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In reliability analysis one is interested in studying the reliability of a technological

system being small or large. As examples of small systems we have washing machines

and cars, whereas tankers, oilrigs and nuclear power plants are examples of large

systems, see marine insurance, nuclear risks. By the reliability of a system we

will mean the probability that it functions as intended. It might be tacitly assumed

that we consider the system only for a specified period of time (for instance one year)

and under specified conditions (for instance disregarding war actions and sabotage).

Furthermore, one has to make clear what is meant by functioning. For oilrigs and

nuclear power plants it might be to avoid serious accidents, see accident insurance,

such as a blow-out or a core-melt.

It should be acknowledged that the relevance of reliability theory to insurance

was pointed out by Straub [27] at the start of the seventies. In his paper he applies

results and techniques from reliability theory to establish bounds for unknown loss
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probabilities. A recent paper by Mallor & Omey [14] is in a way in the same

spirit. Here the objective is to provide a model for a single component system under

repeated stress. Fatigue damage is cumulative, so that repeated or cyclical stress

above a critical stress will eventually result in system failure. In the model the system

is subject to load cycles (or shocks) with random magnitude A(i) and intershock

times B(i), i = 1, 2, . . . The (A(i), B(i)) vectors are assumed independent. However,

the authors make the point that another interpretation can be found in insurance

mathematics. Here A(i) denotes the claim size of the ith claim, whereas the B(i)’s

denote interclaim times, see claim size process, claim number process. In this

case, they study the time until the first run of k consecutive critical (e.g. large)

claims and the maximum claim size during this time period.

The scope of the present article is quite different from the ones of these papers.

We will present reliability analysis in general having the following two main points

of view. Reliability analysis is a very helpful tool in risk assessment when de-

termining the insurance premiums for risks, especially of rare events, associated

with large systems consisting of both technological and human components. Fur-

thermore, reliability analysis is relevant in risk management of any technological

system, the aim now being to say something helpful on how to avoid accidents.

This is an area of growing importance representing an enormous challenge for an

insurance company.

It is a characteristic of systems that they consist of components being put to-

gether in a more or less complex way. Assume the system consists of n components
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and introduce the following random variables (i = 1, . . . , n)

Xi(t) =





1 if the ith component functions at t

0 otherwise,

and let X(t) = (X1(t), . . . , Xn(t)). The state of the system is now uniquely deter-

mined from X(t) by

φ(X(t)) =





1 if the system functions at t

0 otherwise

φ(·) is called the structure function. Note that it is assumed that both the com-

ponents and the system are satisfactorily described by binary random variables.

Barlow & Proschan [2] is the classical textbook in binary reliability theory. [6] is a

nice expository paper on reliability theory and its applications until 1985.

As an illustration consider a main power supply system of a nuclear power plant

given in Figure 1.
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Figure 1. Main power supply system of a nuclear power plant

The system consists of two main branches in parallel providing power supply to

the nuclear power plant. The system is working if and only if there is at least one

connection between S and T. Component 1 represents offsite power from the grid
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whereas component 6 is an onsite emergency diesel generator. Components 2 and 3

are transformers while 4, 5 and 7 are cables (including switches, etc.). It is not too

hard to be convinced that the structure function of the system is given by

φ(X(t)) = 1−
{

1−X1(t)[X2(t) +X3(t)−X2(t)X3(t)]

× [X4(t) +X5(t)−X4(t)X5(t)]
}
{1−X6(t)X7(t)} (1)

Now let (i = 1, . . . , n)

pi(t) = P (Xi(t) = 1) = EXi(t), (2)

which is called the reliability of the ith component at time t. The reliability of the

system at time t is similarly given by

hφ(t) = P (φ(X(t)) = 1) = E φ(X(t)) (3)

If especially X1(t), . . . , Xn(t) are stochastically independent, we get by introducing

p(t) = (p1(t), . . . , pn(t)) that hφ(t) = hφ(p(t)). For this case, for the power supply

system of Figure 1, we get from (3), (1), (2)

hφ = 1−
{

1− p1(t)[p2(t) + p3(t)− p2(t)p3(t)][p4(t) + p5(t)− p4(t)p5(t)]
}

× {1− p6(t)p7(t)} (4)

For large n, efficient approaches are needed such as the technique of recursive disjoint

products, see [1]. For network systems the factoring algorithm can be very efficient,

see [24].
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If X1(t), . . . , Xn(t) are stochastically dependent, hφ(t) will also depend on how

the components function simultaneously. In this case, if only information on p(t)

is available, one is just able to obtain upper and lower bounds for hφ(t), see [17].

The same is true, if n is very large, even in the case of independent components.

Dependencies between component states may for instance be due to a common

but dynamic environment, see the expository paper [25] where the effects of the

environment are described by a stochastic process.

In reliability analysis it is important not to think of systems just as pure techno-

logical ones. Considering the break-down of the Norwegian oilrig Alexander Kielland

in 1980, where 123 persons lost their lives, one should be convinced that the sys-

tems of interest consist of both technological and human components. The same

conclusion is more obvious when considering the accident at the Three Mile Island

nuclear power plant in 1979 and even more the Chernobyl catastrophy in 1986, see

[23]. Until now systems have often been designed such that the technological compo-

nents are highly reliable, whereas the human components operating and inspecting

these are rather unreliable. By making less sophisticated technological components

which can be operated and inspected by the human components with high relia-

bility, a substantial improvement of overall system reliability can be achieved. It

should, however, be admitted that analysing human components is very different

from analysing technological ones, see [28]. Similarly, software reliability is a branch

of reliability analysis having special challenges, see [26].

In risk management improving the safety of a system is essential. We then need
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measures of the relative importance of each component for system reliability, see [21].

Barlow & Proschan [3] suggested that the most important component is that having

the highest probability of finally causing system failure by its own failure. Natvig

[19] has developed a theory supporting another measure. Here the component whose

failure contributes most to reducing the expected remaining lifetime of the system

is the most important one. The latter measure obviously is constructed to improve

system life expectancy, whereas the first one is most relevant when considering

accidents scenarios. It should be noted that the costs of improving the components

are not entering into these measures.

The journal Nature, published an article [16] on an incident coming close to

a catastrophy, which occured in 1984 in a French pressurized water reactor at Le

Bugey, not far from Geneva. Here it is stated: “But the Le Bugey incident shows

that a whole new class of possible events had been ignored – those where electrical

systems fail gradually. It shows that risk analysis must not only take into account

a yes or no, working or not working, for each item in the reactor, but the possibility

of working with a slightly degraded system.” This motivates socalled multistate

reliability analysis where both the components and the system are described in a

more refined way than just as functioning or failing. For the power supply system

of Figure 1, the system state could for instance be the number of main branches

in parallel functioning. The first attempts of developing a theory in this area came

in 1978, see [4], [9]. Further work is reported in [18]. In [20] multistate reliability

analysis is applied to an electrical power generation system for two nearby oilrigs.
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The amounts of power that may possibly be supplied to the two oilrigs are considered

as system states. The type of failure at Le Bugey is also an example of “cascading

failures”, see the recent paper [12].

The Chernobyl catastrophy provided new data on nuclear power plants. What

type of theory do we have to benefit from such data in future risk analyses in the

nuclear industry? The characteristic feature of this type of theory is that one benefits

both from data for the system’s components and for the system itself. Furthermore,

due to lack of sufficient data one is completely dependent on benefiting from the

experience and judgement of engineers concerning the technological components and

on those of psychologists and sociologists for the human components. This leads to

subjectivistic probabilities and hence to Bayesian statistics. A series of papers

on the application of the Bayesian approach in reliability are given in [5]. In [7]

hierarchical Bayes procedures are proposed and applied to failure data for emergency

diesel generators in U.S. nuclear power plants. A more recent Bayesian paper with

applications to preventive system maintenance of interest in risk management is

[11].

A natural starting point for the Bayesian approach in system reliability is to

use expert opinion and experience as to the reliability of the components. This in-

formation is then updated by using data on the component level from experiments

and accidents. Based on information on the component level, the corresponding

uncertainty in system reliability is derived. This uncertainty is modifed by using

expert opinion and experience on the system level. Finally, this uncertainty is up-
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dated by using data on the system level from experiments and accidents. Mastran

& Singpurwalla [15] initiated research in this area in 1978, which was improved in

[22]. Recently, ideas on applying Bayesian hierarchical modelling, with accompa-

nying Markov Chain Monte Carlo methods, in this area have turned up, see

[13].

It should be noted that the use of expert opinions is actually implemented in

the regulatory work for the nuclear power plants in the USA, see [8]. A general

problem when using expert opinions is the selection of the experts. Asking experts

technical questions on the component level as in [10], where the consequences for the

overall reliability assessment on the system level are less clear, seems advantageous.

Too much experts’ influence directly on system level assessments could then be

prevented.

Finally, it should be admitted that the following obstacles may arise when car-

rying through a reliability analysis of a large technological system:

(i) lack of knowledge on the functioning of the system and its components

(ii) lack of relevant data

(iii) lack of knowledge on the reliability of the human components

(iv) lack of knowledge on the quality of computer software

(v) lack of knowledge of dependences between the components

These obstacles may make it very hard to assess the probability of failure in a risk
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assessment of a large technological system. However, still a risk management of

the system can be carried through by using reliability analysis to improve the safety

of the system.
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