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Abstract

The basic multistate reliability theory was developed in the eighties and the begin-
ning of the nineties, replacing traditional reliability theory where the system and the
components are always described as functioning or failed. In Natvig et al. [10] the
theory was applied to an electrical power generation system for two nearby oilrigs,
where the amounts of power that may possibly be supplied to the two oilrigs are
considered as system states. However, there is still a need for several convincing
case studies demonstrating the practicability of the generalizations introduced. In
the present paper the theory is applied to the Norwegian offshore gas pipeline net-
work in the North Sea, as of the end of the eighties, transporting gas to Emden in
Germany. The system state depends on the amount of gas actually delivered, but
also to some extent on the amount of gas compressed mainly by the compressor
component closest to Emden.
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1 Introduction and basic definitions

The basic multistate reliability theory was developed in the eighties and the begin-
ning of the nineties, replacing traditional reliability theory where the system and
the components are always described as functioning or failed. A review of the early
development in this area is given in Natvig [8]. In Natvig et al. [10] the theory was
applied to an electrical power generation system for two nearby oilrigs, where the



amounts of power that may possibly be supplied to the two oilrigs are considered as
system states. However, more than fifteen years later, there is still a need for sev-
eral convincing case studies demonstrating the practicability of the generalizations
introduced. In the present paper the theory is applied to the Norwegian offshore
gas pipeline network in the North Sea, as of the end of the eighties, transporting
gas to Emden in Germany. The system state depends on the amount of gas actually
delivered, but also to some extent on the amount of gas compressed mainly by the
compressor component closest to Emden.

Let S = {0,1,...,M} be the set of states of the system; the M + 1 states
representing successive levels of performance ranging from the perfect functioning
level M down to the complete failure level 0. Furthermore, let C' = {1,... ,n} be
the set of components and S; (i = 1,... ,n) the set of states of the ith component.
We claim {0, M} C S; C S. Hence, the states 0 and M are chosen to represent the
endpoints of a performance scale that might be used for both the system and its
components. Let z; (i = 1,... ,n) denote the state or performance level of the ith
component and @ = (x1,... ,x,). It is assumed that the state, ¢, of the system is
given by the structure function ¢ = ¢(x). In this paper we consider the following
type of multistate systems for which a series of results can be derived.

Definition 1.1 A system is a multistate monotone system (MMS) iff its structure
¢ satisfies:

(i) ¢(x) is non-decreasing in each argument
(ii) ¢(0) =0 and ¢(M)=M (0=(0,...,0), M = (M,... ,M)).

The first assumption roughly says that improving one of the components cannot
harm the system, whereas the second says that if all components are in the complete
failure (perfect functioning) state, then the system is in the complete failure (perfect
functioning) state.

In what follows y < & means y; < x; fori =1,... ,n, and y; < x; for some 1.

Definition 1.2 Let ¢ be the structure function of an MMS and let j € {1,... , M}.
A wvector x is said to be a minimal path (cut) vector to level j iff ¢(x) > j and

o(y) <j foraly <x (p(x) < j and ¢(y) > j for ally > x).

Definition 1.3 The performance process of the ith component (i = 1,...,n) is
a stochastic process {X;(t),t € [0,00)}, where for each fizred t € [0,00) X;(t) is
a random variable which takes values in S;. The joint performance process for
the components {X(t),t € [0,00)} = {(X1(t),...,Xn(t)),t € [0,00)} is the cor-
responding vector stochastic process. The performance process of an MMS with
structure function ¢ is a stochastic process {p(X (t)),t € [0,00)}, where for each
fized t € [0,00), (X (t)) is a random variable which takes values in S.
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Definition 1.4 The performance processes {X;(t),t € [0,00)}, i = 1,... ,n are
independent in the time interval I iff, for any integer m and {t1,... ,t,,} C I the
random vectors {X1(t1),..., Xi(tm)}, ...  {Xn(t1),... , Xn(tm)} are independent.

Definition 1.5 Let j € {1,...,M}. The availability, hé(l) and the unavailability,
J()
e
by

to level j in the time interval I for an MMS with structure function ¢ are given
(T . 101 .
WD = Plo(X(s)) 2 j Vs, gi" = Plo(X(s)) < j Vs €I,

Note that hé(l) + gém < 1, with equality for the case I = [t,t]. In Funnemark

and Natvig [3] and Natvig [9] bounds for h;(l) and ggj(]) are arrived at, based on
corresponding information on the multistate components, generalizing bounds given
in Natvig [7] for the case M = 1. The components are assumed to be maintained
and interdependent. In Natvig [11] sufficient conditions are given for some of these
bounds to be strict, and also exact, contributing to the understanding of the nature
of the bounds and to their applicability. It is the aim of this paper to give such
bounds for our offshore gas pipeline network.

In the latter paper it is also shown that for the case where the performance
processes of the components are independent in I, no additional assumption that
each of these is associated in I, is needed to establish any strict or non-strict bounds.

Neither Esary & Proschan [2] and Natvig [7] treating the binary case nor Fun-
nemark & Natvig [3] and Natvig [9] treating the multistate case were aware of this.
Accordingly, this was not taken into account in the case study considered in Natvig
et al. [10], but it is in the present paper.

2 An offshore gas pipeline network

The offshore gas pipeline network treated in this paper is the most complex of the
ones considered in Mgrch [6]. It constitutes the main parts of the network in the
North Sea, as of the end of the eighties, transporting gas to Emden in Germany. The
network along with its modules are given in Figure 2.1. As can be seen from this
figure the network consists altogether of 32 components and 7 non-trivial modules.
a1 and ay are pipelines from the production field at Statfjord, ¢; from the Heimdal
and Troll fields, ¢ from the Sleipner field and finally e from the Ekofisk field. All
these oil and gas fields are in the Norwegian sector of the North Sea west of southern
Norway. £k is the pipeline from what is called H7 to Emden. The compressor
components of the network are fi, h; and j;.
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Figure 2.1. Gas pipeline network with corresponding modules b, d, f, g, h, 1, j.

There are 10 passages in the network all supposed to function perfectly. For
instance, Pf(45) is the passage of module f having a capacity of 45 MSm?/d (million
standard cubic metres per day). Similarly, Py, (4.2) is the passage of component by
having a capacity of 4.2 MSm?/d. The module passages Py, P, and P; are used
whenever the corresponding modules cannot transport and compress the incoming
amounts of gas, by transporting, within their capacities, the surplus amount of gas.
The 7 component passages are only used when the corresponding components are
not in the perfect functioning state, chosen somewhat arbitrarily to be M = 16.

The gas pipeline from Ekofisk to Emden being part of this network is called
Norpipe. Today there are two more pipelines, Europipe 1 and Europipe 2, providing
Norwegian offshore gas to Emden. In addition Zeepipe provides gas to Zeebrugge
in Belgium and Franpipe gas to Dunkerque in France. Hence, the total Norwegian
offshore gas pipeline network of today is more complex than the one considered in
the present paper.

Let us look closer at the compressor components and start with f;. f; consists of
four compressors each with a capacity of transporting and compressing 11 MSm?3/d.
The states of f; are defined in Table 2.1. Since the expected maintenance time for a
compressor is assumed longer than the expected repair time, it is seen from the table
that a failed compressor leads to a higher component state than a maintained one.
Furthermore, we assume that at most three compressors can be used at the same time
implying that the maximum capacity of fi is 33 MSm?/d, which is achieved when
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State The number of The number of The number of
operative compressors | failed compressors | maintained compressors
0 0 3 1
1 0 4 0
2 1 2 1
3 1 3 0
4 2 1 1
5 2 2 0
14 3 0 1
15 3 1 0
16 4 0 0

Table 2.1. The states of compressor component fi.

the component state is 14, 15 or 16. The compressor components h; and j; both
consists of three compressors each with a capacity of transporting and compressing
4.5 MSm?/d. The states of hy and j; are defined in Table 2.2.

State The number of The number of The number of
operative compressors | failed compressors | maintained compressors
0 0 2 1
1 0 3 0
2 1 1 1
3 1 2 0
14 2 0 1
15 2 1 0
16 3 0 0

Table 2.2. The states of compressor components h1 and ji.

Now at most two compressors can be used at the same time implying that the
maximum capacity of both h; and j; is 9 MSm?/d, which is achieved when the
component state is 14, 15 or 16.

For the remaining 29 components gas can only be transported when the compo-
nent is in the perfect functioning state 16. The corresponding transport capacities
are given i Table 2.3.

ay a9 bl bg bg b4 b5 be b7 bg (5] Co d] dg d3
512012020 |16 |16 | 16 |16 | 16 | 16 | 48 | 42 | 50 | 50 | 50

dy | ds | de | e | fo | g1 | 92| 93|94 | ho| i1 |d2 | g2 | k
50 |50 | B0 | 11 |33 (59|59 59159 9 |59 |59] 9 |59

Table 2.3. Transport capacities in MSm3 /d for the remaining 29 components.



For all these components the set of states is of the form {0,1,2,...,r, 16}, where
0 <r < 16. The states 0,1,2,...,r are failure states ranked according to expected
repair times. To arrive at the structure function only perfect functioning or not is
of relevance for these components.

Now let a be the module consisting of the components ay,as. We let the set of
states be S, = {0,1, 16}, where state 1 is achieved when the state of ay is less than
16, whereas the state of a; is 16. The state 16 is achieved when at least the state of
as is 16. From Figure 2.1 and Table 2.3 one easily arrives at Table 2.4 summing up
the states of a.

State | Capacity
0 0
1 5
16 20-25

Table 2.4. The states of module a.
The corresponding structure function is given by
a = ¢q(ar,a) = I(ag = 16)I(ay < 16) + 161 (ay = 16), (2.1)

where I(A) equals 1 if A is true and 0 otherwise. For notational convenience, in
(2.1) and in the following corresponding equations we denote the state of a module
or component, by its name.

From Figure 2.1 and Table 2.3 one gets Table 2.5 summing up the states of
module b.

State | Capacity
0 0
1 4.2
2 8.0
3 10.3
16 16

Table 2.5. The states of module b.
The corresponding structure function is given by

b= (bb(bla b27 b37 b47 b57 b67 b77 bS)
= I(min(by, bo, bs, b7, bs) = 16){1(bs < 16)
+ I(by = 16)[2+ I (b5 = 16)[1 + 131(bs = 16)]] } (2.2)

Combining the modules a and b into module ab, from Tables 2.4 and 2.5 one
arrives at Table 2.6 summing up the states of this module.



State | Capacity
0 0
1 4.2
2 5
3 8.0
4 10.3
16 16

Table 2.6. The states of module ab.

The corresponding structure function is given by

ab = ¢ap(a,b) = I(min(a,b) > 0)
x {I(a=1)[1+1(b>2)]+I(a=16)I(b=1)
+31(b=2)+4I(b=3)+ 16I(b=16)]} (2.3)

Let ¢ be the module consisting of the components ¢; and c;. We let the set of
states be S. = {0,6,7,16}. Here state 6 is achieved when the state of ¢; is less than
16, whereas the state of ¢y is 16. The state 7 is achieved when it is the other way
round, whereas the state 16 is achieved when both the state of ¢; and ¢ is 16. From
Figure 2.1 and Table 2.3 one gets Table 2.7 summing up the states of c.

State | Capacity
0 0
6 42
7 48
16 90

Table 2.7. The states of module c.
The corresponding structure function is given by

¢ = ¢.(c1,c0) =6I(c; < 16)I(cg = 16) + TI(c; = 16)1(cy < 16)
+161(c; = 16)I(cs = 16) (2.4)

From Figure 2.1 and Table 2.3 one arrives at Table 2.8 summing up the states

of module d.

State | Capacity
0 0
3 30
4 35
16 50

Table 2.8. The states of module d.




The corresponding structure function is given by

d= ¢d(d1, dg, d3, d4, d5, dﬁ) = I(min(dl, d3, d4, d5) = 16)
Combining the modules ab, ¢, d and component e into module abcde, from Figure

2.1 and Tables 2.3, 2.6, 2.7, 2.8 one gets Table 2.9 summing up the states of module
abcde.

State | Capacity
0 0
1 4.2 —-19
2 21.3 — 27
3 30
4 35
5 41 — 42
7 46 — 48
8 50 — 53
16 | 57.2—-61

Table 2.9. The states of module abede.

The corresponding structure function is given by

abcde = Papege(ab, ¢, d, e)
=1(d=0)I(e=16)+ I(d = ){ (c=0)
X [I(e <16)I(ab > 0)+ I(e = 16)(I(ab < 4) + 21(ab > 4))]
+I(c>0)[3+2I(e=16)]} + I(d=4){I(c =0)
x [I(e < 16)I(ab>0)+ I(e = 16)(I(ab < 4) + 2I(ab > 4))]
+1(c>0)[4+3I(e=16)]} + I(d = 16){I(c = 0)
x [I(e < 16)I(ab>0)+ I(e =16)(I(ab < 4) + 2I(ab > 4))]
+I(c=6)[5+I(e < 16)(2I(1 < ab < 2) + 3I(ab > 3))
+ (e =16)(348I(ab> 1))+ I(c=T)[7
+I(e < 16)I(ab > 0)+9I(e = 16)] + I(c = 16)[8 + 8I(e = 16)]} (2.6)

From Figure 2.1 and Tables 2.1, 2.3 one arrives at Table 2.10 summing up the
states of module f.

State | Capacity /Compression
0 0
2 11
4 22
16 33

Table 2.10. The states of module f.
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The corresponding structure function is given by

f=0¢p(f1, f2) =1(f2=16)[21(2 < f1 < 3)
+4I(4 < f1 <5)+161(14 < f; < 16)] (2.7)

Similarly, from Figure 2.1 and Tables 2.2, 2.3 we obtain Table 2.11 summing up the
states of modules h and .

State | Capacity/Compression
0 0
1 4.5
16 9

Table 2.11. The states of modules h and j.

The corresponding structure functions are given by

h = ¢n(hi,hy) = I(hy = 16)[I(2 < hy < 3) + 161(14 < hy < 16)]  (2.8)
J=0;(1.J2) = I(j2 =16)[I(2 < jy < 3) +161(14 < j; < 16)] (2.9)

From Figure 2.1 and Table 2.3 we arrive at Table 2.12 summing up the states of
modules g and 1.

State | Capacity
0 0
3 30
16 59

Table 2.12. The states of modules g and 1.

The corresponding structure functions are given by

G = ¢¢(91, 92, 93, 94) = I(min(g1, go, g3) = 16)[3 + 131(g4 = 16)] (2.10)
i = Gilin, in) = I(iy = 16)[3 + 131 (is = 16)] (2.11)

At last we are in the position of considering the system as a whole. From Figure
2.1 and Tables 2.9, 2.10, 2.11, 2.12 we obtain Table 2.13 summing up the system
states. In this table mainly the amount of gas compressed by module j, being closest
to Emden, is taken into account, but only when the amount of transported gas is
at least 50 MSm3/d. In addition a “4” in the compression column indicates the
advantageous situation where all compressor modules f, h and j are in state 16. Of
course this simplifying approach is not necessary, but as is seen, even this approach
leads to a rather complex system structure function.



State | Capacity | Compression
0 0 -
1 4.2-19 -
2 21.3-27 -
3 30 -
4 35 -
5 41-42 -
6 45 -
7 46-48 -
8 50 0
9 50-53 4.5
10 50-53 9
11 50-53 9+
12 54.5 4.5
13 54.5 9
14 56 9
15 57.2-59 9
16 57.2-59 9+

Table 2.13. System states.

Some careful thinking leads to the following system structure function
¢(ab6de’ f’ g? h7 Z.’ j’ k)
= I(k = 16)I(min(abcde, g,1) > 0)
{I(abcde < 3)abede + I(abede = 4)[3+ I(g = 16)I(i = 16)]
+ I(abede = 5)[3+4 21(g = 16)1(i = 16)]

+ I(abede = T)[3+ I(g = 16)I(i = 16)(3I(f = 0) + 4I(f > 0))]
)

+ I(abede = 8)[3+ I(g = 16)I(i = 16){3I(f = 0)

(
+I(
+I(
+I(
+ I(abe
+I(f

+I(h

+I(h=
+I(f

+I(h

+I(h=
+I(f
+I(h
+I(

h =

=4
=1

<fF<HYBHI(G=1)+21( = 16))

6)[I(h<1)(b+I(j=1)+2I(j=16))

=16)(5+1(j=1)+3I(j = 16))]}]

de =16)[3+ I(g = 16)I (2—16){31( =0)
=D[I(h=0)5+I( =1)+2I(;j
=1) )

16))

(54+4I(j=1)+5I(j = 16)
16)(b+4I(j=1)+6I(j =16))]

W (h=0)(5+1(j=1)+2I(j =16))
J(5+4I(j=1)+5I(j =16))
6)(b+4I(j=1)+T7I(j = 16)]
6)[I(h=0)5+1I(j=1)+2I(j=16))
544I(j =1)+5I(j = 16))
(b+4I(j =1)+8I(j = 16))]}]}

1
=1
= 1)(
16)
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3 Availabilities and unavailabilities of the compo-
nents

As mentioned at the end of Section 1, bounds for the availabilities and unavailabili-
ties in a fixed time interval for an MMS are based on corresponding information on
the multistate components. Hence, with obvious definitions, denote the availability
and unavallablhtgf to level j in the time interval I for the ith component of an MMS
by p/*’ and ¢'" respectively, i = 1,...,n; j € {1,...,M}. In this section we
establish these quantities for the components of the offshore gas pipeline network.

Assume that the performance processes of the components are Markovian and
introduce in the general case

0 .
1 .
Si,j :Sim{ja--- aM}
POty 1) = P(X,(ts) = €| Xi(t) = k).
Furthermore, denote the corresponding transition probabilities when E is a set of

absorbing states by pgk’z)E(tl, to). Finally, assume that at time ¢t = 0 all components
are in the perfect functioning state M; i.e. X (0) = M. Then for I = [t1, 5]

= pMM(0,1) [1 - > P )S?](t1;t2)] (3.1)

keSl EeSO

(k,6)S;
Z pZMk O tl [1 — Z p ](tl,t2):| (32)
keSO’ Eesl’

Note that we get ¢ D from pg(l) by replacing Sj; by the ‘dual’ set Sj).
Now let

™ (s) = limp* (s, s+ ) /B kAL

be the transition intensities of {X;(t),t € [0,00)}. For simplicity we assume that
the performance processes of the components are time-homogeneous, i.e.

P (1, 02) = 9" (02 — )
" s) = ™ forall s € [0,00), k#£L

Consequently, all that is needed to arrive at expressions for pl D and ql , and hence

bounds for h;( ) and g¢( ), are these time-independent transition 1nten81tles.
Now introduce the matrices

kL
Pz(t) = {pg )(t)}keSi,ZESi
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Since the set S; is finite, the performance processes of the components are conser-
vative, implying that the corresponding intensity matrices are on the form (i =
1,...,n)

-y ;
J— Z Mok --------- qu
k=1
A; =
M-1
/"LMO --------- — Z /"LMk
L k=0 |

Denoting |S;| the cardinality of the set S;, A; is an |S;| x |.S;| matrix.
By applying standard theory for finite-state continuous-time Markov processes,
see Karlin and Taylor [5], we have

=LA
Pi(t) = exp(A;(t)) =T+ o
n=1 )

where I is the identity matrix and the initial condition is P;(0) = I.

The availabilities and unavailabilities of the 32 components of the offshore gas
pipeline system are determined by the computer package MUSTAFA (MUItiSTAte
Fault tree Analysis) developed by Hgogasen [4]. The only input needed are the
intensity matrices of the components, implicitly giving the corresponding sets of

states, along with the time interval I.

The intensity matrices of a; and the compressor component f; are given below.
For the interested reader, aiming for instance at checking our results by a simulation
study, the remaining intensity matrices are given in the appendix.

—4 0 0 0 4

0 —8.3721 0 0 8.3721
Agy = 0 0 -9 0 9
0 0 0 —22.25 22.25
0.00003  0.0019  0.028 0.0061 —0.03603

Note that S,, = {0,1,2,3,16}, and that the failure states are ranked according to
inverse repair rates or, equivalently, the expected repair times.

—1783.35 0 1711.35 72 0 0 0 0 0
0 —2281.8 0 2281.8 0 0 0 0 0
9.6 0 —1222.5 0 1140.9 72 0 0 0
0 9.6 0 —1720.95 0 1711.35 0 0 0
Afl = 0 0 19.2 0 —661.7 0 570.45 72 0
0 0 0 19.2 0 —1160.1 0 1140.9 0
0 0 0 0 28.8 0 —100.8 0 72
0 0 0 0 0 28.8 0 —599.25 570.45
0 0 0 0 0 0 20 38.4 —58.4

Note that the maintenance completion rate of 72 completions per year is smaller
than the repair rate of a single compressor of 570.45 repairs per year as assumed
when ranking the states of f; in Table 2.1, and that there are four repairmen. Note
also that a compressor is only sent for maintenance when all four compressors are
operative, and that in this case the fourth compressor is in hot standby.
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4 Bounds for the availabilities and unavailabilities
for the offshore gas pipeline network

As an example of the bounds for h;(l) and ggj(l) given in Funnemark and Natvig [3]
and Natvig [9], without any assumption according to Natvig [11] that each of the
performance processes of the components is associated in I, we give the following
theorem by first introducing the n x M matrices

Theorem 4.1 Let (C, ) be an MMS with the marginal performance processes of
its components being independent in I. Furthermore, for j € {1 MY et y), =
(), k=100 (2], = (,,...,2),), k = 1,. ) be its minimal
path (cut) vectors to levelj. Define

7 pDy _ 7 (oD _ T )
b)) = max [Ip 6@ = max Lo
*opU S 0y TTTT
st<P§a)>=Hsz~’“ @) =1I1Ta"
k=1 1=1 k=1 1i=1
i pD) K p)y gk pD
B¢(P¢ )—Jg}c%{maxw (P¢ ) 44 (P¢ )]}
pi (Y _ k(DN 7k )
B(Qy") = max {max[(5(Q5"), 75 (Q5 )]}
Then
i p) i i (ot 57 (D)
By(Py") < by <inf [1 - Bi(Q,"")] <1- By(Qy")
I j I
B¢(Qfﬁ))§g( <?g [1_BJ(P([ ]))] Sl—ng(Pfﬁ))

Here [}, @ - [T, (1 — a;). By specializing M =1 and I = [¢,t] the bounds
reduce to the familiar ones from binary theory as given in Barlow and Proschan [1].

By using the computer package MUSTAFA, which finds the minimal path and
cut vectors to all levels from equations (2.1)—(2.12) and then applies the best bounds
of Theorem 4.1, we arrive at the bounds shown in Table 4.1, which are not based on a
modular decomposition. Note that for the case I = [0.5,0.5] we know from Section 1

that g;[O'S’O'S] =1- h;[0'5’0'5]. Hence, the bounds for 92[0'5’0'5] follow immediately from
the ones of hé[O'S’O'S]. Furthermore, note that the upper bounds both for hé[0'5’0'6] and

hé[0'5’0'5], and also for 92[0'5’0'6] and 91[0'5’0'5], are almost completely identical. This is
due to the fact that the upper bounds for a fixed time point ¢ in Theorem 4.1 do
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not depend on ¢ for ¢ > 0.5. Hence, stationarity is reached after half a year. We
see that all bounds are very informative for I = [0.5, 0.5] and for the unavailabilities
also for I = [0.5,0.6], corresponding to an interval length of 36 days. They are less
informative for the availabilities for I = [0.5,0.6]. Note, however, that from the
theory we know that all lower bounds are far better than the corresponding upper
bounds especially for long intervals. Also, to be on the conservative side, the lower
bounds for the availabilities are the most interesting.

It should be remarked that none of the intervals in Table 4.1 reduce to a single
exact value. This follows from the theory in Natvig [11] since there are more than
one single minimal path and minimal cut vector to all levels. Exact values are
obtained in Mgrch [6] for some simpler networks.
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J I bounds for h;(l) bounds for g;(l )

lower  upper lower  upper
[0.5,0.6] 0.0897 0.9600 0.0120 0.0836

10 [0.5,0.5] 0.9164 0.9601 0.0399 0.0836
15 [0.5,0.6] 0.1672 0.9600 0.0120 0.0738
0.5,0.5] 0.9262 0.9601 0.0399 0.0738
14 0.5,0.6/ 0.1706 0.9600 0.0120 0.0737
0.5,0.5] 0.9263 0.9601 0.0399 0.0737
13 0.5,0.6/ 0.2422 0.9600 0.0120 0.0686
0.5,0.5] 0.9314 0.9601 0.0399 0.0686
19 0.5,0.6/ 0.3439 0.9600 0.0120 0.0635
[0.5,0.5] 0.9365 0.9601 0.0399 0.0635
1 [0.5,0.6] 0.3439 0.9968 0.0011 0.0254
[0.5,0.5] 0.9746 0.9968 0.0032 0.0254
10 [0.5,0.6] 0.3904 0.9968 0.0011 0.0230
[0.5,0.5] 0.9770 0.9968 0.0032 0.0230
9 [0.5,0.6] 0.4113 0.9968 0.0011 0.0228
0.5,0.5] 0.9772 0.9968 0.0032 0.0228
3 0.5,0.6] 0.4492 0.9968 0.0011 0.0211
0.5,0.5] 0.9789 0.9968 0.0032 0.0211
7 0.5,0.6/ 0.4566 0.9968 0.0011 0.0207
0.5,0.5] 0.9793 0.9968 0.0032 0.0207
6 0.5,0.6/ 0.4720 0.9968 0.0011 0.0199
0.5,0.5] 0.9801 0.9968 0.0032 0.0199
5 0.5,0.6/ 0.4802 0.9968 0.0011 0.0195
[0.5,0.5] 0.9805 0.9968 0.0032 0.0195
4 [0.5,0.6] 0.4810 0.9968 0.0011 0.0195
[0.5,0.5] 0.9805 0.9968 0.0032 0.0195
3 [0.5,0.6] 0.4952 0.9968 0.0011 0.0189
[0.5,0.5] 0.9811 0.9968 0.0032 0.0189
9 [0.5,0.6] 0.4952 0.9968 0.0011 0.0189
[0.5,0.5] 0.9811 0.9968 0.0032 0.0189
1 [0.5,0.6] 0.7354 0.9975 0.0011 0.0112
[0.5,0.5] 0.9888 0.9975 0.0025 0.0112

Table 4.1. Bounds for h;(l) and g;(l) not based on a modular decomposition.

The computer package MUSTAFA can also find a modular decomposition of
a system. Then bounds for the availabilities and unavailabilities for the modules
can be established from the availabilities and unavailabilities of the components.
Furthermore, bounds for the availabilities and unavailabilities of the system can
be established from these bounds for the availabilities and unavailabilities for the
modules. Using this approach we arrive at the best bounds shown in Table 4.2.
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First note that the comments made on Table 4.1 are still valid for Table 4.2.
Secondly, note that the bounds for a fixed time point ¢ = 0.5 are more informative
in Table 4.2 than in Table 4.1. This is in accordance with the theory of Funnemark
& Natvig [3], Natvig [9] and Natvig [11]. The same is also true to some extent for the
interval I = [0.5,0.6], but this is not true in general. For instance, Table 4.1 gives
0.3904 < h"*%%% < 0.9968, whereas Table 4.2 gives 0.3439 < h}"***% < 0.9828,

J I bounds for h;(l) bounds for g;(l )

lower  upper lower  upper
[0.5,0.6] 0.0897 0.9246 0.0148 0.0836

0.5,0.6
0.5,0.5

0.7354 0.9889 0.0027 0.0112
0.9888 0.9890 0.0110 0.0112

10 [0.5,0.5] 0.9164 0.9247 0.0753 0.0836
15 [0.5,0.6] 0.1672 0.9344 0.0148 0.0738
0.5,0.5] 0.9262 0.9345 0.0655 0.0738
14 0.5,0.6/ 0.1706 0.9346 0.0148 0.0737
0.5,0.5] 0.9263 0.9347 0.0653 0.0737
13 0.5,0.6/ 0.2422 0.9397 0.0148 0.0686
0.5,0.5] 0.9314 0.9398 0.0602 0.0686
19 0.5,0.6/ 0.3439 0.9449 0.0148 0.0635
[0.5,0.5] 0.9365 0.9450 0.0550 0.0635
1 [0.5,0.6] 0.3439 0.9828 0.0034 0.0257
[0.5,0.5] 0.9743 0.9829 0.0171 0.0257
10 [0.5,0.6] 0.3439 0.9828 0.0034 0.0232
[0.5,0.5] 0.9768 0.9829 0.0171 0.0232
9 [0.5,0.6] 0.4113 0.9828 0.0034 0.0228
0.5,0.5] 09772 0.9829 0.0171 0.0228
3 0.5,0.6] 0.4492 0.9845 0.0033 0.0211
0.5,0.5] 0.9789 0.9846 0.0154 0.0211
7 0.5,0.6/ 0.4566 0.9845 0.0033 0.0207
0.5,0.5] 0.9793 0.9846 0.0154 0.0207
6 0.5,0.6/ 0.4720 0.9853 0.0033 0.0199
0.5,0.5] 0.9801 0.9854 0.0146 0.0199
5 0.5,0.6/ 0.4802 0.9853 0.0033 0.0195
[0.5,0.5] 0.9805 0.9854 0.0146 0.0195
4 [0.5,0.6] 0.4810 0.9853 0.0033 0.0195
[0.5,0.5] 0.9805 0.9854 0.0146 0.0195
3 [0.5,0.6] 0.4952 0.9859 0.0033 0.0189
[0.5,0.5] 0.9811 0.9860 0.0140 0.0189
9 [0.5,0.6] 0.4952 0.9859 0.0033 0.0189
[0.5,0.5] 0.9811 0.9860 0.0140 0.0189
[ ]
[ }

Table 4.2. Bounds for h;(l) and g;(l) based on a modular decomposition found by MUSTAFA.
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Finally, it should be concluded that having the computer package MUSTAFA
more complex systems than the one treated here can be attacked.
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Appendix
Remaining intensity matrices of the components

—4 0 0 0 4
0 —8.3721 0 0 8.3721
Agy = 0 0 -9 0 9
0 0 0 —22.5 22.5
0.00006 0.01565 0.021 0.01736 —0.05406
—1.8 0 0 0 0 1.8
0 —6.207 0 0 0 6.207
A = 0 0 —7.3469 0 0 7.3469
by = 0 0 0 —8.3721 0 8.3721
0 0 0 -9 9
0. 000066 0.000072  0.0023 0.0082  0.02 —0.03064
722 5 0 0 22.5
—51. 4286 0 0 51.4286
Apy = —444.4444 0 444.4444
0 —720 720
0. 109 0. 0008 0.31 0.03  —0.4498
—3. 6735 0 0 0 0 3.6735
—51.4286 0 0 0 51.4286
A = 0 —120 0 0 120
by = 0 0 —180 0 180
0 0 0 —360 360
0. 00099 0.00017  0.0017 0.05  0.44  —0.49286
—120 120
Apy 0.08 —o0. 08
r—18 0 0 0 18
0 —51.4286 0 0 51.4286
Ay = 0 0 —180 0 180
0 0 0 —360 360
0.0085  0.00089 1.6 1.06  —2.66939
[—180 0 0 180
A —| O —211.7647 0 211.7647
b6 = | o 0 —360 360
1.8 1.3 0.08 —3.18
—7.3469 0 0 0 0 7.3469
0 —8.3721 0 0 0 8.3721
4 0 0 —22.5 0 0 22.5
by 0 0 0 —51.4286 0 51.4286
0 0 0 0 —444.4444  444.4444
[0.00154  0.00554  0.09402 0.0008 0.176 —0.2779
—22.5 22.5
Abg =Ac1 = 10,009 —0.009
—4 0 0 4
A — 0 —8.3721 0 8.3721
c2 = 0 0 —22.5 22.5
0.00003  0.00636  0.01704 —0.02343
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-1 0 0 0 0 0 0 1
0 —1.2 0 0 0 0 0 1.2
0 0 -6 0 0 0 0 6
A = 0 0 0 —12 0 0 0 12
dy = 0 0 0 0 —22.5 0 0 22.5
0 0 0 0 0 —360 0 360
0 0 0 0 0 0 —900 900
0.00022 0.0004 0.00031 0.0017 0.009  0.14 1.8 —1.95163
A - [—444.4444 4444444
dg = 0.175 —0.175
[—8.3721 0 8.3721
Ag, = 0 —22.5 22.5
0.01276  0.00004 —0.0128
r—22.5 0 0 0 0 22.5
0 —360 0 0 0 360
A, = 0 0 —444.4444 0 0 444.4444
dy = 0 0 0 —720 0 720
0 0 0 0 —900 900
10.0026  0.0017 0.38 0.06 1.8 —2.2443
ro—1 0 0 0 0 0 1
0 —1.2 0 0 0 0 1.2
0 0 —2 0 0 0 2
Agy = 0 0 0 -3 0 0 3
0 0 0 0 —6 0 6
0 0 0 0 0 —12 12
[0.00022 0.00022 0.00007 0.00041 0.00036 0.00111 —0.00239,
[—444.4444 0 444.4444
Agy = 0 —720 720
0.165 0.02 —0.185
—12 12
Ae = [0‘5 70.5]
[ —12 0 0 12
Ae = 0 —360 0 360
f2 = 0 0 —444.4444  444.4444
0.0014  0.008 0.311 —0.3204
ro—1 0 0 0 0 0 0 0
0 —1.2 0 0 0 0 0 0
0 0 —4 0 0 0 0 0
0 0 0 —6 0 0 0 0
Ag, = 0 0 0 0 —12 0 0 0
0 0 0 0 0 —22.5 0 0
0 0 0 0 0 0 —444.4444 0
0 0 0 0 0 0 0 —720
L0.00066  0.00026 0.0001 0.00062 0.003  0.008 0.301 0.02
ro—1 0 0 0 0 1
0 —6 0 0 0 6
A = 0 0 —12 0 0 12
92 = 0 0 0 —360 0 360
0 0 0 0 —900 900
L0.00007 0.0001  0.0001  0.14 1.8 —1.94027
r —2 0 0 0 0 2
0 —6 0 0 0 6
A A — 0 0 —8.3721 0 0 8.3721
93 i1 0 0 0 —22.5 0 22.5
0 0 0 0 —360 360
[0.0004 0.0003 0.00506 0.018 0.14 —0.16376
[—360 0 0 360
A A — 0 —444.4444 0 444.4444
94 2 0 0 —720 720
0.008 0.107 0.02 —0.135
—1212.9 0 1140.9 72 0 0 0
0 —1711.35 0 1711.35 0 0 0
9.6 0 —652.05 0 570.45 72 0
Ap, = Aj; = 0 9.6 0 —1150.5 0 1140.9 0
0 0 19.2 0 —91.2 0 72
0 0 0 19.2 0 —589.65  570.45
0 0 0 0 15 28.8 —43.8
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—12 0 0 0 0 12
0 —360 0 0 0 360
A A — 0 0 —444.4444 0 0 444.4444
hay = iz & 0 0 0 —450 0 450
0 0 0 0 —720 720
0.0014 0.104 0.197 0.18 0.33 —0.8124
—8.3721 0 0 8.3721
A, — 0 —22.5 0 22.5
k= 0 0 —51.4286  51.4286
0.02088  0.00002  0.00075  —0.02165
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