 and 3 to find all the remaining conditional probabilities. One pos-
sible set of conditional probabilities may for example be: paj1, p3j1, p3j2 and p3ji2.
However, this is only one possible selection of conditional probabilities that can
be chosen. Another set may for example be: py1, 3|1, p3jz and psj13. Which set to
choose should be considered thoroughly, since some conditional probabilities may
be easier for an expert to determine than others.

The linear relationships between pz); and ps; and between pzjo and p33 are
parallel to the linear relationship between components 1 and 2 in Equation 9. The
relations between the conditional reliabilities p312, p3j13, p3j12 and psjiz are shown
in Appendix A to be:.

P3j1 — P3j12P2)1

- 10
D312 1= papy (10)
P3j2P2 — P3|12P2|1P1
P32 = | | | (11)
P2 — P2j1P1
D3 — D3|1P1 — P3|2P2 + P3|12DP2|1P1
D3|z = | | | (12)

L —pa+ (pon — )p1
Equation 9 and the corresponding ones for p3;; and psj2, and Equations 10 - 12
are used as basis for investigating the relation between the marginal reliabilities p1,
p2 and p3 and the conditional reliabilities py|1, psj1, p3j2 and paji2. In Tables 3 - 5,
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Table 3.  Restrictions on the conditional reliabilities py|1,
P3|1, P3|2 and p3|12 in a simple three components system
when p; = 0.9999, p2 = 0.999 and p3 = 0.99.

Example 1

First assumption:

p1 = 0.9999

p2 = 0.999

p3 = 0.99

Results in:

P21 € [0.999,0.9990999] Poj1 € [0,0.999]
P3|1 € [0.99,0.990099] P3|1 € [0,0.99]
P32 € [0.99,0.99099099] P3|z € [0,0.99]
p3|12 € [0.99,0.99099999] P3|z € [0,0.99]
Second assumption:

p2j1 = 0.99905

p3|1 = 0.990085

Results in:

Paj2 € [0.990043,0.990964]  pgj5 € [0.026468, 0.947503]
Paji2 € [0.990085,0.990999]  pg15 € [0,0.140085]

Third assumption:
Results in:
p3|12 € [0.990336,0.990342] P3|z € [0,0.140085]

three different sets of marginal reliabilities and their restrictions on the components’
conditional reliabilities are given. These tables should be read as follows:

e In the first assumption, it is assumed that the components’ marginal re-
liabilities are known. Knowing these reliabilities put direct restrictions on
all the remaining conditional reliabilities in the system. In some cases they
limit the conditional reliabilities into small intervals.

e In the second assumption, it is assumed that the conditional reliabilities
p21 and pg); are known, in addition to the marginal reliabilities. This put
more strict restrictions on the remaining conditional reliabilities p3» and
P3j12-

e In the third assumption, the conditional reliability pz), is also assumed
to be known and it can easily be seen that the more information that is
available, the more strict are the restrictions on the remaining reliabilities.

4. Methods and Analysis

In this section, the techniques used to identify possible rules for selecting the most
important component dependencies are described in detail. The techniques are ap-
plied on three test cases, each representing a well-known software structure. For
detailed descriptions of the test cases and the sets of marginal and conditional
reliabilities used see Section 5.
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Table 4. Restrictions on the conditional reliabilities
D2|1, P3|1, P3|2 and p3|12 in a simple three components
system when p; = 0.99, p2 = 0.999 and p3 = 0.9999.

Example 2

First assumptions:

p1 = 0.99

p2 = 0.999

p3 = 0.9999

Results in:

D1 € [0.999, 1] P21 € [0.9,0.999]
P31 € [0.9999, 1] P31 € [0.99, 0.9999]
p3|2 € [0.9999, 1] P3|z € [0.9,0.9999]
P3l12 € [0.9999, 1] P3|iz € [0,0.9999]

Second assumptions:

paj1 = 0.9999

P31 = 0.99999

Results in:

P32 € [0.9999081, 1] P3|z € [0.9,0.9918081]
p3|12 € [0.99999, 1] P31z € [0.9,0.99099]

Third assumptions:

p3j2 = 0.99995

Results in:

p3|12 € [0.99999,0.999995] P3|iz € [0.94446, 0.94995]

4.1. Direct calculation

In the “direct calculation”, the effects of including only a subset of the actual com-
ponent dependencies when assessing the failure probability of compound software
are examined. In this analysis, all marginal and conditional reliabilities are assumed
to be known. This makes it possible to assess the system’s “true” failure probability
when all dependencies are taken into account. The system’s “true” failure proba-
bility can then be compared to the failure probability predictions one gets when
various component dependencies are ignored.

4.2. Birnbaum’s reliability importance measure

Birnbaum’s measure 2 for the reliability importance of component 4, IiB , is defined
by:

_ oh

B = 2=
opi

3

(13)

Hence, Birnbaum’s measure is found by partial differentiation of the system reli-
ability with respect to p;. This approach is well known from classical sensitivity
analysis and assumes independence between the components. If 17 is large, a small
change in the reliability of component i will give a relatively large change in system
reliability.
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Table 5. Restrictions on the conditional reliabilities py|y,
P3|1, P3j2 and p3ji2 in a simple three components system
when p; = 0.99, p2 = 0.9999 and p3 = 0.999.

Example 3

First assumptions:

p1 = 0.99

p2 = 0.9999

p3 = 0.999

Results in:

D2|1 € [0.9999, 1] Poji € [0.99,0.9999]
P31 € [0.999, 1] P31 € [0.9,0.999]
p3|2 € [0.999, 0.9990999] P3|z € [0,0.999]
p3|12 € [0.999,1] p3j13 € [0,0.999]

Second assumptions:

p2j1 = 0.99999

P31 = 0.9999

Results in:

P32 € [0.9990802, 0.9990999] P3|z € [0,0.918808]
p3|12 € [0.9999,0.99990999] P31z € [0,0.9099]

Third assumptions:

P32 = 0.999085

Results in:

p312 € [0.9999,0.9999085] P3|z € [0.0556, 0.149085]

Pivotal decomposition gives that:

h(p) = pih(1:,p) + (1 — pi)1(0s, p)
= pi(h(1;,p — h(0s, p)) + (04, P) (14)

Birnbaum’s measure can therefore be written as:

ok

B ==
opi

K2

= h(1;,p) — h(0;, p) (15)

Since h(-;, p) = E[#(-;, X)], the Birnbaum’s measure can be written as:

= E[p(1;,X) — ¢(0;, X)] (16)

When ¢(X) is monotone, it can only take the values 0 and 1. I can therefore be
given by:
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Birnbaum’s measure is therefore the probability that the system is in such a state
that component ¢ is critical for the system. If the components are dependent, which
often is the case for software systems, the probability in Equation 17 can be used
as the definition of the Birnbaum’s measure.

In the experimental study, the idea is to use Birnbaum’ measure to check if
the importance of the software components changes when various component de-
pendencies are ignored. If this is the case, it may indicate that some component
dependencies are more important than others.

In Section 6, the results from using Birnbaum’s measure are presented as one
or more of the following measures:

e Original Birnbaum’s measures.

e Standardized Birnbaum’s measures.

e Squared difference between the true Birnbaum’s measures and the measures
one gets when various component dependencies are ignored.

e Squared difference between the true standardized Birnbaum’s measures and
the standardized measures one gets when various component dependencies
are ignored.

4.3. Principal Component Analysis (PCA)

A principal component analysis is concerned with explaining the covariance struc-
ture or the correlation structure of a set of variables through a few linear com-
binations of these variables '3. These linear combinations are called the principal
components (PC).

The objective of a principal component analysis is usually data reduction. Al-
though p variables are required to reproduce the total system’s variability, often
much of this variability can be explained by a small number of k& uncorrelated prin-
cipal components (k < p). If this is the case, the k principal components can replace
the p variables, and the data set can be reduced.

Let’s assume that the system’s predicted failure probabilities under different
dependency combinations® represent the variables in a PCA. For example; variable 1
can be the system’s failure probability when all dependencies are included, variable
2 can be the system’s failure probability when all components are independent and
so on. All these variables are than calculated for n unique observation vectors.
These observation vectors represent different variations in the values for each of the
test cases’ conditional reliabilities and are identified using a “factorial design” 24.

One of the main results from a PCA analysis is a graphical representation of the
data. These graphs should be studied in detail. Score plots express graphically the
variation in data and loading plots express the original variables contribution to
describe this variation. To get a better understanding of the variation in data, score
plots and loading plots should be examined simultaneously. Especially, points that

©See Definition 2 in Section 1.3.
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@
Fig. 3. Minimal path set representation of test case 1.

fall close together in the loading plots are of special interest. This indicates that
the variables are highly correlated and therefore explain the same type of variation
in data.

A good starting point would therefore be to try to identify the variables that
load equally to the variable where all component dependencies are included. In this
way the most important component dependencies may be identified.

5. Test Cases

To identify possible rules for selecting the most important component dependencies,
this paper investigates three test cases, each representing a well-known software
structure. In all test cases, the components are assumed to execute sequentially
according to their numbers.

5.1. Test case 1

Test case 1 is a typical recovery block structure and consists of two independently
developed, functionally identical software components that receive the same input
data (see Figure 3). The first component is a super component consisting of sub
components 1 and 2. Both the super component and component 3 receive the same
input data, but they are not run in parallel like in N-version programming. First,
the super component is run and its output is checked using an acceptance test. An
acceptance test is a program specific fault detecting mechanism, which checks the
results from a program execution. If the super component passes the acceptance
test, its outcome is regarded as successful and the recovery block can be exited.
If the test fails or if any errors are detected by other means during execution,
an exception is raised and backward recovery is invoked. This restores the state
of the system to what it was at entry, and component 3 is executed. Then the
acceptance test is applied again. If both the super component and component 3 fail
the acceptance test, the system fails.

Figure 3 only illustrates the redundant and diverse software components in the
system. This is done to simplify the analysis. It should, however, be emphasized that
the system is not complete without an additional component giving the redundant
components inputs and an acceptance test validating the operation of the software
components.
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Table 6. The selected marginal and conditional
reliabilities for test combinations 1.1 and 1.2.

Test combination 1.1 Test combination 1.2
p1 = 0.999 p1 = 0.9999

p2 = 0.999 p2 = 0.999

p3 = 0.9999 p3 = 0.99

p2j1 = 0.9999 paj1 = 0.99905

P31 = 0.99999 p3j1 = 0.990085

p3|2 = 0.999985 p3j2 = 0.9903

p3|12 = 0.999992 Pp3j12 = 0.99034

The system in Figure 3 is evaluated in two different ways, representing test com-
bination 1.1 and test combination 1.2. In test combination 1.1, it is assumed that
component 3 is the “high-assurance” component, whereas the super component con-
stitutes the “high-performance” component. In test combination 1.2, it is assumed
that the super component is the “high-assurance” component, whereas component
3 is the “high-performance” component. In both combinations, it is assumed that
the “high-assurance” component is more reliable than the “high-performance” com-
ponent.

Based on the system’s minimal path sets, the system reliability of test case 1 is
given in Equation 18.

P(¢(x) = 1) = paj1p1 + p3 — P3j12p21P1 (18)

Since the main point of this paper is to investigate and evaluate the effect of in-
cluding only partial dependency information when assessing a system’s reliability,
all the essential marginal and conditional reliabilities must be defined. Based on
the assumptions made for test case 1 and the restrictions from the marginal relia-
bilities (see Section 3), a valid set of marginal and conditional reliabilities for test
combination 1.1 and test combination 1.2 are given in Table 6.
The system’s failure probability was assessed for the following dependency com-
binationsd:
1. Including all software component dependencies.
2. Assuming independence between all software components.
3. Including only the dependency between data-serial components 1 and 2.
4. Including the dependencies between data-parallel components 1 and 3, and
between data-parallel components 2 and 3.
Including only the dependency between data-parallel components 1 and 3.
Including only the dependency between data-parallel components 2 and 3.
7. Including the dependencies between data-parallel components 1 and 3, and
between data-serial components 1 and 2.

o o

dSee Definition 2 in Section 1.3.
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OO

Fig. 4. System drawing of test case 2 and test case 3.

8. Including the dependencies between data-parallel components 2 and 3, and
between data-serial components 1 and 2.

5.2. Test case 2

The second test case represents a more complex fault tolerant system capable of
switching between two redundant components in case of failure. This type of struc-
ture is referred to as a simplex architecture 3°, and are for instance used on software
controllers in Boeing 777. The system consists of five components and includes both
data-serial and data-parallel components (see Figure 4).

The test system is basically a redundant system with a hot standby and forward
recovery. This means that the system switches to a “high-assurance” controller
(component 4) if the normal “high-performance” controller (component 3) causes
the system to enter states outside a predetermined boundary.

In this system, the sensor manager (component 1) receives data from the sen-
sors that are monitoring the equipment under control (EUC). This information
is collected by the manager and sent to the monitor (component 2) and the two
controllers (components 3 and 4). Based on the information sent from the sensor
manager, the monitor selects which controller to be used. The switch (component
5) will receive input from the monitor as to which controller to take its input from.
Notice that both controllers continuously receive data and send output. It is only
up to the monitor to decide which of the controllers that actually will be allowed to
control the system. Data from the selected controller will be sent to the actuators
which in turn control the EUC.

For simplicity, two assumptions are made. First of all, it is assumed that the
switch does not fail. Secondly, it is assumed that the controllers are independent
of the monitor. The system will function as long as the sensor manager functions
in combination with either both controllers or with at least one controller and the
monitor.

A minimal path set representation of the simplified system is illustrated in
Figure 5. Based on the system’s minimal path sets and the assumptions that are
made, the system’s reliability is given in Equation 19.
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Fig. 5. Minimal path set representation of test case 2.

Plp(x) =1) = D3[1P2|1P1 + P4|1P2)1P1 + P4aj13P3)1P1
— 2p413P3)1P2)1P1 (19)

Based on the assumptions made for test case 2 and the restrictions from the
marginal reliabilities (see Section 3), a valid set of marginal and conditional re-
liabilities for test case 2 is given in Table 7.

The system’s failure probability was assessed for the following dependency com-
binations:

1.

Gl N

10.
11.

12.

13.

14.

Including all software component dependencies.

Assuming independence between all software components.

Including only the dependency between data-parallel components 3 and 4.
Including only the dependency between data-serial components 1 and 2.
Including the dependencies between data-serial components 1 and 2, and
between data-parallel components 3 and 4.

Including the dependencies between data-serial components 1 and 3, and
between data-parallel components 3 and 4.

Including the dependencies between data-serial components 1 and 4, and
between data-parallel components 3 and 4.

Including the dependencies between data-serial components 1 and 3, be-
tween data-serial components 1 and 4, and between data-parallel compo-
nents 3 and 4.

Including only the dependency between data-serial components 1 and 3.
Including only the dependencies between data-serial components 1 and 4.
Including the dependencies between data-serial components 1 and 3, and
between data-serial components 1 and 4.

Including the dependencies between data-serial components 1 and 2, be-
tween data-serial components 1 and 3 and between data-serial components
1 and 4.

Including the dependencies between data-serial components 1 and 2 and
between data-serial components 1 and 3.

Including the dependencies between data-serial components 1 and 2 and
between data-serial components 1 and 4.

Note that we somewhat imprecisely use the characterizations data-serial and data-
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Table 7. The selected marginal
and conditional reliabilities for
test cases 2 and 3.

Test case 2 and 3

p1 = 0.99999
p2 = 0.999
ps = 0.99

pa = 0.9999

o = 0.999005
p3j1 = 0.990005
paj = 0.999905
Pajs = 0.999995

Pajis = 0.9999965

parallel also in the simplified system. The same is done in test case 3.

5.3. Test case 3

Test case 3 is equal to test case 2, except that a failure of component 1 does not
necessarily cause system failure. This is counterintuitive since component 1 is in
series with the rest of the system, i.e. all other components are downstream of this
component. To see that failure in component 1 doesn’t necessarily cause the system
to fail, what is meant by failure in component 1 must be defined.

It must be remembered that the context is a system consisting of multiple
software components. For each of these components it is assumed that reliability
data are available. This means that the reliability assessment of these components
must have been done with reference to a given specification. It will in many cases,
however, be uncertain whether this specification is completely in accordance with
the requirements of the system the component is put into. Thus, what constitutes
a failure, according to the component’s specification, is not necessarily a failure in
the context of the system. Limited accuracy of outputs is one example of “failures”
that might not constitute a failure in a given context. As can be seen from the
reliabilities in Table 7, failures in component 1 are considered to be serious. E.g.,
the reliability of component 3 is 0.990005 when component 1 is OK and 0.490005
when component 1 fails.

By assuming that a failure of component 1 does not necessary cause system
failure, the assumption in Section 1.4 on binary component states is violated. If
the system is robust to a failure in component 1, the component has two possible
failure modes instead of one: 1) component 1 fails and leads to system failure and
2) component 1 fails but does not lead to system failure.

Birnbaum’s measure assumes binary component states and can therefore not
be calculated for components having multiple failure modes. One possible way to
overcome the problem of multiple failure modes in component 1, is to treat compo-
nent 1 as an environmental factor and not as a regular component in the system.
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Another way is to redefine what is meant by a failure of component 1, and say that
component 1 only fails if it leads to system failure as well. In test case 3, component
1 is treated as an environmental factor and Birnbaum measures are only calculated
for components 2, 3 and 4.

The system in test case 3 will function as long as either both controllers function,
or if at least one controller and the monitor function. Based on the simplified
system’s minimal path sets, the assumptions that are made and the law of total
probability, the system reliability is given in Equation 20.

P(p(x) = 1) = (p31P2)1 + Paj1P2)1 + Paj13P3)
— 2p413P31P2)1)P1
+ (P3)1P2|1 + P4jiP2jT + PajisP3|1
- 2P4|13P3|IP2\I)C]1 (20)

The system’s failure probability was assessed for same dependency combinations as
in test case 2.

6. Results

For each test case described in Section 5, the following procedure was applied:
1. Direct calculation was performed using a selected set of marginal and con-
ditional reliabilities.
2. Birnbaum’s measures were studied assuming the same marginal and con-
ditional reliabilities.
3. PCA was performed by varying the values of the test case’s conditional
reliabilities.
The results from the analyses are summarized below.

6.1. Test case 1.1
6.1.1. Direct calculation

Using the marginal and conditional reliabilities in Table 6, the system’s failure prob-
ability in test case 1.1 was calculated assuming the eight dependency combinations
listed in Section 5.1. The results are summarized in the line plot in Figure 6 and
clearly show that the system’s failure probability divides into four different groups
depending on the dependency combination used. The groups are summarized below.
e Group 1 consists of dependency combinations 1 and 4. Both these de-
pendency combinations result in the system’s exact failure probability
(0.000092). This indicates that dependency combination 4, which includes
the dependencies between data-parallel components 1 and 3 and between
data-parallel components 2 and 3, can replace the true dependency combi-
nation in test case 1.1 without significantly underestimating the system’s

failure probability.
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Test case 1.1:

Combination:

o
0
u
N}
-

Failure
probability:

10000000 +w
20000000 | ™
S80000°0 —
600000 —
2600000 T

Fig. 6. Results from direct calculation in test case 1.1.

Group 2 consists of dependency combinations 5 and 7, which both include
the dependency between data-parallel components 1 and 3. Using one of
these dependency combinations results in a minor underestimation of the
system’s failure probability (0.00009).

Group 3 consists of dependency combinations 6 and 8, which both include
the dependency between data-parallel components 2 and 3. Using one of
these dependency combinations results in a minor to average underestima-
tion of the system’s failure probability (0.000085).

Group 4 consists of dependency combinations 2 and 3. Common for these
two dependency combinations is that none of them include any dependen-
cies between data-parallel components. Dependency combination 2 assumes
independence between all software components whereas dependency com-
bination 3 only includes the dependency between data-serial components
1 and 2. Using one of these dependency combinations results in a major
underestimation of the system’s failure probability (0.0000001).

6.1.2. Birnbaum’s measure

Based on the original Birnbaum measures in Table 8, it can easily be seen that de-

pendency combination 4 is the dependency combination that alters the Birnbaum

measures the least. This is especially apparent for the Birnbaum measures of compo-

nents 1 and 2. While dependency combination 4 has the same Birnbaum measures

for components 1 and 2 as the correct dependency combination, the remaining

dependency combinations significantly overestimate these measures. Dependency

Table 8. Original Birnbaum measures and standardized
squared difference for components 1, 2 and 3 in test case 1.1.

g
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Loading plot for dependency combination 1 to 8
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Fig. 7. Loading plot for test case 1.1.

combinations 2 and 3, which are the combinations that overestimates the Birnbaum
measures the most, are also the dependency combinations that underestimates the
system’s failure probability the most.

6.1.3. PCA

Variables that fall close together in a PCA loading plot indicate that the variables
are highly correlated and that they explain the same type of variation in data. The
loading plot in Figure 7 shows that the different dependency combinations in test
case 1.1 divide into four different groups based on their PCA loadings. The groups
are summarized below.

e Group 1 consists of dependency combinations 1 and 4, since these depen-
dency combinations fall close together in the loading plot. The results from
the PCA analysis show that using dependency combination 4 results in the
exact or a minor overestimation of the system’s failure probability. Using
all other dependency combinations will in almost all cases underestimate
the system’s failure probability, however to varies degrees.

e Group 2 consists of dependency combinations 5 and 7. The results from
the PCA analysis show that using one of these dependency combinations
mainly results in a minor underestimation of the system’s failure proba-
bility. However, in some special cases these dependency combinations may
result in a major underestimation of the system’s failure probability.

e Group 3 consists of dependency combinations 6 and 8. The results from
the PCA analysis show that using one of these dependency combinations
mainly will result in a minor underestimation of the system’s failure proba-
bility. However, in some special cases these dependency combinations may
result in a major underestimation of the system’s failure probability.

e Group 4 consists of dependency combinations 2 and 3, which constantly
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Test case 1.2:
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Fig. 8. Results from direct calculation in test case 1.2.

result in a major underestimation of the system’s failure probability. Re-
sults from the PCA analysis show that these dependency combinations
may underestimate the failure probability by a factor of 1000 compared
to the system’s true failure probability. In addition, the results show that
by only including the dependency between data-serial components 1 and 2
may result in even worse results than by assuming independence between
all components.

6.1.4. Results test case 1.1

The results from the analyses performed on test case 1.1 show that:

e Since the data-parallel components 1 and 3 and the data-parallel compo-
nents 2 and 3 have equal reliabilities, both dependencies should be included
in the reliability prediction. In fact, including only one of the dependencies
may result in a major underestimation of the system’s failure probability.

e Including only the dependency between the data-serial components 1 and
2 results in a major underestimation of the system’s failure probability.
In some cases, the results are even worse than by assuming independence
between all components.

6.2. Test case 1.2
6.2.1. Direct calculation

Using the marginal and conditional reliabilities in Table 6, the system’s failure prob-
ability in test case 1.2 was calculated assuming the same dependency combinations
as in test case 1.1. The results are summarized in the line plot in Figure 8 and
clearly show that the system’s failure probability divides into four different groups
depending on the dependency combination used. The groups are summarized below.
e Group 1 consists of dependency combinations 1 and 4. Both these de-
pendency combinations result in the system’s exact failure probability
(0.00035). This indicates that dependency combination 4 can replace the
true dependency combination in test case 1.2 without significantly under-
estimating the system’s failure probability.
e Group 2 consists of dependency combinations 6 and 8. Using one of these
dependency combinations results in a minor underestimation of the sys-
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Table 9. Original Birnbaum measures and
squared difference for components 1, 2 and 3
in test case 1.2.

DC | IP 1P IB sqrd. diff.

1 0.0097 0.0097 0.001 | O

2 0.01 0.01 0.0011 | 2.3 x 107
3 0.01 0.01 0.001 2.3 x 1077
4 | 0.0097 0.0097 0.0011 | 2.5 x 109
5 | 0.0099 0.0099 0.0011 | 1.3 x10~7
6 | 0.0097 0.0097 0.0011 | 5.7 x 1072
7 | 0.0099 0.0099 0.001 1.4 x 107
8 | 0.0097 0.0097 0.001 3.2x 1079

tem’s failure probability (0.00031).

e Group 3 consists of dependency combinations 5 and 7. Using one of these
dependency combinations results in an average underestimation of the sys-
tem’s failure probability (0.0001).

e Group 4 consists of dependency combinations 2 and 3. Using one of these
dependency combinations results in a major underestimation of the sys-
tem’s failure probability (0.00001).

6.2.2. Birnbaum’s measure

Based on the original Birnbaum measures and the squared differences in Table 9,
it can easily be seen that dependency combinations 4, 6 and 8 are the depen-
dency combinations that alter the Birnbaum measures the least. This is especially
apparent for the Birnbaum measures of components 1 and 2. While dependency
combinations 4, 6 and 8 have the same Birnbaum measures for components 1 and
2 as the correct dependency combination, the remaining dependency combinations
overestimate these measures. Dependency combinations 2 and 3, which are the
combinations that overestimates the Birnbaum measures the most, are also the
dependency combinations that underestimates the system’s failure probability the
most. In addition, it can easily be seen that dependency combinations 2 and 3 have
the highest squared difference between their Birnbaum measures and the Birnbaum
measures calculated including all component dependencies.

6.2.3. PCA

The loading plot in Figure 9 shows that the different dependency combinations in
test case 1.2 can be divided into four different groups based on their PCA loadings.
The groups are summarized below.

e Group 1 consists of dependency combinations 1 and 4, since these depen-
dency combinations fall close together in the loading plot. This indicates
that dependency combination 4 can replace dependency combination 1 in
test case 1.1 without any serious consequences. In fact, the results from
the PCA analysis show that using dependency combination 4 results in the
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Loading plot for dependency combination 1 to 8
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Fig. 9. Loading plot for test case 1.2.

exact or a minor overestimation of the system’s failure probability. Using
all other dependency combinations will in almost all cases underestimate
the system’s failure probability, however to varies degrees.

e Group 2 consists of dependency combinations 6 and 8. Since, principal com-
ponent 1 explains 99.2% of the variation in data in test case 1.2, dependency
combinations 6 and 8 also load closely to dependency combinations 1 and
4. The results from the PCA analysis show that using one of these de-
pendency combinations mainly results in a minor underestimation of the
system’s failure probability. In fact, the results show that using dependency
combinations 6 or 8 may underestimate the failure probability by a factor
of 9 compared to the system’s true failure probability.

e Group 3 consists of dependency combinations 5 and 7. The results from the
PCA analysis show that using one of these dependency combinations may
underestimate the system’s failure probability by a factor of 78 compared
to the system’s true failure probability.

e Group 4 consists of the dependency combinations that constantly result in
a major underestimation of the system’s failure probability. Results from
the PCA analysis show that these dependency combinations may underes-
timate the failure probability by a factor of 86 compared to the system’s
true failure probability. In addition, the results show that by only including
the dependency between data-serial components 1 and 2 may result in even
worse results than by assuming independence between all components.

6.2.4. Results test case 1.2

The results from the analyses performed on test case 1.2 show that:
e Including the dependency between the most unreliable data-parallel compo-
nents 2 and 3 gives predictions close to the system’s true failure probability.
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Test case 2:
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Fig. 10. Results from direct calculation in test case 2.

Ignoring this dependency may, however, result in a major underestimation
of the system’s failure probability.

e Including the additional dependency between data-parallel components 1
and 3 may improve the predictions even more.

e Including only the dependency between data-serial components 1 and 2
results in a major underestimation of the system’s failure probability. In
some cases, the results are even worse than by assuming independence
between all components.

6.3. Test case 2
6.3.1. Direct calculation

Using the marginal and conditional reliabilities in Table 7, the system’s failure prob-
ability in test case 2 was calculated assuming the fourteen dependency combinations
listed in Section 5.2. The results are summarized in the line plot in Figure 10 and
clearly show that the system’s failure probability divides into three different groups
depending on the dependency combination used. The groups are summarized below:

e Group 1 consists of dependency combinations 1, 7 and 8. All these de-
pendency combinations result in the system’s exact failure probability
(0.000111). This indicates that dependency combinations 7 and 8, which
both include the dependencies between data-parallel components 3 and 4
and between data-serial components 1 and 4, can replace the true depen-
dency combination in the system, without significantly underestimating the
system’s failure probability.

e Group 2 consists of dependency combinations 3, 5 and 6, which all include
the dependency between data-parallel components 3 and 4. Using one of
these dependency combinations results in a minor overestimation of the
system’s failure probability (0.000115).).

e Group 3 consists of dependency combinations 2, 4, 9, 10, 11, 12, 13 and 14.
Using one of these dependency combinations results in a major underes-
timation of the system’s failure probability (0.000021). Common for these
dependency combinations is that none of them include the dependency
between data-parallel components 3 and 4. Dependency combination 2 as-
sumes independence between all software components, whereas the other
combinations only include dependencies between data-serial components.
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Table 10. Standardized Birnbaum measures and squared
difference for components 1, 2, 3 and 4 in test case 2.

DC | IF IF IB IP st. sqrd. diff.

1 [ 0.978 0.0097 0.001 0.0107 | 0

2 | 09783 0.0099 0.0011 0.0107 | 1.3 x 107
3 | 09786 0.0097 0.001 0.0107 | 5.0 x 1010
4 | 09783 0.0099 0.0011 0.0107 | 1.2 x 107
5 | 0.9786 0.0097 0.001 0.0107 | 1.0 x 1010
6 0.9786  0.0097  0.001 0.0107 | 1.0 x 1010
7 | 09786 0.0097 0.001 0.0107 | 5.0 x 1010
8 0.9786  0.0097  0.001 0.0107 | 1.0 x 1010

9 0.9783 0.0099 0.0011 0.0107 | 1.2 x 10~7
10 | 0.9783 0.0099 0.0011 0.0107 | 1.2 x 1077
11 0.9783 0.0099 0.0011 0.0107 | 1.2 x 10~ 7
12 | 0.9783 0.0099 0.0011 0.0107 | 1.1 x 10~7
13 | 0.9783 0.0099 0.0011 0.0107 | 1.1 x 10~7
14 | 0.9783 0.0099 0.0011 0.0107 | 1.2 x 10~7

6.3.2. Birnbaum’s measure

Based on the standardized Birnbaum measures and squared differences in Table 10,
it can easily be seen that dependency combinations 3, 5, 6, 7 and 8 are the depen-
dency combinations that alter the standardized Birnbaum measures the least. In
addition, it can easily be seen that dependency combinations 2, 4, 9, 10, 11, 12,
13 and 14 have the highest squared difference between their standardized Birn-
baum measures and the standardized Birnbaum measures calculated including all
component dependencies.

6.3.3. PCA

The loading plot in Figure 11 shows that the different dependency combinations in
test case 2 can be divided into three different groups based on their PCA loadings.
The groups are summarized below.

e Group 1 consists of dependency combinations 1, 7 and 8, since these depen-
dency combinations fall close together in the loading plot. This indicates
that dependency combinations 7 and 8 can replace dependency combination
1 in test case 2 without any serious consequences. In fact, the results from
the PCA analysis show that using dependency combination 7 or 8 results
in the exact or a minor overestimation of the system’s failure probability.

e Group 2 consists of dependency combinations 3, 5 and 6, which all fall close
together in the loading plot. Since, principal component 1 explains 99.9%
of the variation in data in test case 2, dependency combinations 3, 5 and 6
also load closely to dependency combinations 1, 7 and 8 .The results from
the PCA analysis show that using one of these dependency combinations
mainly results in a minor overestimation of the system’s failure probability.

e Group 3 consists of the dependency combinations that constantly under-
estimate the system’s failure probability, and includes dependency combi-
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Loading plot for dependency combination 1 to 14
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Fig. 11. Loading plot for test case 2.

nations 2, 4, 9, 10, 11, 12, 13 and 14. Results from the PCA analysis show
that these dependency combinations may underestimate the failure prob-
ability by a factor of 5 compared to the system’s true failure probability.
In addition, the results show that by only including dependencies between
data-serial components may result in even worse results than by assuming
independence between all components.

6.3.4. Results test case 2

The results from the analyses performed on test case 2 show that:

e Including the dependency between data-parallel components 3 and 4 gives
predictions close to the system’s true failure probability. Ignoring this de-
pendency will have major consequences on the system’s failure probability.

e Including the additional dependency between the most reliable data-serial
components 1 and 4 results in even better predictions.

e Including only dependencies between data-serial components results in a
major underestimation of the system’s failure probability. In some cases,
the results are even worse than by assuming independence between all
components.

6.4. Test case 3
6.4.1. Direct calculation

Using the marginal and conditional reliabilities in Table 7, the system’s failure prob-
ability in test case 3 was calculated assuming the same dependency combinations as
in test case 2. The results are summarized in the line plot in Figure 12 and clearly
show that the system’s failure probability divides into two major groups depending
on the dependency combination used. The groups are summarized below.
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Fig. 12. Results from direct calculation in test case 3.

e Group 1 consists of dependency combinations 1, 3, 5, 6, 7, and 8. Using
one of these dependency combinations only results in a minor underestima-
tion of the system’s failure probability (0.000103, 0.000105). This indicates
that all these dependency combinations can replace the correct dependency
combination in test case 3 without any major consequences on the system’s
failure probability.

e Group 2 consists of dependency combinations 2, 4, 9, 10, 11, 12, 13 and 14.
Using one of these dependency combinations results in a major underesti-
mation of the system’s failure probability (0.000011).

6.4.2. Birnbaum’s measure

Based on the standardized Birnbaum measures and squared differences in Table 11,
it can easily be seen that dependency combinations 3, 5, 6, 7 and 8 are the depen-
dency combinations that alter the standardized Birnbaum measures the least. In
addition, it can easily be seen that dependency combinations 2, 4, 9, 10, 11, 12,
13 and 14 have the highest squared difference between their standardized Birn-
baum measures and the standardized Birnbaum measures calculated including all
component dependencies.

Table 11. Standardized Birnbaum measures and
squared difference for components 2, 3 and 4 in

test case 3.

DC. | IF 1B IP st. sqrd. diff.
1 0.4527 0.0458 0.5014 | 0
2 0.4553  0.0496 0.4951 | 6.1 x 10~°
3 0.4526  0.0459 0.5015 | 2.7 x 10~8
4 0.4553  0.0496 0.4951 | 6.1 x 10~°
5 0.4526  0.0459 0.5015 | 2.7 x 10~8
6 0.4526  0.0459 0.5015 | 2.7 x 10~8
7 0.4527  0.046 0.5014 | 2.2 x 10~8
8 0.4526  0.046 0.5016 | 4.4 x 108
9 0.4553  0.0496 0.4951 | 6.1 x 10~°
10 | 0.4553 0.0496 0.4951 | 6.1 x 10~°
11 | 0.4552 0.0496 0.4952 | 5.9 x 10~°
12 | 0.4554 0.0494 0.4952 | 5.7 x 107°
13 | 0.4554 0.0496 0.4950 | 6.3 x 105
14 | 0.4554 0.0494 0.4952 | 5.8 x 105
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Loading plot for dependency combination 1 to 14
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Fig. 13. Loading plot for test case 3.

6.4.3. PCA

The loading plot in Figure 13 shows that the different dependency combinations in
test case 3 can be divided into four different groups based on their PCA loadings.
The groups are summarized below:

e Group 1 consists of dependency combinations 1, 3, 5, 6 and 8, since these
dependency combinations fall close together in the loading plot. This indi-
cates that these dependency combinations can replace dependency combi-
nation 1 in test case 3 without any serious consequences. The results from
the PCA analysis show that using one of the dependency combinations in
group 1 may result in the exact or a minor underestimation of the system’s
failure probability.

e Group 2 consists of dependency combination 7. Since, principal component
1 explains 99.7% of the variation in data in test case 3, dependency combi-
nation 7 also load closely to the dependency combinations in group 1. The
results from the PCA analysis show that using dependency combination 7
may result in the exact or a minor underestimation of the system’s failure
probability.

e Group 3 consists of dependency combinations 11, 12, 13 and 14. The results
from the PCA analysis show that using one of the dependency combinations
in group 2 may underestimate the system’s failure probability by a factor
of 9.

e Group 4 consists of the dependency combinations 2, 4, 9 and 10. Since,
principal component 1 explains 99.7% of the variation in data in test case 3,
dependency combinations 2, 4, 9 and 10 also load closely to the dependency
combinations in group 3. The results from the PCA analysis show that
using one of the dependency combinations in group 4 may underestimate
the system’s failure probability by a factor of 10.
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6.4.4. Results test case 3

The results from the analyses performed on test case 3 show that:

e Including the dependency between data-parallel components 3 and 4 gives
predictions close to the system’s true failure probability. Ignoring this de-
pendency will have major consequences on the system’s failure probability.

e Including only dependencies between data-serial components results in a
major underestimation of the system’s failure probability. In some cases,
the results are even worse than by assuming independence between all
components.

7. Summary of the Results and Discussion

The results from the analyses performed in Section 6 show that the three techniques
“direct calculation”, Birnbaum’s measure and PCA in most cases identify the same
dependency combinations as the “best” dependency combinations. The results can
be summarized as follows:

e Including only partial dependency information may give a substantial im-
provement in the reliability predictions, compared to assuming indepen-
dence between all software components. However, this is only as long as
the most important component dependencies are included.

e It is also apparent that dependencies between data-parallel components are
far more important than dependencies between data-serial components.

For a system consisting of both data-parallel and data-serial components, the results
indicate that:

e Including only dependencies between data-serial components may result
in a major underestimation of the system’s failure probability. In some
cases, the results are even worse than by assuming independence between
all components.

e Including only dependencies between data-parallel components may give
predictions close to the system’s true failure probability, as long as the
dependency between the most unreliable components is included.

e Including additional dependencies between data-parallel components may
improve the predictions further.

e Including additional dependencies between data-serial components may
also give better predictions, as long as the dependency between the most
reliable components is included.

One of the key results in % is the following theorem:

Theorem 1.
Let X1...X, be associated random variables such that 0 < X; < 1 fori =
1...n. Then
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EﬁXi > f[EXz (21)
i=1 =1
EﬁXi < f[EXi (22)

Il
N
.
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_

(3

By using this theorem on components having binary states, the theorem says that
falsely assuming independence between components in a series structure will overes-
timate the system’s failure probability. The theorem also says that falsely assuming
independence between components in a parallel structure will underestimate the
system’s failure probability. The author of 27 therefore concludes that for an ar-
bitrary component structure, the consequence of assuming independence will be
impossible to predict.

The results in Section 6 do, however, indicate that it may in fact be possible
to say something about the consequences of assuming independence between some
components in an arbitrary system structure. For a system where there are de-
pendencies between both data-serial and data-parallel components, it is quite clear
that the effect of falsely assuming independence between data-serial components is
greatly diminished as long as the dependencies between data-parallel components
are included. In the opposite case, when wrongly assuming independence between
data-parallel components and including the dependencies between data-serial com-
ponents, the system’s failure probability may however be underestimated even more
than by assuming independence between all software components in the system.

8. Conclusions and Further Work

In this paper, it is shown that the difficult task of including component dependencies
in the reliability calculations can be simplified in three ways:

1. The components’ marginal reliabilities put direct restrictions on the com-
ponents’ conditional reliabilities in a compound software.

2. The degrees of freedom are much fewer than first anticipated when it comes
to conditional probabilities. If the components’ marginal reliabilities and
four of the components’ conditional probabilities are known in a simple
three components system, the remaining 44 conditional probabilities can
be expressed using general rules of probability theory. This is shown math-
ematically in Appendix A.

3. Including only partial dependency information may give substantial im-
provements in the reliability predictions, compared to assuming indepen-
dence between all software components. However, this is only as long as
the most important component dependencies are included.

It should be emphasized that the rules for selecting the most important component
dependencies are based on case studies, where the individual component reliabilities
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are assumed to be known. It is also assumed that all components in the test cases,
as well as the system, only have two possible states. In addition, the research is
restricted to on-demand types of situations.

It should also be emphasized that the objective of this research is to include de-
pendency aspects in the reliability calculations of critical systems, and not to handle
component dependencies in systems consisting of a huge amount of components.

To follow up on these results, a more analytical approach should be consid-
ered. In addition, an evaluation of the proposed rules by studying other well-known
software structures is essential.
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Appendix A. Theorems and Proofs

Theorem 1. Consider a general system consisting of two components. Assume
further that the components’ marginal reliabilities p1 and ps are known. In such a
system there are eight possible conditional probabilities between components 1 and 2:
D2|15 P3|1s P2(1s P3|T, P1)2; P1j2: P12 and pijz. If one of these conditional probabilities
s known, the remaining seven can be found using general rules in probability theory.

Proof. This proof uses Bayes theorem, the rule of complementation and the fol-
lowing rule of total probability:

P2 = P21P1 + PoiPi (A1)

Assume that the conditional probability py|; is known. As shown in Equations A.2-
A.8, the seven remaining conditional probabilities can be expressed as functions of

p1, p2 and py;.

papp =1—p2p (A.2)
P2 — P21P1

{=—— A3
P21 1—p, (A.3)

P2 — P2;1P1
5 =1— ———mmm— A4
b3t 1—p (A4)

P2j1P1

D12 = =i (A.5)

D2
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P21

10 =1— A.6
Pij2 P (A.6)
(1 =pap1)p1

= — A_

P12 1— py (A7)
(1 —P2|1)p1

mp=1—-—— A8
p1j2 1— py ( 5

Theorem 2. Consider a general system consisting of three components. Assume
further that the components’ marginal reliabilities p1, ps and p3 are known. In such
a system there are 48 possible conditional probabilities between components 1, 2 and
3: pa1, P31, P2|15 P2|1s P1|25 P1|25 P1)2> P1|25 P3|1, P3|15 P3|1, P3|15 P1)3; P1)35 P1|35 P1|3»
P32, P3|2, P3|2, P3|25 P2|3; P2|35 P2|35 P2|35 P3|12; P3|12, P3|12, P3|125 P3(12; P3|125 P3|12;
P31125 P2|135 P2|135 P2|135 P2|135 P2|135 P2|13; P2|13, P2|13; P1|23, P1|23: P1]23, P1|235 P1]23;
D1|23, P1)23, P1|23- If four of these conditional probabilities are known, the remaining
44 can be found using general rules in probability theory.

Proof. This proof uses Bayes theorem, the rule of complementation and the fol-
lowing rules of total probability:

D3 = P3j12P2)1P1 + P3j12P31P1

+ P3|12P2)1P1 + P3|12P2(1P1 (A.9)
D3|1 = P3|12P2)1 T P312P3|1 (A.10)
D3j2 = P3[12P1)2 + P3|12P1|2 (A.11)

Assume that the conditional probabilities pa|i, p3j1, p3j2 and psji12 are known. As
shown in Theorem 1, D315 P2|1s D315 P1|2s Pij2;> P1|2: P1j2 can be expressed as functions
of p1, p2 and po1. In the same way p31, p3ji, P31, P13, Pij3» P13, Pij3 can be
expressed as functions of p1, ps and p3|1, and p3j2, P3|z, P32, P2|3, P2|3; P2|3: P3j3 can
be expressed as functions of pz, p3 and pa)s.

The conditional probabilities psji2, P3ji2, P3i2; P3)12> P3)12, P3jiz and psjiz can
further be expressed as functions of p1, p2, p3, paj1, P31, p3j2 and psj12. This is
shown in Equations A.12 - A.18. Especially, to express psj13 in Equation A.17,
Equations A.9, A.13, A.15, A.3 and A.4 are used as basis (the equations are listed
in the sequence of their usage).

P32 = 1 — P32 (A.12)



On Component Dependencies in Compound Software 37

__ P3j1 — P3j12P2)1

5 = A.13
P3|12 1= pop ( )
DP3j1 — P3j12P21
Pz =1- Ll 1 12 (A.14)
— P2n
P3|2P2 — P3j12P2|1P1
P32 = | | | (A.15)
P2 — P21P1
P3|2P2 — P3|12P2|1P1
P32 =1 - | 2 (A.16)

P2 — P21P1

D3 — D3|1P1 — P3|2P2 + P3|12D2|1P1
S A7
s 1—pa+ (pop — Dy (A.17)

_ P3 — P3j1P1 — P3j2P2 + P3j12P2)1P1

P32 = 1 (A-18)
| L —pa+ (pon — )p1
In the same way as shown above,
P3j12P21P1
D213 = olenE (A.19)
P31P1
gives p3|13, P2|13s P2|13> P2(13 P3[13, P2|13 and pa|is.
Furthermore,
P3|12P2|1P1
Dij23 = oleren (A.20)
P3|2P2
is leading to pij23, P1)23; P1j235 P1|23> Pij23: P1)23 and py|a3. |
References

1. T. Aven, Reliability and Risk Analysis, Elsevier, London (1992)

2. Z. W. Birnbaum, On the importance of different components in a multicomponent
system, Multivariate analysis-1I, ed. P. R. Krishnaiah, Academic Press, New York, p.
581-592, (1969)

3. Gustav Dahll and Bjgrn Axel Gran, The Use of Bayesian Belief Nets in Safety Assess-
ment of Software Based Systems, International Journal of General Systems, 29 (2), p.
205-229, (2000)

4. S. Distefano and A. Puliafito, Reliability and availability analysis of dependent-
dynamic systems with DRBDs, Reliability Engineering and System Safety, 94 (9), pp.
1381-1393, Elsevier, (2009)

5. D. E. Eckhardt and L. D. Lee, A theoretical basis for the analysis of redundant software
subject to coincident errors, NASA tech. Memo 86369, (1985)



38 Kristiansen, Winther and Natvig

6. J. D. Esary, F. Proshan and D. W. Walkup, Association of Random Variables, with
Applications, The Annals of Mathematical Statistics, 38 (5), pp. 1466-1474, (1967)

7. Fricks, R.M. and Trivedi, K.S., Modeling Failure Dependencies in Reliability Analysis
Using Stochastic Petri Nets, Proc. of 11th European Simulation Multiconf., Citeseer,
(1997)

8. S. S. Gokhale and K. S. Trivedi, Dependency Characterization in Path-Based Ap-
proaches to Architecture-Based Software Reliability Prediction, IEEE Workshop on
Application-Specific Software Engineering and Technology, IEEE Computer Society,
pp. 86-90, (1998)

9. K. Goseva-Popstojanova and K. S. Trivedi, Architecture-based approach to reliability
assessment of software systems, Performance Evaluation, Elsevier, 45 (2-3), pp. 179-
204, (2001)

10. D. Hamlet, D. Mason, and D. Woit, Theory of Software Reliability Based on Compo-
nents, International Conference on Software Engineering, 23, pp. 361-370, (2001)

11. S. Hauge, M. A. Lundteigen, P. R. Hokstad and S. Haabrekke, Reliability Prediction
Method for Safety Instrumented Systems - PDS Method Handbook, Sintef report no.
A15503, ISBN 978-82-1404850-4, Sintef, (2010)

12. () R. Huang and M. R. Lyu and K. Kanoun, Simulation Techniques for Component-
Based Software Reliability Modeling with Project Application, Proceedings of Interna-
tional Symposium on Information Systems and Engineering (ISE’01), CSREA Press,
pp. 283-289, (2001)

13. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice
Hall, New York, ISBN 0-13-834194-x, (1998)

14. J. C. Knight and N. G. Leveson, An experimental evaluation of the assumption of
independence in multiversion programming, IEEE Transactions on Software Engineer-
ing, 12 (1), pp. 96-109, (1986)

15. S. Krishnamurthy and A. Mathur, On the Estimation of Reliability of a Software
System Using Reliabilities of its Components, Proceedings of the 8th International
Symposium on Software Reliability Engineering (ISSRE’97), IEEE Computer Society
Press, pp. 146-155, (1997)

16. M. Kristiansen, Finding Upper Bounds for Software Failure Probabilities - Exper-
iments and Results, Proceedings of the 24th International Conference on Computer
Safety, Reliability and Security (Safecomp’05), winther, Gran & Dahll, Balkema, pp.
179-193, (2005)

17. M. Kristiansen and R. Winther, Assessing Reliability of Compound Software, Risk,
Reliability and Social Safety (ESREL 2007), Aven & Vinnem, Taylor & Francis Group,
pp. 1731-1738, (2007)

18. M. Kristiansen and R. Winther and John E. Simensen, Identifying the Most Important
Component Dependencies in Compound Software, Risk, Reliability and Safety (ESREL
2009), Bris, Soares & Martorell, Taylor & Francis Group, pp. 1333-1340, (2009)

19. M. Kristiansen and R. Winther and M. van der Meulen and M. Revilla, The Use
of Metrics to Assess Software Component Dependencies, Risk, Reliability and Safety
(ESREL 2009), Bris, Soares & Martorell, Taylor & Francis Group, pp. 1359-1366,
(2009)

20. Building a system failure rate estimator by identifying component failure rates, Pro-
ceedings of the 10th International Symposium on Software Reliability Engineering (IS-
SRE’99), pp. 32-41, (1999)

21. B. Littlewood and D. R. Miller, Conceptual Modeling of Coincident Failures in Multi-
version Software, IEEE Transactions on Software Engineering, 15 (12), pp. 1596-1614,
(1989)



On Component Dependencies in Compound Software 39

22. B. Littlewood, P. Popov and L. Strigini, Modelling software design diversity: a review,
ACM Computing Surveys, 33 (2), pp. 177-208, (2001)

23. M. R. Lyu, editor. Handbook of Software Reliability Engineering, IEEE Computer
Society Press, ISBN 0-07-039400-8, (1995)

24. Douglas C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons,
ISBN 0-471-15746-5, (1997)

25. John D. Musa, Software Reliability Engineering, McGraw-Hill, ISBN 0-07-913271-
5, (1998)

26. D. M. Nassar, W. A. Rabie, M. Shereshevsky , N. Gradetsky, H. H. Ammar, B.
Yu, S. Bogazzi, and A. Mili, A., Estimating Error Propagation Probabilities in Soft-
ware Architectures, International Symposium on Software Metrics No10, Chicago IL,
ETATS-UNIS, pp. 384-393, Citeseer, (2004)

27. B.Natvig, Reliability analysis with technological applications (in Norwegian), Insti-
tute for Mathematics, University of Oslo, (1998)

28. Petar Popic, Dejan Desovski, Walid Abdelmoez and Bojan Cukic, Error Propagation
in the Reliability Analysis of Component based Systems, Proceedings of the 16th IEEE
International Symposium on Software Reliability (ISSRE’05), IEEE Computer Society,
pp. 53-62, (2005)

29. S. S.Gokhale, Architecture-based software reliability analysis: Overview and limita-
tions, IEEE Transactions on dependable and secure computing, 4 (1), pp. 32-40, (2007)

30. L. Sha, J. B. Goodenough and B. Pollak, Simplex architecture: Meeting the challenges
of using COTS in high-reliability systems, Crosstalk, Citeseer, pp. 7-10, (1998)

31. Vieira, M. and Richardson, D., The role of dependencies in component-based sys-
tems evolution, Proceedings of the International Workshop on Principles of Software
Evolution, ACM, pp. 62-65, (2002)

32. R. Winther and M. Kristiansen, On the Modelling of Failure Dependencies Between
Software Components, Safety and Reliability for Managing Risk (ESREL’06), Guedes
Soares & Zio, Taylor & Francis Group, pp.1443-1450, (2006)

33. L. Zavala and M.N. Huhns, Analysis of coincident failing ensembles in multi-version
systems, Presented at the 19th IEEFE International Symposium on Software Reliability
Engineering - Dependable Software Engineering Workshop (ISSRE’08), IEEE Com-
puter Society, (2008)



