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FRAILTY MODELS BASED ON LEVY PROCESSES
Abstract

Generalizing the standard frailty models of survival analysis, we propose to
model frailty as a weighted Lévy process. Hence, the frailty of an individual
is not a given quantity, but develops over time. Formulae for the population
hazard and survival functions are derived. The power variance function (PVF)
Lévy process is a prominent example. In many cases, notably for compound
Poisson processes, quasi-stationary distributions of survivors may arise. Quasi-
stationarity implies limiting population hazard rates that are constant, in spite
of the continual increase of the individual hazards. A brief discussion is given
of the biological relevance of this finding.
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1. Introduction

The hazard rate is a theoretical and descriptive tool which plays a fundamental role
in survival and event history analysis. Basic methodologies in these fields, like the
counting process approach and the Cox model, focus on hazard rates. The purpose of
the hazard rate is to measure, locally, the risk of an event given the non-occurrence of
the event up to that time. It is an intuitive and attractive concept, and is also closely
related to a concept like incidence rate in epidemiology. In a probabilistic context the
hazard rate is a special case of an intensity process, or the derivative of a Doob—Meyer
compensator, see [6].

In practice, the hazard rate must be estimated from data, based on the observation
of a number of individuals over time. One is then faced with the fact that individuals
will be dissimilar. In a sense one can say that each individual will have his own hazard
rate, and what is estimated on the basis of a number of individuals is some sort of
average. It is well known that the average hazard rate may be entirely different from
those of the individuals, however. Even when all individuals have hazard rates with
the same functional form, but different levels determined by varying proportionality
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constants, the estimated hazard rate will have an entirely different shape from that of
the individuals. This is pointed out in frailty theory, see [13].

1.1. Biological interpretations of hazard rate

In the biological literature one may find attempts at interpreting shapes of hazard
rates and drawing biological conclusions from these. In a paper in Nature, Clarke
et al. [9] discuss the development of diseases involving neuronal degeneration (e.g.
Parkinson’s disease). In such diseases the onset of clinical symptoms may be delayed
for years or decades after the premature neuronal death has started. There has been
a discussion of whether this delay reflects a cumulative damage process, or whether
the death of a neuron is basically a random event, the likelihood of which is constant
over time. Presumably, the first hypothesis would lead to increasing hazard of cell
death, while the second one would give a constant hazard. The cumulative damage
model implies a progressive process in the organism whereby previous cell death creates
damage that increases the likelihood of new cell death. The random event model, also
called a “one-hit” model, implies that there has been damage at one specific time, e.g.
a mutation, which then increases the likelihood of cell death to a new fixed level.

For a number of diseases and animal models, Clarke et al. study the survival of
neurons. They find that the hazard rate is generally constant, or sometimes decreasing,
but not increasing. From this they draw the conclusion that the cumulative damage
model is incorrect ant that the one-hit random model is the true one. In a more recent
paper, Clarke et al. [10] give a further discussion of their hypothesis. A similar study
for a type of mutant mice is presented by Triarhou [19], with the same conclusion of a
constant rate of cell death.

Another setting where biological interpretations of hazard rates have been presented,
is in the understanding of sleep. Lo et al. [16] study the changes between sleep and wake
states throughout the night. They find that the duration of sleep periods have more or
less an exponential distribution, while the duration of wake states has a distribution
with a decreasing hazard rate. This is interpreted within a stochastic process context,
but basically the implication is that sleep represents a random walk with no drift.

What is common for these papers is that they draw biological conclusions from
the shapes of hazard rates. It is then important to understand how very different
underlying models may lead to similar hazard rates. In particular, an approximately
constant hazard rate will be a common phenomenon for many models due to conver-
gence to quasi-stationarity. It therefore appears difficult to draw conclusions about the
underlying process with any degree of certainty.

An added difficulty comes from the possibility of frailty variation, that is, het-
erogeneity in risk between different units, those units being either individual cells or
organisms. Hence the development of risk at the level of an individual neuron, say, is
very hard to deduce.

This criticism does not necessarily imply that the conclusions in the mentioned
papers are wrong. But it points to the necessity of understanding the hazard rate and
how its various shapes can arise.
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1.2. A model for random hazard processes

The standard approach for combining a model for the hazard rate with an allowance
for individual heterogeneity in risk is the frailty model

pi(t) = ZiA(t) exp(B” x;). 1)

The deterministic hazard rate A(t) is estimated (parametrically or non-parametrically)
from data. The exponential term allows the parameter vector 3 to be estimated, giving
the effect of the covariate vector x; on the hazard. The individual frailty Z; is drawn
from a distribution of non-negative random variables. The subscript 7 indicates that a
new realization of Z is drawn for each individual. For more information on standard
frailty models and many extensions, see [13] and [2]. The simplifying assumptions
made in a standard frailty model enables one to estimate the true underlying hazard of
individuals, which is easier when multivariate survival data are available, as compared
to univariate data. However, there are two important aspects of the simplifying
assumptions. First, it is assumed that all individuals have proportional hazards. This is
obviously an assumption of mathematical convenience, although the theory developing
from it also seems to yield useful insights into biological phenomena. Second, the
individual frailty Z; is determined at time zero and follows the individual throughout
its entire life, resulting in the individual risk later in life to be perfectly correlated with
that at the beginning. It is clearly of interest to develop more flexible models.

A general view of the individual variation in hazard rates would be to regard the
hazard of an individual as a stochastic process. This would give individual flexibility.
However, since what is observable is still the average hazard rate, there should be a
tractable mathematical connection between the individual hazard rates and the average
one. One approach, which has been tried with some success by Yashin and others, is
to define the hazard rate as a diffusion process by means of a stochastic differential
equation [20]. It is not unnatural to think that the risk of an individual may develop
as some kind of diffusion. By introducing Ornstein—Uhlenbeck type processes one may
model the fact that many biological parameters tend to stabilize around certain values,
or what is called homeostasis.

Here we shall attempt a different approach, namely one based on Lévy processes.
This has been suggested before and developed to some extent by Kebir [14], but we
shall here give a number of additional results. Like diffusion processes, hazard rates
driven by Lévy processes also yield some degree of tractability. It is possible to get
explicit formulae for the relationship between individual and average hazard, one may
calculate the frailty and hazard of survivors, and so on. A basic difference from diffusion
processes is the jump nature of the non-negative Lévy processes applied here. However,
one could well imagine that individual hazard may increase in jumps, for instance by
the onset of an acute disease.

In the present paper we shall not go into statistical estimation. The object is to
study a mathematically tractable framework. One type of results we shall focus on
is the occurrence of quasi-stationarity in some models. This means that even though
individuals are constantly leaving the risk set, the distribution of the hazard of the
survivors may still converge to a limit. An effect of this will be that the average hazard
converges towards a constant level, which is sometimes seen in practice. In first-passage
time models quasi-stationarity is important in understanding the shape of the hazard
rate [3].
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The extension of frailty theory proposed here is hoped to have some biological
relevance. When looking at the risk of disease it will usually be the case that some of the
risk is acquired already at birth, for instance by the genetic makeup of the individual.
Then additional risk accumulates throughout life dependent on life style, various life
circumstances and accidental events. Also, important biological parameters, like blood
pressure and cholesterol, typically increase throughout life. If the focus is on the
development of some disease, then this may depend on observable marker processes, like
the CD4 counts in HIV infection. Such marker processes yield stochastic hazards [18].
There is presently a development in survival analysis towards joint modelling of survival
on the one hand and marker or covariate processes on the other hand. Mathematical
frameworks, like the one we present here, may be useful for such developments.

We shall consider here frailty distributions defined by a non-negative Lévy process,
which in our paper is taken to mean a process with non-negative, independent, time-
homogeneous increments, i.e. a subordinator. The Laplace transform of such a process
Z ={Z(t): t > 0} at time t is given by the Lévy—Khintchine formula

L(c;t) = Eexp{—cZ(t)} = exp{—t®(c)}, 2)

where ¢ > 0 is the argument of the Laplace transform. The function ®(c) is called the
Laplace exponent of the Lévy process. The family of Lévy processes contains a number
of important special cases, like compound Poisson processes, gamma processes, stable
processes, etc. In fact, all non-negative Lévy processes are limits of compound Poisson
processes. For background material on Lévy processes see e.g. [8].

When Z(t) is a subordinator, it is natural to associate frailty with such a process,
since frailty of an individual frequently can be thought of as increasing over time. We
would want to extend this to more general situations, however. To consider processes
with a varying “rate”, define the non-negative deterministic rate function r(t) with
integral R(t) = fot r(u) du, and let Z(R(t)) be the time-transformed subordinator.
Conditional on Z, we define our basic hazard rate processes h as

h(t) = A(t) /0 a(u, t — u) dZ(R(w)). 3)

This process will be the starting point for all models considered in our paper. The
function a(u,s) is a weight function determining the extent to which the effect of
previous jumps in Z(t) influence the hazard at time ¢. By having two arguments in
a(u, s), one allows for the weight depending on two time scales, namely the time scale
of the stochastic process (first argument), and time as measured in distance from the
current time (second argument). The deterministic function A determines the “base”
level of the hazard, although it could just as well be absorbed in a. Since most frailty
distributions of the classical frailty models are distributions of Lévy processes, the
general formulation here incorporates most of these classical models, as will be seen
below. Notice that, like in the standard frailty model (1), each individual in the
population will have its own realization of the underlying process Z and thus of the
hazard process h, although we will suppress the subscript :.

An introduction to models similar to the ones considered here, is given by Kebir
in [14]. An overview over hazard processes developing under randomness is given by
Singpurwalla [17]. Some models of frailty using Lévy processes are discussed in [4] and
[11]. Our results extend and complement those of Kebir.
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We will start by giving a short review of Lévy processes with some examples in
Section 2. In Section 3 some general formulae for the population hazard and survival
are presented, together with a collection of special cases to illustrate the results. Section
4 discusses the distribution of survivors in the model, in particular the variance of the
hazard distribution at time ¢. In Section 5 we study the long-run distribution of the
hazard and frailty, which frequently exhibits quasi-stationarity. Some of the special
cases from Section 3 are studied in this context. Examples of explicit formulae using the
power variance function (PVF) processes, introduced in Subsection 2.5, are discussed
in Section 6. Section 7 demonstrates how our framework is a natural formulation of
models with individual random perturbations of a parametric hazard function.

2. Lévy processes and subordinators

The full distribution of a non-negative Lévy process, i.e. a subordinator Z, is
determined by its Laplace exponent ®, defined in (2). For this reason many general
results on subordinators are derived in terms of ®. The function ®(-) is increasing and
concave, its derivative ® decreasing. We have the general representation

®(c) = de + /(0 () ),

where 4 is called the drift coefficient since at time ¢ the distribution of Z(t) is shifted
to the right by an amount td. The measure II(dz) has support on (0, 00) and satisfies
the condition | (o,oo)(l Az)T(dx) < oo. It is called the Lévy measure of the process Z.
Notice that when f(O,oo) II(dz) = p < 00, i.e. when (1/p)II is a probability measure on
(0, 00), we can write

®(c) = dc+ p(1 - Lo(c))

where Lg(c) is the Laplace transform of (1/p)II. For the derivatives we have

d'(c) = d+/ ze “ I(dx),
(0,00)
®'(c) = —/ z2e”* TI(dx),
(0,00)

which both exist for ¢ > 0. Clearly, lim, ., ®'(¢) =d. When ¢ = 0 we obtain the
relationships

EZ(t) = @'(0)t=(d +/ zII(dz)) t,
0,00
VarZ(t) = -®"(0)t= / 22 TI(dz)t,
(0,00)

which in some cases will be infinite.
We will present a number of examples of Lévy processes.
2.1. Standard compound Poisson process

Distributions generated by a compound Poisson process have previously been used
as frailty models, see e.g. [1] and [5]. They are important examples in the present
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framework of Lévy processes. A compound Poisson process is constructed as follows.
A Poisson process of rate p is running on time scale t, and to each jump there is a
gamma random variable, independent of the Poisson process, with shape parameter
n > 0 and scale parameter v > 0. The compound Poisson process is the sum of the
gamma random variables up to time t. The Laplace transform of the distribution of
the process at time ¢ is given by L(c;t) = exp{—tp[l — (v/(v + ¢))"]}. Hence,

B(c) = p{1 - Lo(0)} (@)
where Lo(c) = (v/(v+ ¢))™ is the Laplace transform of the Gamma distribution of the
jumps, and

" 1
n U.’Ed X
e (n)m e x

2.2. Compound Poisson process with general jump distribution

(dz) = p

Let the gamma variables be replaced by positive random variables X with distrib-
ution px(dz) and Laplace transform Lg(c) = Eexp(—cX). The Laplace transform of
the process now takes the form L(c;t) = exp{—pt + ptLo(c)}, giving

®(c) = p{1 - Lo(0)}.

The Lévy measure II(dz) = pux (dx) is proportional to the jump distribution g .
It is true in general that ® is bounded if and only if Z is compound Poisson. This

is proved for the characteristic exponent in [8], but the argument is easily adapted to
d.

2.3. Gamma processes

Now let the value of the process at time ¢ be gamma distributed with shape para-
meter pt and scale parameter v. Then L(c;t) = (v/(v + ¢))?t = exp{—pt[log(v + ¢) —
log v]}, so that ®(c) = p{log(v + ¢) — logv}. Here II(dz) = pe ¥*/x dz. This can be
considered a borderline case of the standard compound Poisson process in 2.1 when
n =0 and p — oo in such a way that np converges to a positive constant.

2.4. Stable processes

Stable frailty distributions have been applied successfully by Hougaard ([12], [13])
who has pointed out that they may preserve proportional hazards. The Laplace
transform takes the form L(c;t) = exp(—tac?), where 3 is a parameter in (0, 1). Hence
®(c) = ac®, with Lévy measure

af

_-rF _—1-B
F(l—ﬂ)m dzx.

II(dz) =

2.5. PVF processes

The PVF (power variance function) distributions constitute a general class of dis-
tributions studied, for instance, in [13]. A class of Lévy processes may be defined from
the PVF distributions by letting

<I>pvp(6;p,v,n)=p{1— <Vic)n} (5)
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with v > 0, n > —1 and np > 0. This is a direct extension of the standard compound
Poisson process defined in (4) above. The Lévy measure is

II(dz) = " e V% dx.

v
an‘(n +1)
When n > 0 this is the standard compound Poisson. For n = 0 we recognize the
gamma, process as a borderline case. When 0 > n > —1 then II([0, 00)) = oo, so the
process is no longer compound Poisson, but the special case of n = —1/2 is the inverse
Gaussian process, and when v — 0 and p — oo in such a way that pv™ converges
to a positive value, the result it is a stable process. Section 6 is devoted entirely to
examples using PVF processes.

3. Results for general and special frailty processes

In a population with frailty, assume the hazard for an individual at time ¢ is h(t),
a suitable non-negative stochastic process. Let T be the random time at which an
event occurs for an individual. Let I(T' > t) = 1 if T > t, 0 otherwise. Clearly, the
population survival S(t) = P(T > t) is

S(t) = E|(T > t)] = E[E[I(T > t)|h]] = E exp(— / h(s)ds).

Conditional on k, we have P(T > t|h) = [ h(s)P(T > s|h)ds. Taking expectations
on both sides,

P(T > 1) = /1t ~ B[h(s)EL(T > s)[h]] ds = /t " Blh(s)|T > s|P(T > 5) ds,

thus the population survival S(t) has the corresponding population hazard
u(t) = E[p()[T > ],

see, for instance, [20].

If the distribution of h(t), conditional on T' > ¢, converges to a non-degenerate
distribution when t — oo, we refer to this as a quasi-stationary distribution for the
hazard of the survivors. Similarly, in the model (3) we can consider a quasi-stationary
distribution for the underlying frailty process Z(t).

From now on, h will mean the frailty formulation (8).

Condition 1. To assure the existence of a population hazard u(t) for all t > 0, we
assume that A and r are bounded on compact subsets of [0,00), and that fé a(t,v)dv <
oo for alll,t > 0.

3.1. Population versus individual survival

If we follow the hazard of an individual over time, regardless of whether an event
has occurred or not, then

E[h(t)] AE)E[Z(1)] /0 a(u,t — w)r(u) du, (6)

Var[h(t)] = )\(t)2Var[Z(1)]/0 a(u, t — u)?r(u) du. @
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We have seen above that to study the population hazard we need to consider the
corresponding values conditional on 7" > t.

Theorem 1. Under the model (8) for the hazard, we have the following expressions
for the population survival and hazard functions:

S(t) = exp(— /0 (b(u, 1)) r(u) du),

w(t) A(t) /0 &' (b(u,t)) a(u,t — u) r(u) du, (8)

where b(u, t) =4 f; A(s) a(u, s — u) ds.

Proof. The survival function at time ¢ is given by

S(t) = Eexp(— /0 h(s)ds) = B exp(— /0 AGs) /0 "o, s — u) dZ(R(u)) ds)

Bexp(— /0 b(u, £) dZ(R(w))).

Introducing the transformation v = R(u) yields the following form:

R(t) R(t)
S()=EBep(— [ WRT(0),0dZ0) =exp(~ [ SR (0),0)do).
0 0
Transforming back again to u yields the result for S(¢). The hazard rate corresponding
to this survival function is given by

u(t) = % A <I>(b(u,t))7‘(u)du=/0 %@(b(u,t))r(u)du

At) /0 & (bu, £) ) a(u, t — u) r(w) du.

3.2. Special cases

Special case 1: Moving average. Let a(t,v) = a(v) depend only on the second
argument and let 7(¢) = A(t) = 1 (any constant value of A can be absorbed in a,
and any constant value of 7 can be absorbed in ®). Since h(t) = fg a(t —u)dZ(u) =

fot a(v)dZ(t — v), h is seen to be a moving average process (although not necessarily
stationary). Define A(v) = [; a(u) du. Then b(u,t) = A(t — u) and

S(t) = exp(—/0 D(A(w))dv) and u(t) = B(A(L)).

Note that u(t) is increasing, and in addition concave if a is decreasing. It is clear that

if either ® is bounded (i.e. Z is compound Poisson,) or A(oco) T im0 A(t) < oo,
then lim; o p(t) = ®(A(00)) < 00, so that the hazard converges to a limit, and it
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is reasonable to assume that there is a quasi-stationary distribution for the hazard of
survivors. We will later prove this to be true in many cases.

Special case 2: Standard frailty model. We assume a(t,v) = 1. Let r(t) be equal to
p up to time T and 0 after this time, and assume that A(t) is equal to 0 up to time 7.
From the general model (3) it follows that the hazard process equals

h(t) = A(t) Z(pT), ¢> 0.

The population hazard rate is u(t) = pT A(t) ®'(A(t)), ¢ > 0, where A(t) 4 f; A(s) ds.
‘We recognize the hazard rate of the standard frailty model, where the frailty distribu-
tion is generated by a Lévy process, as are almost all common frailty distributions. For
instance the PVF distributions described in [13] are distributions of Lévy processes, as
discussed in Section 6.

Special case 3: Frailty equals instantaneous jump of Lévy process. Assume that
a(t,v) depends only on the argument v, and that it equals the Dirac delta function in
this argument. Then

p(t) = r(t) D(A(2)).

4. Distribution of frailty for survivors

In the general frailty model discussed above one may be interested in the conditional
distribution of the Lévy process Z(t) generating the frailty given survival up to time
t, and also the conditional distribution of the frailty h(t) itself. As before, let T' be
the random time to an event for an individual. We have the following expression for a
conditional Laplace functional of the (time transformed) Lévy process Z(R(t)):

Proposition 1. For a suitable non-negative function ¢ on (0, 0),
def >
pr(et) Y Blexp(= [ ols) dZ(R@)|T > 1
0

= exp(— /O ) (@(c(s) +0%(s, 1)) — B(b"(s,1)))r(s) ds) 9)

where b*(u, t) i I(u < t)b(u,t) = I(u < t) fi A(s) a(u, s —u)ds

In particular, the conditional Laplace transform of the hazard h at time tq is

L (et t) & Elemchto)|T > ]
to

= exp{-— ; [®(cA(to)a(s,to — 8) + b*(s, 1)) — B(b*(s,1))]r(s) ds},
and
Eh(to)|T >t] = A(to) /Oto &' (b*(s,t))a(s, to — s)r(s) ds,

Varfh(to)|T > 1] = —A(to)? /Otoqw(b*(s,t))a(s,to—s)%(s)ds.
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Proof. Let as before I be an indicator function.

L (c;t) Efexp{— /0 N c(s) dZ(R(s))} | T > t]

= Elexp{— /0 ” () dZ(R(s))} (T > B)/P(T > ¢)

= Elexp{- /000 c(s)dZ(R(s))} E[I(T > )| Z])S;

= Elexp{— /0 oo(C(S) +b%(s,1)) dZ(R(s))}]S¢

= exp{— /0 ” (@(c(s) + * (s, ) — B(*(s, £)))r(s) ds}.

The expression for L™V (c; to, t) follows by letting ¢(s) = cl(s < to)A(to)a(s,to—s), and
the conditional expectation and variance for h(tg) follows by differentiation of L3*".

Remark 1. In the above Proposition, a typical function ¢(s) would be a step function
having constant values on intervals and being zero after a certain point. This will
produce the joint Laplace transform of increments of the Z o R process, conditional on
no event. For instance, it follows that the distribution of the increment Z(R(u3)) —
Z(R(u1)), conditional on T > ¢, has the Laplace transform

Eexp(—c[Z(R(u2)) — Z(R(w))||T >1)
= exp(—/ (®(c+b*(s,t)) — ®(b*(s,1)))r(s) ds)

exp(—cd(R(us) — R(u1)) - / (1 - e~ o, 4(d2)),

(0,00)

where

Ius us,t(d2) = { / e DTy () ds} T(dx).

Thus, for fixed u1,uz,t, the increment Z(R(uz)) — Z(R(u1)) has the distribution of
Z(1), a Lévy process with drift d(R(u2) — R(u1)) and Lévy measure II,, u,:. By
computations similar to the proof of the proposition, it can be shown that, conditional
on T > t, the increments of Z o R are independent. Similarly, the Laplace transform
L3 can also be rewritten as the transform of a Lévy process distribution.

For an ordinary Laplace transform L(c) corresponding to a density f(z), the trans-
formation L(c + b)/L(b) for some constant b corresponds to the modified probability
density e~ f(x)/L(b). A similar interpretation would hold above.

Note that the formula (9) closely resembles formula (11) in Barndorff-Nielsen and
Shepherd [7]. Their expression is the case where the integrated hazard process H(t) =
[* h(s) ds is modelled directly as

H(t) = exp(—At)H(0) + /0 exp(—A(t — 8))dZ(Xs),

instead of modelling h(t).
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Special case 1 (continued). When a(t,v) = a(v) depends only on the second ar-
gument and A\ = r = 1, the variance at time ¢ for the hazard of survivors, with
A(v) = [; a(u) du as before, is

Var(h()|T > t] = /0 " (A(s))a(s) ds.

Clearly, Var[h(t)|T > t] is increasing in ¢. We note that if 0 < k1 < a(s) < k2 < 0o on
some interval s € [0, €), then it can be shown that

EZ(t) < o< Varlh(t)|T >t] <oo, t=>0.

In particular, let us consider a(v) = ae %Y. Then A(v) = a(l — e *¥)/k, and using
integration by part,

P(A(t))
a®' (0) — a(t)®'(A(t)) — k®(A(L))
= p(0) = p'(t) — kpu(t).

Similarly, if a(v) = a (constant), then

w(t)
Varlh(t)|T > t]

w(t) = ®(at) and Var[h(t)|T > t] = u'(0) — i (t).

5. Long-run behavior and quasi-stationary distributions

As discussed in the introduction, it is of conceptual and practical importance to
decide whether a model may produce an almost constant hazard rate even though
the individual hazards may be increasing. In our context, we can ask whether the
population hazard u(t) converges to a finite value. Also, we are interested in seeing
whether the distribution of h(t) or Z(t), conditional on T > t, stabilizes to a specific
quasi-stationary distribution as ¢t — co. We will prove that this happens under some
common circumstances.

Condition 2. The limits A\(c0), 7(00) and a(oo,v) of respectively A(t), r(t) and a(t,v)
as t — oo all exist and are finite.

Condition 3. E[Z(1)] < 0o and a(t,v) < a(v) for some function @ with [;° a(s)ds <
0.

Condition 4. There is a k1 such that A\(t) > k1 > 0, V¢t > 0. There is an € > 0
and a function @ such that ea(v) < a(t,v) < @(v), and either [;° a(v)dv < oo or ® is
bounded (compound Poisson case).

Theorem 2.
Limiting hazard:Assume Condition 2 holds. If in addition either Condition 8 or
Condition 4 holds, the population hazard converges to the finite value

p(o0) = lim u(t) = r(c0)®(n(c0))

where n(v) 1 A(o0) [y a(oo, s) ds.
Quasi-stationary distribution: Under the same conditions, a quasi-stationary distribu-
tion exists for h(t), conditional on T > t, as t — oo. The Laplace transform of the
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quasi-stationary distribution is

LP™(Goo) = lim Li“”(c;t,t)=exp{—r(oo) / " (e () + 1)) — B(n(w)) dv}

t—oo

) dv;

exp {— ldr(oo)n(oo)c + /(0 )(1 — e ) I(dz)

Here 11 is a new Lévy measure defined by

] =7roo exp(— T](v) z i
(dz) = r(co) {vin’ (v)>0} p( ' (v) )H(W’(U)

d and 11 are the drift coefficient and Lévy measure for ®. Thus, the quasi-stationary
distribution is the distribution of a random variable Z(1), where Z is a new subordinator
with drift r(co)dn(oo) and Lévy measure II.

Proof. Limiting hazard: After a change of variable we get

w(t) = A(t) /000 I(v < )@ (b(t — v,t))a(t — v,v)r(t — v) dv.

Under Condition 3 we see that ®'(0) = E[Z(1)] < oo, and since ®’ is decreasing,
the integrand is dominated by E[Z(1)]sup;sq r(¢)d@(v), which is integrable. The result
follows from the dominated convergence theorem by taking the limit under the integral
sign.

Under Condition 4 we notice that b(t — v,t) > ki€ [, @(s) ds and consequently the
integrand is dominated by ® (ki€ [y a(s) ds)a(v) sup;»o7(t). By the chain rule, this
will have a finite integral over [0, 00) provided either ® is bounded or & is integrable.
The result again follows by the dominated convergence theorem.

Quasi-stationary distribution: After a change of variable,

L™ (eit,t) = exp{— /0 " lw < H@(AB)alt — v,v) + bt — v, 1)
—®(b(t — v,t))|r(t — v) dv}.
By the concavity of ® we have
D(cA(t)a(t — v,v) + bt — v,t)) — P(b(t — v,t)) < D'(b(t — v,t))cA(t)a(t — v,v)
By an argument identical to the one above,
Jim L™ (it,t) = exp{=r(o0) [ (@ (o) + n(o)  Bn(w)] o}
= exp{—dr(oo)n(oco)c
—r(oo e—'r](v):c _ 6—c7]'(v)z ) dv
e [ e )T1(dz) do}

—  exp|—[dr(co)n(co)c + / (1 - &%) TT(d2)],

0,00)
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where the last part follows after a change of variable from z to z = n/(v)z. It remains
to be shown that L™V (c; 00) is continuous in ¢ = 0. But this follows from

/ " [@(er () + n(v)) - B(nw))]dv < ¢ / " & () (v) dv = c@(n(00)),

and thus L3"V(c; 00) is a proper Laplace transform of a quasi-stationary distribution.

Remark 2. For PVF processes we have E[Z(1)] = ®'(0) = np/v < o0, so that the
first part of Condition 3 is satisfied.

Remark 3. Letting ¢ — oo in (2), we have
P(Z(t) = 0) = exp(—tP(0)).

Thus, in the common situation covered by Condition 4, with Z compound Poisson
but n(o0) = oo, it is clear that u(t) stabilizes because of a subgroup of individuals for
whom Z(t) = 0, and ®(0c0) is the rate at which these individuals are released through
a “bottleneck” from the no risk group into a group with higher risk.

Remark 4. Quasi-stationary distribution for Z(R(t)). It is also relevant to ask whether
the underlying process Z o R reaches quasi-stationarity. The conditions on a for this
to be true are somewhat different from the h case. Together with Condition 2, it
is sufficient to have ® bounded, and that there exist constants ki,! > 0 such that
A(t) > k1 > 0 and a(t,v) > [, for all t,v > 0. Under these conditions, there is a
quasi-stationary distribution for Z(R(t)) conditional on T' > ¢, with Laplace transform

2

Special case 1 (continued). When a(t,v) = a(v) and A = r = 1, we have already
mentioned that u(t) = ®(A(t)) is increasing, and has a limit $(A(c0)) exactly when ®
is bounded (the compound Poisson case) or when A is bounded.

Similarly, for the variance we have seen that Var[h(t)|T > t] = — fot D" (A(s))a%(s)ds
is increasing, and under Condition 3 it is true that

Jim Blexp{—cZ(RE)HT > ¢ = exp {— [cmoo)an(oo) +f,a-eia)

iw)

where II(dz) = r(c0) [~ e™")* dvII(dz).

Jim Varlh(®)|T > ] = - / ®"(A(s))a(s) ds < oo,
—00 0
Specifically, if a(v) = ae™*" then u(oo) = ®(a/k) and
1tlim Varlh(t)|T > t] = aE[Z(1)] — ku(c0).
If a(v) is constant in v, then p(oco) = ®(o0) and
tlim Var[h(t)|T > t| = aE[Z(1)].

Furthermore, in this case we also have a simple expression for the Lévy measure of the
limiting distribution of h, following Theorem 2:

Tl(dz) = /OOO =2 11( %) gy = 1H(%),

a z
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which at least in the compound Poisson case defines a proper quasi-stationary distrib-
ution.
6. PVF processes
Recall that a PVF Lévy process is determined by the Laplace exponent

v n
QPVF(C;payan)zp{l_ (V+C> }

In the case of PVF processes, many of the formulae given in the preceding results can
be made explicit in particular cases. We will focus on situations where \(t) = t* for
some k > 0, r(t) = 1 and a(t,v) = a (constant). That is, the frailty process can be
written as

h(t) = at*Z(t)

so that the hazard consists of a deterministic Weibull part, perturbed by a Lévy process.
For various combinations of values of k¥ and n we can now study the properties of the
population hazard p and the distribution of survivors. Notice first that

E[h(t)] = amt**' and Var[h(t)] = a®r2t2F+1

with m = E[Z(1)] = np/v and 72 = Var[Z(1)] = n(n + 1)p/v?. Clearly, h(t) is an
increasing process with Var[h(t)] — oo as t — oc.

6.1. The distribution of survivors at time ¢

The population hazard rate is

£)—1 1 k+2 y(t)—1
H 1,22
el Sror Ll s Sy

u(t) = ok + Dy () (L

0 )

with
def a k+1
t) =14+ ——t
=1 et
where H denotes the hypergeometric function [15]. To compute u we used Mathematica
(Wolfram Research, Inc.) to integrate formula (8). Clearly, as a parametric model, one
of the parameters a, v is redundant. From the definition (3) of A(t) it can be seen that
in general, the value of v can be absorbed into a multiplicative constant in a. Thus,
henceforth we will let v =1 in our PVF examples.
Considering the variance of the hazard of survivors, the following expression can be
derived:

Varlh@)|T > = n(n—l—l)p(k—}-l)Q%fy(t)_”
) —1\%, 1 E+2 () —1
X( 0 )H(k+1’”+2’k_+1’ @

Notice the similarity to u(t). Similarly, the conditional Laplace transform can be
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computed:
L3 (¢;t) = E[e "®|T > ¢
n 1 k+2 ~(t)—1
xpl-pt00) "H (o e L)
1 k+2 ~t)-1
) n7 b)
E+1"" k41" (t) + catk

—(y(t) + cat®) " H( -

6.2. Behavior when t — c©

Using asymptotic properties of the hypergeometric functions ([15]), we can show
that in the compound Poisson case n > 0, u(t) — p as t — oo. Otherwise, when
0> n > —1 we have

k+1 n 1 —n(k+1)
ult) ~ np(— =) B, —n)t

— 00 as t — 00.
Here, B(z,y) = fol t*~1(1 —t)v -1 dt is the beta function. For the variance we find the
asymptotic relation

Var[h(t)|T > t] ~ anpt®, t — oco.

We see that the population behavior is markedly different from the individual hazards.
In the compound Poisson case we reach a stable value for u(t) even when the individual
hazards are increasing. However, only in the case where £k = 0 will the variance
stabilize around a constant value over time (regardless of n), creating a quasi-stationary
distribution.

The upper panel in Figure 1 illustrates the behavior of the population hazard. All
hazards are computed using the values a = 1/2 and k = 2, but with varying values of
n and p. The two hazards when (n, p) equals (—0.5, —5) or (1,5) are quite different.
However, the two corresponding density functions (lower panel) are almost identical.
This is due to the fact that the two hazards are fairly similar up to time 2, and
within that time almost all of the population has had an event. As a consequence,
convergence of  is irrelevant in this case. A different situation emerges when (n, p)
equals (—0.5,—0.25) or (1,0.25). Although the hazards are identical in shape to the
previous two, the overall hazard level is much lower and events accumulate much more
slowly. The result is that the one hazard approaches the steady state and the other goes
to infinity long before all individuals have had an event, producing two very different
densities. Clearly, convergence of u is here important for the life time distribution.

6.3. The particular case k =0

When k = 0 we simply have h(t) = aZ(t), and the results are also covered by Special
case 1. We have

u(t) = ®pyr(A(t); p,v,n) = ®pyr(at; p, 1,n) = ®pyr(t; p,1/a,n)
and

Var[h(t)|T > t] = a®pyg (0; p,v,n) — (' (t) = ®pvr (t;anp, 1/a,n +1).



16 H. K. Gjessing, O. O. Aalen and N. L. Hjort

o n=-05 rtho=-5 =——— g n=-05, ho=-0.25 =
n=1, rho=5: == =—— n=1, rho = 0.25: == == —
0 1 < 4
° - - ° -
5 © 1 T~ —— B T~ ——
B = S o =
o < 9 =
/ o /)
] /) /)
o 1 o
T v v S =
0 2 4 6 8 10 0 2 4 6 8 10
time time
2 4 n=-05, rho=-5 =—— Q1 n=-05 rho=-025 =
A n=1, rho=5: == =—— AR n=1, rho = 0.25; == == —
n
o I =2
z " I\ >
e | N
0 0
T g J \ T g
J
\ /S T =<
o O_ 1 Ko
o o T
0 2 4 6 8 10 0 2 4 6 8 10
time time

FIGURE 1: Hazard rate (upper row) and their corresponding life time densities (lower row).
Generated by h(t) = 2t>Z(t), where Z(t) is PVF with v = 1 but varying values of n and p.

The Laplace transform simplifies to

Li™(et) = expl- a(np— 1) {1 + (1 + a(lt +c¢) )n_l - (1 iac)n_1 B (1 —:at)n_l}]
= exp[—Ppvr(c ﬁ, 1/a,n —1)]
/ exp[—®pyr(c; ﬁ(l _i at)n_l’ 1/a+t,n—1)].

If n > 0, this is a quotient between two PVF Laplace transforms. The expectations of
the PVF distributions corresponding to the two Laplace transforms are

1
d n
pand p(30)
respectively, while the variances are
anp and anp (m nl
a

Asymptotically, as t — oo,

u(t) — pwhenn>0
u(t) ~ —p(at)™ — oo when 0 >n > —1,
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and
Var[h(t)|T > t] — anp
regardless of n. The limiting distribution has the Lévy measure (see Special case 1)

(dz) = np n—2e7%/a gy,

1
arT'(n+1) i
which defines a proper quasi-stationary distribution when n > 0, and this is a PVF
distribution with Laplace exponent ®pyr(c;p/(a(n —1)),1/a,n —1).

7. Random perturbations of hazard functions

In this section we use results reached above to investigate some natural hazard rate
models that come from placing random frailty processes “around” given deterministic
hazard functions. Using such frameworks of varying frailty we learn more about the
consequences for the hazard rates that can actually be observed, i.e. when estimated
from individuals sampled from a population. It is a basic lesson of ordinary fixed-frailty
theory that the shape of the population hazard may be quite different from that of
each individual; this phenomenon is partly even more pronounced in our context of
frailty processes, since the mechanisms are more complex.

Assume first that the hazard rate, conditional on a multiplicative frailty variable F,
takes the form hg(t) = A(t)F, where the A function is fixed. For a random life time
T this implies P[T > t|F] = exp[-A(t)F] in terms of the cumulative base hazard
function A(t) = fot A(s)ds. If F has Laplace transform Eexp(—cF) = exp{—G(c)},
say, then the unconditional survivor function is P(T' > t) = exp{—G(A(t))}. This is
the classic multiplicative frailty situation, with ensuing hazard rate u(t) = G'(A(¢))A(t)
for individuals sampled from the population; see e.g. [13], Ch. 2. Among the perhaps
too strict implications of this frailty formulation is that hg(t) differs from A(t) by a
fixed factor for all ¢, in particular the correlation between hg(s) and ho(t) is 1 for all
s and t. Also, the multiplicative correction to the basis hazard A(¢) implied by the
random frailty F takes the very precise form p(t) = G’'(A(t)), whereas other and more
flexible forms of correction might be anticipated for various applications. In particular,
this classic formulation entails by necessity a monotone decreasing p(t). Our model (3)
is much more flexible in these regards.

Write (w1 )

ao(u,t —u
a(u,t —u) = RO

where Ay(t) e Ot ao(u,t — u)r(u) du, for some appropriate function ag(t,v). Let

m = E[Z(1)] and 72 = Var[Z(1)], assuming these quantities exist. Using this definition
of a in (3) we can write

h(t) = M) F(t)

where
F(t) = mALO(t) /0 ao(u, t — u) dZ(R(u)).

From (6) it is clear that E[F(t)] = 1, thus F(¢) can be thought of as a random
perturbation of the deterministic hazard process A. From (7) we have

T2 t
V() < VarlF ()] = T /0 0o, t — u)?r(u) du.
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One also finds that the correlation between h(s) and h(t) is {V(s)/V (t)}/? for s < t.

In the rest of the section we will assume r(¢) = 1. Some examples illustrate different
strands of behavior for the frailty process F(t).

(i) If ag is constant then h(t) = A(t)Z(t)/(mt) and V (t) = (72/m?)/t, which means
that F'(t) starts out highly variable but settles down towards the value 1 as time goes
on. Also, the correlation between h(s) and h(t) is (s/t)}/2 for s < t, indicating that
h(t) ‘forgets’ h(s) as t moves on. One finds similar results for a(u,t—u) equal to either
uF or (t — u)¥, for positive parameters k .

(ii) The two situations aq(u,t — u) = exp(—xu) and az(u,t — u) = exp(—k(t —
u)), where & is a positive smoothing parameter, correspond to rather different frailty
processes, in that the first places most emphasis on the start of the Z(v) process, i.e. for
small v, while the second has F(t) more dependent on recent Z(v) behavior, i.e. for v
closer to t. Both models have the same variance and correlation structure, however,
with

Vi) = 7-_221& 1 — exp(—2kt) .
m?22 {1 — exp(—~t)}?

This is proportional to 1/¢ for ¢ small but goes towards a fixed positive limit when ¢
grows, i.e. the frailty process will not stop exhibiting real variation. There is also a
long-term memory aspect of this situation.

(iii) One may similarly investigate a(u,t—u) equal to exp(ku) or exp(k(t —w)). We
find the same expression for V' (¢) as for case (ii).

By (8), the population hazard rate is

u(t) = A(t)p(?),

where
olt) = m /0 & (b(u, t))ao (u, ¢ — u) du
and
RO
b(u,t) = A (s) ap(u, s —u) ds.

We may read this as having the basis hazard rate A(t) modified with a correction
function p(t) due to the extra frailty variation in the population, causing early deaths
among those with higher frailty. There is a variety of shapes and types of the p function,
depending not only on A but also on the weight function a and the Laplace exponent
®. Note that p(t) is always less than 1.

The simplest special case here is that of ag being constant, in which case p(t) =
(mt)~" [o ® (b(u,t)) du, where b(u,t) = m~" [*s7"A(s)ds. When X is constant, this
simply gives a constant population hazard rate u(t) = Ap, since the frailty correction
function p(t) is found to be equal to the constant p =m ™! [° ®'(Av/m) exp(—v) dv.
This differs from classical applications of frailty, where the shape of the population
hazard invariably is different from that of the individuals.

Next look at Weibull base shapes A(t) = At¥, excepting the case k = 0 just dealt

with. Here

u(t) = )\(t)% /O ‘g (%k_l(t’“ _ uk)> du.
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Choosing different values of k and A reveals a range of different shapes for the correction
function p(t). It is for example possible to have the population u(t) reasonably flat,
coming from an increasing A(¢) for each individual, but counterbalanced with the frailty
mechanism.

We also learn from the special type of A(t) = tq(t), say, where ¢ has integral function
Q, that

w0 = M0 [ 9/m(Q(0) - Q) du

For A(t) = Aot exp(—kt), for example, one finds correction curves that first decrease
and then increase, causing sometimes different shapes for p(t) than for each individual’s
basic A(t). Specifically, the peak of maximum individual hazard is pushed downwards
in size, and happens earlier when observed in a random sample.

Further examples of interest are afforded by the two cases a(()l) (u,t —u) = exp(—ku)
and a((f) (u,t —u) = exp(—~k(t — u)), where k again is a positive smoothing parameter.
For these cases, coupled with a constant A\, we find

pM) = #&L_m) /0 o’ <% exp(—ru) log %) exp(—ku) du,
Plt) = [t
X /0 ol (% exp(ku) {log % — Kt — u)}) exp(—k(t — u)) du

Often, the second correction curve decreases more rapidly towards zero, the first
retaining more from the values at the start. Also, the p,(t) function may be first
increasing before decreasing. This also happens with other A(¢) functions.
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