Rejoinder to the discussants
Nils Lid Hjort and Gerda Claeskens

— August 2003 -

We are honoured to have our work read and discussed at such a thorough level by several
experts. Words of appreciation and encouragement are gratefully received, while the many
supplementary comments, thoughtful reminders, new perspectives and additional themes
raised are warmly welcomed and deeply appreciated. Our thanks go also to JASA Editor
Francisco Samaniego and his editorial helpers for organising this discussion.

Space does not allow us answering all of the many worthwhile points raised by our
discussants, but in the following we make an attempt to respond to what we perceive of as
being the major issues. Our responses are organised by themes rather than by discussants.

We shall refer to our two articles as ‘the FMA paper’ and ‘the FIC paper’.

1. The local neighbourhood framework

In our articles we chose to work inside a broad and general parametric framework, which

in the regression case corresponds to our using say

fi,true(y) :f(y|$i70-07/80770+5/\/ﬁ); (11)

see Section 2 in the FMA and Section 2 in the FIC paper. This draws partial criticism
from Raftery and Zheng, who question its realism, as well as from Ishwaran and Rao, who
argue that it does not yield a good framework for subset regression problems.

The local neighbourhood framework (1.1) allows one to extend familiar standard
i.i.d. and regression models (corresponding to having § fixed at zero) in several paramet-
ric directions (corresponding to dy,...,d, allowed to be non-zero, for different envisaged
departures from the start model), as exemplified in our papers. This may in particular be
utilised for robustness purposes and sensitivity analyses, and leads to a fruitful theory for
model averaging and focussed model selection criteria, as we have demonstrated.

In their Section 4, Raftery and Zheng mention two pro (1.1) arguments, before pre-
senting their scruples. The main argument for working inside (1.1) is however that it leads
to natural, general and precise limit distribution results, with consequent approximations
for mean squared errors and the like; the key is that variances and squared modelling biases
become exchangeable currencies, both of size 1/n. For classes of estimators fi of 1(6,7),

including the submodel estimators f1g = M(é\s, vs, 70,5 ), we have

Eg il — (6,7} =n""'p1(6,v/n(y — 70)) + 2 pa(8, /(v — %) + -, (1.2)

for example, under regularity conditions. Such expansions, written out here without the §
that Raftery and Zheng appear to dislike, would typically be valid uniformly over ||y—~ol| <
const./+/n balls. We view (1.2) type results as a good reason for developing and presenting
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theory in terms of 6 = /n(y — v), i.e. using (1.1). Our papers have (in particular)
provided formulae for p;(6,d) here, the limiting risk for i, while expressions for pz(6,9)
are harder to get hold of; see our response below to Tsai’s comments. We have also noted,
in FIC’s Section 5.5, that approximations coming from using the leading term in (1.2)
type expansions hold with exactness for finite n, for submodel estimators of means in
linear regression.

Thus Raftery and Zheng interpret us a little bit too literally, at the end of their Section
4; as statisticians we do not believe that our model parameter ~ changes value when our
data set passes from n = 100 to n = 101, but we do believe that limit theorems based on
the (1.1) framework provides lucent understanding and useful approximations for the given
n. This comment also applies to our BMA investigations (FMA’s Section 9), where priors
and posteriors for (6,~) are transformed to priors and posteriors for (6,d). (A too literal
belief in sample-size dependent parameters would clash with Kolmogorov consistency and
other requirements for natural statistical models; see McCullagh (2002) and the ensuing
discussion.)

A further strand of arguments supporting the view that many questions find their
most natural solutions inside v — vo = O(1/y/n) frameworks is related to what we termed
‘tolerance radii’ in FMA’s Section 10.5. How much quadraticity, or variance heteroscedas-
ticity, can the normal regression model tolerate, in the sense that the simpler methods
based on standard assumptions still give better results than the more cumbersome ones
based on the bigger models? How much autocorrelation can typical 1.i.d.-based methods
take? Such questions are nicely answered using the sample-size dependent magnifying glass
§ = v/n(y — ), as touched on in Section 10.5 of the FMA paper. Consider for example
the (3o, 0, 31,A) model of FIC’s Section 4.1. The simple i.i.d. model Y; ~ N(fBy,0?) can

tolerate the presence of a regression coefficient 3; and a skewness parameter A, as long as
Vw1 B +wa (A = 1)] < (kn1wi + kn2w3) /2.

This first-order asymptotic answer rests on a framework like (1.1), and depends also on
the focus parameter under study via (wy,wsz); see FIC’s Section 4.1 for examples. Inside
the ellipse kml/B% + kpa2(X — 1)2 < 1/n, all estimands will be better estimated using the
simple N(fp,0?%) model than using the the formally correct four-parameter model.
Another benefit of our methodology, and the (1.1) type framework, is the ability to
compare model selection and model average strategies in a unified way, across situations, so
to speak; there is a well-defined limit experiment, characterised by deterministic quantities
70 and K, the vector w which depends on the focus parameter, plus an unknown ¢ for which
one observes D ~ N,(§, K). Inference is then sought for ¢» = w'3. Thus lessons learned for
e.g. Poisson regression models can be carried over to e.g. logistic regressions. This is also

in the LeCam spirit of asymptotic equivalence of statistical experiments; see e.g. van der

Vaart (1998) and Brown (2000) for general discussion.
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Note that § can be big in size, in (1.1) and (1.2), so reading our papers as saying
that we only care about v being close to 7y is not correct. Also, when ~ happens to be
far away from ~g, this will be picked up by the data via S\full = /n(Jranl — Y0), and most
sensible model averaging schemes, including FIC and weighted FIC, will give weights close
to 1 for the wide model. As e.g. Johnson hints at, other techniques might be needed to
better assess behaviour and properties of model average methods in clearly non-contiguous
situations, i.e. when ~ is far from ~p.

We have seen that the O(1/y/n) framework is canonical inside general parametric
models with independence. This has to do with information increasing linearly with sample
size divided by model complexity and variances being proportional to inverse information.
Ishwaran and Rao mention Breiman’s bagging, which indeed may be viewed in terms of
model averaging. Some of the calculations in Section 2 of Biihlmann and Yu (2002) may be
seen as special cases of our general FMA theory. Their paper shows that when averaging
takes place over a large number of stumps, then (su)bagging is best analysed inside a
O(l/n1/3) framework. A similar comment applies to some of the goodness-of-fit tests of
Claeskens and Hjort (2003), where large classes of alternative models are being searched
through.

2. Two uses of regression models

Regression analyses have different aims on different occasions, and even the same data set
may be analysed with different goals in mind. We have primarily taken the view that what
matters most is quality of predictors and precision of focus estimators. Ishwaran and Rao,
in contrast, equate the subset selection regression problem with finding the exact subset
of non-zero elements among a vector of coefficients (31,...,3kx)". As a result they partly
criticise our methods for not being optimal for a task they were not set out to perform.

For many applications one would not care much if say 7 = 0.01 rather than being
exactly zero, and the additional estimation noise caused by including 37 in the predictor
formulae might worsen rather than enhance the precision. Ishwaran and Rao appear to
say that it is the duty of any subset selection method to strive for inclusion also of such a
small (7.

There are of course situations where detecting the non-zero-ness of certain parameters
is the main goal of an analysis. This could be a 3; coefficient in a linear regression setting,
for example. Our theory works for such a focus parameter too, since it may be expressed
as 3; = E(Y |z 4+ ej,u) — E(Y |z,u), with e; the jth unit vector. In an effort towards
making the world slightly less unfair, Hjort (1994a) collected and analysed data from
world championships in sprint speedskating, attention focussed on the average difference
d between 500 m results reached using last inner track vs. last outer track. The analysis
essentially employed a bivariate mixed effects regression model with seven parameters per
championship (and it was necessary to fit the full seven-parameter model to make inference

for d). Only one parameter mattered to the delegates from 37 nations at the 1994 general
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assembly of the International Skating Union. They had to assess the potential non-zero-
ness of d and its implications, and actually needed to vote for or against the significance of
the point estimate (which was d = 0.06 seconds). The Olympic rules for sprint speedskating
were in fact changed as a consequence of the statistical analysis; from Nagano 1998 onwards
the athletes are forced to skate the 500 m distance twice. See also Hjort and Rosa (1999).
This is an example of a sharply defined focus parameter where tools of FMA and FIC
might be used.

We disagree with the way Ishwaran and Rao interpret the scope of our machinery
for subset selection problems in regression, at the end of their Section 1. The statistician
is at the outset required to classify some parameters (say [3;s) as ‘protected’ and other
parameters (say v;s) as ‘uncertain’; our methods are then geared towards finding the best
subsets of v;s to include, or to be averaged over. Our methods are certainly not ‘restricted
to coeflicients known to be zero’, as Ishwaran and Rao charge in their point (a). First, the
methods are well-defined and can be applied regardless of the sizes of the v;s. This is also
a reply to a comment by Raftery and Zheng, that our (1.1) is ‘required by FMA’; FMA
methods give algorithms that may be put to work regardless of (1.1) type assumptions.
Second, even though the mathematical results we have provided about various methods
have utilised the v; = o ;+6;/+/n framework, the d;s may be big in size, as also commented
on above. Third, most sensible selection methods or averaging methods will pick out the
widest model, in cases where the 7;s really are far from zero.

Regarding their point (b) (end of Section 1), it is fair to say that statistical modelling
is and remains an art demanding skill and experience for its perfect execution, even with
the advent of further tools for automatisation and diagnostics. The previous argument
indicates that it may be rather harmless if a statistician labels a parameter a ‘4’ when it
should rather have been a ‘3’ (provided the selection or averaging scheme is among the
decently robust ones, with low max risk, see FMA’s Section 7); this also serves to counter
their point (b). A similar comment applies to Raftery and Zheng’s reservations (Section
4), having to do with situations where ‘the coefficients for some nuisance variables are
substantial, and those for others are small’. In such cases the crafty modeller should take
this on board, redesigning nuisance variable coefficients as protected.

In their Sections 1 and 2, Ishwaran and Rao argue that in most regression setups, the
~o associated with uncertain (or non-protected) variables must be zero. This is fine, is
not surprising, and does not contradict our machinery or methodology. Our theory does
allow ~vg # 0 too, but this would here correspond to known trends, which may be removed
from the regression equation. We note that the FIC paper has several examples where the

canonical 7g 1s non-zero.

3. Estimating model order

In some settings there is a natural order of complexity among candidate models, as with

e.g. polynomial regression. Ishwaran and Rao (Section 3) study the problem of estimating
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the actual underlying order of the true model, that is, the unknown number &y where
the coefficient vector is (81,...,08k,,0,...,0) and the first ko are strictly non-zero. As
mentioned above, in many situations estimating kg might not be a vital issue. Their
Theorem 1 contrasts backwards and forwards selection schemes under some conditions,
and is of interest. We believe their theorem should and can be extended to more general
settings, however.

We do think the assumption about finiteness of fourth moments may be softened,
although this is not crucial. The primary problem we see is their assumption that ¥, =
nT!X'X = n7' Y " 2;2! must equal the identity matrix I; this appears too restric-
tive. One may transform a regression model to achieve such orthogonality, but this would
typically inflict a different ordering of new coefficients, losing the original motivation of
nested-ness. This makes it difficult to keep track of the original k3. To avoid the problem
one may keep the original model, and consequently keep the kg as defined by the untrans-
formed [ vector, but accept the weaker assumption that X, tends to a general positive
definite Q).

Under weak Lindeberg type conditions, see e.g. Hjort and Pollard (1994) (in particular,
it does not appear necessary to assume finite fourth moments), we then have \/ﬁ(a—ﬁ) —d
Nk (0,0%Q), with consequent \/E(B\k — Bx) —a N(0,03), say, where o}, = o0(Q.x)"/?. Thus
there is simultaneous convergence Zy, ,, = \/ﬁgk/&\k —q Zy., say, for k > kg4 1, where these
are standard normals with correlations inherited from . Also, |Zj | flees to infinity in
probability for k& < kg. Defining the backwards and forwards model order estimates as in

Ishwaran and Rao, one may now show that EB —q4 kp and EF —4 kp, where

0 for k <kog—1,
Pr{kp =k} = { Pr{Zk,+1 € Jkg+1,-.-,ZK € JK'} for k = ko,
Pr{ZkéJ'k,Zk_H EJ];;.}.l,...’Z[(EJA’} for k> ko +1
and
0 for k <kg—1,
PI‘{kF = k} = Pl‘{ZkO_|_1 € Jk0_|_1} for k = k‘o,

Pr{Zk_H € Jrt+1, Zro+1 ¢ O N A §§ Jk} for k > kg + 1.

Here Jp = (—2a, /2, Zay /2) 18 the acceptance interval for Zy ,,, with limit probability 1 —a.
Ishwaran and Rao’s Theorem 1 corresponds to the case of a diagonal () matrix, where the
Zs become independent.

In practice the |Zj ,|s for k& < kg have not quite had time to flee to infinity, for finite n,
as Z , has mean value about /n8 /o). The approximations afforded by the limit theorem
above are easily too crude, particularly when ;s are small. It is again natural to use the
local neighbourhood parametrisation, with say 8y = d;/+/n. The limit distributions for
i{:\B and EF may be derived. There will in particular be positive probabilities for values
k < kg — 1. One finds in fact

(S ¢
Ky Zk € JK}
0K

5 5
Pr{kp — k} = Pr{a—k Y Zid T S 2 € T
k 1

OL+
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fork=1,...,K, where 0 =0 for k > ko + 1, and where Zy, ..., Zk are standard normals
with correlations coming from ). There is a corresponding result for kp. This creates a
different picture than with Ishwaran and Rao’s Figure 1, which has been produced under
conditions corresponding to having |dx| of infinite size for k < kg (and @ diagonal).

Ishwaran and Rao comment that the model order parameter kg is not a smooth func-
tion of (3, and as such falls outside the standard regularity conditions used in our FMA and
FIC papers. The resulting predictors, say jip = :z:tB\B and fip = :z:tBF for given covariate
position z, are however amenable to our methods, viewed as estimators of u = z*3. The
backwards and forwards predictors are model average methods and can be analysed using
the FMA methodology. Limit distributions are non-linear mixtures of biased normals, and
their performances may in particular be compared to that of AIC and FIC, as per Section
7 in the FMA paper. We also note that the arguments and results alluded to here should
generalise without serious difficulties to e.g. generalised linear models.

Ishwaran and Rao ‘have always wondered about’ whether it is better to use forward
or backward stepwise regression. They mlght perhaps be encouraged to continue their
fruitful wondering. Even in cases when kF 1s more successful than kB as an estimator of
ko (where, as we argue above, the analysis and conclusion is less clear-cut than what it
appears to be in their discussion), the backwards performance would still be better than
forwards performance for predicting z*(3, in significant portions of the parameter space.

We use this opportunity to nod in agreement to comments made by Shen and Dough-
erty (Section 3), that it is very useful when the list of candidate models can be restricted a
priori, for both FIC and FMA. In situations with a nested sequence of models, as above, this
means reducing the number of candidates from 27 to g+1. On the other hand the list should
be broad enough to reflect real modelling information, as viewed in conjunction with focus
parameters. One possibility for shortening the queue of suitors is via suitable thresholding
and re-weighting, e.g. including only the ten most promising models as monitored by
the FIC scores, or by the posterior probabilities inside a BMA setup. Our FMA theory

continues to be applicable also for such strategies.

4. FMA versus BMA

Raftery and Zheng come dressed as BMA’s witnesses and deliver a strong case. In their
earnest zeal they perhaps inadvertently risk classifying or portraying our FMA work as
being anti-Bayesian, in spirit, intent or result. That would be a case of incorrect classi-
fication. Our FMA bag comprises not only the compromise estimators of FMA’s Section
4, but also averages of the generalised ridge estimators developed in Section 8, and these
again are close relatives to BMA methods, as explained in Section 9. When developing
our FMA methodology our points of motivation indeed included our wish to understand
better the behaviour of BMA strategies.

Realising that both ‘BMA’ and ‘FMA’ are big bags of methods, then, it is a little over-
suggestive when Raftery and Zheng say that ‘BMA [was] generally found to have better
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performance’ and that ‘FMA itself does not appear to yield optimal methods’. Some BMA
regimes are better than others, and some FMA schemes have optimality properties. One
may e.g. work with model selection schemes that post model selection use estimators that
are minimax over say 0'K 1§ < ¢ type regions, using for this step methods similar to
Blaker’s (2000). Also, as mentioned above, some of the generalised ridge versions of FMA
correspond (to the first order) to BMA schemes.

Several model average schemes may be added to the annotated list given in FMA’s
Sections 5 and 7. Ishwaran and Rao took up backwards and forwards model selection
procedures and as we explained above these may be analysed inside the FMA framework;
in particular, their behaviour may be analysed using FMA’s Theorem 4.1. Johnson might
consider having his former life prolongated by revisiting his and his colleagues’ robust
Bayesian estimation methods, using the FMA apparatus to understand performance.

Cook and Li discuss sliced inverse regression and central subspaces methods. Such
methods are geared more towards dimension reduction than selection of subsets, and may
be compared to principal components regression (see e.g. Mardia, Kent and Bibby, 1979,
Ch. 8) and to partial least squares regression (see e.g. Helland, 1990). With some work we
believe versions of these dimension reduction methods may be characterised and analysed
as FMA methods. In these situations it would be more natural to compare performances
in terms of suitably averaged prediction accuracy, see our next section.

As far as performance is concerned, Raftery and Zheng are perhaps right to arrest us
for not paying enough attention to the existing BMA literature. They provide references
to and give a summary of three main strands of results: general Bayes theory (along
with studies of robustness to prior specifications); simulations; and cross-validation type
predictive performance. See also the concise and useful discussion in Clyde and George
(2003). What we intended to point to in our introduction to the FMA paper was the
surprising lack in the literature of what one may think of as ‘the fourth strand of results’,
namely limit distribution statements. In mathematical statistics we are not quite satisfied
with simulations and cross validation and indications of good performance; we need precise
limit distribution results. This is not only dictated by tradition and aesthetics, but gives
practical mathematics, providing good approximations for precision measures as well as a
tool for comparing performances, say of different BM A schemes. What is logistic regression
without results about limiting behaviour of likelihood methods? What is years of hands-on
experiences with averages without the central limit theorem?

Shen and Dougherty stress, along with Johnson and with Raftery and Zheng, like
we have done, the necessity of securing a well-defined interpretation of focus parameters
(or variables) across models. In our framework this is taken care of via u = u(f), where
f belongs to suitable submodels of the widest f(y,6,~) model. This requirement, when
boomeranged back to BMA’s watchtower, becomes the issue we raise in FMA’s Section
1.1, that BMA typically entails mixing together conflicting prior opinions about focus

parameters. Qur discussants do not take up this point.
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5. Average quality of predictors

We appreciate Raftery and Zheng’s additional comments to and extended analysis of the
low birth weight data set. Our own analysis of this data set was primarily intended as an
illustration of the developed methods, as opposed to a full scientific report on low birth
weights. This was also why we chose somewhat simple parameters as foci. Let us write
these as p1 = p(z1), p2 = p(z2) and p = pa/p1, where z; and z; are the average covariate
vectors for white and black mothers, respectively. We may agree with Johnson and with
Raftery and Zheng that there are yet other parameters to focus on, with perhaps higher
socio-biological relevance; again, our parameters were chosen for illustration and simplicity.
We still believe that p has some merit, though. A litmus test for ‘being of interest’ might
be whether one can imagine a newspaper or magazine publishing a story about a finding
concerning the parameter in question; here a news story sentence like ‘the average black
mother has a 50% greater chance than the average white mother of giving birth to too
small children’” would appear to pass the test. Of course one should with such a finding
attempt to investigate further, including aspects of the covariate distributions.

Comments from Cook and Li as well as from Raftery and Zheng point to the usefulness
of developing the FIC and FMA apparatus to assess prediction quality when averaged in
suitable ways, rather than for one focus parameter at a time. We touch on this in the FIC
paper’s Sections 5.6 and 7.2. Such averaging is particularly natural in regression models,
where focus might be on the behaviour of say fi(z,u) for a regression surface p(z,u) for
particular sub-regions of u for fixed z, and so on. We note that the theory and arguments
also invite suitable weighted generalisations of the AIC.

To indicate how the machinery can be developed further, consider a linear regression
setup with V; = 2!3 + uly + ¢, for i = 1,...,n, where the ¢;s are i.i.d. with mean zero
and standard deviation o, and where v = §/y/n. The z;s are protected while elements of
the u;s may or may not be taken into the finally selected model. We study the average

weighted prediction error

7

En = n! Z(é\l - Si)Zw(xiaui)7 (51)

=1

where & = E(Y |z;,u;) = 248 + uly and g an estimator thereof, with w(z,u) a suit-

able weight function. We shall see that n&, has a limit distribution, under reasonable

n t
_ -1 Z; Z; _ Zn,OO En,Ol
w2 () ) =)
of size (p + q) x (p + q), assumed to be of full rank. Its inverse ;! has blocks denoted
»i

7

conditions.

Let

and similarly for the smaller (p + |S|) x (p + |S|) matrix ¥, ¢ with inverse Z;,ls-

11
n

We assume that ¥,, — ¥ as n increases, also of full rank. We let L, = X', along with
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Lps = (rsLy'wt)™! and H, s = L;l/zﬂ'gLn,gWSL;l/z. The matrices Ly, Ly, s, Hy s
have limits L, Lg, Hs.

For the S subset estimator

BS -1 -1 - Ty
2] =X g Yi,
(78 mS" uis

=1

Bs -1 Cs\ a1 [ So1d+M
ﬁ( s —d Ds = s Y116+ Ns )’

where (M, N) ~ N,;,(0,02Y) and Ng = mgN. We may write

we have

7

En=n""3 (2}Bs +ul 75 — 2} — uly) w(zi,u;)

=1
n t 3 —
= [ ( (B )t
: U; oo
=1 —YSe
~ t o~
Bs =B Bs — B
= As—7s | €| As—7s |,
—se —se
where ,, is the w-weighted version of ¥, above. Thus, if only Q, —, Q,

t

nSn—>d5: D5—55 Q DS—(SS

Expressions for the mean of £ may be found using tools of the FIC paper.
When w = 1 in (5.1) we have Q,, = ¥,, and a corresponding simplification for £. The

limiting risk using S can be shown to become
E(E) = (p+ |S|)o? + 8*L~Y/2(I — Hs)L™1/%5,

using arguments as in FIC’s Section 7.2. Let D, = \/n3tan, which goes to a N, (8, 0%L).

An unbiased risk estimator is

risks = (p+ S5 + Te[L7V3(1 = Hs)L™'*(Da DD}, — 5°L)]
= (p—q+2|S)3” + D},L;' Dy — DL Hy 5Ly D,

where 2 is the usual unbiased estimator of variance, using the full model. This leads to

the following selection criterion: choose the subset with smallest value of
ave-FIC(S) = 62{2|S| + nd'(I — Hy 5)$/5%},
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where q/b\ = L;1/2’/7\fu]]. This appears to be related to both Mallows’ C), as well as to Cook
and Li’s eq. (2) (worked out there for the case of p = 1, z; = 1, and .., u; = 0).
Note that \/ﬁ;b\//a\ —d4 Ny(¢,I), where ¢ = L~'/25. For other extensions of the Mallows
criterion, and theory, see Birgé and Massart (2001).

We note that the above ideas and arguments may be used to find precise limit distribu-
tions for average prediction error variables of the type Y . {fi(@:, ui)—p(zi, us) PPw(zq, ug),
in quite general regression models and for quite general model average estimators. Such
results may in particular be used for model and subset selection purposes. One is quite free
to choose weight schemes appropriate for the purpose. If one wishes to assess predictor
quality for a fixed zg, when averaged over u, one may insert w(zg,u) proportional to an
estimate of the conditional density of u given zg. This might be a multinormal density, or
a kernel-smooth over a window around zg.

We think that developments as above might lead to useful ‘focussed regression diag-

nostics’ of different types. The comments of Cook and Li also point in such directions.

6. Second order corrections

In our papers we have determined the limit distribution of Ay, s = /n(fis — fitrue) (as well
as for more general estimators, like the post model selection estimator). This gives the

approximation

risk, (S, 8) = nE(lis — ptirue)? = EA%, (6.1)

where Ag is the limit variable. In FMA’s Section 10.7 and FIC’s Section 7.6 we mentioned
the potential for suitable finite-sample corrections to the first order results of type (6.1).
We are glad that Tsai has taken up this challenge, providing what he terms ‘improved’
and ‘corrected’ versions of the FIC.

The exact bias and variance of jig would often depend in complicated ways on the
model and sample size; see e.g. Dukié¢ and Pena (2003) for finite-sample analysis of some
particular post-selection estimators in Gauflian models. Sometimes expansions for these

might be worked out, however. Suppose in general terms that
EA, s = Bi1(S,6) + B2(S,8)/v/n + B3(S,48)/n + o(1/n),
Var A, s = Vi (S) + V2(5,9)/n + o(1/n),

for suitable coefficients. Lemma 3.3 in the FMA paper gives in fact expressions for the
leading terms B(S,d) and V;(.9), and hence for the leading term EA% = By(5, )% + V1 (S)
in (6.1). In then follows that

risk,, (S, 8) = B1(S,68)* + Vi(S) + 2B1(S,8)B2(S,68)/v/n
+{B2(S,8)* + 2B1(S,8)B3(S,6) + Va(S,8)} /n + o(1/n).

This shows that the second order term to catch (and estimate) is 2B1(S,d)B2(S,d)//n.

This necessitates finding an expression for B(S, d).
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Following Tsai, this requires taking the delta method one step further, using a 2nd

order Taylor expansion. We do this in a somewhat different way. Starting with

s — fttrue = M(QES,VO,SC) - M(%,SWO,SC) + (6o, v0) — p(fo, 70 + 5/\/7;),

we may split A, g into two parts, with leading terms

(0p/86)t /(s — do.s) + 2v/n(bs — do.s) i1, s(bs — bo,s)

and
—(0p/07)"6 — 56" 11226/ /.

In our notation, pq1 s is the (p + |S|) x (p + |S|) matrix of 2nd order derivatives of
1(0,vs,70,52) w.r.t. (0s,vs), while pyy is the ¢ x ¢ matrix of 2nd order derivatives of
1(0,7) w.r.t. 4. These derivatives are evaluated under the narrow model (6g,70).

To come further we need

Jo1
wsJ11

Evn(¢s — do,s) = Jg' < )5—|—m5(5)/\/ﬁ—|—n5(5)/n+...’

with suitable (but often cumbersome) expressions for mg(d) and ng(d) obtainable from
work touched on by Tsai; see also Barndorfl-Nielsen and Cox (1994, Chapters 5-6). This
leads to

By(S,6) = (0u/0¢s)'ms(8) + 3 Tr(p1,s 75 ") — 36" k220,

To summarise,
risk, (S, 8) = EAS + 2B, (S, 8)B2(S,8)/v/n + o(1/+/n) (6.2)

provides a 2nd order corrected version of (6.1).

The treatment above is related to but not fully equivalent to what Tsai does. He
studies nonlinearity aspects in his Section 2 and bias of likelihood estimators in Section
3. It appears to us, from the arguments above, that it is necessary to combine both these
2nd order aspects. If not one risks catching one or two of the terms making up B2(S,d),
but not all three, and a partial reparation might be worse than no reparation.

We would perhaps hesitate to affix the labels ‘improved’ and ‘corrected’ too firmly
on Tsai’s modified FICs. It is clear from the above that there are several possibilities
for such 2nd order approximations to the mean squared error of estimators. Also, one
needs indirectly or directly to estimate By (S, §)B2(S,d) from data, where there are several
paths to follow, e.g. regarding wide versus narrow estimation of partial derivatives. Fur-
thermore, this estimation step might cause additional variability that might take away the
intended benefit. Such phenomena are well-known in mathematical statistics. A 2nd order

Edgeworth expansion might not be a genuine improvement over a 1st order Edgeworth
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expansion, for example, or perhaps there is improvement only for very large sample sizes.
All this serves to indicate that further studies are required before a general-purpose 2nd
order FIC can be established.

We note that Tsai’s work, and presumably also the development above, is relevant

also when it comes to assessing behaviour of model average estimators.

7. Estimators from other likelihoods

Tsai points out that v parameters sometimes are in focus, and we agree. Our FIC and FMA
apparatus is nicely able to handle this, since it covers all smooth (6, ~) parameters; Tsai
appears to claim otherwise. With focus on v; we find w = —¢;j, with ¢; = (0,...,1,...,0)"
being the jth unit vector. We are free to form general model average estimators 7; =
Y. s¢c(S|Dn)7j,5, where incidentally terms with S not touching j will be equal to zero.
Using FMA’s Theorem 4.1, we find

Vi = (o +8i/Vn)} =4 8;(D) = 8; forj=1,....q,

and so on. The FIC can also be applied, and one may study simultaneous estimation of

the full v vector. It is also natural to include the goodness-of-fit measure
FETE=n(3 — ) K73 )

in the data analysis. It is a Xg((StK_lé.) in the limit.

There might be situations where the ordinary likelihood apparatus cannot be used, or
can be expected to perform poorly, and where variations like profile likelihoods, empirical
likelihoods and quasi-likelihoods may be helpful. This would call for extensions of our work.
We do not think, however, that profiling is necessary, or that it leads to new results, inside
our parametric f(y,8,v) framework. We are therefore puzzled with Tsai’s elaborations
in this regard; under weak conditions the S-model profile likelihood estimator of p will
simply be our old maximum likelihood estimator [ig. Tsai’s intricate definition of a new
‘random parameter’ fiprof true does not correspond to our more naturally defined pi¢rye.

In Hjort and Claeskens (2003) we report on extensions of our FIC and FMA work,
for model selection and model averaging inside the semiparametric Cox regression model.
Focus parameters could take the form u(3, H, z), involving the parametric as well as the
nonparametric part of the model, as with the median time to survival for a patient with
given covariates z. Our existing theory will be seen to go through without essential mod-
ifications as long as p i1s a function of 3 and covariates only, whereas such modifications
are called for when it also involves H. Similarly, extensions may be envisaged for use in
spatial models with covariates, inside particular formats of parameter estimation; we in
particular have in mind the pseudo-likelihood method of Besag (1974, 1977) for Markov
random fields; the quasi-likelihood of Hjort and Omre (1994, Section 3) for spatial corre-
lation models; and various methods for observed and aggregated point processes reviewed

in Richardson (2003).
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8. Supplementary comments

8.1. When p and q become big. Our methodology has been developed under the classic
asymptotics scenario where the number of parameters stays bounded when the sample size
increases. Shen and Dougherty point out (in their Section 4) that the results might need
modifications to apply when p + ¢ is big, as will happen in many potential applications.
We agree. This needs further mathematical developments. We do believe, however, that
our asymptotics results will continue to provide adequate descriptions and approximations
even when p + g grows with n, but slowly enough to have p + ¢ = o(y/n). Establishing
such results would need further work, but might use methods similar to those used in
e.g. Portnoy (1988).

We use the opportunity to opine that if p + ¢ becomes too big, it should be reduced.
If one has 1,000 covariates per patient, one does good to compress and synthesise these,
using substantive prior knowledge along with statistical techniques, before throwing the
data set to a regression selector or averager. Also, methods like principal components and

partial least squares regression might easily perform better than subset finding schemes.

8.2. Loss functions and aspects of costs. Cook and Li point out that using limiting
mean squared error will not always suffice for making the relevant conclusions, regarding
e.g. model selection; see also comments by Shen and Dougherty. In some cases there is a
cost k(S) associated with observing future data for regressors in index set S. With loss

functions that suitably combine precision with cost, like n(fi — 1) + ak(S), we would have
Eloss,(S) = nE(is — ,LLtrue)2 + ak(S) — EA% + ak(9).

This might be estimated using a slight extension of the FIC, after which an optimal subset
may be extracted.

We have favoured limiting mean squared error as performance criterion, but might
also have worked e.g. with Ly loss, leading however to more complicated expressions for

and estimators for E|As| and so on.

8.3. Handling corner parameters. Shen and Dougherty discuss a general four-para-
meter model where rate measurements are of the form V(z1, z2 | 81, 82, 83, fa) plus obser-
vation error, with

Bz
B2(1 4 Bsx2) + x1(1 4 Paza)
The case of (33,34) = (0,0) is the so-called Victor—Michaelis-Menten model for enzyme

mediated reactions. In fisheries research it is also well known as the spawner-recruit model,

V=

dating back to an influential paper of Beverton and Holt (1957); see Gavaris and Ianelli
(2002) and the engaging discussion in Smith (1994, Ch. 8). Shen and Dougherty discuss
aspects of modelling the V, in particular looking at the four possibilities in-in, in-out,

out-in, out-out for (33, 34). This cannot be studied well without a clearer understanding
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of the error structure involved. That this is non-trivial and vital, and will vary widely with
context, is clear from Ruppert, Cressie and Carroll (1989). Shen and Dougherty allude
to pre-test methods, which decide on in- or exclusion of 3 and (34 on the basis of tests
for their presence. We note that such schemes are again model average methods, and fall

inside our developed theory.

There might sometimes be situations where it is known a priori that e.g. f3 > 0,
s > 0. The theory we have developed presupposes that (fs,s) is an inner point of
the parameter space. To handle ‘corner problems’, like here, one needs somewhat more
intricate methods, which would depend more on the specifics of the problem. See Hjort
(1994b) for one such example, concerned with compromise estimators when the ¢ family is
used as an extension of the normal in e.g. regression settings. Similar problems emerge in
models with variance components. Methods of Vu and Zhou (1997) appear relevant when
attempting to generalise our results to corner parameters.

An opinion perhaps too rarely expressed, which we share, is that statisticians should
be more eager to help develop good non-linear regression models, as here. The comfort
and ease with which we reach moderately adequate approximations and inference precision
using the flexible machinery of (generalised) linear models may sometimes take the edge

out of our professional modelling creativity.

8.4. Non-nested models. We have for the most part stayed inside a framework where
the biggest model is thought to be correct. Cook and Li mention the problem of non-nested
models. The simplest answer, perhaps, from a principled point of view, is that one might
search for a bigger model formulation that encompasses both. Consider estimating the
median, for example, including under view both the gamma and the log-normal models.
One may then work with estimators of the type i = Wiigam + (1 — W)fiiogn, with weights
somehow dictated by data, e.g. via goodness-of-fit measures, or via closeness of the two
estimates involved to the nonparametric finonpm, 1.€. the sample median. Behaviour and
performance may be studied using our methods.

There are examples in science where non-nested and somehow conflicting statistical
theories are not easily resolved, of course. A controversy of some fame inside fisheries
research, and that has perhaps not yet been solved to satisfaction despite having been
pondered over for about a hundred years, is the Dannevig vs. Hjort case. It is concerned
with models for spawning, recruitment, migration and development of fish populations.
Dannevig essentially believed in a deterministic relationship between the number of re-
cruits and the number of yolk-sack codfish larvae, whereas Hjort argued that it is the
environmental conditions during the critical phases of development that play the more
important roles. He was able to develop year-class assessment methods, collect relevant
data and utilise actuarial mathematical methods of the time to substantiate and refine his
theories; cf. e.g. Hjort (1914). See http://www.math.ntnu.no/~ingeol/bemata/, where

a study of structured stochastic models has been launched, involving computer-intensive
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inference in biological marine systems, and the interesting discussion in Smith (1994) and
Secor (2002). This may be an example where model averaging might be useful, in a non-
nested setup, mixing predictions of e.g. next season’s abundance (perhaps as a function of

quota thresholds) using elements of both scientific models.

8.5. Interpreting FIC numbers. The FIC scores have been developed as estimates of
n times mean squared error of subset estimators (modulo an additive constant), and as

such depend on the scale used. They may be made scale-independent via say
FIC*(S) = FIC(S) /'K,

as in FMA’s Section 5.3. This would make comparison and interpretation easier across

applications. We would in particular have

FIC*(full) =2 and FIC*(narrow) = n{&"(Jgun — 70)}2/@tf(@.

8.6. When is w equal to zero? We have seen that the behaviour of model average
estimators is critically determined by w = JloJO_Ol g—’; — %' In particular, if w = 0, then all
subset and model average estimators are asymptotically equivalent to the narrow model
estimator; \/n(fi — ttrue) —a N(0,7¢) for all reasonable competitors. The typical situation
leading to w = 0 is when the parameter does not depend on + and in addition § and v are
orthogonal parameters, in the sense that their full model estimators are independent in the
limit, i.e. Jop; = 0. Johnson asks whether w may be zero also in other situations. Here is
one example, in the framework of the exponential-within-Weibull model of FMA’s Section
4.4. Assume we wish to estimate the a-quantile u = '/7/6, where v = —log(1 —a). Then
calculations give w = (v/0){—(1 — r) + logv}. For estimating the a = 0.7826-quantile,

therefore, w happens to be equal to zero.
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