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Abstract In the present paper we consider a multistate monotone system of
multistate components. Following a Bayesian approach, the ambition is to arrive
at the posterior distributions of the system availabilities and unavailabilities to
the various levels in a fixed time interval based on both prior information and
data on both the components and the system. We argue that a realistic approach
is to start out by describing our uncertainty on the component availabilities
and unavailabilities to the various levels in a fixed time interval, based on both
prior information and data on the components, by the moments up till order
m of their marginal distributions. From these moments analytic bounds on the
corresponding moments of the system availabilities and unavailabilities to the
various levels in a fixed time interval are arrived at. Applying these bounds
and prior system information we may then fit prior distributions of the system
availabilities and unavailabilities to the various levels in a fixed time interval.
These can in turn be updated by relevant data on the system. This generalizes
results given in (Natvig and Eide 1987) considering a binary monotone system of
binary components at a fixed point of time. Furthermore, considering a simple
network system, we show that the analytic bounds can be slightly improved by
straightforward simulation techniques.
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1. Basic definitions and ideas

Let S = {0, 1, . . . ,M} be the set of states of the system; the M + 1 states rep-
resenting successive levels of performance ranging from the perfect functioning
level M down to the complete failure level 0. Furthermore, let C = {1, . . . , n}
be the set of components and in general Si, i = 1, . . . , n the set of states of the
ith component. We require {0,M} ⊆ Si ⊆ S. Hence, the states 0 and M are
chosen to represent the endpoints of a performance scale that might be used for
both the system and its components. Note that in most applications there is no
need for the same detailed description of the components as for the system.

Let xi, i = 1, . . . , n denote the state or performance level of the ith compo-
nent at a fixed point of time and x = (x1, . . . , xn). It is assumed that the state,
φ, of the system at the fixed point of time is a deterministic function of x; i.e.
φ = φ(x). Here x takes values in S1 × S2 × · · · × Sn and φ takes values in S.
The function φ is called the structure function of the system. We often denote
a multistate system by (C, φ).

We start by giving a series of basic definitions.

Definition 1 A system is a multistate monotone system (MMS) iff its structure
function φ satisfies:

(i) φ(x) is non-decreasing in each argument

(ii) φ(0) = 0 and φ(M) = M 0 = (0, . . . , 0), M = (M, . . . ,M).

Definition 2 The monotone system (A,χ) is a module of the monotone system
(C, φ) iff

φ(x) = ψ[χ(xA),xA
c

],

where ψ is a monotone structure function and A ⊆ C.

Intuitively, a module is a monotone subsystem that acts as if it were just a
supercomponent.

Definition 3 A modular decomposition of a monotone system (C, φ) is a set of
disjoint modules {(Ak, χk)}rk=1 together with an organizing monotone structure
function ψ, i.e.

(i) C = ∪ri=1Ai where Ai ∩Aj = ∅ i 6= j,

(ii) φ(x) = ψ[χ1(xA1), . . . , χr(xAr )] = ψ[χ(x)].

Making a modular decomposition of a system is a way of breaking it into a
collection of subsystems which can be dealt with more easily.

In the following y < x means that yi ≤ xi for i = 1, . . . , n, and yi < xi for
some i.

Definition 4 Let φ be the structure function of an MMS and let j ∈ {1, . . . ,M}.
A vector x is said to be a path vector to level j iff φ(x) ≥ j. The corresponding
path set is given by Cjφ(x) = {i|xi ≥ 1}. A minimal path vector to level j is a
path vector x such that φ(y) < j for all y < x. The corresponding path set is
also said to be minimal.
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Definition 5 Let φ be the structure function of an MMS and let j ∈ {1, . . . ,M}.
A vector x is said to be a cut vector to level j iff φ(x) < j. The corresponding
cut set is given by Dj

φ(x) = {i|xi < M}. A minimal cut vector to level j is a
cut vector x such that φ(y) ≥ j for all y > x. The corresponding cut set is also
said to be minimal.

We now consider the relation between the stochastic performance of the
system (C, φ) and the stochastic performances of the components. Let τ be an
index set contained in [0,∞).

Definition 6 The performance process of the ith component, i = 1, . . . , n is a
stochastic process {Xi(t), t ∈ τ}, where for each fixed t ∈ τ , Xi(t) is a random
variable which takes values in Si. Xi(t) denotes the state of the ith component
at time t. The joint performance process for the components {X(t), t ∈ τ} =
{(X1(t), . . . , Xn(t)), t ∈ τ} is the corresponding vector stochastic process. The
performance process of an MMS with structure function φ is a stochastic process
{φ(X(t)), t ∈ τ}, where for each fixed t ∈ τ, φ(X(t)) is a random variable which
takes values in S. φ(X(t)) denotes the system state at time t.

We assume that the sample functions of the performance process of a com-
ponent are continuous from the right on τ . It then follows that the sample
functions of {φ(X(t)), t ∈ τ} are also continuous from the right on τ . Now
consider a time interval I = [tA, tB ] ⊂ [0,∞) and let τ(I) = τ ∩ I.

Definition 7 The marginal performance processes {Xi(t), t ∈ τ}, i = 1, . . . , n
are independent in the time interval I iff, for any integer m and {t1, . . . , tm} ⊂
τ(I) the random vectors {X1(t1), . . . , X1(tm)}, . . . , {Xn(t1), . . . , Xn(tm)} are
independent.

Definition 8 The joint performance process for the components {X(t), t ∈ τ}
is associated in the time interval I iff, for any integer m and {t1, . . . , tm} ⊂ τ(I)
the random variables in the array

X1(t1) . . . X1(tm)
...
Xn(t1) . . . Xn(tm)

are associated.

For an introduction to the theory of associated random variables we refer to
(Barlow and Proschan 1975).

Definition 9 Let i = 1, . . . , n, j = 1, . . . ,M . The availability, pj(I)i , and the
unavailability, qj(I)i , to level j in the time interval I of the ith component are
given by

p
j(I)
i = P [Xi(s) ≥ j ∀s ∈ τ(I)] q

j(I)
i = P [Xi(s) < j ∀s ∈ τ(I)].

The availability, pj(I)φ , and the unavailability, qj(I)φ , to level j in the time interval
I for an MMS with structure function φ are given by

p
j(I)
φ = P [φ(X(s)) ≥ j ∀s ∈ τ(I)] q

j(I)
φ = P [φ(X(s)) < j ∀s ∈ τ(I)].
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Let for i = 1, . . . , n, j = 0, . . . ,M,

r
j(I)
i = p

j(I)
i − pj+1(I)

i = P [ min
s∈τ(I)

Xi(s) = j]

r
j(I)
φ = p

j(I)
φ − pj+1(I)

φ = P [ min
s∈τ(I)

φ(X(s)) = j].

Introduce for i = 1, . . . , n the component availability and unavailability vectors

p
(I)
i =

{
p
j(I)
i

}
j=1,...,M

q
(I)
i =

{
q
j(I)
i

}
j=1,...,M

,

the n×M component availability and unavailability matrices

P
(I)
φ =

{
p
j(I)
i

}
i=1,...,n
j=1,...,M

Q
(I)
φ =

{
q
j(I)
i

}
i=1,...,n
j=1,...,M

and the system availability and unavailability vectors

p
(I)
φ =

{
p
j(I)
φ

}
j=1,...,M

q
(I)
φ =

{
q
j(I)
φ

}
j=1,...,M

.

Finally, introduce for i = 1, . . . , n the component parameter vectors

r
(I)
i =

{
r
j(I)
i

}
j=0,...,M

,

the n× (M + 1) parameter matrix

R
(I)
φ =

{
r
j(I)
i

}
i=1,...,n
j=0,...,M

and the system parameter vector

r
(I)
φ =

{
r
j(I)
φ

}
j=0,...,M

.

When I = [t, t], we just drop I from the notation and use reliability and unreli-
ability instead of respectively availability and unavailability.

Note that for i = 1, . . . , n

p
j(I)
i + q

j(I)
i ≤ 1 p

j(I)
φ + q

j(I)
φ ≤ 1. (1)

Suppose now that we run Ki independent experiments for component i reg-
istering x

(k)
i (s) ∀s ∈ τ(I) in the kth experiment, k = 1, . . . ,Ki, i = 1, . . . , n.

Let for j = 1, . . . ,M, i = 1, . . . , n

D
1j(I)
i =

Ki∑
k=1

I[x(k)
i (s) ≥ j ∀s ∈ τ(I)] D

2j(I)
i =

Ki∑
k=1

I[x(k)
i (s) < j ∀s ∈ τ(I)],

and for j = 0, . . . ,M, i = 1, . . . , n

D
j(I)
i =

Ki∑
k=1

I[ min
s∈τ(I)

x
(k)
i (s) = j].
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Let for r = 1, 2 Dr(I)
i = (Dr1(I)

i , . . . , D
rM(I)
i ), Dr(I) = (Dr(I)

1 , . . . ,Dr(I)
n ). Fur-

thermore, let D(I)
i = (D0(I)

i , . . . , D
M(I)
i ) and D(I) = (D(I)

1 , . . . ,D(I)
n ).

Suppose also that we run K independent experiments on the system level
registering φ(x(k)(s)) ∀s ∈ τ(I) in the kth experiment, k = 1, . . . ,K. Let for
j = 1, . . . ,M

D
1j(I)
φ =

K∑
k=1

I[φ(x(k)(s)) ≥ j ∀s ∈ τ(I)]

D
2j(I)
φ =

K∑
k=1

I[φ(x(k)(s)) < j ∀s ∈ τ(I)],

and for j = 0, . . . ,M

D
j(I)
φ =

K∑
k=1

I[ min
s∈τ(I)

φ(x(k)(s)) = j].

Let for r = 1, 2 Dr(I)
φ = (Dr1(I)

φ , . . . , D
rM(I)
φ ). Furthermore, let D(I)

φ =

(D0(I)
φ , . . . , D

M(I)
φ ). When I = [t, t], we also drop I from the notation in all

these data variables and data vectors.
Assume that the prior distribution of respectively the component availability

and unavailability matrices, before running any experiment on the component
level, π(P (I)

φ ) and π(Q(I)
φ ), can be written as

π(P (I)
φ ) =

n∏
i=1

πi(p
(I)
i ) π(Q(I)

φ ) =
n∏
i=1

πi(q
(I)
i ),

where for i = 1, . . . , n πi(p
(I)
i ) is the prior marginal distribution of p(I)

i and
πi(q

(I)
i ) is the prior marginal distribution of q(I)

i . Hence, we assume that the
components have independent prior component availability vectors and inde-
pendent prior component unavailability vectors.

Note that before the experiments are carried through D
1j(I)
i is binomially

distributed with parameters Ki and p
j(I)
i , and D

2j(I)
i binomially distributed

with parameters Ki and q
j(I)
i . We assume that given P (I)

φ , D1(I)
1 , . . . ,D1(I)

n

are independent and that given Q(I)
φ ,D

2(I)
1 , . . . ,D2(I)

n are independent. Hence,
since we have assumed that the components have independent prior availabil-
ity vectors, using Bayes‘ theorem the posterior distribution of the component
availability matrix, π(P (I)

φ |D
1(I)), can be written as

π(P (I)
φ |D

1(I)) =
π(D1(I)|P (I)

φ )π(P (I)
φ )∫

π(D1(I)|P (I)
φ )π(P (I)

φ )dP (I)
φ

=
∏n
i=1 πi(Di

1(I)|p(I)
i )πi(p

(I)
i )∏n

i=1

∫
πi(Di

1(I)|p(I)
i )πi(p

(I)
i )dp(I)

i

=
n∏
i=1

πi(Di
1(I)|p(I)

i )πi(p
(I)
i )

πi(D
1(I)
i )

=
n∏
i=1

πi(p
(I)
i |D

1(I)
i ),

where πi(p
(I)
i |D

1(I)
i ) is the posterior marginal distribution of p(I)

i . Similarly, the
posterior distribution of the component unavailability matrix, π(Q(I)

φ |D
2(I)),
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can be written as

π(Q(I)
φ |D

2(I)) =
n∏
i=1

πi(q
(I)
i |D

2(I)
i ).

Hence, the posterior component availability vectors are independent givenD1(I)

and the posterior component unavailability vectors are independent givenD2(I).
Now specialize I = [t, t] and assume that the component states X1, . . . , Xn

are independent given P φ. Since in this case pφ is a function of P φ, the dis-
tribution, π(pφ(P φ)|D1), can then be arrived at. Based on prior knowledge on
the system level this may be adjusted to the prior distribution of the system
reliability vector, π0(pφ(P φ)|D1). Note that before the experiments are carried
through D1j

φ is binomially distributed with parameters K and pjφ. Including
the data D1

φ, we end up with the posterior distribution of the system reliability
vector, π(pφ(P φ)|D1,D1

φ), for j = 1, . . . ,M .
When considering the case I = [t, t], we can instead of P φ as well consider

the parameter matrix Rφ and assume that the components have independent
prior vectors ri, i = 1, . . . , n, each having a Dirichlet distribution being the nat-
ural conjugate prior. Furthermore, we assume that given Rφ, D1, . . . ,Dn are
independent. Note that before the experiments are carried through Di is multi-
nomially distributed with parameters Ki and ri. Hence, the posterior marginal
distribution of ri given the data Di, πi(ri|Di), is Dirichlet. Furthermore, we
have

π(Rφ|D) =
n∏
i=1

πi(ri|Di).

Hence, life can be made easy at the component level. Assume that the compo-
nent states X1, . . . , Xn are independent given Rφ. The distribution,
π(rφ(Rφ)|D), is tried to be arrived at. If this is successful, based on prior knowl-
edge on the system level, it is adjusted to π0(rφ(Rφ)|D). This may be possible
for simple systems. Note that before the experiments are carried through, Dφ is
multinomially distributed with parameters K and rφ. Hence, if π0(rφ(Rφ)|D),
as in a dream, ended up as a Dirichlet distribution, the posterior distribution,
π(rφ(Rφ)|D,Dφ), also would be a Dirichlet distribution. Do not forget this
was a dream, also based on independent components given Rφ! So life will at
least not be easy at the system level even when I = [t, t].

For an arbitrary I p(I)
φ is not a function of just P (I)

φ , and q(I)
φ not a function

of just Q(I)
φ . Hence, the approach above for the case I = [t, t] can not be

extended.
In Section 2 we discuss two different approaches to the computation of pos-

terior moments for component availabilities and unavailabilities, the first one
generalizing an approach given in (Mastran and Singpurwalla 1978). In Section
3 we start out by describing our uncertainty on the component availabilities
and unavailabilities to the various levels in a fixed time interval, based on both
prior information and data on the components, by the moments up till order
m of their marginal distributions. From these moments analytic bounds on the
corresponding moments of the system availabilities and unavailabilities to the
various levels in a fixed time interval are arrived at. Applying these bounds
and prior system information we may then fit prior distributions of the system
availabilities and unavailabilities to the various levels in a fixed time interval.
These can in turn be updated by relevant data on the system. This generalizes
results given in (Natvig and Eide 1987) considering a binary monotone system of
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binary components at a fixed point of time. In Section 4 we present a straight-
forward simulation technique for obtaining bounds that improve the analytic
bounds. Considering a simple network system, we show that the former bounds
are slightly better than the latter.

2. Moments for posterior component availabili-
ties and unavailabilities

Based on the experiences of the previous section we reduce our ambitions.
We start by specifying marginal moments E{(pj(I)i )s} and E{(qj(I)i )s} for s =
1, . . . ,m+Ki, j = 1, . . . ,M of πi(p

(I)
i ) and πi(q

(I)
i ), i = 1, . . . , n. We will first il-

lustrate how these can be updated to give posterior moments E{(pj(I)i )s|D1j(I)
i }

and E{(qj(I)i )s|D2j(I)
i } for s = 1, . . . ,m, j = 1, . . . ,M by using Lemma 1 in

(Mastran and Singpurwalla 1978). Note that we loose information by condi-
tioning on D

1j(I)
i instead of D1(I)

i and D
2j(I)
i instead of D2(I)

i . However, such
improved conditioning does not work with this approach. We have

E{(pj(I)i )s|D1j(I)
i } ∝

∫ 1

0

(pj(I)i )s(pj(I)i )D
1j(I)
i (1− pj(I)i )Ki−D

1j(I)
i πi(p

j(I)
i )dpj(I)i

=
∫ 1

0

(pj(I)i )s+D
1j(I)
i

Ki−D1j(I)
i∑

r=0

(
Ki −D1j(I)

i

r

)
(−1)r(pj(I)i )rπi(p

j(I)
i )dpj(I)i .

Hence,

E{(pj(I)i )s|D1j(I)
i } =

∑Ki−D1j(I)
i

r=0

(
Ki−D1j(I)

i
r

)
(−1)rE{(pj(I)i )s+D

1j(I)
i +r}∑Ki−D1j(I)

i
r=0

(
Ki−D1j(I)

i
r

)
(−1)rE{(pj(I)i )D

1j(I)
i +r}

.

A similar expression is valid for E{(qj(I)i )s|D2j(I)
i }. The advantage of using

this lemma is that it is applicable for general prior distributions πi(p
j(I)
i ) and

πi(q
j(I)
i ). A serious drawback is, however, that to arrive at E{(pj(I)i )s|D1j(I)

i }
and E{(qj(I)i )s|D2j(I)

i } for s = 1, . . . ,m, j = 1, . . . ,M one must specify marginal
moments up till order m+Ki of the corresponding prior distributions πi(p

j(I)
i )

and πi(q
j(I)
i ). This may be completely unrealistic unless Ki is small.

A more realistic alternative is given in the following. Assume that the com-
ponents have independent prior parameter vectors r(I)

i , i = 1, . . . , n, each having
a Dirichlet distribution being the natural conjugate prior. Note that before the
experiments are carried through D(I)

i is multinomially distributed with param-
eters Ki and r(I)

i . Hence, the posterior marginal distribution of r(I)
i given the

data D(I)
i , πi(r

(I)
i |D

(I)
i ), is Dirichlet. We now have

p
j(I)
i =

M∑
`=j

r
`(I)
i D

1j(I)
i =

M∑
`=j

D
`(I)
i . (2)

Hence, the posterior marginal distribution of pj(I)i given the data D1j(I)
i is beta.

Accordingly, we loose no information by conditioning on D1j(I)
i instead ofD1(I)

i .
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We now assume that the prior distribution πi(p
j(I)
i ) is beta with parameters

a
j(I)
i and b

j(I)
i . It then follows that πi(p

j(I)
i |D1j(I)

i ) is beta with parameters
a
j(I)
i +D

1j(I)
i and b

j(I)
i +Ki −D1j(I)

i . We have

E{(pj(I)i )s|D1j(I)
i } =

∫ 1

0

(pj(I)i )s
Γ(aj(I)i + b

j(I)
i +Ki)

Γ(aj(I)i +D
1j(I)
i )Γ(bj(I)i +Ki −D1j(I)

i )

(pj(I)i )a
j(I)
i +D

1j(I)
i −1(1− pj(I)i )b

j(I)
i +Ki−D1j(I)

i −1dp
j(I)
i

=
Γ(aj(I)i + b

j(I)
i +Ki)Γ(aj(I)i +D

1j(I)
i + s)

Γ(aj(I)i +D
1j(I)
i )Γ(aj(I)i + b

j(I)
i +Ki + s)∫ 1

0

Γ(aj(I)i + b
j(I)
i +Ki + s)

Γ(aj(I)i +D
1j(I)
i + s)Γ(bj(I)i +Ki −D1j(I)

i )

(pj(I)i )a
j(I)
i +D

1j(I)
i +s−1(1− pj(I)i )b

j(I)
i +Ki−D1j(I)

i −1dp
j(I)
i

=
Γ(aj(I)i + b

j(I)
i +Ki)Γ(aj(I)i +D

1j(I)
i + s)

Γ(aj(I)i +D
1j(I)
i )Γ(aj(I)i + b

j(I)
i +Ki + s)

,

the integral being equal to 1 since we are integrating up a beta density with
parameters aj(I)i + D

1j(I)
i + s and b

j(I)
i + Ki − D1j(I)

i . A similar expression is
valid for E{(qj(I)i )s|D2j(I)

i }.

3. Bounds for moments for system availabilities
and unavailabilities

From the marginal moments E{(p`(I)i )s|D1`(I)
i } and E{(q`(I)i )s|D2`(I)

i }, we de-
rive lower bounds on the marginal moments E{(pj(I)φ )s|D1(I)} and upper bounds

on the marginal moments E{(pj(I)φ )s|D2(I)} for s = 1, . . . ,m, ` = 1, . . . ,M, j =
1, . . . ,M . Similarly, we derive lower bounds on the marginal moments
E{(qj(I)φ )s|D2(I)} and upper bounds on the marginal moments

E{(qj(I)φ )s|D1(I)}. Note that we now do not necessarily need the marginal
performance processes of the components to be independent in I. From these
bounds and prior knowledge on the system level we may fit π0(p(I)

φ ) and π0(q(I)
φ ).

This may finally be updated to give π(p(I)
φ |D

1(I)
φ ) and π(q(I)

φ |D
2(I)
φ ).

What we will concentrate on is how to establish the bounds on the marginal
moments of system availabilities and unavailabilities from the marginal moments
of component availabilities and unavailabilities. To simplify notation we drop
the reference to the data (D1(I),D2(I)) from experiments on the component
level.

Let us just for a while return to the case I = [t, t] and assume that
the component states X1, . . . , Xn are independent given Rφ. Then we get

pjφ(Rφ) =
∑
x
I[φ(x) ≥ j]

n∏
i=1

rxii .

Hence, since we assume that the components have independent prior vectors ri
for i = 1, . . . , n, generalizing a result in (Natvig and Eide 1987), we get
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E{pjφ(Rφ)} =
∑
x
I[φ(x) ≥ j]

n∏
i=1

E{rxii } = pjφ(E{Rφ}),

where

E{Rφ} =
{
E{rji }

}
i=1,...,n
j=0,...,M

.

Accordingly, one can arrive at an exact expression for E{pjφ(Rφ)} for not too
large systems. The point is, however, that there seems to be no easy way to
extend the approach above to give exact expressions for higher order moments
of pjφ(Rφ). Hence, even when I = [t, t] and component states are independent
given Rφ, one needs bounds on higher order moments of pjφ(Rφ).

We need the following theorem proved in (Natvig and Eide 1987).

Theorem 1. If Y1, . . . , Yn are associated random variables such that 0 ≤ Yi ≤
1, i = 1, . . . , n, then for α > 0

E{(
n∏
i=1

Yi)α} ≥
n∏
i=1

E{(Yi)α} (3)

E{
n∐
i=1

Yi} = E{1−
n∏
i=1

(1− Yi)} ≤
n∐
i=1

E{Yi}. (4)

In the special case of independent random variables Y1 and Y2 with 0 ≤ Yi ≤
1, i = 1, 2, we have

E{(
2∐
i=1

Yi)2} ≥
2∐
i=1

E{(Yi)2}. (5)

Proof: For the case Y1, . . . , Yn binary and α = 1, Equations (3) and (4) are
proved in Theorem 3.1, page 32 of (Barlow and Proschan 1975). The proof,
however, also works when 0 ≤ Yi ≤ 1, i = 1, . . . , n. Using this fact and that
non-decreasing functions of associated random variables are associated we get

E{(
n∏
i=1

Yi)α} = E{
n∏
i=1

(Yi)α} ≥
n∏
i=1

E{(Yi)α},

and Equation (3) is proved. Equation (4) is proved in the same way. Finally,
Equation (5) follows since

(
2∐
i=1

Yi)2 =
2∐
i=1

Y 2
i + 2(Y 2

1 − Y1)(Y 2
2 − Y2) ≥

2∐
i=1

Y 2
i ,

and that Y1 and Y2 are assumed to be independent.
Equation (5) reveals the unpleasant fact that a symmetry in Equations (3)

and (4) seems only possible for α = 1, when Y1, . . . , Yn are not binary.
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In the following, considering an MMS (C, φ), for j ∈ {1, . . . ,M} let yjk =
(yj1k, . . . , y

j
nk), k = 1, . . . , njφ be its minimal path vectors to level j and zjk =

(zj1k, . . . , z
j
nk), k = 1, . . . ,mj

φ be its minimal cut vectors to level j and

Cjφ(yjk), k = 1, . . . , njφ and Dj
φ(zjk), k = 1, . . . ,mj

φ

the corresponding minimal path and cut sets to level j.
The three following theorems are taken from (Natvig 2011).

Theorem 2. Let (C, φ) be an MMS and let for j = 1, . . . ,M

`
‘j(I)
φ (P (I)

φ ) = max
1≤k≤njφ

∏
i∈Cjφ(yjk)

p
yjik(I)
i

¯̀ ‘j(I)
φ (Q(I)

φ ) = max
1≤k≤mjφ

∏
i∈Djφ(zjk)

q
zjik+1(I)
i .

If the joint performance process of the system‘s components is associated in I,
or the marginal performance processes of the components are independent in I,
then

`
‘j(I)
φ (P (I)

φ ) ≤ pj(I)φ ≤ inf
t∈τ(I)

[
1− ¯̀ ‘j([t,t])

φ (Q([t,t])
φ )

]
≤ 1− ¯̀ ‘j(I)

φ (Q(I)
φ ) (6)

¯̀ ‘j(I)
φ (Q(I)

φ ) ≤ qj(I)φ ≤ inf
t∈τ(I)

[
1− `‘j([t,t])φ (P j([t,t])

φ )
]
≤ 1− `‘j(I)φ (P j(I)

φ ). (7)

Theorem 3. Let (C, φ) be an MMS and let for j = 1, . . . ,M

`
∗∗j(I)
φ (P (I)

φ ) =
mjφ∏
k=1

∐
i∈Djφ(zjk)

p
zjik+1(I)
i

¯̀∗∗j(I)
φ (Q(I)

φ ) =
njφ∏
k=1

∐
i∈Cjφ(yjk)

q
yjik(I)
i .

If the marginal performance processes of the components are independent in I,
then

`
∗∗j(I)
φ (P (I)

φ ) ≤ pj(I)φ ≤ inf
t∈τ(I)

[
1− ¯̀∗∗j([t,t])

φ (Q([t,t])
φ )

]
≤ 1− ¯̀∗∗j(I)

φ (Q(I)
φ ) (8)

¯̀∗∗j(I)
φ (Q(I)

φ ) ≤ qj(I)φ ≤ inf
t∈τ(I)

[
1− `∗∗j([t,t])φ (P ([t,t])

φ )
]
≤ 1− `∗∗j(I)φ (P (I)

φ ). (9)

Theorem 4. Let (C, φ) be an MMS with modular decomposition given by Def-
inition 3 and let for j = 1, . . . ,M

B
∗j(I)
φ (P (I)

φ ) = max
j≤k≤M

[max[`‘k(I)φ (P (I)
φ ), `∗∗k(I)φ (P (I)

φ )]]

B̄
∗j(I)
φ (Q(I)

φ ) = max
1≤k≤j

[max[¯̀ ‘k(I)
φ (Q(I)

φ ), ¯̀∗∗k(I)
φ (Q(I)

φ )].

Introduce the following r ×M module availability and unavailability matrices

P
(I)
ψ =

{
pj(I)χk

}
k=1,...,r
j=1,...,M

Q
(I)
ψ =

{
qj(I)χk

}
k=1,...,r
j=1,...,M

, (10)

and correspondingly define the following r×M matrices B∗(I)ψ (P (I)
φ ), B̄∗(I)ψ (Q(I)

φ ).

10



Assume the marginal performance processes of the components to be independent
in the time interval I. Then for j = 1, . . . ,M

B
∗j(I)
ψ (B∗(I)ψ (P (I)

φ )) ≤ B∗j(I)ψ (P (I)
ψ ) ≤ pj(I)φ

≤ inf
t∈τ(I)

[
1− B̄∗j([t,t])ψ (Q([t,t])

ψ )
]
≤ 1− B̄∗j(I)ψ (Q(I)

ψ )

≤ 1− B̄∗j(I)ψ (B̄∗(I)ψ (Q(I)
φ ). (11)

B̄
∗j(I)
ψ (B̄∗(I)ψ (Q(I)

φ )) ≤ B̄∗j(I)ψ (Q(I)
ψ ) ≤ qj(I)φ

≤ inf
t∈τ(I)

[
1−B∗j([t,t])ψ (P ([t,t])

ψ )
]
≤ 1−B∗j(I)ψ (P (I)

ψ )

≤ 1−B∗j(I)ψ (B∗(I)ψ (P (I)
φ )). (12)

We are now ready to establish the bounds for the moments of system avail-
abilities and unavailabilities. Introduce the m × n ×M arrays of component
availability and unavailability moments

E{(P (I)
φ )m} =

{
E{(pj(I)i )s}

}
s=1,...,m
i=1,...,n
j=1,...,M

(13)

E{(Q(I)
φ )m} =

{
E{(qj(I)i )s}

}
s=1,...,m
i=1,...,n
j=1,...,M

. (14)

Theorem 5. Let (C, φ) be an MMS. Assume that respectively the component
availability vectors p(I)

i i = 1, . . . , n and the component unavailability vectors
q

(I)
i i = 1, . . . , n are independent. Let

`
‘j(I)m
φ (E{(P (I)

φ )m}) = max
1≤k≤njφ

∏
i∈Cjφ(yjk)

E{(py
j
ik(I)
i )m}

u
‘j(I)m
φ (E{(Q(I)

φ )m}) = min
1≤k≤mjφ

m∑
r=o

(
m

r

)
(−1)r

∏
i∈Djφ(zjk)

E{(qz
j
ik+1([I])
i )r}

¯̀ ‘j(I)m
φ (E{(Q(I)

φ )m}) = max
1≤k≤mjφ

∏
i∈Djφ(zjk)

E{(qz
j
ik+1(I)
i )m}

ū
‘j(I)m
φ (E{(P (I)

φ )m}) = min
1≤k≤njφ

m∑
r=o

(
m

r

)
(−1)r

∏
i∈Cjφ(yjk)

E{(py
j
ik([I])
i )r}.

If the joint performance process of the system‘s components is associated in I,
or the marginal performance processes of the components are independent in I,
then for m = 1, 2, . . .

`
‘j(I)m
φ (E{(P (I)

φ )m}) ≤ E{(pj(I)φ )m}

11



E{(pj(I)φ )m} ≤ u‘j(I)m
φ (E{(Q(I)

φ )m}) (15)

¯̀ ‘j(I)m
φ (E{(Q(I)

φ )m}) ≤ E{(qj(I)φ )m}

E{(qj(I)φ )m} ≤ ū ‘j(I)m
φ (E{(P (I)

φ )m}). (16)

Proof: From Equation (6) we have

E{(pj(I)φ )m} ≥ E{ max
1≤k≤njφ

∏
i∈Cjφ(yjk)

(py
j
ik(I)
i )m} ≥ E{

∏
i∈Cjφ(yjk)

(py
j
ik(I)
i )m}

=
∏

i∈Cjφ(yjk)

E{(py
j
ik(I)
i )m}, 1 ≤ k ≤ njφ,

having used the independence of the component availability vectors. Since the
inequality holds for all 1 ≤ k ≤ njφ, the lower bound of Equation (15) follows.
Similarly from Equation (6)

E{(pj(I)φ )m} ≤ E{( min
1≤k≤mjφ

[1−
∏

i∈Djφ(zjk)

q
zjik+1([I])
i ])m}

≤ min
1≤k≤mjφ

E{(1−
∏

i∈Djφ(zjk)

q
zjik+1([I])
i )m}

= min
1≤k≤mjφ

E{
m∑
r=o

(
m

r

)
(−1)r

∏
i∈Djφ(zjk)

(qz
j
ik+1([I])
i )r}

= min
1≤k≤mjφ

m∑
r=o

(
m

r

)
(−1)r

∏
i∈Djφ(zjk)

E{(qz
j
ik+1([I])
i )r},

having used the independence of the component unavailability vectors. Hence,
the upper bound of Equation (15) is proved. The bounds of Equation (16) follow
completely similarly from Equation (7).

Note that respectively pj([t1,t1])i and pj([t2,t2])i , and qj([t1,t1])i and qj([t2,t2])i are
dependent for t1 ∈ τ(I), t2 ∈ τ(I), t1 6= t2. Hence,

E(pji |D
1(I)) 6= E(pji |D

1)

E(qji |D
2(I)) 6= E(qji |D

2).

This means that we cannot apply the best upper bounds in Equations (6) and
(7).

Theorem 6. Let (C, φ) be an MMS. Assume that respectively the component
availability vectors p(I)

i i = 1, . . . , n and the component unavailability vectors
q

(I)
i i = 1, . . . , n are independent. Let

`
∗∗j(I)m
φ (E{(P (I)

φ )m}) =
mjφ∏
k=1

m∑
r=o

(
m

r

)
(−1)r
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∏
i∈Djφ(zjk)

r∑
s=o

(
r

s

)
(−1)sE{(pz

j
ik+1(I)
i )s}

u
∗∗j(I)1
φ (E{(Q(I)

φ )1}) =
njφ∐
k=1

∏
i∈Cjφ(yjk)

(1− E{qy
j
ik([I])
i })

¯̀ ∗∗j(I)m
φ (E{(Q(I)

φ )m}) =
njφ∏
k=1

m∑
r=o

(
m

r

)
(−1)r

∏
i∈Cjφ(yjk)

r∑
s=o

(
r

s

)
(−1)sE{(qy

j
ik(I)
i )s}

ū
∗∗j(I)1
φ (E{(P (I)

φ )1}) =
mjφ∐
k=1

∏
i∈Djφ(zjk)

(1− E{pz
j
ik+1([I])
i }).

If the marginal performance processes of the components are independent in I,
then for m = 1, 2, . . .

`
∗∗j(I)m
φ (E{(P (I)

φ )m}) ≤ E{(pj(I)φ )m} (17)

E{pj(I)φ } ≤ u∗∗j(I)1φ (E{(Q(I)
φ )1}) (18)

¯̀ ∗∗j(I)m
φ (E{(Q(I)

φ )m}) ≤ E{(qj(I)φ )m} (19)

E{qj(I)φ } ≤ ū ∗∗j(I)1φ (E{(P (I)
φ )1}). (20)

Proof: From Equation (8) we have

E{(pj(I)φ )m} ≥ E{(
mjφ∏
k=1

∐
i∈Djφ(zjk)

p
zjik+1(I)
i )m}

≥
mjφ∏
k=1

E{(
∐

i∈Djφ(zjk)

p
zjik+1(I)
i )m},

having applied Equation (3). The random variables

∐
i∈Djφ(zjk)

p
zjik+1(I)
i , k = 1, . . . ,mj

φ,

are associated since independent random variables and non-decreasing functions
of associated random variables are asssociated, having used the independence
of the component availability vectors. Continuing the derivation we get

=
mjφ∏
k=1

E{
m∑
r=o

(
m

r

)
(−1)r

∏
i∈Djφ(zjk)

r∑
s=o

(
r

s

)
(−1)s(pz

j
ik+1(I)
i )s}
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=
mjφ∏
k=1

m∑
r=o

(
m

r

)
(−1)r

∏
i∈Djφ(zjk)

r∑
s=o

(
r

s

)
(−1)sE{(pz

j
ik+1(I)
i )s},

again having applied the independence of the component availability vectors.
Hence, Equation (17) follows. Similarly from Equation (8)

E{pj(I)φ } ≤ E{
njφ∐
k=1

∏
i∈Cjφ(yjk)

(1− qy
j
ik([I])
i )}

≤
njφ∐
k=1

∏
i∈Cjφ(yjk)

(1− E{qy
j
ik([I])
i }),

having used Equation (4), noting that the random variables

∏
i∈Cjφ(yjk)

(1− qy
j
ik([I])
i ), k = 1, . . . , njφ,

are associated by the same argument as above, and the independence of the
component unavailability vectors. Hence, Equation (18) is proved. The bounds
of Equations (19) and (20) follow completely similarly from Equation (9).

Due to the lack of symmetry in Theorem 1, we have not been able to obtain
corresponding upper bounds for E{(pj(I)φ )m} and E{(qj(I)φ )m},m = 2, 3, . . . in
this theorem. As for Theorem 5 we cannot apply the best upper bounds in
Equations (8) and (9).

Corollary 7. Make the same assumptions as in Theorem 6 and let

L
∗j(I)m
φ (E{(P (I)

φ )m})

= max[`‘j(I)mφ (E{(P (I)
φ )m}), `∗∗j(I)mφ (E{(P (I)

φ )m})]

U
∗j(I)1
φ (E{(Q(I)

φ )1})

= min[u‘j(I)1
φ (E{(Q(I)

φ )1}), u∗∗j(I)1φ (E{(Q(I)
φ )1})]

L̄
∗j(I)m
φ (E{(Q(I)

φ )m})

= max[¯̀ ‘j(I)m
φ (E{(Q(I)

φ )m}), ¯̀∗∗j(I)m
φ (E{(Q(I)

φ )m})]

Ū
∗j(I)1
φ (E{(P (I)

φ )1})

= min[ū ‘j(I)1
φ (E{(P (I)

φ )1}), ū∗∗j(I)1φ (E{(P (I)
φ )1})].

Then for m = 1, 2, . . .

L
∗j(I)m
φ (E{(P (I)

φ )m}) ≤ E{(pj(I)φ )m} (21)

E{pj(I)φ } ≤ U∗j(I)1φ (E{(Q(I)
φ )1}) (22)

L̄
∗j(I)m
φ (E{(Q(I)

φ )m}) ≤ E{(qj(I)φ )m} (23)

E{qj(I)φ } ≤ Ū∗j(I)1φ (E{(P (I)
φ )1}). (24)
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Corollary 8. Make the same assumptions as in Theorem 6 and let

B
∗j(I)m
φ (E{(P (I)

φ )m}) = max
j≤k≤M

[L∗k(I)mφ (E{(P (I)
φ )m})]

C
∗j(I)1
φ (E{(Q(I)

φ )1}) = min
1≤k≤j

[U∗k(I)1φ (E{(Q(I)
φ )1})]

D
∗j(I)m
φ (E{(Q(I)

φ )m}) = min
1≤k≤j

[u‘k(I)m
φ (E{(Q(I)

φ )m})]

B̄
∗j(I)m
φ (E{(Q(I)

φ )m}) = max
1≤k≤j

[L̄∗k(I)mφ (E{(Q(I)
φ )m})]

C̄
∗j(I)1
φ (E{(P (I)

φ )1}) = min
j≤k≤M

[Ū∗k(I)1φ (E{(P (I)
φ )1})]

D̄
∗j(I)m
φ (E{(P (I)

φ )m}) = min
j≤k≤M

[ū‘k(I)m
φ (E{(P (I)

φ )m})].

Then for m = 1, 2, . . .

L
∗j(I)m
φ (E{(P (I)

φ )m}) ≤ B∗j(I)mφ (E{(P (I)
φ )m}) ≤ E{(pj(I)φ )m} (25)

E{pj(I)φ } ≤ C∗j(I)1φ (E{(Q(I)
φ )1}) ≤ U∗j(I)1φ (E{(Q(I)

φ )1}) (26)

E{(pj(I)φ )m} ≤ D∗j(I)mφ (E{(Q(I)
φ )m}) ≤ u‘j(I)m

φ (E{(Q(I)
φ )m}) (27)

L̄
∗j(I)m
φ (E{(Q(I)

φ )m}) ≤ B̄∗j(I)mφ (E{(Q(I)
φ )m}) ≤ E{(qj(I)φ )m} (28)

E{qj(I)φ } ≤ C̄∗j(I)1φ (E{(P (I)
φ )1}) ≤ Ū∗j(I)1φ (E{(P (I)

φ )1}) (29)

E{(qj(I)φ )m} ≤ D̄∗j(I)mφ (E{(P (I)
φ )m}) ≤ ū‘j(I)m

φ (E{(P (I)
φ )m}). (30)

It is important to note that the bounds for E{(pj(I)φ )} and E{(qj(I)φ )} given
in this section equal the bounds in Section 3.2 of (Natvig 2011) by replacing
P

(I)
φ by E{(P (I)

φ )1} and Q(I)
φ by E{(Q(I)

φ )1}. However, this is not true for
higher order moments.

4. A simulation approach and a case study

An objection against the bounds in Theorems 5 and 6 and Corollaries 7 and 8 is
that they are based on knowing all minimal path and cut vectors of the system.
It is natural to try to both improve the bounds and reduce the computational
complexity by introducing modular decompositions.

Looking at the bounds for E{(pj(I)φ )m} and E{(qj(I)φ )m} for m = 2, 3, . . . , it
seems that only the lower bounds of Theorem 5 are of the form that fits into the
machinery of Section 3.3 of (Natvig 2011). We now get the following theorem

Theorem 9. Let (C, φ) be an MMS with modular decomposition given by Defi-
nition 3. Make the same assumptions as in Theorem 6. Then for j = 1, . . . ,M,
m = 1, 2, . . .
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`
‘j(I)
φ (E{(P (I)

φ )m}) = `
‘j(I)
ψ (` ‘(I)

ψ (E{(P (I)
φ )m}) ≤ E{(pj(I)φ )m} (31)

¯̀ ‘j(I)
φ (E{(Q(I)

φ )m}) = ¯̀ ‘j(I)
ψ (¯̀ ‘(I)

ψ (E{(Q(I)
φ )m}) ≤ E{(qj(I)φ )m}. (32)

Proof: Equation (31) follows from the lower bound of Equation (15) and
from Equation (3.45) of (Natvig 2011), by in the last expression replacing P (I)

φ

by E{(P (I)
φ )m}. Note that in this case the latter array given by Equation (13)

can be replaced by an n×M matrix by fixing s at m. Hence, an n×M matrix
is replaced by an n×M matrix. Equation (32) follows by a duality argument.

Hence, our analytical bounds are not improved by using a modular decom-
position. On the other hand the computational complexity is reduced since we
have to find minimal path and cut vectors only for each module and for the
organizing structure.

All analytical bounds on the marginal moments E{(pj(I)φ )m|D1(I)} and

E{(qj(I)φ )m|D2(I)} for m = 1, . . . , j = 1, . . . ,M given in Section 2 can be im-
proved by straightforward simulation techniques. Let us illustrate this on the
lower bounds in Equation (15). As in the proof of Theorem 5, with full notation,
we have from Equation (6)

E{(pj(I)φ )m|D1(I)} ≥ E{ max
1≤k≤njφ

∏
i∈Cjφ(yjk)

(py
j
ik(I)
i )m|D1(I)}. (33)

For i = 1, . . . , n we simulate from the posterior marginal distribution of r(I)
i

given the data D(I)
i , πi(r

(I)
i |D

(I)
i ), assumed being Dirichlet. We then calculate

p
j(I)
i from Equation (2) for i = 1, . . . , n, j = 1, . . . ,M . For each round of

n simulations the quantity max
1≤k≤njφ

∏
i∈Cjφ(yjk)

(py
j
ik(I)
i )m is calculated, and the

right hand side of Equation (33) is estimated by the average of the simulated
quantities. Theoretically, as seen from the proof, this improves the lower bound
of Equation (15) of Theorem 5. Similarly, we obtain a simulated lower bound
which improves the lower bound of Equation (17) of Theorem 6. In practice,
the analytic bounds may be marginally better due to simulation uncertainty.

This simulation technique can also be applied to arrive at improved bounds
using modular decompositions. From Theorem 4 we for instance get the follow-
ing inequalities as starting points for the simulations.

Corollary 10. Let (C, φ) be an MMS with modular decomposition given by Def-
inition 3. Assume the marginal performance processes of the components to be
independent in the time interval I. Then for j = 1, . . . ,M

E{(B∗j(I)ψ (B∗(I)ψ (P (I)
φ )))m|D1(I)} ≤ E{(pjφ)m|D1(I)}

E{(pjφ)m|D2(I)} ≤ E{(1− B̄∗j(I)ψ (B̄∗(I)ψ (Q(I)
φ )))m|D2(I)} (34)

E{(B̄∗j(I)ψ (B̄∗(I)ψ (Q(I)
φ )))m|D2(I)} ≤ E{(qjφ)m|D2(I)}

E{(qjφ)m|D1(I)} ≤ E{(1−B∗j(I)ψ (B∗(I)ψ (P (I)
φ )))m|D1(I)}. (35)
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Figure 1 A simple network.

To illustrate the theory consider the simple network system depicted in Fig-
ure 1. Here module 1 is the parallel system of the components a1 and b1 and
module 2 the parallel system of the components a2 and b2. We assume that the
set of states of the ith component is given by Si = {0, 3}, i = 1, 2, 3, 4, i.e. we
have a binary description at the component level. Let for each module the state
be 0 if neither of the components work, 1 if one component works and 3 if two
components work. The states of the system are given in Table 1.

Table 1 States of the simple network system of Figure 1.
3 0 2 3

Module 2 1 0 1 2
0 0 0 0

0 1 3
Module 1

Note for instance that the state 1 is critical both for each module and the system
as a whole in the sense that the failing of a component leads to the 0 state.

The minimal path and cut vectors for the system of Figure 1 are given in
respectively Tables 2 and 3.

Table 2 Minimal path vectors for the system of Figure 1.
Level Component 1 Component 2 Component 3 Component 4
1 0 3 0 3
1 0 3 3 0
1 3 0 0 3
1 3 0 3 0
2 0 3 3 3
2 3 0 3 3
2 3 3 0 3
2 3 3 3 0
3 3 3 3 3

Table 3. Minimal cut vectors for the system of Figure 1.
Level Component 1 Component 2 Component 3 Component 4
1, 2 0 0 3 3
1, 2 3 3 0 0
2 0 3 0 3
2 0 3 3 0
2 3 0 0 3
2 3 0 3 0
3 0 3 3 3
3 3 0 3 3
3 3 3 0 3
3 3 3 3 0
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Following the argument leading to Equation (2) we assume that the posterior
marginal distribution of pj(I)i given the data D

1j(I)
i is beta with parameters

αE{pj(I)i } and α(1− E{pj(I)i }). Hence,

V ar{pj(I)i } = E{pj(I)i }(1− E{pj(I)i })/(α+ 1),

and the second order moment is given by

E{(pj(I)i )2} = E{pj(I)i }(1 + E{pj(I)i }α)/(α+ 1).

E{pj(I)i } is chosen to be equal to the value of pj(I)i calculated by a standard de-
terministic analysis as given in (Natvig 2011). In these calculations the marginal
performance processes of the two modules are assumed independent in the time
interval I and also that the two components of each module fail and are re-
paired/replaced independently of each other. All components have the same
instantaneous failure rate λ = 0.001 and repair/replacement rate µ = 0.01.

In Table 4 the analytical lower bounds from Corollary 8,
B
∗j(I)m
φ (E{(P (I)

φ )m}), for E{(pj(I)φ )m} for m = 1, 2 and the corresponding sim-
ulated lower bounds, both not using and using modular decompositions, are
calculated for the time interval I equal to [100, 110], [100, 200], [1000, 1100], the
parameter α equal to 1, 10, 1000 and for system level j equal to 1, 2, 3. Look-
ing at the lower bounds for E{(pj(I)φ )} there are just minor differences between
the analytical and the simulated bounds that are not based on modular decom-
positions except for α = 1, j = 2 and the two longest intervals [100, 200] and
[1000, 1100], where the improvements are quite small. Correspondingly, there
are just minor improvements of the simulated bounds that are based on modular
decompositions compared to the ones that are not except for α = 10, 1000, j = 2
and the two longest intervals [100, 200] and [1000, 1100], where the improvements
are quite small. Furthermore, the analytical bounds do not not depend on the
α parameter which is natural since E{pj(I)i } is independent of this parameter.
That these lower bounds are decreasing in the length of the interval I and the
system state j is just a reflection of the fact that these properties hold for
E{(pj(I)φ )}.

Turning to the lower bounds for E{(pj(I)φ )2} there are again just minor dif-
ferences between the analytical and the simulated bounds that are not based on
modular decompositions again except for α = 1, j = 2 and the two longest inter-
vals [100, 200] and [1000, 1100], where the improvements are quite small. Cor-
respondingly, there are just minor improvements of the simulated bounds that
are based on modular decompositions compared to the ones that are not except
for α = 10, 1000, j = 2 and the two longest intervals [100, 200] and [1000, 1100],
where the improvements are quite small. Furthermore, these bounds are de-
creasing in the α parameter which is natural since E{(pj(I)i )2} is decreasing in
this parameter. That these lower bounds are decreasing in the length of the
interval I and the system state j is just a reflection of the fact that these prop-
erties also hold for E{(pj(I)φ )2}. It should also be noted that combining the

lower bounds for E{(pj(I)φ )} and E{(pj(I)φ )2} does not lead to a lower bound

for V ar{(pj(I)φ )}. However, for the analytical lower bounds it is revealing that
this leads to positive variances. For the corresponding simulated lower bounds
this is obviously the case. Finally, it should be remarked that in contrast to
the analytical bounds, the simulated bounds are improved by using modular
decompositions.
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For computer code used in this section we refer to
http://folk.uio.no/trondr/system/.
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Table 4. Lower bounds of the simple network system of Figure 1.
Analytical Sim. minus m.d. Sim. plus m.d.

I α j 1. m. 2. m. 1. m. 2. m. 1. m. 2. m.
[100, 110] 1 1 0.9902 0.9833 0.9902 0.9833 0.9902 0.9833
[100, 110] 1 2 0.9710 0.9507 0.9726 0.9546 0.9730 0.9551
[100, 110] 1 3 0.7481 0.6487 0.7481 0.6487 0.7481 0.6487
[100, 110] 10 1 0.9902 0.9807 0.9902 0.9807 0.9902 0.9807
[100, 110] 10 2 0.9710 0.9433 0.9713 0.9446 0.9724 0.9465
[100, 110] 10 3 0.7481 0.5751 0.7481 0.5752 0.7481 0.5752
[100, 110] 1000 1 0.9902 0.9805 0.9902 0.9805 0.9902 0.9805
[100, 110] 1000 2 0.9710 0.9428 0.9710 0.9428 0.9722 0.9451
[100, 110] 1000 3 0.7481 0.5598 0.7481 0.5598 0.7481 05598
[100, 200] 1 1 0.9555 0.9263 0.9555 0.9262 0.9555 0.9262
[100, 200] 1 2 0.8723 0.7947 0.8857 0.8226 0.8884 0.8256
[100, 200] 1 3 0.5219 0.3821 0.5217 0.3819 0.5217 0.3819
[100, 200] 10 1 0.9555 0.9142 0.9555 0.9142 0.9555 0.9142
[100, 200] 10 2 0.8723 0.7641 0.8751 0.7731 0.8834 0.7865
[100, 200] 10 3 0.5219 0.2903 0.5219 0.2903 0.5219 0.2903
[100, 200] 1000 1 0.9555 0.9130 0.9555 0.9130 0.9555 0.9130
[100, 200] 1000 2 0.8723 0.7610 0.8723 0.7611 0.8819 0.7778
[100, 200] 1000 3 0.5219 0.2726 0.5219 0.2726 0.5219 0.2726

[1000, 1100] 1 1 0.9380 0.8986 0.9381 0.8987 0.9381 0.8987
[1000, 1100] 1 2 0.8254 0.7256 0.8460 0.7663 0.8500 0.7705
[1000, 1100] 1 3 0.4578 0.3157 0.4580 0.3159 0.4580 0.3159
[1000, 1100] 10 1 0.9380 0.8818 0.9380 0.8818 0.9380 0.8818
[1000, 1100] 10 2 0.8254 0.6857 0.8296 0.6987 0.8422 0.7178
[1000, 1100] 10 3 0.4578 0.2265 0.4578 0.2266 0.4578 0.2266
[1000, 1100] 1000 1 0.9380 0.8800 0.9380 0.8799 0.9380 0.8799
[1000, 1100] 1000 2 0.8254 0.6813 0.8254 0.6815 0.8400 0.7057
[1000, 1100] 1000 3 0.4578 0.2098 0.4578 0.2098 0.4578 0.2098
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