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Preface

Summary

The field of natural language processing, or NLP, has seen numerous paradigm
shifts since its inception, as machine translation, during the Cold War. Each
such shift – from rule-based methods to statistical ones; from statistical models
built on sparse, selected features to those built on dense, learnt features; from
simpler neural networks to highly parameterised, deep, pretrained models
– has been characterised by spurts of increased research productivity. The
current dominant paradigm, that of deep pretrained language models, has been
accompanied by precisely such an increase in research productivity, divided
over a number of subfields of research.

We position this work in the intersection of two such subfields. The first
of these pertains to the interpretability of language models, or on methods
attempting either to describe model behaviour, or to find explanations for model
behaviour; the field includes methods that, for instance, attempt to characterise
and describe the information a model has acquired, through being trained on
large corpora. The other subfield is that of multilinguality, or that of a model’s
capacity to learn to model and process textual language in multiple languages.
Often, multilinguality is enabled simply by training models on large corpora
consisting of multilingual text. This thesis is composed of nine papers that
attempt to both raise and answer questions situated in this intersection. In order
to do so, we adopt a series of lenses, or analytical frameworks, through which
we analyse neural models of language.

The first of these lenses is that of examining the quality of the multilingual
spaces that emerge during training. First, we analyse the effect that small
amounts of language-specific fine-tuning data has on these language models;
next, we analyse the role that the ratio of language data in different languages
plays on model performance; finally, we analyse the effect of typological features
in our corpora, upon multilingual model performance.

Next, we analyse our models through a family of analytical models called
probes, which we use in an effort to describe what kind of grammatical
information can be extracted from our models. First, we analyse sentence
encoders transferred from English to other languages via transfer learning;
next, we apply the same analysis to deep multilingual language models; finally,
we attempt to extract syntactic trees from language models, quantifying how
differences in syntactic formalism affect this extractability.

Our last lens involves the examination of a model’s internals; we specifically
focus on the highly popular transformer architecture, and attempt to quantify
the effect different components have on language learning. First, we analyse the
extent to which transformer attention weights can store syntactic information
across languages; next, we analyse the effect that the choice of position
embedding method has on multilingual space quality; finally, we analyse the
capacity of language models to learn from scrambled text, and the role that
position embeddings play in imparting order to language models.

Thus, over the course of this thesis, we first provide the reader with a
summary of the state of the research relevant to our work, from multilinguality
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in language models, to the principles behind probing, to descriptions of the
transformer mechanism and the debate surrounding the interpretability of
attention; in each such chapter, we attempt to contextualise our own work.
We proceed to conclude with an examination of the state of NLP, particularly
relevant to our contribution, both along technical and societal lines. Thus, we
describe potential future research avenues that could emerge from our work, as
well as the implications of research into multilinguality and interpretability on
society.
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Preface

Sammendrag

Fagfeltet språkteknologi, “natural language processing”, eller NLP, har gjen-
nomgått en rekke paradigmeskifter siden det oppsto under den kalde krigen
med målet om å utvikle maskinoversettelse. Hvert slikt skifte – fra regelbaserte
metoder til statistiske metoder, fra statistiske modeller basert på manuelt ut-
valgte trekk, til de som er bygget på lærte trekk, fra enklere nevrale nettverk
til svært parametriserte, dype pre-trente (“pretrained”) modeller – har vært
karaktisert av en en bølge med økt forskningsproduktivitet. Det nåværende
dominerende paradigmet, som kjennetegnes av dype språkmodeller, har blitt
ledsaget av nettopp en slik økning i forskningsproduktivitet, fordelt på en rekke
underfelter innenfor forskningen. Vi plasserer dette arbeidet i skjæringspunktet
mellom to slike underfelt. Den første av disse gjelder tolkbarhet (“intepretabil-
ity”) av språkmodeller, eller metoder som forsøker å enten beskrive modellat-
ferd, eller å finne forklaringer på modellatferd. Feltet omfatter metoder som
for eksempel forsøker å karakterisere og beskrive informasjonen en modell har
tilegnet seg, gjennom å bli trent på store tekstmengder. Det andre underfeltet er
flerspråklighet, eller modellens evne til å lære å modellere og behandle tekst på
flere språk. Ofte aktiveres flerspråklighet ganske enkelt ved å trene modeller på
store tekstmengder bestående av flerspråklig tekst. Denne avhandlingen er sam-
mensatt av ni artikler som forsøker å både stille og besvare forskningsspørsmål
plassert i dette skjæringspunktet. For å gjøre det tar vi i bruk flere linser, eller
analytiske rammer, som vi analyserer disse nevrale språkmodellene gjennom.

Den første av disse linsene består i å undersøke kvaliteten på de flerspråklige
egenskapene som dukker opp under trening. Først analyserer vi effekten som
små mengder språkspesifikke data bruke til såkal “fine-tuning” av modellene
har på språkmodellene. Deretter analyserer vi hvilken rolle forholdet mellom
data på ulike språk og modellens ytelse. Til slutt analyserer vi effekten av
typologiske trekk i våre datasett på flerspråklig modellytelse.

Deretter analyserer vi modellene våre gjennom en familie av analytiske
modeller (“probes”), som vi bruker i et forsøk på å beskrive hva slags
grammatisk informasjon kan trekkes ut fra modellene våre. Først analyserer vi
setningsrepresentasjoner fra såkalte “sentence encoders” overført fra engelsk
til andre språk via transfer-læring. Deretter appliserer vi den samme analysen
på dype flerspråklige språkmodeller; til slutt undersøker vi muligheten for å
trekket ut syntaktiske trær fra slike språkmodeller, og kvantifiserer hvordan
forskjeller i syntaktisk formalisme påvirker resultatene.

Vår siste linse innebærer undersøkelse av disse modellenes indre. Vi
fokuserer spesielt på den svært populære transformer-arkitekturen, og forsøker
å kvantifisere effekten av ulike komponenter på språklæring. Først undersøker
vi i hvilken grad transformerens oppmerksomhet (“attention”) kan lagre
syntaktisk informasjon på tvers av språk. Deretter analyserer vi effekten som
valget av posisjonsembedding har på kvaliteten av flerspråklige egenskaper;
til slutt analyserer vi disse språkmodellenes kapasitet til å lære av tekst som
ikke følger språkets leddstilling, og rollen som posisjonsembeddings spiller for
å legge til rette for gode språkmodeller.
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I introduksjonen til denne oppgaven gir vi derfor først leseren en oppsum-
mering av forskningen som er relevant for vårt arbeid, fra flerspråklighet i
språkmodeller, til prinsippene bak probing, til beskrivelser av transformer-
arkitekturen og debatten rundt tolkbarhet av oppmerksomhet. I hvert intro-
duksjonskapittel prøver vi derfor å kontekstualisere vårt eget arbeid. Vi avslut-
ter med en undersøkelse av den nåværede tilstanden til forskningsfeltet NLP,
som er særlig relevant for oss, både langs tekniske og samfunnsmessige linjer.
Dermed beskriver vi potensielle fremtidige retninger som kan springe ut fra
denne forskningen, samt implikasjonene av forskning på flerspråklighet og
tolkbarhet av nevrale modeller på samfunnet som helhet.
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Chapter 1

Introduction
Natural language processing (NLP), or the computational processing of human
languages, traces back to an era not long after the invention of computers; the
field could be said to have its origins sometime around the Cold War, which
led to a sharp interest in machine translation systems. These systems were
initially based on labouriously devised rules; eventually, statistically-driven
methods began to dominate. The 2010s saw the emergence of deep learning as
a paradigm, replacing the earlier manual feature-driven statistical models: it
is in the midst of precisely this paradigm that we find ourselves situated. One
might also say that the history of NLP has been full of boom and bust cycles;
today, in early 2023, we find ourselves in the midst of a massive boom cycle.

The rise of modern, deep-learning based methods for NLP has led to the
emergence of the two broad threads of research that we attempt to unify in
this thesis. The first of these is the multilinguality of NLP systems, or their
capacity to learn to process multiple languages, simultaneously or otherwise.
Given the dominance of English as the world’s lingua franca, and given that
that a substantial chunk of data available on the internet is in English, English-
language NLP tends to dominate both the research and commercial landscape.
Numerous approaches to creating and enabling more multilingual language
models have been proposed: these include, for instance, methods that take
advantage of the amount of English data available to learn some notion of
language (in the general sense), and then use more limited data to learn to
process a language (in the specific sense). This multilinguality is often discussed
in the context of language models (LMs), which are large machine learning
models trained to predict words, given their context. Language models have
demonstrated substantial utility in their capacity for adaptation to other tasks,
once trained in such a fashion. There is much we do not fully understand about
the nature of multilingual models: while training scenarios are often similar to
the monolingual context, and involve simply training large models on multiple
languages, the models often display unexpected characteristics, such as some
ability to translate words from one language to another, despite never explicitly
being trained to do so.

This brings us to our second observation – we often do not fully understand
what our models are doing when they arrive at a particular decision (whether
in a monolingual context or multilingual), or why their parameters look they
way they do. Conventional feature-based methods could, for instance, give us
direct feature weights, allowing humans to trivially diagnose the importance
of different factors in model behaviour1 down to model behaviour on a single

1Note that while we use the term behaviour throughout this thesis, we do so with no intent to
anthropomorphise language models.
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1. Introduction

instance; with deep neural methods, however, it is not entirely straightforward
what these ‘features’ even are, as they are learnt rather than selected, and dense
rather than sparse. Numerous explainability methods have been proposed, each
with their own set of flaws, or limitations in terms of use cases. Further, while
a considerable amount of research focus has been dedicated to analysing and
interpreting these models, only a fraction of this focus has been diverted to the
multilingual context.

The focus of this thesis is therefore to contribute to the literature on the
intersection of these research domains. Narrowing down somewhat, the core
aim of this thesis is to contribute to the analysis of multilinguality in language
models; in order to do so, we adopt a variety of "lenses" (§1.1), i.e. over the
course of this work, divided into nine research papers, we tackle this broad
domain from different angles. Thus, we experiment with alterations in training
data to see how it affects the degree and nature of multilinguality our models
are capable of; we probe representations generated by multilingual language
models to see what forms of linguistic information they can encapsulate; finally,
we experiment with specific components within transformer-based language
models, to narrow down the role these components play in the context of
multilinguality.

All in all, the goal of this thesis is not to provide an overarching answer
to how multilingual language models function: indeed, it is unclear how
meaningful such a grand "theory of everything" could even be for models with
billions of parameters, when an overarching question is difficult to formulate in
and of itself. Instead, over the past four years, we chose to focus on asking very
specific questions (§1.2), with the goal of contributing to the understanding of
multilinguality in LMs, and on devising experiments to attempt to answer these
questions.

1.1 Analytical lenses

Having established the broad domain of this thesis – interpreting the behaviour
of language models in multilingual contexts – we proceed to define three such
interpretative lenses; we structure the narrative of this thesis along the lines of
these lenses.

Multilingual spaces This strand of research involved examining how specific
corpus characteristics could affect the creation or modification of a model’s
multilingual space; that is, how the nature of the multilingual corpus
would reflect in the behaviour of the multilingual model itself. Thus, in
Chapter 2, we first present a brief history of deep language models; we
then shift focus to the emergence of multilinguality in NLP discourse, the
training of multilingual models, and the analysis of their multilingual
spaces, fitting three of our papers into this context.
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Research questions and contributions

Probing Next, we analyse language models by probing them, ‘probing’ referring
to the application of analytical methods that attempt to extract information
from language model representations of words or sentences. Probing
methods often use some sort of system – such as classifiers – built on top
of existing language models, and trained on datasets consisting of some
sort of informative linguistic phenomenon. Downstream performance
on these datasets is meant to encapsulate the extent to which language
models have learnt the relevant phenomenon. In Chapter 3, we discuss
the insights and issues surrounding probing, as well as recent innovation
in the field; we contextualise our work in light of this background.

Architectural analyses Finally, we zoom into our language models and start
to analyse their internals: thus, in Chapter 4, we begin with a detailed
descriptions of the transformer, perhaps the class of language model
most relevant to NLP at the time of writing this thesis. We focus on a
select subset of transformer components, and describe their contribution
to modelling (pseudo)-multilingual language. In this light, we further
address the role and importance of word order in language model
pretraining.

1.2 Research questions and contributions

Given these three lenses, we now outline a set of research questions, each
corresponding to a lens.

1. What can we say about the influences that differences in training or
fine-tuning corpora have on the quality of multilingual language model
spaces?

• What effect does fine-tuning on a few annotated instances in a target
language have upon zero-shot transfer results?

• What role do differences in per-language corpus size play on
multilingual performance?

• Are there cross-linguistic patterns determining how easy bootstrap-
ping multilingual spaces can be?

2. What linguistic properties can we extract from multilingual language
models?

• How do previously established linguistic probing tasks hold up in
multilingual settings, given multilingual sentence encoders?

• How do these same multilingual results look when evaluated on
deep multilingual language models?

• How do differences in syntax formalisms affect how easy they are to
extract from a language model, across languages?
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3. How do specific components within transformer-based language models
act in multilingual contexts?

• What effect does fine-tuning on annotated syntactic corpora have
upon attention weight distributions?

• What role does the choice of token position representation method
play on multilingual performance?

• How is the performance of models trained on scrambled corpora
different to that of ordinary language models, and why?

1.3 Summary of papers

Finally, we flesh out our actual contribution along these lenses and research
questions – that is, the papers that constitute this thesis. Each paper attempts
to answer a research question, and each group of papers corresponds to a lens.
Note that the order of presentation of these papers is not chronological.

I In Lauscher et al. (2020), we describe the performance of language models
in the context of few-shot fine-tuning. Precisely speaking, in this work, we
quantify the gap between language model performance on a variety of
tasks in the context of zero-shot transfer, and few-shot transfer – i.e.,
transfer learning given fine-tuning corpora with very few annotated
instances.

I was the shared first author on this paper; all authors contributed equally
to the idea behind the paper, and my co-first author and I split the
experimental setup; I worked on the lower level tasks. I also created
the plots and figures used in this paper.

II In Ravishankar et al. (2021b), we train multiple autoregressive language
models on multilingual training corpora, and evaluate the difference
in LM performance given varying distributions of the languages that
constitute the training corpus.

I was the principal author on this paper.

III Finally, we conclude this section with a study of the inductive biases
present in multilingual space construction (Ravishankar and Nivre, 2022),
and discuss how language features – both broader typological features,
but also corpus-level statistics – affect the quality of multilingual spaces
built during pre-training.

I was the principal author on this paper.

IV We begin our series of probing-related experiments with Ravishankar et al.
(2019c), where we describe an approach to probing language models

4



Summary of papers

trained in the context of cross-linguistic transfer learning; in doing so,
we attempt to isolate the linguistic phenomena that language models
may retain when their representations are transferred to a non-English
language.

I was the principal author on this paper.

V In Ravishankar et al. (2019b), we extend our experiments from our
previous paper; we take into account the rapidly changing landscape
of NLP, and evaluate deep multilingual pretrained language models to
assess what specific linguistic phenomena they may retain.

I was the principal author on this paper.

VI Concluding our series of probing-related experiments, in Kulmizev et al.
(2020a), we attempt to extract syntactic structure from language models,
by means of principled probes. We contrast two different formalisms used
to denote dependency syntax, in an attempt to determine whether or not
language models could have formalism ‘preferences’.

I was the second author on this paper; my contribution was discussing
the design of the experimental setup, and generating data for analysis.

VII Bridging the gap between the corpus-related experiments and architec-
tural analyses, in Ravishankar et al. (2021a), we use an established method
to extract syntactic structure from the attention mechanism weights of a
pretrained language model. We contrast the quality of this extracted struc-
ture across languages, and show that the quality of extracted trees sharply
improves when language models are fine-tuned on small dependency-
annotated corpora. We analyse the relevance of different language model
components to this improvement in tree extraction by freezing compo-
nents prior to fine-tuning.

I was the shared first author on this paper. I was responsible for the entire
second half of this paper, i.e., for the sections on analysing the effects of
fine-tuning.

VIII Given the clear dominance of transformer-based language model archi-
tectures in the literature, we attempt to isolate the influence of specific
transformer architecture components on multilingual training. We focus,
in Ravishankar and Søgaard (2021), on positional representations, and
show that more complex recent innovations in positional representation
may underperform in the multilingual context.

I was the principal author on this paper.

IX Concluding our architectural analyses, in Abdou et al. (2022), we address
a thread in the literature discussing language model performance when
pretrained on scrambled text – which allegedly tends to be surprisingly
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good. We quantify the extent to which masked language models learn
word position via position embeddings, and isolate several word order
‘clues’ present in scrambled corpora; finally, we demonstrate that the
more complex the downstream task, the more critical word order signals
become.

I was the shared first author on this paper. My contributions involved
determining hidden word-order signals in language models, and the
analyses of the model’s attention. I also designed all figures in the paper.

The next three chapters involve a close look at the three research threads we
outlined earlier: multilingual spaces in Chapter 2, probing in Chapter 3, and the
internal behaviour of transformers in Chapter 4. We conclude this thesis with
an examination of the scientific and social implications relevant to this work in
Chapter 5. The nine papers that we include as part of this thesis are attached
following our conclusion; shared authorship is indicated with an asterisk.
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Chapter 2

Language models and multilinguality
We begin this review by briefly summarising the paradigm shifts in NLP
research that have taken place over the past decade or so. This section is meant
to be architecture-agnostic: we describe, first, the emergence of deep learning
for NLP, and then branch into describing the dominance of deep pretrained
language models, as well as perspectives on enabling multilingualism in NLP.
We defer concrete discussions on the architecture of specific language models
to Chapter 4. As such, this section involves the background relevant to our
work on analysing (multilingual) language model behaviour over the training
or fine-tuning process – two terms that we elaborate upon later in this section.

2.1 A brief history

Traditionally, the statistical models that replaced rule-based NLP systems would
often operate on word features, represented by sparse vectors indicating the
value of a particular feature (eg. a part-of-speech tag). These statistical models
could be stacked, or pipelined: features for "higher-level" semantic tasks could
be derived from the outputs of "lower-level" models upstream. The spread of
deep-learning based methods led to the gradual phasing out of these sparse
feature vectors, and their replacement with automatically learnt dense features.

2.1.1 From sparse to dense features
A significant innovation in modern (deep) NLP came from the use of dense
feature vectors. The use of distributional features in NLP broadly stems back
to Firth’s oft-repeated claim (1957): you will know a word by the company it
keeps. Distributional methods in NLP involved learning and representing token
features as vectors in a continuous feature space (Bengio et al., 2000), based
on the contexts in which a particular token was likely to appear. Thus, tokens
like apple and orange, which are likely to occur in similar contexts, would end
up with dense representations that were closer in vector space than apple and
aardvark.

Many early methods for learning these representations were computationally
expensive, and the availability of computational power remained a bottleneck
for further adoption. Mikolov et al. (2013a) made significant contributions
to efficiency by describing the continuous bag-of-words (CBOW) and skipgram
models: two word embedding models with log-linear complexity, dubbed
word2vec. Briefly, these methods learn word embeddings by attempting to
either predict a word given its context, or to predict a word’s context, given
the word itself. The ability to rapidly bootstrap word embedding models
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from unlabelled text corpora (and to load and save these models) led to the
widespread adoption of distributional word representations in NLP. Thus,
systems such as classifiers would be built on top of these embedding models,
and word representations would replace the previously popular sparse feature
vectors. Other methods for generating word embeddings contemporaneous
with word2vec include GloVE (Pennington et al., 2014), where the authors use
co-occurrence frequency information, and fastText (Bojanowski et al., 2017),
where the authors construct representations from character n-grams, enabling
generalisation to unseen tokens.

The success that followed from representing words as dense vectors led
to research into the logical next step – that of representing sentences as dense
vectors. An advantage of processing entire sentences is also that this allows for
taking word context into account. The ‘static’ nature of word embeddings has
several disadvantages: the same token ought to have different representations in
different contexts, something static embeddings cannot easily capture. Further,
word senses present another layer of confusion: the words bank (as in a
financial institution) and bank (as in a river bank) ought to have very different
representations; however, given that static word representations are essentially
lookup tables matching strings to vectors, they are incapable of distinguishing
between these senses. Several attempts to address these issues emerged; Kiros
et al. (2015) describe skip-thought vectors, where the authors use recurrent neural
networks (RNNs) to encode a sentence; they use the last state of these RNNs to
decode the next and previous sentences. Conneau et al. (2017) experiment with
training sentence representations on natural language inference (NLI), by virtue
of NLI being seen (at the time) as a fairly complex task, requiring syntactic and
semantic knowledge1.

We refer the reader to a blog post2 we had co-authored in the first year of
this PhD for a more detailed summary of sentence representation methods.

2.1.2 Towards contextualisation, and deep language models

With the release of the ELMo model (Peters et al., 2018b), discourse around
sentence representations shifted towards discussing deep, contextualised
embedding models. ELMo, specifically, was a bidirectional recurrent neural
network (biRNN) trained on a next-token prediction task. The authors use
the weights of the model itself as a ‘feature generator’ of sorts downstream:
the two-layer RNN thus outputs word embeddings that take into account
the context of a word, allowing these representations to be used by higher
layers of the network. They show that adding ELMo as a feature generator
enabled them to reach state-of-the-art performance on a broad range of tasks. A
critical contribution of this paper was also the fact that language modelling, or
predicting the next word in a corpus, was a semi-supervised task; such methods,

1We now know this to no longer necessarily be the case: see Poliak et al., 2018.
2https://supernlp.github.io/2018/11/26/sentreps/
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A brief history

Figure 2.1: GPT’s training and evaluation setup on a range of tasks. Image taken
from Radford et al. (2018).

based on training on unlabelled data, are inherently more scalable, since no
manual human annotation is necessary.

The success of ELMo led to substantial research into the use of pre-trained
language models on downstream tasks. Radford et al. (2018) claimed that having
to train entire model architectures on top of ELMo representations was too task-
specific; in their paper, they describe their training of a large language model,
called the Generative Pretrained Transformer (GPT), based on a transformer
decoder3, and demonstrate the utility of this system, given structured input
converted into an ordered sequence (see Figure 2.1 for illustrations of how
different tasks can be converted to the appropriate model input.). This approach
represented a further paradigm shift away from using deep pretrained models
as feature generators, to using them as systems in and of themselves, with
relatively small and uncomplicated task-specific layers being fit to the models.
The success of the GPT model rapidly led to the release of two follow-up models,
GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) (and eventually the
very recent ChatGPT, that we discuss in the conclusion to this work).

Relevant to much of our work is BERT (Devlin et al., 2019), a transformer
encoder-based language model, wherein several innovations to the task of
language modelling were introduced. A key such innovation – one of the
cornerstones of architectures based on BERT – was the introduction of masked
language modelling as a task, contrasted with the autoregressive, sequential,
next-token-prediction task from ELMo/GPT. Masked language modelling
involved replacing the task of predicting the next token in a given context,
with predicting an arbitrarily selected masked token, given every other token in
a sequence window. Figure 2.2 is a visualisation of some such word contexts
for various approaches to language modelling. Devlin et al. introduce several
other innovations, such as WordPiece tokenisation (Wu et al., 2016), where a

3Note that the specifics of the transformer architecture are not strictly relevant to this section;
we discuss transformers in greater detail in Chapter 4
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Figure 2.2: Relevant contexts for language modelling with different language
models. Image taken from Devlin et al. (2019)

tokenisation schema can be learnt over a large corpus, given a fixed vocab size:
the algorithm starts with single characters, and proceeds to merge them in a
fashion that maximises the likelihood of the training data4. Further, the authors
propose using a next-sentence prediction task: in addition to predicting masked
tokens, the model would learn to predict, given a pair of sentences, whether the
second sentence logically followed the first in their source corpus or not.

For a large part of our PhD, BERT was the primary language model that
underwent technical analysis, as part of a subfield that came to be known as
BERTology (Rogers et al., 2020). This is not necessarily still the case, though
many popular language models today still happen to be based on innovations
applied to BERT’s architecture.

2.2 Building multilingual models

Early NLP had mostly been focused on widely-spoken, well-resourced and
politically hegemonical languages. In recent years, particularly given the
increasing importance of the amount of available training data, the question
of how training data for one language can best be utilised to augment training
in another more poorly resourced language, has become a dominant strand of
research. Somewhat cynically, this outreach has some of its roots in the market
utility of targeted advertising in markets that are (as yet) relatively unintegrated
into the global economy, such as large parts of Africa, India, and south-east Asia:
we discuss this in greater detail in our conclusion in Chapter 5. In the following
section, we briefly summarise the approaches to enabling multilingualism in
language models.

2.2.1 In the shallow era
Early works focused on multilingualism in word embedding spaces; some
attempted to induce multilingualism in a supervised fashion, while others at-
tempted to align embedding spaces in different languages without supervision.

4This, in principle, is very similar to the older byte-pair encoding (BPE) (Sennrich et al., 2016), the
difference being that BPE merges are based on the frequency of potential symbol pairs.
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An early such work was Mikolov et al. (2013b), where the authors train em-
bedding models in two languages and learn linear mappings between them
to translate at a word level; we refer the reader to Artetxe et al. (2018b) for a
summary of supervised word embedding transfer methods.

Moving on to unsupervised approaches, Zhang et al. (2017) describe an
adversarial approach to embedding alignment, where they train a generator
to transform source language word embeddings to match target language
spaces, thereby attempting to fool a discriminator trained to guess what
space the embeddings were drawn from. Lample et al. (2018b) describe the
contemporaneous system MUSE; where they add an iterative training approach
to the discriminator. Artetxe et al. (2018a) describe vecmap, where they use
a fully unsupervised weak initialisation, taking advantage of the (idealised)
isometry of two embedding spaces, followed by self-supervised optimisation.

There are some limitations to the unsupervised approach: for one, the
assumption that embedding spaces in different languages are isometric does
not necessarily hold true. Vulić et al. (2019) discuss how, given 15 typologically
diverse languages, for 87 out of the 210 possible language pairs, bilingual
dictionary induction fails completely when mapped without supervision. In a
follow-up work (Vulić et al., 2020a), they show that the non-isometricity of word
embedding spaces can also be due to insufficient training data or poor training
regimes for monolingual embeddings. Søgaard et al. (2018) analyse the impact
of various factors, such as typological or domain differences, on unsupervised
cross-linguistic word embeddings; they propose using identically spelled words
in both corpora as supervised ‘seeds’ instead of fully unsupervised methods.

Beyond the word level, Conneau et al. (2018b) describe a transfer approach,
wherein they pretrain an English sentence encoder and a classifier on an NLI
dataset; they then use a separate parallel corpus to minimise the distance
between their English encoder and an encoder for some other language;
they then combine the non-English encoder with the English classification
layer. Artetxe and Schwenk (2019) describe LASER, where they followed a
neural machine translation-style setup, and train bidirectional LSTM models,
with shared BPE vocabularies, on parallel corpora for 93 languages; they use
English and Spanish as their target languages, and retain only the sentence
encoder downstream. Artetxe et al. (2018c) and Lample et al. (2018a) describe
approaches to building machine translation systems starting from word-level
parallel embeddings.

We refer the reader to Ruder et al. (2019) for a more detailed survey of
cross-lingual embedding models.

2.2.2 Multilingualism without transfer
The approaches that we have discussed in the previous section were very
quickly superseded by the explicit training of deep multilingual models –
almost contemporaneous with the training of deep language models itself.
This approach was, in principle, simple to grasp: deep multilingual language
models were simply trained on corpora consisting of data in multiple languages.
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One of the first such models was a multilingual BERT variant (mBERT) (Devlin
et al., 2019), where the authors train a BERT model on the 100 languages with the
largest Wikipedias, using Wiki dumps as training data, and a shared WordPiece
vocabulary of size 110k. They use a form of exponentially smoothed weighting
of corpora to ensure that overrepresented languages were undersampled; i.e. if
the probability of a token being sampled from language i were pi, they adjust
probabilities such that qi = pα

i /
∑N

j=1
pα

j . We experiment with the influence this
weighting α has on multilingualism in Paper II.

mBERT proved to be extremely effective on downstream multilingual tasks;
this effectiveness led to considerable innovation in training routines, or in model
architecture. The XLM model (Lample and Conneau, 2019) presented some
innovations over the vanilla mBERT approach; the authors add translation
language modelling as an additional task, wherein a sentence pair can be
sampled from a sentence and its translation in another language, allowing
the MLM step to use both the source and the translation, thereby pushing
representations across languages closer together. XLM-RoBERTa (Conneau et al.,
2020), unrelated conceptually to XLM, was trained on Common Crawl dumps
of very large corpora, albeit only on masked language modelling. The authors
discuss the curse of multilinguality: for a certain model capacity, while cross-
lingual performance tends to improve with the addition of more languages, this
is only up to a certain point, past which both monolingual and cross-lingual
performance begin to degrade. The authors show that a simple increase in
model capacity – i.e., in the number of model parameters – helps alleviate this;
hence their emphasis on ‘learning at scale’.

2.2.3 Zero-shot learning
A large part of the success of multilingual language models is due to their ability
to leverage transfer learning for downstream tasks, an approach often dubbed
zero-shot learning, in its most resource-sparse scenario. Zero-shot learning
involves taking pre-trained language models and training additional layers
– for instance, classification heads – on top of them, for a particular task in
a particular language (typically English). This may or may not imply the
absence of fine-tuning; i.e. the parameters of the model itself may or may not
be frozen. Downstream, the multilingual space within the model ensures that
representations for different languages are still somewhat similar; the result
is that when evaluated on an entirely different language, these systems still
show competitive performance. This is exceedingly useful for languages where
large, annotated, task-specific training corpora do not exist, and state-of-the-art
approaches to a variety of multilingual tasks continue to use zero-shot learning.

An advantage of the zero-shot learning scenario is also that it is considerably
less expensive to bootstrap evaluation datasets for underresourced langauges,
than it is full training datasets. Typically, a model’s capacity to generalise
cross-linguistically is seen using its zero-shot performance on these evaluation
datasets, using specific downstream tasks as a lens; this, of course, has its
own set of issues, something we address more generally in §4.4.2. Relevant
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datasets include the Universal Dependencies project (Nivre et al., 2017), a
multilingual dataset of treebanks with part-of-speech (POS) and dependency
syntax annotations in over 100 languages; WikiANN (Rahimi et al., 2019), a
multilingual named entity recognition (NER) corpus; PAWS-X (Yang et al.,
2019), a dataset for paraphrase identification in 6 languages; XNLI (Conneau
et al., 2018b), a natural language inference corpus, with dev and test splits in 14
languages; XQuAD (Artetxe et al., 2020), a question-answering dataset, with
dev partitions in 11 languages. XTREME (Hu et al., 2020) is a large-scale dataset
of 9 syntactic and semantic tasks, in (a total of) 40 languages.

In Paper I, we experiment with few-shot learning scenarios, wherein a small
number of annotated instances are provided to the model to learn from; we
demonstrate and quantify its utility over zero-shot learning in the context of a
variety of NLP tasks.

2.3 Multilingual spaces

An important lens for the analysis of embeddings, both mono- and multilingual,
is to analyse how these embedding spaces actually look – i.e. how embedding
vectors are distributed within continuous vector space. As such, a strand
of research that emerged in light of the dominance of massive multilingual
models was that of describing the nature of this multilingualism: this involved
attempting to quantify the extent to which these models are multilingual at all,
and attempting to determine precisely how they become multilingual.

2.3.1 How multilingual are these spaces?
An early work in this direction was Pires et al. (2019); the authors analyse
mBERT’s ability to generalise cross-linguistically for NER and POS tagging, and
show that transfer is best when the languages are typologically similar, and that
mBERT is still capable of generalisation even for languages written in different
scripts (implying zero lexical overlap). They hypothesise that this could be due
to shared subword ‘anchors’: URLs, numbers etc. A contemporaneous work
was Wu and Dredze (2019); the authors experiment with a wider array of tasks,
and show that mBERT often outperforms state-of-the-art models pretrained
with cross-lingual signals. They run a set of further experiments and show
that despite impressive cross-lingual performance, all of mBERTs layers retain
language-specific information, and that there exists a strong correlation between
the frequency of shared anchors and transfer performance. In a follow-up
work (Wu et al., 2020a), however, they show that the effect of these anchors
was blown out of proportion, and that parameter sharing across languages
enables effective transfer. Cao et al. (2020) focus on the contextual token
embeddings layer, and claim that good multilingual spaces should have well-
aligned contextual token embeddings; they describe an approach to quantify this
alignment given parallel sentence corpora, as well as an optimisation approach
to improve alignment.
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2.3.2 How do they emerge?

A small (albeit very thorough) set of papers has addressed the problem of
isolating the factors that lead to the creation of an efficient multilingual space
within large language models, either by training full models from scratch, or
toy models – on, for instance, synthetic data.

One such work (K et al., 2020) provided a very comprehensive study of
the multilingual capabilities of a bilingual BERT model; the authors train
bilingual models on the English-Spanish, English-Russian and English-Hindi
language pairs. The authors first examine how corpus similarities could lead to
multilingualism. They corroborate Wu et al.’s observation that shared anchors
do not have a large effect on multilingual capabilities, by creating ‘fake’ variants
of their English corpus by shifting BPE indices up by a huge constant, such
that there was no overlap between BPE vocabularies for both languages. They
also reject unigram frequency as a potential anchor, showing that word order
similarity has a much stronger effect; however, in their experiments, permuting
training corpora still resulted in better-than-random performance, implying
that it could not be the only factor. Next, they examine BERT’s architecture;
they show that neither the total number of parameters (past a certain threshold)
nor the number of heads in the attention mechanism is as useful for building
multilingual spaces as the depth of the model is. Finally, they examine training
objectives and show that a) the next-sentence prediction task hurts cross-
lingual performance; b) adding language identification markers does not affect
performance; and c) word/word-piece tokenisation works better than character-
level tokenisation.

Artetxe et al. (2020) addressed earlier works pointing out that mBERT’s
multilingual ability could emerge due to anchor points and joint training;
they design a multilingual transformer language model using an entirely
different approach that strips away these potential ‘clues’. Briefly, they use
a two-step training process, wherein they first train a monolingual masked
language model on English, and then train only the token embeddings on
another monolingual corpus; they freeze the transformer body, swap out the
English token embeddings with those of the new language, and train only the
embeddings layer. When they fine-tune their model, they first use (frozen)
English token embeddings, fine-tune the rest of the transformer, and swap out
the English token embeddings during evaluation. They evaluate their models
on a range of multilingual tasks. Critically, they experiment with shared and
disjoint vocabularies for their two languages, and show that a shared vocabulary
is not necessary for multilingualism. They find that, instead, effective vocabulary
size per language was an important factor, and that their approach works best
with large disjoint vocabularies, that effectively guarantees that each language
has a large number of vocabulary slots reserved for it.

Dufter and Schütze (2020) continue along similar lines: the authors analyse
what elements are necessary for multilingualism. They train smaller, stripped-
down bilingual BERT models, with smaller vocabulary capacities, on bilingual
corpora: in their more naive setup, these languages were English and K et al.’s
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Figure 2.3: An illustration of the English/fake-English training setup; image
taken from Dufter and Schütze (2020)

BPE-shifted fake-English. They evaluate these models on word translation
and sentence retrieval – these are deterministic tasks given their training
setup, as both words and sentences can be translated to their BPE-shifted
equivalents. Dufter and Schütze corroborate prior observations about word-
order similarity being important for multilingualism; they also show that
position embeddings (discussed in greater detail in §4.3) are critical for building
multilingual spaces. In Paper III, we build on this setup and attempt to describe
the role that language and corpus choice plays on the quality of bootstrapped
multilingual spaces.

Relevance

The specific relevance of our work to this section is our analyses of how
differences in the training/fine-tuning corpora reflect on the multilingual per-
formance (for some aspect of ‘multilingual’) of language models. In Lauscher
et al. (2020), we addressed the limitations of zero-shot learning: we showed that
zero-shot transfer performance tends to be poor when the source and target
languages are not closely related. We measured the impact of few-shot learning,
which differs from zero-shot learning in that the model is fine-tuned on (very)
few additional annotated instances in the target language, and we showed that
for a range of tasks and languages, it often makes sense to invest time/money
into annotating very small corpora, as the benefits as far as increased perfor-
mance is concerned are often large.

In Ravishankar et al. (2021b) we shifted focus from the more popular BERT
to ELMo. The original mBERT implementation used exponentially smoothed
weighting to undersample larger corpora (see §2.2.2); we experimented with a
range of αs in an attempt to quantify the effect that the relative sizes of different
language corpora has on the quality of a multilingual model. As part of this
work, therefore, we also released several multilingual ELMo variants into the
public domain.
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Finally, in Ravishankar and Nivre (2022), we attempted to combine prior work
on determining precisely what language factors contributed to multilingualism,
with work describing the inductive biases of language models towards specific
languages. Thus, we experimented with Dufter and Schütze’s setup, yet started
with different base languages and corpora, to determine what linguistic factors
might contribute to multilingual space construction. We showed that corpus
effects – rather than language-specific linguistic factors – tended to influence
the quality of the multilingual space.
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Chapter 3

Interpretability via probing
The recent paradigm changes in NLP – first moving from human-defined feature
vectors to dense features, and then eliminating complex architectures entirely,
replacing them with deep neural models of language – has led to the realisation
that we do not fully understand how or why these models work. Being able to
interpret or diagnose model decisions is of critical importance to a substantial
chunk of real-world model usage contexts; this led to the proliferation of papers
analysing what came to be known as model interpretability. An early approach
to doing this was via probing, which broadly refers to a class of methods that
use datasets annotated to be linguistically informative, and fitting (for instance)
linear classifiers on top of deep language models to these datasets. In some
sense, architecturally speaking, this is not entirely different to transfer learning;
the difference is that while transfer learning aims to maximise downstream
performance under transfer, probing aims to use the simplest possible model
to extract information from the base language model. This distinction between
classifiers for actually solving a task, and for evaluating the extent to which a
task is solvable is critical to cast probing in the right light.

3.1 Probing techniques

Research into probing has generally proceeded along two parallel trains of
thought: the first addressing the design of the probes themselves, and the
second addressing what these probes can tell us about language models. While
‘default’ probes mostly involved fitting linear classifiers on top of language
model representations, more complex probes – for instance, to extract structured
information – have also been proposed; we describe a brief history of probing
techniques in this section.

3.1.1 Probing via classification

Formally, (adopting notation from Belinkov (2022)), we denote a deep neural
model by m : x 7→ ŷ, where the model m maps input x to output ŷ. A probing
classifier (informally, a probe) can be denoted by p : ml(x) 7→ ẑ, which maps the
representations that a model generates at layer l to some output ẑ, which tends
to be some feature of interest. This is very similar to classification as a task:
indeed, probes had also been referred to as diagnostic classifiers (Hupkes et al.,
2018) in their early days. Early works in this direction involved attempting
to extract information from dense word representations; for instance, Gupta
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et al. (2015) attempted to probe word representations1 for factual attributes
of (word) referents, by training logistic regression models to predict FreeBase
attributes (eg. population) of referents to countries or cities. Similar methods
were used to probe word representations generated in context, as in Belinkov
et al. (2017), where classifiers were trained to extract morphological and part-of-
speech information from neural machine translation models. Adi et al. (2017)
experiment with a range of sentence embedding methods (including averaged
word embeddings) and probe them for features such as sentence length, or
whether or not a word (given its representations) belonged in the sentence;
they show (among other results) that, for instance, while LSTM encoders were
significantly better than CBOW encoders for storing sentence length, CBOW
models surprisingly showed length prediction scores far above the baseline.

Conneau et al. (2018a) present a dataset of ‘probing tasks’ for English; these
included common linguistic tests, such as the depth of a sentence’s parse tree,
or the tense of a sentence (given the main verb). They experiment with a range
of sentence encoding methods and evaluate the extent to which each such
linguistic property was extractable from the representations that it generated.
We base Papers IV and V on their work, and create multilingual versions of their
dataset; in Paper IV we evaluate sentence embeddings generated as in Conneau
et al. (2018b), and in Paper V we analyse deep pretrained multilingual models.

3.1.2 Moving beyond classification
Word- or sentence-level probing is fairly limited, in that the most one can
probe for is linguistic properties specific to words or sentences. Tenney et al.
(2019b) define edge probing, where they describe an approach to probing spans
of tokens: in addition to training a probe, they further train parameterised
pooling functions to compose representations for tokens in a given span. Using
their formalism: if a model’s input x consists of tokens x1, x2, ..., we train a
pooling function f : [ml(xi), ..., ml(xj)] 7→ z, and instead redefine our probe as
p : z 7→ ŷ.

The authors applied this method to probe representations from ELMo, GPT,
and BERT for knowledge pertaining to a range of tasks, ranging from part-
of-speech tagging to coreference resolution. In a follow-up paper focusing on
BERT representations (Tenney et al., 2019a), they probe BERT’s representation
layer by layer, and show that information pertaining to a variety of tasks
tends to resemble the ‘classical’ NLP pipeline, where outputs generated from
models trained on specific tasks could be used as inputs for models for higher-
level tasks. They show a similar localisation of task information within BERT
models: in their experiments, BERT’s lower layers contained more extractable
information pertaining to lower-level tags like part-of-speech tags, while higher-
level semantic tasks, such as relation extraction, were best extracted from BERT’s
higher layers. An earlier work (Peters et al., 2018a) applied a similar probe to

1While early works do not frame their research questions in these terms, to probe X for Y has
become the standard way to describe such questions.
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ELMo layers, with similar results: lower layers were shown to specialise in local
syntactic relationships, while higher ones specialise in more complex semantic
tasks.

An alternative approach that emerged in response to classifier-based probing,
particularly probing for evidence of linguistic structure, was to use structural
probes. Hewitt and Manning (2019) define a probe as a set of parameters B; they
use gradient descent to ensure that the probe-transformed distances between
representations at i and j are as close to the distance between the two tokens
as possible, i.e., given representation h for word w, for a single sentence, they
approximate:

min
B

1
|s|2
|dT (wi, wj)− dB(hi, hj)2|

where the parameterised distance dB(hi, hj) = (B(hi, hj))⊤(B(hi, hj)). We
build on precisely this probe in Paper VI to evaluate the extent to which models
like BERT show preferences for specific syntactic annotation schemata. More
specifically, we compare the Universal Dependencies annotation schema to SUD
(surface syntactic UD) annotations, a schema that differs in certain aspects (such
as that it does not privilege content words as syntactic heads).

Parameterised probes, while conceptually simple and extensible, came
with a host of issues (that we address in §3.2). This led to the proliferation
of unsupervised probing techniques, that could, for instance, rely on an
examination of the model’s internal representations. Note that this is where
the distinction between generic model intepretability and probing as a form of
interpretability started to become a bit fuzzy; conventionally, probing was
a term used to describe forms of interpretability that involved extracting
information from representations generated by models. Several unsupervised
probing techniques fit into this description: for instance, perturbed masking (Wu
et al., 2020b), where the authors use the impact a word wj has on the prediction
of another word wi – as in f(wi, wj)∀i, j – and used the resulting impact matrix
to (for instance) extract syntactic trees.

Another such approach involved the use of comparison-based methods like
representation similarity analysis (RSA) (Kriegeskorte et al., 2008), which uses
correlation metrics to measure ‘distances between distances’, so to speak (see
Figure 3.1). Given a set of sentence encoders, RSA involves first constructing,
for each feature encoder fm ∈ F, a first-order (dis)similarity matrix for features
generated for each (say) sentence in a corpus, i.e. a matrix M such that
Mm

ij = ρ(fm(wi), fm(wj)). Note that a feature encoder can be anything that
returns some sort of feature vector (such as a language model representation).
Next, a second-order similarity matrix N can be computed in order to compare
two encoders fm and fn; the higher the correlation between Mm and Mn,
the more the two representation methods agree on their representational
geometry for a set of sentences. This matrix can be of interpretable value
if one such encoder was some sort of well-defined metric, such as tree kernel
metrics (Chrupała and Alishahi, 2019); alternatively, it can reflect measurements
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Figure 3.1: Second-order comparisons using representation similarity analysis;
image taken from Abdou et al. (2019).

of the agreement between two LM encoders, which could further be compared
with real-world metrics coming from, for instance, eye-tracking data (Abdou
et al., 2019).

Yet another comparison-based approach to probing was the use of analytical
methods like singular vector canonical correlation analysis (SVCCA) (Raghu et
al., 2017); Saphra and Lopez (2019) use SVCCA to compare representations
generated by a language model over the course of training to representations
generated by a fully-trained POS tagger. They first reduce representation
dimensionality (singular value decomposition/SVD), and then project the
representations to be compared onto a shared subspace (canonical correlation
analysis/CCA). Kornblith et al. (2019) propose using centred kernel alignment
(CKA), an improved metric that is robust to different random initialisations of a
network.

Other works that discussed unparameterised probing tended to involve an
inspection of the model’s intermediate representations; as far as transformers
are concerned, these typically tended to be the parameters of the attention
mechanism. I defer a more detailed discussion of this class of methods to
Chapter 4.

3.2 Findings and criticism

While there have been a fair number of interesting conclusions and findings
drawn from probing tasks, these tasks also faced criticism from a variety of
lenses, many arguing that probes represent an insufficient insight into model
behaviour. We summarise both insights and critiques here; we refer the reader
to Belinkov (2022) for a detailed survey on probes, including criticism thereof.

3.2.1 What have we learnt about language models?
Somewhat parallel to research into probing methods, there had been a consider-
able amount of research that involved using probes for their intended purpose:
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to determine what precisely language models had learnt.

Syntax Early influential works discussing how syntax is represented within
language models include, for instance, the structural probe we discussed
in the previous section (Hewitt and Manning, 2019). Related works
include, for instance, Chi et al. (2020); the authors apply structural probes
to mBERT, to determine whether syntactic subspaces were shared across
languages. They show that this is indeed the case: structural probes could
be trained on one language and transferred to another. Further, these
dependencies cluster cross-lingually by relation, even when not explicitly
annotated.

Morphology Edmiston (2020) probe BERT models for Universal Dependencies
morphological information; they show that in general, morphological
information is extractable from the model; however, unlike syntactic role,
this information would need supervision to reflect in the representations.
They also show that case syncretism is significantly opaque for the models
(unlike for humans), and backed up earlier claims that early-middle layers
prioritise morphology, particularly for more morphologically complex
Indo-European languages like German and Russian. Hofmann et al.
(2020) analyse BERT along a lens of derivational morphology, and show
that BERT is capable of predicting the appropriate derivational suffix in
context (for English), albeit when provided with morphologically accurate
segmentation.

Semantics Wiedemann et al. (2019) analyse contextualised word representa-
tions produced by BERT and ELMo; they cluster them to determine the
extent to which different word senses are separable into separate clusters,
showing very effective performance. Vulić et al. (2020b) evaluate word
representations from monolingual and multilingual BERT models, along a
series of metrics (lexical similarity; word analogy; bilingual lexicon induc-
tion; cross-linguistic information retrieval). They find that monolingual
models contained far more language-specific lexical semantic information
than multilingual models, even for languages like English.

Other, broader probing suites that attempted to evaluate BERT’s syntactic
strengths included Jawahar et al. (2019): the authors run a variety of analytical
tests, including probes for Conneau et al.’s suite of sentence metrics, layer by
layer. Liu et al. (2019a) probe token/token-pair representations from a range of
language models, for their performance on a large suite of downstream tasks,
ranging from part-of-speech tagging to grammatical error detection. Both these
works show, contemporaneous with Tenney et al. (2019a), that BERT’s layers
tend to resemble the classical NLP pipeline.

3.2.2 Where does probing fail?
An issue with probing is the philosophy behind the selection of an adequate
probe. There is general agreement that probes ought to be ‘simple’, in order to
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ensure that the probe itself is not capable of learning information that affects
performance on the downstream task (Hupkes et al., 2018; Liu et al., 2019a);
however, quantifying the simplicity of a probe is difficult, despite being essential
for qualifying precisely what a probe’s results on a probing task mean. An
option is to use randomly initialised models as baselines, as in Zhang and
Bowman (2019); they find, however, that these random baselines did not differ
from pre-trained models very substantially. Further, the gap narrows the longer
the probe is trained, emphasising that even simple probes can learn task-specific
information. Thus, to quote Hewitt and Liang (2019, p. 2733), “as long as
a representation is a lossless encoding, a sufficiently expressive probe with
enough training data can learn any task on top of it”.

Several solutions to this conundrum were proposed. Pimentel et al. (2020b)
describe Pareto probing, wherein they propose using Pareto optimal probes – i.e.,
probes for which no competing probe with higher accuracy yet lower probe
complexity exists. Hewitt and Liang (2019) propose using control tasks to ensure
easier probe contextualisation; they assign random labels to tokens, drawn from
the original label distribution, and defined selectivity as the difference between
model performance on an actual probing task and on a control task. They
caution against using MLP probes, as they have poor (i.e. low) selectivity on
part-of-speech tagging and dependency parsing. This method, however, had the
issue of turning probing into an architecture search problem, wherein one would
have to find task-specific probes that both showed poor performance on control
tasks, yet were functional as probes. Voita and Titov (2020) suggest instead using
minimum description length (MDL) as a measure of model performance on a
probing task, rather than probe accuracy; thus, as a proxy for the extractability of
linguistic information pertaining to some probing task, they describe a method
that involves examining the number of bits required to transmit the task data,
as well as the compression model itself.

Note that other works, such as Pimentel et al. (2020a), take issue with
the generally accepted idea that probes ought to be as simple as possible;
they presented the question regarding whether a probing classifier is merely
extracting information from an encoder or whether it has learnt the task itself
as a false dichotomy, and instead proposed using an information theoretic
framework: they use, for a set of tags T given representations R, some
control function c such that I(T ; R) ≥ I(T ; c(R)), where I represents mutual
information. They experiment with control functions that would return fastText
embeddings, or one-hot embeddings, and use this mutual information as a
baseline, rather than using a control task2.

Relevance

Ultimately, much of the progress in the field of probing took place parallel to
our research. As such, two of our papers relevant to this domain involved

2Note that both approaches have been shown to be theoretically equivalent (Zhu and Rudzicz,
2020).
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concretely running probes based on multilingual datasets that we generated,
inspired by Conneau et al. (2018a). First, in Ravishankar et al. (2019c), we
generated datasets for probing tasks in 5 languages (including English); we then
analysed multilingual sentence encoders, learnt via transfer learning, applied
to English encoders. Interestingly, we found that several linguistic properties –
particularly sentence length – tend to be more extractable from these transferred
representations. In a follow-up work (Ravishankar et al., 2019a) – given the
backdrop of the dominance of deep multilingual language models – we first
extended our dataset to seven languages (including English), and then probed
ELMo, BERT and XLM models for the same properties. We then analysed our
results through a lens of task, language, and encoder.

Finally, in Kulmizev et al. (2020b), we applied Hewitt and Manning’s structural
probe (2019) to quantify how a language model’s syntactic extractability differs
when given a different syntactic formalism, i.e. surface Universal Dependencies
(SUD). We found that syntactic trees tend to be more extractable using a
structural probe where trees are shallower; i.e., we found a preference for
UD over SUD in languages that tend to have a higher proportion of function
words, and thus deeper SUD trees.

Ultimately, given the robustness of the debate surrounding the usefulness of
probing, and the numerous caveats in taking probing results too literally, as
well as the disagreement concerning what an adequate probe should look like,
we began to explore alternative interpretability methods: for instance, methods
that involved actively inspecting model architectures. We describe research in
this direction, along with a primer on the architecture of the transformer model,
in the next chapter.
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Chapter 4

Interpreting transformer language
models
Early neural NLP involved much discourse about and innovation in the specific
methods used to process language. Several such methods were inspired by our
intuitions regarding human processing of language, such as recurrent neural
networks (RNNs) or convolutional neural networks (CNNs). RNNs were an early
class of deep neural architecture for language processing, wherein tokens would
be processed sequentially; while the internal architecture of the model depended
on the specific class being used. However, a common element to each was that
that each token wt, when processed by a recurrent cell ht, would output an
output representation yt, as well a context vector ct; the next recurrent cell, ht+1
would rely on both wt+1 and ct to output yt+1 and ct+1; this process would
continue until the entire input sentence was consumed. We avoid more detailed
descriptions of RNNs, as their internal functionining is mostly irrelevant to this
thesis.
Transformers emerged around 2017 as a highly parallelisable alternative to
RNNs, which dominated much NLP research at the time. A critical component
of transformers was the attention mechanism, which originated in the context of
neural machine translation, and saw much use in conjunction with RNNs or
CNNs. We therefore begin this chapter with a description of the attention
mechanism, and the role it plays in the transformer. We then address
(specifically relevant to our research on multilingual language models) the
various components that make up the transformer, and focus on a select few,
describing their role in interpreting model behaviour, and their relevance to our
research.

4.1 Transformers

The transformer’s fundamental building block is the attention mechanism.
Attention, initially described by Bahdanau et al. (2015), was partially motivated
by its easy visualisability. This paper was written against a backdrop of
discussions pertaining to the interpretability of deep-learning based machine
learning solutions, and their applicability in the real world, given the black-box
assumption. Attention, initially described in the context of machine translation,
was meant to be an easily interpretable mechanism that would, unlike post-hoc
explanatory methods, inherently describe the reasoning process of a model; for
instance, consider Figure 4.1, which is a visualisation of the magnitude of the
attention paid by tokens in a source sentence to a target sentence, in the context
of machine translation.
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4.1.1 The maths behind attention

In its simplest form, attention involves building context vectors by weighting
inputs. Consider, for instance, machine translation, with RNNs as the base
architecture, with c being the last recurrent state, obtained after processing the
entire sentence – essentially, a vector representation of the entire input sentence.
Conventionally, this context vector c could be used to generate some sequential
outputs, such the translation of the source sentence, {s0, s1, ..., sN}. This is
functional, in that the generation of a particular output token is conditioned
on both the previously generated outputs (enabling fluency), and a vector
representing the input (enabling adequacy).

The attention mechanism was motivated by the observation that a one-size-
fits-all context vector c made little sense; each output token should, ideally,
be conditioned on a different ‘view’ on the input. The attention mechanism
was therefore a proposed replacement of this vector c, with output-specific
weighted sums of input context vectors. Thus, for an output token at output step
i, attention would generate a context vector ci; this ci could be calculated based
on the relevances of every input hidden state {h0, h1, ..., hN}, to the output
being generated at step i. As a weighted sum of input embeddings, therefore,
ci =

∑N
j=1 αijhj . In this equation, α is a matrix of weights conventionally

referred to as an attention weight(s) matrix; each element of αij encodes the
relevance of input token j to output token i1. The discourse surrounding
the alleged interpretability of attention stems from precisely this definition of
attention – if attention was, at its core, a set of importance weights, it was seen
as plausible that these weights could have some explanatory value when it
came to describing model decisions.

Calculating αij , as defined by Bahdanau et al., is simple: α is effec-
tively a probability distribution applied to some alignment model e, i.e.
αij = exp (eij)/

∑N
k=1 exp (eik) – which is essentially a softmax. Bahdanau et al.

propose simply using some alignment model a, i.e. eij = a(si1 , hj). In their
paper, they use a single-layer feedforward network with a non-linear activation
function; Luong et al. (2015) contrast and evaluate different kinds of alignment
models.

Attention was rapidly adopted as an additional component – often built on
top of recurrent neural networks – that could push state-of-the-art results for a
range of tasks. Tasks such as machine translation (Luong et al., 2015; Sennrich
et al., 2016), summarisation (Rush et al., 2015), document classification (Yang
et al., 2016), tasks involving sentence pairs Seo et al. (2017) and Wang et al.
(2018) saw significant performance improvements with the addition of attentive
components.

1In common parlance, this is referred to as the “attention paid by token i to token j” – note that
the output token is the token doing the ‘paying’ of attention.
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Figure 4.1: An easily interpretable attention matrix, mapping French tokens to
their English counterparts, taken from Bahdanau et al. (2015); the colour of each
square denotes the strength of the attention paid.

4.1.2 From cross- to self-attention
The fundamental component of the transformer architecture (Vaswani et al.,
2017b) was self-attention, wherein word representations were derived based
on tokens in an input sentence paying attention to each other – cf. the earlier
form of attention we described, now also called cross-attention, where sentences
would pay attention to outputs being generated, or to other paired inputs.
Conceptually, in a traditional input/output scenario, calculating the attention
paid by output token i to input token j would involve calculating the relevance
of j to i. In the context of self-attention, the relevances of input token i to every
input token j could be used to generate representations for i. Thus, using our
earlier notation, eij would equal a(hi, hj), for some pair of input representations
with indices (i, j).

Vaswani et al. proposed first using the vector dot product as the alignment
function, i.e. a(hi, hj) = hi · hj ∀i, j = HH. Having calculated alignments, they
then apply three separate linear transformations to obtain three different ‘views’
on the token embeddings: a query representation, representing some ‘source’
token, a key representation, representing a ‘target’ for calculating attention
weights, and a value representation, which was multiplied by its corresponding
attention weight; these weighted value representations were summed to obtain
a token word representation. Conceptually, this meant substituting the word
embeddings matrix H with key, query, and value different matrices, i.e. K, Q
and V . The first two would learn to represent tokens in their roles as tokens
paying attention, and as tokens being paid attention to; the last would learn to
form token representations that could be weighted and combined to form full
contextual representations.
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Thus, mathematically, the attention weights matrix α = softmax
(
QK

/√
dk

)
,

where dk was a scaling factor equal to the embedding dimensionality; the final
representation matrix Z = αV = softmax

(
QK

/√
dk

)
V.

4.1.3 Putting everything together

A few additional innovations that made up the transformer architecture are
worth mentioning. The first of these was the extension of self-attention to multi-
headed self-attention, which effectively involves calculating multiple attention
weight matrices using different sets (‘heads’) of parameters, then concatenating
their representations, in the hopes that each attention head would learn a
different linguistic phenomenon. The next was that of position embeddings;
given that the transformer consumes all input tokens in parallel, there is no
sequential ordering of data, which reduces the transformer to a bag-of-words
model. Position embeddings were a way to avoid this; we discuss them in
greater detail in §4.3.

The transformer, as described in the context of sequence-to-sequence tasks
(like machine translation) consists of two ‘halves’: an encoder and a decoder.
Figure 4.2 is a diagram of the transformer; the inputs correspond to the encoder,
and the outputs to the decoder. The encoder is the non-autoregressive half: the
entire input sequence can be modelled simultaneously, effectively utilising the
parallelisability of the transformer. The decoder generates an output sequence
token by token; each generated token at a given time step is consumed, in
addition to cross-attention with the encoder, to generate the output token at
the next time step. Both halves consist of stacked attention layers, each of
which consists of multi-head self-attention, LayerNorms (Ba et al., 2016), and
feed-forward networks. In the context of language modelling, both encoders
and decoders saw widespread use as independent models: the former in the
BERT/RoBERTa class of models, and the latter in the GPT family of language
models.

4.2 Attention as explanation

As mentioned at the start of this chapter, part of the motivation for attention,
beyond its parallelisability, was its alleged inherent interpretability. This
motivation became somewhat murkier with the introduction of the transformer,
though visualisation mechanisms continued to exist (Vig and Belinkov, 2019).
For one, self-attention was not as clearly intuitive as cross-attention; next, the
addition of layers and heads made it unclear how reliable naive visualisations
of attention weights could be. This naturally sparked considerable discussion
that we shall attempt to summarise in this section, and also examine in light of
our contribution to this strand of research.
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Figure 4.2: The transformer model. Image taken from Vaswani et al. (2017b)

4.2.1 The state of the debate

The debate on the role of attention as explanation was sparked by Jain and
Wallace’s work (2019), titled Attention is not Explanation. The authors run a
series of experiments: first, they compare correlations between learned attention
weights on an LSTM-based classifier, and a) gradient-based measures of feature
importance, or b) differences in model output, induced by leaving out single
input tokens; they show that these correlations tended to be rather weak. Next,
they experiment with ‘counterfactual’ attention, either by permuting attention,
or by actively inducing attention distributions that differ from learned attention,
showing only a modest effect on output labels. Based on these experiments,
they claim that while attention is undoubtedly useful, it is unclear whether or
not it had any explicitly interpretative value, given that apparently arbitrary
attention weights also led to reasonable downstream performance.

A response to their work, titled Attention is not not Explanation (Wiegreffe and
Pinter, 2019), addressed some of their claims. The authors of this latter work first
show that uniformly initialised attention weights perform just as well as learned
attention on some tasks, implying that there exist tasks for which attention is
entirely unnecessary, and not necessarily just obscure. They then replace the
LSTM from the classifier with a single MLP – implying shared parameters for
each token – and then experiment with different mechanisms for weighting the
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MLP output for each token. They find that using the learned attention weights
from the LSTM-based model outperforms both the MLP weights learnt during
training, as well as their previous uniform-attention LSTM model. From this,
the authors conclude that attention weights cannot be truly arbitrary, or model-
dependent, given that MLP models that lack access to contextual information
found them useful – they claim that while attention may not be the explanation
for a model’s decisions, it is clearly an explanation.

Serrano and Smith (2019) added to this debate by lowering the bar for what
constituted interpretability. They focus on specific attention layers, zeroing out
a single high-valued attention weight, renormalising, and analysing shifts in
the output label distribution. They find that while attention does somewhat
correspond to importance, in that higher attention weights tend to have a
larger impact on the model’s decisions, their experiments show that there are
numerous cases where the impact of these high-valued attentions is minimal.
They thus take a more pessimistic view than Wiegreffe and Pinter (2019),
claiming that attention often fails to explain model decisions, when viewed as a
feature ranking.

4.2.2 Observations from the sidelines
Parallel to this debate, Bastings and Filippova (2020) ask whether the debate
around attention being explanation was meaningful at all, and whether we
should even care, given the existence of saliency methods as established inter-
pretability methods. Saliency methods are, briefly, a family of interpretability
mechanisms often used in the context of computer vision, wherein regions of
an image are highlighted based on their relevance to model decisions; in the
context of NLP, this selection and highlighting is often carried out at a word
level2. Similarly, Jacovi and Goldberg (2020) argue that there was no consistent,
formal definition of what constituted a faithful explanation in the literature, and
called for methods to be defined as sufficiently faithful – that is to say, faithful in
the context of some models and tasks, or certain parts of the input space.

Other works imposed constraints and caveats on what elements of attention
ought to be considered when discussing the interpretability of attention. Brun-
ner et al. (2020) discuss the issue of identifiability within attention mechanisms,
i.e. the degree to which attention weights at higher layers truly derived from
their corresponding tokens, or, conversely the lack of a true correspondence
between a token at index i and its corresponding attention weight at layer L
(αL

i ). The authors describe a method to quantify this degree of information
mixing that they termed hidden token attribution (HTA), and suggest that these
caveats ought to be taken into account when discussing the interpretability of
attention. Thus, they proposed examining what they termed effective attention
– a lens that would involve removing attention weight components that did
not affect model predictions. They re-analyse attention patterns in masked

2Note that it is not entirely clear that saliency methods themselves provide consistent
explanations for model behaviour (Krishna et al., 2022).
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language modelling (Clark et al., 2019) in light of this knowledge, and find that
attention weights corresponding to [CLS] and [SEP] rapidly collapsed. Sun
and Marasović (2021) analyse effective attention, and found that it tends to view
linguistic features as more important; however, they fail to replicate Brunner
et al.’s results on attention collapse for [CLS] tokens given a wider variety of
downstream tasks.

Building on these observations, Pascual et al. (2021) apply HTA and
demonstrate that attention patterns that take token mixing into account differ
from vanilla attention weights. Abnar and Zuidema (2020) also take token
mixing into account, and describe attention rollout and attention flow, two
mechanisms to address this lack of token identifiability at higher transformer
layers. They find that applying either post-hoc method yields better correlations
with importance scores. Relevant also was Kobayashi et al.’s work (2020); they
argue that attention weights could not be observed in isolation, as they are
used to weight specific value vectors – the representation for token i, i.e. yi, is
defined as the sum of the products of the value-transformed input v(xi), and
the attention paid by every other token j to i. i.e. yi ∝

∑n
j=1 αi,jv(xj), where

α is the attention weights matrix. The authors reason that while a particular
attention weight αi,j might be exceptionally large or small, that said very little
about the weight of the product αi,jv(xj), which is what the network used
downstream; thus, they propose analysing weighted transformed vector norms, i.e.
||αf(x)|| instead of raw weights; they show, in the context of neural machine
translation, that word alignments extracted using this approach, rather than
using vanilla attention weights, tend to have significantly lower alignment error
rates.

Specifically relevant to our work is the interaction between syntactic
structure and attention: i.e. the question of quantifying the extent to which
syntactic structure can be encoded within attention weights. Relevant to
this was Raganato, Tiedemann, et al. (2018), where the authors attempt to
extract syntactic structure from attention weights; their approach to this
was to extract the maximum spanning tree (MST) through attention weight
matrices (Chu, 1965). Clark et al. (2019) instead examind attention weights,
and corroborate Raganato, Tiedemann, et al.’s results: some degree of syntactic
structure was encoded within attention weights, but not a lot even when
compared to naive baselines, like deterministic right-branching trees.

In Paper VII, we show that their observations hold true across a typologically
diverse set of languages; we also show that attention very rapidly converges to
patterns that resemble syntactic structure, if models are fine-tuned on explicitly
annotated syntax.

4.3 Moving beyond attention

While attention has often been prioritised in the literature as a critical
lens through which model decisions can be interpreted, some of the work
summarised in this thesis has focused on other components; specifically on
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position embeddings. In this section, we describe the motivation behind the use
of position embeddings in transformers, and how specific embedding methods
influence model behaviour.

4.3.1 Position in transformers
In the context of masked language modelling, a critical apparent weakness of
transformer encoders is their absence of word order information. While the
absence of sequentiality is a positive from the perspective of parallel computing,
it effectively reduces language models to overparameterised bag-of-words
models; i.e. default transformer encoders are order invariant: their output
does not change with reorderings in their input. A proposed alternative to
autoregressive language modelling has, therefore, been the use of position
embeddings. Originally – as in Vaswani et al. (2017b) – position embeddings were
defined as fixed sinusoidal waveforms, with each dimension of an embedding
vector representing a waveform with a different frequency and phase. Thus,
position embedding p could be defined as

pk,2i = sin(k/100002i/d) (4.1)

pk,2i+1 = cos(k/100002i/d) (4.2)

for embedding dimension i and token k, given a d-dimensional output
representation.

Naturally, this ‘naive’ embedding method led to alternative embedding
mechanisms being proposed. BERT (Devlin et al., 2019), for instance, as well as
BERT-based models like RoBERTa (Liu et al., 2019b), use learnable sinusoidal
embeddings: each token in each sentence would receive a unique position
embedding that derived from its position k in that sentence; the parameters for
this embedding model would be learnt during model training/fine-tuning.

4.3.2 Embedding methods can be non-obvious
The position embedding methods described above – embeddings that derive
from the absolute position of a particular token – are dubbed absolute position
embeddings (APE). Ordinarily, these positional representations were fed to
the network by adding them to their corresponding (non-contextual) token
representations before their sum is processed downstream. This is, however,
not necessarily the only way to inject positional information into a transformer.
Other approaches to encoding positional information generally tend to involve
directly modifying attention weights, rather than token representations. Often,
these methods – owing to the two-dimensionality of attention matrices – take
into account the relative offset between two tokens ki and kj (Huang et al.,
2020; Shaw et al., 2018), rather than their absolute positions (relative position
embeddings (RPEs)).

Numerous other extensions to position injection have been proposed,
and this domain continues to be an active field of research. Ke et al. (2020)
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Absolute ((wi + pi)W Q)((wj + pj)W K)⊤ Devlin et al. (2019)
TUPE (wl

iW
Q,l)(wl

jW K,l)⊤ + (piU
Q)(pjUK)⊤ Ke et al. (2020)

Relative(k) (wiW
Q)(wjW K + aij)⊤ Shaw et al. (2018)

Relative(k/q) (wiW
Q + aij)(wjW K + aij)⊤ Huang et al. (2020)

T5 (wiW
Q)(ijW K)⊤ + bij Raffel et al. (2020)

Table 4.1: A brief overview of (some) popular position embedding methods.

recommend applying separate affine transformations to position encodings and
token encodings prior to adding them; they show that the naive approach to
generating an attention weights matrix α, given positional information p and
token information w for tokens i and j, i.e. αij = ((wi +pi)W Q)((wj +pj)W K)⊤

– where Q and K are query and key parameters respectively – tends to be a
wasteful operation. The expansion of this equation would lead to product terms
such as (piW

Q)(wjW K)⊤; the authors claim that these terms are noise, as they
saw a) position-token correlations as mostly meaningless, and b) positions and
tokens as being different enough that sharing weights between them made little
sense. He et al. (2021) take a slightly contradictory approach, and propose adding
token-position correlations for RPEs, that lacked them out-of-the-box; they claim
that the relative position between two tokens was meaningful when attempting
to fully model words3. Wang et al. (2019) propose taking structure into account,
and replace linearly assigned attention weights with weights derived from
syntactic parse trees. T5 (Raffel et al., 2020), a large-scale language model built
on sequence-to-sequence modelling, uses a fairly ‘simple’ relative positional
bias, that involves merely adding a bias term bij = W (j − i) to every element
in αij ; this differes from Shaw et al.’s encoding methods, where they add these
bias terms to the transformed key and/or query vectors before multiplying
them.

Some of these methods are (mathematically) summarised in Table 4.1.
Dufter et al. (2022) present a concise survey of position embedding methods

in the literature. They further describe position embeddings on the basis
of whether they constituted sequences, trees, or graphs, while retaining the
original characterisation of position embeddings as APEs and RPEs. Wang
et al. (2021) present a more theoretical survey, wherein the authors describe
theoretically motivated characteristics that they claimed position embeddings
ought to exhibit, and analysed APEs and RPEs along these lines.

4.3.3 Extrapolation and composition
A key requirement from position embeddings is their ability to extrapolate to
positions unseen during training; this was a key motivation behind the original
sinusoidal embedding method, as a deterministically calculated periodic
function ought to be able to extrapolate indefinitely. However, Press et al. (2021)

3Note that Ke et al. (2020) claim that this does not contradict their work, which focuses on
absolute embeddings.
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show that this was not the case: when experimenting with language modelling,
they show that for a validation set with sentence lengths Lval > L, where L was
the longest training sequence, performance for sinusoidal embeddings would
rapidly drop for Lval > L + 50. Rotary position embeddings (Su et al., 2022;
Wang and Komatsuzaki, 2021), where sinusoidal embeddings are multiplied
by the keys and queries of every transformer layer, extrapolate much better.
Contemporaneous with a lot of our research, Press et al. took inspiration from
rotary position embeddings and introduced ALiBi: they do away with learned
position entirely, and introduce a static bias term to the key-query product
term softmax(qiK

⊤ + m · [−(i− 1), . . . ,−2,−1, 0]), where m is a head-specific
slope term drawn from a geometric sequence. They find that their method
outperforms alternative methods.

Another aspect of language modelling that is worth mentioning from the
perspective of this thesis is compositionality, i.e. a language model’s ability to
compose representations for words into phrases, and phrases into sentences
etc. The relationship between generalisation (extrapolation being a form of
generalisation) and compositionality has been studied, and is seen as somewhat
complex. Chaabouni et al. (2020) show, in an emergent language scenario, that
compositional languages were easier for agents to learn; further, they show that
compositionality was sufficient (albeit not necessary) for the emergence of the
ability to generalise. Hupkes et al. (2020) analyse the explicit extrapolatability
of composition; they analyse the compositional ability of language models
on validation sets with sentences longer than training sentences, and find
that while transformers outperform LSTMs and CNNs, no language model
could extrapolate to indefinitely long sequences. In Paper VIII, we analyse
compositionality from a multilingual perspective. Pragmatically, improved
compositional abilities ought to allow for improved multilingual transfer, as
the model can then better utilise its multilingual capacity (see also §2 for a
discussion on the factors that enable multilingualism). We show that there exists
a tradeoff between ‘overengineered’ position embeddings, so to speak, and
multilingual transfer capabilities.

4.4 Word order in transformers

Wrapping up the architecture-driven analysis of transformers, we shift focus
somewhat to discuss the influence of word order on language models. This is an
architecturally relevant question – relevant to position embeddings, specifically,
on account of the fact that position embeddings are the only way transformer
encoders can model position4. Our research in this direction is, in some sense, a
contribution to the (growing) body of literature addressing the extent to which
transformers even need word order to solve specific tasks; we discuss what
these implications say about our tasks, particularly in light of what we know
about human processing of language.

4Note that this is not true for decoders: see Haviv et al. (2022).
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4.4.1 Language models use word order

On the face of it, it seems uncontroversial to say that human language processing
relies on the ordering of words in a sentence; this may be more or less
true depending on how free word order is in a particular language. Mollica
et al. (2020) examine the effects of various forms of scrambling on human
sentence processing. They show that composition could take place when certain
grammatical constraints were violated; they also show that a word’s immediate
neighbourhood is more immediately critical to composition. It is tempting to
claim that this must, therefore, also be the case in neural language models –
however, neural language models do not have the same learning process that
humans do, nor are they architecturally similar to human brains.

Analysing the influence of word order on language models, Sinha et al.
(2021b) show that applying permutations to sentences does not necessarily
affect downstream language model performance on textual entailment tasks;
they also show that humans tend to be more sensitive to the same perturbations
than LMs. Clouatre et al. (2022) draw on Mollica et al.’s observations concerning
local vs. global structure; they show that for a subset of NLP tasks, as long as
local structure is maintained, global structure is be unimportant. They also show
that conventional perturbation functions tend to mostly alter global structure,
and raise the question of whether or not some NLP tasks are solveable by
bag-of-words models, thereby making for poor test suites, solvable through
simple heuristics that are not immediately obvious: see, for instance, Poliak et
al. (2018), where the authors address precisely this problem in the context
of natural language inference. Alleman et al. (2021) show similar results
with a representation distortion-based probing setup; they show that BERT
representations are sensitive to phrasal units, and that the model’s sensitivity
to perturbations is mediated by attention. Somewhat contradictory, however,
was a followup paper (Sinha et al., 2021a) to the entailment paper, where the
authors proceed to show that language models pre-trained on perturbed text,
where sentences are scrambled at an n-gram level for n ∈ {1, 2, 3, 4}, continue
to perform competitively on a set of downstream tasks; this is perhaps the
strongest (current) evidence for language model performance under the absence
of word order information.

In Paper IX, we show that language models do need word order information.
We address the observations in Sinha et al. (2021a), particularly their results
showing that language models pretrained without position embeddings
show considerably worse performance than models trained on unigram-level
scrambled text: we show that some sense of word order information exists even
in naive scrambling setups (such as the adjacency of subword units), and that
position embeddings can leverage this information to develop the appropriate
inductive bias prior to fine-tuning. We also show that the choice of task has
a strong effect on how well ‘unordered’ language models perform, backing
up Clouatre et al.’s suggestion that certain tasks are substantially easier to ‘solve’
than others, even without word order.
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4.4.2 What does this say about our benchmarks?
Sinha et al.’s work, and our response, raises another question: given that
unordered language models – whether due to unigram shuffling or due to the
absence of position embeddings – perform fairly well on GLUE as a benchmark
suite, what does this actually say about GLUE itself? Zooming out from talking
specifically about GLUE, we draw the reader’s attention to this passage, quoted
from Church (2017, p.476):

I worry that the literature may be turning into a giant leader-
board. As reviewing burdens continue to become more and more
onerous, reviewers are looking for easier and easier ways to dis-
charge responsibility. Papers are being rejected for silly reasons like
typos, and papers are being accepted for equally silly reasons like
topping a leaderboard.

Leaderboards are great, but a paper should do more than merely
top a leaderboard. Leaderboards provide a useful service by helping
the audience figure out how the proposed solution stacks up to the
competition, but that should be just a starting point to motivate a
more interesting discussion on why the proposed solution works as
well as it does. Such an explanation ought to call out some novel
insights that distinguish the proposed solution from the competition.

The proliferation of easy-to-game benchmarking in NLP that this discusses
is a particularly salient concern when discussing word order, and, particularly,
of reading too deep into model performance in the absence of word order. The
many issues with drawing conclusions based on model performance on test
suites have been discussed in the literature. McCoy et al. (2019) explain how
model decisions (in the context of entailment tasks) could often be the product
of simple heuristics that the model would learn to apply, rather than due to a
deeper understanding of language; Jia and Liang (2017) show how the insertion
of distracting sentences could affect model performance on question answering
tasks; numerous such examples exist for a variety of tasks. In light of this
debate, Ribeiro et al. (2020) describe the creation of comprehensive test suites
for different NLP tasks, inspired by unit tests in software engineering, that go
beyond mere accuracy – they show that state-of-the-art models (at the time)
exhibited considerably reduced performance on many such metrics. Bowman
and Dahl (2021) discuss four criteria that they believe NLU benchmarks ought to
satisfy, namely validity, reliable annotation, statistical power and disincentives
for biased models.

Contextualising what we now know, and summarising our view on the
necessity of word order in Paper IX, it is clear that several clues in training
corpora and architectural biases, combined with heuristically easy-to-solve
tasks, could contribute to the perception that word order could be unimportant,
and that we would benefit from deeper examinations in the context of tasks
more complex than GLUE.
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Relevance

Diving into the architecture of transformer language models and analysing
models along these lines became a logical follow-up to the more extrinsic
probing, over the course of our PhD. In Ravishankar et al. (2021a), we dove
into the attention/explanation debate. We backed up earlier work showing that
out-of-the-box, language modelling based attention may not necessarily encode
(syntactic) explanations; however, we showed that attention could be made to
encode syntax simply by fine-tuning on syntactically annotated data, across a
wide range of typologically diverse languages. We also analysed these results
to attempt to tease out which attention components actually contribute to this
learning process. Critically, we showed that this shift in attention being more
interpretable does not necessarily emerge due to changes in the key and query
components that make up attention weights. In our experiments, we first froze
transformer components during fine-tuning, and ran Raganato, Tiedemann,
et al.’s MST-based algorithm on our attention weights. We showed that while
allowing either key and query components (or both) to continue fine-tuning
could lead to an improvement in UUAS, it was the value components that
led to the most substantial changes in UUAS when fine-tuned. This also
furthers Kobayashi et al. (2020)’s claim that value vectors ought to be taken into
account when addressing attention as a mechanism.

In Ravishankar and Søgaard (2021), we shifted our gaze away from the
attentive components of the transformer to the embeddings layer, specifically
to position embeddings. We argued that while some of the recent innovation
in position embedding methods clearly resulted in improvements in model
capabilities on monolingual tasks, the absence of multilingual evaluation
also meant that we did not fully understand how these methods impact
multilingualism in a language model. We showed that the ‘perfect’ periodicity
in sinusoidal embeddings was a desirable property for multilingualism, as
it enabled better compositionality at arbitrary token offsets. We showed
that more complex embedding methods learnt more complex composition
functions, which we hypothesised could hurt compositional generalisability
across multiple languages.

Finally, in Abdou et al. (2022), we dove into the entire debate surrounding
the question of whether masked language models even need word order
information. We argued that they do: in doing so, we highlighted the gap in
performance in Sinha et al. (2021a) between language models trained on token-
scrambled corpora, and language models trained without position embeddings.
We showed that language models trained on scrambled corpora retained enough
word order information that a linear model built on top of LM representations
could accurately predict the distance between two tokens, as well as their order
in the sentence. This information could bleed into the model through certain
clues – BPE segmentation was a signal that order matters somewhat; there
could be natural language correlations between word use and sentence length;
having position embeddings could allow models to use the inductive bias that
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they provide to learn these clues given a large enough corpus. We also show
that there exist NLP tasks for which these clues were insufficient, and that
fully ordered transformers were critical; conversely, we showed that a large
chunk of mainstream NLP benchmarking tasks were solveable by (more or
less) overparameterised bag-of-words models, thereby adding to the literature
calling into question their usefulness as benchmarks.
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Chapter 5

In conclusion
I. Scientific outlook

Having gone into sufficient detail for each of the research threads we presented
in this thesis, we are now well-placed to revisit our original research questions,
and provide some form of answer to each of them. Summarising, therefore:

Research questions

1. What can we say about the influences that differences in training or
fine-tuning corpora have on the quality of multilingual language model
spaces?

First, in Paper I, we show that even a few annotated fine-tuning instances
can lead to substantial improvements on multilingual LM performance,
on a range of downstream tasks. We also stress that the costs of annotation
at these scales are low, and therefore recommend annotating wherever
possible, even when doing so for large datasets is unrealistic.

From Paper II, we can say that multilingual performance is affected by the
degree of compression applied to corpus size distributions, even when
controlling for the total number of tokens: a moderate level of compression,
in our experiments, showed the best results downstream. A caveat is that
these results may differ if one were to use different language models, or a
different training setup.

Finally, we show in Paper III that while cross-linguistic differences
in multilingual space quality do appear to exist, a more significant
contributing factor is differences at a corpus level: even when lemmatising
(to ablate away morphology) and scrambling sentences (to ablate away
syntax), models are capable of learning some degree of multilingualism;
this ability shows correlations with, for instance, type-token ratios, or
(negatively) to sentence length.

2. What linguistic properties can we extract from multilingual language
models?

In Paper IV, we adapt previously established tasks measuring linguistic
competence to a multilingual setup. We probe English language encoders
adapted to other languages via transfer learning; amongst other observa-
tions, we show that for certain phenomena, cross-linguistically transferred
encoders can be more transparent than baseline English encoders.
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In Paper V, we extend this setup to analyse deep pretrained language
models we then move on to probing existing multilingual language
models. We detail our findings and analyse them along the lenses of
language, encoder and task; one noteworthy observation is the absence of
any gap in performance between English and our other languages.

In Paper VI, we address work discussing the extractability of syntactic
structure from language models, and flip the question to address how the
choice of syntactic formalism affects this extractability across languages.
We show that there are clearly visible differences, such as that shallower
trees are easier to extract, and that the model thus prefers formalisms and
languages that feature shallower trees.

3. How do specific components within transformer-based language models
act in multilingual contexts?

First, in Paper VII, we analyse precisely how attention weights drift when
we fine-tune on annotated dependency syntax. We show that, uniformly
across languages, syntactic trees become easier to extract from attention
weights. We also show that, counterintuitively, if one were to freeze certain
components during fine-tuning, freezing the value components of the
attention mechanism has a greater effect on the extractability of syntactic
structure than freezing the key and query components that compose the
attention weights.

Next, in Paper VIII, we show that choosing simpler position embedding
methods tends to result in better multilingual performance: over-
engineered position embedding approaches drift further away from the
idealised sinusoidal embeddings, and we hypothesise that these hurt the
ability of language models to compose sentences, which consequently
hurts their cross-lingual transfer capabilities.

Finally, we conclude with Paper IX, where we address the active
conversation around training language models on scrambled corpora;
we show that even in these scenarios, there are several clues (such
as BPE tokenisation) that allow language models to effectively utilise
their position embeddings to learn to model word order. We further
demonstrate that there exist downstream tasks for which word order is
critical.

Research directions
Next, we zoom out and analyse the future research potential that we believe
each of our research threads has. A common observation made by people
working in (or tangential to) NLP is how fast the field is moving. In addition, a
thread that has unified university-based NLP research groups is that, partially
due to a lack of sufficient resources to carry out NLP research at scale, this
rapid change in the field of NLP tends to be driven by the private sector – a
gap that appears to be growing wider every year, with no signs of slowing
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down. This has only naturally led to many within the academic community
questioning what exactly we can achieve with limited resources, and precisely
what even the state of NLP research should look like, given that so many models
in deployment have parameter counts that make their analysis prohibitively
expensive1.

We therefore describe precisely those avenues of research where we believe
academia can provide insight that private research labs could (or would) not.

Multilingual spaces Suprisingly, given the popularity of multilingual language
models, research into the emergence and nature of multilinguality has
been relatively sparse – though it is plausible that this is due to the resource
constraints with training independent full-scale multilingual language
models. Our work, as well as much of the literature on multilingual
spaces, is far from conclusive; there is still a lot we do not know about
the nature of these spaces. A potential angle that we did not have the
opportunity to evaluate is the use of multilingual spaces bootstrapped on
synthetic languages; this ought to tie into the already-existing body of work
analysing language modelling on synthetic languages (Ravfogel et al.,
2019; White and Cotterell, 2021). Yet another interesting research domain
in this vein is the study of the effect that multilingual space quality can
have on monolingual tasks; although, particularly at academic budgets, it
is worth being wary of emergence (Wei et al., 2022), a phenomenon wherein
large language models begin exhibiting vastly improved capabilities
relevant to some task at some unpredictable point in training.

Probing Much ado has been made about the inherent difficulty of probing;
of the numerous challenges surrounding probe selection, probing task
design, and even interpreting the results of probing tasks (see Belinkov
(2022)). The increasing dominance of generative language models has
also led to the emergence of a new frame of analysis: that of prompting.
Rather than using parameterised probes to extract model information,
these models are fed input strings and instructed to generate a certain
output (Li et al., 2022); Liu et al. (2023) provide a survey of prompting
methods. We believe that prompting is a worthy ‘successor’ to the probing
paradigm, albeit still in its infancy; there is considerable potential for
research work on consistency in prompting, prompting from multilingual
perspectives, etc.

Another research domain we wish to emphasise is those specifically
inspired by the cognitive sciences. Examples of early such works
include Ettinger (2020); while these are still linguistic tasks, they are

1Note that these issues were very relevant even in the context of this thesis: consider, for instance,
how our studies on multilinguality tended to focus on our training models with substantially fewer
parameters than widely-used pretrained models (Ravishankar and Nivre, 2022; Ravishankar and
Søgaard, 2021; Ravishankar et al., 2021b), or focused entirely on fine-tuning, a less compute-intensive
operation (Lauscher et al., 2020; Ravishankar et al., 2021a)
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drawn from existing cognitive datasets, and as such also indicate human
performance on such tasks. Other works involve probing (or merely
evaluating) language models that have cognitive biases injected into their
learning or fine-tuning process (Abdou et al., 2021; Barrett et al., 2018;
Schwartz et al., 2019); Hollenstein et al. (2019) consolidate many such
works and analyse the effects of injective ‘human’ information, on a variety
of downstream tasks.

Architectural analyses It is hard to deny that language modelling architectures
over the last few years have relied less upon human or cognitive analogy,
and more upon empiricism. Indeed, transformer-based language models
have come a long way since Vaswani et al., and many innovations over the
original model have been a result of experimentation, enabled also by the
growth of the field of NLP in general. This somewhat haphazard mix of
components appears to ‘just work’; however, we know less and less about
why it works, how it works, and whether indeed this is the best way to go
about language modelling (Dong et al., 2021); while language modelling
appears to show consistent improvements with scale, it is unclear how
much of this is simply driven by larger training corpora. We posit that
only principled analyses of the behaviour of language model components
could help shed some light on their strengths and weaknesses, and help
adequately shape the direction of future research.

II. Societal Outlook

Having discussed the technical implications of our work, we now focus on the
social implications. Relevant to this is the role that big tech plays in setting the
direction of NLP research today; the economic background to this lies in the
years following the subprime mortgage crisis of 2008. The growth of big tech has
partially been driven by consequent monetary policies like quantitative easing,
which resulted in a decade and a half of near-zero interest rates. The resultant
ease of borrowing has led to an almost unprecedented accumulation of capital in
the tech sector in general (Fernandez et al., 2020) – capital accumulated through
financial mechanisms, rather than through meaningful innovation. The resultant
economic dominance of big tech in the past decade has therefore resulted in
their driving fundamental AI/NLP research, through their economic capacity
to pay for the infrastructure modern NLP needs, as well as to disburse grants
and fellowships at scale. This backdrop is crucial to understand the potential
harms that the deployment of multilingual language technology entails.

The growth of AI research at tech giants has been formidable; a subset of this
growth, relevant to NLP, has been through enabling language technology for
languages that have hitherto been neglected in the broader community (Joshi
et al., 2020). Examples of this push include Alphabet’s 1000 Languages2 and

2https://blog.google/technology/ai/ways-ai-is-scaling-helpful/

42

https://blog.google/technology/ai/ways-ai-is-scaling-helpful/


Meta’s No Language Left Behind3 initiatives. These seems like a commendable
goal, at least on the face of it: however, we cannot ignore the implications of
this progress being driven by big tech; in that light, we describe the issues with
the state of multilingual NLP, as it stands.

Consider, for instance, the existence of monopolistic platforms (like Face-
book). The economic conditions of the past decade have enabled digital service
providers to monopolise their sectors in the digital sphere – often through using
accumulated capital to fund mergers and acquisitions of potential competitors,
such as Meta’s acquisition of WhatsApp and Instagram, or Alphabet’s acqui-
sition of YouTube. In addition, their monopolistic status as platforms allows
them monopolistic access to user data; this allows for their growth through
network effects, or simply through their ability to provide better services on
account of the quantities of data they possess, leading to a feedback loop, as this
allows them access to even more data: a phenomenon that has been described
as platform capitalism (Srnicek, 2017). The fact that multilingual NLP research is
substantially driven by Alphabet and Meta must, therefore, be examined against
this backdrop. Recall that for both these corporations, the vast majority of their
revenue comes from advertising: that is, from the sale of data extracted from
users. In the context of multilingual NLP and their inclusivity goals, this sce-
nario effectively means that language communities are encouraged to provide
more of their own data to these platforms, acquiescing – often without informed
consent (Andreotta et al., 2022) – to turning themselves into data points, to be
sold to corporations4.

Harvey (2017) expands upon the Marxian concept of primitive accumula-
tion to describe accumulation via dispossession, wherein he posits that the con-
centration of capital in the hands of a few is enabled through the large-scale
commodification and privatisation of originally publicly held assets. This lens
has increasingly been applied to the commodification of data (Thatcher et al.,
2016), to argue that platforms are currently monetised by commodifying the
online activity of their users. The output of this activity is sold to advertisers,
thereby producing surplus value (Ekman, 2012, §3.2); this surplus value is a
byproduct of the appropriation of surplus labour (Marx, 1867/2004). Succinctly:
we spend our time on platforms, and in doing so, generate wealth for other peo-
ple. Within this mode of production, therefore, the push for broader language
support can thus also be seen as inevitable, in light of the fact that most as-yet-
unexploited sources of data come from speakers of underresourced languages,
in markets that large platforms seek to expand into. This commodification of
our social interactions is a reflection of the need for capital to constantly expand
into domains and regions as-yet unassimilated into capitalism (Luxemburg,
1913/2015).

It is reasonable to make the case that the growth of multilingual NLP can
be seen as a form of dual-use of technology, with both positive and negative

3https://ai.facebook.com/research/no-language-left-behind/
4Often, given sufficient penetration of platform technology into a society, even explicit

non-consent becomes ineffective for individual anonymisation, as individual patterns can be
inferred (Tufekci, 2019).
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potential uses. It should certainly be uncontroversial to say that many deployed
use-cases of NLP are legitimately useful, and that the expansion of NLP to
cover as-yet underresourced languages certainly has the potential to benefit
speakers of those languages. It is, however, becoming increasingly and
uncomfortably foregrounded that under the current paradigm of technological
growth, the negatives of the spread of multilingual NLP may outweigh the
positives. For instance, Facebook as a platform sees dynamic growth in as-
yet unexplored markets, often through the spread of platforms that Meta
acquires (such as Instagram) and through the development of better language
technology; simultaneously, having infiltrated these markets, Meta’s "state-of-
the art" multilingual models somehow manage to allow genocidal content to slip
through the cracks in countries as diverse as Myanmar (Milmo, 2021) (where
they have been sued for enabling the Rohingya genocide), Kenya (Miriri, 2022),
India (Perrigo, 2020), and even Norway (Støyva, 2022) – a highly developed
nation with robust institutions. Given what we know of the capabilities of
multilingual language technology and Meta’s focus on multilingual NLP, we
cannot simply look at this as a consequence of the technology not "being there"
yet: these hate speech oversights are simply part of Meta’s business model (Lauer,
2021), as they are what drives engagement.

Future work on multilingual NLP must, therefore, be grounded in critique
of precisely this tendency on part of big tech: while it is tempting to look at
the growth of multilingual NLP as benevolent inclusivity, the fact that this
inclusivity is driven by Alphabet and Facebook means that this technology
potentially causes more problems than it solves.

III. The state of NLP discourse
At this point, we step away from the core analyses deriving from this thesis
and draw the reader’s attention to the state of NLP research as of early 2023.
Observations about the speed of innovation in NLP have been validated yet
again at precisely the time of our writing this thesis, with the release of closed-
source massively-parameterised conversational models. In this section, we
describe what we believe the future of the academic NLP research landscape
should look like; in doing so, it is impossible for us to ignore the elephant in the
room, i.e., models like OpenAI’s ChatGPT.

At the time of our writing this work, conversational AI models like ChatGPT
have suddenly been brought into the public consciousness, and despite it
being somewhat tangential to our focus, the existence of these models will
unquestionably significantly affect the NLP research horizon. The ability of
these models to generate semi-factual information with near-human fluency
has been received both with excitement and with alarm, for the potential
societal harms this easy-to-generate content could entail. Already, much has
been written precisely about these tradeoffs, with suggestions such as better
governmental regulation for where these models can be used; we refer the
reader to van Dis et al. (2023) for one such recent summary. In this section,
we instead focus on what we believe to be the societal factors that lead to the
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concentrated investment and hype surrounding these models, and on the effect
this has on academia.

In order to do so, we draw the reader’s attention to what ChatGPT represents,
not in terms of its text-generation capabilities, but in terms of the investment
priorities of its funding parties. The enthusiasm surrounding research into
these systems has two effects. First, large corporations and angel investors,
having accumulated billions of dollars (often from their sale of user data),
proceed to re-invest these profits into seeking to automate away precisely those
forms of labour that are not assimilated into the system of wage labour. This,
in turns, drives the increasing marginalisation of broader chunks of society
into a precariat. Consider, for instance, the enthusiasm around ChatGPT as
a ‘replacement’ for writers, or poets, or musicians (in parallel with image
generation models replacing artists). The critical point here is not whether or not
ChatGPT is capable of replacing these professions yet – it is that billions of dollars
are being enthusiastically spent on technology that, under our current economic
paradigm, serves to marginalise a growing body of workers and artists en masse
into an ever-growing proletariat. Second, the incidental increases in labour
productivity that this automation heralds for wage labourers are fundamentally
undemocratic: they do not result in a genuine improvement in labour conditions,
nor are the profits that automation entails socialised. To the contrary, they are
co-opted by the capitalist class, while labour conditions consistently worsen,
leading to the rapid acceleration of wealth inequality.

Next, we draw the reader’s attention to how the material advantage that the
haphazard deployment of AI presents to the capitalist class has a substantial
effect on culture. The cultural hegemony of techno-optimistic investors serves
to a) disseminate their market logic into the public consciousness, and b) make
their values seem like ‘neutral’ scientific progress. In NLP/AI, this hegemony
is maintained by a class of intellectuals vocal in AI culture, from movements
as seemingly diverse as AI risk, or longtermist think-tanks. The increasing
integration of this hegemonic class into the class of media intellectuals leads
to further amplification and normalisation of their philosophy (Herman and
Chomsky, 2010), and eventually, hype surrounding the use and deployment
of these models begins to dominate even academic discourse. It is critical
to be aware of why this happens; while debates regarding the ethics of NLP
systems exist, we also ought to be more conscious of the sparsity of discourse
regarding the influence of the base on the superstructure5 that drives NLP research
through its chokehold on AI culture. An inordinate focus on the culture
wars that dominate discourse around large language models is ultimately
counterproductive – in the end, this culture is a purely cynical attempt to
further entrench the material relations enabled by the haphazard deployment of
AI.

5The terms base and superstructure refer to the Marxian division of society (Marx, 1859 / 1978),
the former relating to the mode of production in a society, and the latter describing societal
institutions – culture, law, religion, etc. – that worked to justify the existence of the base; of a certain
mode of production. Thus, the base would shape the superstructure, while the superstructure
would maintain the base, through leveraging its hegemony (Gramsci, 1948 / 2007) over culture.
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IV. The way forward
So where does this leave us? While the last two sections may have painted a
pessimistic picture, our current trajectory is far from inevitable. On a scientific
front, we see countless opportunities – many related to the research threads
in this thesis – in fields ranging from explainability to cognitive science. We
do not advocate for neo-Luddism; multilingual NLP has resulted in numerous
very useful tools for speakers of underresourced languages, and intepretability
studies on models have contributed substantially to our understanding of
how these models function, which is a scientifically critical goal. At the same
time, quiet acceptance of the inevitability of the large-scale deployment of
these language models without regard to the consequences, economic or social,
mirrors the broader societal internalisation of the inevitability of our present
economic reality (Fisher, 2009), and is ultimately unhelpful.

Even though the resource gap between academia and the industry seems
unlikely to close in the foreseeable future, we posit that there is substantial
research potential within academia and describe some such avenues of research.
We advocate for an academic shift away from the current paradigm of
treating academia as state-funded training grounds for big tech corporations
– incidentally, the very same corporations that prolifically avoid paying
taxes (Regan, 2020). Further, we go as far as suggesting that there is no real
point in academia trying to compete with the private sector: the proliferation
of privately funded research labs is a relatively modern phenomenon, and
particularly in research domains where fundamental research can potentially
result in marketable products, it is abundantly clear that academia cannot hope
to close the gap with the private sector – at the very least, not without becoming
a tax-funded industry outpost.

Instead, we advocate for a clearer demarcation of the roles of academia
and the industry in the context of NLP, and advocate for increased academic
engagement with civil society, and increased communication with policymakers,
legal experts, journalists, etc. Very often, there is a disconnect between
governmental AI regulatory authorities, or even independent AI watchdogs,
and actual AI research, particularly where model intepretability is concerned:
this disconnect has resulted in relatively ignorant policy positions like advocacy
for "algorithmic transparency", which is meaningless in the context of large
models that infer based on the biases present in their gigabytes of uncurated
training data. Further, while there is already much academic discussion
surrounding the dangers and potential harms of the deployment of ChatGPT-
scale language models, it appears to be mostly restricted to academic silos, with
little cross-pollination with legal and policy experts. We therefore advocate
for the future of NLP academia to fill precisely this niche, and to improve
communication between the research community and regulatory spaces, in
order for civil society to better understand the impact of the deployment of AI
on itself.
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I

Abstract

Massively multilingual transformers (MMTs) pretrained via language
modeling (e.g., mBERT, XLM-R) have become a default paradigm for zero-
shot language transfer in NLP, offering unmatched transfer performance.
Current evaluations, however, verify their efficacy in transfers (a) to
languages with sufficiently large pretraining corpora, and (b) between
close languages. In this work, we analyze the limitations of downstream
language transfer with MMTs, showing that, much like cross-lingual word
embeddings, they are substantially less effective in resource-lean scenarios
and for distant languages. Our experiments, encompassing three lower-
level tasks (POS tagging, dependency parsing, NER) and two high-level
tasks (NLI, QA), empirically correlate transfer performance with linguistic
proximity between source and target languages, but also with the size of
target language corpora used in MMT pretraining. Most importantly, we
demonstrate that the inexpensive few-shot transfer (i.e., additional fine-
tuning on a few target-language instances) is surprisingly effective across
the board, warranting more research efforts reaching beyond the limiting
zero-shot conditions.
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I.1 Introduction and Motivation

Labeled datasets of sufficient size support supervised learning in NLP. The
notorious tediousness, subjectivity, and cost of linguistic annotation (Dandapat
et al., 2009; Fort, 2016; Sabou et al., 2012), coupled with plethora of structurally
different NLP tasks, lead to existence of such datasets only for a handful of
resource-rich languages (Bender, 2011; Joshi et al., 2020; Ponti et al., 2019). This
data scarcity renders the need for effective cross-lingual transfer strategies: how
can we exploit abundant labeled data from resource-rich languages to make
predictions in resource-lean languages? In the most extreme scenario, termed
zero-shot cross-lingual transfer, not a single labeled instance exists for a target
language. Recent work has placed much emphasis on this scenario exactly;
in theory, it offers the widest portability across the world’s 7,000+ languages
(Artetxe et al., 2020b; Cao et al., 2020; Hu et al., 2020; Lin et al., 2019; Pires et al.,
2019).

The current mainstay of cross-lingual transfer in NLP are approaches
based on continuous cross-lingual representation spaces such as cross-lingual
word embeddings (CLWEs) (Ruder et al., 2019) and, most recently, massively
multilingual transformer networks (MMTs), pretrained on multilingual corpora
with language modeling (LM) objectives (Conneau et al., 2020; Devlin et al.,
2019; Lample and Conneau, 2019). The latter have de facto become the default
language transfer paradigm, with multiple studies reporting their unparalleled
transfer performance Karthikeyan et al., 2020; Pires et al., 2019; Rönnqvist et al.,
2019; Wu and Dredze, 2019; Wu et al., 2020.

Key Questions and Contributions. In this work, we dissect the current state-of-
the-art MMT-based approach to (zero-shot) cross-lingual transfer, and analyze
a variety of conditions and factors that critically impact or limit effective
cross-lingual transfer. Our aim is to provide answers to the following crucial
questions.

(Q1) What is the role of language (dis)similarity and language-specific corpora size in
pretraining?

Current cross-lingual transfer via MMTs is still primarily focused on either
(1) languages that are typologically or etymologically close to English (e.g.,
German, Scandinavian languages, French, Spanish), or (2) languages with large
monolingual corpora, well-represented in the multilingual pretraining corpora
(e.g., Arabic, Hindi, Chinese). Wu et al. (2020) suggest that LM-pretrained
transformers, much like static word embeddings models, produce topologically
similar representation spaces that can easily be aligned between languages,
offering this as explanation of language transfer efficacy of MMTs. However,
transfer with static CLWEs has been shown ineffective between dissimilar
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languages (Søgaard et al., 2018; Vulić et al., 2019) or languages with small
corpora (Vulić et al., 2020).

We thus scrutinize MMTs in diverse zero-shot transfer settings and find,
in line with prior work on CLWEs, that MMTs’ transfer performance critically
depends on (1) linguistic (dis)similarity between the source and target language
and (2) size of the pretraining corpus of the target language.

(Q2) What is the role of a particular task in consideration for transfer performance?
We conduct all analyses across five different tasks, which we roughly divide
into two groups: (1) “low-level” tasks (POS-tagging, dependency parsing, and
NER); and (2) “high-level” language understanding (LU) tasks (NLI and QA).
We show that transfer performance in both zero-shot and few-shot scenarios
largely depends on the “task level”.

(Q3) Can we (even) predict transfer performance?
Running a simple regression on available transfer results, we show that we can
(roughly) predict the transfer performance from (1) language proximity (Littell
et al., 2017) for low-level tasks; (2) combination of language proximity and size
of target-language pretraining corpora for high-level tasks.

(Q4) Should we focus more on few-shot transfer scenarios and quick annotation cycles?

Complementing the efforts on improving zero-shot transfer (Cao et al., 2020),
we point to few-shot transfer as a very effective mechanism for improving
target-language performance. Similar to the seminal “pre-neural” work of
Garrette and Baldridge (2013), our results suggest that only several hours (or
even minutes) of annotation work can “buy” substantial performance gains for
low-resource targets. For all five tasks in our study, we obtain substantial (and
in some cases surprisingly large) improvements with minimal annotation effort.
For instance, we improve dependency parsing for some target languages up
to 40 UAS points with as few as 10 target language sentences. Crucially, the
few-shot gains are most pronounced exactly where zero-shot transfer fails: for
distant target languages with small monolingual corpora.

I.2 Background and Related Work

For completeness, we provide a brief overview of 1) cross-lingual transfer
approaches, with a focus on 2) massively multilingual transformer (MMT)
models, and then 3) position our work w.r.t. other studies that examine different
properties of MMTs.

I.2.1 Cross-Lingual Transfer Paradigms
Language transfer entails representing texts from both the source and target
language in a shared cross-lingual space. Transfer paradigms based on discrete
text representations include machine translation (MT) of target language text
to the source language (or vice-versa) (Eger et al., 2018; Mayhew et al., 2017),
and grounding texts from both languages in multilingual knowledge bases (KBs)
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(Lehmann et al., 2015; Navigli and Ponzetto, 2012). While reliable MT hinges on
availability of large parallel corpora, transfer via multilingual KBs (Camacho-
Collados et al., 2016; Mrkšić et al., 2017) is impaired by the limited KB coverage
and inaccurate entity linking (Moro et al., 2014; Raiman and Raiman, 2018).

Therefore, recent years have seen a surge of language transfer methods based
on continuous representation spaces. The previous state-of-the-art, cross-lingual
word embeddings (CLWEs) (Ammar et al., 2016; Artetxe et al., 2017; Glavaš
et al., 2019; Mikolov et al., 2013; Smith et al., 2017; Vulić et al., 2019) and sentence
embeddings (Artetxe and Schwenk, 2019), have most recently been replaced
by massively multilingual transformers (MMTs) pretrained with LM objectives
(Conneau et al., 2020; Devlin et al., 2019; Lample and Conneau, 2019).

I.2.2 Massively Multilingual Transformers

Multilingual BERT (mBERT). At BERT’s (Devlin et al., 2019) core is a
multi-layer transformer network (Vaswani et al., 2017), parameters of which
are pretrained using masked language modeling (MLM) and next sentence
prediction (NSP). In MLM, some tokens are masked out and they need to
be recovered from the context; NSP predicts adjacency of sentences in text,
informing the transformer of longer dependencies, beyond sentence boundaries.
Liu et al. (2019) introduce RoBERTa, a more robust instance of BERT trained on
larger corpora using only the MLM objective. Multilingual BERT (mBERT) is
an instance of BERT trained on concatenation of 104 largest Wikipedias. The
effects of underfitting for languages with small Wikipedias and overfitting to
languages with large Wikipedias, are respectively attenuated with exponentially
smoothed up-sampling and down-sampling.

XLM on RoBERTa (XLM-R). XLM-R (Conneau et al., 2020) is an instance of
RoBERTa, robustly trained on a large multilingual CommonCrawl-100 (CC-100)
corpus (Wenzek et al., 2019) covering 100 languages. mBERT’s corpus and
CC-100 share 88 languages, with corresponding CC-100’s portions being much
larger than mBERT’s Wikipedias.

The “Curse of Multilinguality”. For XLM-R, Conneau et al. (2020) observe
that for a fixed model capacity, downstream cross-lingual transfer improves
with more pretraining languages up to a point after which adding more
pretraining languages hurts downstream transfer. This effect, termed the “curse
of multilinguality”, can be mitigated by increasing model’s capacity (Artetxe
et al., 2020b) or additional training for particular language pairs (Pfeiffer et al.,
2020). This points to MMTs’ capacity (i.e., computational budgets), as a critical
factor for effective zero-shot transfer.

In contrast, we identify few-shot transfer as a much more cost-effective
strategy for improving downstream target language performance (§I.4). We
show for a number of target languages and downstream tasks, that one can
obtain large performance gains at very small annotation cost, without having to
pretrain from scratch an MMT of larger capacity.
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I.2.3 Cross-Lingual Transfer with MMTs

A body of recent work probed the knowledge encoded in MMTs, primarily
mBERT. Libovickỳ et al. (2020) analyze language-specific versus language-
universal knowledge encoded in mBERT. Pires et al. (2019) demonstrate mBERT
to be effective for POS-tagging and NER zero-shot transfer between related
languages. Wu and Dredze (2019) extend this analysis to more tasks and
languages, and show that mBERT-based transfer is on a par with the best
task-specific zero-shot transfer approaches. Similarly, Karthikeyan et al. (2020)
prove mBERT to be effective for NER and NLI transfer to Hindi, Spanish, and
Russian.1 Importantly, they show that transfer effectiveness does not depend
on the vocabulary overlap between the languages.

In most recent work, concurrent to this, Hu et al. (2020) introduce XTREME,
a benchmark for evaluating multilingual encoders encompassing 9 tasks and
40 languages.2 While the primary focus is a large-scale zero-shot transfer
evaluation, they also experiment with target-language fine-tuning (1,000
instances for POS and NER). While Hu et al. (2020) focus on the evaluation
aspects and protocols, in this work, we provide a more detailed analysis of the
factors that hinder effective zero-shot transfer across several tasks.3 We also put
more emphasis on few-shot transfer, and approach it differently: by sequentially
fine-tuning MMTs, first on (larger) source language training data and then on
few target-language instances.

Artetxe et al. (2020b) and Wu et al. (2020) analyze different monolingual
BERTs to explain transfer efficacy of mBERT. They find topological similarities
between monolingual spaces, suggesting these are responsible for effective
language transfer with MMTs. In essence, their work recasts the well-known
assumption of approximate isomorphism of monolingual representation spaces
(Søgaard et al., 2018). For CLWEs, this assumption does not hold for distant
languages (Søgaard et al., 2018; Vulić et al., 2019), and in face of monolingual
corpora of small size (Vulić et al., 2020). We demonstrate that the same is the
case for zero-shot language transfer with MMTs: target-language performance
drastically decreases as we move to more distant target languages with smaller
pretraining corpora.

I.3 Zero-Shot Transfer: Analyses

We first address Q1 and Q2 (see §I.1): we conduct zero-shot language transfer
experiments for five different tasks and analyze the factors behind the varying
performance drops across target languages.

1Note that all three are high-resource Indo-European languages with large Wikipedias.
2Note that none of the individual tasks in XTREME covers all 40 languages, but much smaller

language subsets.
3We leave an even more general analysis that combines transfer both across tasks (Glavaš and

Vulić, 2020; Pruksachatkun et al., 2020) and across languages for future work.
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I.3.1 Experimental Setup
Tasks and Languages. We experiment with – a) low-level structured prediction
tasks: POS-tagging, dependency parsing, and NER and b) high-level language
understanding (LU) tasks: NLI and QA. We investigate if the factors that drive
transfer performance differ between the two task groups.

Dependency Parsing (DEP). We use Universal Dependency treebanks (UD, Nivre
et al., 2017) for English and following target languages (from 8 language
families): Arabic (AR), Basque (EU), (Mandarin) Chinese (ZH), Finnish (FI),
Hebrew (HE), Hindi (HI), Italian (IT), Japanese (JA), Korean (KO), Russian (RU),
Swedish (SV), and Turkish (TR).

Part-of-speech Tagging (POS). Again, we use UD and obtain the Universal POS-tag
(UPOS) annotations from the same treebanks as with DEP.

Named Entity Recognition (NER). We resort to the NER WikiANN dataset from
Rahimi et al. (2019). We experiment with the same set of 12 target languages as
in DEP and POS.

Cross-lingual Natural Language Inference (XNLI). We evaluate on the XNLI corpus
(Conneau et al., 2018) created by translating dev and test portions of the English
Multi-NLI dataset (Williams et al., 2018) into 14 languages by professional
translators (French (FR), Spanish (ES), German (DE), Greek (EL), Bulgarian (BG),
Russian (RU), Turkish (TR), Arabic (AR), Vietnamese (VI), Thai (TH), Chinese
(ZH), Hindi (HI), Swahili (SW), and Urdu (UR)).

Cross-lingual Question Answering (XQuAD). We rely on the XQuAD dataset
(Artetxe et al., 2020b), created by translating the 240 dev paragraphs (from 48
documents) and corresponding 1,190 QA pairs of SQuAD v1.1 (Rajpurkar et al.,
2016) to 11 languages (ES, DE, EL, RU, TR, AR, VI, TH, ZH, and HI). In order to
allow for a comparison between zero-shot and few-shot transfer (see §I.4), we
reserve 10 documents as the development set for our experiments and evaluate
on the remaining 38 articles.4

Fine-tuning. For higher-level tasks, we perform standard downstream fine-
tuning of LM-pretrained mBERT and XLM-R. For lower-level tasks, we instead
freeze the transformer and train only task-specific classifiers.5,6

We add the following task-specific architectures on top of MMTs: for DEP
we add the biaffine parsing head (Dozat and Manning, 2017; Kondratyuk and
Straka, 2019); for POS, we attach a simple feed-forward token-level classifier; for

4As a general note, while the effects of “translationese” might have some impact on the absolute
numbers (Artetxe et al., 2020c), they are not prominent enough to have any impact on the relative
trends in the reported results (e.g., zero-shot vs. few-shot performance). For both XNLI and XQuAD,
the translations were done completely manually and not via post-editing of MT (which would pose
a higher “translationese” risk). Moreover, having an independently created test set in each language
would impede comparability across languages.

5This gave slightly better performance than fine-tuning.
6We tokenize the input for each model with the corresponding pretrained fixed-vocabulary

tokenizer: WordPiece tokenizer (Wu et al., 2016) with the vocabulary of 110K tokens for mBERT,
and the SentencePiece BPE tokenizer (Sennrich et al., 2016) with the vocabulary of 250K tokens for
XLM-R.
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EN
ZH TR RU AR HI EU FI HE IT JA KO SV VI TH ES EL DE FR BG SW UR

Task Model EN ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

DEP B 91.2 -43.9 -46.0 -28.1 -56.4 -36.1 -50.2 -30.7 -36.1 -17.1 -60.1 -56.1 -14.3 - - - - - - - - -
X 92.0 -85.4 -44.2 -29.7 -54.6 -39 -49.5 -26.7 -39 -23.5 -80.5 -56.0 -16.3 - - - - - - - - -

POS B 95.8 -38.0 -35.9 -16.0 -40.1 -33.4 -34.6 -21.9 -33.4 -19.8 -46.1 -42.0 -9.6 - - - - - - - - -
X 96.3 -69.2 -27.7 -14.3 -37.1 -27.3 -31.9 -17.9 -27.3 -19.0 -77.0 -37.3 -10.7 - - - - - - - - -

NER B 92.4 -23.3 -11.6 -10.7 -31.7 -11.1 -12.8 -3.8 -11.1 -2.6 -25.7 -13.8 -6.7 - - - - - - - - -
X 91.6 -34.8 -6.2 -13.7 -24.6 -16.5 -8.0 -0.9 -16.5 -2.4 -30.1 -15.6 -2.2 - - - - - - - - -

XNLI B 82.8 -13.6 -20.6 -13.5 -17.3 -21.3 - - - - - - - -11.9 -28.1 -8.1 -14.1 -10.5 -7.8 -13.3 -33.0 -23.4
X 84.3 -11.0 -11.3 -9.0 -13.0 -14.2 - - - - - - - -9.7 -12.3 -5.8 -8.9 -7.8 -6.1 -6.6 -20.2 -17.3

XQuAD B 71.1 -22.9 -34.2 -19.2 -24.7 -28.6 - - - - - - - -22.1 -43.2 -16.6 -28.2 -14.8 - - - -
X 72.5 -26.2 -18.7 -15.4 -24.1 -22.8 - - - - - - - -19.7 -14.8 -14.5 -15.7 -16.2 - - - -

Table I.1: Zero-shot cross-lingual transfer performance on five tasks (DEP,
POS, NER, XNLI, and XQuAD) with mBERT (B) and XLM-R (X). We show
the monolingual EN performance and report drops in performance relative to
EN for all target languages. Numbers in bold indicate the largest zero-shot
performance drops for each task.

NER, we feed MMT’s token-level outputs to a CRF classifier, similar to Peters
et al. (2017). For XNLI, we apply a simple softmax classifier on the vector of
the sequence start token ([CLS] for mBERT; <s> for XLM-R); for XQuAD, we
pool MMT’s representations of all subwords and input it to a span classification
head – a linear layer computing the start and the end of the answer.

Training and Evaluation Details. We experiment with mBERT Base cased and
XLM-R Base, both with L = 12 transformer layers, hidden state size of H = 768,
and A = 12 self-attention heads.

For XNLI, we limit the inputs to T = 128 subword tokens and train in
batches of 32 instances. For XQuAD, we limit paragraphs to T = 384 tokens
and questions to Q = 64 tokens. We slide over paragraphs with a window of
128 tokens and train in batches of size 12. For XNLI and XQuAD, we search the
following hyperparameter grid: learning rate λ ∈ {5 · 10−5, 3 · 10−5}; training
epochs n ∈ {2, 3}. For DEP, POS and NER, we fix the number of training epochs
to 20. We train in batches of 32 sentences, with maximal length of T = 512
subword tokens. We optimize all models with Adam (Kingma and Ba, 2015).

We report DEP performance in terms of Unlabeled Attachment Scores
(UAS).7 For POS, NER, and XNLI we report accuracy, and for XQuAD, we
report the Exact Match (EM) score.

I.3.2 Results and Preliminary Discussion
A summary of the zero-shot cross-lingual transfer results, per target language,
is provided in Table I.1. As expected, we observe drops in performance for all
tasks and all target languages w.r.t. reference EN performance. However, the
drops vary greatly across languages. For example, NER (mBERT) drops mere

7Using Labeled Attachment Score (LAS) would make differences in annotation schemes between
languages a confounding factor and impede our analysis of effects of language proximity and size
of the target language corpora.
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2.6% for IT, but enormous 32% for AR; XNLI transfer (XLM-R) yields a moderate
6.1% drop for FR, but a large 20% drop for SW, etc.

At first glance, it appears – as suggested in prior work – that the transfer
drops primarily correlate with language proximity: they are more pronounced
for languages that are more distant from EN (e.g., JA, ZH, AR, TH, SW). While
we see no notable exception to this in the three lower-level tasks, language
proximity alone does not explain many of the XNLI and XQuAD results. For
instance, RU XNLI (for both mBERT and XLM-R) is comparable to that of ZH,
and lower than that for HI and UR: this is despite the fact that, as Indo-European
languages, RU, HI, and UR are linguistically closer to EN than ZH. Similarly, we
observe comparable performance on XQuAD for TH, RU, and ES.

I.3.3 Analysis
For each task, we now analyze the correlations between transfer performance
and a) several measures of linguistic proximity (i.e., similarity) between
languages and b) the size of MMT pretraining corpora of each target language.

Language Vectors and Corpora Sizes. For estimates of linguistic similarity,
we rely on language vectors from LANG2VEC, which encode various linguistic
features from the URIEL database (Littell et al., 2017). We consider the following
LANG2VEC vectors: syntax (SYN) vectors encode syntactic properties, e.g., if
a subject appears before or after a verb; phonology (PHON) vectors encode
phonological properties such as the consonant-vowel ratio; inventory (INV)
vectors denote presence or absence of natural classes of sounds (e.g., voiced
uvulars); FAM vectors encode memberships in language families; and GEO
vectors express orthodromic distances for languages w.r.t. fixed points on the
Earth’s surface. Language proximity is computed as cosine similarity between
the languages’ corresponding LANG2VEC vectors: each vector type (e.g., SYN)
produces one similarity score (i.e., feature). We couple LANG2VEC features with
the z-normalized size of the target language corpus used in MMT pretraining
(SIZE).8

Correlation Analysis. We first correlate individual features with the zero-
shot transfer scores for each task and show the results in Table I.2. Quite
intuitively, the zero-shot performance for low-level syntactic tasks – POS and
DEP – highly correlates with syntactic language similarity (SYN). SYN also
correlates well with transfer results for high-level tasks (except with XLM-
R results on XQuAD). Somewhat surprisingly, the phonological language
similarity (PHON) correlates best with transfer performance with XLM-R, for
all tasks except XNLI, and also for mBERT on POS. For both high-level tasks and
both MMTs, we observe very high correlations between transfer performance
and size of pretraining corpora of the target language (SIZE). In contrast, SIZE
exhibits lower correlations for lower-level tasks (DEP, POS, NER). We believe
that this reflect the fact that high-level LU tasks rely on rich representations of

8For XLM-R, we take reported sizes of language-specific CC-100 portions (Conneau et al., 2020);
for mBERT, we work with sizes of language-specific Wikipedias.
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SYN PHON INV FAM GEO SIZE

Task Model P S P S P S P S P S P S

DEP XLM-R 0.77 0.78 0.83 0.77 0.46 -0.04 0.68 0.61 0.80 0.81 0.62 0.47
mBERT 0.92 0.91 0.79 0.74 0.55 -0.01 0.76 0.62 0.64 0.69 0.79 0.59

POS XLM-R 0.68 0.79 0.81 0.81 0.38 0.02 0.58 0.74 0.80 0.73 0.54 0.46
mBERT 0.90 0.87 0.86 0.81 0.57 0.02 0.82 0.80 0.66 0.72 0.47 0.39

NER XLM-R 0.49 0.49 0.80 0.83 0.27 0.14 0.47 0.55 0.77 0.81 0.37 0.35
mBERT 0.60 0.74 0.81 0.84 0.34 -0.04 0.53 0.58 0.59 0.73 0.42 0.38

XNLI XLM-R 0.88 0.90 0.29 0.27 0.31 -0.11 0.63 0.54 0.54 0.74 0.70 0.76
mBERT 0.87 0.86 0.21 0.08 0.29 0.04 0.61 0.47 0.55 0.67 0.77 0.91

XQuAD XLM-R 0.69 0.53 0.85 0.81 0.62 -0.01 0.81 0.54 0.43 0.50 0.81 0.55
mBERT 0.84 0.89 0.56 0.48 0.55 0.22 0.79 0.64 0.51 0.55 0.89 0.96

Table I.2: Correlations between zero-shot transfer performance with mBERT and
XLM-R for different downstream tasks with linguistic proximity features (SYN,
PHON, INV, FAM and GEO) and pretraining size of target-language corpora
(SIZE). Results reported in terms of Pearson (P) and Spearman (S) correlation
coefficients.

Task Model Selected features P S MAE

POS
X PHON (.75); GEO (.25) 0.77 0.75 10.99
B SYN (.99) 0.94 0.90 4.60

DEP
X

PHON (.25); SYN (.18)
0.81 0.89 10.14

GEO (.57)
B SYN(.99) 0.93 0.92 5.77

NER
X PHON(.99) 0.80 0.88 4.64
B PHON(.99) 0.69 0.82 9.45

XNLI
X SYN (.51); SIZE (.49) 0.84 0.85 2.01

B
SYN (.35); SIZE (.34),

0.89 0.90 2.78
FAM (.31)

XQuAD
X PHON (.99) 0.95 0.83 2.89
B SIZE (.99) 0.89 0.93 4.76

Table I.3: Results of the meta-regression analysis, i.e., predicting zero-shot
transfer performance for mBERT (B) and XLM-R (X). For each task-model pair
we list only features with weights≥ 0.01. P=Pearson; S=Spearman; MAE=Mean
Absolute Error.

semantic phenomena of a language, whereas low-level tasks require simpler
structural representation of a language – it simply takes more distributional
data to acquire the former than the latter.
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Meta-Regression. Across the tasks, we observe high correlations between zero-
shot transfer results and several features (e.g., SYN, PHON and SIZE). We next
test if we can predict the transfer performance for a new language, by (linearly)
combining individual features. For each task, we fit a linear regression using
transfer results for target languages as labels. With only between 11 and 14
target languages (i.e., instances for fitting the regressor) per task, we resort
to leave-one-out cross-validation (LOOCV) to obtain correlations for feature
combinations. We perform greedy forward feature selection: in each iteration
we add the feature which boosts correlation (obtained via LOOCV) the most;
we stop when none of the remaining features further improves the Pearson
correlation.

We summarize the results of this meta-regression analysis in Table I.3. For
each task-model pair, we list features selected with the greedy feature selection
and show (normalized) weights assigned to each feature. Except for NER,
combinations of features manage to yield higher correlations with zero-shot
transfer results than any of the features on their own. These results empirically
confirm our previous intuition that linguistic proximity between the source
and target language only partially explains zero-short transfer performance.
On XNLI, transfer performance is best explained with the combination of
structural similarity between languages (SYN) and the size of the target-
language pretraining corpora (SIZE); on XQuAD with mBERT, SIZE alone
best explains zero-short transfer scores. Note that the features are mutually
quite correlated as well (e.g., languages closer to EN also tend to have larger
pretraining corpora): thus if the regressor selects only one feature, this does not
mean that other features do not correlate with transfer performance (as shown
by Table I.2).

The coefficients in Table I.3 again indicate the importance of SIZE for the
language understanding tasks and highlight our core finding: pretraining
corpora sizes are stronger features for predicting zero-shot performance in
higher-level tasks, whereas the results in lower-level tasks are more affected by
typological language proximity.

I.4 From Zero to Hero: Few-Shot

Motivated by the low zero-shot transfer performance for many tasks and
languages obtained in §I.3, we now investigate Q4 from §I.1: we aim to mitigate
transfer losses with inexpensive few-shot cross-lingual transfer.

Experimental Setup. We rely on the same models, tasks, and evaluation
protocols as described in §VIII.3. However, instead of fine-tuning the MMTs on
task-specific data in EN only, we continue the fine-tuning process by feeding k
additional training examples randomly chosen from reserved target language
data portions, disjoint with the test sets.9 For our low-level tasks, we compare

9Note that for XQuAD, we performed the split on the article level to avoid topical overlap.
Consequently, for XQuAD k refers to the number of articles.
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k k = 10 k = 50 k = 100 k = 500 k = 1000

Task Model k = 0 score ∆ score ∆ score ∆ score ∆ score ∆

DEP MBERT 52.96 66.69 13.73 72.67 19.70 74.8 21.84 80.47 27.5 82.74 29.77
XLM-R 48.60 65.57 16.97 72.19 23.59 74.08 25.48 81.16 32.56 83.33 34.73

POS MBERT 67.2 80.17 12.96 85.34 18.14 87.09 19.88 91.16 23.96 92.64 25.44
XLM-R 65.5 80.68 15.18 85.7 20.2 87.59 22.09 91.35 25.85 92.80 27.3

NER MBERT 79.34 83.18 3.84 84.54 5.20 85.25 5.91 87.9 8.56 89.31 9.97
XLM-R 85.43 88.06 2.63 91.07 5.64 91.49 6.06 93.69 8.26 93.82 8.39

XNLI MBERT 65.92 65.89 -0.03 65.08 -0.84 64.92 -1.00 67.41 1.49 68.16 2.24
XLM-R 73.32 73.73 0.41 73.76 0.45 75.03 1.71 75.34 2.02 75.84 2.52

k = 2 k = 4 k = 6 k = 8 k = 10

XQUAD MBERT 45.62 48.12 2.50 48.66 3.04 49.34 3.72 49.91 4.29 50.19 4.57
XLM-R 53.68 53.73 0.05 53.84 0.17 54.76 1.08 55.56 1.88 55.78 2.10

Table I.4: Results of the few-shot experiments with varying numbers of target-
language examples k. For each k, we report performance averaged across
languages and the difference (∆) with respect to the zero-shot setting.

Figure I.1: Heatmap of performance gains for low-level tasks from few-shot
transfer with mBERT for different sampling strategies. X-axis: number of target-
language instances k; Y-axis: sampling strategy.

three sampling methods: (i) random sampling (RAND) of k target language
sentences, (ii) selection of the k shortest (SHORTEST) and (iii) the k longest
(LONGEST) sentences.10 For XNLI and XQuAD, we run the experiments five
times and report the average scores.

I.4.1 Results and Discussion
The results on each task, conditioned on the number of examples k and averaged
across all target languages, are presented in Table I.4. We note substantial
improvements in few-shot learning setups for all tasks. However, the results
also reveal notable differences between different types of tasks. For higher-
level language understanding tasks the improvements are less pronounced; the
maximum gains for XNLI and XQuAD after seeing k = 1, 000 target-language

10In all three cases, we only choose between sentences with ≥ 3 and ≤ 50 tokens.
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(a) DEP (b) NER

(c) XQuAD (d) XNLI

Figure I.2: Few-shot transfer results with mBERT for each language with varying
k for two low-level tasks: a) DEP, b) NER, and two higher-level tasks: c) XQuAD,
d) XNLI. For DEP, NER, and XNLI k denotes the number of sampled sentences,
for XQuAD, the number of sampled articles.

instances and 10 articles, respectively, are between 2.52 (XLM-R) and 4.57 points
(mBERT). On the other hand, the average gains for the lower-level tasks are
massive: between 10 (NER) and 30 (DEP) points for mBERT and 8 (NER)
and 35 (DEP) points for XLM-R. Moreover, the gains in all lower-level tasks
are substantial even when we add only 10 annotated sentences in the target
language (on average, up to 17 points on DEP, and 15 points on POS). What is
more, our additional experiments (omitted for brevity) show substantial gains
for DEP and POS even with fewer than 5 annotated target language sentences.
A comparison of different sampling strategies for the lower-level tasks is shown
in Figure VIII.6 for mBERT.11 For DEP and POS, the pattern is very clear and
quite expected – adding longer sentences results in better scores. For NER,
however, random sampling (RAND) appears to perform best: we hypothesize
that this is because: (i) very long sentences are relatively sparse with named
entities, resulting in our model seeing mostly negative examples; (ii) shorter
sentences contribute less than for DEP and POS because they typically consist
of (confirmed by manual inspection) a single named entity mention, without
any non-NE tokens.

Figure I.2 illustrates few-shot performance for individual languages on two
lower-level (DEP, NER) and two higher-level tasks (XNLI, XQuAD), for different
values of k.12 Across languages, we see a clear trend – more distant target
languages benefit much more from the few-shot data. Observe, e.g., SV for DEP
or DE for XQuAD. Both are closely related to EN, exhibit high zero-shot transfer

11A similar analysis for XLM-R is in the supplementary.
12We show per-language scores for POS with mBERT, and all tasks with XLM-R in the Appendix.
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performance, and benefit only marginally from few in-language instances. We
hypothesize that for such closely related languages, with enough pretraining
data, MMT is able to extrapolate the missing language-specific knowledge from
few in-language examples; its priors for languages close to EN are already quite
sensible and a priori offer less room for improvements. In stark contrast, KO (DEP,
a) and TH (XQuAD, b), for example, both exhibit poor zero-shot performance
and understandably so, given their linguistic distance to EN. Given in-language
data, however, both see rapid leaps in performance, displaying gains of almost
40% UAS on DEP (KO), and almost 5% on XQuAD (TH). This can be seen as
MMTs’ ability to rapidly learn to utilize the multilingual space to adjust its task-
specific knowledge for the target language. Other interesting patterns emerge.
Particularly interesting are DEP results for JA and AR, where we observe massive
UAS improvements with only 10 annotated sentences. For XQuAD, we observe
a substantial improvement from only 2 in-language documents for TH. In sum,
we see the largest gains from few-shot transfer exactly for languages for which
the zero-shot transfer setup yields largest performance drops: languages distant
from EN and represented with small corpora in MMT pretraining.

Direct Target Language Few-Shot Fine-Tuning. We have additionally run a
set of control experiments in which we bypass the task-specific fine-tuning on
the Enhlish data and directly fine-tune the MMTs on the few target language
instances. Expectedly, for high-level LU tasks, fine-tuning the MMTs with
only a handful of target language examples (i.e., without prior fine-tuning in
English) yields subpar performance w.r.t. the corresponding model variant that
had been previously fine-tuned on English data. For instance, direct few-shot
target language fine-tuning of mBERT yields the average XNLI performance of
33.95 for k = 100 and 40.19 for k = 1, 000, respectively (compared to 64.92 and
68.16, respectively, when prior fine-tuning on English data is performed). These
findings suggest that fine-tuning with abundant (English) in-task data plus
fine-tuning with scarce in-language in-task data yields a truly synergistic effect
for higher-level language understanding tasks: the small number of examples
in the target language is not sufficient to adapt the MMT directly, but they
can provide a substantial edge over fine-tuning only on the English data (i.e.,
zero-shot transfer).

Somewhat surprisingly, however, for the simpler lower-level tasks, omitting
task-specific fine-tuning on the English data and fine-tuning only on few target
language instances does not lead to the major deterioration of performance (in
fact, in some cases, omitting to fine-tune the MMTs on English data even slightly
improves the results): for NER (mBERT) we obtain the average performance
of 82.89 and 89.76 for k = 100 and k = 1, 000 respectively, compared to 85.25
and 89.31 obtained respectively with prior English fine-tuning; for POS, the
direct few-shot target language fine-tuning yields 87.08 (k = 100) and 92.64
(k = 1, 000). We observe the same trends for the remaining tasks and with
XLM-R. This suggests that MMTs can be fine-tuned for lower-level (i.e., simpler)
tasks with only a handful of instances.
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Task #inst. Cost est. ∆ mBERT ∆ XLM-R

POS 1K sents $73 +25.4 +27.3
DEP 1K sents $280 +29.8 +34.7
NER 1K sents $60 +10 +8.4

NLI 1K sent. pairs $10 +2.24 +2.54
QA 10 docs $30 +4.5 +2.1

Table I.5: Conversion rates between target language annotation costs and
corresponding average performance gains from MMT-based few-shot language
transfer.

I.4.2 Cost of Language Transfer Gains
As shown in §I.4.1, moving to few-shot transfer can massively improve
performance and reduce the gaps observed with zero-shot transfer, especially
for low-resource languages. While additional fine-tuning on few target-
language examples is computationally cheap, data annotation may be expensive,
especially for minor languages. What are the annotation costs, and how do
they translate into performance gains? Table I.5 provides ballpark estimates for
our five evaluation tasks; the estimates are based on annotation costs from the
literature (Bontcheva et al., 2017; Hovy et al., 2014; Marelli et al., 2014; Rajpurkar
et al., 2016; Tratz, 2019). We explain these cost-to-gain conversion estimates in
more detail in Appendix I.C).

A provocative high-level question that calls for further discussion in future
work can be framed as: are GPU hours effectively more costly13 than data
annotations are in the long run? While MMTs are extremely useful as general-
purpose models of language, their potential for some (target) languages can
be quickly unlocked by pairing them with a small number of annotated target-
language examples. Effectively, this suggests leveraging the best of both worlds,
i.e., coupling knowledge encoded in large MMTs with a small annotation effort.

I.5 Conclusion

Research on zero-shot language transfer in NLP is motivated by inherent
data scarcity: the fact that most languages have no annotated data for most
NLP tasks. Massively multilingual transformers (MMTs) have recently been
praised for their zero-shot transfer capabilities that mitigate the data scarcity
issue. In this work, we have demonstrated that, similar to earlier language
transfer paradigms, MMTs perform poorly in zero-shot transfer to distant target
languages, and to languages with smaller monolingual corpora available for
exploitation in MMT pretraining. We have presented a detailed empirical
analysis of factors affecting zero-shot transfer performance of MMTs across
diverse tasks and languages. Our results have revealed that structural language

13Financially, but also ecologically (Strubell et al., 2019).
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similarity determines the transfer success for lower-level tasks like POS-tagging
and dependency parsing; on the other hand, the pretraining corpora size
of the target language is crucial for explaining transfer results for higher-
level language understanding tasks, such as question answering and natural
language inference.

Finally and most importantly, we have shown that the MMT potential on
distant and low-resource target languages can be quickly unlocked if they are
provided a handful of annotated instances in the target language. This finding
provides a strong incentive for intensifying future research efforts that focus on
cheap or naturally occurring supervision (Artetxe et al., 2020a; Marchisio et al.,
2020; Vulić et al., 2019), quick and simple annotation procedure, and the more
effective few-shot transfer learning setups.
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Codebase MMT Vocab Params URL

Allen NLP – – – https://github.com/allenai/allennlp
HF Trans. – – – https://github.com/huggingface/transformers

mBERT 119K 125M https://huggingface.co/bert-base-multilingual-cased
XLM-R 250K 125M https://huggingface.co/xlm-roberta-base

Table I.6: Links to codebases and pretrained models used in this work. For
low-level tasks (DEP, POS, NER), we carried out our experiments using the
AllenNLP library. For high-level tasks (XNLI, XQuAD), we built our models
directly on top of the HuggingFace (HF) Transformers library.

Task Dataset URL

Dependency Parsing UD https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3105

POS Tagging UPOS https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3105

Named Entity Recognition WikiAnn https://elisa-ie.github.io/wikiann/
Natural Language Inference XNLI https://github.com/facebookresearch/XNLI
Question Answering XQuAD https://github.com/deepmind/xquad

Table I.7: Links to the datasets used in our work.

(a) POS

Figure I.3: Graphical illustration of few-shot transfer gains for each language
with mBERT, for the remaining task not covered in the main paper: POS.

Appendix I.A Reproducibility

We first provide details on where to obtain datasets and code used in this work.

Code and Dependencies. Our code can be obtained from https://www.dropbox.
com/s/o5cxyy92re48xmu/zerohero_code.zip?dl=0. The code is separated in two
parts: for experiments related to low-level tasks (DEP, POS, NER) the code
is based on the AllenNLP framework; for the experiments on high-level
tasks (XNLI, XQuAD), our code directly builds on top of the HuggingFace
Transformers framework (Wolf et al., 2019). We provide links to code
dependencies and pretrained models in Table I.6.

Datasets. Table I.7 provide links to all datasets that we used in our study, for
each of the five tasks (low-level tasks: DEP, POS, NER; high-level tasks: XNLI,
XQuAD).
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Full Per-Language Few-Shot Results

POS ar eu zh fi he hi it ja ko ru sv tr

0 55.65 61.19 57.8 73.85 62.38 61.7 76.02 49.65 53.75 79.79 86.15 59.9
10 83.16 74.65 76.1 75.5 83.18 75.19 87.56 82.04 71.02 82.95 87.28 67.73
50 89.18 79.84 83.84 81.4 88.91 83.12 92.04 88.27 77.17 86.07 89.5 74.2
100 90.73 81.63 85.82 82.28 90.12 85.46 93.47 90.95 80.57 87.5 91.06 76.66
500 94.08 86.84 90.78 86.8 94.75 89.69 95.73 94.25 86.48 91.21 93.43 85.29
1000 94.97 88.23 92.83 88.86 95.7 93.09 96.15 95.24 88.64 92.77 94.39 87.72

NER ar eu zh fi he hi it ja ko ru sv tr

0 60.69 79.53 69.01 88.59 81.26 78.46 89.77 66.64 78.51 81.64 85.62 80.78
10 81.69 90.51 82.27 91.28 83.12 81.44 92.14 75.64 79.36 83.39 92.09 86.91
50 86.3 93.36 85.6 92.38 87.02 85.04 92.34 78.88 86.94 88.07 95.51 91.93
100 87.37 94.84 87.19 92.88 87.8 86.52 92.79 81.98 88 89.98 95.53 92.5
500 89.74 95.28 89.5 94.01 89.86 89.27 93.8 84.6 90.93 92.18 96.84 94.34
1000 90.92 96.01 90.71 94.57 90.8 90.67 94.5 85.62 91.96 92.71 97.17 94.65

DEP ar eu zh fi he hi it ja ko ru sv tr

0 34.72 40.96 47.25 60.44 55.1 33.59 74.05 31.03 35.11 63.03 76.9 45.17
10 69.08 56.16 54.18 63.3 70.02 56.49 82.26 71.12 53.25 69.89 76.88 53.26
50 73.65 61.11 64.39 65.88 78.78 71.48 84.46 82.58 61.11 73.95 79.37 56.78
100 75.91 62.98 68.17 67.31 79.71 76.1 86.53 85.77 64.51 76.51 80.13 57.66
500 81.48 70.33 78.64 71.4 84.81 85.34 89.39 90.38 73.65 81.19 82.87 65.16
1000 83.31 73.85 81.59 74.97 87.47 89.49 89.9 92.18 76.08 83.18 83.95 68.26

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 75.05 74.71 68.68 69.50 69.34 62.18 65.53 70.88 54.69 69.26 61.50 49.84 59.38 72.34
10 75.09 73.62 67.04 69.35 69.80 61.86 65.56 69.26 55.30 70.89 61.92 51.79 59.28 71.63
50 74.60 73.91 66.44 68.37 69.05 60.99 64.63 70.29 51.17 71.32 60.08 49.95 58.83 71.43
100 73.85 73.50 65.67 68.47 70.24 60.13 64.93 69.59 51.68 71.46 60.01 48.96 58.78 71.60
500 75.36 74.97 68.04 71.03 70.59 63.21 66.71 72.38 58.12 72.81 64.06 52.26 61.15 73.09
1000 76.20 76.24 68.73 71.73 71.41 65.01 67.04 72.35 59.19 73.47 64.75 52.47 62.38 73.21

XQUAD zh vi tr th ru hi es el de ar

0 48.14 49.02 36.90 27.84 51.86 42.47 54.48 42.90 56.22 46.40
2 48.93 50.50 40.87 39.43 51.07 44.19 56.14 46.46 56.66 46.99
4 49.72 51.38 40.22 41.24 51.33 45.90 56.62 47.25 56.38 46.57
6 50.81 50.81 41.59 44.04 51.20 46.81 57.14 47.16 56.40 47.45
8 51.53 51.29 41.99 45.28 51.29 47.10 57.45 47.95 57.07 48.21
10 50.87 51.57 42.55 46.05 52.05 48.06 57.03 48.60 57.29 47.82

Table I.8: Detailed per-language few-shot language results with mBERT for
different number of target-language data instances k. For low-level tasks, we
report results with RAND sampling.

Appendix I.B Full Per-Language Few-Shot Results

We show full per-language few-shot transfer results for all five tasks (DEP, POS,
NER, XNLI, XSQuAD) for mBERT and XLM-R in Tables I.8 and I.9, respectively.
We visually illustrate the gains from few-shot transfer for individual languages,
for mBERT (for the POS task not covered in the main paper) in Figure I.3 and
for XLM-R (for all five tasks) in Figure I.4. Finally, we show how the few-shot
transfer results with XLM-R for lower-level tasks (DEP, POS, NER) depend on
the instance sampling strategy (RAND, SHORTEST, LONGEST) in Figure I.5.
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POS ar eu zh fi he hi it ja ko ru sv tr

0 59.23 64.41 27.06 78.34 68.94 65.63 77.25 19.28 58.98 81.96 85.54 68.61
10 82.72 76.54 68.3 81.04 84.81 77.08 88.44 78.92 70.5 83.95 87.87 72.33
50 89.14 80.19 77.49 84.94 89.13 84.07 92.51 86.94 76.09 87.29 90.8 79.19
100 90.67 83.38 80.83 86.44 90.3 87.23 93.52 88.78 78.91 88.84 91.79 81.65
500 94.36 88.4 86.61 90.23 94.23 91.4 95.7 92.11 84.37 91.87 94.35 87.64
1000 95.29 89.66 88.86 91.87 95.31 94.26 96.18 93.49 86.88 93.19 95.41 89.71

NER ar eu zh fi he hi it ja ko ru sv tr

0 67.03 83.58 56.77 90.69 75.05 78.28 89.25 61.46 76 77.87 89.36 85.43
10 75.45 89.81 79.02 91.14 75.1 78.5 90.02 76.45 74.8 84.5 92.01 88.06
50 82.56 91.63 80.81 92.01 80.34 81.23 91.01 78.13 81.8 87.21 94.72 91.07
100 83.37 93.33 82.77 92.77 82.63 83.88 91.23 79.97 83.06 88.01 94.89 91.49
500 86.95 94.82 85.77 93.78 86.09 87.79 92.44 82.38 87.17 91.02 96.33 93.69
1000 88.36 95.24 87.34 94.3 87.4 89.87 93.25 83.45 88.52 91.66 96.78 93.82

DEP ar eu zh fi he hi it ja ko ru sv tr

0 37.46 42.48 6.61 65.33 53.06 32.94 68.54 11.48 36 62.37 75.72 47.83
10 68.37 56.09 45.67 66.97 70.06 51.93 79.32 70.05 49.88 70.14 77.03 54.93
50 74.9 60.92 57.39 71.35 77.95 67.09 83.97 81.64 59.22 73.55 78.72 59.77
100 77.15 63.46 60.33 71.65 78.27 73.2 84.63 84.3 61.37 75.03 81.52 60.06
500 83.29 72.37 71.52 77.22 86.21 87.06 88.82 88.83 73.1 80.41 85.38 68.88
1000 84.99 75.25 76.2 80.46 88.48 90.81 90.14 90.28 75.35 82.88 85.68 70.68

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 84.25 78.16 78.44 75.39 77.68 75.25 72.99 71.28 74.59 72 73.21 70.02 64.03 66.93 76.45
10 84.26 77.96 78.67 75.77 78.11 76.32 73.31 71.75 75.17 73.18 74.53 69.23 64.09 68.32 77.32
50 84.39 78.69 79.81 76.13 77.57 76.16 73.96 71.2 75.01 71.74 74.47 69.84 61.98 68.06 77.6
100 83.64 79.37 78.87 76.28 77.58 77.42 73.31 71.4 74.83 71.94 74.1 70.54 61.55 67.63 77.84
200 81.57 79.29 79.84 77.01 78.94 77.54 74.81 73.22 76.52 73.91 76.37 71.54 64 68.98 78.42
500 82.69 79.65 79.95 77.34 79.09 77.78 74.08 73.6 77.22 74.32 77.03 71.75 65.37 68.85 78.71
1000 83.74 79.91 80.29 77.39 79.39 77.8 74.92 74.26 77.34 74.8 77.26 72.83 66.77 69.84 78.91

XQUAD zh vi tr th ru hi es el de ar
0 46.29 52.84 53.82 57.64 57.10 49.67 57.97 56.77 56.33 48.36
2 47.16 52.86 52.84 60.96 55.39 50.20 57.51 55.37 57.05 47.97
4 48.06 53.43 51.88 61.57 54.21 50.28 57.62 55.68 56.72 49.00
6 52.29 53.41 53.03 62.97 55.48 50.85 57.88 55.37 57.16 49.10
8 57.88 53.49 52.47 63.73 55.87 50.96 58.25 55.83 57.05 50.09
10 60.22 53.28 52.36 64.02 55.79 51.38 57.90 56.11 57.47 49.30

Table I.9: Detailed per-language few-shot language results with XLM-R for
different number of target-language data instances k. For low-level tasks, we
report results with RAND sampling.

Appendix I.C Few-Shot Transfer: Annotation Costs versus
Performance Gains

We now present the more detailed explanations for the conversion between
the annotation costs and few-shot transfer performance gains, summarized in
Table I.5 in the main paper.

Natural Language Inference. Marelli et al. (2014) reportedly paid $2, 030 for
200k judgements, which would amount to $0.01015 per NLI instance and, in
turn, to $10.15 for 1, 000 annotations. In our few-shot experiments this would
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(a) DEP

(b) XQUAD (c) XNLI

(d) POS (e) NER

Figure I.4: Graphical illustration of few-shot transfer gains for individual
languages, for XLM-R and all languages.

Figure I.5: Heatmap of performance gains for low-level tasks from few-shot
transfer with XLM-R for different sampling strategies. X-axis: number of target-
language instances k; Y-axis: sampling strategy.

yield an average improvement of 2.24 and 2.52 accuracy points for mBERT and
XLM-R, respectively. It is also possible to translate the English data directly via
professional translation services as done with the XNLI dataset and XQuAD:
the platforms for hiring professionals such as Upwork show that it is possible to
find qualified translators even for lower-resource languages: e.g., the translation
cost estimate for Zulu is $12.5-$16/h, or $19/h for the Basque language.

Question Answering. Rajpurkar et al. (2016) report a payment cost of $9
per hour and a time effort of 4 minutes per paragraph. With an average of 5
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paragraphs per article, our few-shot scenario (10 articles) roughly requires 50
paragraphs-level annotations, i.e., 200 minutes of annotation effort and would
in total cost around $30 (for respective performance improvements of 4.6 and
2.1 points for mBERT and XLM-R).

On the one hand, compared to language understanding tasks, our lower-
level (DEP, POS) tasks are presumably more expensive to annotate, as they
require some linguistic knowledge and annotation training. On the other hand,
as shown in our few-shot experiments, we typically need much fewer annotated
instances (i.e., we observe high gains with already 10 target language sentences)
for substantial gains in these tasks.

Dependency Parsing. Tratz (2019) provide an overview of crowd-sourcing
annotations for dependency parsing; they report obtaining a fully correct
dependency tree from at least one annotator for 72% of sentences. At
the reported cost of $0.28 per sentence this amounts to spending $280 for
annotating 1, 000 sentences. Somewhat shockingly, annotating 10 sentences
with dependency trees – which for particular target languages like AR and JA
corresponds to performance gains of 30-40 UAS points (see Figure I.2) – amounts
to spending merely $3-5.

Part-of-Speech Tagging. Hovy et al. (2014) measure agreement of crowdsourced
POS annotations with expert annotations; they crowdsource annotations for
1,000 tweets, at a cost of $0.05 for every 10 tokens. With a total of 14, 619
tokens in the corpus, this amounts to approximately $73 for 1, 000 tweets, which
is ≥ 1, 000 sentences.14 Based on Table I.4, 2 hours of POS annotation work
translates to gains of up to 20-22 points on average over zero-shot transfer
methods.

Named Entity Recognition. Bontcheva et al. (2017) provide estimates for
crowdsourcing annotation for named entity recognition; they pay $0.06 per
sentence, resulting in $60 cost for 1, 000 annotated sentences. At a median
pay of $11.37/hr, this amounts to around 190 sentences annotated in an hour.
In other words, in less than 3 hours, we can collect more than 500 annotated
examples. According to Table I.4, this can result in gains of 8+ points on average,
and even more for some languages (e.g., 27 points for AR).

14Note, however, that lower-level tasks do come with an additional risk of poorer quality
annotation, due to crowdsourced annotators not being experts. Garrette and Baldridge (2013) report
that even for truly low-resource languages (e.g., Kinyarwanda, Malagasy), it is possible to obtain ≈
100 POS-annotated sentences in 2 hours.
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Abstract

Multilingual pretrained language models are rapidly gaining popularity
in NLP systems for non-English languages. Most of these models feature
an important corpus sampling step in the process of accumulating training
data in different languages, to ensure that the signal from better resourced
languages does not drown out poorly resourced ones. In this study, we
train multiple multilingual recurrent language models, based on the ELMo
architecture, and analyse both the effect of varying corpus size ratios on
downstream performance, as well as the performance difference between
monolingual models for each language, and broader multilingual language
models. As part of this effort, we also make these trained models available
for public use.
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II.1 Introduction

As part of the recent emphasis on language model pretraining, there also has
been considerable focus on multilingual language model pretraining; this is
distinguished from merely training language models in multiple languages
by the creation of a multilingual space. These have proved to be very useful
in ‘zero-shot learning’; i.e., training on a well-resourced language (typically

85



II. Multilingual ELMo and the Effects of Corpus Sampling

English), and relying on the encoder’s multilingual space to create reasonable
priors across languages.

The main motivation of this paper is to study the effect of corpus sampling
strategy on downstream performance. Further, we also examine the utility of
multilingual models (when constrained to monolingual tasks), over individual
monolingual models, one per language. This paper therefore has two main
contributions: the first of these is a multilingual ELMo model that we
hope would see further use in probing studies as well as evaluative studies,
downstream; we train these models over 13 languages, namely Arabic, Basque,
Chinese, English, Finnish, Hebrew, Hindi, Italian, Japanese, Korean, Russian,
Swedish and Turkish. The second contribution is an analysis of sampling
mechanism on downstream performance; we elaborate on this later.

In Section II.2 of this paper, we contextualise our work in the present
literature. Section II.3 describes our experimental setup and Section II.4 our
results. Finally, we conclude with a discussion of our results in Section II.5.

II.2 Prior work

Multilingual embedding architectures (static or contextualised) are different
from cross-lingual ones Liu et al., 2019; Ruder et al., 2019 in that they are not
products of aligning several monolingual models. Instead, a deep neural model
is trained end to end on texts in multiple languages, thus making the whole
process more straightforward and yielding truly multilingual representations
Pires et al., 2019. Following Artetxe et al. (2020), we will use the term ‘deep
multilingual pretraining’ for such approaches.

One of the early examples of deep multilingual pretraining was BERT,
which featured a multilingual variant trained on the 104 largest language-
specific Wikipedias Devlin et al., 2019. To counter the effects of some languages
having overwhelmingly larger Wikipedias than others, Devlin et al. (2019) used
exponentially smoothed data weighting; i.e., they exponentiated the probability
of a token being in a certain language by a certain α, and re-normalised. This
has the effect of ‘squashing’ the distribution of languages in their training data;
larger languages become smaller, to avoid drowning out the signal from smaller
languages. One can also look at this technique as a sort of sampling. Other
multilingual models, such as XLM Lample and Conneau, 2019 and its larger
variant, XLM-R Conneau et al., 2020, use different values of α for this sampling
(0.5 and 0.3 respectively). The current paper is aimed at analysing the effects
of different α choices; in spirit, this work is very similar to Arivazhagan et al.
(2019); where it differs is our analysis on downstream tasks, as opposed to
machine translation, where models are trained and evaluated on a very specific
task. We also position our work as a resource, and we make our multilingual
ELMo models available for public use.
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II.3 Experimental setup

II.3.1 Background
When taken to its logical extreme, sampling essentially reduces to truncation,
where all languages have the same amount of data; thus, in theory, in a truncated
model, no language ought to dominate any other. Of course, for much larger
models, like the 104-language BERT, this is unfeasible, as the smallest languages
are too small to create meaningful models. By selecting a set of languages such
that the smallest language is still reasonably sized for the language model being
trained, however, we hope to experimentally determine whether truncation
leads to truly neutral, equally capable multilingual spaces; if not, we attempt to
answer the question of whether compression helps at all.

Our encoder of choice for this analysis is an LSTM-based ELMo architecture
introduced by Peters et al. (2018). This might strike some as a curious choice
of model, given the (now) much wider use of transformer-based architectures.
There are several factors that make ELMo more suitable for our analysis. Our
main motivation was, of course, resources – ELMo is far cheaper to train,
computationally. Next, while pre-trained ELMo models already exist for several
languages Che et al., 2018; Ulčar and Robnik-Šikonja, 2020, there is, to the best
of our knowledge, no multilingual ELMo. The release of our multilingual model
may therefore also prove to be useful in the domain of probing, encouraging
research on multilingual encoders, constrained to recurrent encoders.

II.3.2 Sampling
Our initial starting point for collecting the language model training corpora
were the CoNLL 2017 Wikipedia/Common Crawl dumps released as part of
the shared task on Universal Dependencies parsing (Ginter et al., 2017); we
extracted the Wikipedia portions of these corpora for our set of 13 languages.
This gives us a set of fairly typologically distinct languages, that still are not
entirely poorly resourced. The smallest language in this collection, Hindi, has ∼
91M tokens, which we deemed sufficient to train a reasonable ELMo model.

Despite eliminating Common Crawl data, this gave us, for our set of
languages, a total corpus size of approximately 35B tokens, which would be
an unfeasible amount of data given computational constraints. We therefore
selected a baseline model to be somewhat synthetic – note that this is a
perfectly valid choice given our goals, which were to compare various sampling
exponents. Our ‘default’ model, therefore, was trained on data that we obtained
by weighting this ‘real-world’ Wikipedia data. The largest α we could use, that
would still allow for feasible training, was α = 0.4 (further on, we refer to this
model as M0.4); this gave us a total corpus size of ∼4B tokens. Our second,
relatively more compressed model, used α = 0.2 (further on, M0.2); giving us a
total corpus size of ∼2BIL tokens; for our final, most compressed model (further
on, TRUNC), we merely truncated each corpus to the size of our smallest corpus
(Hindi; 91M), giving us a corpus sized ∼1.2B tokens. Sampling was carried out
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as follows: if the probability of a token being sampled from a certain language i
is pi, the adjusted probability is given by qi = pi∑N

j=1
pj

. Note that this is a similar

sampling strategy to the one followed by more popular models, like mBERT. We
trained an out-of-the box ELMo encoder for approximately the same number of
steps on each corpus; this was equivalent to 2 epochs for M0.4 and 3 for M0.2.

Detailed training hyperparameters and precise corpus sizes are presented in
Appendices A and B.

II.3.3 Tasks
While there is a dizzying array of downstream evaluation tasks for monolingual
models, looking to evaluate multilingual models is a bit harder. We settled on a
range of tasks in two different groups:

1. Monolingual tasks: these tasks directly test the monolingual capabilities
of the model, per language. We include PoS tagging and dependency
parsing in this category. In addition to our multilingual models, we also
evaluate our monolingual ELMo variants on these tasks.

2. Transfer tasks: these tasks involve leveraging the model’s multilingual
space, to transfer knowledge from the language it was trained on, to the
language it is being evaluated on. These tasks include natural language
inference and text retrieval; we also convert PoS tagging into a transfer
task, by training our model on English and asking it to tag text in other
languages.

In an attempt to illuminate precisely what the contribution of the different
ELMo models is, we ensure that our decoder architectures – that translate from
ELMo’s representations to the task’s label space – are kept relatively simple,
particularly for lower-level tasks. We freeze ELMo’s parameters: this is not a
study on fine-tuning.

The tasks that we select are a subset of the tasks mentioned in XTREME (Hu
et al., 2020); i.e., the subset most suitable to the languages we trained our encoder
on. A brief description follows:

PoS tagging: For part-of-speech tagging, we use Universal Dependencies part-
of-speech tagged corpora (Nivre et al., 2020). Built on top of our ELMo-encoder
is a simple MLP, that maps representations onto the PoS label space.

PoS tagging (transfer): We use the same architecture as for regular PoS
tagging, but train on English and evaluate on our target languages.

Dependency parsing: We use dependency-annotated Universal Dependencies
corpora; our metrics are both unlabelled and labelled attachment scores
(UAS/LAS). Our parsing architecture is a biaffine graph-based parser (Dozat
and Manning, 2018).
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Figure II.1: Performance difference between monolingual and multilingual
models, on our monolingual tasks. Absent bars indicate that the language was
missing.

XNLI: A transfer-based language inference task; we use Chen et al.’s 2017
ESIM architecture, train a tagging head on English, and evaluate on the
translated dev portions of other languages (Conneau et al., 2018).

Tatoeba: The task here is to pick out, for each sentence in our source corpus
(English), the appropriate translation of the sentence in our target language
corpus. This, in a sense, is the most ‘raw’ tasks; target language sentences are
ranked based on similarity. We follow Hu et al. (2020) and use the Tatoeba
dataset.

We tokenize all our text using the relevant UDPipe (Straka and Straková,
2017) model, and train/evaluate on each task three times; the scores we report
are mean scores.

II.4 Results

First, we examine the costs of multilingualism, as far as monolingual tasks
are concerned. We present our results on our monolingual tasks in Figure II.1.
Monolingual models appear to perform consistently better, particularly PoS
tagging; this appears to be especially true for our under-resourced languages,
strengthening the claim that compression is necessary to avoid drowning
out signal. For PoS tagging, the correlation between performance difference
(monolingual vs. M0.4) and corpus size is highly significant (ρ = 0.74; p =
0.006).
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(a) M0.2 vs. M0.4 (b) TRUNC vs. M0.4

Figure II.2: Performance differences between our models on our selected tasks.

PoS UAS LAS PoS (trf.) XNLI Tatoeba

MONO 0.86 0.86 0.81 - - -
M0.4 0.83 0.85 0.80 0.36 0.45 0.18
M0.2 0.84 0.85 0.80 0.39 0.46 0.21
TRUNC 0.83 0.85 0.80 0.36 0.45 0.13

Table II.1: Average scores for each task and encoder; non-monolingual best
scores in bold.

We find that compression appears to result in visible improvements, when
moving from α = 0.4 to α = 0.2. These improvements, while not dramatic,
apply across the board (see Table II.1), over virtually all task/language
combinations; this is visible in Figure II.2a. Note the drop in performance
on certain tasks for English, Swedish and Italian – we hypothesise that this is
due to Swedish and Italian being closer to English (our most-sampled language),
and therefore suffering from the combination of the drop in their corpus sizes, as
well as the more significant drop in English corpus size. The Pearson correlation
between the trend in performance for PoS tagging and the size of a language’s
corpus is statistically significant (ρ = 0.65; p = 0.02); note that while this is over
multiple points, it is single runs per data point.

Figure II.2b also shows the difference in performance between the truncated
model, TRUNC, and M0.4; this is a lot less convincing than the difference to
M0.2, indicating that no additional advantage is to be gained by downsampling
data for better-resourced languages.

We include full, detailed results in Appendix C.

Cross-lingual differences Finally, in an attempt to study the differences in
model performance across languages, we examine the results of all models on
Tatoeba. This task has numerous advantages for a more detailed analysis; i)
it covers all our languages, bar Hindi, ii) the results have significant variance
across languages, and iii) the task does not involve any additional training. We
present these results in Figure II.3.

We observe that M0.2 consistently appears to perform better, as illustrated
earlier. Performance does not appear to have much correlation with corpus
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Figure II.3: Accuracy on Tatoeba per model

size; however, the languages for which M0.4 performs better are Swedish and
Italian, coincidentally, the only other Latin-scripted Indo-European languages.
Given the specific nature of Tatoeba, which involves picking out appropriate
translations, these results make more sense: these languages receive not only
the advantage of having more data for themselves, but also from the additional
data available to English, which in turn optimises their biases solely by virtue
of language similarity.

II.5 Discussion

Our results allow us to draw conclusions that come across as very ‘safe’: some
compression helps, too much hurts; when compression does help, however,
the margin appears rather moderate yet significant for most tasks, even given
fewer training cycles. Immediately visible differences along linguistic lines
do not emerge when ratios differ, despite the relative linguistic diversity of
our language choices; we defer analysis of this to a future work, that is less
focused on downstream analysis, and more on carefully designed probes that
might illuminate the difference between our models’ internal spaces. Note
that a possible confounding factor in our results is also the complexity of the
architectures we build on top of mELMO: they also have significant learning
capacity, and it is not implausible that whatever differences there are between
our models, are drowned out by highly parameterised downstream decoders.

To reiterate, this study is not (nor does it aim to be) a replication of models
with far larger parameter spaces and more training data. This is something of a
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middle-of-the-road approach; future work could involve this sort of evaluation
on downscaled transformer models, which we shy away from in order to
provide a usable model release. We hope that the differences between these
models provide some insight, and pave the way for further research, not
only specifically addressing the question of sampling from a perspective of
performance, but also analytically. There has already been considerable work in
this direction on multilingual variants of BERT (Chi et al., 2020; Pires et al., 2019),
and we hope that this work motivates papers applying the same to recurrent
mELMo, as well as comparing and contrasting the two. The ELMo models
described in this paper are publicly released via NLPL Vector Repository.1
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II. Multilingual ELMo and the Effects of Corpus Sampling

Appendix II.A Hyperparameters

Param Value

Layers 2
Output dimensionality 2048
Batch size 192
Negative samples per batch 4096
Vocabulary size 100,000
Number of epochs 2 (M0.4); 3(M0.2)

Table II.2: Models were bidirectional LSTMs. Monolingual models were trained
on individual sizes given at α = 0.4.

Appendix II.B Corpus sizes

Language AR EN EU FI HE HI IT JA KO RU SV TR ZH Total

M0.4 242.29 585.52 113.42 239.57 208.46 91.74 468.45 460.53 184.63 379.9 366.86 396.01 282.76 4020.14
M0.2 149.09 231.76 102.01 148.25 138.29 91.74 207.3 205.54 130.15 186.68 183.45 190.6 161.06 2125.92
TRUNC 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 1192.62

Table II.3: Corpus sizes, in million tokens
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Detailed results

Appendix II.C Detailed results

Language AR EN EU FI HE HI IT JA KO RU SV TR ZH

POS

MONO 0.89 0.89 0.88 0.82 0.84 0.9 0.91 0.94 0.67 0.88 - 0.83 0.86
0.4 0.81 0.89 0.81 0.78 0.82 0.87 0.89 0.94 0.64 0.87 - 0.81 0.84
0.2 0.86 0.89 0.85 0.79 0.83 0.9 0.89 0.94 0.64 0.87 - 0.82 0.85

TRUNC 0.82 0.89 0.84 0.8 0.82 0.9 0.88 0.93 0.63 0.86 - 0.81 0.85

UAS

MONO 0.86 0.89 0.84 0.88 0.89 0.94 0.93 0.95 0.8 - 0.85 0.69 0.8
M0.4 0.85 0.89 0.83 0.85 0.89 0.94 0.93 0.95 0.79 - 0.84 0.68 0.78
M0.2 0.85 0.89 0.84 0.87 0.88 0.94 0.93 0.95 0.79 - 0.84 0.67 0.79

TRUNC 0.85 0.89 0.83 0.86 0.89 0.94 0.93 0.95 0.78 - 0.84 0.68 0.79

LAS

MONO 0.79 0.86 0.79 0.84 0.84 0.9 0.9 0.94 0.74 - 0.81 0.59 0.74
0.4 0.78 0.85 0.78 0.81 0.84 0.9 0.9 0.94 0.72 - 0.79 0.57 0.72
0.2 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.94 0.73 - 0.8 0.57 0.72

TRUNC 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.93 0.72 - 0.79 0.57 0.72

POS (trf.)
0.4 0.23 0.89 0.25 0.43 0.36 0.31 0.52 0.22 0.18 0.49 - 0.23 0.22
0.2 0.26 0.89 0.29 0.47 0.37 0.33 0.54 0.24 0.18 0.55 - 0.29 0.28

TRUNC 0.23 0.89 0.3 0.48 0.32 0.26 0.48 0.2 0.17 0.49 - 0.27 0.28

XNLI
M0.4 0.41 0.67 - - - 0.44 - - - 0.48 - 0.35 0.35
M0.2 0.46 0.56 - - - 0.45 - - - 0.49 - 0.45 0.34

TRUNC 0.43 0.66 - - - 0.43 - - - 0.43 - 0.43 0.35

Tatoeba
0.4 0.05 - 0.05 0.19 0.16 - 0.36 0.11 0.04 0.26 0.55 0.12 0.11
0.2 0.12 - 0.12 0.26 0.21 - 0.34 0.11 0.05 0.33 0.4 0.17 0.19

TRUNC 0.05 - 0.1 0.2 0.09 - 0.22 0.05 0.03 0.15 0.29 0.1 0.13

Table II.4: Full score table across all languages, tasks and models

95





Paper III

The Effects of Corpus Choice and
Morphosyntax on Multilingual Space
Induction

Vinit Ravishankar, Joakim Nivre
Appears in Findings of the Association for Computational Linguistics: EMNLP 2022,
December 2022, pp. 4130–4139.

III

Abstract

In an effort to study the inductive biases of language models, numerous
studies have attempted to use linguistically motivated tasks as a proxy of
sorts, wherein performance on these tasks would imply an inductive bias
towards a specific linguistic phenomenon. In this study, we attempt to
analyse the inductive biases of language models with respect to natural
language phenomena in the context of building multilingual embedding
spaces. We sample corpora from 2 sources in 15 languages and train
language models on pseudo-bilingual variants of each corpus, created by
duplicating each corpus and shifting token indices for half the resulting
corpus. We evaluate the cross-lingual capabilities of these LMs, and show
that while correlations with language families tend to be weak, other corpus-
level characteristics, such as type-token ratio, tend to be more strongly
correlated. Finally, we show that multilingual spaces can be built, albeit less
effectively, even when additional destructive perturbations are applied to
the training corpora, implying that (effectively) bag-of-words models also
have an inductive bias that is sufficient for inducing multilingual spaces.
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III. The Effects of Corpus Choice and Morphosyntax on Multilingual Space
Induction

III.1 Introduction

A variety of proxies and analytical methods have been used to study the
inductive biases of language models towards natural language. This work
includes targeted syntactic evaluation (Gulordava et al., 2018; Linzen et al.,
2016), language model responses to formulaic synthetic languages (Ravfogel et
al., 2019; White and Cotterell, 2021), as well as attempts to correlate differences
in language modeling performance to language features over a wide range of
languages (Cotterell et al., 2018).

In this paper, we combine two strands that have, of late, been fairly active
research threads. The first of these concerns the inductive biases of language
models towards languages that exhibit a specific grammar; the second addresses
the inductive biases of these models towards multilingualism, which in this
context refers to a model’s ability to build a multilingual space (rather than
distinct monolingual spaces), when trained on corpora consisting of text in
multiple languages.

Prior work in this domain is focused on either a) quantifying language
model performance across a variety of languages, or b) studying the effects of
different architectural components on the quality of the induced multilingual
space. We attempt to unite the two strands of research by studying transformer-
based masked language models in an effort to quantify the extent to which the
grammar of the language being modelled affects the model’s ability to build a
multilingual space. We use Dufter and Schütze’s (2021) metrics, namely word
translation and sentence retrieval, as a proxy for the utility of this space. Our
main findings are:

• Masked language models are capable of building multilingual spaces even
when destructive perrturbations, like lemmatisation and shuffling, are
applied to the training corpora.

• Multilingual performance is only weakly correlated with languages and
language families.

• Multilingual performance correlates better with corpus-level statistics like
type-token ratio, and the frequency of hapax legomena.

III.2 Related Work

Language modelling There has been a considerable amount of research ad-
dressing inductive biases that language models may have towards specific
grammatical patterns, or towards natural languages with specific structures.
An early study by Cotterell et al. (2018) demonstrates, over 21 languages, that
certain languages are harder to model than others; the authors find that model
performance correlates with the richness of a language’s (inflectional) mor-
phology. Later work by Mielke et al. (2019) shows contradictory findings; the
authors extend these experiments to 69 languages and find that morphological
complexity does not correlate as strongly with performance as simpler factors
like vocabulary size and sentence length do.
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Methodology

Other work involves studying how language modelling is affected by
manually altering corpora. Ravfogel et al. (2019) train RNN-based models
on English, altered to display different word orders and different degrees
of morphological agreement; White and Cotterell (2021) generate corpora of
natural language sentences, with constituents permuted based on Boolean
switches, and show that recurrent language models show little variance in
performance across word orders, compared to transformers.

Multilingualism Moving beyond monolingual language modelling, we ex-
amine the numerous works analysing what precisely multilingual language
models need, in order to form an adequate multilingual space, which is quanti-
fied by measuring a model’s performance on some multilingual task. Pires et al.
(2019) show that subword overlap tends to improve multilingual alignment,
though overlap is by no means necessary, as languages with different scripts
can exist in the same multilingual space. Deshpande et al. (2021) show that
while structurally similar languages do not necessarily need subword overlap,
dissimilar languages rely heavily on overlap; they also show that well-aligned
non-contextual word embedding spaces allow for better transfer.

On the other hand, Artetxe et al. (2020) have somewhat contradictory
results, and show that neither shared vocabulary items nor joint pre-training are
essential to build a multilingual encoder. K et al. (2020) and Dufter and Schütze
(2021) analyse encoders from an architectural point of view. The former work
shows that model depth (and not the number of attention heads) contributes to
transfer performance, even when the number of parameters is kept constant.
The latter points out that multilingual spaces exist because languages are forced
to share parameters, and that even in the absence of shared subwords and
special tokens, position embeddings play a significant role in building these
spaces. Dufter and Schütze (2021) go on to show that the removal of shared
position embeddings is sufficient to reduce a model’s multilingual performance
(as measured on word translation and sentence retrieval) to approximately
random. This, we show, is not universally the case.

III.3 Methodology

III.3.1 General approach
In order to evaluate the quality of our models’ multilingual spaces, we use
word translation and sentence retrieval as proxy tasks; this contrasts with, for
example, Deshpande et al. (2021), who use (zero-shot) transfer performance
instead. We avoid this largely due to performance constraints: small models are
unlikely to be parameterised enough to handle transfer.

To create synthetic multilingual (more precisely, bilingual) corpora, we
follow the approach of K et al. (2020) and Dufter and Schütze (2021). Starting
from a monolingual corpus, we shift the vocabulary index for every token in
the original corpus up by the model’s vocabulary size. For instance, the token
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III. The Effects of Corpus Choice and Morphosyntax on Multilingual Space
Induction

Default
he spent most of his childhood in sunamganj with his mother .
david s. mack ( born 1941 ) is an american businessman .
he spent most of his childhood in sunamganj with his mother .
david s. mack ( born 1941 ) is an american businessman .

Lemmatised
the episode be generally well receive .
the software be sell and support only in japan .
the episode be generally well receive .
the software be sell and support only in japan .

Shuffled
most his with in of childhood spent sunamganj . mother his he
s. american . born is david 1941 ) businessman an ( mack
most his with in of childhood spent sunamganj . mother his he
s. american . born is david 1941 ) businessman an ( mack

Corrupted
be generally . receive well episode the
software be the sell in and support . japan only
be generally . receive well episode the
software be the sell in and support . japan only

Table III.1: Sample sentences extracted from real corpora, with each of our
modifications applied. Note that while the original and lemmatised corpora are
sampled differently, the shuffled and corrupted corpora are modified variants
of the former.

convenient, with token index 42, would have a “mirror” ::convenient, with
token index 2090. This effectively gives us a parallel second half, which has
the same structure as the original language, but a guarantee of no vocabulary
overlap.

While this is a somewhat unrealistic simulation – after all, multilingual
models are trained on languages with different structures – we use our
formulation in order to a) have a simplified test bed where the structure of the
language plays a role, but the structural differences between the two languages
are ignored; and b) to avoid the complexity of the experimental space from
exploding, when each language can conceivably be paired with every other
language.

III.3.2 Data
In an effort to have a reasonably comprehensive search space of languages,
we experiment over two corpora (Wikipedia and Common Crawl) and fifteen
languages – namely Arabic, Czech, Danish, German, English, Spanish, Finnish,
French, Hebrew, Italian, Dutch, Polish, Portuguese, Russian and Swedish. While
Indo-European languages are still rather overrepresented in our data, these
languages exhibit a wide range of head-depedendent entropies (Levshina,
2019). This is also part of the reason we avoid completely synthetic corpora:
while it is trivial to generate synthetic corpora from some descriptive grammar,

100



Methodology

the stochasticity and random variation inherent to most natural languages is
harder to synthetically model. Both corpora have been parsed into Universal
Dependencies (UD) (Marneffe et al., 2021; Nivre et al., 2016; Nivre et al., 2020).

From each of the large corpora (Wikipedia and Common Crawl), we sample
five corpora of 20k sentences for each language, with different random seeds,
and split them into train and validation splits of 15k and 5k tokens, respectively.
We employ a number of simple heuristics to filter out sentences that we suspect
to be titles, or other noisy text. We generate two variants of each corpus: one that
we tokenise with a BPE tokeniser, and another that retains UD-style tokenisation.
The motivation behind this is to control for subwords: the absence of subword
tokenisation is harder for our models to recover from, as they must be able to
cluster tokens that have the same morphological affixes without explicit access
to these affixes.

For our BPE segmented corpora, we use a model vocabulary of size 2048; this
vocabulary is derived by training a fastBPE tokenizer on the respective training
corpus. For UD-style tokenisation, we also use a vocab with 2048 unique tokens.
We handle unknown tokens by replacing them with <unk> tokens; we also
filter out sentences that have over 90% OOV tokens in the process of sentence
selection, to avoid noise. As both our corpora are fairly noisy, we also apply a
set of heuristics to eliminate corpus noise; for instance, we filter out sentences
based on the number of title-cased tokens in them, to avoid scraping Wikipedia
titles.

III.3.3 Perturbations
To adequately isolate the effects of word order and morphology, we apply three
modifications to each combination of tokenisation method and corpus, giving
us a total of 2 ∗ 2 ∗ 4 = 16 corpora per language; with 15 languages and 5 seeds,
this equates to 16 ∗ 15 ∗ 5 = 1200 experiments in all.

Original Our original, unmodified corpus, presented with both UD- and BPE-
based tokenisation.

Shuffled We modify our corpus by shuffling every sentence at a word level.
Note that the shuffling procedure takes place before BPE segmentation, similar
to Sinha et al. (2021). Ideally, given no word-order context, our masked language
models should only be able to rely on morphological information, or bag-of-
words distributions, in order to build a multilingual space. This also has a
similar effect to removing positional embeddings from the transformer, as
described in Sinha et al. (2021). Positional embeddings act as an ordering
mechanism in masked language modelling; without them, a corpus is similar to
our shuffled corpus.

Lemmatised We use the LEMMA Universal Dependencies field to generate our
corpus, instead of the usual FORM field. The motivation here is to eliminate
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III. The Effects of Corpus Choice and Morphosyntax on Multilingual Space
Induction

Figure III.1: Results for our four perturbations, with and without BPE, with data
from Common Crawl (top) and Wikipedia (bottom). Scores (sentence retrieval
on the X-axis, word translation on the Y-axis) are averaged over layers 0 and 8.

all morphological information; the difference between this and avoiding BPE
tokenisation is that lemmatisation prevents unique word forms from having
separate vocab indices.

Corrupted This corpus is both lemmatised and shuffled. Given this precon-
dition, and UD-style tokenisation, there ought to be no information accessible
to our model, beyond bag-of-word lemma statistics. We therefore expect word
translation and sentence retrieval to be close to 0 in this setting.

III.3.4 Models and Evaluation
To evaluate our models’ multilingual capabilities, we first train lower-capacity
language models on each corpus. Each model is trained on the task of masked
language modelling, on the concatenation of both halves (original and shifted)
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of a corpus. We use Dufter and Schütze (2021)’s BERT variant, which downsizes
the original BERT model; we use single-headed, 12 layer transformer, with a
head dimensionality of 64 and a feed-forward dimensionality of 256. This allows
us to rapidly train a model on our corpora (in approximately 30–60 minutes
per model). We set the random seed of each model to the same as the random
seed used to generate the corpus we train it on; i.e. the model with seed 0, for
English, is trained on the English corpus that was generated using a random
seed of 0. Models are trained on V100 GPUs, each for approximately 1 hour.

Finally, we evaluate word translation and sentence retrieval scores for these
models by using the deterministic gold labels, obtained by simply adding the
vocab size (for translation) and by dividing the corpus into two halves and
generating a sequential mapping (for retrieval). Note that this evaluation does
not involve fine-tuning language models: we use the cosine similarity between
either a word or a sentence and its fake parallel, for word translation and
sentence retrieval resepectively. For word translation, we ensure that non-initial
subwords are not included in the evaluation; while this is not ideal, none of our
languages are morphologically prefixing, implying that the bulk of the semantic
content is in the initial subword.

III.4 Results

We present results per language and experiment on Common Crawl (top)
and Wikipedia (bottom) in Figure III.1. We begin by making a few general
observations before moving on to study correlations with morphosyntactic and
corpus factors.

‘Fails’ are frequent We note, first, that across most of our experiments, we have
several ‘fails’, where our model effectively has near 0 retrieval and translation
capacity. While this observation in isolation is somewhat meaningless – the
model might have failed to learn effectively, either due to the random seed
or due to the hyperparameters – the sheer number of experiments we run for
each scenario makes these results more meaningful, when used as a comparison
between training scenarios, as evidence that a certain scenario is likelier to result
in a fail than another.

BPE makes word translation harder Despite controlling for non-initial
subwords, using BPE tokenisation results in a drop in translation score for
all our experiments. We hypothesise that this is due to common word-initial
subwords being distributionally ‘overloaded’; they are more likely to appear in a
wider range of contexts than whole tokens are, due to the variety in consecutive
subwords.

Multilingualism is robust to lemmatisation Perhaps somewhat unsurprisingly,
lemmatisation does not significantly affect model scores, indicating that our
model relies more on word order to build multilingual spaces. Interestingly,
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Figure III.2: Spearman correlations (α = 0.001). Greyed-out values indicate
insufficient evidence.

removing BPE segmentation results in an increase in fails on lemmatised
corpora.

Bag-of-words is enough for (some) experiments Our most unexpected
observation is that for both shuffling and corrupting, for both BPE and non-BPE,
several experiments do appear to result in fairly successful retrieval/translation
models, often with an accuracy higher than 50% on either task. This is
surprising, given that a) this appears to contradict the findings of Dufter
and Schütze (2021) about position embeddings being critical for multilingual
spaces, and b) it implies that a simple bag-of-words model is enough to build
a multilingual space. We attempt, in the following sections, to tease out what
factors might enable this transfer. It is plausible that some part of this signal
stems from the fact that the shuffling operation was carried out prior to BPE
segmentation (Abdou et al., 2022); we discuss this further in Section III.5.4.

III.5 Analysis

III.5.1 Clustering
In order to find potential explanations for our results, we automatically cluster
our scores, using retrieval and translation scores as our cluster metrics. To
determine whether either languages (given that we have five experiments per
language) or language families tend to actually represent logical, meaningful
clusters, we set the number of clusters to be equivalent to the number of families,
and use the adjusted Rand score (Vinh et al., 2010) to measure the distance
between two clusterings – clusterings based on language/family, and learnt
clusterings.
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Language Family
BPE UD BPE UD

Default 0.17/0.05 0.35/0.25 0.07/0.05 0.04/0.08
Lemmatised 0.16/0.11 0.38/0.14 0.10/0.04 0.14/0.07

Shuffled 0.15/0.13 0.03/0.01 0.07/0.10 0.02/0.05
Corrupted 0.14/0.12 0.05/0.02 0.13/0.09 0.01/0.02

Table III.2: Cluster similarities (adjusted Rand score) between language, or
language family clusters, and k-means clustering, with a random seed of 42.
Results on Wikipedia and Common Crawl are separated with a backslash.

We present these results in Table III.2. First, clustering by language family
shows little to no correlation with score-based clusters. Clusters of corpora
in a single language (‘language-based’ clusters) are slightly clearer: while
similarities are relatively low for all our BPE-based clusters, when we switch
to UD tokenisation, the default and lemmatised cases begin to form more
typologically relevant clusters, resembling languages. While these are by no
means perfect overlaps, they are almost twice as realistic as for BPE-based
tokenisation, implying that there exist language-specific features that correlate
somewhat to the model’s ability to form multilingual spaces. To investigate
these findings in greater detail, we look for language-specific features – both
corpus-specific features, and vocabulary features – and look for correlations
that might explain our results.

III.5.2 Corpus correlations
We analyse our corpora, and measure correlations of model performance to
a range of descriptive statistics, applied to the corpora that the models were
trained on. For a single ‘performance’ metric, we follow Dufter and Schütze
(2021) in defining a model’s ML score as the average of its word translation and
sentence retrieval scores, at layers 0 and 7. We measure correlations with:

• The number of training tokens
• The type-token ratio
• The number of one-letter types
• The number of one-letter tokens
• Average type length (in characters);
• Average token length
• Average sentence length
• Frequency of hapax, dis and tris legomena

We present these statistics in Figure III.2. A clear difference between doing noth-
ing/lemmatising and shuffling/corrupting leaps out. With UD tokenisation,
none of our corpus metrics correlates well with model performance, while BPE
tokenisation consistently throws out a range of correlations. There is also a clear
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(a) Sentence retrieval (b) Word translation

Figure III.3: Spearman correlations, with a more relaxed α = 0.01. X-
axis indicates vocabulary statistics. Y-axis indicates tokenisation method.
Correlations are on Common Crawl data, with the appropriate metric averaged
at layers 0 and 7.

difference between Wikipedia and Common Crawl; in general, we find that
correlations tend to be either weaker or less significant with Common Crawl
than with Wikipedia. We hypothesise that this is due to Wikipedia being both
more homogeneous and less noisy as a corpus.

Type-token ratio is a strong predictor For the default (and, to some extent,
lemmatised) models, we find that type-token ratio has a strong positive
correlation to ML-score (particularly retrieval), implying that lexical diversity
enables better transfer. This is perhaps unsurprising – infrequent types might
act as ‘anchors’, allowing easier transfer for their surrounding contexts. This is
somewhat backed up by the disappearance of this metric in shuffled models.

Avg. token length predicts BPE performance Over our scrambled corpora,
for both Wikipedia and Common Crawl,1 it appears that average token length
correlates strongly to downstream performance. The fact that this occurs for
BPE tokenisation and not UD implies that this is likely a proxy for the number of
BPE splits, rather than a realistic cross-linguistic measure; the more aggressive
the BPE, the poorer the model. This is also somewhat backed up by the fact that
the number of tokens inversely correlates to BPE performance; the shorter the
average BPE split, the more the actual number of tokens in a corpus, for a given
language.

Sentence length often correlates negatively This finding is consistent
across all our BPE models;1 longer sentence lengths (in tokens) imply poorer

1While exceptions to these observations exist, they disappear when we use a less restrictive
α = 0.005
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multilingual scores. This is likely at least partially related to the previous
observation – the longer the average token, the less aggressive the BPE, and the
less aggressive the BPE, the shorter the average sentence.

Hapax/dis/tris ratios Results generally tend to correlate positively with the
ratio of hapax legomena to the total number of tokens, when BPE tokenisation is
used. This difference is likely due to the presence of more morphemic hapaxes in
BPE-tokenised models: UD tokenisation is likely to result in a long tail of rarer
morphological forms of rarer tokens. Curiously, this correlation, albeit weaker,
is reversed for dis and tris legomena.

III.5.3 Vocabulary correlations
Next, we examine ML score correlations with different properties of the size 2048
UD/BPE vocabulary for each model. Note that as each model is trained with a
unique corpus, each model has a unique vocabulary. Our features include:

• Average token length; for non-initial wordpieces, we do not include the
length of the prefix.

• Counting complexity, using UniMorph (Kirov et al., 2020) to count the
number of distinct morphological features in a given language.

• The frequency of single-letter vocab items.

• The frequency of digits in the vocab.

• The frequency of punctutation in the vocab.

We present these correlations in two heatmaps in Figures III.3a and III.3b. Some
of our observations back up the observations in the previous section (eg. token
length correlates inversely with ML score).

Counting complexity is complex Gratifyingly, the counting complexity
metric (Sagot, 2013) appears to match Cotterell et al. (2018)’s observation, and
is positively correlated with both retrieval and (to a larger extent) translation.
Strangely, however, this correlation also appears to hold for both corrupted
corpora; this is odd, as these corpora are lemmatised, implying the absence
of inflectional morphology. It is plausible that this effect is still visible (albeit
weakened) due to differences in the distribution of function words and stems,
when compared with a language with actual differences in counting complexity;
a language with strong case-marking, for instance, is likely to have a very
different distribution of adpositions than a language without. This finding also
backs up Mielke et al. (2019), who suggest that vocabulary-level measures may
correlate better.

Specific tokens may act as anchors For the task of word translation, we
notice that positive correlations tend to occur with the frequency of non-initial
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Figure III.4: Retrieval/translation scores for (learnt) absolute position, (fixed)
sinusoidal position and no position. English in bold black for easier comparison
with Dufter and Schütze (2021).

subwords, the frequency of digits, and the frequency of single-letter tokens.
This effect, visible across all three categories, might indicate that these tokens
act as anchors, enabling easier transfer in their contexts.

No clear patterns exist for retrieval We notice no clear factors contributing to
retrieval. While the number of unused tokens does appear to correlate in the
lemmatised models, this is mild and is likely to be an effect of the vocab size
being effectively smaller.

III.5.4 Ablation experiments
While somewhat tangential to our original research question, we attempted
to modify the positional embedding bias in our model. Dufter and Schütze
(2021) show that positional embeddings are critical to building a multilingual
space; Sinha et al. (2021) show that positional embeddings are critical to building
monolingual language models, a finding backed up in other work (Abdou et
al., 2022; Papadimitriou et al., 2022), where the authors also emphasise the
importance of meaningful word order. These observations are somewhat
contradictory to our findings, where shuffling corpora at a token-level still
allows for successful multilingual space induction.

To resolve this, we train two additional models, on a corrupted variant
of Common Crawl, presented in Figure III.4. The first of these has its learnt,
absolute position embeddings (Devlin et al., 2019) replaced with sinusoidal
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embeddings, as in the original transformer paper (Vaswani et al., 2017), and
the other has them removed entirely. While we would expect to see model
performance drop considerably without position embeddings, this is often
not the case at all; there is no real visible difference in performance across
either of the tasks, implying that certain ‘clues’ are perhaps sufficient to build a
multilingual space, even when a functional monolingual space might not exist
for any of the languages.

Having said that, we note that English (annotated in black) is not one of
the easier languages to build multilingual spaces for, even with absent position
embeddings; as such, our English results are more similar to the results reported
by Dufter and Schütze (2021).

III.6 Conclusion

In this work, we attempted to measure the variance in the ability of masked
language models to build multilingual spaces with the underlying typology of
the language. In doing so, we have shown that these models are capable
of building multilingual spaces even when sentences are lemmatised and
scrambled at a token level, showing that multilingualism can exist even when
transformers act, functionally, like bag-of-words models. This does not, however,
necessarily imply the ability to effectively model language (Abdou et al., 2022),
but merely the ability to align two disjoint linguistic spaces.

We have also shown that, on the one hand, the ability to build a multilingual
space is only weakly correlated to language (given multiple corpora) and to
language family, and that, on the other hand, certain corpus-level metrics
(specifically, type-token ratios and the presence of hapax legomena) are relatively
good predictors of multilingual space quality, while others (such as the number
of tokens or the average sentence length) are negatively correlated.

Our work is not without its caveats. For one, a lot of our correlating factors
muddy the waters between what is an inherent property of the language itself,
and what is a property of the corpus we use. While we use texts from the same
domain in all our languages, both Wikipedia and Common Crawl are widely
inconsistent across language, unless explicitly made comparable (Otero and
López, 2010). Further, as discussed earlier, our scenario is not strictly realistic:
first, this is a bilingual setup meant to approximate a multilingual one; second,
both our languages have exactly the same structure; third, our language models
are very underparameterised relative to full-scale models. It is unlikely that
our observations would hold true in a real-world scenario; given, however, that
our aim was to study the inductive biases of masked language models, using
full-scale models would defeat the purpose somewhat, as the sheer volume of
training data would have overridden these biases. Having said that, we present
this work as an attempt to add to the often conflicting pool of papers attempting
to shed some light on how language models acquire language.
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Limitations

This work has several limitations, some of which we have addressed. To
reiterate, in order to enable some degree of cross-linguistic diversity in this
analysis, our bilingual setup is only an approximation of a true multilingual
setup. Conversely, we are limited in the data we have access to: for inclusion
in this study, languages had to have large and relatively noiseless dependency-
parsed corpora available; as such, we are somewhat biased towards over-
representing Indo-European languages.

Ethical considerations

The research presented in this work is compatible with the ACL ethics policy;
the data we use is a toy subset of openly available corpora, and our models
are very underparameterised, relative to the current state-of-the-art. Given
the sheer number of models we train, our main experimental findings require
approximately 1200 GPU hours for training, approximately equivalent to the
amount of time required to train a full-scale BERT model on the same V100
GPUs.2
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IV
Abstract

This paper extends the task of probing sentence representations for linguistic
insight in a multilingual domain. In doing so, we make two contributions:
first, we provide datasets for multilingual probing, derived from Wikipedia,
in five languages, viz. English, French, German, Spanish and Russian.
Second, we evaluate six sentence encoders for each language, each trained
by mapping sentence representations to English sentence representations,
using sentences in a parallel corpus. We discover that cross-lingually
mapped representations are often better at retaining certain linguistic
information than representations derived from English encoders trained on
natural language inference (NLI) as a downstream task.
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IV.1 Introduction

In recent years, there has been a considerable amount of research into attempting
to represent contexts longer than single words with fixed-length vectors. These
representations typically tend to focus on attempting to represent sentences,
although phrase- and paragraph-centric mechanisms do exist. These have
moved well beyond relatively naïve compositional methods, such as additive
and multiplicative methods (Mitchell and Lapata, 2008), one of the earlier papers
on the subject. There have been several proposed approaches to learning these
representations since, both unsupervised and supervised. Naturally, this has
also sparked interest in evaluation methods for sentence representations; the
focus of this paper is on probing-centric evaluations, and their extension to a
multilingual domain.

In Section V.2, we provide a literature review of prior work in the numerous
domains that our paper builds upon. Section IV.3 motivates the principle of
cross-lingual probing and describes our goals. In Section VI.4, we describe
our probing tasks and relevant modifications, if any. Section IV.5 describes our
sentence encoders, as well as the procedure we follow for training, mapping
and probing. Section IV.6 describes our data and relevant preprocessing
methods we applied. Section IV.7 presents a detailed evaluation from several
perspectives, which we discuss in Section IV.8. We conclude, as well as describe
avenues for future work, in Section IV.9. Our hyperparameters are described in
Appendix IV.A, and further detailed results that are not critical to the paper are
tabulated in IV.B.

IV.2 Background

IV.2.1 Sentence representation learning
Numerous methods for learning sentence representations exist. Many of these
methods are unsupervised, and thus do not have much significant annotation
burden. Most of these methods are, however, structured: they rely on the
sentences in training data being ordered and not randomly sampled. The
aptly named SkipThoughts (Kiros et al., 2015) is a well-known earlier work,
and uses recurrent encoder-decoder models to ‘decode’ sentences surrounding
the encoded sentence, using the final encoder state as the encoded sentence’s
representation. Cer et al. (2018) evaluate two different encoders, a deep
averaging network and a transformer, on unsupervised data drawn from a
variety of web sources. Hill et al. (2016) describe a model based on denoising
auto-encoders, and a simplified variant of SkipThoughts, that sums up source
word embeddings, that they dub (FastSent). Another SkipThoughts variant
(Logeswaran and Lee, 2018) uses a multiple-choice objective for contextual
sentences, over the more complicated decoder-based objective.

Several supervised approaches to building representations also exist. An
earlier work is Charagram (Wieting et al., 2016), which uses paraphrase data and
builds on character representations to arrive at sentence representations. More
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recent papers use a diverse variety of target tasks to ground representations,
such as visual data (Kiela et al., 2018), machine translation data (McCann
et al., 2017), and even multiple tasks, in a multi-task learning framework
(Subramanian et al., 2018). Relevant to this paper is Conneau et al.’s
(2017) InferSent, that uses natural language inference (NLI) data to ground
representations: they learn these representations on the well-known SNLI
dataset (Bowman et al., 2015).

IV.2.2 Multilingual representations
Whilst sentence representation is a thriving research domain, there has
been relatively less work on multilingualism in the context of sentence
representation learning: most prior work has been focussed on multilingual
word representation. For sentence representations, an early work (Schwenk
and Douze, 2017) proposes a seq2seq-based objective, using machine learning
encoders to map source sequences to fixed-length vectors. Along similar lines,
conneau_xnli:_2018 propose using machine translation data to transfer sentence
representations pre-trained on NLI, using a mean squared error (MSE) loss -
this is the approach we follow.

Artetxe and Schwenk (2019) present a ‘language agnostic’ sentence represen-
tation system learnt over machine translation; the agnosticism refers to the joint
BPE vocabulary that they construct over all languages, giving their encoders no
language information, whilst their decoders are told what language to generate.
Similarly, Lample and Conneau (2019) present pretrained cross-lingual models
(XLM), based on modern pretraining mechanisms; specifically, a variant of the
masked LM pretraining scheme used in BERT (Devlin et al., 2019).

Contemporaneous with this work, Aldarmaki and Diab (2019) present an
evaluation of three cross-lingual sentence transfer methods. Their methods in-
clude joint cross-lingual modelling methods that extend monolingual objectives
to cross-lingual training, representation transfer learning methods that attempt
to ‘optimise’ sentence representations to be similar to parallel representations in
another language, and sentence mapping methods based on orthogonal word
embedding transfer: the authors use a parallel corpus as a ‘seed dictionary’ to
fit a transformation matrix between their source and target languages.

IV.2.3 On evaluation
Work on evaluating sentence representations was encouraged by the release of
the SentEval toolkit (Conneau and Kiela, 2018), which provided an easy-to-use
framework that sentence representations could be ‘plugged’ into, for rapid
downstream evaluation on numerous tasks: these include several classification
tasks, textual entailment and similarity tasks, a paraphrase detection task,
and caption/image retrieval tasks. Conneau et al. (2018) also created a set
of ‘probing tasks’, a variant on the theme of diagnostic classification (Belinkov
et al., 2017; Hupkes et al., 2018), that would attempt to quantify precisely what
sort of linguistic information was being retained by sentence representations.
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The authors, whose work focussed on evaluating representations for English,
provided Spearman correlations between the performance of a particular
representation mechanism on being probed for specific linguistic properties,
and the downstream performance on a variety of NLP tasks. Along similar
lines, and contemporaneously with this work, Liu et al. (2019) probe three
pretrained contextualised word representation models – ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019) and the OpenAI transformer (Radford et al.,
2018) – with a “suite of sixteen diverse probing tasks”.

On a different note, Saphra and Lopez (2019) present a CCA-based method
to compare representation learning dynamics across time and models, without
explicitly requiring annotated probing corpora. They motivate the use of
SVCCA (Raghu et al., 2017) to quantify precisely what an encoder learns by
comparing the representations it generates with representations generated by
an architecture trained specifically for a certain task, with the intuition that a
higher similarity between the representations generated by the generic encoder
and the specialised representations would indicate that the encoder is capable
of encapsulating more task-relevant information. Their method has numerous
advantages over traditional diagnostic classification, such as the elimination of
the classifier, which reduces the risk of an additional component obfuscating
results.

A visible limitation of the datasets provided by these probing tasks is that
most of them were created with the idea of evaluating representations built for
English language data. In this spirit, what we propose is analogous to Abdou
et al.’s (2018) work on generating multilingual evaluation corpora for word
representations. Within the realm of evaluating multilingual sentence repre-
sentations, conneau_xnli:_2018 describe the XNLI dataset, a set of translations
of the development and test portions of the multi-genre MultiNLI inference
dataset (Williams et al., 2018). This, in a sense, is an extension of a predom-
inantly monolingual task to the multilingual domain; the authors evaluate
sentence representations derived by mapping non-English representations to an
English representation space.

The original XNLI paper provides a baseline representation mapping tech-
nique, based on minimising the mean-squared error (MSE) loss between sen-
tence representations across a parallel corpus. Their English language sentence
representations are derived from an encoder trained on NLI data (Conneau
et al., 2017), and their target language representations are randomly initialised
for a parallel sentence. While this system does perform reasonably well, a more
naive machine-translation based approach performs better.

IV.3 Multilingual evaluation

The focus of this paper is twofold. First, we provide five datasets for probing
mapped sentence representations, in five languages (including an additional
dataset for English), drawn from a different domain to Conneau et al.’s probing
dataset: specifically, from Wikipedia. Second, we probe a selection of mapped
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sentence representations, in an attempt to answer precisely what linguistic
features are retained, and to what extent, post mapping. The emphasis
of this evaluation is therefore, crucially, not a probing-oriented analysis of
representations trained on different languages, but an analysis of the effects
of MSE-based mapping procedures on the ability of sentence representations
to retain linguistic features. In this sense, our focus is less on the correlation
between probing performance and downstream performance, and more on the
relative performance of our representations on probing tasks.

Despite having described (in Section V.2) numerous methods, both for
learning monolingual sentence representations, and for mapping them cross-
linguistically, we restrict our work to a smaller subset of these. Specifically, we
evaluate six encoders, each trained in a supervised fashion on NLI data.

Whilst our choice of languages could have been more typologically diverse,
we were restricted by three factors:

1. the availability of a parallel corpus with English for our mapping
procedure

2. the availability of a large enough Wikipedia to allow us to extract sufficient
data (for instance, the Arabic Wikipedia was not large enough to fully
extract data for all our tasks)

3. the inclusion of the language in XNLI. Despite not being necessary, we
believed it would be interesting to have a ‘real’ downstream task to
compare to.

IV.4 Probing

We use most of the probing tasks described in Conneau et al. (2018). Due
to the differences in corpus domain, we alter some of their word-frequency
parameters. We also exclude the top constituent (TopConst) task; we noticed
that Wikipedia tended to have far less diversity in sentence structure than the
original Toronto Books corpus, due to the more encyclopaedic style of writing.
A brief description of the tasks follows, although we urge the reader to refer to
the original paper for more detailed descriptions.

1. Sentence length: In SentLen, sentences are divided into multiple bins
based on their length; the job of the classifier is to predict the appropriate
bin, creating a 6-way classification task.

2. Word count: In WC, we sample sentences that feature exactly one amongst
a thousand mid-frequency words, and train the classifier to predict the
word: this is the most ‘difficult’ task, in that it has the most possible
classes.

3. Tree depth: The TreeDepth task simply asks the representation to predict
the depth of the sentence’s syntax tree. Unlike the original paper, we use
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the depth the of the dependency tree instead of the constituency tree: this
has the added benefit of being faster to extract, due to the relative speed
of dependency parsing, as well as having better multilingual support. We
also replace the authors’ sentence-length-decorrelation procedure with a
naïver one, where we sample an equal number of d-depth trees for each
sentence length bin.

4. Bigram shift: In BiShift, for half the sentences in the dataset, the order of
words in a randomly sampled bigram is reversed. The classifier learns to
predict whether or not the sentence contains a reversal.

5. Subject number: The SubjNum task asks the classifier to predict the
number of the subject of the head verb of the sentence. Only sentences
with exactly one subject (annotated with the nsubj relation) attached to
the root verb were considered.

6. Object number: ObjNum, similar to the subject number task, was
annotated with the number of the direct object of the head verb (annotated
with the obj relation).

7. Coordination inversion: In CoordInv, two main clauses joined by a
coordinating conjunction (annotated with the cc and conj relations) have
their orders reversed, with a probability of one in two. Only sentences
with exactly two top-level conjuncts are considered.

8. (Semantic) odd man out: SOMO, one of the more difficult tasks in the
collection, replaces a randomly sampled word with another word with
comparable corpus bigram frequencies, for both bigrams formed with the
preceding and the succeeding words. We defined ‘comparable’ as having
a log-frequency difference not greater than 1.

9. Tense prediction: The Tense prediction asks the classifier to predict the
tense of the main verb: the task uses a rather simple division of tenses;
two tenses, Past and Pres. Tense information was extracted from UD
morphological annotation.

IV.5 Encoders

The NLI-oriented training approach for all our encoders is based on In-
ferSent (Conneau et al., 2017). Our first encoder is an RNN-based encoder
(specifically, an LSTM); we use two variants of this encoder, one that uses max-
pooling over bidirectional RNN states, and another that uses the last recurrent
state. Our second encoder is a self-attention based encoder Lin et al. (2017),
with the same max-pool/last-state variants. Finally, we include a convolutional
sentence representation model inspired by Gan et al. (2017); this model has an
order of magnitude fewer parameters than the RNN- and attention-based vari-
ants. A variant of this CNN-based encoder has the maximum pooling replaced
with average pooling.
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Figure IV.1: (a) an English-language encoder is trained on NLI data; (b)
parallel sentences are encoded in English and the target language, and the
MSE loss between them is minimised; (c) the mapped target encoders are used
downstream in probing. Greyed-out blocks represent ‘frozen’ components that
do not further adjust their parameters.

IV.5.1 Representation learning
We train all our encoders to represent sentences using the same NLI-based
objective followed by Conneau et al. (2017). More precisely, we first convert
the word indices for both our premise and our hypothesis into dense word
representations using pretrained fastText word embeddings (Bojanowski et al.,
2017). These representations are then passed to our encoder of choice, which
returns two fixed-length vectors: u for the premise, and v for the hypothesis.
These vectors are combined and concatenated, as [u, v, u ∗ v, | u − v |], and
then passed through a classifier with a softmax layer that outputs a probability
distribution over the three NLI labels.

IV.5.2 Mapping
Our procedure for mapping our encoders cross-linguistically broadly follows
the principled mapping approach described in conneau_xnli:_2018. The
procedure begins by mapping our word representations to the same vector space.
Unlike the original paper, we use the supervised variant of VecMap (Artetxe
et al., 2016) for representation mapping; however, we use seed dictionaries
described in Lample et al. (2018). Having mapped our word representations,
we proceed to map our sentence representations. To do so, we first build an
English-language encoder, using (frozen) word representations and (frozen)
encoder weights obtained in Section IV.5.1. We then build a target language
encoder, using word embeddings mapped to the same space as the English
embeddings. The sentence encoder itself is initialised with random parameters.

We then encode the source and target sentences in an en-trg machine
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translation corpus, where trg is our target language. Our English encoder
returns a ‘meaningful’ representation: recall that the encoder has weights
trained on NLI data. We then use a mean-square error loss function to
reduce the distance between our target-language representation and the English
representation; the system then backpropagates through the target language
encoder to obtain better parameters.

Our MSE loss function, similar to conneau_xnli:_2018’s function, attempts
to minimise the distance between representations of parallel sentences, whilst
simultaneously maximising the distance between random sentences sampled
from either language in the pair. Mathematically, the alignment loss is given by:

Lalign = ||x− y||2 − λ(||xc − y||2 + ||x− yc||2)

where λ is a hyperparameter.
We evaluate our mapped encoder on the relevant validation data section

from the XNLI corpus per epoch, and terminate the mapping procedure when
our validation accuracy does not improve for two consecutive epochs.

IV.5.3 Multilingual probing

Having obtained our mapped sentence representation encoder, we proceed
to plug the encoder into our probing architecture downstream, and evaluate
classifier performance.

First, we load our mapped word representations for the language that
we intend to analyse. We use these word representations to build sentence
representations, using the encoder architecture of choice. We then add a simple
multi-layer perceptron (MLP) that learns to predict the appropriate label for
each task: the MLP consists of a dense layer, a non-linearity (we use the
sigmoid function), and another dense layer that we softmax over to arrive
at per-class probabilities. During training, we keep the encoder’s parameters
fixed. Mathematically, therefore, given an encoder f with parameters θ, and
word representations wk for each word k:

s = f(w0, w1, ..., wn; θ)
z = MLP(s)
y = softmax(z)

where ‘MLP’ refers to a multi-layer perceptron with one sigmoid hidden
layer.

Finally, we evaluate our representations on the relevant test portion. Whilst
Conneau et al. used grid search to determine the best hyperparameters for each
probing task, we did not do so, due to both time constraints, and in an attempt
to ensure classifier uniformity across languages. We describe our probing results
in Section IV.7.
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Figure IV.2: Probing accuracies for our six encoders on Conneau et al.’s dataset
(orig), compared to our Wikipedia-derived dataset (eng)

IV.6 Data

IV.6.1 Probing data

We build our probing datasets using the relevant language’s Wikipedia dump
as a corpus. Specifically, we use Wikipedia dumps (dated 2019-02-01), which
we process using the WikiExtractor utility1. We use the Punkt tokeniser (Kiss
and Strunk, 2006) to segment our Wikipedia dumps into discrete sentences. For
Russian, which lacked a Punkt tokenisation model, we used the UDPipe (Straka
and Straková, 2017) toolkit to perform segmentation.

Having segmented our data, we used the Moses (Koehn et al., 2007)
tokeniser for the appropriate language, falling back to English tokenisation
when unavailable: this was similar to XNLI’s tokenisation schema, and therefore
necessary for appropriate evaluation on XNLI.

Next, we obtained dependency parses for our sentences, again using
the UDPipe toolkit’s pretrained models, trained on Universal Dependencies
treebanks (Nivre et al., 2015). We then processed these dependency parsed
corpora to extract the appropriate sentences; each task had 120k extracted
sentences, divided into training/validation/test splits with 100k, 10k and 10k
sentences respectively.

1https://github.com/attardi/wikiextractor/
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IV.6.2 Mapping data
For mapping our sentence representations, we were restricted by the availability
of large parallel corpora we could use for our mapping procedure. We used
two such corpora: the Europarl corpus (Koehn, 2005), a multilingual collection
of European Parliament proceedings, and the MultiUN corpus (Tiedemann,
2012), a collection of translated documents from the United Nations. We used
Europarl for the official EU languages we analysed: German and Spanish. For
Russian, we used MultiUN. We used both corpora for French, to attempt to
analyse what, if any, effect the mapping corpus would have. We also truncated
our MultiUN cororpora to 2 million sentences, to keep the corpus size roughly
equivalent to Europarl, and also due to time and resource constraints: mapping
representations on the complete 10 million sentence corpus would have required
significant amounts of time.

Both our corpora were pre-segmented: we followed the same Moses-based
tokenisation scheme that we did for our probing corpora, falling back to English
for languages that lacked appropriate tokeniser models.

IV.7 Evaluation

As a preface to this section, we reiterate that the goal of this work was not to
attempt to reach state-of-the-art on the tasks we describe; our goal was primarily
to study the effect of transfer on sentence representations.

Our first step during evaluation, therefore, was to probe all our encoders
using Conneau et al.’s original probing corpus, and compare these results to
our English-language results on our Wikipedia-generated corpus. We present
these results in the form of a heatmap in Figure IV.2.

Similarities between results on our corpora are instantly visible; these also
appear to hold across encoders. Tasks with minor visible differences include
WC, the most ‘difficult’ classification task (1k classes), and TreeDepth, where
we use dependency tree depth instead of constituency tree depth, as well as a
different sampling mechanism.

Next, we present Spearman correlations between the performance of our
encoders on probing tasks and on the only ‘true’ cross-lingual downstream
task we evaluated our systems on: cross-lingual natural language inference,
via the XNLI (conneau_xnli:_2018) corpus. A caveat here is that we make
no claims about the statistical significance of these results; given just six data
points per language per task, our p-values tend to be well below acceptable for
statistical significance. We refer the reader to Conneau et al.’s original probing
work, where despite having results for 30 encoders, correlations between
many downstream and probing tasks were not statistically significant. Our
correlations are presented, again in the form of a heatmap, in Figure IV.3. Our
absolute results on XNLI are presented in the appendix. These are not a focus
for this work: we did not attempt to obtain state-of-the-art, nor, indeed, perform
any sort of hyperparameter optimisation to get the ‘best’ possible results. Given
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these caveats, we draw the reader’s attention to the fact that the overwhelming
majority of correlations are negative.

Figure IV.3: Spearman correlation between probing performance and XNLI;
results are not statistically significant.

Figure IV.4: Probing results for each encoder relative to results on English. The
second horizontal line indicates a switch in corpora. A white square indicates a
value of 1, i.e. a parity in performance

Finally, and most importantly, we measure downstream performance on
probing tasks for all our cross-lingually mapped encoders. For visualisation
relevant to our goals, and for brevity, we present these results, in Figure IV.4, as
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a heatmap of probing results relative to (our) English probing results; a full table
with numeric results is presented in Appendix IV.B.

IV.8 Discussion

Our cross-lingual results display some very interesting characteristics, that we
enumerate and attempt to explain in this section. These results can be analysed
along three dimensions: that of language, encoder mechanism, and the probing
task itself.

IV.8.1 Language
Whilst our results are broadly similar across languages, Russian appears to be an
exception to this: our probing performance for most tasks is considerably worse
when transferred to Russian than other languages. Transfer corpus does not
appear to be a factor in this case: most of our encoders perform very similarly on
both the Europarl and the UN variants of our transferred French representations.
These are interesting preliminary results, that would require further analysis:
as we mentioned in an earlier section, we were rather limited in our choice of
languages, however, we foresee a possible extension to this work including more
typologically diverse languages. One possible explanation for the relatively
poor results on Russian is the nature of the word embeddings themselves: whilst
we did not use the same methods, we did map our embeddings to the same
space using the same dictionaries as Lample et al. (2018). The results they
describe for word translation retrieval are considerably poorer for English and
Russian than they are for English and Spanish, French or German.

IV.8.2 Probing task
An immediate surprising takeaway from our results is the (perhaps counter-
intuitive) fact that transferred representations are not necessarily worse at
probing tasks than trained representations are. To help with the analysis of
Figure IV.4, we present Table IV.1, where several trends are easily visible. In
particular, a task that appears to stand out is SentLen, with transferred encoders
displaying considerably improved performance in five out of six cases.

Apart from sentence length, both number prediction tasks – SubjNum and
ObjNum – show noticeable improvements when transferred to a non-English
language. The fact that this improvement is consistent across both number tasks
likely also rules out mere coincidence. We hypothesise that the explanation
for these three tasks in particular showing improvements on transfer lies in
the specific nature of the mapping task. While it is plausible that this is due
to these specific phenomena being less critical to NLI (on which our English
encoders were trained) than to the attempt made by our target encoders to
emulate these English representations, it is not immediately clear how these
encoders are capable of exceeding the predictive capabilities of the encoders
they are attempting to emulate.
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Another interesting observation is the variance in performance for the word
content (WC) task, which also happens to be the ‘hardest’ task with the most
output classes. We further note that, regrettably, none of our encoders were able
to learn anything on SOMO.

Task µ σ

BiShift 0.558 0.013
CoordInv 0.656 0.111
ObjNum 0.605 0.073
SOMO 0.505 0.011
Tense 0.708 0.124

SentLen 0.523 0.259
SubjNum 0.643 0.099

WC 0.152 0.115
TreeDepth 0.330 0.082

Table IV.1: Mean and standard deviations for the absolute performance for each
probing task, across languages and encoders

IV.8.3 Encoder

All our encoders do appear to display very distinctive probing patterns, with
variants of each encoder being more similar to each other than to different
encoders. We enumerate some of the key observations:

1. Both our CNNs appear to perform worse than attentive or recurrent
mechanisms; this is, however, perfectly understandable, as our CNN-
based models had an order of magnitude fewer parameters than the
recurrent ones. The choice of pooling mechanism, however, appears to
have a more significant effect on convolutional encoders than on others.

2. Attentive encoders appear to be better at probing in general, whilst
recurrent encoders show extremely strong performance on certain tasks,
such as sentence length.

3. The max-pooled CNN is the only encoder that shows considerably worse
performance on sentence length. This is also true for English, as is visible
from Figure IV.2. We hypothesise that the fixed-length filters used in
convolutional encoders do not store much information about sentence
length, as they only observe chunks of the sentence. A max-pooling
mechanism further compounds this inability to store length by eliminating
possible compositional length information that mean-pooling does ignore.
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IV.9 Conclusions

Our analysis reveals several interesting patterns that appear to hold during
cross-lingual transfer. Several of our probing tasks give us clearer insight into
the sentence representations that we have generated by cross-lingual mapping,
which is much needed: the principle of learning a sentence representation
in parallel, combined with the fact that these representations actually appear
to ‘work’ downstream, raises a lot of questions both about what information
sentence representations hold, but more interestingly, in a cross-lingual context,
about what mutual information a sentence and its translation contain.

We open-source both our training code and the probing datasets (that we
dub X-PROBE)2 that we generated in the hope that the domain of cross-lingual
analysis sees further work. There are several avenues for expansion, the most
obvious being a probing-oriented analysis of more complex contextualisers,
such as BERT, as well as of massively multilingual or language agnostic model.

We also hypothesise that more can be said about probing with a different
selection of probing tasks; indeed, Liu et al. (2019) do provide a set of tasks
that do not overlap with the tasks we have used. Selecting probing tasks
that might tell allow us to better interpret cross-lingual modelling is another
logical path one might follow. On a similar theme, an interesting research
direction also involve adaptations of simple probing tasks describing linguistic
phenomena to specialised architectures, for better comparison using SVCCA-
style analyses (Saphra and Lopez, 2019).

Finally, we would also like to expand these datasets to more typologically
diverse languages. A challenge in doing so is the availability of corpora that are
large enough; none of our probing tasks have any sentences in common, which,
given the size of each task’s corpus, requires a fairly large corpus for extraction.
However, this process could possibly be simplified massively by removing this
mutual exclusivity requirement, which would vastly simplify the process.
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Appendix IV.A Hyperparameters

Component Layer Value

Global Embeddings 300 (FastText)
Batch size 10
Optimiser Adam

Learning rate 10−3

RNN biLSTM dim 512
biLSTM layers 2

Dropout 10%

CNN Filter sizes (3, 4, 5)
Padding (1, 2, 2)
Channels 800

Projection dim 1024

Attention biLSTM dim 512
biLSTM layers 2

Dropout 10%
MLP dim 150
Activation tanh

Attn. heads 60

Mapper λ 0.25

Probe classifier Hidden dim 150
Activation σ

Table IV.2: Hyperparameters, divided by the ‘component’ that each layer
belongs to. Note that biRNN dims are per direction.

Appendix IV.B Additional results

Encoder Language
English German Spanish French French (UN) Russian

RNN (maxpool) 0.71 0.66 0.68 0.68 0.65 0.61
RNN (last) 0.66 0.63 0.65 0.65 0.63 0.59

CNN (maxpool) 0.51 0.39 0.41 0.36 0.44 0.43
CNN (avg. pool) 0.51 0.50 0.51 0.50 0.50 0.48

Attn. (maxpool) 0.71 0.64 0.67 0.67 0.67 0.60
Attn. (last) 0.70 0.65 0.69 0.69 0.66 0.62

Table IV.3: Language-specific results on relevant XNLI splits for each encoder
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English BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth

Attention (maxpool) 0.57 0.73 0.65 0.5 0.82 0.7 0.7 0.27 0.41
Attention (last) 0.56 0.74 0.64 0.49 0.8 0.74 0.7 0.22 0.4
RNN (maxpool) 0.54 0.74 0.65 0.5 0.82 0.51 0.73 0.3 0.42

RNN (last) 0.55 0.73 0.62 0.5 0.74 0.38 0.68 0.11 0.34
CNN (maxpool) 0.55 0.55 0.53 0.51 0.57 0.22 0.52 0.01 0.26
CNN (avg. pool) 0.55 0.51 0.54 0.5 0.54 0.21 0.56 0.02 0.24

German BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.56 0.76 0.63 0.5 0.8 0.85 0.66 0.24 0.39

Attention (last) 0.56 0.79 0.63 0.52 0.81 0.87 0.68 0.25 0.39
RNN (maxpool) 0.57 0.8 0.64 0.51 0.82 0.68 0.69 0.28 0.37

RNN (last) 0.54 0.74 0.61 0.52 0.71 0.44 0.63 0.11 0.31
CNN (maxpool) 0.54 0.51 0.51 0.5 0.55 0.17 0.53 0.0 0.21
CNN (avg. pool) 0.54 0.5 0.53 0.5 0.57 0.21 0.54 0.01 0.23

Spanish BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.57 0.72 0.69 0.51 0.85 0.82 0.73 0.25 0.44

Attention (last) 0.58 0.71 0.7 0.51 0.84 0.85 0.74 0.25 0.45
RNN (maxpool) 0.55 0.75 0.69 0.53 0.85 0.67 0.76 0.28 0.44

RNN (last) 0.55 0.7 0.65 0.52 0.75 0.54 0.68 0.12 0.36
CNN (maxpool) 0.55 0.5 0.51 0.49 0.52 0.18 0.51 0.0 0.19
CNN (avg. pool) 0.55 0.5 0.54 0.5 0.6 0.23 0.51 0.01 0.26

French BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.56 0.76 0.7 0.5 0.85 0.84 0.76 0.27 0.42

Attention (last) 0.58 0.76 0.71 0.5 0.84 0.86 0.79 0.26 0.41
RNN (maxpool) 0.53 0.78 0.7 0.5 0.84 0.61 0.8 0.31 0.4

RNN (last) 0.55 0.72 0.65 0.49 0.71 0.47 0.71 0.12 0.34
CNN (maxpool) 0.55 0.52 0.49 0.51 0.5 0.17 0.51 0.0 0.2
CNN (avg. pool) 0.55 0.51 0.52 0.5 0.54 0.23 0.54 0.01 0.23

French (UN) BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.57 0.74 0.7 0.5 0.82 0.83 0.76 0.27 0.42

Attention (last) 0.57 0.76 0.69 0.5 0.83 0.83 0.78 0.26 0.41
RNN (maxpool) 0.56 0.78 0.7 0.5 0.83 0.62 0.79 0.3 0.39

RNN (last) 0.55 0.73 0.65 0.5 0.68 0.47 0.71 0.13 0.34
CNN (maxpool) 0.55 0.51 0.51 0.49 0.52 0.2 0.52 0.0 0.21
CNN (avg. pool) 0.55 0.52 0.52 0.5 0.52 0.25 0.53 0.02 0.24

Russian BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.58 0.66 0.56 0.52 0.74 0.82 0.6 0.2 0.35

Attention (last) 0.58 0.66 0.57 0.53 0.76 0.84 0.6 0.2 0.35
RNN (maxpool) 0.57 0.65 0.57 0.51 0.76 0.65 0.61 0.22 0.33

RNN (last) 0.57 0.57 0.56 0.52 0.68 0.45 0.59 0.11 0.3
CNN (maxpool) 0.57 0.51 0.5 0.5 0.55 0.17 0.51 0.0 0.21
CNN (avg. pool) 0.57 0.51 0.52 0.52 0.56 0.26 0.53 0.01 0.24

Table IV.4: Complete set of absolute results per probing task, per encoder, per
language. For English, these numbers are for unmapped, NLI-based encoders;
for all other languages, these are post-mapping numbers
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Abstract

Encoders that generate representations based on context have, in recent
years, benefited from adaptations that allow for pre-training on large text
corpora. Earlier work on evaluating fixed-length sentence representations
has included the use of ‘probing’ tasks, that use diagnostic classifiers to
attempt to quantify the extent to which these encoders capture specific
linguistic phenomena. The principle of probing has also resulted in
extended evaluations that include relatively newer word-level pre-trained
encoders. We build on probing tasks established in the literature and
comprehensively evaluate and analyse – from a typological perspective
amongst others – multilingual variants of existing encoders on probing
datasets constructed for 6 non-English languages. Specifically, we probe
each layer of a multiple monolingual RNN-based ELMo models, the
transformer-based BERT’s cased and uncased multilingual variants, and a
variant of BERT that uses a cross-lingual modelling scheme (XLM).
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V.1 Introduction

Recent trends in NLP have demonstrated the utility of pre-trained deep
contextual representations in numerous downstream NLP tasks, where they
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have almost consistently resulted in significant performance improvements.
Detailed evaluations have naturally followed: these have either been follow-
up works to papers describing contextual representation systems, such as
Peters et al. (2018a), or novel works evaluating a broad class of encoders on
a broad variety of tasks (Perone et al., 2018). This paper is an example of
the latter sort; we perform a comprehensive, large-scale evaluation of what
linguistic phenomena these sequential encoders capture across a diverse set of
languages. This has often been referred to in the literature as probing; we use
this terminology throughout this work.

Briefly, our goals are to probe our encoders in a multilingual setting – i.e.,
we use a series of probing tasks to quantify what sort of linguistic information
our encoders retain, and how this information varies across language, across
encoder, and across task. As such, our experiments do not attempt to attain
‘state-of-the-art’ results; instead, we attempt to use a comparable experimental
setting across each experiment, to quantify differences between settings rather
than absolute results.

In Section V.2, we describe prior work in multiple strands of research:
specifically, on deep neural pre-training, on multilingualism in pre-training, and
on evaluation. Section V.3 describes both the linguistic features we probe our
representations for, and how we generated our probing corpus. In Section V.4,
we describe and motivate our choice of encoders, as well as describe our
infrastructural details. The bulk of our contribution is in Section V.5, where we
describe and analyse our results. Finally, we conclude with a discussion of the
implications of these results and future work in Section V.6.

V.2 Background

V.2.1 Deep pre-training
A watershed moment in NLP has been the recent innovation spree in deep
pre-training; it has represented a considerable step up from shallow pre-training
methods, that have been used in NLP since the introduction of contextual
word embedding models such as word2vec (Mikolov et al., 2013). Whilst
deep pre-training has been used in non-NLP, image-oriented tasks, where the
standard paradigm is to pre-train deep convolutional networks on datasets like
ImageNet (Russakovsky et al., 2014), and then fine-tune on task-specific data,
their introduction to textual domains has been considerably slower, yet has been
picking up rapidly in recent years.

An early paper in this theme was CoVe (McCann et al., 2017), that pre-
trained contextual encoders on seq2seq machine translation models. Another
earlier seminal work that addressed numerous technical issues with pre-training
was Howard and Ruder’s ULMFiT (2018). Not long after, the principle of deep
pre-training saw widespread adoption with ELMo (Peters et al., 2018b), that
consisted of several innovations over CoVe: critically, the use of an unsupervised
(albeit structured) task – language modelling – for pre-training, and the use
of a linear combination of all encoder layers, instead of just the top layer.
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Architecturally, ELMo used two-layer bidirectional LSTMs along with character-
level convolutions, to model word probabilities given the history.

With deep pre-training having been established as a valid strategy in NLP,
alternative models with different underlying architectures were proposed. The
OpenAI GPT (Radford et al., 2018) was one such model; instead of LSTMs, it
used the decoder of an attention-based transformer (Vaswani et al., 2017) as
its underlying encoder – the justification being that using the transformer’s
encoder would lead to each token having access to succeeding tokens. The GPT
also achieved (then) state-of-the-art results by plugging generated fixed-length
vectors into downstream classifiers.

Another system that represented a significant innovation was BERT (Devlin
et al., 2018). BERT introduced a language modelling variant, dubbed masked
language modelling, that allowed them to use transformer encoders as their
underlying encoding mechanism.

V.2.2 Multilingual pre-training
Multilingual variants of pre-trained encoders that provide contextual represen-
tations for non-English languages have also been studied; there is, however,
some diversity in precisely how they are generated.

Che et al. (2018) provide ELMo models (Fares et al., 2017) for 44 languages;
all of these were trained on data provided as part of the CoNLL 2018 shared task
on dependency parsing Universal Dependencies treebanks (Zeman et al., 2018).
This makes ‘multilingual’ a bit of a misnomer: whilst this is the most obvious
approach to multilingual support, these models are all monolingual. This also
leads to other issues downstream, such as a complete inability to deal with true
multilingual phenomena like code-switching. Throughout this text, however,
when not specifically referring to ELMo, our use of the term ‘multilingual’ is
inclusive of ELMo’s quasi-multilingualism.

This is contrasted with BERT’s approach to (true) multilingualism, which
trains a single model that can handle all languages. The authors use WordPiece,
a variant of BPE (Sennrich et al., 2016), for tokenisation, using a 110K-size
vocabulary, and proceed to train a single gigantic model; they perform
exponentially smoothed weighting of their data to avoid biasing their model
towards better-resourced languages.

Finally, XLM Lample and Conneau, 2019 is another cross-lingual encoder
based on BERT that implements a number of modifications. Along with BERT’s
masked language modeling or Cloze task-based modelling Devlin et al., 2018;
Taylor, 1953, XLM training uses another similar objective during training that
the authors call translation language modeling. Here, two parallel sentences
are concatenated and words masked in both source and target sentences words
are predicted using context from both. The authors here also use their own
implementation of BPE – FastBPE, for which they provide a vocabulary of
around 120K entries. This vocabulary is shared across all of the languages and
thus improves the alignment of embedded spaces, as shown in Lample et al.
(2018).
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V.2.3 On evaluation
Evaluation of contextual representations goes beyond merely deep representa-
tions; not too far in the past, work on evaluating shallow sentence representa-
tions was encouraged by the release of the SentEval toolkit (Conneau and Kiela,
2018), which provided an easy-to-use framework that sentence representations
could be ‘plugged’ into, for rapid downstream evaluation on numerous tasks:
these include several classification tasks, textual entailment and similarity tasks,
a paraphrase detection task, and caption/image retrieval tasks. Relevant to our
paper is Conneau et al.’s (2018) set of ‘probing tasks’, a variant on the theme
of diagnostic classification (Adi et al., 2017; Belinkov et al., 2017; Hupkes et al.,
2018; Shi et al., 2016), that would attempt to quantify precisely what sort of
linguistic information was being retained by sentence representations. Based in
part on Shi et al. (2016), Conneau et al. (2018) focus on evaluating representa-
tions for English; they provide Spearman correlations between the performance
of a particular representation mechanism on being probed for specific linguistic
properties, and the downstream performance on a variety of NLP tasks. Along
similar lines, and contemporaneously with this work, Liu et al. (2019) probe
similar deep pre-trained to the ones we do, on a set of ‘sixteen diverse probing
tas ks’. (Tenney et al., 2019b) probe deep pre-trained encoders for sentence
structure.

On a different note, Saphra and Lopez (2019) present a CCA-based method
to compare representation learning dynamics across time and models, without
explicitly requiring annotated corpora.

A visible limitation of the datasets provided by these probing tasks is
that most of them were created with the idea of evaluating representations
built for English language data. Within the realm of evaluating multilingual
sentence representations, conneau_xnli:_2018 describe the XNLI dataset, a
set of translations of the development and test portions of the multi-genre
MultiNLI inference dataset (Williams et al., 2018). This, in a sense, is an
extension of a predominantly monolingual task to the multilingual domain;
the authors evaluate sentence representations derived by mapping non-English
representations to an English representation space.

V.2.4 BERTology
Relevant to the probing theme of this paper is the sudden recent growth in
papers studying precisely what is retained with the internal representations of
pre-trained encoders like BERT. These include, for instance, analyses of BERT’s
attentions heads, such as Michel et al. (2019), where the authors prune heads,
often reducing certain layers to single heads, without a significant drop in
performance in certain scenarios. Clark et al. (2019) provide a per-head analysis
and attempt to quantify what information each head retains; they discover
that specific aspects of syntax are well-encoded per head, and find heads that
correspond to certain linguistic properties, such as heads that attend to direct
objects of verbs. Other papers provide analyses of BERT’s layers, such as Tenney
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et al. (2019a), who discover that BERT’s layers roughly correspond to the notion
of the classical ‘NLP pipeline’, with lower level tasks such as tagging lower
down the layer hierarchy. Hewitt and Manning (2019) define a structural probe
over BERT representations, that extracts notions of syntax that correspond
strongly to linguistic notions of dependency syntax.

V.3 Corpora

V.3.1 Probing
Our data consists of training, development and test splits for 9 linguistic
tasks, that can broadly be grouped into surface, syntactic and semantic tasks.
These are the same as the ones described in Conneau et al. (2018), with minor
modifications. Due to the differences in corpus domain, we alter some of their
word-frequency parameters. We also exclude the top constituent (TopConst)
task; we noticed that Wikipedia tended to have far less diversity in sentence
structure than the original Toronto Books corpus, due to the more encyclopaedic
style of writing. A brief description of the tasks follows, although we urge the
reader to refer to the original paper for more detailed descriptions.

1. Sentence length: In SentLen, sentences are divided into multiple bins
based on their length; the job of the classifier is to predict the appropriate
bin, creating a 6-way classification task.

2. Word count: In WC, we sample sentences that feature exactly one amongst
a thousand mid-frequency words, and train the classifier to predict the
word: this is the most ‘difficult’ task, in that it has the most possible
classes.

3. Tree depth: The TreeDepth task simply asks the representation to predict
the depth of the sentence’s syntax tree. Unlike the original paper, we use
the depth the of the dependency tree instead of the constituency tree.

4. Bigram shift: In BiShift, for half the sentences in the dataset, the order of
words in a randomly sampled bigram is reversed. The classifier learns to
predict whether or not the sentence contains a reversal.

5. Subject number: The SubjNum task asks the classifier to predict the
number of the subject of the head verb of the sentence. Only sentences
with exactly one subject (annotated with the nsubj relation) attached to
the root verb were considered.

6. Object number: ObjNum, similar to the subject number task, was
annotated with the number of the direct object of the head verb (annotated
with the obj relation).
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7. Coordination inversion: In CoordInv, two main clauses joined by a
coordinating conjunction have their orders reversed, with a probability
of one in two. Only sentences with exactly two top-level conjuncts are
considered.

8. (Semantic) odd man out: SOMO, one of the more difficult tasks in the
collection, replaces a randomly sampled word with another word with
comparable corpus bigram frequencies.

9. Tense prediction: The Tense prediction asks the classifier to predict the
tense of the main verb: we compare the past and present tenses.

V.3.2 Data
Languages

Our choice of languages was motivated by three factors: i) the availability
of a Wikipedia large enough to extract data from; ii) the availability of a
reasonable dependency parsing model, and iii) typological diversity. The
former, in particular, was a bit of a restriction, since not all sentences were
valid candidates for extraction per task. Our final set of languages include an
additional corpus for English, as well as French, German, Spanish, Russian,
Turkish and Finnish. Whilst not nearly representative of the diversity of world
languages, this selection includes morphologically agglutinative, fusional and
(relatively) isolating languages, and it includes two scripts, Latin and Cyrillic.
The languages also represent three families (Indo-European, Turkic and Uralic).

We build our probing datasets using the relevant language’s Wikipedia
dump as a corpus. Our motivation for doing so was that it a freely available
corpus for numerous languages, large enough to extract the sizeable corpora
that we need. Specifically, we use Wikipedia dumps (dated 2019-02-01), which
we process using the WikiExtractor utility1.

The dataset, that we dub X-PROBE (Ravishankar et al., 2019), is freely
available on Github2.

Preprocessing

We use the Punkt tokeniser (Kiss and Strunk, 2006) to segment our Wikipedia
dumps into discrete sentences. For Russian, which lacked a Punkt tokenisation
model, we used the UDPipe (Straka and Straková, 2017) toolkit to perform
segmentation.

Having segmented our data, we used the Moses (Koehn et al., 2007)
tokeniser for the appropriate language, falling back to English tokenisation
when unavailable.

Next, we obtained dependency parses for our sentences, again using
the UDPipe toolkit’s pretrained models, trained on Universal Dependencies

1https://github.com/attardi/wikiextractor/
2https://github.com/ltgoslo/xprobe
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treebanks (Nivre et al., 2015). We then processed these dependency parsed
corpora to extract the appropriate sentences; while in principle, each task was
meant to have 120K sentences, with 100K/10K/10K training/validation/test
splits, often, for the rarer linguistic phenomena, we ran out of source data, in
particular with Turkish and Finnish, although to a smaller extent with Russian
as well. In these situations, we ensured an equivalent split ratio.

Our use of non-gold-standard dependency parses implies inaccuracies that,
in principle, would propagate to our training data. A valid counterargument,
however, is that we do not rely on complete parse accuracies for all our tasks;
several tasks do not require dependency or POS annotation, and the ones that
do rely on a fixed subset of dependency relations, such as nsubj or obj. Having
said that, we do acknowledge the divergences in parsing performance across
language; unfortunately, given the substantial corpus sizes these experiments
require, we could not use gold-standard parsed corpora.

V.4 Implementation

V.4.1 Encoders
We probe several popular pre-trained encoders (or, specifically, their multilin-
gual variants). These include:

ELMo, monolingual We use Che et al.’s (2018) pre-trained monolingual ELMo
models for each of our languages. Training was similar to the original
English language ELMo, but allows for Unicode, and uses a sample
softmax (Jean et al., 2014) to deal with large vocabularies. We probed
four variants of each ELMo model - the character embeddings layer, the
two LSTM layers, and an average of all three. For obtaining a fixed-length
sentence representation, we use average pooling over the sequence of
hidden states.

BERT We use the two multilingual variants - cased and uncased. Both variants
have 12 layers, 768 hidden units, 12 heads and 110M parameters; the
former includes 104 languages and fixes normalisation issues, whilst the
latter includes 102 languages. For further classification, we use the first
hidden state, represented by the [CLS] token.

XLM We probe only one variant of this encoder - i.e., the models fine-tuned
on XNLI (conneau_xnli:_2018) data. Due to there being no XNLI data for
Finnish, we do not probe our Finnish dataset with XLM. Unlike BERT,
XLM uses 1024 hidden units and 8 heads.

Unfortunately, all our encoders did include Wikipedia dumps in their
training data. Given that pretrained encoders tend to use as much easily
accessible data as possible in pre-training, however, it is difficult to avoid
using a completely unseen corpus for probing task extraction.
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Figure V.1: Detailed results per task, per language per encoder. Each task’s
result heatmap has its own scale. All results mentioned in this paper refer to
classification accuracies in [0.0, 1.0]. Henceforth, ‘co’ refers to probing results
on Conneau et al.’s (2018) original corpus.

V.4.2 Implementation

Our probing procedure for each of our languages and encoders is relatively
similar: we use a multi-layer perceptron based classifier to assign the
appropriate class label to each input sentence. During training, the encoders
remain static, with all learning restricted to the classifier. In an attempt to
avoid excessively complex classifiers, and to ensure consistency across tasks
and languages, we use predetermined fixed hyperparameters – specifically, a
sigmoid activation function, on top of a size 50 dense layer. We use a training
batch size of 32, optimised using Adam (Kingma and Ba, 2014), and train for 10
epochs, allowing for early stopping.

We implement our system using the AllenNLP toolkit (Gardner et al.,
2018), which crucially provides the ability to use the appropriate tokenisation
schema, along with the appropriate vocabulary, for each encoder. Training and
evaluation were carried out on NVIDIA RTX 2080 Ti GPUs, with 10GiB GPU
memory.
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Figure V.2: Results for select encoders, per language per task. All results use the
same scale, [0.0, 1.0].

V.5 Results

Due to our large experiment space, there are several dimensions along which
our results can be analysed and discussed. For ease of analysis, all our figures
are presented as heatmaps.

We have presented our results in two ways, for easy visualisation. The first
of these is dividing them up by task, as in Figure VI.3. We present an alternative
set of results for three of our encoders, in Figure V.2.

V.5.1 Encoder
An observation that instantly stands out is the significant difference in
performance on WC: consistently, across every language, all our transformer-
based architectures see results very close to 0. Further, whilst not instantly
visible in Figure V.2, a quick look at Figure VI.3 shows that the same appears
to hold (albeit to a lesser extent) for SENTLEN, TREEDEPTH and BISHIFT, all of
which are either surface or syntactic phenomena. This appears to heavily imply
that recurrent, sequential processing appears to retain lower level linguistic
phenomena better than self-attentive mechanisms (that do not see the same drop
in informativity for semantic tasks). This is perhaps a bit easy to justify with
SENTLEN, which is a phenomenon that is directly proportional to recurrence
depth.

The next phenomenon of interest is the difference between each of ELMo’s
layers. Interestingly, these do not appear to be as drastic as one would imagine,
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Figure V.3: BERT (cased) scores divided by the corresponding XLM scores. Tasks
are ordered, from surface to syntax to semantic level tasks.

given the differences in performance on downstream tasks. The difference
between raw word representations and actual contextual representations is
fairly noticeable, particularly on the strongly syntactic BISHIFT. However, the
differences between higher layers is relatively murkier, and whilst the average of
the three does appear to represent some phenomena better (such as COORDINV),
it isn’t clear that this difference is meaningful. Notably, SENTLEN appears to
be poorly represented in higher layers, which ties in with other analyses of
ELMo (Peters et al., 2018a), that imply that higher layers are likelier to learn
more semantic features.

BERT’s cased variant appears to retain information slightly better than the
uncased one, which is in line with the authors’ descriptions of their own models.

Finally, and perhaps most interestingly, we turn our attention towards
XLM. Despite being based on BERT (and indeed showing similar patterns in
performance), XLM appears to perform a lot worse than all our other encoders
on virtually every task. It is not immediately clear why: however, given that
this drop in performance is visible in every language, our conjecture is that
due to the translation-based modelling employed by XLM, the encoder does
indeed succeed at learning language-independent representations, or ‘universal’
representations. However, this universality comes at a cost: in an attempt to
adequately represent a variety of typologically diverse languages, XLM appears
to lose its ability to retain specific linguistic phenomena pertaining to specific
languages; in a sense, it is incapable of building a representation for a language
that adequately captures a specific phenomenon in that language and no other.
This follows intuitively from the method used training on the TLM objective:
the authors concatenate aligned parallel sentences and predict masked words in
the source and the target sentence, using context from both sentences at the same
time to predict each masked word. This is likely to have had a detrimental effect
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Figure V.4: Linguistic information retained per encoder, per task; scores are
averaged over language.

on XLM’s ability to retain characteristics specific to each language. In Figure V.3,
we show the relative performance of BERT and XLM per probing task. There is
a clear trend towards BERT’s enhanced retention of linguistic features being less
prominent for the more semantic tasks, which fits our hypothesis, as semantics
are likelier to hold cross-linguistically.

A point to be made here is that despite SUBJNUM, OBJNUM and TENSE
being classified as semantic tasks, it isn’t clear that they are truly being
probed for semantic information: all three phenomena tend to be visible
with morphological marking. This gives us an alternative justification for
XLM’s relative improvement in retention: XLM is likely capable of storing each
language’s individual morphological information in different internal subspaces
de, as each language is likely to reflect morphology purely orthographically,
and in mutually exclusive ways.

Our observations on the differences between encoders are also easily visible
in Figure V.4, where multiple ‘belts’ of varying performances emerge.

V.5.2 Language
To motivate one of the main focuses of this paper – our analysis of our results
along linguistic lines – we present Figure V.5, which displays what one might call
the net ‘informativity’ of an encoder, i.e. an average of how much information
each encoder retains averaged over tasks. The most noticeable effect here
is the drop in informativity for Russian and Turkish. While this is perhaps
understandable for Turkish – which has smaller probing corpora, and a less
reliable Wikipedia than the other languages – Russian’s opaqueness cannot be
as easily explained away, particularly when contrasted with Finnish, which
tends to have fewer resources.

We further introduce Figure V.6, which displays the averaged results of
three systems – ELMo’s multilayer variant, BERT’s cased variant and (absent for
Finnish) XLM. Most linguistic differences appear to be clustered in the semantic
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Figure V.5: Net encoder ‘informativity’ per language; results averaged over all
tasks.

part of this heatmap. There are numerous possible factors that could explain
these divergences, not the least of which is the actual probing corpus itself:
however, we attempt to provide a justification, from a typological perspective,
for some of these results.

When averaged across encoders, the TENSE task stands out as fairly easy to
probe for all languages. It thus seems that information about verbal temporal
properties is retained in the sentence representation. For the tasks of subject and
object number, however, we observe clear differences between the languages.
Here, French and Spanish appear to be somewhat easier to probe than other
languages. We hypothesise that this is due to both languages marking nominal
number, not just with verb agreement, but also with plural articles, resulting in
representations that are more informative regarding number. Contrast this with
English and German, which either do not have plural articles, or have plural
articles that morphologically overlap with non-plural forms, or with Russian,
that tends to avoid articles in general.

Other interesting observations are German’s relative ability at retaining
information on COORDINV and TENSE, as well as Finnish’s extraordinarily
high performance on TENSE. Further, SENTLEN appears to be retained better,
counter-intuitively, in Russian, Turkish and Finnish; a brief look at Figure VI.3
shows that, interestingly, this is likely due to BERT.

Finally, we note that our results do not seem to indicate that English is
somehow better represented in our multilingual systems, nor does it appear
to perform significantly better than other languages in general, indicating that
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Figure V.6: Linguistic insight per language per task, averaged over one variant
of every encoder: multi-layer ELMo, cased BERT, and XLM (bar Finnish).

none of our models are ‘learning’ English first and then adapting to other
languages.

V.5.3 Task
From a monolingual perspective, most of what needs to be said regarding the
choice of probing tasks has already been said in the original (Conneau et al.,
2018). There are however several differences, induced both by our modifications
to the original framework, and by our corpus’s multilingualism.

The first of these is the apparently consistent differences in performance on
certain tasks which include, amongst others, COORDINV, where our variant
appears to be more easily retained than the original. This can be explained
away by minor issues we faced during implementation, using dependency
trees instead of constituency trees. Due to more complicated representation
of conjuncts in UD-style dependency trees, some of our sentences had issues
with using the appropriate casing after swapping conjuncts, as well as ensuring
consistent punctuation. While we attempted to avoid these by writing filtering
rules, these were imperfect, and it is likely that stray punctuation and the like
might have informed our representations about the conjuncts being swapped,
in some instances.

Another task with minor differences is our implementation of SOMO; we
attribute this to not being able to accurately reproduce Conneau et al.’s (2018)
modified corpus-frequency range (40-400) to adequately fit all our corpora.

We note that there do not appear to be significant differences in the
TREEDEPTH task, despite our using dependency trees instead of constituency,
and despite our tree depth/sentence length de-correlation procedure being
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markedly simpler.

V.6 Discussion

V.6.1 Implications
Having elaborated our results, it becomes crucial to contextualise their
importance. ‘Probing’ an encoder, or more correctly, using diagnostic classifiers
to attempt to quantify what information an encoder stores, appears to be a
reasonable approach to qualifying this information. However, there has been
some critique of this approach. To paraphrase Saphra and Lopez (2019), the
architecture of a diagnostic classifier does affect the performance of a probing
task; further, lower layers of encoders may represent information in ways
designed to be picked up on by their own higher layers; this might prove
difficult for simple classifiers to truly probe.

This is an excellent critique of the principle using absolute probing perfor-
mance, or absolute numbers representing performance on an abstract insight
task, as a yardstick. Critically, this work is focussed, both practically and in prin-
ciple, on elucidating relative results, in a wide space of languages and encoders.
The relative underparameterisation of the classifier and the use of one constant
set of hyperparameters across experiments is an attempt to minimise the relative
interference of the classifier. i.e., our goal is to keep the classifier’s interference –
its lens – as consistent as possible.

V.6.2 Future work
One potential strand of research relates directly to the tasks themselves: our
choice of tasks was fairly restrictive, and does not include many tasks that are
truly semantic, which does not provide us with enough information to draw
conclusions similar to Liu et al. (2019), which is that pretrained models encode
stronger syntax than semantics. An obvious goal, therefore, is the more careful
design of tasks, particularly within a multilingual context: the tasks proposed
by Liu et al. (2019) and Tenney et al. (2019b) are not strictly easy to motivate
cross-linguistically due to the burden of annotation. This could include more
semantic-level probing by means of existing cross-lingual semantic resources,
such as the Parallel Meaning Bank (Abzianidze et al., 2017).
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V. Multilingual Probing of Deep Pre-Trained Contextual Encoders

Appendix V.A Detailed results

English CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.65 0.76 0.71 0.50 0.27 0.80 0.43 0.55 0.88

ELMo (LSTM, layer 1) 0.84 0.81 0.76 0.50 0.27 0.69 0.51 0.81 0.92
ELMo (LSTM, layer 2) 0.84 0.84 0.77 0.50 0.25 0.67 0.52 0.78 0.93

ELMo (lin. comb.) 0.84 0.83 0.77 0.50 0.26 0.68 0.49 0.81 0.92
BERT (cased) 0.81 0.79 0.69 0.50 0.04 0.36 0.39 0.70 0.88

BERT (uncased) 0.81 0.80 0.68 0.51 0.02 0.37 0.37 0.63 0.89
XLM 0.58 0.68 0.58 0.50 0.00 0.22 0.30 0.54 0.60

German CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.72 0.73 0.69 0.52 0.37 0.60 0.40 0.54 0.92

ELMo (LSTM, layer 1) 0.91 0.79 0.73 0.51 0.36 0.77 0.48 0.83 0.95
ELMo (LSTM, layer 2) 0.93 0.80 0.73 0.51 0.34 0.72 0.48 0.80 0.96

ELMo (lin. comb.) 0.92 0.79 0.74 0.51 0.36 0.69 0.48 0.82 0.96
BERT (cased) 0.90 0.77 0.68 0.50 0.04 0.35 0.34 0.70 0.93

BERT (uncased) 0.92 0.77 0.69 0.51 0.03 0.36 0.34 0.67 0.94
XLM 0.57 0.70 0.60 0.50 0.00 0.26 0.26 0.54 0.75

Spanish CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.67 0.85 0.78 0.50 0.29 0.85 0.47 0.54 0.93

ELMo (LSTM, layer 1) 0.71 0.85 0.78 0.52 0.07 0.64 0.46 0.81 0.89
ELMo (LSTM, layer 2) 0.75 0.88 0.81 0.51 0.11 0.71 0.50 0.79 0.89

ELMo (lin. comb.) 0.81 0.88 0.82 0.50 0.26 0.78 0.52 0.82 0.89
BERT (cased) 0.78 0.85 0.77 0.53 0.05 0.36 0.40 0.68 0.91

BERT (uncased) 0.81 0.85 0.77 0.52 0.04 0.37 0.39 0.68 0.94
XLM 0.56 0.72 0.69 0.50 0.00 0.19 0.25 0.55 0.72

French CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.66 0.87 0.79 0.50 0.32 0.76 0.44 0.52 0.89

ELMo (LSTM, layer 1) 0.87 0.89 0.82 0.50 0.30 0.74 0.53 0.85 0.91
ELMo (LSTM, layer 2) 0.87 0.90 0.83 0.50 0.28 0.74 0.52 0.83 0.94

ELMo (lin. comb.) 0.86 0.90 0.80 0.50 0.28 0.75 0.53 0.83 0.91
BERT (cased) 0.80 0.84 0.72 0.50 0.05 0.37 0.37 0.67 0.86

BERT (uncased) 0.84 0.87 0.72 0.50 0.04 0.36 0.37 0.71 0.85
XLM 0.51 0.76 0.72 0.50 0.00 0.18 0.24 0.51 0.70

Russian CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.60 0.72 0.63 0.50 0.32 0.65 0.36 0.57 0.89

ELMo (LSTM, layer 1) 0.82 0.72 0.64 0.53 0.32 0.69 0.40 0.80 0.87
ELMo (LSTM, layer 2) 0.84 0.73 0.63 0.54 0.31 0.72 0.40 0.77 0.87

ELMo (lin. comb.) 0.81 0.71 0.65 0.53 0.35 0.70 0.40 0.79 0.88
BERT (cased) 0.72 0.70 0.61 0.53 0.04 0.46 0.33 0.64 0.86

BERT (uncased) 0.79 0.71 0.62 0.53 0.03 0.38 0.33 0.67 0.88
XLM 0.55 0.60 0.53 0.49 0.00 0.22 0.20 0.58 0.64

Turkish CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.63 0.65 0.72 0.52 0.26 0.61 0.37 0.57 0.91

ELMo (LSTM, layer 1) 0.84 0.81 0.72 0.52 0.00 0.65 0.36 0.57 0.79
ELMo (LSTM, layer 2) 0.92 0.81 0.61 0.52 0.23 0.72 0.39 0.63 0.86

ELMo (lin. comb.) 0.92 0.84 0.72 0.52 0.26 0.72 0.38 0.65 0.88
BERT (cased) 0.94 0.69 0.70 0.52 0.03 0.44 0.34 0.63 0.92

BERT (uncased) 0.93 0.73 0.76 0.52 0.02 0.37 0.34 0.62 0.92
XLM 0.58 0.62 0.60 0.49 0.00 0.38 0.32 0.56 0.71

Finnish CoordInv SubjNum ObjNum SOMO WC SentLen TreeDepth BiShift Tense
ELMo (char. layer) 0.60 0.87 0.84 0.50 0.38 0.67 0.41 0.51 0.96

ELMo (LSTM, layer 1) 0.81 0.87 0.86 0.50 0.37 0.74 0.47 0.77 0.97
ELMo (LSTM, layer 2) 0.84 0.87 0.86 0.51 0.33 0.71 0.47 0.77 0.97

ELMo (lin. comb.) 0.84 0.87 0.85 0.49 0.35 0.72 0.47 0.76 0.97
BERT (cased) 0.77 0.84 0.73 0.51 0.04 0.36 0.36 0.64 0.95

BERT (uncased) 0.81 0.84 0.76 0.49 0.03 0.39 0.34 0.61 0.96
XLM - - - - - - - - -

Table V.1: Detailed table with probing results
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Parser results

Appendix V.B Parser results

Language UPOS Feats AllTags Lemmas UAS LAS
English 93.50 94.44 91.48 96.10 80.34 77.25
German 90.72 80.46 76.26 95.38 74.15 68.61
Spanish 95.54 96.10 93.70 95.89 85.32 81.95
French 95.49 95.42 94.26 96.59 84.09 80.50
Russian 94.69 84.17 82.61 74.91 80.94 76.15
Turkish 91.51 86.70 84.60 89.60 60.78 53.78
Finnish 94.49 91.42 90.35 86.49 80.74 77.26

Table V.2: UDPipe v1.2 parsing and tagging accuracies; UAS and LAS are
unlabelled and labelled attachement scores respectively
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VI

Abstract

Recent work on the interpretability of deep neural language models has
concluded that many properties of natural language syntax are encoded in
their representational spaces. However, such studies often suffer from
limited scope by focusing on a single language and a single linguistic
formalism. In this study, we aim to investigate the extent to which the
semblance of syntactic structure captured by language models adheres to
a surface-syntactic or deep syntactic style of analysis, and whether the
patterns are consistent across different languages. We apply a probe for
extracting directed dependency trees to BERT and ELMo models trained
on 13 different languages, probing for two different syntactic annotation
styles: Universal Dependencies (UD), prioritizing deep syntactic relations,
and Surface-Syntactic Universal Dependencies (SUD), focusing on surface
structure. We find that both models exhibit a preference for UD over SUD
— with interesting variations across languages and layers — and that the
strength of this preference is correlated with differences in tree shape.
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VI.1 Introduction

Recent work on interpretability in NLP has led to the consensus that deep neural
language models trained on large, unannotated datasets manage to encode
various aspects of syntax as a byproduct of the training objective. Probing
approaches applied to models like ELMo (Peters et al., 2018a) and BERT (Devlin
et al., 2019) have demonstrated that one can decode various linguistic properties
such as part-of-speech categories, dependency relations, and named-entity
types directly from the internal hidden states of a pretrained model (Peters et al.,
2018b; Tenney et al., 2019b). Another line of work has tried to tie cognitive
measurements or theories of human linguistic processing to the machinations
of language models, often establishing strong parallels between the two (Abnar
et al., 2019; Gauthier and Levy, 2019; Prasad et al., 2019).

As is the case for NLP in general, English has served as the de facto testing
ground for much of this work, with other languages often appearing as an
afterthought. However, despite its ubiquity in the NLP literature, English
is generally considered to be atypical across many typological dimensions.
Furthermore, the tendency of interpreting NLP models with respect to existing,
canonical datasets often comes with the danger of conflating the theory-driven
annotation therein with scientific fact. One can observe this to an extent with the
Universal Dependencies (UD) project Nivre et al., 2016, which aims to collect
syntactic annotation for a large number of languages. Many interpretability
studies have taken UD as a basis for training and evaluating probes, but often
fail to mention that UD, like all annotation schemes, is built upon specific
theoretical assumptions, which may not be universally accepted.

Our research questions start from these concerns. When probing language
models for syntactic dependency structure, is UD — with its emphasis on
syntactic relations between content words — really the best fit? Or is the
representational structure of such models better explained by a scheme that
is more oriented towards surface structure, such as the recently proposed
Surface-Syntactic Universal Dependencies (SUD) Gerdes et al., 2018? And are
these patterns consistent across typologically different languages? To explore
these questions, we fit the structural probe of Hewitt and Manning (2019) on
pretrained BERT and ELMo representations, supervised by UD/SUD treebanks
for 13 languages, and extract directed dependency trees. We then conduct an
extensive error analysis of the resulting probed parses, in an attempt to qualify
our findings. Our main contributions are the following:

1. A simple algorithm for deriving directed trees from the disjoint distance
and depth probes introduced by Hewitt and Manning (2019).

2. A multilingual analysis of the probe’s performance across 13 different
treebanks.
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the dog has chased the cat from the room
DET NOUN AUX VERB DET NOUN ADP DET NOUN

det
nsubj

aux

comp:aux

det
obj case

det

obl

obl obj

Figure VI.1: Simplified UD and SUD annotation for an English sentence.

the dog has chased the cat from the room
DET NOUN AUX VERB DET NOUN ADP DET NOUN

Case=Nom Case=Acc Case=Ela
NOUN VERB NOUN NOUN
koira jahtasi kissan huoneesta

det
nsubj

aux det
obj case

det

obl

nsubj

obj

obl

Figure VI.2: Simplified UD and SUD annotation for an English sentence.

3. An analysis showing that the syntactic information encoded by BERT and
ELMo fit UD better than SUD for most languages.

VI.2 Related Work

There has been a considerable amount of recent work attempting to understand
what aspects of natural language pre-trained encoders learn. The classic formu-
lation of these probing experiments is in the form of diagnostic classification
(Belinkov et al., 2017; Conneau et al., 2018; Ettinger et al., 2016; Hupkes et al.,
2018), which attempts to unearth underlying linguistic properties by fitting
relatively underparameterised linear models over representations generated by
an encoder. These methods have also faced recent critique, for example, con-
cerning the lack of transparency in the classifers’ ability to extract meaningful
information, as opposed to learning it. Alternative paradigms for interpretability
have therefore been proposed, such as correlation-based methods (Chrupała
and Alishahi, 2019; Kornblith et al., 2019; Raghu et al., 2017; Saphra and Lopez,
2018). However, this critique does not invalidate diagnostic classification: in-
deed, more recent work (Hewitt and Liang, 2019) describes methods to show
the empirical validity of certain probes, via control tasks.

Among probing studies specifically pertinent to our paper, Blevins et al.
(2018) demonstrate that deep RNNs are capable of encoding syntax given
a variety of pre-training tasks, including language modeling. Peters et al.
(2018b) demonstrate that, regardless of encoder (recurrent, convolutional,
or self-attentive), biLM-based pre-training results in similar high-quality
representations that implicitly encode a variety of linguistic phenomena, layer
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by layer. Similarly, Tenney et al. (2019a) employ the ‘edge probing’ approach of
Tenney et al. (2019b) to demonstrate that BERT implicitly learns the ‘classical
NLP pipeline’, with lower-level linguistic tasks encoded in lower layers and
more complex phenomena in higher layers, and dependency syntax in layer 5–6.
Finally, Hewitt and Manning (2019) describe a syntactic probe for extracting
aspects of dependency syntax from pre-trained representations, which we
describe in Section VI.4.

VI.3 Aspects of Syntax

Syntax studies how natural language encodes meaning using expressive devices
such as word order, case marking and agreement. Some approaches emphasize
the formal side and primarily try to account for the distribution of linguistic
forms. Other frameworks focus on the functional side to capture the interface to
semantics. And some theories use multiple representations to account for both
perspectives, such as c-structure and f-structure in LFG (Bresnan, 2000; Kaplan
and Bresnan, 1982) or surface-syntactic and deep syntactic representations in
Meaning-Text Theory (Mel’čuk, 1988).

When asking whether neural language models learn syntax, it is therefore
relevant to ask which aspects of syntax we are concerned with. This is especially
important if we probe the models by trying to extract syntactic representations,
since these representations may be based on different theoretical perspectives.
As a first step in this direction, we explore two different dependency-based
syntactic representations, for which annotations are available in multiple
languages. The first is Universal Dependencies (UD) (Nivre et al., 2016),
a framework for cross-linguistically consistent morpho-syntactic annotation,
which prioritizes direct grammatical relations between content words. These
relations tend to be more parallel across languages that use different surface
features to encode the relations. The second is Surface-Syntactic Universal
Dependencies (SUD) (Gerdes et al., 2018), a recently proposed alternative to UD,
which gives more prominence to function words in order to capture variations
in surface structure across languages.

Figure VI.2 contrasts the two frameworks by showing how they annotate
an English sentence. While the two annotations agree on most syntactic
relations (in black), including the analysis of core grammatical relations like
subject (nsubj1) and object (obj), they differ in the analysis of auxiliaries and
prepositional phrases. The UD annotation (in blue) treats the main verb chased
as the root of the clause, while the SUD annotation (in red) assigns this role
to the auxiliary has. The UD annotation has a direct oblique relation between
chased and room, treating the preposition from as a case marker, while the SUD
annotation has an oblique relation between chased and from, analyzing room as
the object of from. The purpose of the UD style of annotation is to increase the
probability of the root and oblique relations being parallel in other languages
that use morphology (or nothing at all) to encode the information expressed by

1UD uses the nsubj relation, for nominal subject, while SUD uses a more general subj relation.
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auxiliaries and adpositions. SUD is instead designed to bring out differences in
surface structure in such cases.

The different treatment of function words affects not only adpositions
(prepositions and postpositions) and auxiliaries (including copulas), but also
subordinating conjunctions and infinitive markers. Because of these systematic
differences, dependency trees in UD tend to have longer average dependency
length and smaller height2 than in SUD.

VI.4 Probing Model

To conduct our experiments, we make use of the structural probe proposed
by Hewitt and Manning (2019), which is made up of two complementary
components — distance and depth. The former is an intuitive proxy for the
notion of two words being connected by a dependency: any two words wi, wj

in a tree T are neighbors if their respective distance in the tree amounts to
dT (wi, wj) = 1. This metric can theoretically be applied to the vector space of
any pretrained neural language model sentence encoding, which ouputs a set of
vectors S = h1, ..., hn for a sentence. In practice, however, the distance between
any two vectors {hi, hj} ∈ S will not be directly comparable to their distance in
a corresponding syntactic tree T , because the model does not encode syntax in
isolation. To resolve this, Hewitt and Manning (2019) propose to learn a linear
transformation matrix B, such that dB(hi, hj) extracts the distance between any
two words wi, wj in a parse tree. For an annotated corpus of L sentences, the
distance probe can be learned via gradient descent as follows:

min
B

L∑
l=1

1
|nl|2

∑
i,j

|dT l(wl
i, wl

j)− dB(hl
i, hl

j)2|

where |nl| is the length of sentence l, normalized by the number |nl|2 of word
pairs, and dT l(wl

i, wl
j) is the distance of words wl

i and wl
j in the gold tree.

While the distance probe can predict which words enter into dependencies
with one another, it is insufficient for predicting which word is the head. To
resolve this, Hewitt and Manning (2019) employ a separate probe for tree
depth,3 where they make a similar assumption as they do for distance: a given
(square) vector L2 norm ||h2

i || is analogous to wi’s depth in a tree T . A linear
transformation matrix B can therefore be learned in a similar way:

min
B

L∑
l=1

1
nl

n∑
i

(||wl
i|| − ||Bhl

i||2)

where ||wl
i|| is the depth of a wl

i in the gold tree.

2The height of a tree is the length of the longest path from the root to a leaf (sometimes referred
to as depth).

3The depth of a node is the length of the path from the root.
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Algorithm 1 Invoke CLE for sentence S = w1,n

given distance matrix E and depth vector D

procedure INVOKECLE(E, D)
N ← |S|+ 1
M ← INIT(shape=(N, N), value=−∞)
for (wi, wj) ∈ E do

if D(wi) < D(wj) then
M(wi, wj)← −E(wi, wj)

root← argminiD(wi)
M(0, wroot)← 0
return CLE(M )

end procedure

To be able to score probed trees (against UD and SUD gold trees) using
the standard metric of unlabeled attachment score (UAS), we need to derive a
rooted directed dependency tree from the information provided by the distance
and depth probes. Algorithm 1 outlines a simple method to retrieve a well-
formed tree with the help of the Chu-Liu-Edmonds maximum spanning tree
algorithm (Chu and Liu, 1965; McDonald et al., 2005). Essentially, in a sentence
S = w1 . . . wn, for every pair of nodes (wi, wj) with an estimated distance of
d between them, if wi has smaller depth than wj , we set the weight of the arc
(wi, wj) to−d; otherwise, we set the weight to−∞. This is effectively a mapping
from distances to scores, with larger distances resulting in lower arc scores from
the parent to the child, and infinitely low scores from the child to the parent.
We also add a pseudo-root w0 (essential for decoding), which has a single arc
pointing to the shallowest node (weighted 0). We use the AllenNLP (Gardner
et al., 2018) implementation of the Chu-Liu/Edmonds’ algorithm.

VI.5 Experimental Design

In order to evaluate the extent to which a given model’s representational space
fits either annotation framework, we fit the structural probe on the model, layer
by layer, using UD and SUD treebanks for supervision, and compute UAS over
each treebank’s test set as a proxy for a given layer’s goodness-of-fit.

Language and Treebank Selection We reuse the sample of Kulmizev et
al. (2019), which comprises 13 languages from different language families,
with different morphological complexity, and with different scripts. We
use treebanks from UD v2.4 Nivre et al., 2019 and their conversions into
SUD.4 Table VI.1 shows background statistics for the treebanks, including the
percentage of adpositions (ADP) and auxiliaries (AUX), two important function
word categories that are treated differently by UD and SUD. A direct comparison

4https://surfacesyntacticud.github.io/data/
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Language Code Treebank # Sents %ADP %AUX %ContRel Dep Len Height

UD SUD UD SUD UD SUD

Arabic arb PADT 6075 15 1 37 24 4.17 3.92 7.20 9.82
Chinese cmn GSD 3997 5 3 37 30 3.72 3.74 4.30 6.56
English eng EWT 12543 8 6 20 12 3.13 2.94 3.48 5.11
Basque eus BDT 5396 2 13 34 25 2.99 2.90 3.49 4.18
Finnish fin TDT 12217 2 7 35 30 2.98 2.91 3.42 4.22
Hebrew heb HTB 5241 14 2 28 14 3.76 3.53 5.07 7.30
Hindi hin HDTB 13304 22 9 26 10 3.44 3.05 4.25 7.41
Italian ita ISDT 13121 14 5 21 8 3.30 3.12 4.21 6.28
Japanese jap GSD 7125 25 14 31 10 2.49 2.08 4.40 8.18
Korean kor GSD 4400 2 0 58 57 2.20 2.17 3.86 4.07
Russian rus SynTagRus 48814 10 1 31 22 3.28 3.13 4.21 5.24
Swedish swe Talbanken 4303 12 5 29 17 3.14 2.98 3.50 5.02
Turkish tur IMST 3664 3 2 33 30 2.21 2.12 3.01 3.37

Average - - 10784.62 12 5 32 22 3.14 3.00 4.20 5.91

Table VI.1: Treebank statistics: number of sentences (# Sents) and percentage
of adpositions (ADP) and auxiliaries (AUX). Comparison of UD and SUD:
percentage of direct relations involving only nouns and/or verbs (ContRel);
average dependency length (DepLen) and average tree height (Height).
Language codes are ISO 639-3.

of the UD and SUD representations shows that, as expected, UD has a higher
percentage of relations directly connecting nouns and verbs (ContRel), higher
average dependency length (DepLen) and lower average tree height (Height).
However, the magnitude of the difference varies greatly across languages.5

Models We evaluate two pretrained language models: BERT (Devlin et al.,
2019) and ELMo (Peters et al., 2018a). For BERT, we use the pretrained
multilingual-bert-cased model provided by Google.6 The model is trained
on the concatenation of WikiDumps for the top 104 languages with the largest
Wikipedias and features a 12-layer Transformer with 768 hidden units and 12
self-attention heads. For ELMo, we make use of the pretrained monolingual
models made available by Che et al. (2018). These models are trained on 20
million words randomly sampled from the concatenation of WikiDump and
CommonCrawl datasets for 44 different languages, including our 13 languages.
Each model features a character-based word embedding layer, as well as 2
bi-LSTM layers, each of which is 1024-dimensions wide.

Though we fit the probe on all layers of each model separately, we also learn
a weighted average over each full model:

modeli =
L∑

j=0
sjhi,j

5For Chinese, UD actually has slightly lower average dependency length than SUD.
6https://github.com/google-research/bert
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where sj is a learned parameter, hi,j is the encoding of word i at layer j, and L is
the number of layers. We surmise that, in addition to visualizing the probes’ fit
across layers, this approach will give us a more general notion of how well either
model aligns with the respective frameworks. We refer to this representation
as the 13th BERT layer and the 3rd ELMo layer. When determining the
dimensionality of the transformation matrix (i.e. probe rank), we defer to each
respective encoder’s hidden layer sizes. However, preliminary experiments
indicated that probing accuracy was stable across ranks of decreasing sizes.

It is important to note that by probe we henceforth refer to the algorithm
that combines both distance and depth probes to return a valid tree. One could
argue that, per recent insights in the interpretability literature (e.g. Hewitt and
Liang, 2019), this model is too expressive in that it combines supervision from
two different sources. We do not consider this a problem, as the two probes are
trained separately and offer views into two different abstract properties of the
dependency tree. As such, we do not optimize for UAS directly.

VI.6 Results and Discussion

Figure VI.3 displays the UAS after fitting the structural probes on BERT and
ELMo, per language and layer. What is perhaps most noticeable is that, while
BERT can achieve accuracies upwards of 79 UAS on some languages, ELMo
fares consistently worse, maxing out at 65 for Hindi at layer 2. The most likely
explanation for this is that the ELMo models are smaller than the multilingual
BERT’s 12-layer Transformer-based architecture, which was trained on orders
of magnitude more data (albeit multilingually).

In general, we find that the probing performance is stable across languages,
where layers 7–8 fare the best for BERT and layer 2 for ELMo.7 This contrasts
with prior observations Tenney et al., 2019a, as the syntactic ‘center of gravity’
is placed higher in each model’s hierarchy. However, computing a weighted
average over layers tends to produce the best overall performance for each
model, indicating that the probe can benefit from information encoded across
various layers.

Once we compare the averaged results across syntactic representations, a
preference for UD emerges, starting in layer 3 in BERT and layer 2 in ELMo. We
observe the max difference in favor of UD in layer 7 for BERT, where the probe
performs 3 UAS points better than SUD, and in the weighted average (layer
13), with 4 UAS points. The difference for the 13th BERT and 3rd ELMo layers
is statistically significant at p ≤ 0.05 (Wilcoxon signed ranks test). A further
look at differences across languages reveals that, while most languages tend to
overwhelmingly prefer UD, there are some that do not: Basque, Turkish, and,
to a lesser extent, Finnish. Furthermore, the preference towards SUD in these
languages tends to be most pronounced in the first four and last two layers
of BERT. However, in the layers where we tend to observe the higher UAS

7It is important to note that layer 0 for ELMo is the non-recurrent embedding layer which
contains no contextual information.
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Figure VI.3: Probe results per model, layer, and language. First two rows depict
UAS per layer and language for BERT and ELMo, with average performance
and error over UD/SUD in 3rd column. Bottom two rows depict the difference
in UAS across UD (+) and SUD (−) per model.

overall (7–8), this is minimized for Basque/Turkish and almost eliminated for
Finnish. Indeed, we see the strongest preferences for UD in these layers overall,
where Italian and Japanese are overwhelmingly pro-UD, to the order of 10+
UAS points.
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Figure VI.4: Pearson correlation between UD/SUD probing accuracy and
supervised UAS, per layer.

VI.6.1 Controlling for Treebank Size
Overall, we note that some languages consistently achieve higher accuracy,
like Russian with 71/69 UAS for UD/SUD for BERT, while others fare poorly,
like Turkish (52/43) and Chinese (51/46). In the case of these languages, one
can observe an obvious relation to the size of our reference treebanks, where
Russian is by far the largest and Turkish and Chinese are the smallest. To test
the extent to which training set size affects probing accuracy, we trained our
probe on the same treebanks, truncated to the size of the smallest one — Turkish,
with 3664 sentences. Though we did observe a decline in accuracy in the largest
treebanks (e.g. Russian, Finnish, and English) for some layers, the difference in
aggregate was minimal. Furthermore, the magnitude of the difference in UD
and SUD probing accuracy was almost identical to that of the probes trained on
full treebanks, speaking to the validity of our findings. We refer the reader to
Appendix VI.A for these results.

VI.6.2 Connection to Supervised Parsing
Given that our findings seem to generally favor UD, another question we might
ask is: are SUD treebanks simply harder to parse? This may seem like a straight-
forward hypothesis, given SUD’s tendency to produce higher trees in aggregate,
which may affect parsing accuracy — even in the fully supervised case. To test
this, we trained UD and SUD parsers using the UDify model (Kondratyuk and
Straka, 2019), which employs a biaffine attention decoder (Dozat and Manning,
2016) after fine-tuning BERT representations (similar to our 13th layer). The
results showed a slightly higher average UAS for UD (89.9 vs. 89.6) and a slightly
higher LAS for SUD (86.8 vs. 86.5). Neither difference is statistically significant
(Wilcoxon signed ranks test), which seems to rule out an alternative explanation
in terms of learnability. We include the full range of results in Appendix VI.B.

In addition to this, we tested how well each framework’s probing accuracy
related to supervised UAS across languages. We computed this measure
by taking the Pearson correlation of each BERT probe’s layer accuracy (per-
language) with its respective framework accuracy. All correlations proved to
be significant at p ≤ 0.05, with the exception of UD and SUD at layer 1. Figure
VI.4 displays these results. Here, we observe that probing accuracies correlate
more strongly with supervised UAS for UD than for SUD. We can interpret
this to mean that the rate at which trees are decoded by the UD probe is more
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indicative of how well they can be parsed given a full view of their structure,
rather than vice-versa. Although correlation is an indirect measure here, we can
still accept it to be in support of our general findings.

VI.6.3 Parts of Speech
In order to gain a better understanding of these probing patterns, we move on
to an error analysis over the dev sets of each treebank, as fit by the averaged
models. Figure VI.5 shows probe accuracy for different models (BERT/ELMo)
and syntactic representations (UD/SUD) when attaching words of specific part-
of-speech categories to their heads. The general pattern is that we observe
higher accuracy for UD for both models on all categories, the only exceptions
being a slightly higher accuracy for both models on PRON and for ELMo
on VERB and X.8 However, the differences are generally greater for function
words, in particular ADP, AUX, SCONJ, PART and DET. In some respects, this
is completely expected given the different treatment of these words in UD and
SUD, and we can use the case of adpositions (ADP) to illustrate this. In UD, the
preposition from in a phrase like from the room is simply attached to the noun
room, which is in general a short relation that is easy to identify. In SUD, the
relation between the preposition and the noun is reversed, and the preposition
now has to be attached to whatever the entire phrase modifies, which often
means that difficult attachment ambiguities need to be resolved. However,
exactly the same ambiguities need to be resolved for nominal words (NOUN,
PRON, PROPN) in the UD representation, but there is no corresponding drop
in accuracy for these classes in UD (except very marginally for PRON). Similar
remarks can be made for other function word categories, in particular AUX,
SCONJ and PART. It thus seems that the UD strategy of always connecting
content words directly to other content words, instead of sometimes having
these relations mediated by function words, results in higher accuracy overall
when applying the probe to the representations learned by BERT and ELMo.

The behavior of different part-of-speech classes can also explain some of the
differences observed across languages. In particular, as can be seen in Table VI.1,
most of the languages that show a clear preference for UD — Chinese, Hebrew,
Hindi, Italian and Japanese — are all characterized by a high proportion of
adpositions. Conversely, the three languages that exhibit the opposite trend
— Basque, Finnish and Turkish — have a very low proportion of adpositions.
The only language that does not fit this pattern is Chinese, which has a low
percentage of adpositions but nevertheless shows a clear preference for UD.
Finally, it is worth noting that Korean shows no clear preference for either
representation despite having a very low proportion of adpositions (as well
as other function words), but this is due to the more coarse-grained word
segmentation of the Korean treebank, which partly incorporates function words
into content word chunks.9

8The X category is unspecified and extremely rare.
9This is reflected also in the exceptionally high proportion of direct content word relations; cf.

Table VI.1.
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Figure VI.5: UAS accuracy for the average models (BERT 13, ELMo 3) on
incoming dependencies of different part-of-speech categories.

VI.6.4 Sentence and Tree Properties

Figure VI.6 depicts probing accuracy across different sentence lengths, depen-
dency lengths, and distances to root. It is apparent that, despite the absolute
differences between models, the relative differences between representations
are strikingly consistent in favor of UD. For example, while the probe shows
identical accuracy for the two representations for sentences of length 1–10, SUD
decays more rapidly with increasing sentence length. Furthermore, while the
SUD probe is slightly more accurate at detecting sentence roots and their im-
mediate dependencies, we observe a consistent advantage for dependencies of
length 2+, until dropping off for the longest length bin of 10+. Though Table VI.1
indicates that UD dependencies are slightly longer than those of SUD, this factor
does not appear to influence the probe, as there are no significant correlations
between differences in average dependency length and differences in UAS.
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Figure VI.6: UAS across sentence length bins (top); F1 across varying
dependency lengths (middle); F1 across varying distances to root (bottom)

We observe a similar curve for varying distances to root, where the SUD
probe performs slightly better than UD at the shortest distance, but decays
faster for nodes higher in the tree. In general, UD trees have lower height than
SUD (see Table VI.1), which implies that tree height could be a major factor at
play here. To verify this, we conducted a Pearson correlation test between the
average increase in height from UD to SUD and the difference of the UD/SUD
probe UAS per language. This test returned ρ = 0.82, p < 0.001, indicating that
height is indeed crucial in accurately decoding trees across the two formalisms.
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In an attempt to visualize how this may play out across languages, we plotted
the per-sentence difference in probing accuracy between UD/SUD as a function
of the difference in height of the respective gold UD/SUD trees. Figure VI.7
depicts these results for BERT, where the x-axis indicates how many nodes
higher a SUD tree is with respect to its reference UD tree.

Figure VI.7: Differences in the BERT probe’s UAS (UD +, SUD −) as a function
of tree height per number of nodes (higher SUD tree +, higher UD tree −), with
smoothed means and 95% confidence ellipses as implemented in ggplot2)

It is apparent from Figure VI.7 that the preference for UD can be largely
explained via its lower tree height. If we first examine Korean, the segmentation
of which results in the smallest difference in height overall, we observe a
distribution that is roughly centered around zero on both axes. If we instead
refer to the UD-preferring languages (Chinese, Hebrew, Hindi, Italian, and
Japanese), we notice a strong skew of distributions towards the top right of the
plot. This indicates (i) that the trees in these samples are higher for SUD and
(ii) that the corresponding sentences are easier to decode in UD. By contrast,
for the SUD-preferring languages (Basque, Finnish, and Turkish), we observe
narrow distributions centered around 0 (similar to that of Korean), indicating
minimal variation in tree height between UD and SUD. What these language
have in common is an agglutinative morphology, which means that they rely
more on morphological inflection to indicate relationships between content
words, rather than separate function words. Sentences in these languages are
therefore less susceptible to variations in tree height, by mere virtue of being
shorter and possessing fewer relations that are likely be a better fit for UD, like
those concerning adpositions. We speculate that it is this inherent property
that explains the layerwise preference for SUD (though a general indifference
in aggregate), allowing for some language-specific properties, like the crucial
role of auxiliaries in Basque, to be easier to probe for in SUD. Conversely, with
this in mind, it becomes easy to motivate the high preference for UD across
some languages, given that they are not agglutinating and make heavy use
of function words. If we take the probe to be a proper decoding of a model’s
representational space, the encoding of syntactic structure according to an
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SUD-style analysis then becomes inherently more difficult, as the model is
required to attend to hierarchy between words higher in the tree. Interestingly,
however, this does not seem to correspond to an increased difficulty in the case
of supervised parsing, as observed earlier.

VI.7 Conclusion and Future Work

We have investigated the extent to which the syntactic structure captured
by neural language models aligns with different styles of analysis, using
UD treebanks and their SUD conversions as proxies. We have extended the
structural probe of Hewitt and Manning (2019) to extract directed, rooted trees
and fit it on pretrained BERT and ELMo representations for 13 languages.
Ultimately, we observed a better overall fit for the UD-style formalism across
models, layers, and languages, with some notable exceptions. For example,
while the Chinese, Hebrew, Hindi, Italian, and Japanese models proved to be
overwhelmingly better-fit for UD, Basque aligned more with SUD, and Finnish,
Korean and Turkish did not exhibit a clear preference. Furthermore, an error
analysis revealed that, when attaching words of various part-of-speech tags to
their heads, UD fared better across the vast majority of categories, most notably
adpositions and determiners. Related to this, we found a strong correlation
between differences in average tree height and the tendency to prefer one
framework over the other. This suggested a tradeoff between morphological
complexity — where differences in tree height between UD and SUD are
minimal and probing accuracy similar — and a high proportion of function
words — where SUD trees are significantly higher and probing accuracy favors
UD.

For future work, besides seeking a deeper understanding of the interplay
of linguistic factors and tree shape, we want to explore probes that combine
the distance and depth assumptions into a single transformation, rather than
learning separate probes and combining them post-hoc, as well as methods for
alleviating treebank supervision altogether. Lastly, given recent criticisms of
probing approaches in NLP, it will be vital to revisit the insights produced here
within a non-probing framework, for example, using Representational Similarity
Analysis (RSA) (Chrupała and Alishahi, 2019) over symbolic representations
from treebanks and their encoded representations.
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Appendix VI.A Controlling for Treebank Size

Figure VI.8: Probe results per framework, layer, and language, when trained on
3664 sentences. First row depicts UAS per layer and language for BERT, with
average performance and error over UD/SUD in 3rd column. Bottom two row
depicts the difference in UAS across UD (+) and SUD (−).
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Figure VI.9: Difference in UAS across the UD probes trained on full data (+)
and 3664 sentences (−).

Figure VI.10: Difference in UAS across the SUD probes trained on full data (+)
and 3664 sentences (−).
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Connection to Supervised Parsing

Appendix VI.B Connection to Supervised Parsing

Figure VI.11: Supervised UDify UAS, UD and SUD, for all languages.

Figure VI.12: Supervised Udify LAS, UD and SUD, for all languages.
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Abstract

Since the popularization of the Transformer as a general-purpose feature
encoder for NLP, many studies have attempted to decode linguistic structure
from its novel multi-head attention mechanism. However, much of such
work focused almost exclusively on English — a language with rigid word
order and a lack of inflectional morphology. In this study, we present
decoding experiments for multilingual BERT across 18 languages in order
to test the generalizability of the claim that dependency syntax is reflected
in attention patterns. We show that full trees can be decoded above baseline
accuracy from single attention heads, and that individual relations are often
tracked by the same heads across languages. Furthermore, in an attempt
to address recent debates about the status of attention as an explanatory
mechanism, we experiment with fine-tuning mBERT on a supervised
parsing objective while freezing different series of parameters. Interestingly,
in steering the objective to learn explicit linguistic structure, we find much
of the same structure represented in the resulting attention patterns, with
interesting differences with respect to which parameters are frozen.
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VII.1 Introduction

In recent years, the attention mechanism proposed by Bahdanau et al. (2015)
has become an indispensable component of many NLP systems. Its widespread
adoption was, in part, heralded by the introduction of the Transformer
architecture (Vaswani et al., 2017b), which constrains a soft alignment to be
learned across discrete states in the input (self-attention), rather than across
input and output (e.g., Rocktäschel et al., 2015; Xu et al., 2015). The Transformer
has, by now, supplanted the popular LSTM (Hochreiter and Schmidhuber,
1997) as NLP’s feature-encoder-of-choice, largely due to its compatibility with
parallelized training regimes and ability to handle long-distance dependencies.

Certainly, the nature of attention as a distribution over tokens lends itself
to a straightforward interpretation of a model’s inner workings. Bahdanau
et al. (2015) illustrate this nicely in the context of seq2seq machine translation,
showing that the attention learned by their models reflects expected cross-
lingual idiosyncrasies between English and French, e.g., concerning word order.
With self-attentive Transformers, interpretation becomes slightly more difficult,
as attention is distributed across words within the input itself. This is further
compounded by the use of multiple layers and heads, each combination of
which yields its own alignment, representing a different (possibly redundant)
view of the data. Given the similarity of such attention matrices to the score
matrices employed in arc-factored dependency parsing (McDonald et al., 2005a;
McDonald et al., 2005b), a salient question concerning interpretability becomes:
Can we expect some combination of these parameters to capture linguistic
structure in the form of a dependency tree, especially if the model performs
well on NLP tasks? If not, can we relax the expectation and examine the
extent to which subcomponents of the linguistic structure, such as subject-
verb relations, are represented? This prospect was first posed by Raganato,
Tiedemann, et al. (2018) for MT encoders, and later explored by Clark et al.
(2019) for BERT. Ultimately, the consensus of these and other studies (Htut et al.,
2019; Limisiewicz et al., 2020; Voita et al., 2019) was that, while there appears to
exist no “generalist” head responsible for extracting full dependency structures,
standalone heads often specialize in capturing individual grammatical relations.

Unfortunately, most of such studies focused their experiments entirely on
English, which is typologically favored to succeed in such scenarios due to its
rigid word order and lack of inflectional morphology. It remains to be seen
whether the attention patterns of such models can capture structural features
across typologically diverse languages, or if the reported experiments on English
are a misrepresentation of local positional heuristics as such. Furthermore,
though previous work has investigated how attention patterns might change
after fine-tuning on different tasks (Htut et al., 2019), a recent debate about
attention as an explanatory mechanism (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019) has cast the entire enterprise in doubt. Indeed, it remains to be seen
whether fine-tuning on an explicit structured prediction task, e.g. dependency
parsing, can force attention to represent the structure being learned, or if the
patterns observed in pretrained models are not altered in any meaningful way.
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To address these issues, we investigate the prospect of extracting linguistic
structure from the attention weights of multilingual Transformer-based lan-
guage models. In light of the surveyed literature, our research questions are as
follows:

1. Can we decode dependency trees for some languages better than others?
2. Do the same layer–head combinations track the same relations across

languages?
3. How do attention patterns change after fine-tuning with explicit syntactic

annotation?
4. Which components of the model are involved in these changes?

In answering these questions, we believe we can shed further light on the (cross-
)linguistic properties of Transformer-based language models, as well as address
the question of attention patterns being a reliable representation of linguistic
structure.

VII.2 Attention as Structure

Transformers The focus of the present study is mBERT, a multilingual variant
of the exceedingly popular language model (Devlin et al., 2019). BERT is
built upon the Transformer architecture (Vaswani et al., 2017a), which is a self-
attention-based encoder-decoder model (though only the encoder is relevant to
our purposes). A Transformer takes a sequence of vectors x = [x1, x2, ...xn] as
input and applies a positional encoding to them, in order to retain the order of
words in a s entence. These inputs are then transformed into query (Q), key (K),
and value (V ) vectors via three separate linear transformations and passed to
an attention mechanism. A single attention head computes scaled dot-product
attention between K and Q, outputting a weighted sum of V :

Attention(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V (VII.1)

For multihead attention (MHA), the same process is repeated for k heads,
allowing the model to jointly attend to information from different representation
subspaces at different positions (Vaswani et al., 2017a). Ultimately, the output
of all heads is concatenated and passed through a linear projection W O:

Hi = Attention
(

QW Q
i , KW K

i , V W V
i

)
(VII.2)

MHA(Q, K, V ) = concat(H1, H2, ..., Hk)W O (VII.3)

Every layer also consists of a feed-forward network (FFN), consisting of two
Dense layers with ReLU activation functions. For each layer, therefore, the
output of MHA is passed through a LayerNorm with residual connections,
passed through FFN, and then through another LayerNorm with residual
connections.
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Searching for structure Often, the line of inquiry regarding interpretability in
NLP has been concerned with extracting and analyzing linguistic information
from neural network models of language (Belinkov and Glass, 2019). Recently,
such investigations have targeted Transformer models Hewitt and Manning,
2019; Rosa and Mareček, 2019; Tenney et al., 2019, at least in part because the
self-attention mechanism employed by these models offers a possible window
into their inner workings. With large-scale machine translation and language
models being openly distributed for experimentation, several researchers have
wondered if self-attention is capable of representing syntactic structure, despite
not being trained with any overt parsing objective.

In pursuit of this question, Raganato, Tiedemann, et al. (2018) applied a
maximum-spanning-tree algorithm over the attention weights of several trained
MT models, comparing them with gold trees from Universal Dependencies
(Nivre et al., 2016; Nivre et al., 2020). They found that, while the accuracy
was not comparable to that of a supervised parser, it was nonetheless higher
than several strong baselines, implying that some structure was consistently
represented. Clark et al. (2019) corroborated the same findings for BERT when
decoding full trees, but observed that individual dependency relations were
often tracked by specialized heads and were decodable with much higher
accuracy than some fixed-offset baselines. Concurrently, Voita et al. (2019)
made a similar observation about heads specializing in specific dependency
relations, proposing a coarse taxonomy of head attention functions: positional,
where heads attend to adjacent tokens; syntactic, where heads attend to specific
syntactic relations; and rare words, where heads point to the least frequent tokens
in the sentence. Htut et al. (2019) followed Raganato, Tiedemann, et al. (2018) in
decoding dependency trees from BERT-based models, finding that fine-tuning
on two classification tasks did not produce syntactically plausible attention
patterns. Lastly, Limisiewicz et al. (2020) modified UD annotation to better
represent attention patterns and introduced a supervised head-ensembling
method for consolidating shared syntactic information across heads.

Does attention have explanatory value? Though many studies have yielded
insight about how attention behaves in a variety of models, the question of
whether it can be seen as a “faithful” explanation of model predictions has been
subject to much recent debate. For example, Jain and Wallace (2019) present
compelling arguments that attention does not offer a faithful explanation of
predictions. Primarily, they demonstrate that there is little correlation between
standard feature importance measures and attention weights. Furthermore,
they contend that there exist counterfactual attention distributions, which are
substantially different from learned attention weights but that do not alter a
model’s predictions. Using a similar methodology, Serrano and Smith (2019)
corroborate that attention does not provide an adequate account of an input
component’s importance.

In response to these findings, Wiegreffe and Pinter (2019) question the
assumptions underlying such claims. Attention, they argue, is not a primitive,

178



Experimental Design

i.e., it cannot be detached from the rest of a model’s components as is done in
the experiments of Jain and Wallace (2019). They propose a set of four analyses
to test whether a given model’s attention mechanism can provide meaningful
explanation and demonstrate that the alternative attention distributions found
via adversarial training methods do, in fact, perform poorly compared to
standard attention mechanisms. On a theoretical level, they argue that, although
attention weights do not give an exclusive “faithful” explanation, they do provide
a meaningful plausible explanation.

This discussion is relevant to our study because it remains unclear whether or
not attending to syntactic structure serves, in practice, as plausible explanation
for model behavior, or whether or not it is even capable of serving as such.
Indeed, the studies of Raganato, Tiedemann, et al. (2018) and Clark et al.
(2019) relate a convincing but incomplete picture — tree decoding accuracy
just marginally exceeds baselines and various relations tend to be tracked across
varying heads and layers. Thus, our fine-tuning experiments (detailed in the
following section) serve to enable an “easy” setting wherein we explicitly inform
our models of the same structure that we are trying to extract. We posit that, if,
after fine-tuning, syntactic structures were still not decodable from the attention
weights, one could safely conclude that these structures are being stored via a
non-transparent mechanism that may not even involve attention weights. Such
an insight would allow us to conclude that attention weights cannot provide
even a plausible explanation for models relying on syntax.

VII.3 Experimental Design

To examine the extent to which we can decode dependency trees from attention
patterns, we run a tree decoding algorithm over mBERT’s attention heads —
before and after fine-tuning via a parsing objective. We surmise that doing
so will enable us to determine if attention can be interpreted as a reliable
mechanism for capturing linguistic structure.

VII.3.1 Model

We employ mBERT1 in our experiments, which has been shown to perform well
across a variety of NLP tasks (Hu et al., 2020; Kondratyuk and Straka, 2019a) and
capture aspects of syntactic structure cross-lingually (Chi et al., 2020; Pires et al.,
2019). mBERT features 12 layers with 768 hidden units and 12 attention heads,
with a joint WordPiece sub-word vocabulary across languages. The model was
trained on the concatenation of WikiDumps for the top 104 languages with
the largest Wikipedias,where principled sampling was employed to enforce a
balance between high- and low-resource languages.

1https://github.com/google-research/bert
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VII.3.2 Decoding Algorithm
For decoding dependency trees, we follow Raganato, Tiedemann, et al. (2018)
in applying the Chu-Liu-Edmonds maximum spanning tree algorithm (Chu,
1965) to every layer/head combination available in mBERT (12× 12 = 144 in
total). In order for the matrices to correspond to gold treebank tokenization, we
remove the cells corresponding to the BERT delimiter tokens ([CLS] and [SEP]).
In addition to this, we sum the columns and average the rows corresponding to
the constituent subwords of gold tokens, respectively (Clark et al., 2019). Lastly,
since attention patterns across heads may differ in whether they represent heads
attending to their dependents or vice versa, we take our input to be the element-
wise product of a given attention matrix and its transpose (A◦A⊤). We liken this
to the joint probability of a head attending to its dependent and a dependent
attending to its head, similarly to Limisiewicz et al. (2020). Per this point, we
also follow Htut et al. (2019) in evaluating the decoded trees via Undirected
Unlabeled Attachment Score (UUAS) — the percentage of undirected edges
recovered correctly. Since we discount directionality, this is effectively a less
strict measure than UAS, but one that has a long tradition in unsupervised
dependency parsing since Klein and Manning (2004).

VII.3.3 Data
For our data, we employ the Parallel Universal Dependencies (PUD) treebanks,
as collected in UD v2.4 (Nivre et al., 2019). PUD was first released as part of the
CONLL 2017 shared task (Zeman et al., 2018), containing 1000 parallel sentences,
which were (professionally) translated from English, German, French, Italian,
and Spanish to 14 other languages. The sentences are taken from two domains,
news and wikipedia, the latter implying some overlap with mBERT’s training
data (though we did not investigate this). We include all PUD treebanks except
Thai.2

VII.3.4 Fine-Tuning Details
In addition to exploring pretrained mBERT’s attention weights, we are also
interested in how attention might be guided by a training objective that learns
the exact tree structure we aim to decode. To this end, we employ the graph-
based decoding algorithm of the biaffine parser introduced by Dozat and
Manning (2016). We replace the standard BiLSTM encoder for this parser with
the entire mBERT network, which we fine-tune with the parsing loss. The full
parser decoder consists of four dense layers, two for head/child representations
for dependency arcs (dim. 500) and two for head/child representations for
dependency labels (dim. 100). These are transformed into the label space via a
bilinear transform.

2Thai is the only treebank that does not have a non-PUD treebank available in UD, which we
need for our fine-tuning experiments.
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AR CS DE EN ES FI FR HI ID IT JA KO PL PT RU SV TR ZH

BASELINE 50 40 36 36 40 42 40 46 47 40 43 55 45 41 42 39 52 41

PRE
53 53 49 47 50 48 41 48 50 41 45 64 52 50 51 51 55 42
7-6 10-8 10-8 10-8 9-5 10-8 2-3 2-3 9-5 6-4 2-3 9-2 10-8 9-5 10-8 10-8 3-8 2-3

NONE
76 78 76 71 77 66 45 72 75 58 42 64 75 76 75 74 55 38

11-10 11-10 11-10 10-11 10-11 10-11 11-10 11-10 11-10 11-10 11-10 11-10 11-10 11-10 10-8 10-8 3-8 2-3

KEY
62 64 58 53 59 56 41 54 59 47 44 62 64 58 61 59 55 41

10-8 10-8 11-12 10-8 11-12 10-8 7-12 10-8 10-8 9-2 2-3 10-8 10-8 11-12 10-8 12-10 3-12 2-3

QUERY
69 74 70 66 73 63 42 62 67 54 45 65 72 70 70 68 56 42

11-4 10-8 11-4 11-4 11-4 10-8 11-4 11-4 11-4 11-4 2-3 10-8 11-4 11-4 10-8 11-4 10-8 2-3

KQ 71 76 70 65 74 62 43 64 69 55 44 64 73 73 69 69 55 41
11-4 11-4 11-4 11-4 11-4 11-4 10-11 11-4 11-4 11-4 2-3 11-4 11-4 11-4 11-4 11-4 11-4 2-3

VALUE
75 72 72 64 76 59 45 63 73 55 45 66 73 74 69 65 57 42

12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 2-3 10-8 12-5 12-5 12-5 12-5 12-5 3-8

DENSE
68 71 65 60 67 61 42 65 66 49 44 64 70 64 67 64 55 40

11-10 11-10 11-10 10-8 12-10 11-10 10-8 11-10 11-10 9-5 3-12 11-10 11-10 12-5 11-10 11-10 11-10 3-12

Table VII.1: Adjacent-branching baseline and maximum UUAS decoding
accuracy per PUD treebank, expressed as best score and best layer/head
combination for UUAS decoding. PRE refers to basic mBERT model before fine-
tuning, while all cells below correspond different fine-tuned models described
in Section 3.4. Best score indicated in bold.

After training the parser, we can decode the fine-tuned mBERT parameters
in the same fashion as described in Section VII.3.2. We surmise that, if attention
heads are capable of tracking hierarchical relations between words in any
capacity, it is precisely in this setting that this ability would be attested. In
addition to this, we are interested in what individual components of the mBERT
network are capable of steering attention patterns towards syntactic structure.
We believe that addressing this question will help us not only in interpreting
decisions made by BERT-based neural parsers, but also in aiding us developing
syntax-aware models in general (Strubell et al., 2018; Swayamdipta et al., 2018).
As such — beyond fine-tuning all parameters of the mBERT network (our basic
setting) — we perform a series of ablation experiments wherein we update
only one set of parameters per training cycle, e.g. the Query weights W Q

i ,
and leave everything else frozen. This gives us a set of 6 models, which are
described below. For each model, all non-BERT parser components are always
left unfrozen.

• KEY: only the K components of the transformer are unfrozen; these are
the representations of tokens that are paying attention to other tokens.

• QUERY: only the Q components are unfrozen; these, conversely, are the
representations of tokens being paid attention to.

• KQ: both keys and queries are unfrozen.
• VALUE: semantic value vectors per token (V ) are unfrozen; they are

composed after being weighted with attention scores obtained from the
K/Q matrices.

• DENSE: the dense feed-forward networks in the attention mechanism; all
three per layer are unfrozen.

• NONE: The basic setting with nothing frozen; all parameters are updated
with the parsing loss.
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We fine-tune each of these models on a concatentation of all PUD treebanks for
20 epochs, which effectively makes our model multilingual. We do so in order
to 1) control for domain and annotation confounds, since all PUD sentences
are parallel and are natively annotated (unlike converted UD treebanks, for
instance); 2) increase the number of training samples for fine-tuning, as each
PUD treebank features only 1000 sentences; and 3) induce a better parser
through multilinguality, as in Kondratyuk and Straka (2019b). Furthermore, in
order to gauge the overall performance of our parser across all ablated settings,
we evaluate on the test set of the largest non-PUD treebank available for each
language, since PUD only features test partitions. When training, we employ
a combined dense/sparse Adam optimiser, at a learning rate of 3 ∗ 10−5. We
rescale gradients to have a maximum norm of 5.

VII.4 Decoding mBERT Attention

Figure VII.1: UUAS of MST decoding per layer and head, across languages.
Heads (y-axis) are sorted by accuracy for easier visualization.

The second row of Table VII.1 (PRE) depicts the UUAS after running our
decoding algorithm over mBERT attention matrices, per language. We see
a familiar pattern to that in Clark et al. (2019) among others — namely that
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Figure VII.2: Left: UUAS per relation across languages (best layer/head
combination indicated in cell). Right: Best UUAS as a function of best positional
baseline (derived from the treebank), selected relations.

attention patterns extracted directly from mBERT appear to be incapable of
decoding dependency trees beyond a threshold of 50–60% UUAS accuracy.
However, we also note that, in all languages, the attention-decoding algorithm
outperforms a BASELINE (row 1) that draws an (undirected) edge between
any two adjacent words in linear order, which implies that some non-linear
structures are captured with regularity. Indeed, head 8 in layer 10 appears to be
particularly strong in this regard, returning the highest UUAS for 7 languages.
Interestingly, the accuracy patterns across layers depicted in Figure VII.1 tend
to follow an identical trend for all languages, with nearly all heads in layer 7
returning high within-language accuracies.

It appears that attention for some languages (Arabic, Czech, Korean, Turkish)
is comparatively easier to decode than others (French, Italian, Japanese, Chinese).
A possible explanation for this result is that dependency relations between
content words, which are favored by the UD annotation, are more likely to
be adjacent in the morphologically rich languages of the first group (without
intervening function words). This assumption seems to be corroborated by the
high baseline scores for Arabic, Korean and Turkish (but not Czech). Conversely,
the low baselines scores and the likewise low decoding accuracies for the latter
four languages are difficult to characterize. Indeed, we could not identify
what factors — typological, annotation, tokenization or otherwise — would
set French and Italian apart from the remaining languages in terms of score.
However, we hypothesize that the tokenization and our treatment of subword
tokens plays a part in attempting to decode attention from Chinese and Japanese
representations. Per the mBERT documentation,3 Chinese and Japanese Kanji

3https://github.com/google-research/bert/blob/master/multilingual.md
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character spans within the CJK Unicode range are character-tokenized. This
lies in contrast with all other languages (Korean Hangul and Japanese Hiragana
and Katakana included), which rely on whitespace and WordPiece (Wu et al.,
2016). It is thus possible that the attention distributions for these two languages
(at least where CJK characters are relevant) are devoted to composing words,
rather than structural relations, which will distort the attention matrices that
we compute to correspond with gold tokenization (e.g. by maxing rows and
averaging columns).

Relation analysis We can disambiguate what sort of structures are captured
with regularity by looking at the UUAS returned per dependency relation.
Figure VII.2 (left) shows that adjectival modifiers (amod, mean UUAS = 85
±12) and determiners (det, 88 ± 6) are among the easiest relations to decode
across languages. Indeed, words that are connected by these relations are often
adjacent to each other and may be simple to decode if a head is primarily
concerned with tracking linear order. To verify the extent to which this might
be happening, we plot the aforementioned decoding accuracy as a function
of select relations’ positional baselines in Figure VII.2 (right). The positional
baselines, in this case, are calculated by picking the most frequent offset at which
a dependent occurs with respect to its head, e.g.,−1 for det in English, meaning
one position to the left of the head. Interestingly, while we observe significant
variation across the positional baselines for amod and det, the decoding accuracy
remains quite high.

In slight contrast to this, the core subject (nsubj, 58± 16 SD) and object (obj,
64±13) relations prove to be more difficult to decode. Unlike the aforementioned
relations, nsubj and obj are much more sensitive to the word order properties
of the language at hand. For example, while a language like English, with
Subject-Verb-Object (SVO) order, might have the subject frequently appear to
the left of the verb, an SOV language like Hindi might have it several positions
further away, with an object and its potential modifiers intervening. Indeed,
the best positional baseline for English nsubj is 39 UUAS, while it is only 10
for Hindi. Despite this variation, the relation seems to be tracked with some
regularity by the same head (layer 3, head 9), returning 60 UUAS for English
and 52 for Hindi. The same can largely be said for obj, where the positional
baselines return 51± 18. In this latter case, however, the heads tend to be much
differently distributed across languages. Finally, he results for the obj relation
provides some support for our earlier explanation concerning morphologically
rich languages, as Arabic, Czech, Korean and Turkish all have among the highest
accuracies (as well as positional baselines).

VII.5 Fine-Tuning Experiments

Next, we investigate the effect fine-tuning has on UUAS decoding. Row 3 in
Table VII.1 (NONE) indicates that fine-tuning does result in large improvements
to UUAS decoding across most languages, often by margins as high as ∼ 30%.
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Figure VII.3: (Top) best scores across all heads, per language; (bottom) mean
scores across all heads, per language. The languages (hidden from the X-axis
for brevity) are, in order, ar, cs, de, en, es, fi, fr, hi, id, it, ja, ko, pl, pt, ru, sv, tr, zh

Figure VII.4: Mean UAS and LAS when evaluating different models on
language-specific treebanks (Korean excluded due to annotation differences).
MBERT refers to models where the entire mBERT network is frozen as input to
the parser.

This shows that with an explicit parsing objective, attention heads are capable
of serving as explanatory mechanisms for syntax; syntactic structure can be
made to be transparently stored in the heads, in a manner that does not require
additional probe fitting or parameterized transformation to extract.

Given that we do manage to decode reasonable syntactic trees, we can then
refine our question — what components are capable of learning these trees?
One obvious candidate is the key/query component pair, given that attention
weights are a scaled softmax of a composition of the two. Figure VII.3 (top)
shows the difference between pretrained UUAS and fine-tuned UUAS per layer,
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across models and languages. Interestingly, the best parsing accuracies do not
appear to vary much depending on what component is frozen. We do see a clear
trend, however, in that decoding the attention patterns of the fine-tuned model
typically yields better UUAS than the pretrained model, particularly in the
highest layers. Indeed, the lowest layer at which fine-tuning appears to improve
decoding is layer 7. This implies that, regardless of which component remains
frozen, the parameters facing any sort of significant and positive update tend to
be those appearing towards the higher-end of the network, closer to the output.

For the frozen components, the best improvements in UUAS are seen at
the final layer in VALUE, which is also the only model that shows consistent
improvement, as well as the highest average improvement in mean scores4 for
the last few layers. Perhaps most interestingly, the mean UUAS (Figure VII.3
(bottom)) for our “attentive” components – keys, queries, and their combination
– does not appear to have improved by much after fine-tuning. In contrast,
the maximum does show considerable improvement; this seems to imply that
although all components appear to be more or less equally capable of learning
decodable heads, the attentive components, when fine-tuned, appear to sharpen
fewer heads.

Note that the only difference between keys and queries in an attention
mechanism is that keys are transposed to index attention from/to appropriately.
Surprisingly, KEY and QUERY appear to act somewhat differently, with QUERY
being almost uniformly better than KEY with the best heads, whilst KEY
is slightly better with averages, implying distinctions in how both store
information. Furthermore, allowing both keys and queries seems to result in an
interesting contradiction – the ultimate layer, which has reasonable maximums
and averages for both KEY and QUERY, now seems to show a UUAS drop
almost uniformly. This is also true for the completely unfrozen encoder.

Supervised Parsing In addition to decoding trees from attention matrices,
we also measure supervised UAS/LAS on a held-out test set.5 Based on
Figure VII.4, it is apparent that all settings result in generally the same UAS. This
is somewhat expected; Lauscher et al. (2020) see better results on parsing with
the entire encoder frozen, implying that the task is easy enough for a biaffine
parser to learn, given frozen mBERT representations.6 The LAS distinction is,
however, rather interesting: there is a marked difference between how important
the dense layers are, as opposed to the attentive components. This is likely
not reflected in our UUAS probe as, strictly speaking, labelling arcs is not
equivalent to searching for structure in sentences, but more akin to classifying
pre-identified structures. We also note that DENSE appears to be better than
NONE on average, implying that non-dense components might actually be
hurting labelling capacity.

4The inner average is over all heads; the outer is over all languages.
5Note that the test set in our scenario is from the actual, non-parallel language treebank; as

such, we left Korean out of this comparison due to annotation differences.
6Due to training on concatenated PUD sets, however, our results are not directly comparable/
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Conclusion

In brief, consolidating the two sets of results above, we can draw three
interesting conclusions about the components:

1. Value vectors are best aligned with syntactic dependencies; this is reflected
both in the best head at the upper layers, and the average score across all
heads.

2. Dense layers appear to have moderate informative capacity, but appear
to have the best learning capacity for the task of arc labelling.

3. Perhaps most surprisingly, Key and Query vectors do not appear to make
any outstanding contributions, save for sharpening a smaller subset of
heads.

Our last result is especially surprising for UUAS decoding. Keys and queries,
fundamentally, combine to form the attention weight matrix, which is precisely
what we use to decode trees. One would expect that allowing these components
to learn from labelled syntax would result in the best improvements to decoding,
but all three have surprisingly negligible mean improvements. This indicates
that we need to further improve our understanding of how attentive structure
and weighting really works.

Cross-linguistic observations We notice no clear cross-linguistic trends here
across different component sets; however, certain languages do stand out as
being particularly hard to decode from the fine-tuned parser. These include
Japanese, Korean, Chinese, French and Turkish. For the first three, we
hypothesise that tokenization clashes with mBERT’s internal representations
may play a role. Indeed, as we hypothesized in Section VII.3.2, it could be the
case that the composition of CJK characters into gold tokens for Chinese and
Japanese may degrade the representations (and their corresponding attention)
therein. Furthermore, for Japanese and Korean specifically, it has been observed
that tokenization strategies employed by different treebanks could drastically
influence the conclusions one may draw about their inherent hierarchical
structure (Kulmizev et al., 2020). Turkish and French are admittedly more
difficult to diagnose. Note, however, that we fine-tuned our model on a
concatenation of all PUD treebanks. As such, any deviation from PUD’s
annotation norms is therefore likely to be heavily penalised, by virtue of signal
from other languages drowning out these differences.

VII.6 Conclusion

In this study, we revisited the prospect of decoding dependency trees from the
self-attention patterns of Transformer-based language models. We elected to
extend our experiments to 18 languages in order to gain better insight about
how tree decoding accuracy might be affected in the face of (modest) typological
diversity. Surprisingly, across all languages, we were able to decode dependency
trees from attention patterns more accurately than an adjacent-linking baseline,
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implying that some structure was indeed being tracked by the mechanism.
In looking at specific relation types, we corroborated previous studies in
showing that particular layer-head combinations tracked the same relation
with regularity across languages, despite typological differences concerning
word order, etc.

In investigating the extent to which attention can be guided to properly
capture structural relations between input words, we fine-tuned mBERT as
input to a dependency parser. This, we found, yielded large improvements over
the pretrained attention patterns in terms of decoding accuracy, demonstrating
that the attention mechanism was learning to represent the structural objective of
the parser. In addition to fine-tuning the entire mBERT network, we conducted a
series of experiments, wherein we updated only select components of model and
left the remainder frozen. Most surprisingly, we observed that the Transformer
parameters designed for composing the attention matrix, K and Q, were only
modestly capable of guiding the attention towards resembling the dependency
structure. In contrast, it was the Value (V ) parameters, which are used for
computing a weighted sum over the KQ-produced attention, that yielded the
most faithful representations of the linguistic structure via attention.

Though prior work (Kovaleva et al., 2019; Zhao and Bethard, 2020) seems to
indicate that there is a lack of a substantial change in attention patterns after
fine-tuning on syntax- and semantics-oriented classification tasks, the opposite
effect has been observed with fine-tuning on negation scope resolution, where a
more explanatory attention mechanism can be induced (Htut et al., 2019). Our
results are similar to the latter, and we demonstrate that given explicit syntactic
annotation, attention weights do end up storing more transparently decodable
structure. It is, however, still unclear which sets of transformer parameters are
best suited for learning this information and storing it in the form of attention.
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Appendix VII.A Positional Scores Per Offset

Figure VII.5: Positional scores across relations for all languages.
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Decoding UUAS Across Relations

Appendix VII.B Decoding UUAS Across Relations

Figure VII.6: Decoding UUAS as a function of best positional baselines.
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Appendix VII.C Full Parsing Scores

Figure VII.7: Parsing scores across components and languages.
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VIII

Abstract

In order to preserve word-order information in a non-autoregressive setting,
transformer architectures tend to include positional knowledge, by (for
instance) adding positional encodings to token embeddings. Several
modifications have been proposed over the sinusoidal positional encodings
used in the original transformer architecture; these include, for instance,
separating position encodings and token embeddings, or directly modifying
attention weights based on the distance between word pairs. We first show
that surprisingly, while these modifications tend to improve monolingual
language models, none of them result in better multilingual language
models. We then answer why that is: Sinusoidal encodings were explicitly
designed to facilitate compositionality by allowing linear projections over
arbitrary time steps. Higher variances in multilingual training distributions
requires higher compression, in which case, compositionality becomes
indispensable. Learned absolute positional encodings (e.g., in mBERT)
tend to approximate sinusoidal embeddings in multilingual settings, but
more complex positional encoding architectures lack the inductive bias
to effectively learn compositionality and cross-lingual alignment. In other
words, while sinusoidal positional encodings were originally designed
for monolingual applications, they are particularly useful in multilingual
language models.
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VIII.1 Introduction

Multiple recent papers have attempted to pinpoint precisely what components
of multilingual language models enable cross-lingual transfer. Pires et al. (2019)
show that although wordpiece overlap tends to improve cross-lingual transfer
performance, even languages with different scripts (and no shared subwords)
may enable zero-shot transfer. Wu and Dredze (2019) report similar results
on a wider range of tasks. Artetxe et al. (2020) show that neither a shared
vocabulary nor joint multilingual pre-training are necessary to train successful
multilingual models. K et al. (2020) find that model depth is a contributor to
transfer performance, but that reducing the number of self-attention heads does
not have much of an effect.

Our starting point is Dufter and Schütze (2020), who claim that a) multilin-
gual compression is caused by forced parameter sharing across languages, and
that b) positional encodings play a significant role in the creation of a multilin-
gual space, even in the absence of shared subwords and shared special tokens,
like delimiters.

Contributions We build on Dufter and Schütze (2020) and demonstrate,
through a series of experiments on synthetic and real data, that the choice
of positional encoding mechanism has a significant effect on cross-lingual
model performance: While many positional encodings have been proposed in
monolingual settings as improvements over sinusoidal or absolute positional
encodings, originally proposed in Vaswani et al. (2017) and Devlin et al. (2019),
including untied positional encodings (TUPE; Ke et al. (2020)) and relative
positional encodings Huang et al., 2020; Shaw et al., 2018, none of these better
facilitate cross-lingual compression or sharing. In fact, multilingual language
models trained with untied or relative positional encodings exhibit much worse
cross-lingual performance. We show that this is because sinusoidal embeddings

Sinusoidal See §2 Vaswani et al. (2017)
Absolute ((wi + pi)W Q,1) Devlin et al. (2019)

((wj + pj)W K,1)⊤

TUPE (xl
iW Q,l)(xl

jW K,l)⊤+ Ke et al. (2020)
(piUQ)(pjUK)⊤

TUPE(r) . . . +bj−i

Relative(k) (xiW Q)(xjW K + aij)⊤ Shaw et al. (2018)
Relative(k/q) (xiW Q + aij) Huang et al. (2020)

(xjW K + aij)⊤

Table VIII.1: We compare six positional encodings and their impact on cross-
lingual generalization in multilingual language models
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facilitate compositionality, which we argue is particularly important for cross-
lingual compression. We present a method for quantifying the compositionality
of positional encodings, and find additional evidence for this hypothesis
in word-position correlations and ablation studies. We are, to the best of
our knowledge, the first to show this asymmetry between monolingual and
multilingual language model training. Our experiments rely on the protocols
in Dufter and Schütze (2020), but in addition to simple experiments with their
Bible data, we also replicate all our experiments on Wikipedia data. Rather than
relying on deterministic perturbations of data, as in Dufter and Schütze (2020)
and Sinha et al. (2021), we make novel use of Galactic Dependencies Wang and
Eisner, 2016 in our experiments. Based on our experiments, we recommend
caution when adopting methods developed for monolingual language models
when training multilingual models, as well as that future work on positional
encoding mechanisms also provides evaluations in multilingual settings.

VIII.2 Positional encodings

Positional encodings have been a mainstay of non-autoregressive transformer-
based models right since Vaswani et al. (2017) first proposed the transformer
architecture. The motivation being that given that transformers1 are order-
invariant (as opposed recurrent or convolutional networks), there must be
some injection of word order into the encoder. Rather than using conventional
"embeddings", Vaswani et al. (2017) use fixed sinusoidal position encodings,
where each dimension characterises a sinusoidal waveform of a fixed frequency.
Specifically, each encoding p is given as:

p(pos,2i) = sin(pos/100002i/dmodel)
p(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension. They add these encodings
to token representations before passing the sum to the first layer of the self-
attention mechanism.

Several alternatives to sinusoidal encodings have been proposed since
Vaswani et al. (2017). Most multilingual models tend to use BERT-style (Devlin
et al., 2019) learnt absolute positional encodings, where a unique vector is
learned and assigned to each position; these vectors are then added to word
representations before being passed to the self-attention mechanism.

As an alternative to such position representations, where every position
is represented by a unique vector, relative positional encodings have been
proposed (Huang et al., 2020; Shaw et al., 2018). Rather than assigning
representations to tokens based on their position, relative positional encoding
involves assigning representations to position-position pairs; typically, these
encodings are calculated separately and added to the attention matrix. We

1Note that we use "transformers" as shorthand for transformer encoders used for masked
language modelling.
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evaluate both the encodings proposed in Shaw et al. (2018) and the encodings
proposed in Huang et al., 2020 in our experiments below.

He et al. (2021) propose eliminating position-position correlations, and
using separate parameters for word and position representations; Wang et
al. (2019) propose using dependency trees instead of raw sequential positions.
Ke et al. (2020) recommend eliminating the addition operation in BERT-style
representations; they argue that word-position correlations are effectively nil,
and that the addition introduces unnecessary noise. We evaluate two untied
positional encodings proposed in Ke et al. (2020) (TUPE). TUPE modifies
absolute representations by a) untying word-position correlations; b) using a
separate set of parameters for positional attention and c) untying [CLS] tokens
from positions.

We refer to recent surveys (Dufter et al., 2021; Wang et al., 2021) for a more
detailed treatment of position encoding methods. We provide a summary of
our methods in Table VIII.1. W Q,l and W K,l represent the query/key weights
for the attention mechanism at some layer l, and aij or bj−i are learnt vectors
corresponding to the offset j − i. Note that the untied position-position term
(piU

Q)(pjUK)⊤ is added at every layer.
The above positional encodings have been introduced in the context of

monolingual pretrained language models, and there has been only a limited
amount of work addressing the effect of positional encodings on multilingual
models. Liu et al. (2020a) find that positional information tends to hurt
machine translation, as the encoder learns a word-order bias towards the
source languages.2 Artetxe et al. (2020) find that language-specific positional
representations help in an adapter-based training scenario. Ding et al. (2020)
attempt to account for structural differences between languages by using
bracketing transduction grammar trees to reorder position labels (and find that
it helps). Liu et al. (2020b) find that models that are relatively agnostic to word-
order tend to perform better in cross-lingual settings; they hypothesise that
large multilingual encoders, being trained on languages with drastic differences
in word orders, tend to have order-agnostic positional encodings, and thus
discourage fine-tuning positional encodings downstream. Contemporaneous
with this work, Sinha et al. (2021) show that positional information is important
for monolingual models even given unnatural, randomly shuffled word
ordering.

Dufter and Schütze (2020) present a set of experiments training smaller
language models on bilingual corpora, consisting of the same corpus in English
and "fake-English", which is English with a shifted BPE vocabulary. They
evaluate retrieval and translation scores at different layers; gold alignments are
easy to derive given that the corpora are effectively parallel corpora, and that
the vocabularies for both halves are effectively the same. As we build on these

2The results in Liu et al. (2020a) apply to zero-shot generalization of fine-tuned, task-specific
models and not to how multilingual language models are pretrained. In their experiments, they
rely on a pretrained language model with absolute positional encodings. In fact, what they show is
that freezing these during fine-tuning helps cross-lingual zero-shot generalization.
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experiments, we adopt slightly simplified notation, and denote vocabulary-
shifted corpora with square brackets, eg. [EN].

Figure VIII.1: Main results: While untied and relative positional encodings are
superior to sinusoidal and absolute positional encodings in the monolingual
setting, they are clearly worse in the multilingual setting, especially for
structurally different languages. The multilingual (ML) scores are computed as
in Dufter and Schütze (2020). Note also that results are averages across seven
different word orders (see §3).

VIII.3 Experiments

Galactic Dependencies A drawback of the multilingual experiments presented
in Dufter and Schütze (2020) is that EN and [EN] effectively have the same
structure. While the authors attempt to control for this in additional experiment
where word order in [EN] is completely reversed, this does not resemble realistic
differences across languages. Using true multilingual corpora is, however,
difficult: our retrieval and translation tasks are easy to bootstrap precisely
because we have faux-parallel corpora, with effectively pre-aligned vocabulary.

To induce structural diversity in our corpora, therefore, we reorder our
corpora using Galactic Dependencies (GD) models (Wang and Eisner, 2016).
Briefly, GD models sample ordering statistics based on dependency relations
for the dependants of verbs and/or nouns from some superstrate language XX;
when applied to sentences in some substrate language (in the context of our
experiments, EN), the models reorder dependants of VERB and/or NOUN nodes
to match the ordering statistics of the substrate language they were trained
on. We opt to reorder both nominal and verbal arguments, and follow the
authors in denoting the sampling operation with a ∼, giving us for eg. EN∼XX
for an English language corpus, with dependent order statistics adapted from
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some language XX. Table VIII.2 contains an example sentence and some of its
reorderings.

Note that GD reordering only works for projective sentences, and rather
than retain un-reordered non-projective sentences, we exclude them from all
our corpora.

EN So there were fourteen generations from Abraham to David .
EN∼AR . there were So generations fourteen from Abraham to David
EN∼DE there were So from Abraham to David fourteen generations .
EN∼EU there were So David to Abraham from generations fourteen .
EN∼FI Abraham from David to fourteen generations there were So .
EN∼FR fourteen generations from Abraham to David were there So .
EN∼HI there So David to Abraham from fourteen generations were .
EN∼SV there were So generations from Abraham to David fourteen .

Table VIII.2: An example sentence from the easy-to-read Bible with its GD
reorderings.

This approach, while simple and useful, does have several limitations.
Predominantly, because our reordering is fundamentally syntactic/structural,
our fake languages still maintain both the morphology of the source language
(English in our case), and the same vocabulary distribution. Thus, although
scrambling ought to affect context and neighbourhoods, an English token and
its corresponding fake token have exactly the same unigram distribution.

Training Our model of choice is an underparameterised BERT, as in Dufter
and Schütze (2020). We train multiple such underparameterised BERT models,
each with a different encoding mechanism from Section VIII.2, on two bilingual
corpora:

en + [en] - a bilingual corpus comprised of English, and a fake vocab-shifted
English.

en + [en∼xx] - a bilingual corpus comprised of English, and a fake English
that has had its constituents reordered to match the distribution of some
language XX.

We reorder our English starting point according to seven different faux-
languages (just "languages" for brevity): Arabic, German, Basque, Finnish,
French, Hindi and Swedish. Note that given that our starting point was English,
there was no way for us to control for morphological differences; as such,
languages with freer word order (like Basque) are likelier to make our English
corpora ambiguous.

We use two corpora in this work: the first is the Bible splits from Dufter and
Schütze (2020), with the English easy-to-read Bible as the training split, and the
KJV Bible as validation. The second corpus uses the English Wikipedia as the
training split, and Common Crawl as validation. We present corpus statistics in
Table VIII.3. For each corpus, we learn and apply a BPE vocabulary of size 2048.

Following Dufter and Schütze (2020), our BERT models all have a single
head and 12 layers. We reduce the dimensionality of the encoder layers to 64,
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Train Validation

Bible 30602 9080
Wikipedia 50000 20000

Table VIII.3: Corpus sizes in sentences (two languages per corpus)

and the feed-forward layers to 256. Each model is trained for 100 epochs with
three different random seeds (0, 42 and 100), giving us a total of 7 languages
x 6 encoding methods x 3 seeds x 2 corpora = 252 models. We implement our
code3 in the transformers library (Wolf et al., 2020). For learned absolute and the
two relative encoding models, we use the default implementations, that scale
attention operations by a scaling factor of 1√

d
. For our untied models, we adjust

our scaling factor to 1√
2d

as in the original paper (Ke et al., 2020). For sinusoidal

representations, while Vaswani et al. (2017) multiply token embeddings by
√

d
to avoid drowning them out with the [−1, 1] sinusoidal encoding range, we
find that our default embedding size is too small for this to have an effect, and
instead scale up token embeddings by 2

√
d before adding positional encodings.

For all parameterised encoding models except TUPE (relative), we use a
maximum of k = 512 positions; the concrete transformers implementation
of the relative methods means that this gives us 1023 total offsets. 4 For
TUPE (relative), we use a maximum of k = 128 positions, divided into 32
bins with logarithmically increasing bin sizes; this is taken from the original
implementation in Ke et al. (2020).

VIII.4 Evaluation

We adopt Dufter and Schütze’s e (2020)valuation pipeline, evaluating each of
our models at layers 0 and 8; we also describe a multilingual score, which is
defined as the average accuracy for the retrieval and translation tasks, at layers
0 and 8. We also measure perplexity, both on the monolingual first half of the
corpus, and on both halves combined. Note that true perplexities for masked
language models are intractable (Salazar et al., 2020; Wang and Cho, 2019). We
use a trivial approximation and calculate perplexity based on the prediction loss
for each masked token; note that while these suffice for comparison purposes,
they are not true perplexities and should not be taken as such outside the context
of these experiments.

We present our results (averaged out over faux-languages) in Figure VIII.1,
with full results in Appendix VIII.C. As expected, the more recent positional
encodings are superior to sinusoidal or absolute positional encodings in the
monolingual setting; but somewhat surprisingly, sinusoidal and absolute
positional encodings are clearly outperforming the more recent approaches in

3github.uio.no/vinitr/multilingual-position
4In line with Shaw et al. (2018), we also attempted to use k = 16 for the relative key model, but

saw no difference in results.
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Wiki/CC Bible

Embedding Perplexity Retrieval Translation ML score Perplexity Retrieval Translation ML scoreFull L1 0 8 0 8 Full L1 0 8 0 8

Sinusoidal 66.73 63.96 37.43 97.29 77.03 64.07 68.95 215.77 186.53 4.82 54.09 47.09 27.62 33.4
Absolute 66.35 63.44 52.35 96.53 76.05 53.62 68.59 229.28 201.88 9.62 52.51 47.6 19.36 32.27

TUPE (absolute) 61.4 58.77 9.61 84.72 65.89 36.57 48.07 239.48 210.16 1.65 28.86 28.85 8.12 16.87
TUPE (relative) 59.81 56.96 16.25 88.5 71.7 40.54 53.89 221.04 194.58 2.54 41.34 40.39 13.92 24.55
Relative (key) 55.98 52.5 20.2 87.36 73.09 31.38 53.09 193.49 166.75 2.18 28.46 30.43 10.25 17.83

Relative (key/query) 55.28 51.83 21.24 88.04 73.58 34.42 54.64 191.23 164.41 2.4 31.6 34.26 13.03 20.32

Table VIII.4: Detailed results, averaged across our faux-languages. Best results
per metric in bold.

Figure VIII.2: (Full) perplexity and ML score across languages.

the multilingual setting. We also note that the gap in multilingual performance
only grows larger when a different word order is imposed on the target language;
see the bottom row of Figure VIII.1. Interestingly, switching to structurally
different L2s can sometimes reduce the language modelling perplexity of the
L1: this could be due to regularisation induced by structural differences.

Typological differences We discuss "typology" with a caveat: our experiments
with GD only alter word order, which means that all our altered-structure
experiments still have English morphology. As such, it is impossible to talk
about non-English languages; only about non-English word-order tendencies,
when induced in English. Having said that, when we measure performance
variation across languages (Figure VIII.2), our results are more or less what one
would expect: performance is decent for relatively rigid word-order languages,
and poorer for languages that have complex morphology.

Interestingly, SVO languages consistently tend to perform better than our
three non-SVO languages (Basque, Hindi and Arabic); this could be due to
VSO/SOV languages requiring morphology to disambiguate between adjacent
nominals (Levshina, 2019). Another justification could also be that these are
languages with a very different "default" word order to English; this would
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Figure VIII.3: Real-world results on XNLI. Models were pretrained on a large
text corpus and finetuned on English MultiNLI.

further motivate Ding et al.’s u (2020)se of cross-lingually reordered position
markers.

Real-world results While we conduct most of our analyses on our toy models,
we also ran a series of experiments to verify that our results would hold with
larger models. As such, we pre-trained full size BERT models (base, not large)
for two epochs, on a corpus consisting of 8.5M, 9.3M and 800k sentences in
English, German and Hindi respectively. We then fine-tuned these models
for three epochs on (English) MultiNLI (Williams et al., 2018), and evaluated
on held-out XNLI test sets for our three languages (Conneau et al., 2018); the
process took approximately 4 days per model, on a single V100 GPU. We trained
two models (seeds 0 and 42) per method, for three different positional encoding
methods: a) absolute positional encodings, as these are used in the original
BERT, b) sinusoidal encodings, as these were the original transformer encodings,
and c) TUPE (absolute), as the most recent innovation. Our real-world results
appear to validate our toy experiments: performance on English, the language
the model was fine-tuned on, is highest with TUPE, while cross-lingual transfer
suffers, both on German and to a lesser extent on Hindi.

VIII.5 Analyses

In an attempt to explain the significantly improved cross-lingual performance
of absolute positional encodings, we tried to examine precisely what sort of
encoding was being learnt. Part of the original motivation behind sinusoidal
encodings was that they would allow for compositionality; for any fixed offset
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Figure VIII.4: Dimensions 0, 4, 8 and 16 of learnt absolute and TUPE positional
encodings over 32 positions for EN∼FI, seed 0.

k, there exists a linear transformation from ppos to ppos+k, making it easier to
learn to attend to relative offsets; the proof of this is in Appendix VIII.A.5

We examined our absolute positional encodings to see whether or not
they were being induced to learn some specific function. Figure VIII.4 plots
4 dimensions of absolute and TUPE(a) positional encoding, for the EN +
[EN∼FI] model; each line represents a specific dimension of the encoding
vectors generated for positions 0 to 31. Interestingly, it appears that absolute
representations converge to waveforms that represent sinusoids somewhat,
while neither of the untied experiments do so (cf. Appendix VIII.B).

We hypothesize that absolute representations converge to waveforms
because of increased pressure for compositionality, being trained on structurally
different languages. To test this, we quantify the extent to which the absolute,
relative and untied encodings are compositional in the sense that there is a
linear transformation from ppos to ppos+k for different k.

To this end, we use Procrustes analysis Stegmann and Gomez, 2002 to learn a
linear transformation for each k, based on the representations of ppos and ppos+k.

5Vaswani et al. (2017) do not explicitly mention compositionality, but only generalization across
positions for fixed offsets. Positional disentanglement is the flipside of compositionality, however
Chaabouni et al., 2020.
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Figure VIII.5: Procrustes loss for absolute encodings and TUPE (seed 0);
differences are statistically significant with p < 0.001 (Wilcoxon). The sinusoidal
loss is ≈ 0.

Specifically, we apply orthogonal Procrustes analyses (Schönemann, 1966), which
avoid scaling and translation.

First, we minimise arg minT ||ppos − Tppos+k||2. Next, we apply T to a
different randomly selected pos′, i.e. we calculate L = ||ppos′ − Tppos′+k||2.
The higher the final loss L, the less our encodings facilitate compositionality.
In order to make learning T simpler, rather than selecting representations for
single positions pos and pos′, we select chunks of arbitrary size C, and stack
their positions into a matrix. Note that for sinusoidal representations, the loss is
close to zero regardless of span.

The losses are plotted over a range of offsets for both absolute representations
and for TUPE(a), in Figure VIII.5; we include a control model trained on a
monolingual corpus. Losses are averaged over 125 runs per offset, with random
values of pos, pos′ and C. While both forms of representation appear to be
similar (and relatively non-sinusoidal) when trained on the monolingual corpus,
introducing bilingualism leads to a clear difference between the two: absolute
positional representations tend to be a lot closer to sinusoidal representations
than untied ones do. Note, also, that this gap is clearest for the (simpler) EN +
[EN] experiment – this is unsurprising, as EN + [EN] is still perceived as bilingual
due to the shifted vocabulary. The structural similarity between the two,
however, makes it easier to build compositional representations by relying on
offsets, as the model only needs to learn to represent one language, structurally
speaking. We observe a similar gap when comparing pretrained BERT models:
bert-base-multilingual-cased exhibits more sinusoidal representations over a range
of offsets, when compared to bert-base-cased, although the gap is narrower than
with our toy models.

205



VIII. The Impact of Positional Encodings on Multilingual Compression

Figure VIII.6: Word-position correlations for our Finnish-reordered model with
random seed 0; words on the y- and positions on the x-axis.

Correlations in multilingual settings A key motivation for eliminating word-
position correlations, presented in (Ke et al., 2020), is the fact that these correla-
tions are effectively zero, leading to no additional information for the model.
Figure VIII.6 captures word-position correlations from three of our trained mod-
els (with an additional model trained on a purely monolingual corpus); note that
while these correlations are very close to zero for monolingual corpora, there is
a visible "banding" phenomenon in the multilingual corpora, that only grows
stronger when a different grammar is sampled. A similar banding phenomenon
is visible when we compare multilingual and monolingual pre-trained BERT
models (Appendix VIII.B), albeit with reduced magnitude. We hypothesize that
the pressure for compositionality induces these correlations.

Ablation studies Finally, we ran a series of ablation experiments on absolute
positional encodings to support the above analysis. Three of the experiments
involved removing position-position correlations, position-word correlations,
word-position correlations, and a fourth involved using separate parameters
for word and position attention. Results are presented in Figure VIII.7; we
also include the median Procrustes loss. We note that the removal of both
position-word correlations and word-position correlations has an effect on both
perplexity and ML score. Interestingly, removing word-position correlations
((piW

Q)(wjW K)⊤) does not have the same effect as the inverse does: perplexity
is lower than with position-word correlations removed, but so is the ML score,
indicating a difference between the role played by position as a key, and as a
query.

On relative representations Given our previous assumptions about offsets
aiding compositionality, why, then, do our relative representations - that explic-
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Figure VIII.7: Ablation experiments, averaged over languages (for perplexity
and ML score). Procrustes losses calculated as in §5, for the EN∼FI model (seed
0).

itly calculate offsets - perform poorly in multilingual settings? We speculate
that the reason relative encodings appear to hurt multilingual compression
is that offset-specific bias terms sparsify the learning signal for (and thereby
hinder the alignment of) disjoint vocabularies. In compensating for this, relative
positional encodings sacrifice their compositionality. Relative representations
aid compositionality by directly providing a bias term derived from the distance
between a word pair. As shown above, absolute representations learn similar
biases; however, being actively forced to learn such biases could encourage
models to jointly learn alignment and compositionality.

Further, offset representations are also effectively "hard", i.e. derived from
the hard distance between the two tokens. The interaction between wi and wj is
not wholly mediated by the distance i− j, however, this correlation is forced by
the product term (xiW

Q)(aij)⊤. The term (xiW
Q)(pjW K)⊤, on the other hand,

could effectively attend to multiple offsets. pjW K is fixed for position j; given
the sinusoidal nature of p, the product term could induce a "soft" positional
representation with subspaces attending to different offsets6; the relevant offset
mix could then be indexed into by xiW

Q.

VIII.6 Discussion

The main contribution of our work is practical, namely showing that findings
about positional encodings in the context of monolingual language models do
not apply straightforwardly to multilingual language models. In answering
why sinusoidal embeddings are superior to more recent alternatives in the

6Indeed, we find that pjW k is less invariant to Procrustes transformation than pj is.
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multilingual setting, we also found the compositionality of positional encodings
to be predictive of multilingual compression in such models. While relative
positional encodings seem designed for compositionality, they prevent efficient
alignment of multilingual vocabularies.

Sinha et al. (2021) show that word order matters little for monolingual
language model pretraining, and that pretrained language models seem to rely
mostly on higher-order word co-occurrence statistics. Our work shows that this
finding does not generalize to pretraining multilingual language models. In
the multilingual setting, word order clearly matters, as also shown in previous
work (Dufter and Schütze, 2020; Ke et al., 2020), and compositional positional
encodings seem to facilitate effective multilingual compression. This aligns with
the observation that syntactic reordering à la Ding et al. (2020) is in some cases
an effective way to encourage compositional cross-lingual representations.

In general, our results illustrate how methods developed for monolingual
language models should not be blindly adopted when training multilingual
models, which potentially require different architectures. Conversely, we
would encourage future work on new positional encoding mechanisms for
non-autoregressive models to also evaluate these mechanisms in multilingual
settings.

VIII.7 Conclusion

Through a series of synthetic and real experiments with training multilingual
language models, we showed that a) sinusoidal positional encodings perform
better in multilingual settings than more recent alternatives (that have been
shown to perform better in monolingual settings); b) this is likely because of an
increased pressure for compositionality. We devised a method for quantifying
the compositionality of positional encodings, and strengthened our results by
also considering word-position correlations and ablation studies.
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Appendix VIII.A Proof of linear transformability

Let [
sin(ωt)
cos(ωt)

]
represent a sine/cosine pair, characterised by position t. Let

Rk =
[

cos(ωk) sin(ωk)
− sin(ωk) cos(ωk)

]
be a rotation matrix for angle ωk. We then have:

R

[
sin(ωt)
cos(ωt)

]
=

[
cos(ωk) sin(ωk)
− sin(ωk) cos(ωk)

]
·
[

sin(ωt)
cos(ωt)

]
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Additional plots

=
[
sin(ωk) cos(ωt) + cos(ωk) sin(ωt)
cos(ωk) cos(ωt)− sin(ωk) sin ωt)

]
=

[
sin(ω(t + k))
cos(ω(t + k))

]

implying that for a fixed frequency ω, there exists a rotation matrix Rk that
can induce a rotational offset of k.

Appendix VIII.B Additional plots

Figure VIII.8: Four neurons over 32 for TUPE (relative); the same neurons for 32
offsets centred on 512 for the other relative models.

211



VIII. The Impact of Positional Encodings on Multilingual Compression

Figure VIII.9: Word-position correlations for pretrained BERT models
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Full results

Appendix VIII.C Full results

Wiki/CC Embedding Perplexity Retrieval Translation ML scoreFull L1 0 8 0 8

Arabic

Sinusoidal 67.52 (1.72) 64.16 (2.14) 47.90 (25.39) 98.09 (0.90) 71.75 (7.39) 62.52 (0.09) 70.36 (5.73)
Absolute 68.54 (2.01) 65.02 (2.83) 44.84 (8.00) 95.14 (0.98) 70.79 (3.62) 46.74 (10.01) 63.67 (3.37)
TUPE (a) 62.09 (0.57) 59.01 (0.45) 7.88 (1.63) 75.17 (7.47) 58.06 (4.65) 32.13 (3.28) 40.15 (4.45)
TUPE (r) 61.22 (0.50) 57.81 (1.05) 15.12 (4.39) 83.44 (13.58) 64.94 (9.55) 29.03 (10.33) 46.22 (10.09)

Relative (k) 58.08 (0.98) 53.92 (0.89) 12.61 (5.00) 74.14 (15.52) 63.27 (13.04) 9.37 (3.85) 38.56 (9.24)
Relative (k/q) 55.96 (1.46) 51.98 (1.02) 20.95 (8.34) 89.53 (8.39) 73.01 (5.47) 35.83 (20.20) 55.23 (12.46)

German

Sinusoidal 67.34 (1.52) 64.74 (1.21) 47.12 (25.19) 98.94 (0.22) 71.53 (14.37) 61.06 (10.25) 70.95 (3.74)
Absolute 65.28 (1.69) 62.67 (2.08) 63.68 (2.44) 98.87 (0.06) 80.21 (0.60) 36.34 (24.86) 67.01 (8.44)
TUPE (a) 61.29 (0.70) 58.70 (0.60) 12.11 (1.29) 92.87 (2.50) 71.39 (3.10) 48.28 (3.36) 55.15 (2.09)
TUPE (r) 59.42 (0.77) 56.90 (1.29) 18.27 (3.33) 97.40 (1.13) 77.86 (2.10) 43.72 (13.84) 60.74 (5.49)

Relative (k) 56.00 (0.22) 52.29 (1.23) 23.00 (5.06) 95.70 (3.57) 79.66 (1.94) 26.08 (17.72) 55.67 (8.05)
Relative (k/q) 55.45 (0.73) 51.77 (1.49) 22.67 (7.54) 90.80 (10.64) 76.50 (7.72) 39.51 (18.52) 56.83 (11.69)

Basque

Sinusoidal 68.44 (0.88) 64.15 (1.30) 48.65 (24.10) 97.01 (0.70) 70.63 (7.73) 61.65 (2.26) 70.16 (5.46)
Absolute 69.46 (3.29) 65.36 (2.70) 45.42 (5.55) 91.64 (3.68) 69.19 (3.87) 36.91 (6.75) 58.51 (3.31)
TUPE (a) 63.11 (0.36) 59.23 (1.35) 6.38 (2.17) 71.92 (12.96) 57.18 (7.90) 28.21 (16.17) 39.13 (10.48)
TUPE (r) 60.82 (0.86) 56.61 (1.77) 10.85 (2.47) 77.57 (12.22) 64.37 (6.83) 33.41 (12.54) 43.95 (8.01)

Relative (k) 60.03 (0.57) 54.70 (0.53) 9.49 (4.37) 61.06 (20.25) 56.12 (14.21) 21.28 (15.21) 36.27 (12.29)
Relative (k/q) 57.66 (0.96) 52.51 (1.41) 11.74 (6.91) 63.13 (32.58) 55.84 (22.94) 33.70 (18.55) 41.27 (20.79)

Finnish

Sinusoidal 67.28 (1.54) 64.20 (1.88) 51.99 (23.78) 98.90 (0.25) 76.33 (5.69) 69.72 (1.44) 74.51 (5.15)
Absolute 67.14 (2.20) 64.04 (2.76) 51.91 (11.81) 97.90 (1.13) 77.54 (0.67) 63.53 (7.04) 72.83 (1.87)
TUPE (a) 61.53 (1.21) 58.06 (0.95) 11.45 (1.36) 91.69 (4.67) 71.60 (3.69) 34.34 (16.61) 50.91 (6.36)
TUPE (r) 61.07 (1.22) 57.54 (1.07) 15.90 (2.15) 94.00 (3.82) 75.84 (4.08) 47.95 (20.72) 58.29 (7.04)

Relative (k) 57.05 (1.14) 53.13 (0.43) 22.31 (3.20) 96.01 (0.70) 78.96 (0.68) 20.75 (7.37) 53.76 (0.78)
Relative (k/q) 55.37 (0.66) 51.29 (0.27) 22.97 (0.86) 91.87 (5.67) 79.77 (0.97) 22.81 (25.52) 54.63 (9.17)

French

Sinusoidal 63.92 (0.41) 61.82 (0.87) 54.10 (22.52) 99.36 (0.13) 77.65 (4.95) 70.28 (1.22) 75.76 (4.25)
Absolute 64.76 (1.10) 62.68 (1.37) 59.12 (13.35) 99.14 (0.37) 79.57 (0.63) 68.90 (2.75) 76.28 (1.93)
TUPE (a) 59.94 (0.79) 58.60 (0.71) 8.67 (2.15) 90.25 (7.76) 67.86 (7.47) 36.15 (7.99) 50.87 (6.57)
TUPE (r) 58.28 (0.78) 56.14 (1.37) 19.36 (3.62) 96.64 (2.93) 78.50 (1.72) 51.63 (18.73) 63.50 (7.99)

Relative (k) 55.18 (0.25) 52.96 (0.44) 18.84 (2.14) 91.12 (8.32) 73.30 (7.86) 37.50 (17.77) 56.07 (8.40)
Relative (k/q) 54.35 (0.23) 52.10 (1.02) 19.01 (5.15) 90.09 (9.29) 72.22 (7.48) 26.51 (22.43) 51.88 (10.57)

Hindi

Sinusoidal 67.46 (0.27) 65.01 (0.32) 37.94 (20.74) 88.30 (4.64) 63.26 (13.46) 47.88 (6.96) 60.76 (4.85)
Absolute 63.75 (1.05) 61.38 (0.97) 47.98 (0.66) 95.58 (2.19) 76.18 (1.95) 56.57 (12.48) 67.28 (4.54)
TUPE (a) 61.70 (1.10) 59.57 (0.48) 6.34 (1.56) 74.79 (20.15) 58.50 (12.29) 28.73 (6.46) 40.11 (9.49)
TUPE (r) 59.57 (1.24) 57.64 (1.75) 12.67 (6.57) 72.64 (24.01) 61.35 (17.78) 23.49 (10.80) 39.66 (14.67)

Relative (k) 55.50 (0.60) 52.81 (0.87) 19.72 (4.83) 90.11 (9.87) 74.06 (4.06) 26.71 (13.65) 52.39 (9.33)
Relative (k/q) 54.51 (0.21) 52.04 (0.74) 23.45 (6.88) 93.27 (6.35) 75.60 (3.41) 32.95 (21.46) 56.72 (10.94)

Swedish

Sinusoidal 64.62 (0.86) 62.32 (0.73) 57.11 (21.45) 99.32 (0.24) 79.89 (2.06) 71.82 (7.63) 77.39 (5.05)
Absolute 65.54 (1.86) 62.95 (2.48) 53.52 (4.43) 97.45 (0.79) 78.85 (1.69) 66.33 (3.09) 74.58 (2.28)
TUPE (a) 60.16 (0.99) 58.23 (1.49) 14.47 (3.45) 96.36 (2.49) 76.62 (3.05) 48.12 (19.76) 60.16 (7.98)
TUPE (r) 58.29 (0.17) 56.12 (0.72) 21.57 (3.06) 97.80 (1.40) 79.05 (3.18) 54.56 (2.06) 64.86 (1.83)

Relative (k) 54.94 (0.61) 52.28 (0.68) 28.17 (3.30) 98.52 (0.68) 82.81 (1.08) 56.60 (9.17) 68.09 (5.04)
Relative (k/q) 53.66 (0.22) 51.16 (1.11) 27.87 (4.86) 97.63 (2.04) 82.11 (2.22) 49.65 (17.66) 65.89 (8.57)
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Bible Embedding Perplexity Retrieval Translation ML scoreFull L1 0 8 0 8

Arabic

Sinusoidal 228.44 (5.29) 193.76 (3.88) 2.30 (0.35) 32.79 (4.29) 24.54 (5.24) 13.20 (3.62) 18.21 (3.09)
Absolute 236.83 (8.40) 206.44 (10.04) 4.18 (0.20) 22.72 (5.92) 24.18 (3.04) 5.75 (1.87) 14.21 (2.67)
TUPE (a) 251.32 (5.55) 209.54 (9.00) 0.72 (0.36) 10.18 (6.12) 9.91 (5.73) 3.44 (2.47) 6.07 (3.67)
TUPE (r) 228.09 (18.36) 193.67 (7.37) 1.30 (0.22) 21.49 (6.68) 23.25 (3.57) 4.19 (1.11) 12.56 (2.28)

Relative (k) 206.77 (4.36) 177.43 (3.93) 0.84 (0.08) 8.79 (1.82) 11.85 (1.24) 3.24 (0.64) 6.18 (0.73)
Relative (k/q) 195.47 (5.84) 166.20 (2.53) 1.44 (0.60) 15.87 (8.02) 19.30 (7.44) 4.82 (2.64) 10.36 (4.52)

German

Sinusoidal 214.19 (8.29) 185.11 (3.92) 6.80 (1.86) 76.04 (3.25) 64.60 (2.83) 37.76 (5.90) 46.30 (2.53)
Absolute 230.05 (7.75) 205.46 (12.23) 9.81 (2.28) 63.69 (12.37) 51.91 (5.98) 17.89 (5.89) 35.83 (6.55)
TUPE (a) 230.92 (6.27) 203.84 (2.26) 1.75 (0.39) 33.91 (2.86) 36.33 (6.21) 9.59 (2.96) 20.40 (2.65)
TUPE (r) 211.44 (6.19) 196.39 (7.09) 2.52 (0.56) 48.23 (20.03) 46.61 (14.36) 14.43 (6.78) 27.95 (9.95)

Relative (k) 189.45 (4.10) 165.36 (2.59) 1.50 (0.48) 16.44 (7.67) 19.43 (8.06) 5.12 (2.08) 10.62 (4.56)
Relative (k/q) 191.06 (0.27) 168.70 (6.74) 2.33 (0.67) 33.21 (15.24) 36.76 (13.08) 11.69 (6.65) 21.00 (8.84)

Basque

Sinusoidal 236.91 (9.77) 197.71 (11.45) 1.47 (0.37) 15.82 (2.59) 13.57 (3.44) 6.47 (2.72) 9.33 (2.27)
Absolute 248.87 (18.53) 212.26 (14.12) 4.90 (0.82) 24.07 (4.75) 17.72 (2.05) 6.00 (2.44) 13.17 (1.15)
TUPE (a) 265.28 (11.20) 220.59 (17.75) 0.42 (0.18) 2.98 (1.30) 4.57 (1.17) 1.21 (0.57) 2.29 (0.79)
TUPE (r) 239.52 (8.88) 196.16 (12.43) 1.04 (0.21) 11.23 (1.54) 14.64 (4.25) 3.29 (0.98) 7.55 (1.36)

Relative (k) 214.59 (5.79) 170.40 (2.68) 0.52 (0.14) 3.24 (1.20) 6.23 (1.05) 1.60 (0.67) 2.90 (0.62)
Relative (k/q) 206.33 (6.43) 166.16 (2.67) 0.49 (0.18) 3.15 (1.43) 5.96 (2.18) 1.37 (0.86) 2.74 (1.09)

Finnish

Sinusoidal 215.28 (2.80) 181.92 (5.08) 4.34 (0.29) 64.24 (9.50) 56.92 (5.55) 28.02 (8.05) 38.38 (5.73)
Absolute 230.22 (12.83) 194.61 (4.17) 14.40 (3.69) 68.82 (5.06) 63.92 (5.37) 26.18 (8.15) 43.33 (5.03)
TUPE (a) 251.91 (4.75) 215.41 (10.58) 1.94 (0.56) 35.29 (11.75) 36.96 (8.56) 10.58 (6.28) 21.19 (6.73)
TUPE (r) 240.35 (7.43) 206.09 (14.62) 3.00 (0.40) 52.44 (7.90) 53.54 (5.29) 9.22 (5.12) 29.55 (3.15)

Relative (k) 202.40 (8.09) 170.90 (9.54) 1.77 (0.90) 23.66 (13.30) 30.67 (14.17) 11.30 (5.45) 16.85 (8.23)
Relative (k/q) 197.92 (5.13) 161.33 (8.55) 2.38 (0.70) 29.05 (3.31) 40.63 (10.06) 12.74 (5.02) 21.20 (4.70)

French

Sinusoidal 202.44 (4.97) 179.19 (6.13) 7.36 (1.66) 82.96 (1.61) 74.46 (1.00) 44.95 (4.13) 52.43 (0.76)
Absolute 217.10 (11.25) 199.77 (10.51) 13.60 (1.64) 75.18 (7.83) 74.33 (5.80) 35.35 (9.98) 49.62 (6.21)
TUPE (a) 220.48 (9.85) 203.21 (12.12) 2.49 (0.35) 52.95 (15.51) 46.47 (10.33) 15.98 (5.82) 29.47 (7.80)
TUPE (r) 204.57 (8.86) 188.30 (14.18) 4.07 (0.72) 71.33 (10.07) 65.27 (6.85) 29.41 (8.71) 42.52 (6.50)

Relative (k) 181.31 (2.67) 161.53 (3.44) 2.36 (1.09) 36.83 (20.95) 33.84 (15.39) 12.17 (9.58) 21.30 (10.92)
Relative (k/q) 179.43 (9.50) 159.12 (8.66) 4.01 (0.93) 57.36 (10.80) 56.62 (9.44) 24.81 (10.53) 35.70 (6.91)

Hindi

Sinusoidal 207.71 (3.54) 187.60 (4.39) 2.08 (0.53) 22.03 (8.05) 17.30 (5.85) 7.54 (2.13) 12.24 (4.13)
Absolute 221.81 (6.29) 197.47 (9.65) 4.62 (1.64) 29.81 (13.95) 23.44 (9.49) 6.00 (1.86) 15.97 (6.55)
TUPE (a) 235.64 (11.94) 216.64 (15.13) 0.70 (0.06) 5.63 (1.00) 9.15 (2.07) 2.31 (0.57) 4.45 (0.69)
TUPE (r) 210.78 (8.59) 189.10 (9.12) 0.83 (0.37) 12.64 (5.58) 13.41 (6.40) 3.26 (1.76) 7.54 (3.52)

Relative (k) 190.88 (4.72) 172.32 (7.12) 1.24 (0.43) 15.41 (6.60) 14.80 (6.91) 4.71 (2.33) 9.04 (4.06)
Relative (k/q) 190.68 (6.60) 168.92 (4.95) 1.06 (0.32) 11.42 (5.32) 13.01 (4.36) 3.59 (0.56) 7.27 (2.62)

Swedish

Sinusoidal 205.42 (4.67) 180.45 (2.27) 9.41 (0.30) 84.72 (2.59) 78.21 (0.52) 55.40 (6.57) 56.94 (2.23)
Absolute 220.06 (10.32) 197.17 (5.13) 15.82 (0.56) 83.29 (0.69) 77.68 (1.00) 38.35 (4.80) 53.79 (1.34)
TUPE (a) 220.78 (8.49) 201.86 (6.14) 3.56 (0.64) 61.11 (12.33) 58.59 (11.18) 13.75 (3.21) 34.25 (6.03)
TUPE (r) 212.54 (3.02) 192.31 (9.32) 5.00 (1.46) 72.05 (11.82) 66.01 (9.39) 33.61 (10.73) 44.17 (7.93)

Relative (k) 184.79 (6.02) 165.70 (6.85) 5.56 (1.40) 72.94 (3.63) 69.32 (5.43) 14.18 (5.07) 40.50 (2.83)
Relative (k/q) 177.74 (6.85) 160.42 (5.99) 5.08 (0.24) 71.11 (5.47) 67.52 (3.27) 32.22 (12.51) 43.99 (1.05)

Table VIII.5: Full results (mean/std. over three seeds)
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Abstract

Recent studies have shown that language models pretrained and/or fine-
tuned on randomly permuted sentences exhibit competitive performance
on GLUE, putting into question the importance of word order information.
Somewhat counter-intuitively, some of these studies also report that position
embeddings appear to be crucial for models’ good performance with
shuffled text. We probe these language models for word order information
and investigate what position embeddings learned from shuffled text
encode, showing that these models retain information pertaining to the
original, naturalistic word order. We show this is in part due to a subtlety
in how shuffling is implemented in previous work – before rather than
after subword segmentation. Surprisingly, we find even Language models
trained on text shuffled after subword segmentation retain some semblance
of information about word order because of the statistical dependencies
between sentence length and unigram probabilities. Finally, we show that
beyond GLUE, a variety of language understanding tasks do require word
order information, often to an extent that cannot be learned through fine-
tuning.
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Figure IX.1: Pearson correlations between position embeddings for full-scale
models; the patterns are similar to fully learnable absolute embeddings (Wang
et al., 2021) and can be said to have learned something about position. We later
demonstrate that this is not the case with post-BPE scrambling.

IX.8 On Word Order . . . . . . . . . . . . . . . . . . . . . . . . . 226
IX.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
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IX.1 Introduction

Transformers Vaswani et al., 2017, when used in the context of masked language
modelling Devlin et al., 2019, consume their inputs concurrently. There is no
notion of inherent order, unlike in autoregressive setups, where the input is
consumed token by token. To compensate for this absence of linear order, the
transformer architecture originally proposed in Vaswani et al. (2017) includes
a fixed, sinusoidal position embedding added to each token embedding; each
token carries a different position embedding, corresponding to its position in
the sentence. The transformer-based BERT (Devlin et al., 2019) replaces these
fixed sinusoidal embeddings with unique, learned embeddings per position;
RoBERTa (Liu et al., 2019), the model investigated in this work, does the same.

Position embeddings are the only source of order information in these
models; in their absence, contextual representations generated for tokens are
independent of the actual position of the tokens in a sentence, and the models
thus resemble heavily overparameterised bags-of-words. Sinha et al. (2021a)
pre-trained RoBERTa models on shuffled corpora to demonstrate that the
performance gap between these ‘shuffled’ language models and models trained
on unshuffled corpora is minor (when fine-tuned and evaluated downstream
on the GLUE (Wang et al., 2018) benchmark). They further show that this gap is
considerably wider when a model is pre-trained without position embeddings.
In this paper, we attempt to shed some light on why these models behave the
way they do, and in doing so, seek to answer a set of pertinent questions:

• Do shuffled language models still have traces of word order information?
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Figure IX.2: Correlations between position embeddings when shuffling training
data before segmentation (left), i.e, at the word level, and after segmentation
(middle), i.e., at the subword level, as well as when replacing all subwords
with random subwords based on their corpus-level frequencies (right). The
latter removes any dependency between subword probability and sentence
length. The plots show that shuffling before segmentation retains more
order information than shuffling after, and that even when shuffling after
segmentation, position embeddings are meaningful because of the dependence
between subword probability and sentence length.

• Why is there a gap in performance between models without position
embeddings and models trained on shuffled tokens, with the latter
performing better?

• Are there NLU benchmarks, other than GLUE, on which shuffled language
models perform poorly?

Contributions We first demonstrate, in Section IX.3, that shuffled language
models do contain word order information, and are quite responsive to simple
tests for word order information, particularly when compared to models trained
without position representations. In Section IX.4, we demonstrate that pre-
training is sufficient to learn this: position embeddings provide the appropriate
inductive bias, and performing BPE segmentation after shuffling results in
sensible n-grams appearing in the pre-training corpus; this gives models the
capacity to learn word order within smaller local windows. Other minor cues -
like correlations between sentence lengths and token distributions - also play
a role. We further corroborate our analysis by examining attention patterns
across models in Sec. IX.5. In Section IX.6, we show that, while shuffled models
might be almost as good as their un-shuffled counterparts on GLUE tasks,
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there exist NLU benchmarks that do require word order information to an
extent that cannot be learned through fine-tuning alone. Finally, in Section IX.7,
we describe miscellaneous experiments addressing the utility of positional
embeddings when added just prior to fine-tuning.

IX.2 Models

Sinha et al. (2021a) train several full-scale RoBERTa language models on the
Toronto Book Corpus (Zhu et al., 2015) and English Wikipedia.1 Four of
their models are trained on shuffled text, i.e., sentences in which n-grams
are reordered at random.2 We dub the original, unperturbed model ORIG, and
the scrambled models SHUF.N1, SHUF.N2, SHUF.N3 and SHUF.N4 depending on
the size of the shuffled n-grams: SHUF.N1 reorders the unigrams in a sentence,
SHUF.N2 reorders its bigrams, etc. For comparison, Sinha et al. (2021a) also
train a RoBERTa language model entirely without position embeddings (NOPOS),
as well as a RoBERTa language model trained on a corpus drawn solely from
unigram distributions of the original Book Corpus, i.e., a reshuffling of the
entire corpus (SHUF.CORPUS). We experiment with their models, as well as with
smaller models that we can train with a smaller carbon footprint. To this end, we
downscale the RoBERTa architecture used in Sinha et al. (2021a). Concretely, we
train single-headed RoBERTa models, dividing the embedding and feed-forward
dimensionality by 12, for 24 hours on a single GPU, on 100k sentences sampled
from the Toronto Book Corpus. To this end, we train a custom vocabulary of size
5,000, which we use for indexing in all our subsequent experiments. While these
smaller models are in no way meant to be fine-tuned and used downstream,
they are useful proofs-of-concept that we later analyse.

IX.3 Probing for word order

We begin by attempting to ascertain the extent to which shuffled language mod-
els are actually capable of encoding information pertaining to the naturalistic
word order of sentences. We perform two simple tests on the full-scale models,
in line with Wang and Chen (2020): the first of these is a classification task
where a logistic regressor is trained to predict whether a randomly sampled
token precedes another in an unshuffled sentence, and the second involves
predicting the position of a word in an unshuffled sentence. The fact that we
do not fine-tune any of the model parameters is noteworthy: the linear models
can only learn word order information if it reflects in the representations the
models generate somehow.

Pairwise Classification For this experiment, we train a logistic regression
classification model on word representations extracted from the final layer of

1Training reportedly takes 72 hours on 64 GPUs.
2The shuffling procedure does not reorder tokens completely at random, but moves a token in

position i to a new position selected at random among positions j ̸= i.
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Model Classification (acc.) Regression (R2)
2k 5k 10k -

ORIG 81.50 81.74 80.40 0.68
SHUF.N1 65.96 64.98 71.82 0.60

NOPOS 50.41 53.35 50.22 0.03

Table IX.1: Pairwise classification and regression results.

the Transformer encoder, mean pooling over sub-tokens when required. For
each word pair x and y, the classifier is given a concatenation of our model m’s
induced representations m(x)⊕m(y) and trained to predict a label indicating
whether x precedes y or not. Holding out two randomly sampled positions,
we use a training sets sized 2k, 5k, and 10k, from the Universal Dependencies
English-GUM corpus (Zeldes, 2017) (excluding sentences with more than 30
tokens to increase learnability) and a test set of size 2, 000. We report the mean
accuracy from three runs.

Regression Using the same data, we also train a ridge-regularised linear
regression model to predict the position of a word p(x) in an unshuffled sentence,
given that word’s model-induced representation m(x). R2 score is reported per
model. To prevent the regressors from memorising word to position mappings,
we perform 6-fold cross-validation, where the heldout part of the data contains
no vocabulary overlap with the corresponding train set.

Results For both tasks (see Table IX.1), our results indicate that position
encodings are particularly important for encoding word order: Classifiers and
regressors trained on representations from ORIG and SHUF.N1 achieve high
accuracies and R2 scores, while those for NOPOS are close to random. Both
ORIG and SHUF.N1 appear to be better than random given only 2k examples.
These results imply that, given positional encodings and a modest training set of
2k or more examples, a simple linear model is capable of extracting word order
information, enabling almost perfect extrapolation to unseen positions. Whether
the position encodings come from a model trained on natural or shuffled text
does not appear to matter, emphasizing that shuffled language models do
indeed contain substantial information about the original word order.

IX.4 Hidden word-order signals

In Section IX.3, we observed that Sinha et al. (2021a)’s shuffled language models
surprisingly exhibit information about naturalistic word order. That these
models contain positional information can also be seen by visualizing position
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embedding similarity. Figure IX.1 displays Pearson correlations3 for position
embeddings with themselves, across positions. Here, we see that the shuffled
models satisfy the idealised criteria for position embeddings described by Wang
et al. (2021): namely, they appear to be a) monotonous within smaller context
windows, and b) invariant to translation. If position embedding correlations are
consistent across offsets over the entire space of embeddings, the model can be
said to have ‘learned’ distances between tokens. Since transformers process all
positions in parallel, and since language models without position embeddings
do not exhibit such information, position embeddings have to be the source of
this information. In what follows, we discuss this apparent paradox.

Subword vs. word shuffling An important detail when running experiments
on shuffled text, is when the shuffling operation takes place. When tokens
are shuffled before BPE segmentation, this leads to word-level shuffling, in
which sequences of subwords that form words remain contiguous. Such
sequences become a consistent, meaningful signal for language modelling,
allowing models to efficiently utilise the inductive bias provided by position
embeddings. Thus, even though our pretrained models have, in theory, not
seen consecutive tokens in their pre-training data, they have learned to utilise
positional embeddings to pay attention to adjacent tokens. The influence of
this is somewhat visible in Figure IX.2: while models trained on text shuffled
before and after segmentation both exhibit shifts in the polarity of their position
correlations, only the former show bands of varying magnitude, similar to the
full-scale models. Ravishankar and Søgaard (2021) discuss the implications of
these patterns in a multilingual context; we hypothesise that in our context, the
periodicity in magnitude is a visible artefact of the model’s ability to leverage
position embeddings to enable offset attention. In Section IX.5, we analyse the
effect of shuffling the pre-training data on the models’ attention mechanisms.

Accidental overlap In addition to the n-gram information which results
from shuffling before segmentation, we also note that short sentences tend to
include original bigrams with high probability, leading to stronger associations
for words that are adjacent in the original texts. This effect is obviously
much stronger when shuffling before segmentation than after segmentation.
Figure IX.3 shows how frequent overlapping bigrams (of any sort) are,
comparing word and subword shuffling over 50k sentences.

Sentence length Finally, we observe some preserved information about the
original word order even when shuffling is performed after segmentation. We
hypothesize that this is a side-effect of the non-random relationship between
sentence length and unigram probabilities. That unigram probabilities correlate
with sentence length follows from the fact that different genres exhibit different
sentence length distributions Jin and Liu, 2017; Sigurd et al., 2004. Also, some

3We see similar patterns with dot products for all our plots; we use Pearson correlations to
constrain our range to [−1, 1].
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Figure IX.3: (Cumulative) plot showing subword bigram overlap after shuffling
either words or subwords, as a percentage of the total number of seen bigrams.
We see the overlap is significant, especially when performing shuffling before
segmentation.

Figure IX.4: Similarity matrix between models with sentences sampled based
on unigram corpus statistics; disjoint vocab implies a correlation between token
choice and sentence length.

words occur very frequently in formulaic contexts, e.g., thank in thank you. This
potentially means that there is an approximately learnable relationship between
the distribution of words and sentence boundary symbols.

To test for this, we train two smaller language models on unigram-sampled
corpora: for the first, we use the first 100k BookCorpus sentences as our corpus,
shuffling tokens at a corpus level (yet keeping the original sentence lengths). The
stark difference in position embedding correlations between that and shuffling
is seen in Figure IX.2. For the second, we sample from two different unigram
distributions: one for short sentences and one for longer sentences (details in
Appendix IX.B). While the first model induces no correlations at all, the second
does, as shown in Figure IX.4, implying that sentence length and unigram
occurrences is enough to learn some order information.

IX.5 Attention analysis

Transformer-based language models commonly have attention heads that attend
to neighboring positions voita-etal-2019-analyzing; Ravishankar et al., 2021.
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Figure IX.5: Relative frequency of offsets between token pairs in an attention
relation; the y-axis denotes the percentage of total attention relations that occur
at the offset indicated on the x-axis. We plot layers l ∈ {1, 2, 7, 8, 11, 12} with
increasing line darkness.

Such attention heads are positional and can only be learned in the presence
of order information. We attempt to visualise the attention mechanism for
pre-trained models by calculating, for each head and layer, the offset between
a token and the token that it pays maximum attention to4. We then plot how
frequent each offset is, as a percentage, over 100 Book Corpus sentences, in
Figure IX.5, where we present results for two full-scale models, and two smaller
models (see §2). When compared to NOPOS, SHUF.N1 has a less uniform pattern
to its attention mechanism: it is likely, even at layer 0, to prefer to pay attention
to adjacent tokens, somewhat mimicking a convolutional window (Cordonnier
et al., 2020). We see very similar differences in distribution between our smaller
models: Shuffling after segmentation, i.e., at the subword level, influences early
attention patterns.

IX.6 Evaluation beyond GLUE

SuperGLUE and WinoGrande Sinha et al. (2021a)’s investigation is conducted
on GLUE and on the Paraphrase Adversaries from Word shuffling (PAWS)
dataset Zhang et al., 2019. For these datasets, they find that models pretrained
on shuffled text perform only marginally worse than those pretrained on normal
text. This result, they argue can be explained in two ways: either a) these tasks
do not need word order information to be solved, or b) the required word order
information can be acquired during finetuning. While GLUE has been a useful

4This method of visualisation is somewhat limited, in that it examines only the maximum
attention paid by each token. We provide more detailed plots over attention distributions in the
Appendix.
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benchmark, several of the tasks which constitute it have been shown to be
solvable using various spurious artefacts and heuristics Gururangan et al., 2018;
Poliak et al., 2018. If, for instance, through finetuning, models are learning to
rely on such heuristics as lexical overlap for MNLI McCoy et al., 2019, then it is
unsurprising that their performance is not greatly impacted by the lack of word
order information.

Evaluating on the more rigorous set of SuperGLUE tasks5 Wang et al., 2019
and on the adversarially-filtered Winograd Schema examples Levesque et al.,
2012 of the WinoGrande dataset Sakaguchi et al., 2020 produces results which
paint a more nuanced picture compared to those of Sinha et al. (2021a). The
results, presented in Table IX.2, show accuracy or F1 scores for all models. For
two of the tasks (MultiRC Khashabi et al., 2018, COPA Roemmele et al., 2011),
we observe a pattern in line with that seen in Sinha et al. (2021a)’s GLUE and
PAWS results: the drop in performance from ORIG to SHUF.N1 is minimal
(mean: 1.75 points; mean across GLUE tasks: 3.3 points)6, while that to NOPOS
is more substantial (mean: 10.5 points; mean across GLUE tasks: 18.6 points).

This pattern alters for the BoolQ Yes/No question answering dataset Clark
et al., 2019, the CommitmentBank De Marneffe et al., 2019, the ReCoRD reading
comprehension dataset Zhang et al., 2018, both the Winograd Schema tasks, and
to some extent the Words in Context dataset Pilehvar and Camacho-Collados,
2018. For these tasks we observe a larger gap between ORIG and SHUF.N1
(mean: 8.1 points), and an even larger one between ORIG and NOPOS (mean:
19.78 points). We note that this latter set of tasks requires inferences which are
more context-sensitive, in comparison to the two other tasks or to the GLUE
tasks.

Consider the Winograd schema tasks, for example. Each instance takes the
form of a binary test with a statement comprising of two possible referents (blue)
and a pronoun (red) such as: Sid explained his theory to Mark but he
couldn’t convince him. The correct referent of the pronoun must be inferred
based on a special discriminatory segment (underlined). In the above example,
this depends on a) the identification of “Sid” as the subject of “explained” and b)
inferring that the pronoun serving as the subject of “convinced” should refer to
the same entity. Since the Winograd schema examples are designed so that the
referents are equally associated with their context7, word order is crucial8 for
establishing the roles of “Sid” and “Mark” as subject and object of “explained”
and “he” and “him” as those of “convinced”. If these roles cannot be established,
making the correct inference becomes impossible.

A similar reasoning can be applied to the Words in Context dataset and the

5Results are reported for an average of 3 runs per task. The RTE task is excluded from our
results as it is also part of GLUE; RTE results can be found in Sinha et al. (2021a).

6CoLA results are excluded from the GLUE calculations due to the very high variance across
random seeds reported by Sinha et al. (2021a).

7e.g. Sid and Mark are both equally likely subjects/objects here. Not all Winograd schema
examples are perfect in this regard, however, which could explain why scrambled models still
perform above random. See Trichelair et al. (2018) for a discussion of the latter point.

8Particularly in a language with limited morphological role marking such as English.
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Model BoolQ CB COPA MultiRC ReCoRD WiC WSC WinoGrande

ORIG 77.6 88.2 / 87.4 61.6 67.8 / 21.9 73.5 / 72.8 67.4 73.5 62.9
SHUF.N1 72.4 79.7 / 82.5 59.7 66.2 / 15.0 61.1 / 60.4 63.0 62.9 55.7
SHUF.N2 73.1 86.6 / 85.5 60.3 64.8 / 16.1 63.1 / 62.4 63.0 65.3 57.6
SHUF.N4 73.5 87.9 / 87.1 60.8 66.2 / 18.2 64.6 / 63.9 62.4 65.3 59.53
NOPOS 66.0 63.5 / 75.0 55.6 52.8 / 3.8 23.8 / 23.5 55.4 63.09 52.73

SHUF.CORPUS 66.7 65.6 / 73.8 56.1 52.6 / 6.4 31.0 / 30.3 57.3 65.14 51.68

Table IX.2: SuperGLUE and WinoGrande results for all models. Scores displayed
are: Avg. F1 / Accuracy for CB; F1a / Exact Match for MultiRC; F1 / Accuracy
for ReCoRD ; accuracy for the remaining tasks.

Figure IX.6: ∆, dependency arcs probing accuracy across lengths 1-5+, w.r.t.
ORIG.

CommitmentBank. The former task tests the ability of a model to distinguish
the senses of a polysemous word based on context. While this might often be
feasible via a notion of contextual association that higher-order distributional
statistics are sufficient for, some instances will require awareness of the word’s
role as an argument in the sentence. The latter task investigates the projectivity
of finite clausal complements under entailment cancelling operators. This is
dependent on both the scope of the entailment operator and the identity of
the subject of the matrix predicate De Marneffe et al., 2019, both of which are
sensitive to word order information.

A final consideration to take into account is dataset filtering. Two of the
tasks where we observe the largest difference between ORIG, SHUF.N1, and
NOPOS — WinoGrande and ReCoRD — apply filtering algorithms to remove
cues or biases which would enable models to heuristically solve the tasks. This
indicates that by filtering out examples containing cues that make them solvable
via higher order statistics, such filtering strategies do succeed at compelling
models to (at least partially) rely on word order information.

Dependency Tree Probing Besides GLUE and PAWS, Sinha et al. (2021a)’s
analysis also includes several probing experiments, wherein they attempt to
decode dependency tree structure from model representations. They show,
interestingly, that the SHUF.N4, SHUF.N3 and SHUF.N2 models perform only
marginally worse than ORIG, with SHUF.N1 producing the lowest scores (lower,
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in fact, than SHUF.CORPUS). Given the findings of Section IX.3, we are interested
in taking a closer look at this phenomenon. Here, we surmise that dependency
length plays a crucial role in the probing setup, where permuted models may
succeed on par with ORIG in capturing local, adjacent dependencies, but
increasingly struggle to decode longer ones. To evaluate the extent to which
this is true, we train a bilinear probe (used in Hewitt and Liang (2019)) on top of
all model representations and evaluate its accuracy across dependencies binned
by length, where length between words wi and wj is defined as |i− j|. We opt
for using the bilinear probe over the Pareto probing framework (Pimentel et al.,
2020), as the former learns a transformation directly over model representations,
while the latter adds the parent and child MLP units from Dozat et al. (2017) –
acting more like a parser. We train probes on the English Web Treebank (Silveira
et al., 2014) and evaluate using UAS, the standard parsing metric.

Figure IX.6 shows ∆ probing accuracy across various dependency lengths
for NOPOS and SHUF.N1, with respect to ORIG9; we include detailed ∆s for
all models in Appendix IX.C. For NOPOS, parsing difficulty increases almost
linearly with distance, often mimicking the actual frequency distribution of
dependencies at these distances in the original treebank (Appendix IX.C); for
SHUF.N1, the picture is a lot more nuanced, with dependencies at a distance of 1
consistently being closer in terms of parseability to ORIG, which, we hypothesise,
is due to its adjacency bias.

IX.7 Other Findings

Random position embeddings are difficult to add post-training We tried
to quantify the degree to which the inductive bias imparted by positional
embeddings can be utilised, solely via fine-tuning. To do so, for a subset of
GLUE tasks (MNLI, QNLI, RTE, SST-2, CoLA), we evaluate NOPOS, and a
variant where we randomly initialised learnable position embeddings and add
them to the model, with the rest of the model equivalent to NOPOS. We see
no improvement in results, except for MNLI, that we hypothesise stems from
position embeddings acting as some sort of regularisation parameter. To test
this, we repeat the above set of experiments, this time injecting Gaussian noise
instead; this has been empirically shown to have a regularising effect on the
network (Bishop, 1995; Camuto et al., 2021). Adding Gaussian noise led to a
slight increase in score for just MNLI, backing up our regularisation hypothesis.

Models learn to expect specific embeddings Replacing the positional
embeddings in ORIG with fixed, sinusoidal embeddings before fine-tuning
significantly hurts scores on the same subset of GLUE tasks, implying that
the models expect embeddings that resemble the inductive bias imparted by
random embeddings, and that fine-tuning tasks do not have sufficient data
to overcome this. The addition of fixed, sinusoidal to NOPOS also does not

9Note that Layer 13 refers to a linear mix of all model layers, as is done for ELMo (Peters et al.,
2018).
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improve model performance on a similar subset of tasks; this implies, given that
sinusoidal embeddings are already meaningful, that model weights also need
to learn to fit the embeddings they are given, and that they need a substantial
amount of data to do so.

IX.8 On Word Order

In Humans It is generally accepted that a majority of languages have
“canonical” or “base’ word orderings Comrie, 1989 (e.g. Subject-Verb-Object
in English, and Subject-Object-Verb in Hindi). Linguists consider word order
to be a coding property — mechanisms by which abstract, syntactic structure is
encoded in the surface form of utterances. Beyond word order, other coding
properties include, e.g. subject-verb agreement, morphological case marking,
or function words such as adpositions. In English, word order is among the
most prominent coding properties, playing a crucial role in the expression of
the main verb’s core arguments: subject and object. For more morphologically
complex languages, on the other hand, (e.g. Finnish and Turkish), word order is
primarily used to convey pragmatic information such as topicalisation or focus.
In such cases, argument structure is often signalled via case-marking, where
numerous orderings become possible (shift in topic or focus nonwithstanding).
We refer the reader to Kulmizev and Nivre (2021) for a broader discussion of
these topics and their implications when studying syntax through language
models.

More generally, evidence for the saliency of word order in linguistic pro-
cessing and comprehension comes from a variety of studies using acceptability
judgements, eye-tracking data, and neural response measurements Bahlmann et
al., 2007; Bever, 1970; Danks and Glucksberg, 1971; Ding et al., 2016; Fedorenko
et al., 2016; Friederici et al., 2000; Friederici et al., 2001; Just and Carpenter, 1980;
Lerner et al., 2011; Pallier et al., 2011. Psycholinguistic research has, however,
also highlighted the robustness of sentence processing mechanisms to a variety
of perturbations, including those which violate word order restrictions Ferreira
et al., 2002; Gibson et al., 2013; Traxler, 2014. In recent work, Mollica et al.
(2020) tested the hypothesis that composition is the core function of the brain’s
language-selective network and that it can take place even when grammatical
word order constrains are violated. Their findings confirmed this, showing that
stimuli with shuffled word order where local dependencies were preserved
— as is, roughly speaking, the case for many dependencies in the sentences
SHUF.N4 is trained on — elicited a neural response in the language network
that is comparable to that elicited by normal sentences. When interword depen-
dencies were disrupted so combinable words were so far apart that composition
among nearby words was highly unlikely — as in SHUF.N1, neural response
fell to a level compared to unconnected word lists.

In Machines Recently, many NLP researchers have attempted to investigate
the role of word order information in language models. For example,
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Lin et al. (2019) employ diagnostic classifiers and attention analyses to
demonstrate that lower (but not higher) layers of BERT encode word order
information. Papadimitriou et al. (2021) find that Multilingual BERT is sensitive
to morphosyntactic alignment, where numerous languages (out of 24 total)
rely on word order to mark subjecthood (English among them). Alleman
et al. (2021) implement an input perturbation framework (n-gram shuffling,
phrase swaps, etc.), and employ it towards testing the sensitivity of BERT’s
representations to various types of structure in sentences. They report a
sensitivity to larger constituent units of sentences in higher layers, which they
deduce to be influenced by hierarchical phrase structure. O’Connor and Andreas
(2021) examine the contribution of various contextual features to the ability of
GPT-2 (Radford et al., 2019) to predict upcoming tokens. Their findings show
that several destructive manipulations, including in-sentence word shuffling,
applied to mid- and long range contexts lead only to a modest increase in usable
information as defined according to the V-information framework of Xu et al.
(2020).

Similarly, word order information has been found not to be essential for
various NLU tasks and datasets. Early work showed that Natural Language
Inference tasks are largely insensitive to permutations of word order Parikh et
al., 2016; Sinha et al., 2021b. Pham et al. (2020) and Gupta et al. (2021) discuss this
in greater detail, demonstrating that test-time word order perturbations applied
to GLUE benchmark tasks have little impact on LM performance. Following up
on this, Sinha et al. (2021a), which our work builds on, found that pretraining
on scrambled text appears to only marginally affect model performance. Most
related to this study, Clouatre et al. (2022) introduce two metrics for gauging
the local and global ordering of tokens in scrambled texts, observing that only
the latter is altered by the perturbation functions found in prior literature. In
experiments with GLUE, they find that local (sub-word) perturbations show a
substantially stronger performance decay compared to global ones.

In this work, we present an in-depth analysis of these results, showing that
LMs trained on scrambled text can actually retain word information and that
– as for humans – their sensitivity to word order is dependent on a variety of
factors such as the nature of the task and the locality of perturbation. While
performance on some “understanding” evaluation tasks is not strongly affected
by word order scrambling, the effect on others such as the Winograd Schema is
far more evident.

IX.9 Conclusion

Much discussion has resulted from recent work showing that scrambling text at
different stages of testing or training does not drastically alter the performance
of language models on NLU tasks. In this work, we presented analyses painting
a more nuanced picture of such findings. Primarily, we demonstrate that, as
far as altered pre-training is concerned, models still do retain a semblance
of word order knowledge — largely at the local level. We show that this
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knowledge stems from cues in the altered data, such as adjacent BPE symbols
and correlations between sentence length and content. The order in which
shuffling is performed — before or after BPE tokenization — is influential
in models’ acquisition of word order, which calls for caution in interpreting
previous results. Finally, we show that there exist NLU tasks that are far more
sensitive to sentence structure as expressed by word order.
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Appendix IX.A Subword vs. word scrambling

Figure IX.7: Pearson correlations, when scrambling by subword/word, with-
/without disjoint vocabularies. Disjoint vocabularies appear to induce patterns
in position-position correlations, while scrambling at a word level induces
‘stripes’ of oscillating magnitude; this is likely due to position embeddings
learning connections to adjacent tokens.

Appendix IX.B On biased sampling

We first split our vocab of size 5,000 into two halves, both of size 2500, such that
the sum total of unigram frequencies of tokens in each half is roughly equivalent.
Next, iterating over 100k BookCorpus sentences, we determine the sentence
length l, for which there are an equivalent number of tokens in sentences with
length < l and sentences with length >= l. We then sample tokens from the first
vocab half for sentences < l, and from the second vocab half for sentences with
length >= l, 80% of the time; for the other 20%, we sample from the opposite
half to introduce some overlap.

Appendix IX.C Full UD results
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Full UD results

Figure IX.8: Relative frequencies of dependency relations in UDEnglish−EW T ,
at a dependency lengths indicated by the x-axis

Figure IX.9: ∆ UAS, all models and layers across dependency lengths 1-5+, w.r.t.
ORIG. Layer 13 represents a linear mix of all model layers.
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