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Abstract

In this paper we define a class of MCMC algorithms, the generalized self regenera-
tive chains (GSR), generalizing the SR chain of Sahu and Zhigljavski (2001), which
contains rejection sampling as a special case. We show that this class contains mem-
bers that are asymptotically more efficient and converge faster than the SR chains.
We also consider generalizations of the Metropolis - Hastings independent chains or
Metropolized independent sampling, and for some of these algorithms we are able to
give the convergence rates and establish a lower bound for the asymptotic efficiency.
All these MCMC algorithms use a proposal distribution that is independent of the
current state. We discuss such algorithms generally. We are in particular interested
in the number of times a given proposed value occurs consecutively as a state of
the chain. We consider this number as a random integer weight that links these
algorithms also to importance sampling. We show that for the generalizations of
the SR and independent chains the expected values of these weights characterize the
stationary distribution.
Key words: Adaptive algorithms, importance sampling, independent chain, Markov

chain Monte Carlo algorithms, rejection sampling, self regenerative chain.

1 Introduction

Let X be a subset of a Euclidean space, on which a probability density 7 is defined.
This density may only be known up to proportionality, and may be very intractable



analytically due e. g. to a complex dependence structure or high dimensionality.
Let p be another density that approximates 7 to some degree, from which samples
can be generated more or less easily. Suppose we want to estimate p = E h(X)
for some real-valued function h defined on X. There exist several methods for
using an IID sequence {Y"},n =1,2,... N of p-distributed variables to this end.
Rejection sampling creates independent samples from 7, but usually throws away
a large proportion of the variables Y that are generated. Sampling importance
resampling (SIR) generates a sample of approximately independent 7w-distributed
variables. The density p can also be used as a proposal distribution for a Markov
chain {X'}, for which 7 is the stationary distribution (see e. g. example 1 and
2 below). After a suitable burn - in period, the chain consists of variables that
are approximately or exactly m-distributed, but dependent. In all these methods,
i can be estimated by evaluating h at all members of the sample that is generated
and computing the sample mean. On the other hand, importance sampling does
not attempt to generate a sample from 7. Instead, h is evaluated at each Y™, but
h(y) is weighted by weight proportional to w(y) = 7(y)/p(y) in the sample mean
estimate.

A unifying perspective linking importance sampling to the other algorithms that
have been mentioned, arises from the observation that for these algorithms, each
p-distributed proposal value Y is represented in the final sample a finite number
W™ times. The numbers W" are random, integer valued weights whose distribution
depends on Y, and, for the Markov chain methods, also on the history of the chain.
In the traditional MCMC algorithms, as e. g. the independent chain (see example 2
below), the weight W™ arises through a step-by-step process, very different from the
computation of the deterministic importance sampling weight w(Y™). The value
of X! is determined by a separate iterative step for each ¢. However, example 1
describes an MCMC algorithm where W" is determined by a single drawing from a
history-independent integer valued distribution, a procedure much more analogous
to importance sampling. The sample mean estimate for p based on an MCMC
sample can be written in the form

a=0 YW/ W (1)

Interpreting W™ as w(Y™), this formula also covers importance sampling; except
that the denominator may be replaced by N if w is known exactly, and not only up
to proportionality:.

The basic idea of this paper is to pursue this unifying perspective, with partcular
emphasis on looking at the Markov chain algorithms from this angle. This leads to
the construction of some new types of MCMC algorithms. We also study asymptotic
efficiency and rate of convergence for several MCMC algorithms based on an inde-



pendent proposal density p, and investigate the relationship between the random
weight W and the deterministic (given Y") weight w(Y™).

We recall from Hastings (1970) that a Markov chain with 7 as stationary distri-
bution can be constructed as follows: Let ¢ be a density with the same support as
7. Let B(z,y) be a symmetric function such that 0 < (z,y) < w(z)/¢(x). Define

a(z,y) = Bz, y)/(w(z)/(x)). (2)

At the t+41st iteration, variables X, U are generated independently from respectively
1 and the uniform density on [0, 1]. Suppose that X! = z! and X = x. Then X!
is defined to be z if U < a(2%, x), and z' otherwise. To fit in our framework, ) and
p must be related somehow through the generation of candidates from p, but are
not necessarily identical (see e. g. example 1 below). We will refer to this as a chain
of the Hastings type.

Example 1. Given that Y™ = g, let W™ + 1 be geometrically distributed with
parameter a(y) = 1/(1 + skw(y)), where x is some constant > 0. Hence, P(W" =
s|lY™ =y) = a(y)(1 — a(y))®. The algorithm can be performed even if w is known
only up to proportionality, due to the constant . This is the selfregenerative (SR)
chain defined in Sahu and Zhigljavski (2001). The name is motivated by the fact
that the chain regenerates according to the scheme defined by Gilks et al (1998) at
each new value Y that is accepted. This chain is formally of the Hastings type. To
see this, put

wwzpwmwv/QQMQMz (3)
where

q(y) =1 —aly) = rw(y)/(1+ rw(y)) (4)

Then ¢ represents the distribution of the first accepted Y when successively drawing
candidates Y from p, each being accepted with probability ¢(Y). This may be
intuitively obvious to some readers, but in any case it follows from the proof of
theorem 10 in section 4. Then the chain can be understood probabilistically as
follows: Generate a candidate y from ¢, and move from z' to y if U < «(x?),
otherwise stay in z'. In the standard notation of the Hastings type chains (see (2)),
we have a(z,y) = a(x),¥(y) = ¢(y). Hence, using (4) we have

B(z.y) = ala)n(z) /o(x) =
[ rn)dzalam@)/ (@) - @) = [pEaCa 6)

which is constant and in particular symmetric. In practice, the variable Y dis-
tributed according to ¢ is redundant and is not generated corresponding to t for
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which X! = X' ie. when U > a(x'!). For the SR algorithm, the expected
weights are given by

EW"Y" =y) =1/a(y) — 1 = kw(y) (6)

The SR algorithm is generalized in section 2. Conditions for w-stationarity are
given, generalizing (5) and (6). We introduce a version, the OSR algorithm, which
is theoretically optimal with respect to asymptotic variance. Convergence rates are
also analysed.

Example 2. A Hastings type algorithm can be obtained by defining a(z,y) =
min(1, w(y)/w(z)) and ¥ = p. We then have ((z,y) = min(w(x),w(y)). This is
the Metropolis Hastings algorithm with independent proposal, also called indepen-
dent chain (IC). This algorithm is studied extensively in Liu (1996). An adaptive
version is studied in Gasemyr (2000, 2002). It is proved in Gasemyr (2000) that at
stationarity

EW™Y™ =y) = w(y) (7)

This will be generalized in section 3 to a wider class of Markov chains. Section 3
also contains results on convergence rates and asymptotic efficiency for this class,
subject to some additional conditions.

In section 4 the two types of chains studied in sections 2 and 3 are viewed from
a common perspective. We define a probabilistic structure on the RIW sequences
in such a way that the derived chains are Markov, and such that these two types
of chains are special cases. Characterizations of w-stationarity are given, and a
new algorithm using ingredients from both section 2 and section 3 is presented. In
section 5 we give some final comments, primarily addressing the limitations in the
applicability of simulation algorithms based on sampling from one single proposal
density p, due to the difficulties of approximating very complex densities with such
a proposal density.

We conclude this section by introducing some general terminology and notation
that will be used throughout this paper. With a slight abuse of language, we will
identify a probability density and the distribution it determines.

Definition 1 Let {Y"} be a sequence of independent samples from p, and let {IW"}
be a corresponding sequence of associated, random, not necessarily independent, non-
negative integer weights. The sequence {(Y™, W"} is called a random integer weight
(RIW) p-sequence. Define T,, = > " | W' and Ny = min{n : T,, > t}. Define the
sequence {X'} by letting X' = Y™ if and only if T,, 1 < t < T, or equivalently, if
and only if Ny = n. Then we say that {X'} is the chain derived from the sequence
{(y, wm)}.



Adding or removing (Y™, W™) for which W™ = 0 does not affect the derived chain
{X"}, so the same chain may be derived from different RIW sequences. However,
the chain {X*} determines uniquely a sequence {(Z", W()} where W > 0 for all r.
The relationship between the sequences {(Y™, W™)} and {(Z", W[)} is given by the
following equations:

Ry, = Z?:I ]<Wi > 0)
No(r) = min{n: R, =1}
g — YNo(r)’ Wg — W/ No(r) (8)

We have chosen to include all proofs in the main text, rather than in an appendix.
This is because it is necessary to work through most proofs to develop a good
understanding of the subject matter of the paper. However, the proofs of theorem
3, including the accompanying lemma 1, and theorem 9 may safely be left out on a
first reading.

2 The generalized selfregenerative chain (GSR)

In this section we generalize example 1 of section 1, the selfregenerative (SR) chain
of Sahu and Zhigljavski (2001).

2.1 Definition and basic properties of the GSR chain

For the GSR algorithm, the distribution of the weight W™ associated with the
candidate Y™ generated from p is determined by functions ¢, a defined on X, taking
values in [0, 1], and is given by the equation

PW" =slY"=y)=P(VS=y5s) 9)

where V, S are independent, V' is Bernoulli with parameter ¢(y) and S is geometric
with parameter a(y). This means that

PW"=0[Y"=y)=1-q(y)
and
PW" =s|Y" =y) =q(y)a(y)(l —a(y) s =1,2,....

For the SR chain (see example 1) we have ¢(y) = 1 — a(y). Similar to (4) we
define ¢(y) = p(y)q(y)/ [ p(2)q(z)dz. Then clearly the chain {X'} derived from
{(Y™, W™} according to definition 1 is Markov with transition kernel

k(z,y) = a(z)g(y) if v £y, and P(X"! = X!| X' = 1) =1 - a(z) (10)



(For a formal proof in a more general context, see theorem 10 of section 4). We call
this a GSR chain.

Theorem 1 For a GSR chain the following conditions are equivalent:
e (i) The chain has 7 as stationary distribution.
e (i1) a(y) = q(y)/(kw(y)) for some constant k > 0.
o (wi) EW"Y™ = y) = ruw(y)
o () a(y)r(y)/o(y) is constant.

Proof: Us1nff (10) 1t 1s seen that 7 is the stationary distribution for {X*} if and
only if 7(y f7r )dac —|— 7(y)(1 —a(y)). This is equivalent to a(y)n(y) =
p(v)q(y )(f x)a(x fp z)dz). From this the equivalence of (i) and (ii)
follows, noting that the stationarity condition is preserved when « is multiplied
with some constant ¢ such that ca(y) < 1 for all y. Noting that E(W"|Y" = y) =
q(y)/a(y), the equivalence of (ii), and (iii) is straightforward. The equivalence of
(if) and (iv) follows since a(y)7(y)/d(y) < a(y)w(y)/q(y).

Condition (iv) of the theorem expresses that a GSR chain with 7 as stationary
distribution can be regarded formally as a Hastings type chain with the symmetric
function f(z,y) being constant, just as for the SR (see (5)).

In practice, the function w(y) is often only known up to proportionality. The-
orem 1 can nevertheless be used to construct a GSR chain with 7 as stationary
distribution, since the unknown proportionality constant can be absorbed into the
parameter s.

Note that the accept - reject procedure for candidates Y may in fact be regarded
as sampling from ¢ by means of rejection sampling With p as candidate density To
see this, introduce v(y) = ¢(y)/p(y) and v* = sup v = q / [ p(2) Where
q* = sup, q(y). Hence, we have q(y) = [p(y)q fp 2)dz)] fp 2)dz =
v(y)/(v*/q*). Since ¢* < 1, this implies that q( ) can be used as acceptance c11te110n
for rejection sampling.

2.2 Asymptotic variance, introduction of the OSR algorithm

Consider a GSR for which 7 is the stationary distribution, and suppose we want
to estimate u = E,h(X) for some function h for which 02 = var h(X) < oc. The
natural estimator based on an IID sample Y, ... | Y¥ from p is (cf. (1) and (2))

MN_[Zh /TN_[ZhY"W" ZW" [ZhZ’“WO ZWO (11)



Due to the underlying IID structure, it is easy to study the asymptotic properties
of fixy by means of the central limit theorem. The choice of relevant time scale for
evaluating the asymptotic performance is however not obvious. In most situations,
the major contributor to computational time is the calculation of w(y), since this
involves the usually complicated calculation of a function proportional to 7(y). Part
(ii) of theorem 1 shows that w(y) is needed either for a(y) or for ¢(y), but not
necessarily for both. It is necessary to compute ¢(Y™) for each proposed value Y,
while « is needed only for the accepted values Z". In any case, the Markov chain
index t is irrelevant. In the SR algorithm, w(y) enters into both a(y) and ¢(y), and
this is the case also for another family of GSR algorithms, the OSR algorithms, that
will be suggested below. Hence, we have chosen to use the number N of candidates
generated from p as a measure of elapsed time (cf. however the final comment of
this subsection).

Theorem 2 For a GSR chain with 7 as stationary distribution /N (jixy — u) con-
verges in distrubution to N(0,0) as N — oo, where

7t =2 [(h(s) — W o)l mts)y — (/)0 (12)

Proof: For every n we have
E(h(Y")W") = / hy) EW" Y™ = y)p(y)dy = / h(y)rw(y)p(y)dy = Kp.

Replacing h by 1 we obtain E(W™) = k. From this we get limy_ .o Ty/N = &,
and also E(h(Y™)W™ — uW™) = 0. Hence, VN (jiy — p) = VN[N (h(Y)W™ —
uW™)/N](N/Tx) converges by the central limit theorem and Cramer’s theorem in
distribution to N (0, 0), where using (9) and (ii) of theorem 1 we get

0% = (1/m)var(h(Y )W) = (1/k PE[(W)2(h(Y™) — )’
= (/) [(bty) = WP BV = pip(a)dy
= /R [(biy) = nPalo)(2 - alu)/(alyP o)y
=2 [[(by) = 0 fa@ o))y - (). o

Inserting ¢(y) = kw(y)/(1 + kw(y)) in (12) we obtain the asymptotic variance
for the SR algorithm as

otn =2 [ (h(y) — W)ty + (1/r)o? =20% + (1) (13



where 0?4 is the asymptotic variance for importance sampling.

Equation (12) suggests that it would be efficient to choose ¢(y) as large as pos-
sible, subject to the restrictions ¢(y) < 1,a(y) = q(y)/kw(y) < 1 Therefore, we
propose to use

q(y) = min(1, kw(y)), a(y) = min(1/(kw(y)),1) (14)

In view of (12) we choose to call the algorithm determined by (14) the optimal sel-
fregenerative chain with parameter «, abreviated OSR(x). If sup, w(y) = w* < oo,
and if k = k1 = 1/w*, then ¢(y) = w(y)/w*, a(y) = 1. Hence, the algorithm is
equivalent to rejection sampling, and the resulting chain {X*} consists of indepen-
dent samples from 7. Another special case is obtained by the choice k = kg = 1/w,
where w, = inf, w(y) (assuming w, > 0). In this case ¢(y) = 1 and P(W" > 1) =1
for every n. For these two special cases, (12) yields respectively

or = wo’ (15)

and

ol =2075 — W.0- (16)
The relative asymptotic efficiency of the OSR(1/w,)- algorithm compared to impor-
tance sampling is given by re(OSR(1/w,);IS) = oig/oZ, = 1/(2 — w.02/0}g) =
1/(2 — wyre(1S)), where re(IS) denotes the asymptotic efficiency of importance
sampling. This equality holds no matter which function A we want to estimate.
Note that (16) is less than 0%p, no matter which x is used for the SR chain. In

general, we have the following theorem:

Theorem 3 Denote by o2 the asymptotic variance for the OSR(k) chain. Define
A(k) ={y : kw(y) > 1}, B(k) = A(rk)¢, B(k) = {y : kw(y) < 1}. Then

ﬁ=2éww@wwmwwﬂw@

+(2/k) / ()~ wPu)dy — (1707 (17)

2
K

2 [ o) - wrulrar <ot <2 [ () - ety (8)
B(ro)

Furthermore, o2 is minimized by Kk = ko, where kg is determined by the inequalities

B(ko)

The minimizing value ko satisfies 1/w* = k1 < kg < kg = 1/w,.



Proof: The verification of (17) is straightforward. Using lemma 1 below, differenti-
ating o2 yields right and left derivatives respectively

(d/dr)"o? = (~1/s?)[2 /B () = upla)dy —

and

(d)dr) 02 = (—1/82)[2 / () = o)y~ ),

Hence, the right derivative exceeds the left derivative at points of discontinuity, and
the derivative increases in intervals of continuity. Since B(k1) = X, while B(k3) = 0,
the expressions in brackets range from o2 to —o?2 as k ranges from r; to x,. Hence,
there exists kg such that k; < kg < k9 satisfying (18) and minimizing U,%. °

Lemma 1 Let A(x), B(k), B(k) be as in theorem 3. Then the function f(k) =

Jaiy () — wP*w(y)m(y)dy + (1/8) [4,4(h(y) — p)*w(y)p(y)dy is continuous and
piecewise differentiable with right and left derivatives respectively

(d)dr)* f() = (~1/)? / ()= o)y

and

(d]dr)™ f () = H(—1/k)? / ()= w )y

Proof: For § > 0, define C(§)B(k) — B(k+6) ={y : p(y)/k > 7(y) > p(y)/(k + 9).
If 6, — 0T, then N ,C(4,) = 0 and U B(k + 6,) = B(k) — NX
We have

lim (f (s +8) — f(%))/6 = lim (1/5)] /C () = wPutr(o)dy

6—0t §—0t

T (1/(5 +6) — 1/r) / (h(y) — ww(y)p(y)dy

B(k+9)
—(1/w) /C () = WPy
= Jm(0/0) [ () = ) r(0) )/
(1) /B ()= (o) (19)

On C(0) we have —op(y)/k(k +9) < 7(y) — p(y)/rx < 0, and hence the expression
in brackets in (19) tends to 0 as § — 0. This takes care of the right derivative of f.
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Now define D(6) = B(x — ) — B(r) = {y ( )//f < ( ) p(y)/(k =),
If 6, — 0T, then N, D(4,) =
B(k)U [N, D(d,)] = B(k)UD

lim (f(s — 6) — f())/(~6) = lim (~1/6)[— /D () = )y

6—0t 6—0+

T (1)(5— 8) — 1/r) / (h(y) — 1w (y)p(y)dy

B(k—4d

T (1/k) /D () = W)

6—0t

— lim [(~1/5) /D (b)) () + () )]
(1) /B ()= u )y

The expression in brackets tends to lims_o+[(—1/0) [, (h(y) — p)*w(y)(—7(y) +

p(y)/&)dy— (1/8) [p-p(hly) — w)*w(y)(=n(y) + p(y)/x)dy] = 0, since on D,
we have 7(y) = p(y )/ while on D(§) — D, we have 0 > —n(y) + p(y)/k >
—0p(y)/k(k = 0).

Finally, note that if w(y) can be bounded reasonably closely from below by a
function v(y) which is easily computed, then an alternative to the OSR algorthm
is to define ¢(y) = min(1, kv(y)). In this case, the computational cost involved in
the computation of iy can be measured roughly in terms of the number Ry of ac-
cepted values, each of which involving the computation of a(Z") = ¢(Z")/(kw(Z")).
The perf01mance should then be measured in terms of the asymptotic variance

o? fp y)dy for the variable \/R(QNO(R) — p). Here 02 is as in theorem 2, and
f p(y dy = limp_.o R/No(R) represents the proportion of proposed values that
are accepted

2.3 Speed of convergence

The underlying IID structure of the GSR algorithm indicates that when estimating
E.h(X) forr some function h, it is unnecessary to exclude an initial set of sample
values corresponding to a burn - in period. Therefore, from an estimation point of
view the convergence rate would seem to be an irrelevant quantity. Nevertheless, we
think that speed of convergence is theoretically interesting and a quantity that is
important for the comparison with other algorithms, and hence deserves a thorough
examination.

Based on the same reasoning as in the previous subsection (see the discussion
following (12)), we will measure the rate of convergence in terms of the number
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of proposed p-distributed values Y™ rather than on the Markov chain time scale
t. Noting from theorem 1 (iii) that E(W") = k, we have T,, ~ xn. Using this
approximate equality a crude analysis of convergence rates can be performed through
a conventional Markov chain convergence rate analysis for the chain {X*}. If such
an analysis yields the rate r, the relevant adjusted rate after conversion to the time
scale of n is po(r) = r*. This has been done in Sahu and Zhigljavski (2001) for the
SR chain, yielding the rate

Py (1) = [kw*/(1+ mw")]" = [1+ 1/ (kw")] 7", (20)

assuming w* is finite. We will generalize this by means of a coupling argument.
This argument is also a part of the more accurate analysis of speed of convergence
summarized in theorem 4 below.

Consider a GSR chain {X'} with 7 as stationary distribution, determined by
q(y) and a(y) = q(y)/(kw(y)) (cf. (ii) of theorem 1). Let {X{} be another chain
with the same transition kernel, but started at stationarity, i.e. X3 is 7-distributed.
We denote by p’, pf) the densities of X* and X respectively. the two chains are linked
in the following way: For each ¢, let U* be uniform on [0, 1], and let Y be a sample
from the density ¢(y) = p(y)q(v)/ [ p(2)q(z)dz. Define L' = I(U' < a(X")), L} =
I(U' < a(XY)). We put X = Xtif [t = 0, X' = Y if L = 1, and similarly
X = XUif Lh = 0, Xt = V™1 if Lf = 1. This realises the transition kernel (10)
for both chains, and the two chains are coupled at 7 = min{¢ : L' = L} = 1}. By
the coupling inequality the total variation distance satisfies (1/2)[p' — 7| < P(1 > t.
Since we clearly have P(L' = L = 1) > o* = inf, a(y) = inf, ¢(y)/(rw(y)) we
obtain as an upper bound for the adjusted convergence rate

po(r) = (1 = a”)" (21)
This coincides with (20) in the case of an SR chain. For the OSR chain we obtain
Py (k) = [1 =1/ (kw")]" (22)

Both for the SR and the OSR we have that a* > 0 if and only if w* < co. In
general, a* > 0 = w* < oco. In most cases it is natural to choose a and ¢ in such a
way that o* > 0 if w* < oco.

It may be verified that if a € R— {0}, then (1+a/k)" is an increasing function of
k for k > max(0, —a). Applying this to (20) and (22), it follows that the functions
p5 (k) and pQS% (k) are respectively decreasing and increasing with r, with e='/*"
as a common limit as x — oo. Hence p{SF (k") < e V%" < psB(k") for all &, K",

The inadequacy of this analysis is clearly revealed when considering small values
of k for the OSR, with k = 1/w*, corresponding to rejection sampling, as an extreme
case. Indeed, we have lim,_, 1 /,-+ p§°F (k) = 0, a rate that clearly does not reflect

the true properties of rejection sampling. Hence, a more accurate analysis is needed.
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Our ambition is to express the speed of convergence more directly in terms of
the number n of p-distributed proposal values. It is by no means obvious how this
should be done. Our approach is to measure the speed of convergence in terms of the
number of proposals that have to be generated before the coupling time 7 described
above is reached.

Recall that according to our standard framework, the sequence {Y"} refers to the
proposals needed to generate new states of the chain { X'}, to be accepted whenever
vV < q(Y™), where V™ are IID variables, uniform on [0, 1]. This means that even
though in principle proposals Y from p are needed to obtain Y for every ¢, these are
only needed in an abstract sense, and do not contribute to the computation time,
unless t = T, + 1 for some n. This is equivalent to L'"! = (U < (X' 1)) =1. If
also Lyt = I(U™! < a(Xt™")) = 1, then X! = X{, and the two chains stay identical
from ¢ onwards. If this occurs for the first time at n = v, we have 7 =T, + 1.

Theorem 4 Consider a GSR chain determined by o and q with © as stationary
distribution, and suppose o = min, a(y) >0. Define v=min{n : W">1, LI =1},
where L = I(U' < a(X})). Then P(v > n) < (1 — ka*)".

Proof: P(v = n|v > n — 1) = the probability that Y™ is accepted, and when at
t =T, it is discarded, X{ is also discarded, given that v > n — 1. This equals

P((V" <q(Y™)N(Ly" =1)lv>n—1) =

[ PO <a)PUE = 1yt =V < y)v >0 - Upldy (29
For the second factor of the integrand we have

P(Lym = 1Y =y, V" < qly),v > n—1) =3,  P(Lh=1T, =tly" =
y V" < @w>n 1) = Y2r 0 PU < mina(y), a(X))T > £,Y" =
y, V" < q(y),v > n—1)P(T, > t[y" = y, V" < q(y),v > n—1) > 372 (1 -

a(y))a* = a*/aly),

where the inequality follows by replacing a(X(}) by a*. Inserting this in (23) we
obtain P(v = nlv > n—1) > [q(y)la*/a(y)p(y)dy = [ruw(y)a*p(y)dy = wa*.
Hence, P(v > n) < (1 — ka™)™. o

In view of theorem 6 it is natural to introduce
p(k) =1—ka" (24)
Note that for the SR and the OSR the rates are given respectively by

p(r) =1 1/(™" + ") (25)
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and
p (k) =1 —1/w* (26)

Hence, p?3%(k) is independent of k, and is always smaller than p°f(k). Unlike
0§58 (k), the rate p?5% = 1 — 1/w* reflects the performance of rejection sampling in
a natural way.

Another possibility for measuring the speed of convergence is expressed by the
following theorem. It is based on an exact sampling idea that is also used in theorem
8 (see also theorem 7 and corollaries 1 and 2) of section 3. In that context, i. e.
generalizations of independent chains, it is shown to lead to the same convergence

rate as the one found by Liu (1996) in the special case of independent chains.

Theorem 5 Consider a GSR chain determined by o and q with © as stationary dis-
tribution, and suppose o = inf, a(y) > 0. Define v; = min{n : V" < w(Y")ka*},
where V™ = [(W™ > 1) are IID uniform variables. Also, define 1y = T, 1 + 1.
Then

e (i) P(vy >n) = (1—ra*)".
e (i1) X' is w-distributed given that t > 1.

Proof: Note that ka* < ¢(y)/w(y) for all y implies that w(y)ka* < 1. Therefore,
we have P(V" < w(Y™")ka*) = [w(y)sa*p(y)dy = ka*, proving (i). Note that
w(y)ra* = w(y)inf,(ka(z)) = w(y) inf, ¢(z)/w(z) < q(y). Hence V" < w(Y™")ka*
implies that Y is accepted as a new state, i. e. W™ > 1. It follows that W** > 1
and X™ = XTn-1+t1 = Y"1 Hence, for any A C X we have

P(X™ € 4) = P(Y" € A) = S5 P((Y" € A) N (1 = n)) = ¥, P((Y"
A)N( =n)jyy >n—1)P(ry >n—1)=3 > P(Y" € A)N(V" <w(Y")ka*))(1—
k)"t = (1/ka*) [, katw(y)p(y)dy = [, 7(y)dy. Hence, X™ is m-distributed. It
follows from the stationarity of the chain with respect to 7 that X? is w-distributed
given t > 4. °

Since there seems to be no canonical way of measuring the speed of convergence
in terms of n, it is somewhat reassuring that theorems 4 and 5 give the same answer.
Theorem 5 is stronger in the sense that it describes a geometric rate for obtaining
exact samples from 7. On the other hand, in theorem 4 the geometric rate only
gives an upper bound for the coupling time, so the actual coupling may potentially
take place much faster.

3 The generalized independent chain (GIC)

Let a(x,y) be any function such that 0 < a(z,y) < 1. Consider a Markov chain
where the current state x! is replaced by a proposed value y sampled from p with
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probability a(z!,y). With probability 1 — a(z,y) the chain remains at z'. Hence,

the structure is the same as for a chain of the Hastings type with ¢¥» = p, such

as the IC described in example 2, except that we do not require in general that

alz,y)n(z) /() = a(z,y)w(zx) is symmetric. Such a chain will be called a general-

ized independent chain (GIC). The absence of the symmetry condition implies that

stationarity with respect to m must be demonstrated directly in the general case.
For the GIC we have the transition kernel k(z,y) = a(z,y)p(y) if x # y,

PX"™ =X'X"=2)=1-a(z) (27)
where a(z) = [ p(z)a(x, z)dz. The distribution of the weights are given by
P(VV'SJrl =5 X' =2, Y =y) = P(VS = 5) (28)

where V, S are independent, V' is Bernoulli with parameter a(x, y) and S is geometric
with parameter a(y). Clearly, X! is determined by Y*, W' ... Y! W' Hence, (28)
defines a conditional probability distribution for W given Y, W1, ... Y Wt Yi+
and X!, X2 ... is the chain derived from the RTW sequence {(Y*, W)} in the sense
of definition 1. We now prove, as alluded to in section 1 (see example 2), that the
expected weights under stationarity for a GIC are given by the importance weights
w, if the stationary distribution is 7. In fact, this implication can be strengthened
to an equivalence:

Theorem 6 A GIC with p as proposal distribution has 7 as stationary distribution
if and only if E(WH YT =y Xt ~ 1) = w(y).

Proof: By (27), 7 is the stationary distribution if and only if 7(y) = [ 7(z)a(z,y)
p(y)dz + w(y)(1 — a(y)). This is equivalent to w(y) = ([ 7 (z)a(z, y)dz)/a(y). Thls
latter expression equals E(W Y = ¢y Xt ~ 1) by (28). e

From now on we restrict attention to GIC’s of the Hastings type; i. e. chains
for which a(x,y)w(y) is symmetric. The following proposition shows that the IC
replaces the current value more often than any other GIC of the Hastings type with
the same proposal p.

Proposition 1 Define ajc(z,y) = min(1, w(y)/w(z)), ac(z) = [ ac(z, 2)p(z)dz,
where p s some proposal distribution. Then for any GIC of the Hastings type with
the same proposal distribution and 7 as stationary distribution we have a(z,y) <
arc(x,y) for all z,y € X, and hence a(x) < a;o(z)

Proof: Any GIC of the Hastings type with p, w as respectively proposal and sta-
tionary distribution is determined by a symmetric function [ satisfying (see (2))
B(x,y) = alz,y)w(z) < w(x). By symmetry, we also have [(z,y) < w(y), and
hence f(z,y) < min(w(z),w(y)). This implies a(z,y) < arc(x,y). o
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Suppose now that w* = sup, w(z) is finite. Let (Y™ U'*1) be the pair generated
from px the uniform density on [0, 1] at iteration ¢ + 1 when running an IC with
target distribution 7. For any A C X we have

P(X € A|X! = 2, U™ <w(Y) /w*) = P(X' € A|X!
=z, UM < ajo(z, YY), U < w(Y'™)/w*) = PY'H € A|X! = 2, U™ <

arc(z, Y, UM Sw(YH) /w*) = PV € AU < w(y™)/w*) = [, 7(y)dy,

where the last equality follows from the well known properties of the rejection sam-
pler. This proves the following theorem 7, and essentially also the subsequent corol-
lary 1 and the generalization given in corollary 2. A suitably modified version of
theorem 7 is also valid for adaptive independent chains, as defined in Gasemyr
(2002); see theorem 1 of that paper.

Theorem 7 Let {X'} be an IC with target distribution w. Then the state X' is
w-distributed and independent of X' given that U™ < w(Y') /w*.

The following corollary is a trivial consequence of theorem 7:

Corollary 1 Let {X'} be an IC with target distribution w. Let T,,,m = 1,2,... be
the successive times t for which U < w(Y")/w*), i.e. Ty = min{t : St I(U* <
w(Y*®)/w*) = m}. Then the X™ are independent samples from m, and the sets
{X™m Xt XTI = 1,2, are independent. Moreover, X* is m-
distributed for s > t, given that t = 7.

Note that the set {X™ ... X™} can be viewed as the sample from 7 obtained
from a sequence of IID p-distributed variables Y',... YT by means of rejection
sampling, assuming m = max{i: 7; < T'}.

The proof of these results depends crucially on the inequality

az,y) = wly)/w?, (29)

which is not necessarily true for an arbitrary GIC. However, if a(z,y) > w(y)/(cw*)
for some ¢ > 1, the above theorem and corollary still apply if we replace w* with
cw* in the statements. Moreover, even if inf(a(z,y)/w(y)) = 0, we may construct a
modified version for which these results apply:

Corollary 2 For an arbitrary GIC of the Hastings type, having m as stationary dis-
tribution, define a modified symmetric function By (2, y) = max(G(z,y), w(z)w(y)/w*)
and correspondingly cp(z,y) = max(a(z,y), w(y)/w*). Then the correspondingly
modified GIC has 7 as stationary distribution, and theorem 7 and corollary 1 apply.

Proof: Note that [ satisfies Sy (z,y) < w(z), as required in (2). The stationarity
follows by the symmetry of 35;. Noting that oy, satisfies (29), the proof is identical
to the proof of theorem 7 and corollary 1. °
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Note that if (29) is satisfied, then ay(z,y) = a(z,y), Bu(z,y) = B(z,y) for all
x,1y. For such GIC’s, the convergence rate is easily derived. The following theorem
shows that the convergence rate found by Liu (1996) for IC’s can be generalized to
such chains.

Theorem 8 Suppose (29) is satisfied for a GIC of the Hastings type . Then the
chain converges in total variation norm with a rate r <1 —1/w*.

Proof: Note that P(U' < w(Y")/w*) = 1/w*, and hence P(ry > t) = (1 — 1/w*)".
By corollaries 1 and 2 P(X' € Ajry <t) = [, n(x)dx for any A C X. Conditioning
on the events (7 < t), (7 > t) shows that [P(X" € A) — [, n(x)dz| < (1 —1/w*)".
[ ]

We conclude this section by considering asymptotic efficiency. Let {Y'} be a
sequence of independent samples from p. If w* is finite, an estimate of = E. (h(X )
can be obtained by taking the mean of h(X™),... h(X™), where 7;,i = 1,2,.
are as in corollary 1. This is in fact equivalent to estimating p by means of the
rejection sampler (See the comment after corollary 1). An alternative estimate can
be based on the entire output from running a GIC. In the next theorem, we compare
the asymptotic efficiencies of these methods.

Theorem 9 Consider a GIC {X'} of the Hastings type satisfying (29). Define

pf(m) = (1/m) 32 h(X7™) and pM(m) = (1/7m) 3217 M(X'). Define p(m) =
var(p™(m))/var(ji R(m)). Then lim,, .o p(m) < 2 — 1/w*.

Proof: Define o = 0 and R; = 7, —7;_1,7 = 1,... ,m. Using corollaries 1 and 2 The
variables X!, ... , X™ may be grouped into independent segments { X', ... X"~}
{Xm ..., X™7 0 {X™} with respectively Ry — 1, Ry, Rs, ... , R, 1 variables.
The variables R;,i = 1,... ,m are independent and geometrically distributed with
parameter 1/w*. We have

m

Tm =Y R (30)

i=1

Define ji; = (1/R;) S0 h(X"),i=2,3,... ,m. Fori = 1 the expression is for

t=Ti—1

convenience slightly modified by replacing h(X?) by h(X™). This gives
pM(m) = (1/7m) Y Rifls (31)
i=1

Clearly, the ji;’s are independent. On the other hand, we make no assumptions on the
covariance structure within each segment {X7 X7+t . X Ti+1_1} of the Markov
chain. This means that we may have cov(h(X?), h(Xt+s)) = 02 = var, (h(X)) given
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that 7, <t < t+s < 7,41 for some 7, indicating a deterministic dependence between
samples from the same segment. Hence, we only base our comparison on the very
conservative bound

o3, = var(ji;) < o* (32)

Using (30), (31) and (32), the independence of the fi;'s and the symmetry of the
R;;i=1,...,m this gives

p(m) = mvar(pM(m))/o? = (m/o®)[E(var(i™ (m)|71, ... . 7))

tvar(E(pM (m)|m, . )] = (m/o®)[E((1/73) (321, Rivar(jiilm, ..., 7in))
var(plm, ... )] < mE((1/70) (300 BY))

=m?E((1/7,)RY) < m*E((RY/ (321, Ri)*) = BE(RY)E(((1/m) 321, Ri)™2).

Since R is geometrically distributed with parameter 1/w*, the first factor is
2(w*)? — w*, while the second factor tends to (1/w*)? by the strong law of large
numbers and the bounded convergence theorem. This completes the proof. )

In fact, this matches exactly the result obtained by a completely different method
in Liu (1996) in the case of an IC with finite state spaces. The result shows that
rejection sampling may potentially be twice as efficient as the GIC. However, our
result is based on assuming cov(h(X?), h(X'$)) = o2 given that 7; < t < t+s < Ty
for some i. By a reasonable decay of autocovariances, the GIC will be much more
efficient. Furthermore, if w* has to be replaced by an upper bound c¢*, the efficiency
of the GIC remains unchanged, whereas the effeciency of the rejection method will
be reduced.

If we modify the estimate for p based on the GIC to gl (m) = (1/m) > 7", i,
we obtain a corresponding ratio of variances p;(m) satisfying p;(m) < 1. The fact
that we may have p(m) > 1 for the standard estimate i (m) is accounted for by
the extra variability due to the random weights R;/(3_7", R;) allotted to the ji;.
This does not necessarily mean that the estimate }?(m) using fixed weights 1/m is
better in practice.

4 A common framework for GSR and GIC

The GSR chains and the GIC’s have many common features. Both types of chains
are Markov, based on independent proposals from a fixed density p and are derived
from an RIW p- sequence {(Y,W™)} as in definition 1, and the expected weight
allotted to a proposed y is proportional to the importance weight w(y) (uncondi-
tionally for the GSR; under stationarity for the GIC). However, the structures of the
two types of chains, as described in the previous sections, are somewhat different.
In this section we present a common framework within which these two types of
chains can be viewed as special cases.
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Let a(z) and ¢(x,y) be functions on X and X? respectively, taking values in
(0,1]. Define an RIW p-sequence with corresponding derived chain {X'} by the
equation

P(wn+1 8‘1/1 Wl Yn wn Yn+1)
= P(W"“ s|XT, Y™ = P(VS = s) (33)
where V, S are independent, V' is Bernoulli with parameter ¢(x,y) given that

X =g, Y =y, and S is geometric with parameter a(y) given that Y = y.
Note that this implies in particular that

PW™ > s+ 1{W" > 5 Y =9) =1—a(y) (34)
for any s > 1.

Theorem 10 Let a(x) and q(x,y) be functions on X and X? respectively, taking
values in (0,1]. Let {(Y™,W™)} be the RIW p-sequence defined by «, q through (33).
Then the chain {X'} derived from {(Y™,W™)} is a Markov chain with P(X'™! =
XXt =2)=1-—a(z), and transition kernel

k(z,y) = a(x)¢(y|x) fory # = (35)
where ¢ is defined by

o(ylr) = p(y)ale. )/ / p(2)a(z, 2)dz (36)

The chain {X"'} is called the random integer weight (RIW) chain determined by o
and q.

Proof: Let t be an arbitrary integer, and suppose X! = zf. If N; = n, then
s=t—T,; >1and Y" = X'. This implies W™ > s and by (34) P(X'" =
XXt =2a . X! =2 Ny =n)=PW" > s+ 1[W">sY"=2')=1-—
a(z'). By summing over the distribution of N; it follows that P(X'™! = X!/ X! =
Xt = 2" = 1 — a(z'). Furthermore, if y # z', the probability density

for X’”rl at y iven the history is given by P(X’”rl + X’5|X1 = Xt =zl x
[p(y)a(z 1— [ p(2)q(a’, z)dz)p(y)q(z! 1—[p(2)q(a’, 2 dZ) p(y)alat,y)+
: ]—Oé( ) (y|$) .

Corollary 3 Let o, q be as in theorem 10, and let ¢ be a real- valued function on X.
Suppose ¢'(z,y) = c(x)q(z,y) < 1 for all z,y € X. Then a,q and a,q determine
probabilistically identical RIW Markov chains, and the variables Nyt =1,2,... are
stochastically minimized by choosing q'(z,y) = q(z,y)/sup, q(z,y).
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Proof: The first assertion follows from (35) and (36), the second by the observation
(implicit in the proof of theorem 10) that ¢(y|x) represents the density for the first
accepted value from a sequence of candidates y drawn from p, each being accepted
with probability ¢(x,y). Therefore, by maximizing ¢ by choosing ¢ = ¢’ as indi-
cated, the number of candidates drawn before this first acceptance is stochastically
minimized, thereby also minimizing N;. .

If ¢ and ¢ are related as in corollary 3, we say that «, ¢’ determine a version of
the RIW chain determined by «a, q.

By setting ¢(z,y) = ¢q(y) independent of z in theorem 10, we obtain the GSR
chains as a special case. If

/p(z)q(m, z)dz = a(z) for all = (37)

the transition kernel coincides with that of a GIC with a(z,y) = ¢(z,y), and the
derived RIW chain is probabilistically equivalent to a GIC. Also, we may obtain a
probabilistically equivalent GIC with a(z,y) = a(x)q(z,y)/ [ p(2)q(z, z)dz if this
latter quantity is bounded by 1. But even though the GIC is also derived from
an RIW p-sequence, the probabilistic relationship between the sequence Y™ and
the chain X' is different. For the GIC, the samples y from p are not only used
to obtain a ¢(y|x)-distributed successor to the current state x, but also to obtain
a realisation of a geometric variable with parameter a(z) = [ p(z)a(z, z)dz, the
weight associated with x. The first y that defeats x, thereby fixing the value of the
geometric variable, is also accepted as the new state of the chain. This is usually a
better way to implement the chain than an implementation using (33). This latter
implementation requires knowing «(z), which is not easily computed from (37) in
general.

So far, we have made no mention of any stationary distribution for an RIW chain.
In the rest of this section, we will investigate the relationship between a stationary
distribution 7 and other aspects of the framework.

Recall that we use the notation { Z”, W{'} for the subsequence of an RIW sequence
{Y™ W"} obtained by removing all (Y™, W") with W = 0.

Theorem 11 Let a,q be as in theorem 10, and let {(Y", W™)} be an RIW p-
sequence with distribution defined by (33). Then {Z"} is a Markov chain with
transition kernel k(z",z) = ¢(z|2"), and the derived RIW chain {X'} has 7 as
stationary distribution if and only if {Z"} has a stationary distribution with density

X(x) = m(z)a(r)/ [ 7(2)a(z)dz.

Proof: In view of the proof of theorem 10 we consider the first part as obvious.
The chain { X'} has 7 as stationary distribution if and only if [ 7(z)a(z)¢(y|z)dx +
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7(y)(1 — ay) = (y), which is equivalent to

w(w)aly) = [ w(@)a()o(yia)ds 39
The result follows by normalizing, i.e. dividing both sides by [ 7(z)a(z)dz. )

Theorem 11 generalizes the equivalence between (i) and (ii) in theorem 1. Indeed,
in the case of a GSR chain, the corresponding chain {Z"} consists of IID samples
from ¢, and the transition kernel ¢(y|x) and the stationary distribution x both
coincide with ¢. Part (ii) of theorem 1 says that a(y)7(y) < p(y)q(y) x ¢(y) = x(y),
consistent with the conclusion of theorem 11.

Corollary 4 Suppose «, q determine an RIW chain with 7 as stationary distribu-
tion. Let ¢ be a constant > 0 such that o/ (z) = ca(x) <1 for all x. Then the chain
determined by o', q also has w as stationary distribution.

Proof: Replacing a by o leaves x unchanged, and hence preserves the stationarity
condition [ x(z)¢(y|z)dz = x(y). @

If @ and o are related as in corollary 4 and ¢ and ¢ are related as in corollary
3, we say that o/, ¢’ determine a scaled version of the chain determined by «, g. The
associated {Z"}-chains have the same transition kernel and are probabilistically
identical, but the geometric parameters determining the distribution of the positive
weights W are scaled by a common factor.

The following proposition illustrates the concept of a scaled version of an RIW
chain.

Proposition 2 Consider a GSR chain determined by a(z) and q(y) for which
is the stationary distribution. Then the GIC with a(x,y) = a(x)q(y) is a scaled
version which is of the Hastings type.

Proof We obtain a scaled version by defining ¢ (:1: y) = a(x,y) = a(z)q(y), d (z) =

z) [ p(2)q(z)dz. This is a GIC, since [p(2)¢(z,2)dz = o/(x) (see (37)). We
have a(z, y) ( ) = a(z)w(x)q(y) x q(z)q(y) by theorem 1. Hence, a(x,y)w(x) is
symmetric, so that the GIC is of the Hastings type. )

As demonstrated by corollary 3 (see also corollary 4), there is a great flexibility in
the choice of probabilistic structure for an RIW p-sequence from which an RIW chain
with a particular probabilistic structure (or a particular stationary distribution) can
be derived. Therefore, one can not expect a similar strict relationship between the
stationary distribution 7 and the expected weights E(W™|Y™ = y) as indicated for
GSR chains and GIC’s in theorems 1 and 6 respectively. However, we have the
following theorem.
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Theorem 12 Suppose 7 is the stationary distribution for the RIW chain determmed
by a and q, and let x be as in theorem 11. Suppose that y(x) = [ p(2)q(x, z)dz
satifies inf, y(z) > 0.

(1) Assume the initial state X° is x- distributed. There exists a version of the
chain for which E(W™Y™ = y) = rw(y) for some constant kK > 0(n =
1,2,...).

(ii) Assume that the initial state X° is w- distributed. Then there exists a scaled
version of the chain which is a GIC and has E(W™Y" = y) = w(y).

Proof: By theorem 11, if X° = Z° is y-distributed, then Z" is x- distributed for all r.
Under stationarity for {Z"} we have by (33) P(W" > 1|Y" = y) = [ x(z)q(z,y)dx,
and E(W™|W" > 1,Y" =y) = 1/a(y), and hence

BV Y =) = ([ x(@le.9)do)/aly 39

On the other hand, since 7 is the stationary distribution for the RIW chain, we
obtain by using (38) and then (36) and theorem 11

m()aly) = [ w(x)a(z)¢(y|zr)de =
p(y)(/W(Z)Oé(Z)dZ)/X(x)[Q(w,y)/“/(ﬂ?)]dw- (40)

Define ¢ = sup, ,[q(z,y)/v(7)] and c(z) = 1/(cy(z)). Define a new version of
the chain by replacing q(z,y) by ¢'(z,y) = c(x)q(z,y). 1viding by 7r( ) on both
sides, (40) can then be written as a(y) = [c [ 7(2)a(z)dz/w(y) fx '(z,y)dx.
For this version we have by (39) E(W"|Y" = y) = ([ x(z)d'(z,y dx)/oz( ) =
w(y)/(c [ m(z)a(z)dz). This proves (i).

To prove (ii), define instead ¢ = sup, ,[a(z)q(x,y)/v(x)]. Note that for any
x,sup, q(z,y) > [ p(2)q(z,z)dz = (), so that ¢ > a(z) for every z, and hence
o/ () = a(x)/c < 1. Also define ¢(z) = a(z)/(ey(x)) and ¢'(z,y) = C( )q(fﬁ y) =
(a(z)q(z,y))/(cy(x)). Then ¢ (z,y) < 1by the definition of ¢, and [ p(2)¢ (z, z)dz =
a(x)/c = d/(z), so that the pair (¢, ¢') satisfies (37) and consequently dete1m1nes a
scaled version of the original chain which is (probabilistically equivalent to) a GIC.
By corollaries 3 and 4, this GIC still has 7 as stationary distribution, and by theorem
6 we obtain E(W"|Y" =y) = w(y). o

We conclude this section by constructing an algorithm resulting in an RIW chain

which may be convenient in some situations. As a motivation, recall the observa-
tion made at the end of section 2.1 that one step in the GSR algorithm consists
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of sampling y from ¢ by means of rejection sampling with p as proposal density.
The other step consists of generating a weight which is geometrically distributed
with parameter a(y). As described in section 2, the density ¢ is a secondary entity,
determined by the choice of an acceptance probability ¢. Let us now change per-
spective and suppose that we choose ¢ as a presumably good approximation to m,
which is analytically much more tractable than 7, but that there exists no standard
procedure for sampling directly from ¢. Letting v(y) = é(y)/p(y),v* = sup, v(y),
define ¢(y) = v(y)/v*, a(y) = co(y)/n(y) for some ¢ > 0. Then ¢ and « determine
a GSR chain with 7 as stationary distribution by theorem 1, part (ii). Since the
computation of ¢(y) does not involve computation of w(y) = w(y)/p(y), the gener-
ation of ¢-distributed samples y in this way may work at an acceptable speed, even
if v* is quite large. We may regard this procedure as a way of subjecting candidates
from p to a relatively cheap ”prescreening” by ¢, before putting them to the more
expensive test by .

The algorithm constructed in the following example is intended to handle the
same kind of situation. It replaces the rejection sampling step in the procedure
deskribed above by a GIC step, and may be an alternative if the rejection sampling
step is too inefficient.

Example 3. Let ¢ be a density approximating 7. Define a;(y) = cé(y)/n(y) for
some ¢ > 0. Let g(z,y) be an acceptance probability for accepting a candidate y from
p, when the current state is z, for a GIC chain with ¢ as stationary distribution.
For instance, we may have ¢(z,y) = min(1, ¢(y)p(z)/¢(x)p(y)). Now the idea is
to replace the rejection sampling step in the algorithm described in the preceding
paragraph by a GIC step determined by ¢q. This means that the successor y of a state
x for the chain, rather than being sampled from ¢, is generated from the distribution
p(y)a(z,y) + (1 — [ p(2)q(x, 2)dz)d,(y), where 0, denotes the Dirac measure at z.
In particular, x may with positive probability be its own successor. In any case,
the number of repica of the successor y is geometrically distributed with parameter
a;(y). Below we prove that this algorithm creates a Markov chain, derived from an
RIW p-sequence, with 7 as stationary distribution.

Formally we construct an RIW p-sequence {(Y™,W")} representing the algo-
rithm in the following way: Let Y!, Y2 ... be an IID sequence of p-distributed
variables. Given that Y™ = y", let W", W} ... be independent and geometri-
cally distributed with parameter a;(y"). Given that X1 = g Y = y* Y =
Yyt Y2 = ynt2 et VL, VL, VR L. be mutually independent Bernoulli vari-
ables with parameters q(z,y"),1 — q(y™, y"*),1 — q(y™, y"*?),.... Define V" =
Yoy H;:1 Vit and W" = S W The sequences {V;i = 1,2, ...} are linked for

different values of n by requiring inductively that given
Vi=Vp=.=V'=1 (41)

we have 1 =V}, = V"™ representing an indicator variable for replacing y" by
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Y™t as a new state of the derived chain. This is consistent, since the Bernoulli

parameters for V%, and V"™ are respectively 1 — ¢(y", y™*") and ¢(y", y""*) under
the condition (41).

We want to prove that the chain {X'} derived from {(Y™, W"} has 7 as station-
ary distribution. We denote by {X!} the chain derived from {(Y™, V"}. Note that
for ¢ > 1 we have

PV > z’+1\vn >0 Y =yt) = PV, =1V = ... = VP = 1,Y" = yn) =
1— [py)q(y", y)dy

Defining as(y) = [ p(z z)dz we have that {X!} is an RIW chain determined by
q and ax, and in pa1tlcular 1t is a GIC (cf. (33), (34) and (37)). Recall that we have
chosen ¢ in such a way that this chain has ¢ as stationary distribution.

We claim that {X*} is an RTW chain with transition kernel

k(z,y) = a1 (z)p(y)a(z,y) if y # x and
PX"™ =X'X"=2)=1— oy(z)az(z) (42)

To prove this, we argue as in the proof of theorem 10. Let ¢ be an arbitrary integer.
Suppose that

n—1 i1 n—1 i "
DWELY W<t <> WY W<y wh (43)
k=1 Jj=1 k=1 j=1 k=1

In particular, (43) implies that X* = Y™. Denote the event described by (43) by FE,
and put

s=t= S Whr=t— [ W Y IW"]

Then s > r > 0 and P(X" = X'X! = 2! ... X! = 2!, K) = P(W"
s+ 1YY" = 2" E) = PW! > r+ 1|W! > T,Y” = z') + P(W! = r|]W]
rY" =z )P(V* > i+ 1|[V" >4, Y" = 2') = (1 — aq(2!)) + an(a?) (1 — an(z?))
1 — ay(zt)as(zt). If y # zt, the conditional density at y for X! given X!
o', ..., Xt =gt E is given by P(W! = r|W! > r, Y™ = 2)p(y) P(V" = i|V" >
L, Y" = 2t Y = y) = Oél(x )p(y)Q(fL’ y) = ai(z")as(z’)d(y[z"), where by def-
inition ¢(y|az) = p(y )/ ([ p(2)q(z, z)dz). Hence, (42) is confirmed, and the
transition kernel is of the form glven in theorem 10. It corresponds to the kernel of
an RIW chain determined by ¢ and a = ajas.

Note that the {Z"}-chains corresponding to the RTW chains { X'} and {X}} are
identical. Since {X}} has ¢ as stationary distribution, the stationary distribution
for {Z"} has by theorem 11 density x(y) proportional to as(y)¢(y). Since aq(y) =
co(y)/m(y), we obtain x(y) x as(y)p(y) x a1(y)as(y)n(y). Hence, using theorem
11 again it follows that 7 is the stationary distribution for {X*}. it is also easy to
see that if inf, ¢(z,y) > 0 for all y, then the chain is Harris recurrent and hence
ergodic.

v Iv
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5 Concluding remarks

In this paper we have treated different simulation algorithms, aimed at exploring a
specific target distribution 7, based on sampling from a single proposal distribution
p. The applicability of such algorithms is limited, due to the difficulty of finding
a suitable independent proposal p that approximates 7 closely enough. There are
however some techniques that can be used in order to overcome these difficulties
to a certain extent. One possibility is the algorithm described in example 3. In
this algorithm, the processing of candidates from p is speeded up by putting them
through a ”pre-screening” accept - reject step based on another density ¢, chosen to
be less complex than 7. Another possibility is to use an adaptive scheme to update
the proposal density on the basis of previous iterations of the algorithm.

The construction of adaptive MCMC methods has become an active field of
research. Methods based on updating an independent proposal distributioon are
discussed in Gilks et al (1998), Gasemyr, Natvig and Sgrensen (2001), Sahu and
Zhigljavski (2001) and Gasemyr (2002).

A natural way of updating p is to choose p from a specific parametric class of
distributions and update parameters of p, e. g. the covariance matrix for a multinor-
mal p, on the basis of the history of the chain. Alternatively, Sahu and Zhigljavski
(2001) suggest an updating scheme creating an increasingly complex mixture distri-
bution, adding a new convex component whenever the algorithm discovers an area
where the old p is unacceptably small compared to 7.

Equally important is the question of when to update p. Gilks et al. construct
regeneration times for the chain, and show that when p is updated at these times,
ergodicity of the chain is preserved under certain conditions. These results are also
the basis for the scheme of Sahu and Zhigljavski (2001), and work equally well
for the generalization of their algorithm treated in section 2 of the present paper.
Alternatively, p may be updated at fixed intervals (Gasemyr, Natvig and Sgrensen
(2001), Gasemyr (2002)). Another possibility is to update p at the times 7, 79,. ..
of corollary 1 (and corollary 2) of the present paper. It may then be proved along
the lines of the proof of theorem 1 of Gasemyr (2002) that the chain will stay -
distributed from time 73 onwords.

The adaption methodology is not limited to the MCMC based algorithms. Any
adaptive scheme constructed for the OSR chains introduced in section 2, can be
applied to rejection sampling, which is a special case, namely OSR(1/w*). Note
also that the OSR(1/w.) is very similar to importance sampling. It accepts each
proposed value at least once, and equation (16) indicates that any adaptive scheme
constructed for this algorithm should have comparable effects when transferred to
importance sampling. In connection with the OSR algorithm we would also like to
mention the possibility to change k adaptively, in order to approach the optimal
value kg of theorem 3.
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One task performed by the MCMC algorithms that can not be taken over by
importance sampling, is to replace sampling from conditional distributions within
a Gibbs sampling framework, when it is very difficult to sample from these condi-
tionals directly. Breaking down a high-dimensional vector into single components or
blocks containing a small number of components makes it more realistic to approxi-
mate the conditional distributions by members of some parametric class, even if the
entire joint distribution is far too complex to allow such an approximation. Also for
this kind of application, the adaption methodology can be useful. One possibility,
the componentwise adaptive independent chain, (CAIC), is described in Gasemyr
(2002), see also Gasemyr, Natvig and Nygard (2002).
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