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1 Introduction and summary

The intersection set of Bayesian and nonparametric statistics was almost empty
until about 1973, but now seems to be growing at a healthy rate. This chapter
gives an overview of various theoretical and applied research themes inside this
field, partly complementing and extending recent reviews of Dey, Muller and
Sinha (1998) and Walker, Damien, Laud and Smith (1999). The intention is not
to be complete or exhaustive, but rather to touch on research areas of interest,
partly by example.

1.1 What is it, and why?

In this chapter we do not use a very precise definition of what constitute ‘non-
parametric Bayesian methods’, and might err on the liberal side. Specifically,
examples are included of statistical modelling and inference situations placing a
distribution over large sets of probability distributions is one of the ingredients.
Some of these situations do not have to be intrinsically Bayesian per se.

One of the goals of nonparametric Bayesian statistics is to ease up on tra-
ditional ‘hard’ model assumptions, without essential loss of inference power.
Pure finite-parametric models can never be fully correct, whereas nonparametric
Bayes constructions may succeed in having most conceivable true data generat-
ing mechanisms inside its prior scope, i.e. its support. If the setup is satisfactory,
and the data quality reasonable, one often finds that the data themselves help
dictate to what extent solutions are close or not close to what they would have
been under simpler assumptions. Such findings, along with easily available soft-
ware tools that most statisticians can learn to use, make up good selling points.
These ‘harder’ model assumptions of traditional statistics, both frequentist and
Bayesian, might include both the error and the signal structure of models. Thus
one might soften up the linear normal regression textbook methods by using a
nearly linear mean function, nearly Gauflian errors, nearly constant variance level
across covariates, and if relevant some dependence structure. This also serves
to illustrate that there by necessity is a broad range of possible nonparametric
constructions, where one should not anticipate clear winners.

The essence of the ‘nonparametric’ word is that what is being modelled is
not seen as well enough described by a fixed (and perhaps low) number of pa-
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rameters. Otherwise the term in current usage is not very strictly interpreted.
It might allude to broad flexibility (many shapes of the underlying curve or sur-
face being possible under the model), which can be achieved in several ways.
Some constructions use a growing number of parameters, or perhaps a growing
range of candidate models to choose from or average over, e.g. involving mix-
tures. Here the operating key word is flexibility, there being no clear division
between parametric and nonparametric; see also Green and Richardson (2001).
The nonparametric term might also allude to certain mathematical aspects of
performance as the data volume grows, like consistency or optimality of precision.

Statistics has witnessed the three first decades of nonparametric Bayesian
life, which arguably has passed through its infancy and early youth. The first
period was primarily a mathematical or probabilistical one, by necessity con-
cerned with setting up the right probability structures on the proper spaces and
deducing, when possible, relevant aspects of the posterior distributions. The sec-
ond period has been more explorative, making different approaches more flexible
and amenable to practical analysis in a growing list of applications. This has
also, through serendipitous timing, been aided by broadly enhanced computing
abilities and methodology, including software and bigger toolboxes for stochastic
simulation, in particular Markov chain Monte Carlo methods (see e.g. chapters
by Roberts and Green, this volume, with discussions), along with more frequent
use of numerical analysis software. Of course both ‘periods’ are in a sense never-
ending stories.

In spite of broad impressive developments many nonparametric Bayes setups
will continue to pose challenges of construction, deduction, interpretation and
computation. Given these complexities, related also to probability calculus over
infinite-dimensional spaces, 1t is not surprising that a fair portion of published
work in this area has been in the ‘can do’ spirit. This is also true for many
applications to real data. For the envisaged upcoming third period in the life
of nonparametric Bayes one might predict further broadening and maturing of
the field, leading with experience to more finesse and possibly a higher degree of
scientific relevance in old and new segments of substantial statistical application.
At the same time more theory and a broader range of models will be developed. It
is also likely that more hybrid constructions will evolve, perhaps mixing together
not only parametric and nonparametric ingredients for given problems, but also
by perhaps pragmatic frequentist-inspired solutions to aid constructions that at
the outset are meant as pure Bayesian. There will be challenges of combining
different data sources of different quality and complexity, where nonparametric
Bayes might play a role, but along with other elements. Efron (2002) predicts a
wave of empirical Bayes statistics for the 21st century, for example in connection
with problems of microarrays and data mining for big databases. This wave
should also encompass empirical nonparametric Bayes methods.
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1.2 On the present chapter

In Section 2 the Dirichlet process is proved to be a distributional limit of cer-
tain simpler processes with symmetrically distributed probability weights. This
suggests suitable generalisations of the Dirichlet for use as priors in Bayesian
inference, and also proves useful in connection with transform identities for dis-
tributions of random means, as shown in Section 3. Identities are obtained there
which partly generalise earlier results of Cifarelli and Regazzini (1990) and Dia-
conis and Kemperman (1996). Section 2 also provides another generalisation of
the Dirichlet, starting with the infinite series representation due to Sethuraman
and Tiwari (1982). Section 4 deals with quantile inference, first based on the
Dirichlet process and then using a more general nonparametric prior quantile
process, which is constructed in a pyramidal fashion. These quantile trees aim
at being for the quantiles what the Pdlya trees are for the cumulative distri-
bution functions. A natural quantile function estimator is seen to lead to an
attractive Bayesian density estimator, which does not require any smoothing
parameters. Some interpretational and consistency issues are then discussed for
Bayesian density estimation in general.

Section 6 shows how elements of nonparametric Bayesian modelling may be
used for a different purpose than merely analysing data, namely to derive func-
tional forms of statistical functions in regression contexts. It is shown there how
a broad class of Lévy type cumulative damage processes, viewed as frailty pro-
cesses for individuals, influence their survival distributions in a way leading to
the multiplicative hazard regression structure. Then in Section 7 we briefly dis-
cuss the use of Beta processes to a linear hazard regression model, before going
on in Section 8 to a broad class of Bayesian extensions of the by now traditional
way of carrying out nonparametric regression, namely that of local polynomial
modelling. In Section 9 a use is found for smoothed Dirichlet processes as a
modelling tool for random shapes, and in Section 10 nonparametric envelopes
around parametric models are studied. Finally Section 11 offers some concluding
remarks.

2 The Dirichlet process prior and some extensions

The Dirichlet process prior was introduced in Ferguson (1973, 1974) and remains
a cornerstone in Bayesian nonparametric statistics. It is also a favourite special
case of various generalisations that have been worked with, including neutral
to the right and tailfree processes (Doksum, 1974, Ferguson, 1974), Pdlya trees
(Kraft, 1964, Ferguson, 1974, Lavine, 1992), Beta processes (Hjort, 1990) and
mixtures of Dirichlets (Lo, 1984, Escobar and West, 1995). Below we establish
some notation, review the Dirichlet, and briefly discuss two useful extensions.

2.1 The Dirichlet process

To define the Dirichlet process on a sample space Q, let Py be a probability
measure thereon, interpreted as the prior guess distribution for data, and let b
be positive. Then P is a Dirichlet process with parameters (b, Py), for which we
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write P ~ Dir(b, Py), if for each partition Ay,..., A,
(P(Al), ceey P(Ak)) ~ DlI’(bP()(Al), ce ey bpo(Ak)) . (21)

We may refer to bPy as the total measure. In particular, for each set A, P(A) ~
Beta{bPy(A), b(1—Py(A))} with mean Py(A) and variance Py(A)(1—Po(A))/(1+
b). Perhaps the most attractive property of the Dirichlet prior is the ease with
which it 1s being updated with incoming data; if zy,...,z, are observations
having arisen as an independent n-sample from the random P, then P given
these is another Dirichlet, with total measure bPy+nP,,. Here P, is the empirical
distribution giving mass 1/n to each data point.

One often refers to the limiting case b — 0, where P is concentrated at
the data points with probabilities given by a flat Dirichlet (1,...,1), as corre-
sponding to using a non-informative prior for P. There are many cases where
Bayesian inference using this posterior gives natural parallels to perhaps canon-
ical frequentist methods; cases in point include the empirical distribution P, as
limiting Bayes estimate, and the Bayesian bootstrap developed by Rubin (1981)
and others. See also Sections 4.1-4.2 below. The notion of non-informativity
is debatable here, however, as the behaviour of the prior process P is peculiar
when b 1s small. In the limit, it is concentrated at a single value, chosen from
P.

2.2 The Dirichlet as a limit

Hjort and Ongaro (2002) give a new constructive definition of the Dirichlet pro-
cess as a limit of simpler processes. Let

Pn =Y _B;6(¢) where 8= (B1,...,Bm) ~ Dir(b/m,...,b/m), (2.2)
j=1

where £1,€2, .. . are independent from Py and independent of 8. Here §(£) denotes
unit point mass at position £. For a set A, and conditionally on the &;s, P, (A)
is a Beta with parameters {bﬁm(A), b(1 — Ism(A))}, where }Sm is the empirical
distribution of &;1,...,&y,. Hence P, (A) is distributed as a binomial mixture
over such Beta distributions. Since ﬁm(A) goes to Py(A) as m — oo and the
Beta is continuous in its parameters, the limit distribution of Py, (A) is the Beta
distribution of P(A) when P ~ Dir(b, Py). An extension of this argument shows
that all finite-dimensional distributions of P, go to those given in (2.1). An
interesting connection is that Pr{P,(A) € C}, for any set C, can be seen to
be the Bernshtein polynomial approximation (see e.g. Billingsley, 1995) to the
function h(p) = Pr{Beta(bp,b(1 — p)) € C} at the point p = Py(A). Proving
convergence of P, can also be done via results about the so-called Poisson—
Dirichlet distribution, see Kingman (1975), and which also has connections to
representation (2.3) below.

The limit construction (2.2) is different from but shares some of the ingredi-
ents of the infinite series representation considered below. Among its advantages
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is the simplicity of the symmetric Dirichlet for the weights. In addition to being
useful for deriving facts about the Dirichlet, as indicated in the next section, it
also invites suitable bona fide generalisations of the Dirichlet process prior. A
simple construction of interest is to let P = Z]M:l B;6(&;), where M has any dis-
tribution on the integers with Pr{M > m} positive for all m. One may develop
methods for Bayesian inference using this nonparametric prior. The Dirichlet is
the limiting case where M tends to infinity.

2.3 An extension via an infinite sum representation

Consider independent By, Ba, ... drawn from the same distribution H on (0, 1).
These generate random probablhtles y1 = By, 72 = B1 By, 73 = BBy B3 and
so on, where B; = 1 — Bj; these sum a.s. to 1 since 1 — E] 1Y = B - B,.
Accordmgly we may deﬁne a random probability measure by

P =Y 48(&) with &,&, .. .iid.~ Py, (2.3)

Sethuraman and Tiwari (1982) showed that the Dirichlet process (b, Py) can be
represented in this form, for the particular choice of a Beta(1, b) distribution for
the Bjs; see also Sethuraman (1994). Ishwaran and Zarepour (2000) and Hjort
(2000) have independently studied the extension to a general distribution H for
these. A fruitful family of priors emerges by letting H = Beta(a, b), creating a
generalised Dirichlet process with parameters (a, b, Py). Ishwaran and Zarepour
(2000) develop computational algorithms using simulation, while more explicit
theoretical results about estimators and performance are reached in Hjort (2000).
Note that the Dirichlet corresponds to a = 1, an inner point in the parameter
space of its generalisation. This extension allows more modelling flexibility re-
garding the skewness, kurtosis and so on of random means. Explicit formulae are
available for posterior means and variances of random mean parameters. One
finding of general importance is that the speed with which the data wash out
aspects of the prior is of the order O(n~?), which can be slower or faster than
the ordinary rate n=! found for nearly all parametric problems as well as for the
Dirichlet prior.

3 Random Dirichlet means

For P a Dirichlet process (b, Py) on a sample space 2, consider a random mean
9 = Epg(X) = [gdP. There are many uses of such constructions besides
the most immediate one where it is a focus parameter for Bayesian inference.
Recently much attention has been given to the study of the distribution of such
a #; a partial list is Diaconis and Kemperman (1996), Regazzini, Guglielmi and
di Nunno (2000), Hjort and Ongaro (2002), Guglielmi and Tweedie (2000) and
Tsilevich, Vershik and Yor (2000).
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3.1 Transform identities

The task is to derive aspects of the distribution of ¢ using information about ¥ =
g(&), where & ~ Py. Assume for simplicity of presentation that g is nonnegative.
Cifarelli and Regazzini (1990, 1994) were the first to exhibit an identity linking
the so-called Hilbert transform of # to a transform of Y. This connection may
be written

Eexp{—blog(1+u/gdp)} :exp[—b/log{l+ug(5)}dpo(5) . (3

Cifarelli and Regazzini gave a rather long proof of (3.1) and some of its variations,
and used integration in the complex plane to indicate how the transform may be
inverted to find the distribution of # numerically.

A quite straightforward derivation of (3.1), and without unnecessary side
conditions, are among the consequences of construction (2.2) discussed in Hjort
and Ongaro (2002). One may write §; = G;/Sm in terms of independent Gamma
(b/m, 1) variables Gy, ..., Gy, and their sum S,,. Write therefore 8,,, = 6(Py,) =
Ry /Sm, with Ry, = ZT:I G;Y; being a random mixture of many small Gammas;
here, Y; = g(&;). First, exploit independence between 8, and Sy, to derive

Eexp(—uRy) = E[Eexp(—ufy, Sm) | Sm] = Eexp{—blog(l + ubn)},

using the fact that S,, has Laplace transform (1 + u)~%. Next, use the Laplace
transform (1 4 u)~%™ for the Gjs to obtain

Elexp(—uRm) | &1, .-, &m ﬁ 1 4 uYj) b/m—exp{ b—Zlog 1+UY)}

Taking the limit, and supplying some extra arguments, one proves (3.1); both
sides are equal to the Laplace transform of the variable R to which R, converges
in distribution. Hjort and Ongaro also glve a multlvarlate version of this, in the
form of a formula for Eexp{—blog(1 + Z 0;)}, where 8; = [ g; dP. Such
results were explicitly mentioned as mlssmg in the literature by Diaconis and
Kemperman (1996). See also Kerov and Tsilevich (1998).

Let G be a Gamma process on the sample space with parameter bPy; it has
independent contributions for disjoint sets and G(A) is Gamma (bPy(A), 1) for
each A. The arguments used above are connected to the representation of a
Dirichlet process as a normalised Gamma process, viz. P(-) = G(-)/G(€), where
one in addition may demonstrate that P(-) is independent of G(€). Given the
simplicity of these arguments it is perhaps not surprising that several authors
recently and independently have come up with somewhat different but related
proofs of (3.1) and its relatives; in addition to Hjort and Ongaro (2002), see
Regazzini, Guglielmi and di Nunno (2000) and Tsilevich, Vershik and Yor (2000).
One may in fact trace the roots of identity (3.1) back to Markov (1896).
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3.2 Stochastic equations and the full moment sequence

The mean of [gdP is 6y = [gdPy, and Ferguson (1973) gave a formula for
the variance. Among the uses of (2.2) and (3.1) is the possibility of deriving
formulae for further moments; see Hjort and Ongaro (2002) for a list of the first
ten centralised moments E(6—6;)P. One may also derive a stochastic equation for
the distribution of f, as follows. Use representation (2.3) to write § = Z;‘;l v;Y;

in the form B;Y; + Bl(Bng + ByB3Ys + - - -), from which it is apparent that
0 =4 BY + B9. (3.2)

On the right hand side, B ~ H, Y = g¢(£) with £ ~ Py and 6 are independent,
and ‘=,  indicates equality in distribution. This stochastic equation determines
the distribution of § uniquely. Only rarely can this distribution be exhibited in
closed form, however. The equation at least gives a simple recursive method of
finding all moments, via

P
E(6 - 60)" =) (p,> Eo(Y — 60)P T EBP=IBIE( —6,)7 forp>2. (3.3)
—\J
j=0

Here ‘Ey’ indicates expected value when Y has its null distribution Qo = Pog~".

Note that this gives a recipe for finding all moments not only for the Dirichlet
case, where B ~ Beta(1,b), but also for the generalised process of (2.3) where B
has an arbitrary distribution on (0, 1).

Tt is not difficult to use equation (3.2) to construct a Markov chain with
the distribution of 8 as its equilibrium. Such simulation output can be further
repaired to give improved accuracy via knowledge of the exact moments, as
demonstrated in Hjort and Ongaro (2002).

4 Quantile pyramid processes

Let Q(y) = F~!(y) be the quantile function for a distribution on the real line,
and suppose data are observed from this distribution. One may attempt to carry
out quantile inference via a given nonparametric prior for F, and this is done
below for the Dirichlet case. It is also worthwhile to place priors directly on the
set of quantile functions, leading to direct Bayes estimators of ) and related
functions.

4.1 Quantile inference with the Dirichlet process

Let F be the cumulative function of a Dir(b, Fy) process, where Fjy is a suitable
prior guess distribution with density fy, and define more formally

Qy) = F~'(y) = inf{t: F(t) >y} forye(0,1). (4.1)

For this left-continuous inverse of the right-continuous F it holds that Q(y) < =
if and only if y < F(z). Tt follows that the distribution of Q(y), prior to data, is
given by

Pr{Q(y) <z} =1- G(y;bFo(z), bFo(z)) = G(1 — y;bFo(z),bFo(z)),  (4.2)
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where G(y;a,c) is the distribution function for a Beta(a,c) and Fy = 1 — Fj.
Note that (4.2) may be written J,(Fo(z)), where Jp(z) = G(1 —y;b(1 —z), bx) is
the distribution of a random y-quantile for the special case of Fj being uniform
on (0,1). Tt also follows that Q(y) has a density of the form j(Fo(z))fo(z),
where j, = J] is the density under the uniform prior measure.

The above immediately gives results for the posterior distributions of quan-
tiles given a set of data zq,...,z,, in view of the updating mechanism for the
Dirichlet. Assume for simplicity of presentation that data points are distinct and
rank them to z(1) < -+ < 2(,), and add on z(g) = —oo and z(,41) = co. Then,
for riy <z < T(i41),

H,o(z) = Pr{Q(y) < z|data} = G(1 — y;bFo(x) + n — i, bFo(z) + 9).
It has a suitable density inside data windows (:E(i), :B(H_l)) and point masses

AHn’b(l‘(i)) = G(l — Y, bFo(.Z‘(i)) +n— i, bFO(:E(i)) + Z)
- Gl -y bF()(:E(Z')) +n—i+1,bF(xn) +i—1)
— const. beg(I(I))+Z—1(1 _ y)bFO(I(l))+1‘L—Z
at point z(;). In the case b — 0 there is no posterior probability left between data
points; the posterior of Q(y) concentrates on the data points with probabilities

n—1

. 1>yi_1(1—y)"_i fori=1,...,n. (4.3)
i

AHn o)) = pay(ra) = <

The Bayesian quantile estimator function is @b(y) = E{Q(y) |data}. The non-
informative limit is of particular interest here:

n

©o<y>=Z(“‘1)yi-1<1—y)“-1x<i) forye(0,1).  (44).

‘ i—1
=1

This estimator can be seen as a Bernshtein polynomial approximation to a ver-
sion of the empirical quantile estimator. It has been worked with earlier by
Cheng (1995) and others, but is here given additional interpretational weight as
the non-informative limit of a natural nonparametric Bayesian estimator. Issues
related to this are further discussed in forthcoming work with S. Petrone. They
also exhibit the full posterior process @(-), as opposed to concentrating on a
single y at a time.

4.2 An automatic nonparametric density estimator

Note that @b(y) and Qo(y) are smooth estimates of F~1(y), whereas the corre-
sponding Bayes estimators F () and Fy (¢) for F under quadratic loss have jumps
at the data points. One may take the derivative to get an estimate of the quan-
tile density function q(y) = 1/f(F~1(y)). This may be inverted to find a density

estimate fi(z) = l/qAb(ﬁb(a:)). It requires numerically solving @b(ﬁb(m)) = g for
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ﬁb(r), for each . A particularly attractive automatic nonparametric density
estimator emerges when b — 0. The resulting fo(z) does not require a separate
smoothing parameter. It is zero outside the data range [m(l), m(n)], with

-~ 1

1
folzy) = (n—1)(z@) —z)

and  fo(z(n)) = (n—1)(2m) —2mn-1))’

and 1s positive and smooth inside. For large n it is approximately equal to a
kernel type density estimator with a Gauffian kernel and variable bandwidth
proportional to n=1/2,

4.3 Quantile pyramids

The following is an attempt to construct a prior process Q(-) directly on the
set of quantile functions. Let us for convenience work on distributions on the
unit interval [0, 1], so that @Q(0) = 0 and Q(1) = 1. The starting point is a
class of distributions that can be specified on arbitrary bounded intervals. Let
Pm,[a,p] denote a density concentrated at sub-interval [a,b], to be employed at
level m in a growing pyramid, or tree. A simple possibility is to fix a density h

on the broadest interval in question and then scale it to h(z)/ fab h(z)dz on the
required sub-interval. To describe the intended prior quantile process, first draw
the median Q(%) from distribution py g1}, say. Then draw the quartiles inde-
pendently, say Q(i) ~ Pa0,Q(1/2)] and Q(%) ~ P2,[Q(1/2),1]- At stage three one
draws the four remaining octiles Q(%), Q(g), Q(g), Q(g) independently from the
appropriate p3 . distributions on the appropriate intervals, and so on. At stage
m new quantiles Q(j/2™) are generated for j = 1,3,...,2™ — 1, conditional on
the values already generated at levels 1 to m — 1 above, and Q(j/2™) depends
only upon its two parents Q((7 &+ 1)/2™). In this way a ‘quantile pyramid’ or
‘quantile tree’ is grown. The construction resembles that of Pélya trees, see Fer-
guson (1974), Lavine (1992, 1994) and Walker, Damien, Laud and Smith (1999),
but is different in spirit and operation. With Pdlya trees the partitions are fixed
(as dyadic intervals) but the probabilities are random (as Beta variables); this
specifies a random distribution function F'. Here we fix probabilities instead (in
the natural dyadic fashion) and use random partitions; the result is the quantile
function @.

The quantile pyramid may be stopped at some level m, after which linear
interpolation defines the remaining parts of the distribution. It may also be
allowed to go on indefinitely to define a full stochastic process @ on (0, 1) not
determined from a finite number of parameters, thus constituting a genuine non-
parametric prior quantile process. Existence of the process follows by tightness
of the sequence of finite approximations. The quantile-Dirichlet process touched
on above can be shown to be a special case.

4.4 Posterior quantile pyramids

Assume data z1,...,z, have been observed. The challenge is to determine the
behaviour of the posterior quantile process. One point of view is that a () process
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determines an F' for which general principles for finding the posterior of F' apply;
hence Q@ = F~! may be analysed too. This is often complicated, however, and
the following two alternatives appear quite fruitful.

Assume for illustration of the first idea that there is a simultaneous density for
the 15 sedecimiles ¢; = Q(j/16) of the form given above, and that () otherwise
is defined by linear interpolation. This means that its F' is also linear over the
16 intervals defined by the 15 quantiles, that is, the distribution has a constant
density F'(z) = %/(qj —q;j_1) for € (¢;_1,¢;), for each of the 16 sub-intervals.
This gives a likelihood for the data proportional to

Lni(q) = H (;)Nj(q) for g1 < -+ < q5,

where N;(q) = nFn(gj—1,¢;) is the number of data points falling in quantile-
defined z-interval number j. This makes it possible to write down the posterior
density of (¢1,...,q15). Algorithms of Metropolis—-Hastings type may be put up
to simulate from this distribution; see Hjort and Walker (2002).

A second route 1s that offered by what may be termed the substitute likeli-
hood. In the setting above, assume that a pyramid-type prior is given for the 15
quantiles q1, . .., q15, but we avoid any further specification of ). The substitute
likelihood for data, say L, 2(q), is the multinomial probability

n Ni(q) Nie(q) n! n
(Nl(q),...,Nla(q)) (%) (%) :Nl(q)!~-~N16(q)!<11_6) '

With the substitute likelihood and a pyramid type prior for the quantiles
there is a convenient way of expressing the (substitute-based) posterior density,
as shown in Hjort and Walker (2002). The point is to rearrange the multinomial
terms to match the tree-structure of the prior. Here it means that the 15 quan-
tiles follow the same pyramidal dependence structure given data as they did in
the prior. This partial conjugacy type result has the practical advantage that one
may deal with one quantile at the time, following the tree. First one simulates a
median from p(gs | data), then the two quartiles from respectively p(q4 | data, gs)
and p(qi12|data, ¢s), and so on. These individual simulation steps could use a
Metropolis—Hastings type algorithm. Repeating the full process many times over
gives in the end posterior distributions for quantiles of interest. This rearrange-
ment can actually also be carried out for the first linear interpolation likelihood,
and indeed L, ; and L, » can be shown to behave similarly for large n.

5 Bayesian density estimation and consistency issues

Nonparametric Bayesian density estimation means placing a prior distribution
on the set of densities and then analysing aspects of the posterior distribution;
an overview with many as yet not fully explored approaches is in Hjort (1996).
A technical point worth mentioning is that one may compute the posterior mean
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and variance functions via simulations from the prior alone, that is, without
having to assess full aspects of the posterior distribution of the density.

Assume a prior 7 is constructed for an unknown continuous density f. If the
data really follow a density fo, will the posterior distribution m(f | data) concen-
trate around fj, as the sample size increases? This topic is currently a hectic one,
and various authors have reached different, highly technical and perhaps rather
harsh sets of conditions sufficient to ensure consistency; see Wasserman (1998),
Barron, Schervish and Wasserman (1999), Ghosal, Ghosh and Ramamoorthi
(1999), Shen and Wasserman (2000) and Ghosal and van der Vaart (2000).

An important result was established as early as Schwartz (1965). She showed
that under a condition which we will denote (A), and which is that = puts
positive mass on all Kullback-Leibler neighbourhoods {f: [ folog(fo/f) < ¢}
around fp, then the posterior is at least weakly consistent. This means that
for almost all sequences under fy, m(U |data) — 1 for all weak neighbourhoods
U={f:w(Fy, F) < e} around fy; here w is any metric on the cumulatives Fy, F
equivalent to convergence in distribution. Strong Hellinger consistency demands
more, namely that «(U | data) should a.s. go to 1 also for the potentially much
more complicated neighbourhoods U = {f: H(fo, f) < ¢}, where H(fo, f)? =

f(f1/2 — fé/2)2 de =2-2 f(fof)1/2 dz. Consistency is a statement concerning
the pair (7, fo); one typically wishes conditions under which a prior 7 gives
consistency for large sets of fy. Conditions ensuring strong consistency given in
the many recent papers on the subject typically take the form ‘(A) and (B)’,
where (A) is the minimum requirement given above and where (B) varies in
content, sharpness and context from one article to another.

Here we make two points. The first is in the technical tradition and holds
that versions of condition (B) given in several recent articles have been too
strong. Walker and Hjort (2001) work with sequences of suitably modified pos-
teriors and show that these are truly strongly consistent under condition (A)
alone. The modification in question may be seen as having arisen either from
a modification of the prior or from a robustification of the likelihood function.
A corollary gives easy and weak conditions for the Bayes estimator (posterior
mean) to be Hellinger consistent. This provides a circumventive way of estab-
lishing strong consistency for the sequence of real posteriors for many classes of
prior distributions.

To give one illustration, consider a Pélya tree prior employing Beta(ay, ax)
variables at level k; an old result of Kraft (1964) guarantees that the randomly

chosen F a.s. has a density f as long as Y ;. 1/all€/2 converges. As long as this
holds and the Kullback—Leibler divergence between f; and the prior predictive
is finite, condition (A) holds. The (B) condition used by Barron, Schervish
and Wasserman (1999) leads to the very strict criterion a = 8% (or even
faster), which means Pdlya trees where the Beta components become almost
pre-determined even for low &, 1.e. trees with leaves that hardly move after three
or four levels. With the Walker and Hjort (2001) strategy, however, the condi-
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tion Y ., 1/&1,1/2 < oo alone is sufficient to secure Hellinger consistency of the
predictive distribution; for example, it suffices to have ay, of the type ck®*< for
some positive €.

The second point worth raising here is that for most statistical and decision
related applications one would be quite content with weak consistency, which is
secured under the basic nonparametric prior condition (A) alone. One may argue
that with weak consistency one learns the true cumulative for large n, and this
suffices to learn also the derivative, even in the few and rather special situations
where strong Hellinger consistency fails. Walker (2000) discusses similar points.

6 Lévy frailty processes and proportional hazards

The assumption of proportional hazards functions plays a major role in survival
and event history analysis. Judged by the extremely wide application of methods
based on proportional hazards, especially in terms of Cox models, it seems clear
that one ought to understand better what this assumption really means. For
instance, when assuming proportional hazards this is a statement about averages:
on the ‘average’ the hazard in a group is, say, twice the hazard in another group.
However, each group will contain a wide variation in individual risk, and one
may ask what proportional hazards means for this variation. This, of course, is
a frailty point of view. Although frailty considerations often lead to prediction
of decreasing hazard ratios, this is not always so.

Aalen and Hjort (2002) present classes of frailty constructions which neces-
sarily lead to proportional hazards. The approach taken in that article is not
Bayesian per se, but the classes worked with rely on probability measures be-
ing constructed on large sets and have interpretations in Bayesian terms. One
construction, complementing that of Aalen and Hjort, is as follows. Individuals
are pictured as being continuously exposed to an unobserved cumulative damage
type process, of the form

Z(t)y= Y 0G; fort>0. (6.1)
J<M(t)
Here Gy, G, .. . are taken to be i.i.d. nonnegative variables, interpreted as adding

over time to the hazard level of the individual, while M (-) is a Poisson process
with cumulative rate A(t) = fg A(s)ds, that is, its increments are independent
and Poisson A(s)ds. The # is an additional parameter acting multiplicatively on
the Gs. There is a certain over-parameterisation in that # may be subsumed
into the Gjs in (6.1), but it is convenient for later modelling purposes to keep
it present. From a modelling perspective one may work from different sets of
assumptions about the G distribution, or the Poisson intensity A(t), or the 6
factor, depending in suitable ways on covariate information.

The specific connection to the person’s survival prospects is to model S(¢ | Hy)
= Pr{T > t| H;}, the survival distribution given the full history of what has
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happened to the person up to time t—, as

S(t|Hy) =exp{—2(t)} = ] exp(-0G;)= [] (1-Ry)’. (6.2)

J<M(t) J<M(t)

Here R; = 1 — exp(—Gj). Letting Lo(u) = Eexp(—uG;) be the Laplace trans-
form of the Gjs, it follows that the unconditional survival function must take
the form

S(t) = Eexp{—Z(t)} = ELo(6)™") = exp[-A(t){1 — Lo(6)}]. (6.3)

Note that even though the survival function is discontinuous given the jumps
of the unobservable damage process, it becomes continuous marginally, with
cumulative hazard rate H(t) = A(t){1 — Lo(#)} and hazard rate function

h(s) = A(s){1 — Lo(6)} = A(s){1 — E(1 — R)"}. (6.4)

One may now add aspects of observable covariate information on to the frame-
work above. Consider individuals i = 1, ..., n with covariate vectors x1,..., x,.
Equation (6.2) translated to individual ¢ holds that S(¢|z;, Z;) = exp{=Z;(¢)}
with cumulative risk factor process Z;(t) = Engl(t) 0;G; ;. Again, z; may or
may not enter parameters of M;, 6;, or the distribution of G; ;. For a first il-
lustration, assume that the Poisson process M;(-) for individual ¢ has intensity
Ai(s) = Xo(s) exp(B'z;), as happens with standard Poisson regression modelling,
and that both the 6;s as well as the risk multipliers R; ; = 1 — exp(—Gj ;) have
the same distribution across individuals. Then (6.4) implies that individual i
has hazard rate function

hi(s) = Ao(s) exp(B'z;) E{1 — exp(—0G)}.

In other words, the Cox regression structure has been derived from the frailty
process model. For a second illustration with a less standard outcome, let the
Ai(s) be as above, take the 8;s to be 1, and model the R; ; as arising from a Beta
distribution with parameters (cp(z;), ¢ — cu(z;)), say. This allows individuals
with different covariates to have different expected levels for their risk multipliers.
A reasonable model emerging from this would be

exp(y'z;)

hi(s) = Xo(s) exp(B i) (i) = Ao(s) exp(ﬂtxi)m,

for example, with additional v parameters to model the p(z;). The point to
note is that the 1 — Lg(f) term always is inside (0, 1). A particular case with a
reasonable biological basis is the one with a common Poisson rate but different
impacts R; = 1 — exp(—G;) for different individuals, entailing a hazard rate
structure of the form h;(s) = Ao(s) exp(y'z;)/{1 + exp(y*z;i)}.

More general Lévy frailty processes may also be considered here in the place of
(6.1), and different specialisations lead to different hazard regression structures.
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Such are developed and discussed in Gjessing, Aalen and Hjort (2002). We
should point out that also additive regression forms may be derived for the
hazards under other assumptions for the Lévy processes. The theme here is
obviously of a general nature. It concerns the study of biologically plausible
background process models, not immediately or not necessarily with the aim of
analysing direct data from them, but rather to deduce plausible functional forms
of important statistical quantities. This theme is also visible in some of the work
reported on in S. Richardson’s chapter (this volume). Such lines of research do
have a strong tradition in statistics and probability theory, dating back more
than a century, but have perhaps been underplayed in much of contemporary
work.

7 Beta processes in a linear hazard model

The purpose of this section is to indicate how the Beta process, introduced in
Hjort (1984, 1990) as a nonparametric Bayesian tool for modelling cumulative
hazard rates in event history analysis, can be used also in Aalen’s additive hazard
regression model.

Assume survival data exist in the form of triplets (t;, 2;, d;) for n individuals,
where ;s are life-times, possibly censored, the x;s are covariates of dimension
p, and the ;s are indicators for non-censoring. In contrast to the multiplicative
Cox regression model, Aalen’s linear hazard regression model takes an additive
form h;(s) = ao(s) + zi10a(s) + -+ + &5 pay(s), with a consequent expression
for the cumulative hazard rate H; and for survival distributions

S(t]zi) = exp{=H;(t)} = Go(t)G1(t)™" -+~ Gp(t)"* (7.1)

for an individual with covariate vector z;, where Gj = 1 — Gj is the survival
function having «a; as hazard rate. This model is typically analysed nonpara-
metrically, with emphasis on Aalen plots for the cumulative risk factor functions;
see Aalen (1989). We will use Lévy processes for some of these components, and
need a framework able to handle discrete cumulative hazard rates as a function of
continuous time. The canonical model formulation is that the cumulative hazard
H(t|z;) for an individual with covariate information z; should have increments
obeying

1—dH(s|z;) = (1 —dAg(s))(1 —dAi(s))" -+ (1 —dA,(s))

for all s. This implies (7.1) again, with G, () = H[o,t](l —dA;(s)); see e.g. Hjort
(1990) for the product integral.

One may now attempt nonparametric Bayesian modelling of the A; or G;
functions inside this framework. In the general Aalen model these increments
are allowed to be both positive and negative (as long as (7.1) behaves like a
survival function), and a possibility is to use A; = B; — C; where B; and C}; are
independent Lévy processes with nonnegative infinitesimal increments bounded
by 1. Let us here focus on the separate submodel where the Ajs are to have
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nonnegative increments. This is a meaningful model when the z; ;s represent
risk levels associated with risk factors that a priori increase the hazard. This
submodel is particularly suited for the case where normal and healthy individuals
follow a life-time distribution governed by Ag, corresponding to each z; ; = 0,
and where increased x; ;s means increased hazard.

In such a situation a natural prior takes the form of independent Beta pro-
cesses Beta(c;, Ao ;) for A;; the increments dA;(s) are independent and approx-
imately Beta distributed with mean dAg ;(s) and variance dAg ;(s)/{1 4+ ¢;(s)}.
One now needs to generalise the original main theorem about Beta processes to
arrive at the posterior distribution of Ag,..., A, given a set of (y;, z;,d;) data.
Such a result has been derived in an unpublished technical report from 1997.
Essentially, the A;s still behave like Beta processes (with updated parameters)
between observed data points (1) < -+ < #(,), and there are jumps AA'( )
at the data points with a certain non-standard distribution. Formulae for A

E(A; | data) have been obtained, likewise for S(t |z) = Pr{T > t¢|z,data} and
for posterior variances and covariances. One may also simulate from the poste-

rior, to allow Bayesian inference for all parameters of interest. Such a programme
has been carried out in Beck (2000).

8 Local Bayesian regression

In this section we study a class of Bayesian non- and semiparametric methods
for estimating regression curves and surfaces. The main idea i1s to model the
regression as locally linear, and then place suitable local priors on the local
parameters.

The nonparametric regression problem concerns data Y; = m(z;) +¢; for i =
1,...,n where the ¢;s are zero-mean i.i.d. with standard deviation o, and where
the m( z) function is unknown. The favoured frequentist method is that of local
polynomials, of which special cases are the ‘local constant’ and the ‘local linear’
methods; see Fan and Gijbels (1996) for an exposition. The local linear method
minimises for given position z the function > 1, Ky (2; —2){Yi—(a+b(z; —))}?
w.r.t. (a,b), and uses m(z) = @ = d, as estimator. Here Kj(u) = h™1K(h~'u)
is a scaled version of a kernel function K (u).

Bayesian nonparametric regression must involve prior modelling of the curve
m(z) and calculations related to its posterior. The spline smoothing appara-
tus may be phrased in such terms. Here we outline methods which become
Bayesian generalisations of the successful local polynomial modelling strategy.
For illustration of the general ideas we focus here on the ‘local constant” model
and method. The classical Nadaraya—Watson estimator is the minimiser m(z) of

Sy Kp(z;—x)(Yi— a)?, whichis Y 7 lfx( Yai—z))Yi/ Y0 1[&( Ya;—2)),

where we take K (u) = Ix( )/ K (0) to be a symmetric, unimodal kernel function,
supported on [—1, 1]. Now consider
Ln(z,a,0) H Fyi | 2i,a, a) W wima) (8.1)

i€N(z)
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where Y; |z; ~ N(a,c?) and the product is over a local neighourhood N(z) =
[x — Lh,z+ 1h]. The local likelihood view is to interpret K(h™!(z; — z)) as the
information weight carried by data pair (z;,y;) for the local a = a, parameter.
Maximisation of (8.1) gives the local likelihood estimator, which is also the local
constant estimator, and for this operation the level of K is immaterial; K and K
give the same results. For the local Bayesian computation we insist on using K,
however, with maximum value 1 corresponding to having full information weight
for the underlying model, here, the N(a, 0?) model. The scaled kernel smooths
the information value down to zero for data pairs outside the z + %h window.
Note that L,(z,a,o) is the genuine likelihood for the model over this window
when the kernel is uniform.

The local Bayesian computation starts out with a prior for the local parame-
ter, say a = a,, for which we take the prior N(mq(z), 0% /wo(z)) with a suitable
local precision function wg(z). This prior is then combined with the local like-
lihood L, (z,a,), which is proportional to ¢=*°(*) exp{—1Q(z,a)/c?}. Here
$0(2) = 2 ien(a) K (h~'(2; — z)), which may also be expressed as nhf,(z)/K(0)
in terms of the kernel density estimator f, based on K, while Q(z,a) = QO( )+

so(a){a— (@)}, in which Qo(z) = Ysene) K (h~ (2 — 2)){yi — Mi(x)}2. The

result 1s )

N o
m(z) | local data, o ~ N(m(a}), m), (8.2)
with local Bayes estimator
(a) = — 2@y p 0@ s

wo(z) + so(x) wo(z) + so(x)

Note that the non-informative prior case o?/wq(z) = oo yields the frequentist
local linear estimator.

This is ‘so far, so good’, and suffices if one really can come up with a
prior guess curve mg(z) and a strength of belief function wq(z). More real-
istically these are not fully specified a priori, and a more general local Bayesian
regression programme would comprise the following steps. (A) Give a prior
guess function mg(-) and a prior for o. (B) For each z, use the local prior
az ~ N(mg(z),0?/wo(z)) for the local constant a;. (C) Do the local Bayesian
prior to posterior calculation, employing the local likelihood. This is the calcu-
lation carried out above, with general result

m(z) = E (ay | local data) = m(z | we(-), mo(+)).

(D) Use empirical Bayes methods to estimate or fine-tune wq(z), given mg(-).
(E) Use finally hierarchical Bayes methods, involving a background or first-stage
prior on mq(-) = mq(+,£), say, to arrive at

m(z) = E [ (| wo(-, &), mo(:, 5))|alldata]
/m (x| wo(-, &), mo(-,&))dm(€]all data).
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This would typically be computed via simulations of &;s from dw (£ |all data);
for each of these one computes the precision function wg(z,§;) using empirical
Bayes methods, giving via (8.2) a full curve m(z | wo(-, ;), mo(+,€;)). In the end
one averages these curves to display the curve estimate.

We note that the computation leading to (8.2) and the Bayes estimator,
corresponding to steps (A), (B), (C), requires only studying the situation at
a single position z at a time, so to speak. Steps (D) and (E) really require
fuller simultaneous aspects of the prior modelling of the curve, however. A fuller
description of the local constant prior used to exemplify the general scheme
here is that the curve is constant on each of many windows of length A, with a
simultaneous multinormal prior for the levels at these windows. For the local
linear version of the scheme, the prior model takes the view that the curve is
approximately linear inside each of many small windows, with a simultaneous
multinormal prior for the collection of local levels and local slopes. Details,
discussion and generalisations of the various ingredients at work here are in
Hjort (1998).

Observe that when the width of the local data window is large these methods
reduce to familiar fully parametric Bayesian methods, whereas they are essen-
tially nonparametric when the width is small. The apparatus also encompasses
the possibility of using non-informative reference priors for the local parameters,
in which case estimators coincide with the by now classical local polynomial
frequentist methods.

9 Random shapes with smoothed Dirichlets

Consider the class of closed curves in the plane which can be represented as
R(s) (cos(2ms),sin(27s)) for 0 < s < 1, with R(s) being some smooth positive
function with R(1) = R(0). Various stochastic process models for the radius
function R(s) give rise to different random shape models. Kent, Dryden and
Anderson (2000) in effect use such an approach, based on a circularly symmetric
Gaufian process for R(s), following up earlier work by Grenander and Miller
(1994). This works, but is moderately unsatisfactory in that the paths of such
a process can come below zero. This also leads to some interpretational and
statistical problems with the Gauflian likelihood approach used in these papers.

A different approach which avoids some of these difficulties is to use smoothed
Gamma and Dirichlet processes for the random radius function. Let gy be a
smooth density on [0, 1], periodic in the sense that gq(0) = go(1), with cumula-
tive distribution G. Consider a Gamma process G with parameters (bGg, b) on
[0,1]; in particular, EAG(s) = go(s)ds while VardG(s) = go(s)ds/b. A fruit-
ful model is the one smoothing locally over these Gamma process increments.
Consider therefore R(s) = [ Kq(s — u)dG(u) where K (u) is a kernel probabil-
ity density, taken to be continuous and symmetric on its support [—%, %], and
where K,(u) = a='K(a~'u) for a bandwidth parameter a. The radius integral
is taken to be modulo the circle around which it lives, that is, clockwise modulo
its parameter interval [0, 1]. For pure shape analysis it makes sense to strip away
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any information about the size of the objects studied. Such size normalisation
can be achieved in several ways, but the most natural strategy here is to nor-
malise by average radius length, or, in other words, to condition on the event
fol R(s)ds = G(1) = 1. Let therefore G(-) = G(-)/G(1), which is a Dirichlet
(b,Go), and R(s) = [ Kq(s—u)dG(u). This smoothed Dirichlet process is guar-
anteed to have total average radius length 1. The distribution of a set of random
radii 1s quite complicated, but in principle determined via the Hilbert transform
results mentioned in Section 3.

Various models of interest emerge via the use of different go functions, perhaps
parametrised to reflect wished-for aspects of the shapes. Kent, Dryden and
Anderson (2000) focus on ‘featureless’ objects. This translates into requirements
of circular symmetry and independence of starting point and leads to choosing
the uniform density for go. Thus we have a two-parameter model for a random
shape, centred at the unit circle. Parameter b has to do with the concentration of
the Gamma increments around their expected values while parameter a reflects
the degree of smoothing of the independent Gamma increments. Parameters a
and b need to be estimated from one or more observed shapes. Useful properties
include the formula 7{1+ (b+ 1)~' [(K, — 1)*du} for the mean of the random
area of the curve and formulae for cov{R(s), R(s + h)}. In ongoing work T have
used empirical covariance functions and a certain maximum simulated likelithood
strategy to determine parameter estimates.

10 Nonparametric envelopes around parametric models

Some nonparametric Bayesian constructions can be viewed as providing ‘non-
parametric envelopes’ around traditional parametric models. In this light tra-
ditional parametric inference is the limiting case of zero envelope width. The
nonparametric Bayesian solutions may hence be seen as robustifications of such
procedures, allowing for some amount of modelling error.

10.1 A semiparametric Bayes model.

Consider a regression situation with Y; = z!3 + o¢; for i = 1,...,n, where
the g;s come from a distribution G. Study the prior where (3, ¢) has some prior
density 7 and G independently comes from a Dir(b, G), where GY is the standard
normal. A large value of b corresponds to GG being very close to Gy and hence to
the traditional parametric setup. Seeing the data and knowing the parameters
amounts to knowing the &;s, so G given data and (8, o) is an updated Dirichlet
with total parameter Gy + Y ., 6(¢!(y; — zi3)). One may show that the
posterior of the parameters is m(8, o |data) = ¢ (8, o)L, (8, o), where L, is the
likelihood under the null model G = Gy, that is, the posterior i1s the same as it
would be under the null model. This assumes that the y;s are distinct. Inference
for quantities that depend also on G are affected by the nonparametric part of
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the prior, however. In particular,
@(t) = E{G(t)|data} = w,Go(t) + (1 —wy)n~" E Pr{oc™!(y; — z!3) < t|data},

where w, = b/(b+ n). This may be seen to be the integral of a smooth function
g(t), which is a convex combination of the normal prior density go(f) and a
kernel-type density estimator g,(#) with a variable bandwidth approximately
proportional to n='/2. Interestingly, a very similar story emerges with the more
general process studied in Section 2.3. Essentially, the formula for G holds but
with a value of w, being determined by the distribution H of the B;s.

10.2 Model fitting with control sets

The extra randomness around the normal model introduced by the Dirichlet in
the semiparametric setup above did not influence on the posterior distribution of
(8,0). Suppose now that G is taken to be a Dir(b, Gg), but conditioned to have
G(B;) = z; for each of chosen sets By,..., By partitioning the sample space.
With such a pinning down of the Dirichlet the posterior becomes proportional
to w(0)Ln (0) M, (6), where My, () = H?Il(sz)Nj(e)/(sz)[Nj(a)], writing 6 for
(3,0). Here N;(6) is the number of r;(6) = o~ (y;—2}p3) in B;, and 2" = z(z+
1) -+ (z+m—1). This leads to non-standard asymptotics for Bayes estimators,
as M, is of the same stochastic order as L,; see Hjort (1986). The Bayes
estimator balances two aims of equal importance, to be close to the maximum of
the likelihood, and to come close to having a fraction of z; residuals 7;(6) in set
Bj for j = 1,..., k. This apparatus may be used when one of the intentions of
ﬁtting a model is to predict frequencies for certain sets, and can be tailor-made
to model-robust quantile regression, for example.

10.3 Randomness around a parametric survival data model

Assume survival data of familiar type (¢;,d;) are available, where 4; is indicator
for non-censoring, and let ap(s) describe some parametric model for the hazard
rate function. To create model uncertainty around it, let A be a Beta(e, Ag) pro-
cess centred at the unit rate model; its cumulative hazard rate mean is Ag(¢) = ¢
and its variance is t/{1+c(t)}. Now postulate that 1—dAs(s) = {1—dA(s)}*()
for positive s and give § a prior 7. For large ¢ this becomes ordinary parametric
inference for the ay model, while for moderate or small ¢ we have a semipara-
metric Bayesian model around the given parametric one. The survival function

for given 6 and A is Sp(t) = [[jp {1 — dA(s)}*(*). Here one may show that the

posterior density of § becomes proportional to ()L (§), where

L0 = TT [#(ctt) +an(t)y () — v (clt) +an(t) (Y (1) = 1))]

i:6;,=1

X exp |— / {1/) s)+ ag(s)Y (s )) — 1/)(0(5))}0(5) dAo(s)} ,
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in terms of Y (s) = Y_i_, I'{t; > s}, and where 1 is the derivative of the logarith-
mic gamma function. When ¢ — oo this can be shown to become the familiar
likelihood Ly, (). For moderate and smaller values of ¢ this leads to model-robust
Bayesian parametric inference.

11 Concluding remarks

This chapter has hopefully helped illustrate that the field of Bayesian nonpara-
metrics is rich in challenges and possibilities. That its reach is expanding is
witnessed for example by the breadth of discussion contributions to Walker,
Damien, Laud and Smith (1999). Also, several other chapters in this volume
touch in various ways aspects of nonparametric Bayes. That its future looks
bright is also helped by computational advances over the last decade.

Several of the nonparametric Bayesian stories told in brevity here have inter-
esting extensions to more general settings. In particular, many of the models,
methods and results surveyed above for the 1.i.d. situation can be generalised
to situations with covariate information. For example, forthcoming work with
Petrone uses the quantile-Dirichlet process to develop Bayesian inference meth-
ods for quantile regression. Such methods have also been developed by Kottas
and Gelfand (2001). The Bayesian modelling of local parameters used in Section
8 is also clearly of a general nature, and can be used for example to develop
Bayesian Poisson regression methods.

One may also point to further challenges for the field. A theme of interest is
to build models that take prior notions of shape into account, like unimodality
in density estimation; see Hansen and Lauritzen (2002) for an interesting con-
struction. Another line of research is that exemplified in Section 10, enveloping
frequently used parametric models in bigger models via Bayesian modelling of
uncertainty. This may lead to model-robust inference methods with clear in-
terpretations. One example could be to build a time series model where the
autocorrelation function is a nonparametrically modelled function centred at
say the parametric AR(p) structure, with an extra parameter to dictate the
degree of closeness to this centre function. Similar attempts could be geared
towards modelling the covariance function in geostatistical models. Yet further
challenges include constructing and polishing Bayesian extensions of generalised
linear models via modelling of the link functions, as exemplified e.g. in Gelfand
and Mallick (1995) who used mixtures of betas to model the covariate link func-
tion for proportional hazards.

Acknowledgements

I have benefitted on many levels from my involvement with the HSSS programme,
also regarding stimulus for work reported on in this chapter. I have been privi-
leged to work on these themes with Benoit Beck, Arnoldo Frigessi, Hakon Gjess-
ing, Andrea Ongaro, Sonia Petrone, Jean-Marie Rolin, Stephen Walker and Odd
Aalen. Thanks are also due to my fellow editors and to Natal’ya Tsilevich for
particularly constructive comments on an earlier version of this chapter.



Topics in Nonparametric Bayesian Statistics 21

References

Barron, A.; Schervish, M.J. and Wasserman, L. (1999). The consistency of
distributions in nonparametric problems. Annals of Statistics 27, 536-561.

Beck, B. (2000). Nonparametric Bayesian Analysis for Special Patterns of In-
completeness. Ph.D. thesis, Department of Statistics, Université Catho-
lique de Louvain.

Billingsley, P. (1995). Probability and Measure (3rd ed.). Wiley, New York.

Cheng, C. (1995). The Bernstein polynomial estimator of a smooth quantile
function. Statistics and Probability Letters 24, 321-330.

Cifarelli, D.M. and Regazzini, E. (1990). Distribution functions of means of
a Dirichlet process. Annals of Statistics 18, 429-442; corrigendum, ibid.
(1994) 22, 1633-1634.

Dey, D., Miiller, P. and Sinha, D. (1998). Practical Nonparametric and Semi-
parametric Bayesian Statistics. Springer-Verlag, New York.

Diaconis, P. and Kemperman, J. (1996). Some new tools for Dirichlet priors. In
Bayesian Statistics 5 (eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and
A.F.M. Smith), 97-106. Oxford University Press, Oxford.

Doksum, K.A. (1974). Tailfree and neutral random probabilities and their pos-
terior distributions. Annals of Probabiity 2, 183-201.

Efron, B. (2002). Robbins, empirical Bayes, and microarrays. Annals of Statis-
tics, to appear.

Escobar, M.D. and West, M. (1995). Bayesian density estimation and inference
using mixtures. Journal of the American Statistical Association 90, 577—
588.

Fan, J. and Gijbels, 1. (1996). Local Polynomial Modelling and its Applications.
Chapman and Hall, London.

Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric problems.
Annals of Statistics 1, 209-230.

Ferguson, T.S. (1974). Prior distributions on spaces of probability measures.
Annals of Statistics 2, 615-629.

Gelfand, A.E. and Mallick, B.K. (1995). Bayesian analysis of proportional haz-
ards models built from monotone functions. Biometrics 51, 843-852.
Ghosal, S.; Ghosh, J.K. and Ramamoorthi, R.V. (1999). Posterior consistency of

Dirichlet mixtures in density estimation. Annals of Statistics 277, 143-158.

Ghosal, S. and van der Vaart, A. (2000). Rates of convergence for Bayes and
maximum likelihood estimation for mixtures of normal densities. Research
Report, Vrije Universiteit Amsterdam.

Gjessing, HK., Aalen, 0.0. and Hjort, N.L. (2002). Frailty models based on
Lévy processes. (To appear.)

Green, P.J. and Richardson, S. (2001). Modelling heterogeneity with and without
the Dirichlet process. Scandinavian Journal of Statistics 28, 355-375.



22 Topics in Nonparametric Bayesian Statistics

Grenander, U. and Miller, M.T. (1994). Representations of knowledge in complex
systems (with discussion). Journal of the Royal Statistical Society B 56,
549-603.

Guglielmi, A. and Tweedie, R.L. (2000). MCMC estimation of the law of the
mean of a Dirichlet process. Technical report TR 00.15, CNR-TAMI, Mi-
lano.

Hansen, M.B. and Lauritzen, S.L. (2002). Non-parametric Bayes inference for
concave distribution functions. Statistica Neerlandica 56, 110-127.

Hjort, N.L. (1984). Contribution to the discussion of Andersen and Borgan’s
‘Counting process models for life history data: a review’. Scandinavian
Journal of Statistics 12, 141-150.

Hjort, N.L. (1986). Contribution to the discussion of Diaconis and Freedman’s
‘On the consistency of Bayes estimates’. Annals of Statistics 14, 49-55.

Hjort, N.L. (1990). Nonparametric Bayes estimators based on Beta processes in
models for life history data. Annals of Statistics 18, 1259-1294.

Hjort, N.L. (1996). Bayesian approaches to semiparametric density estimation
(with discussion contributions). In Bayesian Statistics 5, proceedings of the
Fifth International Valéncia Meeting on Bayesian Statistics (eds. J. Berger,
J. Bernardo, A.P. Dawid, A.F.M. Smith), 223-253.

Hjort, N.L. (1998). Local Bayesian regression. Statistical Research Report,
Department of Mathematics, University of Oslo.

Hjort, N.L. (2000). Bayesian analysis for a generalised Dirichlet process prior.
Submitted for publication.

Hjort, N.L. and Ongaro, A. (2002). On the distribution of random Dirichlet
means. Statistical Research Report, University of Oslo.

Hjort, N.L. and Walker, S.G. (2001). Nonparametric Bayesian quantile inference.
Statistical Research Report, University of Oslo.

Ishwaran, H. and Zarepour, M. (2000). Markov chain Monte Carlo in ap-
proximate Dirichlet and beta two-parameter process hierarchical models.
Biometrika 87, 353-369.

Kent, J.K., Dryden, I. and Anderson, C.R. (2000). Using circulant symmetry to
model featureless objects. Biometrika 87, 527-544.

Kerov, A. and Tsilevich, N. (1998). The Markov—Krein correspondence in several
dimensions. PDMI preprint 1.

Kingman, J.F.C. (1975). Random discrete distributions. Journal of the Royal
Statistical Society B 37, 1-22.

Kottas, A. and Gelfand, A. (2001). Bayesian semiparametric median regression
modeling. Journal of the American Statistical Association 96, 1458-1468.

Kraft, C.H. (1964). A class of distribution function processes which have deriva-
tives. Journal of Applied Probability 1, 385—-388.

Lavine, M. (1992). Some aspects of Polya tree distributions for statistical mod-



Topics in Nonparametric Bayesian Statistics 23

eling. Annals of Statistics 20, 1222-1235.
Lavine, M. (1994). More aspects of Polya tree distributions for statistical mod-
eling. Annals of Statistics 22, 1161-1176.

Lo, AY. (1984). On a class of Bayesian nonparametric estimates: I, density
estimates. Annals of Statistics 12, 351-357.

Markov, A.A. (1896). Nouvelles applications des fractions continues. Mathema-
tische Annalen 47, 579-597.

Regazzini, E., Guglielmi, A. and di Nunno, G. (2000). Theory and numerical
analysis for exact distributions of functionals of a Dirichlet process. Re-
search report, Universita di Pavia.

Rubin, D.B. (1981). The Bayesian bootstrap. Annals of Statistics 9, 130-134.

Schwartz, L. (1965). On Bayes procedures. Zeitschrift fir Wahrscheinlichkeits-
theorie und Verwandte Gebiete 4, 10-26.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica
Sinica 4, 639-650.

Sethuraman, J. and Tiwari, R. (1982). Convergence of Dirichlet measures and
the interpretation of their parameter. In Proceedings of the Third Purdue
Symposium on Statistical Decision Theory and Related Topics (eds. S.S.
Gupta and J. Berger), 305-315. Academic Press, New York.

Shen, X. and Wasserman, L. (2000). Rates of convergence of posterior distribu-
tions. Annals of Statistics, to appear.

Tsilevich, N.V.; Vershik, A. and Yor, M. (2000). Distinguished properties of
the gamma process, and related topics. Prépublication du Laboratoire de
Probabilités et Modéles Aléatoires, no. 575.

Walker, S.G. (2000). A note on consistency from a Bayesian perspective. Manu-
script, Department of Mathematical Sciences, University of Bath.

Walker, S.G., Damien, P., Laud, P.W. and Smith, A.F.M. (1999). Bayesian
nonparametric inference for random distributions and related functions
(with discussion). Journal of the Royal Statistical Society B 61, 485-528.

Walker, S.G. and Hjort, N.I.. (2001). On Bayesian consistency. Journal of the
Royal Statistical Society B 63, 811-821.

Wasserman, L. (1998). Asymptotic properties of nonparametric Bayesian proce-
dures. In Practical Nonparametric and Semiparametric Bayesian Statistics
(eds. D. Dey, P. Miiller and D. Sinha), 293-304. Lecture Notes in Statistics,
Springer.

Aalen, 0.0. (1989). A linear regression model for the analysis of life times.
Statistics in Medicine 8, 907-925.

Aalen, 0.0. and Hjort, N.L. (2002). Frailty models that yield proportional
hazards. Statistics and Probability Letters, to appear.



