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Abstract

A family of nonparametric prior distributions which extends the Dirichlet pro-
cess is introduced and studied. Such family is first constructed by normalising
suitable compound Poisson processes. An alternative derivation shows that such
priors admit a simple representation as discrete random probability measures
with symmetric Dirichlet weights independent of i.i.d. locations. The latter rep-
resentation proves useful in deriving manageable expressions for the posterior
and predictive distributions. A number of Bayesian nonparametric estimators
based on the family are discussed. Furthermore, an analysis of the characteris-
tics of a sample drawn from the family demonstrates its potential as a second

stage prior in hierarchical Bayesian clustering models.

1. Background and introduction

The Dirichlet process ([3], [4]) still plays a central role in Bayesian nonparametric
statistics, both as a special case of many larger families of priors on distributions for
the data and as element of more complex hierarchical models. See [10] and [6] for
recent reviews.

Our aims in this note are to exhibit a new useful generalisation of the Dirichlet pro-
cess and then derive and discuss various results and nonparametric Bayesian inference
methods based on this generalisation. In particular we shall point out the effective
gain reached in terms of flexibility by such generalisation, showing at the same time
its considerable tractability.

We start out giving the essentials of the Gamma and Dirichlet processes, also es-

tablishing some notation.



A Gamma-distributed Y with parameters (a, b) has density proportional to y* e~

and its mean and variance are a/b and a/b?. Consider independent Y;,...,Y, where
Y; ~ Gamma(a;,b). Then S = > 7V, is Gamma distributed with parameters
(37, a;,b), and furthermore the random probability vector (Y;/S,...,Y,,/S) is Dirich-
let with parameter (ay,...,a,). These are the keys to the existence of (and construc-
tions of) Gamma and Dirichlet processes over any interval, or in fact any measurable
space. At this stage we confine ourselves to the unit interval [0,1]. Let Fy be any
distribution function on [0,1] and let a and b positive. We then say thet 7 is a

Gamma process parameters (aFp, b) if its increments are independent and of the form

dZ(t) ~ Gamma (adFy(t),b). In particular Z(t) ~ Gamma (aFy(t),b) with
EZ(t) = aFy(1)/b and Var Z(t) = aFy(t)/b°. (1.1)
The random distribution function F(t) = Z(t)/Z(1) over [0,1] becomes a Dirichlet

process with parameter aFy (the scale parameter b becoming immaterial for F). Its

first moments are
EF(t) = Fo(t) and Var F(t) = (a+ 1) Fo(4)(1 — Fo(t)). (1.2)

The contents of the paper are as follows. In Section 2 we introduce a family of com-
pound Poisson processes on [0, 1] and show that the Gamma process can be reached
as limiting case. This motivates (Section 3.1) the definition of a generalised Dirichlet
process (GDP) as normalisation of such compound processes. Section 3.2 presents a
different representation which extends the GDP to an arbitrary sample space. Such
a representation is in terms of a random number of symmetric Dirichlet distributed
weights attached to i.i.d. locations. It is used in Section 4 to derive the marginal
distribution for data and the posterior process.

Estimators of mean and variance parameters including the predictive distribution
are discussed in Section 5. Properties of a sample drawn from the GDP, with particular
emphasis on the structure of possible configurations of ties in the data, are studied in
Section 6. The derived results are shown to imply an added flexibility of the GDP family
with respect to the Dirichlet process, which is of particular relevance in applications

to hierarchical settings used to model clusterings of items.

2. The Gamma process as a limit of compound Poisson processes

Let M(-) be a Poisson process with parameter AFy(-). Consider the compound process

M(1)
Zy(t)y=Y_Gi for0<t<1, (2.1)
=1

2



where the (7;’s are independent Gamma (a/A, b) variables and independent of M. Note
that although 7, forms a Gamma process conditional on any path of M, it is not a

Gamma process marginally. We have
EZ\(t) = aFo(t)/b and Var Zy(1) = aFy(t)/b*[1 4 a /],

showing in comparison with (1.1) that Z, like Z is centred at aFy/b, but exhibiting
somewhat more variation than that of a pure Gamma process. However, the Gamma

process structure is reached as A grows.

LEMMA 1. Consider the compound Poisson process Zy of (2.1), governed by pa-
rameters Ay for M and (a/X,b) for the Gamma summands G;. Then, as A grows lo
infinity, the 7, process converges in distribution to that of a pure gamma process 7

with parameters (aFy,b).
PROOF: The Laplace transform of Z,(¢) is in general terms
Eexp{—0Z,(1)} = ELy()M® = exp{—MFo(1)(1 — Lo(8))},

with Lo(0) = Eexp(—0G;) being the Laplace transform of the (;s. In the present case,
Lo(0) = exp{—(a/X)log(1l + 8/b)}, which is seen to lead to

Eexp{—07,(t)} — exp{—aFo(t)log(1+ 0/b)} as A — oo.

This means that Z,(t) 4 Z(t). In the same way one shows that a finite set of in-
crements of Z, converges in distribution to the corresponding set of increments of 7,
basically using that both have independent increments. Tightness of the Z) system
follows from monotonicity. This secures convergence of Z, to Z in the space of all
right-continuous functions on [0, 1] with left-hand limits, equipped with the Skorohod
topology. O

3. Generalised Dirichlet processes

The above result motivates the study of a random distribution function more general
than the Dirichlet process. A supplementary representation then leads to a further

generalisation.



3.1.  The normalised compound Poisson process

Consider

_ Zx\(t) _ i) Gi
Zx(1) ZigM(l) Gi

This necessarily constitutes a generalisation of the Dirichlet process, since this results

(1) on [0,1]. (3.1)

from sending A to infinity by the Lemma above. Note that the scale parameter b be-
comes immaterial for the ratio process. We therefore simply take b = 1, and use G|’s
which are Gamma (a/X, 1). The case of having no Poisson events at all, i.e. M (1) =0,
has probability exp(—A), which will be very small in our intended applications. Never-
theless, to avoid misspecifications in formula (3.1) we choose to condition the Poisson
process M(-) on the event M(1) > 0. We are then led to the following definition.

DEFINITION 1. Let G;’s be independent Gamma (a/\, 1) variables, independent of
the process M'(-), which is distributed as M(-)| M(1) > 0, where M(-) is a Poisson
process with parameter A\Iy. Then the process

M'(1) ~

Z¢:1 T
FA(t):m on [0, 1] (3.2)

is called @ GENERALISED DIRICHLET PROCESS (GDP) with parameters (a, Fy, ).
We first derive expressions for the mean and the variance of the GDP, to compare

with the well-known formulae (1.2) for the Dirichlet (a, Fy). In the following we write
M; for the truncated Poisson (A)-distributed variable M’(1).

PROPOSITION 1. For the generalised Dirichlet process Fi\(t), one has

EFy(t) = Fo(t)  and VarFA(t):E[%} Fo(1)(1 — Fo(1)).  (3.3)

PrOOF: Conditional on the full path of M'(-), Z,(-) is a Gamma process, which

means that F)(-) becomes an ordinary Dirichlet. Therefore,

M'(t)a/X  M'(t)
Mya/X M

EIF(#) [ M'] =

and

Var(F\(1) | M) = Mla/l/\ — MA/X) (1 - MT(?> |




Next observe that A’(¢) conditional on M; is a binomial (M, Fy(t)). It follows that
E[M'(t)/M;y | Mq] = Fo(t), leading to EF\(t) = Fo(t).

The variance of F)(¢) can be written as I+11, where the first term is E Var(F\(¢) | M')
and the second is Var E[F\(¢) | M']. Via conditioning on My, one finds

1 M, -1

I=E
Mla/)\—l—l M1

Fo(0)(1 = Fo(t)),

while /1 = Var M'(t)/M;. This is again computed via conditioning on M;, and the
result is E1/M; Fo(t)(1 — Fo(t)). Adding I and 1 gives the factor

1 1 1 1+ a/)
Bl (1 — )4 —| = p—Y"
|:1—|—CLM1//\< M1>+M1:| 1—|—CLM1//\
times Fo(t)(1 — Fo(t)), proving the variance claim. O

REMARK 1. The variable M;/) has

1 q ] 1 exp(—2A)
mean 7 By and variance NI —exp(=N)) (T = exp(—A))?
and so goes to 1 as A increases. The variance factor ky = (1 +a/A)E1/(14+aM;/A) can
be shown, by using Jensen inequality, to be bigger than the 1/(14a) factor appearing in

(1.2), which is its limit as A grows. This agrees with the previously observed feature of
the generalised Gamma process being somewhat more variable than the pure Gamma
process. It is easy to compute k) for given A and a via the Poisson probabilities. And

a Taylor approximation gives

1 1 a a?
ky=(1 AN E = 1+—-)(1+—].
= (+afd) 1+ aM/X 1—|—a< +/\>< Jr(1+a)2/\>

REMARK 2. It is clear from Definition 1 that, conditionally on M’, the F) forms
a Dirichlet process (with a finite rather than an infinite number of jumps). So the

distribution of F)\(t) is a Beta conditional on M’, but not marginally. Specifically,
Pr{F\(t) <y} = EPr{Beta (M'(t)a/\, (M, — M'(1))a/)) < y}, (3.4)

where M'(t) and M, are as in Definition 1. This may again be alternatively computed
via conditioning on Mj, involving a binomial distribution for M’(¢). Thus there are
representations of the (3.4) distribution in terms of infinite sums, easily computed for

given (a, Fo, A) and t. It is also easy to evaluate by simulation.



3.2.  An alternative representation

Another way of understanding the generalised Dirichlet process is as follows. The
random probability measure works by distributing random probabilities §; = G;/G to
random positions i) for @ = 1,..., My, writing G = Y ., G, where {5y < -+- <
v,y are the locations for events chosen by the process M’, which is distributed as
M |[{M(1) > 0}, where M is a Poisson process AFy. By a well-known result the
locations of the events of the Poisson process behave as the ordering of a sample
&1y ..., En, chosen independently from the distribution Fy. It is easy then to see that
this property continues to hold for the process M’.

We may now rearrange terms in Z?;Ill ﬁié.g(i) (where é¢ denotes the probability mea-
sure concentrated in position ), using the symmetry of the distribution for (5, ..., B, ).

Hence F)\, admits the representation

F\(A) = i Bide,(A), (3.5)

where the &’s are i.i.d. from Fy and independent of M; and of the 3;’s, which form,
conditionally on M, a Dirichlet distribution with M; components and parameters
(a/A,...,a/N), hereafter denoted by Dirag (a/A,...,a/X). A nice aspect of the (3.5)
representation is that only the truncated Poisson distributed variable M is involved,
not the full path of the process M’.

Here F)\(A) is the same as P\(A), where P, is the probability measure determined

by the cumulative distribution function F\. Some comments on expression (3.5) follow.

REMARK 3. Definition 1 is restricted to consider the unit interval as sample space.
On the contrary, representation (3.5) is clearly well defined for an arbitrary sample
space, extending therefore the definition of the GDP.

In the following, we shall indicate with P, the extended GDP defined on an arbitrary
sample space (X, A) and with P, the common distributions of the &;’s.

REMARK 4. Expression (3.5) displays a particularly transparent structure which
makes the process both easy to interpret and analytically tractable. In particular, it
provides a clear understanding of the characteristics — total number of points, their
locations and weights — of the discrete random probability measure defined by the
GDP. Furthermore, it allows the derivation of relevant quantities, like the marginal
distribution of the data and the posterior distribution of the process.

A key role in such representation is played by the exchangeable Dirichlet distribu-

tion of the random weights (;’s, which makes them very tractable. In contrast, the



distribution of the weights in the Sethuraman [9] representation of the Dirichlet process

looks somewhat more involved:
P(A) =" Bide(A), (3.6)
=1

where 8 = 0;[[; ;(1 — 0;) and 6; are independent from a Beta distribution with

parameter (1, a).

REMARK 5. Representation (3.5) makes clear that the GDP is a special case of
a fairly broad class of discrete random probability measures considered in [7], where
a number of properties of the class are derived. In particular, results on the support
of the members of the class are given. From these results it is immediate to see that
the GDP maintains the same large support of the Dirichlet process, so that it can
effectively be considered a genuine nonparametric prior. More precisely, one can prove
that, under the topology of pointwise convergence, the support of the GDP is formed
by all the probability measures absolutely continuous with respect to F,. If one instead
considers the topology of convergence in distribution, then the support is given by all

the probability measures whose support is contained in the support of F.

REMARK 6. The GDP process is fairly simple to simulate: by (3.5) it suffices to

generate random variates from Fy and from the Poisson and the Gamma distribution.

4. Marginals distributions and the posterior process

Suppose Xi,...,X, are independent observations chosen from the randomly selected

Py. In other words,
Pr{X; € Ay, X € Ay | P} = Py(A) -+ Po(A,)

for all measurable sets Ay,..., A,. We wish to study their marginal distributions and
the distribution of P\ given the data.

4.1. Marginal distributions for data

Their marginal distribution can be expressed as the mean of the above expression over

the distribution of P,, and, in particular,

Pr{X, € A} = EP\(A) = Py(A), (4.1)



by arguments of Proposition 1 of Section 3. Thus, the so-called predictive distribution
of a single X; is the base measure F, itself.
The simultaneous marginal distribution of two or more data points is more cum-

bersome. We illustrate with n = 2 and n = 3. First, using (3.5), one finds
PI’{Xl € Al,XQ € AQ | M1 = m}

= EZZ@@]{& € A, € Ay}

=1 j=1
= Y EBB; Pr{& € A1, & € Ay}
1]
(T +1) 72
— — 2 P(AINA — P (AP (A
ZmT(mT—I-l) o(41 2)+;m7(m7—|—1) o(A1) Fo(Az),

writing 7 = a/X. This implies
Pr{X; € A1, Xy € Ay} = baPo(A1 N Ag) + (1 — Ky ) Po(Aq) Po(As),

where k) is defined as in Remark 1. A consequence of this is that given X; = xy, then
X5 = x1 with probability k) while with remaining probability 1 — k) is drawn from F.

Similarly, but requiring more algebraic work, the n = 3 case can be tended to. One
needs to sort triples of indexes (1,7, k) into those with three different elements, those

with two, and those with all indexes equal. The result is

Pr{X; € A1, Xy € Ay, X5 € A3 | M; = m}
(4 1)(7 + 2)
m7(m7 + 1)(m7 + 2)
1+ 1)
m7(m7 + 1)(m7 + 2)
+ Po(A1 N As)Po(Az) + Po(Ax N As)Po( A1)}
-3

m7(m7t + 1)(m7 + 2)

Po(A1 N Az N As)

+m(m—1) {Po( Ay N A) Po( As)

+m(m — 1)(m — 2) Po(Ay) Po( Ag) Po( As).

Summing over all m gives a distribution of a mixture type, allowing a certain probability
for three distinct data points from Fy, and other probabilities for various configuration

of ties.

4.2.  The posterior process

To carry out Bayesian inference, we need the posterior distribution of Py given a sample
Xi1,...,X,. In the following, this posterior distribution will be derived starting from
representation (3.5) along the lines of [7].



The GDP does not form a conjugate class of prior distributions, as it can be easily

verified. The next theorem establishes the structure of a larger conjugate class of priors.

THEOREM. Consider the following random probability measure P defined on the
arbitrary sample space (X, A):

P =Y 404+ 3 B (4) A€ d (12)

where v; € X, 1 =1,...,r, are fired distinct constants, r > 0 is a fired integer, M > 0

is an integer valued random variable. Moreover,

: a a
(’717"'7’77“7ﬁ17"'75M)|M ~ DHTT-}-M (kh'"akﬁXv"'vX) >
the & ’s are independent from Py and independent of M, v = (y1,...,7.), B = (B1s-- ., Bum)
and Py is a diffuse probability measure (i.e. it gives zero probability to each single point)
on (X, A). Furthermore, assume that M + r > 1 with probability one. Let p(m) be the
probability distribution of M and let X be an observation from P. Then, the posterior

distribution of the process has the following form.
1. Ifz#x,0=1,...,r, then P|{X =z} is distribuled as

r M’
Z Vi0z; + 77ln+151? + Z 5;5@
i=1 7=1

where
m + 1
(m + 1)% —I_ Z::l kZ
(Ve A Bl Blp) | M ~ Dity g (kl,...,kr,l—l— ;;%)
and the & ’s are independent from Py and independent of M', ~', 3.

Pr{M' = m} o p(m + 1) m=20,1,...

2. If x = x4 for some inlteger 1 < { <r, then P|{X =z} is distributed as

Ml/

> A+ > B
i=1 j=1

where |
Pr{M" = m} < p(m)————+—— m=20,1,...
{ }ocp( )m§+2¢:1ki
(Y B ]'\’/,,,)|M”~Dirr+M“(kl,...,kg+1,...,1@,%,...,%)

and the &;’s are independent from Py and independent of M", ~", 3".
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It follows that the class of prior distributions defined in the theorem is a conjugate
class. As a technical point, notice that case 1) must be considered only if M is not
degenerate at zero, since otherwise Pr{X # z;,¢ = 1,...,7r} = 0. The proof of the
theorem requires two preliminary lemmas. In the first lemma we shall show how an

observation X from P can be expressed in terms of the random elements which define

P.

LEMMA 2. Let aa = (v, 8) = (V1,37 01, -, ) and & = (&, ..., Em). Let us
define the random variable T; fori=1,...,r + M as

7 Z; 1< <r
e &, r+Hl1<i<r+ M.

Let us then introduce a further integer valued random variable I such that

;1< < M
Pel =il = {00 =I5
0 ¢>r+ M.
Then T is an observation from P, that is the distribution of Ty given P is P.

PROOF. Let us compute the conditional distribution of T given P:

Pr{T[€A|P} = PI‘{T[EA|M,Q,€}
r+M
= > PTr€ A|M,0,&,1=i}Pr{l =i| M, a,&}
=1
r+M

= ) or(A)a; = P(A).
=1
This is what was needed to prove. 0O

LEMMA 3. The conditional distribution of M, o, & given Ty = x, where o, §, Tt are

defined as in Lemma 2, is given by

1. ife#tx,i=1,...,r, then
m

Pr{M:m|TI:$}O<p(m)ma//\_l_zr L.
=1 """

and

a7€|{TI:$7M:m} NalnglLv

where L is an integer valued random variable such that

Pr{L =1} =

1
— forl=1,...,m,
m

10



o, & are conditionally independent given L = { wilh

o | L= € ~ Dirypm (klk

a a a a a
TaXa"'aX?X"’LX?"'?X)?

where the value $ + 1 occurs in position r + £ and &}, |{L = {} is a vector of m
independent random variables whose (th component is degenerate at x while the

others are distributed as Py;
2. if x = xp for some 1 < <r, then

p(m)
Pr{M = Ty =
I‘{ m| I x}ocma//\+z:::1ki7

o | {Tr = 2, M = m} ~ Dir,,n (klkﬁ—lk%%)
and & |{a,Tr = z,M = m} is a vector of m independent random variables
distributed as P,.

Notice that we need to consider case 1) only if M is not degenerate at zero.

PROOF. Let us consider first the distribution of M | {77 = z}. It is enough to show
that Pr{M = m |T; = z} as defined in the Lemma satisfies the equality

/ Pr{M =m|T; =2} dPr,(2) =Pr{Tr € A,M =m} (4.3)

where A € A and Pr, is the marginal distribution of 77.
The right hand side (rhs) of (4.3) is equal to

Pr{Ty € A|M = m}p(m) = B[P(4)|M = m] p(m)
ma/ A - ki
= plm) (mp A+ W&“‘AO '

The left hand side (lhs) can be written as

/ Pr{M = m|T; = 2}cdPo(a)+ Y Pr{M =m|T; = sl (1), (4.4)

A1 yoor } = >k

where ¢ = E[M(a/X)/(M(a/X) + > k;). Expression (4.4) is easily seen to be equal to
the rhs of (4.3).
Let us consider now the conditional distribution of o, § given 77 and M. The results

stated in the Lemma is proven once we show that the following equality holds

/Pr{aEB,fj €A, j=1,..., M|Tr =2, M = m}dPr, | p=n(z)
A
= Pr{aEB,EjEAj,jzl,...,M,T1€A|M:m} (45)

11



where Pr,|a—=m is the conditional distribution of 77 given M = m and B, A, A; are
suitable measurable sets. Let us compute first the rhs of (4.5). We have:

Pr{Tre A, =i|a,§, M =m} = Pr{Ir € All=1,a,§, M = m}
Pr{l =1]|a, & M =m}
= 0 (A)ay; fore=1,...,r +m.

The rhs is therefore equal to

r4+m
Y Pr{acB§eA,j=1,... MTr € A, I =i|M=m}

=1

r4+m M
= ZE IB(a)5T¢(A)OfiHIAJ(5j)|M=m
= ZE[%[B(CYHM = m] 517i(A)HPO(Aj) +
r+m
+ Y Elailg(a) | M =m] Po(Aii, 0 A) [ Pol(4)). (4.6)
t=r+1 j#Ei—r

Let us now compute the lhs of (4.5). This is equal to [ + 1, where
ma/\

1= Pr{a e B& € Ay j=1,... M|Tr=a, M =m)——22 __qpy.
/A\{xl ..... zr} r{ 5] 7 | ! v m}ma//\+2kz O(T)
(4.7)
and
. k;

;€A
Let us see that [ is equal to the second sum in expression (4.6). The equality of

I'T with the first sum in (4.6) can be proven in a similar way, completing therefore the
proof. We find that [ can be written as

/ zm: E[Q(H-TIB(Q) | M = m] H P [A )i
A\{z1,mr) | 92 Elay, | M = m] L 3 m
ma
A dP()(lL’)
m% + Zki

=Y Ela Is(a)| M = m)] H P(A /AIAZ(:v)dPo(l’)

J#Z
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which coincides with the second sum in (4.6). O

PROOF OF THE THEOREM. By Lemma 2, the distribution of P | X can be derived
by computing the conditional distribution of M, a, § given T;. The latter distribution
is provided by Lemma 3. In order to see the equivalence between the distributional
results of Lemma 3 and the representation given in the theorem in case 1) (the other

case being straightforward), it is enough to notice the following two facts:

1. the m components of the mixture distribution of a, & | {M = m,T; = z} all lead
to the same representation for the posterior distribution of the process. This
is related to the symmetrical distribution of the 3;’s and the &;’s which makes

immaterial which of the &’s becomes degenerate at z;

2. the random variable M’ in the theorem is obtained by subtracting 1 to M |{T; =
z}. O

The posterior distribution of the process based on n observations can be derived by

applying recursively the Theorem. As a consequence, we obtain the following corollary.

COROLLARY. Let P be a random probability measure given by:

M
P(A) =" Bide,(A) (4.9)
=1
where Pr{M =m} =p(m), m =1,2,... with Pr{M > m} > 0 Vm,

[3|M~DirM<a “)

PR
the &;’s are independent from Py and independent of M, B and Py is a diffuse probability
measure. Suppose we have a sample of n observations Xy,..., X, from P; suppose
furthermore that the sample has r, distinct values vy,...,v. , 1 < r, < n, each of

them repeated ny times, £ = 1,...,r,. Then, P given Xy,..., X, is distributed as

n My
S+ 308 (4.10)
i=1 j=1

where

(m+1)---(m+4r,—1)

Pr{M} = m} O(p(m—l_r”)[(m—l-?“n)%‘F e [(m+r)$4+n—1]

m=0,1,...,

a

(7. B) | M ~ Dty (5

n a_l_ a Cl)
nl,...,/\ nrn,/\,...,/\

13



and the £;’s are independent from Py and independent of M*, ~, B'.
ProOOF. By induction, using the Theorem. [

The Corollary gives the posterior distribution for a class of priors slightly more gen-
eral than the GDP. The generalisation consists in letting M be an arbitrary unbounded
integer valued random variable, i.e. such that it satisfies the condition Pr{M > m} > 0
for all m. This condition guarantees that there is no upper bound on the number of
possible distinct observations.

The GDP is obtained by choosing M = My, i.e.

AT exp(=A)
M) = T T = exp(—0)

in this case, the random variable M in the posterior process has probability distribu-

tion
™ 1

PriM = m o+ ) (V1

where z[" = zlr+1)---(z+n-—1).

Roughly speaking, the posterior process (4.10) is obtained by adding to the prior
process some extra non random points which coincide with the observed values. Its
most relevant feature is that it retains a Dirichlet distribution for the random weights;
furthermore, it preserves the symmetry of the distribution of the weights associated
to the random points &;’s. As a consequence, the posterior process is still analytically

manageable and easy to simulate.

5. Nonparametric Bayes estimators

In this section we apply results above to derive Bayesian inference methods in a frame-
work where the prior for the underline distribution is taken to be our generalised Dirich-
let process. Throughout this section, we shall assume that Py is a diffuse probability
measure and that & is a measurable function such that [ h(z)dPy(x) and [ h*(z)d Py(z)
exist finite. Results derived hereafter can be obtained, after some algebraic manipula-

tion, by computing the appropriate expectation of representations (4.10) and (3.5.)

5.1.  Estimaling ¢ mean parameler

In a nonparametric framework with Xy,..., X,, coming from an unknown distribution

P, consider the problem of estimating ¥ = [ h(z)dP(z) = Eph(X). A Bayesian ap-

14



proach is to give P the GDP prior (a, Py, A), and calculate the posterior mean and
variance.

Before observing the data we have

M,y
V= Z h(fl)ﬁ

and
EY = /h(:z;)dPo(;U) = Ep,[h(X)]
Vard = k, / (h(z) — Ep, [h(X)])2 dPy(x) = ky Varp, (h(X)).

A posteriori, we obtain

n MY
¥ | data ~ Z yih(v;) + Z ﬁéh(&)
=1 j=1

and the Bayes estimator of 4 is

E[d|data] = g.Em, [R(X)]+ (1 — ¢,)Ep,[R(X)] (5.1)
where
. _ ro(a/A) +n a//\
Gn = Elaa), an = (Mx+r,)(a/X) +n and  H, Zn—l—rn a/)\

is a “modified” empirical distribution function giving, for each 7, weight proportional
to n; + a/X to the observed value v;.

The posterior variance of ¥ can be written as

Varp, (h(X)) (1 n %) E {1 -

T } —I-Vaan(h(X))E[ . ]+

1+ k,

HERI(X) — B, h(X))? <(1 + rna/) +n)E [1 j_k] - qg)

where k, = (M* 4+ r,)(a/X) +n

5.2.  Estimating the distribution function

The above may be applied with an indicator function for A, and results in the non-

parametric Bayesian estimator

E[P\(A)|data] = Pr{X,;; € A|data}
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Also,

Var{P\(A) |data} = Po(A)(1 — Py(A)) (1—|—%>E [;Z}
+ H,(A)(1 - Hy(A)E L i”kn}
+ (Po(A) — H,(A))? ((1 +rpa/A 4+ n)E L —Iq—nkn] — qi) :

Let us examine the form of the predictive distribution Pr{X,; € A|data}, assum-
ing, for the time being, the enlarged GDP considered in the corollary.

The quantity g, represents the a posteriori probability that a new observation equals
one of the previously observed values. It determines how likely is that a new value is
sampled; therefore it also controls the total number of distinct values in a sample.
Notice that it depends on the distribution of M in (4.9), so that different choices for
such distribution lead to different behaviour for the random number of distinct values
in a sample. Further details on such aspect will be given at the end of Section 6.

Conditionally on the event that the new observation coincides with one of the pre-
vious values, the distribution H, determines the probability that the new observation
is equal to the various observed distinct values. Such distribution is unaffected by M
and depends on the prior specifications only through the parameter 7 = a/A. The
probability attached to each distinct values v; is an increasing linear function of the
number n; of times that such a value has been observed. In particular, if the frequencies
n;s are all equal then H,, gives the same probability 1/r, to the r, distinct values.

The parameter 7 determines the extent to which a value which has been observed
more times than another is more likely to be observed again. More precisely, the bigger
is 7 the more similar are the probabilities that H, attach to each distinct value, and
this holds fro any value of the frequencies n;s. This can be seen by observing that
the probability attached to each distinct value v; is an increasing function of 7 if n; is
below the average frequency n/r,, is constant and equal to 1/r, if n; = n/r, and is
decreasing for n; < n/r,. At the two opposite extremes we have the 7 = 0 case, which
corresponds to the pure Dirichlet process, where the probabilities are proportional to
the n; and the 7 — oo situation where all distinct values receive the same probability
1/r,.

Let us now consider more closely the behaviour of the probability g, for the strict
GDP with parameter (a, Py, A).

Next proposition compares g, for the GDP with finite A, with the corresponding

value a/(a + n) of a pure Dirichlet process.
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PROPOSITION 2. Let Xy,..., X411 be a sample from Py, where Py is a GDP(a, Py, A).
Then

ro(a/X) +n

Pr{U" {Xpo1 = X:}| X0, .., X0 = G, >
I‘{Uz_l{ +1 }| 1 } q rn(a/)\) tnta

>n/(a+n).

PROOF. By applying the Jensen inequality, one has that g, is greater or equal to

ro(a/X) +n
(B + 1) (a/N) + 70
The result then follows easily if we can prove that EM* < A. To this end, let N be a
Poisson random variable with mean X. It is easy then to check that the likelihood ratio
Pr{N = m}/Pr{M* = m} is an increasing function of m. This implies A = EN >
EMx. O

Notice that this implies in particular that for n — oo, g, tends to one, so that the
predictive distribution tends to concentrate on the observed values.

Consider then, for any fixed finite A, the behaviour of g, as a function of a. It is
easy to check that, in analogy with the pure Dirichlet process case, g, tends to one
for @ — 0. This corresponds to the so-called noninformative prior distribution, which
produces as an estimate of P the empirical distribution function.

On the other hand, when a — oo, g, does not converge to zero as it happens for the
Dirichlet process, but, by Proposition 2, is greater than r,/(r, + A.) This behaviour
is related to the fact that for large a the Dirichlet process tends to concentrate at the
degenerate random probability measure Fy; on the contrary, the GDP converges for

any finite A to
M,

1
; Ak
which is a sort of empirical distribution function based on a sample of size M;. In this
extreme case the Bayesian estimator of P will give the same probability to each of the
r, distinct observed values.

5.3.  FEstimating the variance

Consider the parameter

% = Varp, h(X) = /hQ(;z;)dPA(;z;) - </ h(m)dPA(;z;)>2.
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The prior estimator of o2 is
Eo?® = (1 — ky) Varp, (h(X)),

whereas the posterior estimator of o2 can be written as

Elo?|data] = E L ik <Varp0(h(X)) (kk— %) (=gt

+ au(Varg, (h(X))gn + (1 = ) En, [A(X) — Ep h(X)]*))]

which can be interpreted as a linear combination of three estimators of the variance.

6. Sample properties

We investigate here the structure of the distribution of a random sample of n obser-
vations from a GDP prior. In particular we shall focus on the probabilities of various
configurations of ties among the observations.

This is of interest, for example, in hierarchical Bayesian models where a nonpara-
metric prior is placed on the distribution of the parameters and ties in the parameters
determine clusters in the observations (cf. [2], [5]). A drawback in the use of the Dirich-
let process as a second stage nonparametric prior is that it strongly favours clusters
with unequal sizes (see [8]). One aim of this section will be to examine from this
perspective the effective gain which can be achieved by using the GDP prior.

The probabilities of specific configurations of ties can be obtained starting from the
probabilities G, ., = @u, (A, a) of sampling a previously observed value given that we
have observed r,, distinct values on n observations. For example, noticing that Pr(X; =
X1|X1) = @1 and Pr(Xs = Xo = X1 | Xy = X3) = ¢2.1 we have Pr(Xy = X1) = ¢11
and Pr(X3 = X3 = X1) = 2,1 1.1 By induction we obtain

n—1
Pr(X; =X, =+ =X,) =[] és-
=1

The case of different repeated observations can be treated in a similar way, on the basis

of expression (5.1). For example, we have

PI‘(Xl :X2:X37£X4:X5):
:PI'(X5:X47éX3:X2:X1|X47£X3:X2:X1)><
PI’(X4 #Xg :X2 :X1|X3 :X2 :Xl)PI'(Xg :X2 :Xl)

L+a/X

= a P 1 o = — .
44,2 2+ 2@//\ ( %,1) 921911
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If we now want to know the probability that a sample of five observations contains
two distinct values, one of them repeated three times and the other twice, irrespectively
of their order of appearance, we just have to multiply the previous expression for the
appropriate combinatorial factor which is in this case (g) This is because, thanks
to the exchangeability of the observations, each of the (g) different sequences of X;s
leading to the same structure of ties has the same probability.

Along the lines followed by [1] for the Dirichlet process, it is then possible to ex-
tend the above discussion obtaining a general formula for the probabilities of different
configurations of ties. However the resulting formula is relatively cumbersome.

We shall instead follows here a slightly different approach which leads to a simpler
expression. The basic idea used in the proof of the next proposition is to derive
all relevant probabilities conditionally on the total number of points M in the prior
distribution.

In the following we shall use the reparametrisation (7 = a/A, A = A), as it is more
appropriate to describe sample properties. In such a reparametrisation the Dirichlet
process with strength parameter a is obtained by letting A going to infinity and 7 going

to zero subject to the constraint A7 = a.

PROPOSITION 3. Let Xi,..., X, be a sample from P defined in (4.9) and lel
U(n,...,ng) be an unordered configuration of ties, that is U(ny,...,ng) is the set of
vectors © € X" which have k distinct values, 1 < k < n, such that one of them is

repeated ny times, a second one ny limes, ..., and the k-th one ny times. Then we have

Pr(Xy,.... X, €eU(ny,...,n)) =

n k
k-1 n (M — k"'l k=1l 1 n—l
= E (1 i 1
T (nlnk> [ (1 4+ Mr)ln—1] P m;! +T (6.1)

=1

where m; is the number of n;s equal to i and z" = x(x + 1) (x +n — 1), with the
convention that " =0 ifx <0 and 2" =1 if 2 >0 and n = 0.

PrOOF. We shall compute Pr(Xy,..., X, € U(ny,...,ng)| M). The result then
follows by taking expectation with respect to M.

An examination of the proof of the Theorem and the Corollary shows that, in the
notation of the Corollary, P given Xy,..., X, and M is distributed as

M—rn

Z%(Svt + Z ﬁ 55]
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where

(v, B) | M ~ Ditpag (1 4+ 01y oy T+ 0y, Tyee oy T)

and the ¢;’s are independent from Py and independent of M, ~, B'. Notice furthermore
that r, < M a.s.. It follows that, for 1 <5 <r,,

n;: +7
Pr(Xpp =v; | Xy,..., Xo, M) = m (6.2)
and (M )
— )T
Pr(Xosr & (X0, o o, X} | X0s e, X, M) = )T (6.3)

Mt +n
We can now compute the probability of a specific sequence of X;s belonging to the
configuration U(ny,...,ng), namely the probability that, conditionally on M, the first
k X;s are all different, the following (n; — 1) X;s are all equal to X, the subsequent
(ny — 1) Xis are equal to X3 and so on. Following the same argument employed in the
discussion above Proposition 3 and using (6.2) and (6.3), such a probability can be

shown to be equal to zero if £ > M and otherwise to

ILE SIS
paley Mt +1 palet Z\47‘—|—k—|—z—1i:1 Mr+k+n +1-—-2
nk—l

L Mr4n+-- 4np_y +i

A combinatorial argument then shows that there are (nlnnk) 1T, # different se-
quences of X;s belonging to ¢(ny,...,nk). The result then follows after some simple

algebraic manipulations noticing that all such sequences have the same probability.
O

Expression (6.1) can be further elaborated to get a better insight into the relation
between the parameters (7, ) and the structure of configurations of ties.

We shall study the joint distribution of an ordered configuration of ties and the
random number of distinct observations. Let us first give a precise definition of ordered
configuration of ties. Let II,, = {C, ..., Ci} be a partition of N, = {1,...,n}, that is
an unordered collection of & disjoint non-empty subsets of N, such that U*_,C; = N,,.
To any such a partition we can associate an ordered configuration of ties O(Il,) by

setting

O(Hn):{wexn = & i,jEC’zforsomelzl,...,k}.
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Notice that, denoting by nj the cardinality of C'; and by m; the number of n;s equal to
1, there are (nlnnk) 1T, —,! ordered configurations belonging to the same unordered
configuration U(ny,...,ng). Furthermore, each of these ordered configuration receives
the same probability. A slight variation of the argument used in the proof of Proposition

3 gives

k
(M — k4 1)1 1
Pr(Xy,..., X, € O(I,) | M) = —— [+ )k (6.5)
(1+ Mr)l»-1l o

Denote by K, the random number of distinct values in n observations. Then expression

(6.5) together with a simple combinatorial computation yields

Pr(Xy,..., X, € O(1,) | K, =k, M) = (6.6)

I, (14 )

= Pr(Xy,.... X, )| K, =k)=—=
1“( 1s > € O( )| g\ ) W(T,k) >

where .
n |
W(r, k)= 1+ 7wt
(7,k) %(nlnk)gmz’]l:[l( ™)

and A = {ng,...,n; : 1 < ny < -+- < ng,ny + -+ + nx = n}. Furthermore, for
1 <k < min{n, M}, we have

(M — k4 1)1

s _ k—
Pr([&n =k | M) = W(T7k) T (1 + MT)[n—l]

(6.7)

It follows that, conditionally on the number of distinct observations K, the dis-
tribution of the configurations of ties depends only on the parameter 7. Inspection of
the distribution reveals that 7 controls how likely unequal sizes n;s of the groups of
repeated observations are. More precisely, in agreement with the interpretation of 7
discussed in Section 5.2, one has that the bigger is 7 the more likely are configurations
with balanced group sizes. This can be seen as follows.

Consider the ratio between the probability of an ordered configuration with & un-
balanced group sizes such as (n —k + 1,1,....1) and the probability of an arbitrary

ordered configuration with group sizes (nq,...,nz). By formula (6.6) this is equal to

(1+ T)[”_k]

(1 —|—7')[n1—1]...(1 —I-T)[nk_l]’ (68)

. . . . . . . —k
which is a non-increasing continuous function of 7 ranging from (nl_ln nk_l) when

7 — 0 (the Dirichlet process case) to 1 when 7 — +oo0.
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To appreciate the great diversity of the probabilities obtained under different 7
values, even for small sample sizes, choose n = 10 and & = 2. Then the Dirichlet
process will give to any ordered configuration with ny =9 and ny =1, (i) = 70 times
the probability given to any balanced configuration with n; =5 and ny = 5, against a
ratio of 25.2 for 7 = 1, of 5.67 for 7 = 5 and of 2.28 for 7 = 20.

More generally, let us say that an ordered configuration is more unbalanced than
another one, if the former can be obtained from the latter by moving elements of groups
with lower sample sizes to groups with higher sample sizes. Then it can be shown that
the ratio of the probability of the more unbalanced configuration to the probability
of the other one is a decreasing function of 7 tending to one as 7 goes to infinity.
The latter is a general phenomenon: when 7 — oo all ordered configurations tends to
receive the same probability.

Let us now consider the distribution of K,,. This distribution as well as its mean
can be recovered by expression (6.7). Incidentally, notice that they are affected by
the distribution of M, as suggested by the discussion in Section 5.2. In the attempt
of obtaining a simpler expression, we shall consider here a different approach to the
derivation of E[K,].

Let Dy = 1 and, for s = 2,3,..., D;, = 1 if X; € {X;,...,X;1} and D, = 0
otherwise. Notice that K,, = Dy +--- + D,,. From expression (6.3) one has that

] (M — K)r
D; D,,D“MNDZ [Z,MNB — |
+1 D1 +1| K e( Mr i

where Be(p) denotes the Bernoulli distribution with success probability p. It follows

that M k)
— K7

ElKiq. | Ki,M] = K; —— .

(Kot [ K ] X—|_< Mt +1 )

Taking expectation conditionally on M one obtains

T MT
ElKi | M| =E[K; | M]|[1-— - -,
o 30 = BL: 0] (1= 577 ) + s

This recursive relation can be explicitly solved yielding the following formula:

A\ [n=1]
Bl (M = S M <(M_1)T+J>

i=1

(6.9)

In particular for 7 = 1 we have the simple expression E[K, | M] = nM/(M +n — 1),

where n and M play a symmetric role.
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To complete the discussion of the sample distribution it is left to give the distri-
bution of the distinct observations given an ordered configuration of ties. By using
formula (5.1) it is possible to show that, conditionally on {Xy,..., X, € O(1l,)}, the k
distinct observations among the first n ones are independent and identically distributed
according to Fy. As a consequence the same distribution for the distinct observations
holds if we condition only on K,.

The results derived in this section have strong implications in the following hierar-
chical Bayesian setting. Conditionally on the parameters 6,6, ..., let the observations
X1, Xa,... be independent with each X; having distribution of the form F(-,0;). Fur-
thermore, let the parameters 61, 0,, ... be a random sample from a nonparametric prior
P. This setting can be adopted to model clusters among the observations: repeated
values of the 6;s produce a cluster among the corresponding observations and the
number of distinct values among the 6;s determine the number of clusters among the
observations. See [2] and [5] for more details.

The common practice in the literature is to choose a Dirichlet process as a non-
parametric prior P. This implies that we can only model the mean number of distinct
clusters which depends on the parameter a. On the contrary the structure of group
sizes 1s fixed, corresponding to the value zero for the parameter 7 and it strongly favours
unequal cluster sizes (see [8] for a discussion of undesirable effects of such a feature).

If we instead choose a GDP prior for P we can model both aspects. The parameter
7 will regulate the degree of unbalancedness among the cluster sizes. The parameter A
can be chosen to control the number of clusters: for any given 7, E[K,] is an increasing
function of A ranging from 1 to n. This can be proved by noticing that E[ K, | M] given
in formula (6.9) is an increasing function of M and M has a monotone likelihood ratio.

Notice also that A controls the expected maximum number of distinct observations.
This can be seen as follows. Clearly, M is the maximum number of distinct values
possibly present in the observations. Therefore A/(1 — exp(—A)), which is increasing

in A, gives the expected maximum number of distinct observations.
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